Active learning for semi-supervised clustering based on locally linear propagation reconstruction.
Chang, Chin-Chun; Lin, Po-Yi
2015-03-01
The success of semi-supervised clustering relies on the effectiveness of side information. To get effective side information, a new active learner learning pairwise constraints known as must-link and cannot-link constraints is proposed in this paper. Three novel techniques are developed for learning effective pairwise constraints. The first technique is used to identify samples less important to cluster structures. This technique makes use of a kernel version of locally linear embedding for manifold learning. Samples neither important to locally linear propagation reconstructions of other samples nor on flat patches in the learned manifold are regarded as unimportant samples. The second is a novel criterion for query selection. This criterion considers not only the importance of a sample to expanding the space coverage of the learned samples but also the expected number of queries needed to learn the sample. To facilitate semi-supervised clustering, the third technique yields inferred must-links for passing information about flat patches in the learned manifold to semi-supervised clustering algorithms. Experimental results have shown that the learned pairwise constraints can capture the underlying cluster structures and proven the feasibility of the proposed approach. Copyright © 2014 Elsevier Ltd. All rights reserved.
A Cluster-then-label Semi-supervised Learning Approach for Pathology Image Classification.
Peikari, Mohammad; Salama, Sherine; Nofech-Mozes, Sharon; Martel, Anne L
2018-05-08
Completely labeled pathology datasets are often challenging and time-consuming to obtain. Semi-supervised learning (SSL) methods are able to learn from fewer labeled data points with the help of a large number of unlabeled data points. In this paper, we investigated the possibility of using clustering analysis to identify the underlying structure of the data space for SSL. A cluster-then-label method was proposed to identify high-density regions in the data space which were then used to help a supervised SVM in finding the decision boundary. We have compared our method with other supervised and semi-supervised state-of-the-art techniques using two different classification tasks applied to breast pathology datasets. We found that compared with other state-of-the-art supervised and semi-supervised methods, our SSL method is able to improve classification performance when a limited number of labeled data instances are made available. We also showed that it is important to examine the underlying distribution of the data space before applying SSL techniques to ensure semi-supervised learning assumptions are not violated by the data.
Human semi-supervised learning.
Gibson, Bryan R; Rogers, Timothy T; Zhu, Xiaojin
2013-01-01
Most empirical work in human categorization has studied learning in either fully supervised or fully unsupervised scenarios. Most real-world learning scenarios, however, are semi-supervised: Learners receive a great deal of unlabeled information from the world, coupled with occasional experiences in which items are directly labeled by a knowledgeable source. A large body of work in machine learning has investigated how learning can exploit both labeled and unlabeled data provided to a learner. Using equivalences between models found in human categorization and machine learning research, we explain how these semi-supervised techniques can be applied to human learning. A series of experiments are described which show that semi-supervised learning models prove useful for explaining human behavior when exposed to both labeled and unlabeled data. We then discuss some machine learning models that do not have familiar human categorization counterparts. Finally, we discuss some challenges yet to be addressed in the use of semi-supervised models for modeling human categorization. Copyright © 2013 Cognitive Science Society, Inc.
Transfer learning improves supervised image segmentation across imaging protocols.
van Opbroek, Annegreet; Ikram, M Arfan; Vernooij, Meike W; de Bruijne, Marleen
2015-05-01
The variation between images obtained with different scanners or different imaging protocols presents a major challenge in automatic segmentation of biomedical images. This variation especially hampers the application of otherwise successful supervised-learning techniques which, in order to perform well, often require a large amount of labeled training data that is exactly representative of the target data. We therefore propose to use transfer learning for image segmentation. Transfer-learning techniques can cope with differences in distributions between training and target data, and therefore may improve performance over supervised learning for segmentation across scanners and scan protocols. We present four transfer classifiers that can train a classification scheme with only a small amount of representative training data, in addition to a larger amount of other training data with slightly different characteristics. The performance of the four transfer classifiers was compared to that of standard supervised classification on two magnetic resonance imaging brain-segmentation tasks with multi-site data: white matter, gray matter, and cerebrospinal fluid segmentation; and white-matter-/MS-lesion segmentation. The experiments showed that when there is only a small amount of representative training data available, transfer learning can greatly outperform common supervised-learning approaches, minimizing classification errors by up to 60%.
Authentically Engaged Learning through Live Supervision: A Phenomenological Study
ERIC Educational Resources Information Center
Moody, Steven; Kostohryz, Katie; Vereen, Linwood
2014-01-01
This phenomenological study explored the experiential learning of 5 master's-level counseling students undergoing live supervision in a group techniques course. Multiple themes were identified to provide a textural-structural description of how students authentically engaged in the learning process. Implications for counselor education and…
2011-07-01
supervised learning process is compared to that of Artificial Neural Network ( ANNs ), fuzzy logic rule set, and Bayesian network approaches...of both fuzzy logic systems and Artificial Neural Networks ( ANNs ). Like fuzzy logic systems, the CINet technique allows the use of human- intuitive...fuzzy rule systems [3] CINets also maintain features common to both fuzzy systems and ANNs . The technique can be be shown to possess the property
Song, Min; Yu, Hwanjo; Han, Wook-Shin
2011-11-24
Protein-protein interaction (PPI) extraction has been a focal point of many biomedical research and database curation tools. Both Active Learning and Semi-supervised SVMs have recently been applied to extract PPI automatically. In this paper, we explore combining the AL with the SSL to improve the performance of the PPI task. We propose a novel PPI extraction technique called PPISpotter by combining Deterministic Annealing-based SSL and an AL technique to extract protein-protein interaction. In addition, we extract a comprehensive set of features from MEDLINE records by Natural Language Processing (NLP) techniques, which further improve the SVM classifiers. In our feature selection technique, syntactic, semantic, and lexical properties of text are incorporated into feature selection that boosts the system performance significantly. By conducting experiments with three different PPI corpuses, we show that PPISpotter is superior to the other techniques incorporated into semi-supervised SVMs such as Random Sampling, Clustering, and Transductive SVMs by precision, recall, and F-measure. Our system is a novel, state-of-the-art technique for efficiently extracting protein-protein interaction pairs.
Linear time relational prototype based learning.
Gisbrecht, Andrej; Mokbel, Bassam; Schleif, Frank-Michael; Zhu, Xibin; Hammer, Barbara
2012-10-01
Prototype based learning offers an intuitive interface to inspect large quantities of electronic data in supervised or unsupervised settings. Recently, many techniques have been extended to data described by general dissimilarities rather than Euclidean vectors, so-called relational data settings. Unlike the Euclidean counterparts, the techniques have quadratic time complexity due to the underlying quadratic dissimilarity matrix. Thus, they are infeasible already for medium sized data sets. The contribution of this article is twofold: On the one hand we propose a novel supervised prototype based classification technique for dissimilarity data based on popular learning vector quantization (LVQ), on the other hand we transfer a linear time approximation technique, the Nyström approximation, to this algorithm and an unsupervised counterpart, the relational generative topographic mapping (GTM). This way, linear time and space methods result. We evaluate the techniques on three examples from the biomedical domain.
A Large-scale Distributed Indexed Learning Framework for Data that Cannot Fit into Memory
2015-03-27
learn a classifier. Integrating three learning techniques (online, semi-supervised and active learning ) together with a selective sampling with minimum communication between the server and the clients solved this problem.
Supervised Learning for Dynamical System Learning.
Hefny, Ahmed; Downey, Carlton; Gordon, Geoffrey J
2015-01-01
Recently there has been substantial interest in spectral methods for learning dynamical systems. These methods are popular since they often offer a good tradeoff between computational and statistical efficiency. Unfortunately, they can be difficult to use and extend in practice: e.g., they can make it difficult to incorporate prior information such as sparsity or structure. To address this problem, we present a new view of dynamical system learning: we show how to learn dynamical systems by solving a sequence of ordinary supervised learning problems, thereby allowing users to incorporate prior knowledge via standard techniques such as L 1 regularization. Many existing spectral methods are special cases of this new framework, using linear regression as the supervised learner. We demonstrate the effectiveness of our framework by showing examples where nonlinear regression or lasso let us learn better state representations than plain linear regression does; the correctness of these instances follows directly from our general analysis.
Bearman, Sarah Kate; Schneiderman, Robyn L; Zoloth, Emma
2017-03-01
Treatments that are efficacious in research trials perform less well under routine conditions; differences in supervision may be one contributing factor. This study compared the effect of supervision using active learning techniques (e.g. role play, corrective feedback) versus "supervision as usual" on therapist cognitive restructuring fidelity, overall CBT competence, and CBT expertise. Forty therapist trainees attended a training workshop and were randomized to supervision condition. Outcomes were assessed using behavioral rehearsals pre- and immediately post-training, and after three supervision meetings. EBT knowledge, attitudes, and fidelity improved for all participants post-training, but only the SUP+ group demonstrated improvement following supervision.
Kruse, Christian
2018-06-01
To review current practices and technologies within the scope of "Big Data" that can further our understanding of diabetes mellitus and osteoporosis from large volumes of data. "Big Data" techniques involving supervised machine learning, unsupervised machine learning, and deep learning image analysis are presented with examples of current literature. Supervised machine learning can allow us to better predict diabetes-induced osteoporosis and understand relative predictor importance of diabetes-affected bone tissue. Unsupervised machine learning can allow us to understand patterns in data between diabetic pathophysiology and altered bone metabolism. Image analysis using deep learning can allow us to be less dependent on surrogate predictors and use large volumes of images to classify diabetes-induced osteoporosis and predict future outcomes directly from images. "Big Data" techniques herald new possibilities to understand diabetes-induced osteoporosis and ascertain our current ability to classify, understand, and predict this condition.
Generating a Spanish Affective Dictionary with Supervised Learning Techniques
ERIC Educational Resources Information Center
Bermudez-Gonzalez, Daniel; Miranda-Jiménez, Sabino; García-Moreno, Raúl-Ulises; Calderón-Nepamuceno, Dora
2016-01-01
Nowadays, machine learning techniques are being used in several Natural Language Processing (NLP) tasks such as Opinion Mining (OM). OM is used to analyse and determine the affective orientation of texts. Usually, OM approaches use affective dictionaries in order to conduct sentiment analysis. These lexicons are labeled manually with affective…
Cao, Peng; Liu, Xiaoli; Bao, Hang; Yang, Jinzhu; Zhao, Dazhe
2015-01-01
The false-positive reduction (FPR) is a crucial step in the computer aided detection system for the breast. The issues of imbalanced data distribution and the limitation of labeled samples complicate the classification procedure. To overcome these challenges, we propose oversampling and semi-supervised learning methods based on the restricted Boltzmann machines (RBMs) to solve the classification of imbalanced data with a few labeled samples. To evaluate the proposed method, we conducted a comprehensive performance study and compared its results with the commonly used techniques. Experiments on benchmark dataset of DDSM demonstrate the effectiveness of the RBMs based oversampling and semi-supervised learning method in terms of geometric mean (G-mean) for false positive reduction in Breast CAD.
Video mining using combinations of unsupervised and supervised learning techniques
NASA Astrophysics Data System (ADS)
Divakaran, Ajay; Miyahara, Koji; Peker, Kadir A.; Radhakrishnan, Regunathan; Xiong, Ziyou
2003-12-01
We discuss the meaning and significance of the video mining problem, and present our work on some aspects of video mining. A simple definition of video mining is unsupervised discovery of patterns in audio-visual content. Such purely unsupervised discovery is readily applicable to video surveillance as well as to consumer video browsing applications. We interpret video mining as content-adaptive or "blind" content processing, in which the first stage is content characterization and the second stage is event discovery based on the characterization obtained in stage 1. We discuss the target applications and find that using a purely unsupervised approach are too computationally complex to be implemented on our product platform. We then describe various combinations of unsupervised and supervised learning techniques that help discover patterns that are useful to the end-user of the application. We target consumer video browsing applications such as commercial message detection, sports highlights extraction etc. We employ both audio and video features. We find that supervised audio classification combined with unsupervised unusual event discovery enables accurate supervised detection of desired events. Our techniques are computationally simple and robust to common variations in production styles etc.
Beyond the Curriculum: Creating the Conditions for Learning.
ERIC Educational Resources Information Center
Grauer, Stuart
Using current mind/brain research, this paper explores the "hidden curriculum" in the contexts of teaching, learning and supervision. It explains ways in which current research on the nature of learning can fit into today's typical, "clinical" teaching techniques. The importance of respecting individual modes of learning is stressed; further to…
Hashimoto, Shinichi; Ogihara, Hiroyuki; Suenaga, Masato; Fujita, Yusuke; Terai, Shuji; Hamamoto, Yoshihiko; Sakaida, Isao
2017-08-01
Visibility in capsule endoscopic images is presently evaluated through intermittent analysis of frames selected by a physician. It is thus subjective and not quantitative. A method to automatically quantify the visibility on capsule endoscopic images has not been reported. Generally, when designing automated image recognition programs, physicians must provide a training image; this process is called supervised learning. We aimed to develop a novel automated self-learning quantification system to identify visible areas on capsule endoscopic images. The technique was developed using 200 capsule endoscopic images retrospectively selected from each of three patients. The rate of detection of visible areas on capsule endoscopic images between a supervised learning program, using training images labeled by a physician, and our novel automated self-learning program, using unlabeled training images without intervention by a physician, was compared. The rate of detection of visible areas was equivalent for the supervised learning program and for our automatic self-learning program. The visible areas automatically identified by self-learning program correlated to the areas identified by an experienced physician. We developed a novel self-learning automated program to identify visible areas in capsule endoscopic images.
Application of Metamorphic Testing to Supervised Classifiers
Xie, Xiaoyuan; Ho, Joshua; Kaiser, Gail; Xu, Baowen; Chen, Tsong Yueh
2010-01-01
Many applications in the field of scientific computing - such as computational biology, computational linguistics, and others - depend on Machine Learning algorithms to provide important core functionality to support solutions in the particular problem domains. However, it is difficult to test such applications because often there is no “test oracle” to indicate what the correct output should be for arbitrary input. To help address the quality of such software, in this paper we present a technique for testing the implementations of supervised machine learning classification algorithms on which such scientific computing software depends. Our technique is based on an approach called “metamorphic testing”, which has been shown to be effective in such cases. More importantly, we demonstrate that our technique not only serves the purpose of verification, but also can be applied in validation. In addition to presenting our technique, we describe a case study we performed on a real-world machine learning application framework, and discuss how programmers implementing machine learning algorithms can avoid the common pitfalls discovered in our study. We also discuss how our findings can be of use to other areas outside scientific computing, as well. PMID:21243103
Learning in the Absence of Direct Supervision: Person-Dependent Scaffolding
ERIC Educational Resources Information Center
Palesy, Debra
2017-01-01
Contemporary accounts of learning emphasise the importance of immediate social partners such as teachers and co-workers. Yet, much of our learning for work occurs without such experts. This paper provides an understanding of how and why new home care workers use scaffolding to learn and enact safe manual handling techniques in their workplaces,…
Ecological interactions and the Netflix problem.
Desjardins-Proulx, Philippe; Laigle, Idaline; Poisot, Timothée; Gravel, Dominique
2017-01-01
Species interactions are a key component of ecosystems but we generally have an incomplete picture of who-eats-who in a given community. Different techniques have been devised to predict species interactions using theoretical models or abundances. Here, we explore the K nearest neighbour approach, with a special emphasis on recommendation, along with a supervised machine learning technique. Recommenders are algorithms developed for companies like Netflix to predict whether a customer will like a product given the preferences of similar customers. These machine learning techniques are well-suited to study binary ecological interactions since they focus on positive-only data. By removing a prey from a predator, we find that recommenders can guess the missing prey around 50% of the times on the first try, with up to 881 possibilities. Traits do not improve significantly the results for the K nearest neighbour, although a simple test with a supervised learning approach (random forests) show we can predict interactions with high accuracy using only three traits per species. This result shows that binary interactions can be predicted without regard to the ecological community given only three variables: body mass and two variables for the species' phylogeny. These techniques are complementary, as recommenders can predict interactions in the absence of traits, using only information about other species' interactions, while supervised learning algorithms such as random forests base their predictions on traits only but do not exploit other species' interactions. Further work should focus on developing custom similarity measures specialized for ecology to improve the KNN algorithms and using richer data to capture indirect relationships between species.
Ecological interactions and the Netflix problem
Laigle, Idaline; Poisot, Timothée; Gravel, Dominique
2017-01-01
Species interactions are a key component of ecosystems but we generally have an incomplete picture of who-eats-who in a given community. Different techniques have been devised to predict species interactions using theoretical models or abundances. Here, we explore the K nearest neighbour approach, with a special emphasis on recommendation, along with a supervised machine learning technique. Recommenders are algorithms developed for companies like Netflix to predict whether a customer will like a product given the preferences of similar customers. These machine learning techniques are well-suited to study binary ecological interactions since they focus on positive-only data. By removing a prey from a predator, we find that recommenders can guess the missing prey around 50% of the times on the first try, with up to 881 possibilities. Traits do not improve significantly the results for the K nearest neighbour, although a simple test with a supervised learning approach (random forests) show we can predict interactions with high accuracy using only three traits per species. This result shows that binary interactions can be predicted without regard to the ecological community given only three variables: body mass and two variables for the species’ phylogeny. These techniques are complementary, as recommenders can predict interactions in the absence of traits, using only information about other species’ interactions, while supervised learning algorithms such as random forests base their predictions on traits only but do not exploit other species’ interactions. Further work should focus on developing custom similarity measures specialized for ecology to improve the KNN algorithms and using richer data to capture indirect relationships between species. PMID:28828250
(Machine) learning to do more with less
NASA Astrophysics Data System (ADS)
Cohen, Timothy; Freytsis, Marat; Ostdiek, Bryan
2018-02-01
Determining the best method for training a machine learning algorithm is critical to maximizing its ability to classify data. In this paper, we compare the standard "fully supervised" approach (which relies on knowledge of event-by-event truth-level labels) with a recent proposal that instead utilizes class ratios as the only discriminating information provided during training. This so-called "weakly supervised" technique has access to less information than the fully supervised method and yet is still able to yield impressive discriminating power. In addition, weak supervision seems particularly well suited to particle physics since quantum mechanics is incompatible with the notion of mapping an individual event onto any single Feynman diagram. We examine the technique in detail — both analytically and numerically — with a focus on the robustness to issues of mischaracterizing the training samples. Weakly supervised networks turn out to be remarkably insensitive to a class of systematic mismodeling. Furthermore, we demonstrate that the event level outputs for weakly versus fully supervised networks are probing different kinematics, even though the numerical quality metrics are essentially identical. This implies that it should be possible to improve the overall classification ability by combining the output from the two types of networks. For concreteness, we apply this technology to a signature of beyond the Standard Model physics to demonstrate that all these impressive features continue to hold in a scenario of relevance to the LHC. Example code is provided on GitHub.
Feng, Jingwen; Feng, Tong; Yang, Chengwen; Wang, Wei; Sa, Yu; Feng, Yuanming
2018-06-01
This study was to explore the feasibility of prediction and classification of cells in different stages of apoptosis with a stain-free method based on diffraction images and supervised machine learning. Apoptosis was induced in human chronic myelogenous leukemia K562 cells by cis-platinum (DDP). A newly developed technique of polarization diffraction imaging flow cytometry (p-DIFC) was performed to acquire diffraction images of the cells in three different statuses (viable, early apoptotic and late apoptotic/necrotic) after cell separation through fluorescence activated cell sorting with Annexin V-PE and SYTOX® Green double staining. The texture features of the diffraction images were extracted with in-house software based on the Gray-level co-occurrence matrix algorithm to generate datasets for cell classification with supervised machine learning method. Therefore, this new method has been verified in hydrogen peroxide induced apoptosis model of HL-60. Results show that accuracy of higher than 90% was achieved respectively in independent test datasets from each cell type based on logistic regression with ridge estimators, which indicated that p-DIFC system has a great potential in predicting and classifying cells in different stages of apoptosis.
Optimizing area under the ROC curve using semi-supervised learning
Wang, Shijun; Li, Diana; Petrick, Nicholas; Sahiner, Berkman; Linguraru, Marius George; Summers, Ronald M.
2014-01-01
Receiver operating characteristic (ROC) analysis is a standard methodology to evaluate the performance of a binary classification system. The area under the ROC curve (AUC) is a performance metric that summarizes how well a classifier separates two classes. Traditional AUC optimization techniques are supervised learning methods that utilize only labeled data (i.e., the true class is known for all data) to train the classifiers. In this work, inspired by semi-supervised and transductive learning, we propose two new AUC optimization algorithms hereby referred to as semi-supervised learning receiver operating characteristic (SSLROC) algorithms, which utilize unlabeled test samples in classifier training to maximize AUC. Unlabeled samples are incorporated into the AUC optimization process, and their ranking relationships to labeled positive and negative training samples are considered as optimization constraints. The introduced test samples will cause the learned decision boundary in a multidimensional feature space to adapt not only to the distribution of labeled training data, but also to the distribution of unlabeled test data. We formulate the semi-supervised AUC optimization problem as a semi-definite programming problem based on the margin maximization theory. The proposed methods SSLROC1 (1-norm) and SSLROC2 (2-norm) were evaluated using 34 (determined by power analysis) randomly selected datasets from the University of California, Irvine machine learning repository. Wilcoxon signed rank tests showed that the proposed methods achieved significant improvement compared with state-of-the-art methods. The proposed methods were also applied to a CT colonography dataset for colonic polyp classification and showed promising results.1 PMID:25395692
Optimizing area under the ROC curve using semi-supervised learning.
Wang, Shijun; Li, Diana; Petrick, Nicholas; Sahiner, Berkman; Linguraru, Marius George; Summers, Ronald M
2015-01-01
Receiver operating characteristic (ROC) analysis is a standard methodology to evaluate the performance of a binary classification system. The area under the ROC curve (AUC) is a performance metric that summarizes how well a classifier separates two classes. Traditional AUC optimization techniques are supervised learning methods that utilize only labeled data (i.e., the true class is known for all data) to train the classifiers. In this work, inspired by semi-supervised and transductive learning, we propose two new AUC optimization algorithms hereby referred to as semi-supervised learning receiver operating characteristic (SSLROC) algorithms, which utilize unlabeled test samples in classifier training to maximize AUC. Unlabeled samples are incorporated into the AUC optimization process, and their ranking relationships to labeled positive and negative training samples are considered as optimization constraints. The introduced test samples will cause the learned decision boundary in a multidimensional feature space to adapt not only to the distribution of labeled training data, but also to the distribution of unlabeled test data. We formulate the semi-supervised AUC optimization problem as a semi-definite programming problem based on the margin maximization theory. The proposed methods SSLROC1 (1-norm) and SSLROC2 (2-norm) were evaluated using 34 (determined by power analysis) randomly selected datasets from the University of California, Irvine machine learning repository. Wilcoxon signed rank tests showed that the proposed methods achieved significant improvement compared with state-of-the-art methods. The proposed methods were also applied to a CT colonography dataset for colonic polyp classification and showed promising results.
Effective and ineffective supervision in postgraduate dental education: a qualitative study.
Subramanian, J; Anderson, V R; Morgaine, K C; Thomson, W M
2013-02-01
Research suggests that students' perceptions should be considered in any discussion of their education, but there has been no systematic examination of New Zealand postgraduate dental students' learning experiences. This study aimed to obtain in-depth qualitative insights into student and graduate perceptions of effective and ineffective learning in postgraduate dental education. Data were collected in 2010 using semi-structured individual interviews. Participants included final-year students and graduates of the University of Otago Doctor of Clinical Dentistry programme. Using the Critical Incident Technique, participants were asked to describe atleast one effective and one ineffective learning experience in detail. Interview transcripts were analysed using a general inductive approach. Broad themes which emerged included supervisory approaches, characteristics of the learning process, and the physical learning environment. This paper considers students' and graduates' perceptions of postgraduate supervision in dentistry as it promotes or precludes effective learning. Effective learning was associated by participants with approachable and supportive supervisory practices, and technique demonstrations accompanied by explicit explanations. Ineffective learning was associated with minimal supervisor demonstrations and guidance (particularly when beginning postgraduate study), and aggressive, discriminatory and/or culturally insensitive supervisory approaches. Participants' responses provided rich, in-depth insights into their reflections and understandings of effective and ineffective approaches to supervision as it influenced their learning in the clinical and research settings. These findings provide a starting point for the development of curriculum and supervisory practices, enhancement of supervisory and mentoring approaches, and the design of continuing education programmes for supervisors at an institutional level. Additionally, these findings might also stimulate topics for reflection and discussion amongst dental educators and administrators more broadly. © 2012 John Wiley & Sons A/S.
NASA Astrophysics Data System (ADS)
Govorov, Michael; Gienko, Gennady; Putrenko, Viktor
2018-05-01
In this paper, several supervised machine learning algorithms were explored to define homogeneous regions of con-centration of uranium in surface waters in Ukraine using multiple environmental parameters. The previous study was focused on finding the primary environmental parameters related to uranium in ground waters using several methods of spatial statistics and unsupervised classification. At this step, we refined the regionalization using Artifi-cial Neural Networks (ANN) techniques including Multilayer Perceptron (MLP), Radial Basis Function (RBF), and Convolutional Neural Network (CNN). The study is focused on building local ANN models which may significantly improve the prediction results of machine learning algorithms by taking into considerations non-stationarity and autocorrelation in spatial data.
SemiBoost: boosting for semi-supervised learning.
Mallapragada, Pavan Kumar; Jin, Rong; Jain, Anil K; Liu, Yi
2009-11-01
Semi-supervised learning has attracted a significant amount of attention in pattern recognition and machine learning. Most previous studies have focused on designing special algorithms to effectively exploit the unlabeled data in conjunction with labeled data. Our goal is to improve the classification accuracy of any given supervised learning algorithm by using the available unlabeled examples. We call this as the Semi-supervised improvement problem, to distinguish the proposed approach from the existing approaches. We design a metasemi-supervised learning algorithm that wraps around the underlying supervised algorithm and improves its performance using unlabeled data. This problem is particularly important when we need to train a supervised learning algorithm with a limited number of labeled examples and a multitude of unlabeled examples. We present a boosting framework for semi-supervised learning, termed as SemiBoost. The key advantages of the proposed semi-supervised learning approach are: 1) performance improvement of any supervised learning algorithm with a multitude of unlabeled data, 2) efficient computation by the iterative boosting algorithm, and 3) exploiting both manifold and cluster assumption in training classification models. An empirical study on 16 different data sets and text categorization demonstrates that the proposed framework improves the performance of several commonly used supervised learning algorithms, given a large number of unlabeled examples. We also show that the performance of the proposed algorithm, SemiBoost, is comparable to the state-of-the-art semi-supervised learning algorithms.
Supervised detection of exoplanets in high-contrast imaging sequences
NASA Astrophysics Data System (ADS)
Gomez Gonzalez, C. A.; Absil, O.; Van Droogenbroeck, M.
2018-06-01
Context. Post-processing algorithms play a key role in pushing the detection limits of high-contrast imaging (HCI) instruments. State-of-the-art image processing approaches for HCI enable the production of science-ready images relying on unsupervised learning techniques, such as low-rank approximations, for generating a model point spread function (PSF) and subtracting the residual starlight and speckle noise. Aims: In order to maximize the detection rate of HCI instruments and survey campaigns, advanced algorithms with higher sensitivities to faint companions are needed, especially for the speckle-dominated innermost region of the images. Methods: We propose a reformulation of the exoplanet detection task (for ADI sequences) that builds on well-established machine learning techniques to take HCI post-processing from an unsupervised to a supervised learning context. In this new framework, we present algorithmic solutions using two different discriminative models: SODIRF (random forests) and SODINN (neural networks). We test these algorithms on real ADI datasets from VLT/NACO and VLT/SPHERE HCI instruments. We then assess their performances by injecting fake companions and using receiver operating characteristic analysis. This is done in comparison with state-of-the-art ADI algorithms, such as ADI principal component analysis (ADI-PCA). Results: This study shows the improved sensitivity versus specificity trade-off of the proposed supervised detection approach. At the diffraction limit, SODINN improves the true positive rate by a factor ranging from 2 to 10 (depending on the dataset and angular separation) with respect to ADI-PCA when working at the same false-positive level. Conclusions: The proposed supervised detection framework outperforms state-of-the-art techniques in the task of discriminating planet signal from speckles. In addition, it offers the possibility of re-processing existing HCI databases to maximize their scientific return and potentially improve the demographics of directly imaged exoplanets.
Morabito, Francesco Carlo; Campolo, Maurizio; Mammone, Nadia; Versaci, Mario; Franceschetti, Silvana; Tagliavini, Fabrizio; Sofia, Vito; Fatuzzo, Daniela; Gambardella, Antonio; Labate, Angelo; Mumoli, Laura; Tripodi, Giovanbattista Gaspare; Gasparini, Sara; Cianci, Vittoria; Sueri, Chiara; Ferlazzo, Edoardo; Aguglia, Umberto
2017-03-01
A novel technique of quantitative EEG for differentiating patients with early-stage Creutzfeldt-Jakob disease (CJD) from other forms of rapidly progressive dementia (RPD) is proposed. The discrimination is based on the extraction of suitable features from the time-frequency representation of the EEG signals through continuous wavelet transform (CWT). An average measure of complexity of the EEG signal obtained by permutation entropy (PE) is also included. The dimensionality of the feature space is reduced through a multilayer processing system based on the recently emerged deep learning (DL) concept. The DL processor includes a stacked auto-encoder, trained by unsupervised learning techniques, and a classifier whose parameters are determined in a supervised way by associating the known category labels to the reduced vector of high-level features generated by the previous processing blocks. The supervised learning step is carried out by using either support vector machines (SVM) or multilayer neural networks (MLP-NN). A subset of EEG from patients suffering from Alzheimer's Disease (AD) and healthy controls (HC) is considered for differentiating CJD patients. When fine-tuning the parameters of the global processing system by a supervised learning procedure, the proposed system is able to achieve an average accuracy of 89%, an average sensitivity of 92%, and an average specificity of 89% in differentiating CJD from RPD. Similar results are obtained for CJD versus AD and CJD versus HC.
Johnson, Nathan T; Dhroso, Andi; Hughes, Katelyn J; Korkin, Dmitry
2018-06-25
The extent to which the genes are expressed in the cell can be simplistically defined as a function of one or more factors of the environment, lifestyle, and genetics. RNA sequencing (RNA-Seq) is becoming a prevalent approach to quantify gene expression, and is expected to gain better insights to a number of biological and biomedical questions, compared to the DNA microarrays. Most importantly, RNA-Seq allows to quantify expression at the gene and alternative splicing isoform levels. However, leveraging the RNA-Seq data requires development of new data mining and analytics methods. Supervised machine learning methods are commonly used approaches for biological data analysis, and have recently gained attention for their applications to the RNA-Seq data. In this work, we assess the utility of supervised learning methods trained on RNA-Seq data for a diverse range of biological classification tasks. We hypothesize that the isoform-level expression data is more informative for biological classification tasks than the gene-level expression data. Our large-scale assessment is done through utilizing multiple datasets, organisms, lab groups, and RNA-Seq analysis pipelines. Overall, we performed and assessed 61 biological classification problems that leverage three independent RNA-Seq datasets and include over 2,000 samples that come from multiple organisms, lab groups, and RNA-Seq analyses. These 61 problems include predictions of the tissue type, sex, or age of the sample, healthy or cancerous phenotypes and, the pathological tumor stage for the samples from the cancerous tissue. For each classification problem, the performance of three normalization techniques and six machine learning classifiers was explored. We find that for every single classification problem, the isoform-based classifiers outperform or are comparable with gene expression based methods. The top-performing supervised learning techniques reached a near perfect classification accuracy, demonstrating the utility of supervised learning for RNA-Seq based data analysis. Published by Cold Spring Harbor Laboratory Press for the RNA Society.
Lynch, Chip M; Abdollahi, Behnaz; Fuqua, Joshua D; de Carlo, Alexandra R; Bartholomai, James A; Balgemann, Rayeanne N; van Berkel, Victor H; Frieboes, Hermann B
2017-12-01
Outcomes for cancer patients have been previously estimated by applying various machine learning techniques to large datasets such as the Surveillance, Epidemiology, and End Results (SEER) program database. In particular for lung cancer, it is not well understood which types of techniques would yield more predictive information, and which data attributes should be used in order to determine this information. In this study, a number of supervised learning techniques is applied to the SEER database to classify lung cancer patients in terms of survival, including linear regression, Decision Trees, Gradient Boosting Machines (GBM), Support Vector Machines (SVM), and a custom ensemble. Key data attributes in applying these methods include tumor grade, tumor size, gender, age, stage, and number of primaries, with the goal to enable comparison of predictive power between the various methods The prediction is treated like a continuous target, rather than a classification into categories, as a first step towards improving survival prediction. The results show that the predicted values agree with actual values for low to moderate survival times, which constitute the majority of the data. The best performing technique was the custom ensemble with a Root Mean Square Error (RMSE) value of 15.05. The most influential model within the custom ensemble was GBM, while Decision Trees may be inapplicable as it had too few discrete outputs. The results further show that among the five individual models generated, the most accurate was GBM with an RMSE value of 15.32. Although SVM underperformed with an RMSE value of 15.82, statistical analysis singles the SVM as the only model that generated a distinctive output. The results of the models are consistent with a classical Cox proportional hazards model used as a reference technique. We conclude that application of these supervised learning techniques to lung cancer data in the SEER database may be of use to estimate patient survival time with the ultimate goal to inform patient care decisions, and that the performance of these techniques with this particular dataset may be on par with that of classical methods. Copyright © 2017 Elsevier B.V. All rights reserved.
Learning Biological Networks via Bootstrapping with Optimized GO-based Gene Similarity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, Ronald C.; Sanfilippo, Antonio P.; McDermott, Jason E.
2010-08-02
Microarray gene expression data provide a unique information resource for learning biological networks using "reverse engineering" methods. However, there are a variety of cases in which we know which genes are involved in a given pathology of interest, but we do not have enough experimental evidence to support the use of fully-supervised/reverse-engineering learning methods. In this paper, we explore a novel semi-supervised approach in which biological networks are learned from a reference list of genes and a partial set of links for these genes extracted automatically from PubMed abstracts, using a knowledge-driven bootstrapping algorithm. We show how new relevant linksmore » across genes can be iteratively derived using a gene similarity measure based on the Gene Ontology that is optimized on the input network at each iteration. We describe an application of this approach to the TGFB pathway as a case study and show how the ensuing results prove the feasibility of the approach as an alternate or complementary technique to fully supervised methods.« less
Semi-supervised learning via regularized boosting working on multiple semi-supervised assumptions.
Chen, Ke; Wang, Shihai
2011-01-01
Semi-supervised learning concerns the problem of learning in the presence of labeled and unlabeled data. Several boosting algorithms have been extended to semi-supervised learning with various strategies. To our knowledge, however, none of them takes all three semi-supervised assumptions, i.e., smoothness, cluster, and manifold assumptions, together into account during boosting learning. In this paper, we propose a novel cost functional consisting of the margin cost on labeled data and the regularization penalty on unlabeled data based on three fundamental semi-supervised assumptions. Thus, minimizing our proposed cost functional with a greedy yet stagewise functional optimization procedure leads to a generic boosting framework for semi-supervised learning. Extensive experiments demonstrate that our algorithm yields favorite results for benchmark and real-world classification tasks in comparison to state-of-the-art semi-supervised learning algorithms, including newly developed boosting algorithms. Finally, we discuss relevant issues and relate our algorithm to the previous work.
Using the Technique of Journal Writing to Learn Emergency Psychiatry
ERIC Educational Resources Information Center
Bhuvaneswar, Chaya; Stern, Theodore; Beresin, Eugene
2009-01-01
Objective: The authors discuss journal writing in learning emergency psychiatry. Methods: The journal of a psychiatry intern rotating through an emergency department is used as sample material for analysis that could take place in supervision or a resident support group. A range of articles are reviewed that illuminate the relevance of journal…
Automated Detection of Microaneurysms Using Scale-Adapted Blob Analysis and Semi-Supervised Learning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adal, Kedir M.; Sidebe, Desire; Ali, Sharib
2014-01-07
Despite several attempts, automated detection of microaneurysm (MA) from digital fundus images still remains to be an open issue. This is due to the subtle nature of MAs against the surrounding tissues. In this paper, the microaneurysm detection problem is modeled as finding interest regions or blobs from an image and an automatic local-scale selection technique is presented. Several scale-adapted region descriptors are then introduced to characterize these blob regions. A semi-supervised based learning approach, which requires few manually annotated learning examples, is also proposed to train a classifier to detect true MAs. The developed system is built using onlymore » few manually labeled and a large number of unlabeled retinal color fundus images. The performance of the overall system is evaluated on Retinopathy Online Challenge (ROC) competition database. A competition performance measure (CPM) of 0.364 shows the competitiveness of the proposed system against state-of-the art techniques as well as the applicability of the proposed features to analyze fundus images.« less
Using Supervised Learning Techniques for Diagnosis of Dynamic Systems
2002-05-04
M. Gasca 2 , Juan A. Ortega2 Abstract. This paper describes an approach based on supervised diagnose systems faults are needed to maintain the systems...labelled, data will be used for this purpose [5] [6]. treated to add additional information about the running of system. In [7] the fundaments of the based ...8] proposes classification tool to the set of labelled and treated data. This a consistency- based approach with qualitative models. way, any
NASA Technical Reports Server (NTRS)
Shahshahani, Behzad M.; Landgrebe, David A.
1992-01-01
The effect of additional unlabeled samples in improving the supervised learning process is studied in this paper. Three learning processes. supervised, unsupervised, and combined supervised-unsupervised, are compared by studying the asymptotic behavior of the estimates obtained under each process. Upper and lower bounds on the asymptotic covariance matrices are derived. It is shown that under a normal mixture density assumption for the probability density function of the feature space, the combined supervised-unsupervised learning is always superior to the supervised learning in achieving better estimates. Experimental results are provided to verify the theoretical concepts.
Evaluation of Semi-supervised Learning for Classification of Protein Crystallization Imagery.
Sigdel, Madhav; Dinç, İmren; Dinç, Semih; Sigdel, Madhu S; Pusey, Marc L; Aygün, Ramazan S
2014-03-01
In this paper, we investigate the performance of two wrapper methods for semi-supervised learning algorithms for classification of protein crystallization images with limited labeled images. Firstly, we evaluate the performance of semi-supervised approach using self-training with naïve Bayesian (NB) and sequential minimum optimization (SMO) as the base classifiers. The confidence values returned by these classifiers are used to select high confident predictions to be used for self-training. Secondly, we analyze the performance of Yet Another Two Stage Idea (YATSI) semi-supervised learning using NB, SMO, multilayer perceptron (MLP), J48 and random forest (RF) classifiers. These results are compared with the basic supervised learning using the same training sets. We perform our experiments on a dataset consisting of 2250 protein crystallization images for different proportions of training and test data. Our results indicate that NB and SMO using both self-training and YATSI semi-supervised approaches improve accuracies with respect to supervised learning. On the other hand, MLP, J48 and RF perform better using basic supervised learning. Overall, random forest classifier yields the best accuracy with supervised learning for our dataset.
Amis, Gregory P; Carpenter, Gail A
2010-03-01
Computational models of learning typically train on labeled input patterns (supervised learning), unlabeled input patterns (unsupervised learning), or a combination of the two (semi-supervised learning). In each case input patterns have a fixed number of features throughout training and testing. Human and machine learning contexts present additional opportunities for expanding incomplete knowledge from formal training, via self-directed learning that incorporates features not previously experienced. This article defines a new self-supervised learning paradigm to address these richer learning contexts, introducing a neural network called self-supervised ARTMAP. Self-supervised learning integrates knowledge from a teacher (labeled patterns with some features), knowledge from the environment (unlabeled patterns with more features), and knowledge from internal model activation (self-labeled patterns). Self-supervised ARTMAP learns about novel features from unlabeled patterns without destroying partial knowledge previously acquired from labeled patterns. A category selection function bases system predictions on known features, and distributed network activation scales unlabeled learning to prediction confidence. Slow distributed learning on unlabeled patterns focuses on novel features and confident predictions, defining classification boundaries that were ambiguous in the labeled patterns. Self-supervised ARTMAP improves test accuracy on illustrative low-dimensional problems and on high-dimensional benchmarks. Model code and benchmark data are available from: http://techlab.eu.edu/SSART/. Copyright 2009 Elsevier Ltd. All rights reserved.
ICT Strategies and Tools for the Improvement of Instructional Supervision. The Virtual Supervision
ERIC Educational Resources Information Center
Cano, Esteban Vazquez; Garcia, Ma. Luisa Sevillano
2013-01-01
This study aims to evaluate and analyze strategies, proposals, and ICT tools to promote a paradigm shift in educational supervision that enhances the schools of this century involved not only in teaching-face learning, but e-learning and blended learning. Traditional models of educational supervision do not guarantee adequate supervision of the…
Baccalaureate nursing students' perceptions of learning and supervision in the clinical environment.
Dimitriadou, Maria; Papastavrou, Evridiki; Efstathiou, Georgios; Theodorou, Mamas
2015-06-01
This study is an exploration of nursing students' experiences within the clinical learning environment (CLE) and supervision provided in hospital settings. A total of 357 second-year nurse students from all universities in Cyprus participated in the study. Data were collected using the Clinical Learning Environment, Supervision and Nurse Teacher instrument. The dimension "supervisory relationship (mentor)", as well as the frequency of individualized supervision meetings, were found to be important variables in the students' clinical learning. However, no statistically-significant connection was established between successful mentor relationship and team supervision. The majority of students valued their mentor's supervision more highly than a nurse teacher's supervision toward the fulfillment of learning outcomes. The dimensions "premises of nursing care" and "premises of learning" were highly correlated, indicating that a key component of a quality clinical learning environment is the quality of care delivered. The results suggest the need to modify educational strategies that foster desirable learning for students in response to workplace demands. © 2014 Wiley Publishing Asia Pty Ltd.
7 CFR 1902.2 - Policies concerning disbursement of funds.
Code of Federal Regulations, 2013 CFR
2013-01-01
... deposited in a supervised bank account. This supervisory technique will be used for a temporary period to help the borrower learn to properly manage his/her finances. Such a period will not exceed 1 year...
7 CFR 1902.2 - Policies concerning disbursement of funds.
Code of Federal Regulations, 2014 CFR
2014-01-01
... deposited in a supervised bank account. This supervisory technique will be used for a temporary period to help the borrower learn to properly manage his/her finances. Such a period will not exceed 1 year...
7 CFR 1902.2 - Policies concerning disbursement of funds.
Code of Federal Regulations, 2012 CFR
2012-01-01
... deposited in a supervised bank account. This supervisory technique will be used for a temporary period to help the borrower learn to properly manage his/her finances. Such a period will not exceed 1 year...
Pitkänen, Salla; Kääriäinen, Maria; Oikarainen, Ashlee; Tuomikoski, Anna-Maria; Elo, Satu; Ruotsalainen, Heidi; Saarikoski, Mikko; Kärsämänoja, Taina; Mikkonen, Kristina
2018-03-01
The purpose of clinical placements and supervision is to promote the development of healthcare students´ professional skills. High-quality clinical learning environments and supervision were shown to have significant influence on healthcare students´ professional development. This study aimed to describe healthcare students` evaluation of the clinical learning environment and supervision, and to identify the factors that affect these. The study was performed as a cross-sectional study. The data (n = 1973) were gathered through an online survey using the Clinical Learning Environment, Supervision and Nurse Teacher scale during the academic year 2015-2016 from all healthcare students (N = 2500) who completed their clinical placement at a certain university hospital in Finland. The data were analysed using descriptive statistics and binary logistic regression analysis. More than half of the healthcare students had a named supervisor and supervision was completed as planned. The students evaluated the clinical learning environment and supervision as 'good'. The students´ readiness to recommend the unit to other students and the frequency of separate private unscheduled sessions with the supervisor were the main factors that affect healthcare students` evaluation of the clinical learning environment and supervision. Individualized and goal-oriented supervision in which the student had a named supervisor and where supervision was completed as planned in a positive environment that supported learning had a significant impact on student's learning. The clinical learning environment and supervision support the development of future healthcare professionals' clinical competence. The supervisory relationship was shown to have a significant effect on the outcomes of students' experiences. We recommend the planning of educational programmes for supervisors of healthcare students for the enhancement of supervisors' pedagogical competencies in supervising students in the clinical practice. Copyright © 2018 Elsevier Ltd. All rights reserved.
Evaluation of Semi-supervised Learning for Classification of Protein Crystallization Imagery
Sigdel, Madhav; Dinç, İmren; Dinç, Semih; Sigdel, Madhu S.; Pusey, Marc L.; Aygün, Ramazan S.
2015-01-01
In this paper, we investigate the performance of two wrapper methods for semi-supervised learning algorithms for classification of protein crystallization images with limited labeled images. Firstly, we evaluate the performance of semi-supervised approach using self-training with naïve Bayesian (NB) and sequential minimum optimization (SMO) as the base classifiers. The confidence values returned by these classifiers are used to select high confident predictions to be used for self-training. Secondly, we analyze the performance of Yet Another Two Stage Idea (YATSI) semi-supervised learning using NB, SMO, multilayer perceptron (MLP), J48 and random forest (RF) classifiers. These results are compared with the basic supervised learning using the same training sets. We perform our experiments on a dataset consisting of 2250 protein crystallization images for different proportions of training and test data. Our results indicate that NB and SMO using both self-training and YATSI semi-supervised approaches improve accuracies with respect to supervised learning. On the other hand, MLP, J48 and RF perform better using basic supervised learning. Overall, random forest classifier yields the best accuracy with supervised learning for our dataset. PMID:25914518
de Ávila, Maurício Boff; Xavier, Mariana Morrone; Pintro, Val Oliveira; de Azevedo, Walter Filgueira
2017-12-09
Here we report the development of a machine-learning model to predict binding affinity based on the crystallographic structures of protein-ligand complexes. We used an ensemble of crystallographic structures (resolution better than 1.5 Å resolution) for which half-maximal inhibitory concentration (IC 50 ) data is available. Polynomial scoring functions were built using as explanatory variables the energy terms present in the MolDock and PLANTS scoring functions. Prediction performance was tested and the supervised machine learning models showed improvement in the prediction power, when compared with PLANTS and MolDock scoring functions. In addition, the machine-learning model was applied to predict binding affinity of CDK2, which showed a better performance when compared with AutoDock4, AutoDock Vina, MolDock, and PLANTS scores. Copyright © 2017 Elsevier Inc. All rights reserved.
An immune-inspired semi-supervised algorithm for breast cancer diagnosis.
Peng, Lingxi; Chen, Wenbin; Zhou, Wubai; Li, Fufang; Yang, Jin; Zhang, Jiandong
2016-10-01
Breast cancer is the most frequently and world widely diagnosed life-threatening cancer, which is the leading cause of cancer death among women. Early accurate diagnosis can be a big plus in treating breast cancer. Researchers have approached this problem using various data mining and machine learning techniques such as support vector machine, artificial neural network, etc. The computer immunology is also an intelligent method inspired by biological immune system, which has been successfully applied in pattern recognition, combination optimization, machine learning, etc. However, most of these diagnosis methods belong to a supervised diagnosis method. It is very expensive to obtain labeled data in biology and medicine. In this paper, we seamlessly integrate the state-of-the-art research on life science with artificial intelligence, and propose a semi-supervised learning algorithm to reduce the need for labeled data. We use two well-known benchmark breast cancer datasets in our study, which are acquired from the UCI machine learning repository. Extensive experiments are conducted and evaluated on those two datasets. Our experimental results demonstrate the effectiveness and efficiency of our proposed algorithm, which proves that our algorithm is a promising automatic diagnosis method for breast cancer. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Modeling Temporal Crowd Work Quality with Limited Supervision
2015-11-11
crowdsourcing, human computation, predic- tion, uncertainty-aware learning, time- series modeling Introduction While crowdsourcing offers a cost...individual correctness. As discussed ear- lier, such a strategy is difficult to employ in a live setting because it is unrealistic to assume that all...et al. 2014). Finally, there are interesting opportunities to investigate at the intersection of live task-routing with active-learning techniques
Hall, L O; Bensaid, A M; Clarke, L P; Velthuizen, R P; Silbiger, M S; Bezdek, J C
1992-01-01
Magnetic resonance (MR) brain section images are segmented and then synthetically colored to give visual representations of the original data with three approaches: the literal and approximate fuzzy c-means unsupervised clustering algorithms, and a supervised computational neural network. Initial clinical results are presented on normal volunteers and selected patients with brain tumors surrounded by edema. Supervised and unsupervised segmentation techniques provide broadly similar results. Unsupervised fuzzy algorithms were visually observed to show better segmentation when compared with raw image data for volunteer studies. For a more complex segmentation problem with tumor/edema or cerebrospinal fluid boundary, where the tissues have similar MR relaxation behavior, inconsistency in rating among experts was observed, with fuzz-c-means approaches being slightly preferred over feedforward cascade correlation results. Various facets of both approaches, such as supervised versus unsupervised learning, time complexity, and utility for the diagnostic process, are compared.
Competencies to enable learning-focused clinical supervision: a thematic analysis of the literature.
Pront, Leeanne; Gillham, David; Schuwirth, Lambert W T
2016-04-01
Clinical supervision is essential for development of health professional students and widely recognised as a significant factor influencing student learning. Although considered important, delivery is often founded on personal experience or a series of predetermined steps that offer standardised behavioural approaches. Such a view may limit the capacity to promote individualised student learning in complex clinical environments. The objective of this review was to develop a comprehensive understanding of what is considered 'good' clinical supervision, within health student education. The literature provides many perspectives, so collation and interpretation were needed to aid development and understanding for all clinicians required to perform clinical supervision within their daily practice. A comprehensive thematic literature review was carried out, which included a variety of health disciplines and geographical environments. Literature addressing 'good' clinical supervision consists primarily of descriptive qualitative research comprising mostly small studies that repeated descriptions of student and supervisor opinions of 'good' supervision. Synthesis and thematic analysis of the literature resulted in four 'competency' domains perceived to inform delivery of learning-focused or 'good' clinical supervision. Domains understood to promote student learning are co-dependent and include 'to partner', 'to nurture', 'to engage' and 'to facilitate meaning'. Clinical supervision is a complex phenomenon and establishing a comprehensive understanding across health disciplines can influence the future health workforce. The learning-focused clinical supervision domains presented here provide an alternative perspective of clinical supervision of health students. This paper is the first step in establishing a more comprehensive understanding of learning-focused clinical supervision, which may lead to development of competencies for clinical supervision. © 2016 John Wiley & Sons Ltd.
Adal, Kedir M; Sidibé, Désiré; Ali, Sharib; Chaum, Edward; Karnowski, Thomas P; Mériaudeau, Fabrice
2014-04-01
Despite several attempts, automated detection of microaneurysm (MA) from digital fundus images still remains to be an open issue. This is due to the subtle nature of MAs against the surrounding tissues. In this paper, the microaneurysm detection problem is modeled as finding interest regions or blobs from an image and an automatic local-scale selection technique is presented. Several scale-adapted region descriptors are introduced to characterize these blob regions. A semi-supervised based learning approach, which requires few manually annotated learning examples, is also proposed to train a classifier which can detect true MAs. The developed system is built using only few manually labeled and a large number of unlabeled retinal color fundus images. The performance of the overall system is evaluated on Retinopathy Online Challenge (ROC) competition database. A competition performance measure (CPM) of 0.364 shows the competitiveness of the proposed system against state-of-the art techniques as well as the applicability of the proposed features to analyze fundus images. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Salvatore, C; Cerasa, A; Castiglioni, I; Gallivanone, F; Augimeri, A; Lopez, M; Arabia, G; Morelli, M; Gilardi, M C; Quattrone, A
2014-01-30
Supervised machine learning has been proposed as a revolutionary approach for identifying sensitive medical image biomarkers (or combination of them) allowing for automatic diagnosis of individual subjects. The aim of this work was to assess the feasibility of a supervised machine learning algorithm for the assisted diagnosis of patients with clinically diagnosed Parkinson's disease (PD) and Progressive Supranuclear Palsy (PSP). Morphological T1-weighted Magnetic Resonance Images (MRIs) of PD patients (28), PSP patients (28) and healthy control subjects (28) were used by a supervised machine learning algorithm based on the combination of Principal Components Analysis as feature extraction technique and on Support Vector Machines as classification algorithm. The algorithm was able to obtain voxel-based morphological biomarkers of PD and PSP. The algorithm allowed individual diagnosis of PD versus controls, PSP versus controls and PSP versus PD with an Accuracy, Specificity and Sensitivity>90%. Voxels influencing classification between PD and PSP patients involved midbrain, pons, corpus callosum and thalamus, four critical regions known to be strongly involved in the pathophysiological mechanisms of PSP. Classification accuracy of individual PSP patients was consistent with previous manual morphological metrics and with other supervised machine learning application to MRI data, whereas accuracy in the detection of individual PD patients was significantly higher with our classification method. The algorithm provides excellent discrimination of PD patients from PSP patients at an individual level, thus encouraging the application of computer-based diagnosis in clinical practice. Copyright © 2013 Elsevier B.V. All rights reserved.
Supervision Learning as Conceptual Threshold Crossing: When Supervision Gets "Medieval"
ERIC Educational Resources Information Center
Carter, Susan
2016-01-01
This article presumes that supervision is a category of teaching, and that we all "learn" how to teach better. So it enquires into what novice supervisors need to learn. An anonymised digital questionnaire sought data from supervisors [n226] on their experiences of supervision to find out what was difficult, and supervisor interviews…
NASA Astrophysics Data System (ADS)
Valizadegan, Hamed; Martin, Rodney; McCauliff, Sean D.; Jenkins, Jon Michael; Catanzarite, Joseph; Oza, Nikunj C.
2015-08-01
Building new catalogues of planetary candidates, astrophysical false alarms, and non-transiting phenomena is a challenging task that currently requires a reviewing team of astrophysicists and astronomers. These scientists need to examine more than 100 diagnostic metrics and associated graphics for each candidate exoplanet-transit-like signal to classify it into one of the three classes. Considering that the NASA Explorer Program's TESS mission and ESA's PLATO mission survey even a larger area of space, the classification of their transit-like signals is more time-consuming for human agents and a bottleneck to successfully construct the new catalogues in a timely manner. This encourages building automatic classification tools that can quickly and reliably classify the new signal data from these missions. The standard tool for building automatic classification systems is the supervised machine learning that requires a large set of highly accurate labeled examples in order to build an effective classifier. This requirement cannot be easily met for classifying transit-like signals because not only are existing labeled signals very limited, but also the current labels may not be reliable (because the labeling process is a subjective task). Our experiments with using different supervised classifiers to categorize transit-like signals verifies that the labeled signals are not rich enough to provide the classifier with enough power to generalize well beyond the observed cases (e.g. to unseen or test signals). That motivated us to utilize a new category of learning techniques, so-called semi-supervised learning, that combines the label information from the costly labeled signals, and distribution information from the cheaply available unlabeled signals in order to construct more effective classifiers. Our study on the Kepler Mission data shows that semi-supervised learning can significantly improve the result of multiple base classifiers (e.g. Support Vector Machines, AdaBoost, and Decision Tree) and is a good technique for automatic classification of exoplanet-transit-like signal.
Machine learning and next-generation asteroid surveys
NASA Astrophysics Data System (ADS)
Nugent, Carrie R.; Dailey, John; Cutri, Roc M.; Masci, Frank J.; Mainzer, Amy K.
2017-10-01
Next-generation surveys such as NEOCam (Mainzer et al., 2016) will sift through tens of millions of point source detections daily to detect and discover asteroids. This requires new, more efficient techniques to distinguish between solar system objects, background stars and galaxies, and artifacts such as cosmic rays, scattered light and diffraction spikes.Supervised machine learning is a set of algorithms that allows computers to classify data on a training set, and then apply that classification to make predictions on new datasets. It has been employed by a broad range of fields, including computer vision, medical diagnoses, economics, and natural language processing. It has also been applied to astronomical datasets, including transient identification in the Palomar Transient Factory pipeline (Masci et al., 2016), and in the Pan-STARRS1 difference imaging (D. E. Wright et al., 2015).As part of the NEOCam extended phase A work we apply machine learning techniques to the problem of asteroid detection. Asteroid detection is an ideal application of supervised learning, as there is a wealth of metrics associated with each extracted source, and suitable training sets are easily created. Using the vetted NEOWISE dataset (E. L. Wright et al., 2010, Mainzer et al., 2011) as a proof-of-concept of this technique, we applied the python package sklearn. We report on reliability, feature set selection, and the suitability of various algorithms.
Hassaninia, Iman; Bostanabad, Ramin; Chen, Wei; Mohseni, Hooman
2017-11-10
Fabricated tissue phantoms are instrumental in optical in-vitro investigations concerning cancer diagnosis, therapeutic applications, and drug efficacy tests. We present a simple non-invasive computational technique that, when coupled with experiments, has the potential for characterization of a wide range of biological tissues. The fundamental idea of our approach is to find a supervised learner that links the scattering pattern of a turbid sample to its thickness and scattering parameters. Once found, this supervised learner is employed in an inverse optimization problem for estimating the scattering parameters of a sample given its thickness and scattering pattern. Multi-response Gaussian processes are used for the supervised learning task and a simple setup is introduced to obtain the scattering pattern of a tissue sample. To increase the predictive power of the supervised learner, the scattering patterns are filtered, enriched by a regressor, and finally characterized with two parameters, namely, transmitted power and scaled Gaussian width. We computationally illustrate that our approach achieves errors of roughly 5% in predicting the scattering properties of many biological tissues. Our method has the potential to facilitate the characterization of tissues and fabrication of phantoms used for diagnostic and therapeutic purposes over a wide range of optical spectrum.
Weakly supervised visual dictionary learning by harnessing image attributes.
Gao, Yue; Ji, Rongrong; Liu, Wei; Dai, Qionghai; Hua, Gang
2014-12-01
Bag-of-features (BoFs) representation has been extensively applied to deal with various computer vision applications. To extract discriminative and descriptive BoF, one important step is to learn a good dictionary to minimize the quantization loss between local features and codewords. While most existing visual dictionary learning approaches are engaged with unsupervised feature quantization, the latest trend has turned to supervised learning by harnessing the semantic labels of images or regions. However, such labels are typically too expensive to acquire, which restricts the scalability of supervised dictionary learning approaches. In this paper, we propose to leverage image attributes to weakly supervise the dictionary learning procedure without requiring any actual labels. As a key contribution, our approach establishes a generative hidden Markov random field (HMRF), which models the quantized codewords as the observed states and the image attributes as the hidden states, respectively. Dictionary learning is then performed by supervised grouping the observed states, where the supervised information is stemmed from the hidden states of the HMRF. In such a way, the proposed dictionary learning approach incorporates the image attributes to learn a semantic-preserving BoF representation without any genuine supervision. Experiments in large-scale image retrieval and classification tasks corroborate that our approach significantly outperforms the state-of-the-art unsupervised dictionary learning approaches.
Opportunities to Learn Scientific Thinking in Joint Doctoral Supervision
ERIC Educational Resources Information Center
Kobayashi, Sofie; Grout, Brian W.; Rump, Camilla Østerberg
2015-01-01
Research into doctoral supervision has increased rapidly over the last decades, yet our understanding of how doctoral students learn scientific thinking from supervision is limited. Most studies are based on interviews with little work being reported that is based on observation of actual supervision. While joint supervision has become widely…
Jet-images — deep learning edition
de Oliveira, Luke; Kagan, Michael; Mackey, Lester; ...
2016-07-13
Building on the notion of a particle physics detector as a camera and the collimated streams of high energy particles, or jets, it measures as an image, we investigate the potential of machine learning techniques based on deep learning architectures to identify highly boosted W bosons. Modern deep learning algorithms trained on jet images can out-perform standard physically-motivated feature driven approaches to jet tagging. We develop techniques for visualizing how these features are learned by the network and what additional information is used to improve performance. Finally, this interplay between physically-motivated feature driven tools and supervised learning algorithms is generalmore » and can be used to significantly increase the sensitivity to discover new particles and new forces, and gain a deeper understanding of the physics within jets.« less
Jet-images — deep learning edition
DOE Office of Scientific and Technical Information (OSTI.GOV)
de Oliveira, Luke; Kagan, Michael; Mackey, Lester
Building on the notion of a particle physics detector as a camera and the collimated streams of high energy particles, or jets, it measures as an image, we investigate the potential of machine learning techniques based on deep learning architectures to identify highly boosted W bosons. Modern deep learning algorithms trained on jet images can out-perform standard physically-motivated feature driven approaches to jet tagging. We develop techniques for visualizing how these features are learned by the network and what additional information is used to improve performance. Finally, this interplay between physically-motivated feature driven tools and supervised learning algorithms is generalmore » and can be used to significantly increase the sensitivity to discover new particles and new forces, and gain a deeper understanding of the physics within jets.« less
Imaging and machine learning techniques for diagnosis of Alzheimer's disease.
Mirzaei, Golrokh; Adeli, Anahita; Adeli, Hojjat
2016-12-01
Alzheimer's disease (AD) is a common health problem in elderly people. There has been considerable research toward the diagnosis and early detection of this disease in the past decade. The sensitivity of biomarkers and the accuracy of the detection techniques have been defined to be the key to an accurate diagnosis. This paper presents a state-of-the-art review of the research performed on the diagnosis of AD based on imaging and machine learning techniques. Different segmentation and machine learning techniques used for the diagnosis of AD are reviewed including thresholding, supervised and unsupervised learning, probabilistic techniques, Atlas-based approaches, and fusion of different image modalities. More recent and powerful classification techniques such as the enhanced probabilistic neural network of Ahmadlou and Adeli should be investigated with the goal of improving the diagnosis accuracy. A combination of different image modalities can help improve the diagnosis accuracy rate. Research is needed on the combination of modalities to discover multi-modal biomarkers.
A new supervised learning algorithm for spiking neurons.
Xu, Yan; Zeng, Xiaoqin; Zhong, Shuiming
2013-06-01
The purpose of supervised learning with temporal encoding for spiking neurons is to make the neurons emit a specific spike train encoded by the precise firing times of spikes. If only running time is considered, the supervised learning for a spiking neuron is equivalent to distinguishing the times of desired output spikes and the other time during the running process of the neuron through adjusting synaptic weights, which can be regarded as a classification problem. Based on this idea, this letter proposes a new supervised learning method for spiking neurons with temporal encoding; it first transforms the supervised learning into a classification problem and then solves the problem by using the perceptron learning rule. The experiment results show that the proposed method has higher learning accuracy and efficiency over the existing learning methods, so it is more powerful for solving complex and real-time problems.
Porosity estimation by semi-supervised learning with sparsely available labeled samples
NASA Astrophysics Data System (ADS)
Lima, Luiz Alberto; Görnitz, Nico; Varella, Luiz Eduardo; Vellasco, Marley; Müller, Klaus-Robert; Nakajima, Shinichi
2017-09-01
This paper addresses the porosity estimation problem from seismic impedance volumes and porosity samples located in a small group of exploratory wells. Regression methods, trained on the impedance as inputs and the porosity as output labels, generally suffer from extremely expensive (and hence sparsely available) porosity samples. To optimally make use of the valuable porosity data, a semi-supervised machine learning method was proposed, Transductive Conditional Random Field Regression (TCRFR), showing good performance (Görnitz et al., 2017). TCRFR, however, still requires more labeled data than those usually available, which creates a gap when applying the method to the porosity estimation problem in realistic situations. In this paper, we aim to fill this gap by introducing two graph-based preprocessing techniques, which adapt the original TCRFR for extremely weakly supervised scenarios. Our new method outperforms the previous automatic estimation methods on synthetic data and provides a comparable result to the manual labored, time-consuming geostatistics approach on real data, proving its potential as a practical industrial tool.
Subramaniam, Anusuiya; Silong, Abu Daud; Uli, Jegak; Ismail, Ismi Arif
2015-08-13
Effective talent development requires robust supervision. However, the effects of supervisory styles (coaching, mentoring and abusive supervision) on talent development and the moderating effects of clinical learning environment in the relationship between supervisory styles and talent development among public hospital trainee doctors have not been thoroughly researched. In this study, we aim to achieve the following, (1) identify the extent to which supervisory styles (coaching, mentoring and abusive supervision) can facilitate talent development among trainee doctors in public hospital and (2) examine whether coaching, mentoring and abusive supervision are moderated by clinical learning environment in predicting talent development among trainee doctors in public hospital. A questionnaire-based critical survey was conducted among trainee doctors undergoing housemanship at six public hospitals in the Klang Valley, Malaysia. Prior permission was obtained from the Ministry of Health Malaysia to conduct the research in the identified public hospitals. The survey yielded 355 responses. The results were analysed using SPSS 20.0 and SEM with AMOS 20.0. The findings of this research indicate that coaching and mentoring supervision are positively associated with talent development, and that there is no significant relationship between abusive supervision and talent development. The findings also support the moderating role of clinical learning environment on the relationships between coaching supervision-talent development, mentoring supervision-talent development and abusive supervision-talent development among public hospital trainee doctors. Overall, the proposed model indicates a 26 % variance in talent development. This study provides an improved understanding on the role of the supervisory styles (coaching and mentoring supervision) on facilitating talent development among public hospital trainee doctors. Furthermore, this study extends the literature to better understand the effects of supervisory styles on trainee doctors' talent development are contigent on the trainee doctors' clinical learning environment. In summary, supervisors are stakeholders with the responsibility of facilitating learning conditions that hold sufficient structure and support to optimise the trainee doctors learning.
Constrained Deep Weak Supervision for Histopathology Image Segmentation.
Jia, Zhipeng; Huang, Xingyi; Chang, Eric I-Chao; Xu, Yan
2017-11-01
In this paper, we develop a new weakly supervised learning algorithm to learn to segment cancerous regions in histopathology images. This paper is under a multiple instance learning (MIL) framework with a new formulation, deep weak supervision (DWS); we also propose an effective way to introduce constraints to our neural networks to assist the learning process. The contributions of our algorithm are threefold: 1) we build an end-to-end learning system that segments cancerous regions with fully convolutional networks (FCNs) in which image-to-image weakly-supervised learning is performed; 2) we develop a DWS formulation to exploit multi-scale learning under weak supervision within FCNs; and 3) constraints about positive instances are introduced in our approach to effectively explore additional weakly supervised information that is easy to obtain and enjoy a significant boost to the learning process. The proposed algorithm, abbreviated as DWS-MIL, is easy to implement and can be trained efficiently. Our system demonstrates the state-of-the-art results on large-scale histopathology image data sets and can be applied to various applications in medical imaging beyond histopathology images, such as MRI, CT, and ultrasound images.
Cross-Domain Semi-Supervised Learning Using Feature Formulation.
Xingquan Zhu
2011-12-01
Semi-Supervised Learning (SSL) traditionally makes use of unlabeled samples by including them into the training set through an automated labeling process. Such a primitive Semi-Supervised Learning (pSSL) approach suffers from a number of disadvantages including false labeling and incapable of utilizing out-of-domain samples. In this paper, we propose a formative Semi-Supervised Learning (fSSL) framework which explores hidden features between labeled and unlabeled samples to achieve semi-supervised learning. fSSL regards that both labeled and unlabeled samples are generated from some hidden concepts with labeling information partially observable for some samples. The key of the fSSL is to recover the hidden concepts, and take them as new features to link labeled and unlabeled samples for semi-supervised learning. Because unlabeled samples are only used to generate new features, but not to be explicitly included in the training set like pSSL does, fSSL overcomes the inherent disadvantages of the traditional pSSL methods, especially for samples not within the same domain as the labeled instances. Experimental results and comparisons demonstrate that fSSL significantly outperforms pSSL-based methods for both within-domain and cross-domain semi-supervised learning.
Subsampled Hessian Newton Methods for Supervised Learning.
Wang, Chien-Chih; Huang, Chun-Heng; Lin, Chih-Jen
2015-08-01
Newton methods can be applied in many supervised learning approaches. However, for large-scale data, the use of the whole Hessian matrix can be time-consuming. Recently, subsampled Newton methods have been proposed to reduce the computational time by using only a subset of data for calculating an approximation of the Hessian matrix. Unfortunately, we find that in some situations, the running speed is worse than the standard Newton method because cheaper but less accurate search directions are used. In this work, we propose some novel techniques to improve the existing subsampled Hessian Newton method. The main idea is to solve a two-dimensional subproblem per iteration to adjust the search direction to better minimize the second-order approximation of the function value. We prove the theoretical convergence of the proposed method. Experiments on logistic regression, linear SVM, maximum entropy, and deep networks indicate that our techniques significantly reduce the running time of the subsampled Hessian Newton method. The resulting algorithm becomes a compelling alternative to the standard Newton method for large-scale data classification.
Zhang, Zhao; Zhao, Mingbo; Chow, Tommy W S
2012-12-01
In this work, sub-manifold projections based semi-supervised dimensionality reduction (DR) problem learning from partial constrained data is discussed. Two semi-supervised DR algorithms termed Marginal Semi-Supervised Sub-Manifold Projections (MS³MP) and orthogonal MS³MP (OMS³MP) are proposed. MS³MP in the singular case is also discussed. We also present the weighted least squares view of MS³MP. Based on specifying the types of neighborhoods with pairwise constraints (PC) and the defined manifold scatters, our methods can preserve the local properties of all points and discriminant structures embedded in the localized PC. The sub-manifolds of different classes can also be separated. In PC guided methods, exploring and selecting the informative constraints is challenging and random constraint subsets significantly affect the performance of algorithms. This paper also introduces an effective technique to select the informative constraints for DR with consistent constraints. The analytic form of the projection axes can be obtained by eigen-decomposition. The connections between this work and other related work are also elaborated. The validity of the proposed constraint selection approach and DR algorithms are evaluated by benchmark problems. Extensive simulations show that our algorithms can deliver promising results over some widely used state-of-the-art semi-supervised DR techniques. Copyright © 2012 Elsevier Ltd. All rights reserved.
Implementing Machine Learning in Radiology Practice and Research.
Kohli, Marc; Prevedello, Luciano M; Filice, Ross W; Geis, J Raymond
2017-04-01
The purposes of this article are to describe concepts that radiologists should understand to evaluate machine learning projects, including common algorithms, supervised as opposed to unsupervised techniques, statistical pitfalls, and data considerations for training and evaluation, and to briefly describe ethical dilemmas and legal risk. Machine learning includes a broad class of computer programs that improve with experience. The complexity of creating, training, and monitoring machine learning indicates that the success of the algorithms will require radiologist involvement for years to come, leading to engagement rather than replacement.
A semi-supervised learning approach for RNA secondary structure prediction.
Yonemoto, Haruka; Asai, Kiyoshi; Hamada, Michiaki
2015-08-01
RNA secondary structure prediction is a key technology in RNA bioinformatics. Most algorithms for RNA secondary structure prediction use probabilistic models, in which the model parameters are trained with reliable RNA secondary structures. Because of the difficulty of determining RNA secondary structures by experimental procedures, such as NMR or X-ray crystal structural analyses, there are still many RNA sequences that could be useful for training whose secondary structures have not been experimentally determined. In this paper, we introduce a novel semi-supervised learning approach for training parameters in a probabilistic model of RNA secondary structures in which we employ not only RNA sequences with annotated secondary structures but also ones with unknown secondary structures. Our model is based on a hybrid of generative (stochastic context-free grammars) and discriminative models (conditional random fields) that has been successfully applied to natural language processing. Computational experiments indicate that the accuracy of secondary structure prediction is improved by incorporating RNA sequences with unknown secondary structures into training. To our knowledge, this is the first study of a semi-supervised learning approach for RNA secondary structure prediction. This technique will be useful when the number of reliable structures is limited. Copyright © 2015 Elsevier Ltd. All rights reserved.
Coupled Semi-Supervised Learning
2010-05-01
later in the thesis, in Chapter 5. CPL as a Case Study of Coupled Semi-Supervised Learning The results presented above demonstrate that coupling...EXTRACTION PATTERNS Our answer to the question posed above, then, is that our results with CPL serve as a case study of coupled semi-supervised learning of...that are incompatible with the coupling constraints. Thus, we argue that our results with CPL serve as a case study of coupled semi-supervised
Physical isolation with virtual support: Registrars' learning via remote supervision.
Wearne, Susan M; Teunissen, Pim W; Dornan, Tim; Skinner, Timothy
2014-08-26
Abstract Purpose: Changing the current geographical maldistribution of the medical workforce is important for global health. Research regarding programs that train doctors for work with disadvantaged, rural populations is needed. This paper explores one approach of remote supervision of registrars in isolated rural practice. Researching how learning occurs without on-site supervision may also reveal other key elements of postgraduate education. Methods: Thematic analysis of in-depth interviews exploring 11 respondents' experiences of learning via remote supervision. Results: Remote supervision created distinctive learning environments. Respondents' attributes interacted with external supports to influence whether and how their learning was promoted or impeded. Registrars with clinical and/or life experience, who were insightful and motivated to direct their learning, turned the challenges of isolated practice into opportunities that accelerated their professional development. Discussion: Remote supervision was not necessarily problematic but instead provided rich learning for doctors training in and for the context where they were needed. Registrars learnt through clinical responsibility for defined populations and longitudinal, supportive supervisory relationships. Responsibility and continuity may be as important as supervisory proximity for experienced registrars.
Gönen, Mehmet
2014-01-01
Coupled training of dimensionality reduction and classification is proposed previously to improve the prediction performance for single-label problems. Following this line of research, in this paper, we first introduce a novel Bayesian method that combines linear dimensionality reduction with linear binary classification for supervised multilabel learning and present a deterministic variational approximation algorithm to learn the proposed probabilistic model. We then extend the proposed method to find intrinsic dimensionality of the projected subspace using automatic relevance determination and to handle semi-supervised learning using a low-density assumption. We perform supervised learning experiments on four benchmark multilabel learning data sets by comparing our method with baseline linear dimensionality reduction algorithms. These experiments show that the proposed approach achieves good performance values in terms of hamming loss, average AUC, macro F1, and micro F1 on held-out test data. The low-dimensional embeddings obtained by our method are also very useful for exploratory data analysis. We also show the effectiveness of our approach in finding intrinsic subspace dimensionality and semi-supervised learning tasks. PMID:24532862
Gönen, Mehmet
2014-03-01
Coupled training of dimensionality reduction and classification is proposed previously to improve the prediction performance for single-label problems. Following this line of research, in this paper, we first introduce a novel Bayesian method that combines linear dimensionality reduction with linear binary classification for supervised multilabel learning and present a deterministic variational approximation algorithm to learn the proposed probabilistic model. We then extend the proposed method to find intrinsic dimensionality of the projected subspace using automatic relevance determination and to handle semi-supervised learning using a low-density assumption. We perform supervised learning experiments on four benchmark multilabel learning data sets by comparing our method with baseline linear dimensionality reduction algorithms. These experiments show that the proposed approach achieves good performance values in terms of hamming loss, average AUC, macro F 1 , and micro F 1 on held-out test data. The low-dimensional embeddings obtained by our method are also very useful for exploratory data analysis. We also show the effectiveness of our approach in finding intrinsic subspace dimensionality and semi-supervised learning tasks.
Code of Federal Regulations, 2014 CFR
2014-10-01
...: defining the curriculum in terms of program goals, instructional objectives, learning experiences designed... making radiographs. Faculty supervision must be provided during a student's radiographic technique experience. Students must demonstrate competence in making diagnostically acceptable radiographs prior to...
Code of Federal Regulations, 2013 CFR
2013-10-01
...: defining the curriculum in terms of program goals, instructional objectives, learning experiences designed... making radiographs. Faculty supervision must be provided during a student's radiographic technique experience. Students must demonstrate competence in making diagnostically acceptable radiographs prior to...
Code of Federal Regulations, 2011 CFR
2011-10-01
...: defining the curriculum in terms of program goals, instructional objectives, learning experiences designed... making radiographs. Faculty supervision must be provided during a student's radiographic technique experience. Students must demonstrate competence in making diagnostically acceptable radiographs prior to...
Code of Federal Regulations, 2012 CFR
2012-10-01
...: defining the curriculum in terms of program goals, instructional objectives, learning experiences designed... making radiographs. Faculty supervision must be provided during a student's radiographic technique experience. Students must demonstrate competence in making diagnostically acceptable radiographs prior to...
Predicting the survival of diabetes using neural network
NASA Astrophysics Data System (ADS)
Mamuda, Mamman; Sathasivam, Saratha
2017-08-01
Data mining techniques at the present time are used in predicting diseases of health care industries. Neural Network is one among the prevailing method in data mining techniques of an intelligent field for predicting diseases in health care industries. This paper presents a study on the prediction of the survival of diabetes diseases using different learning algorithms from the supervised learning algorithms of neural network. Three learning algorithms are considered in this study: (i) The levenberg-marquardt learning algorithm (ii) The Bayesian regulation learning algorithm and (iii) The scaled conjugate gradient learning algorithm. The network is trained using the Pima Indian Diabetes Dataset with the help of MATLAB R2014(a) software. The performance of each algorithm is further discussed through regression analysis. The prediction accuracy of the best algorithm is further computed to validate the accurate prediction
Ensemble learning with trees and rules: supervised, semi-supervised, unsupervised
USDA-ARS?s Scientific Manuscript database
In this article, we propose several new approaches for post processing a large ensemble of conjunctive rules for supervised and semi-supervised learning problems. We show with various examples that for high dimensional regression problems the models constructed by the post processing the rules with ...
Luglio, Gaetano; De Palma, Giovanni Domenico; Tarquini, Rachele; Giglio, Mariano Cesare; Sollazzo, Viviana; Esposito, Emanuela; Spadarella, Emanuela; Peltrini, Roberto; Liccardo, Filomena; Bucci, Luigi
2015-01-01
Background Despite the proven benefits, laparoscopic colorectal surgery is still under utilized among surgeons. A steep learning is one of the causes of its limited adoption. Aim of the study is to determine the feasibility and morbidity rate after laparoscopic colorectal surgery in a single institution, “learning curve” experience, implementing a well standardized operative technique and recovery protocol. Methods The first 50 patients treated laparoscopically were included. All the procedures were performed by a trainee surgeon, supervised by a consultant surgeon, according to the principle of complete mesocolic excision with central vascular ligation or TME. Patients underwent a fast track recovery programme. Recovery parameters, short-term outcomes, morbidity and mortality have been assessed. Results Type of resections: 20 left side resections, 8 right side resections, 14 low anterior resection/TME, 5 total colectomy and IRA, 3 total panproctocolectomy and pouch. Mean operative time: 227 min; mean number of lymph-nodes: 18.7. Conversion rate: 8%. Mean time to flatus: 1.3 days; Mean time to solid stool: 2.3 days. Mean length of hospital stay: 7.2 days. Overall morbidity: 24%; major morbidity (Dindo–Clavien III): 4%. No anastomotic leak, no mortality, no 30-days readmission. Conclusion Proper laparoscopic colorectal surgery is safe and leads to excellent results in terms of recovery and short term outcomes, even in a learning curve setting. Key factors for better outcomes and shortening the learning curve seem to be the adoption of a standardized technique and training model along with the strict supervision of an expert colorectal surgeon. PMID:25859386
Sparse representation-based image restoration via nonlocal supervised coding
NASA Astrophysics Data System (ADS)
Li, Ao; Chen, Deyun; Sun, Guanglu; Lin, Kezheng
2016-10-01
Sparse representation (SR) and nonlocal technique (NLT) have shown great potential in low-level image processing. However, due to the degradation of the observed image, SR and NLT may not be accurate enough to obtain a faithful restoration results when they are used independently. To improve the performance, in this paper, a nonlocal supervised coding strategy-based NLT for image restoration is proposed. The novel method has three main contributions. First, to exploit the useful nonlocal patches, a nonnegative sparse representation is introduced, whose coefficients can be utilized as the supervised weights among patches. Second, a novel objective function is proposed, which integrated the supervised weights learning and the nonlocal sparse coding to guarantee a more promising solution. Finally, to make the minimization tractable and convergence, a numerical scheme based on iterative shrinkage thresholding is developed to solve the above underdetermined inverse problem. The extensive experiments validate the effectiveness of the proposed method.
QUEST: Eliminating Online Supervised Learning for Efficient Classification Algorithms.
Zwartjes, Ardjan; Havinga, Paul J M; Smit, Gerard J M; Hurink, Johann L
2016-10-01
In this work, we introduce QUEST (QUantile Estimation after Supervised Training), an adaptive classification algorithm for Wireless Sensor Networks (WSNs) that eliminates the necessity for online supervised learning. Online processing is important for many sensor network applications. Transmitting raw sensor data puts high demands on the battery, reducing network life time. By merely transmitting partial results or classifications based on the sampled data, the amount of traffic on the network can be significantly reduced. Such classifications can be made by learning based algorithms using sampled data. An important issue, however, is the training phase of these learning based algorithms. Training a deployed sensor network requires a lot of communication and an impractical amount of human involvement. QUEST is a hybrid algorithm that combines supervised learning in a controlled environment with unsupervised learning on the location of deployment. Using the SITEX02 dataset, we demonstrate that the presented solution works with a performance penalty of less than 10% in 90% of the tests. Under some circumstances, it even outperforms a network of classifiers completely trained with supervised learning. As a result, the need for on-site supervised learning and communication for training is completely eliminated by our solution.
Semi-supervised and unsupervised extreme learning machines.
Huang, Gao; Song, Shiji; Gupta, Jatinder N D; Wu, Cheng
2014-12-01
Extreme learning machines (ELMs) have proven to be efficient and effective learning mechanisms for pattern classification and regression. However, ELMs are primarily applied to supervised learning problems. Only a few existing research papers have used ELMs to explore unlabeled data. In this paper, we extend ELMs for both semi-supervised and unsupervised tasks based on the manifold regularization, thus greatly expanding the applicability of ELMs. The key advantages of the proposed algorithms are as follows: 1) both the semi-supervised ELM (SS-ELM) and the unsupervised ELM (US-ELM) exhibit learning capability and computational efficiency of ELMs; 2) both algorithms naturally handle multiclass classification or multicluster clustering; and 3) both algorithms are inductive and can handle unseen data at test time directly. Moreover, it is shown in this paper that all the supervised, semi-supervised, and unsupervised ELMs can actually be put into a unified framework. This provides new perspectives for understanding the mechanism of random feature mapping, which is the key concept in ELM theory. Empirical study on a wide range of data sets demonstrates that the proposed algorithms are competitive with the state-of-the-art semi-supervised or unsupervised learning algorithms in terms of accuracy and efficiency.
Improving semi-automated segmentation by integrating learning with active sampling
NASA Astrophysics Data System (ADS)
Huo, Jing; Okada, Kazunori; Brown, Matthew
2012-02-01
Interactive segmentation algorithms such as GrowCut usually require quite a few user interactions to perform well, and have poor repeatability. In this study, we developed a novel technique to boost the performance of the interactive segmentation method GrowCut involving: 1) a novel "focused sampling" approach for supervised learning, as opposed to conventional random sampling; 2) boosting GrowCut using the machine learned results. We applied the proposed technique to the glioblastoma multiforme (GBM) brain tumor segmentation, and evaluated on a dataset of ten cases from a multiple center pharmaceutical drug trial. The results showed that the proposed system has the potential to reduce user interaction while maintaining similar segmentation accuracy.
NASA Astrophysics Data System (ADS)
Goodacre, Royston; Rooney, Paul J.; Kell, Douglas B.
1998-04-01
FTIR spectra were obtained from 15 methicillin-resistant and 22 methicillin-susceptible Staphylococcus aureus strains using our DRASTIC approach. Cluster analysis showed that the major source of variation between the IR spectra was not due to their resistance or susceptibility to methicillin; indeed early studies suing pyrolysis mass spectrometry had shown that this unsupervised analysis gave information on the phage group of the bacteria. By contrast, artificial neural networks, based on a supervised learning, could be trained to recognize those aspects of the IR spectra which differentiated methicillin-resistant from methicillin- susceptible strains. These results give the first demonstration that the combination of FTIR with neural networks can provide a very rapid and accurate antibiotic susceptibility testing technique.
Active semi-supervised learning method with hybrid deep belief networks.
Zhou, Shusen; Chen, Qingcai; Wang, Xiaolong
2014-01-01
In this paper, we develop a novel semi-supervised learning algorithm called active hybrid deep belief networks (AHD), to address the semi-supervised sentiment classification problem with deep learning. First, we construct the previous several hidden layers using restricted Boltzmann machines (RBM), which can reduce the dimension and abstract the information of the reviews quickly. Second, we construct the following hidden layers using convolutional restricted Boltzmann machines (CRBM), which can abstract the information of reviews effectively. Third, the constructed deep architecture is fine-tuned by gradient-descent based supervised learning with an exponential loss function. Finally, active learning method is combined based on the proposed deep architecture. We did several experiments on five sentiment classification datasets, and show that AHD is competitive with previous semi-supervised learning algorithm. Experiments are also conducted to verify the effectiveness of our proposed method with different number of labeled reviews and unlabeled reviews respectively.
How Supervisor Experience Influences Trust, Supervision, and Trainee Learning: A Qualitative Study.
Sheu, Leslie; Kogan, Jennifer R; Hauer, Karen E
2017-09-01
Appropriate trust and supervision facilitate trainees' growth toward unsupervised practice. The authors investigated how supervisor experience influences trust, supervision, and subsequently trainee learning. In a two-phase qualitative inductive content analysis, phase one entailed reviewing 44 internal medicine resident and attending supervisor interviews from two institutions (July 2013 to September 2014) for themes on how supervisor experience influences trust and supervision. Three supervisor exemplars (early, developing, experienced) were developed and shared in phase two focus groups at a single institution, wherein 23 trainees validated the exemplars and discussed how each impacted learning (November 2015). Phase one: Four domains of trust and supervision varying with experience emerged: data, approach, perspective, clinical. Early supervisors were detail oriented and determined trust depending on task completion (data), were rule based (approach), drew on their experiences as trainees to guide supervision (perspective), and felt less confident clinically compared with more experienced supervisors (clinical). Experienced supervisors determined trust holistically (data), checked key aspects of patient care selectively and covertly (approach), reflected on individual experiences supervising (perspective), and felt comfortable managing clinical problems and gauging trainee abilities (clinical). Phase two: Trainees felt the exemplars reflected their experiences, described their preferences and learning needs shifting over time, and emphasized the importance of supervisor flexibility to match their learning needs. With experience, supervisors differ in their approach to trust and supervision. Supervisors need to trust themselves before being able to trust others. Trainees perceive these differences and seek supervision approaches that align with their learning needs.
Collected Notes on the Workshop for Pattern Discovery in Large Databases
NASA Technical Reports Server (NTRS)
Buntine, Wray (Editor); Delalto, Martha (Editor)
1991-01-01
These collected notes are a record of material presented at the Workshop. The core data analysis is addressed that have traditionally required statistical or pattern recognition techniques. Some of the core tasks include classification, discrimination, clustering, supervised and unsupervised learning, discovery and diagnosis, i.e., general pattern discovery.
Label Information Guided Graph Construction for Semi-Supervised Learning.
Zhuang, Liansheng; Zhou, Zihan; Gao, Shenghua; Yin, Jingwen; Lin, Zhouchen; Ma, Yi
2017-09-01
In the literature, most existing graph-based semi-supervised learning methods only use the label information of observed samples in the label propagation stage, while ignoring such valuable information when learning the graph. In this paper, we argue that it is beneficial to consider the label information in the graph learning stage. Specifically, by enforcing the weight of edges between labeled samples of different classes to be zero, we explicitly incorporate the label information into the state-of-the-art graph learning methods, such as the low-rank representation (LRR), and propose a novel semi-supervised graph learning method called semi-supervised low-rank representation. This results in a convex optimization problem with linear constraints, which can be solved by the linearized alternating direction method. Though we take LRR as an example, our proposed method is in fact very general and can be applied to any self-representation graph learning methods. Experiment results on both synthetic and real data sets demonstrate that the proposed graph learning method can better capture the global geometric structure of the data, and therefore is more effective for semi-supervised learning tasks.
Franosch, Jan-Moritz P; Urban, Sebastian; van Hemmen, J Leo
2013-12-01
How can an animal learn from experience? How can it train sensors, such as the auditory or tactile system, based on other sensory input such as the visual system? Supervised spike-timing-dependent plasticity (supervised STDP) is a possible answer. Supervised STDP trains one modality using input from another one as "supervisor." Quite complex time-dependent relationships between the senses can be learned. Here we prove that under very general conditions, supervised STDP converges to a stable configuration of synaptic weights leading to a reconstruction of primary sensory input.
Safe semi-supervised learning based on weighted likelihood.
Kawakita, Masanori; Takeuchi, Jun'ichi
2014-05-01
We are interested in developing a safe semi-supervised learning that works in any situation. Semi-supervised learning postulates that n(') unlabeled data are available in addition to n labeled data. However, almost all of the previous semi-supervised methods require additional assumptions (not only unlabeled data) to make improvements on supervised learning. If such assumptions are not met, then the methods possibly perform worse than supervised learning. Sokolovska, Cappé, and Yvon (2008) proposed a semi-supervised method based on a weighted likelihood approach. They proved that this method asymptotically never performs worse than supervised learning (i.e., it is safe) without any assumption. Their method is attractive because it is easy to implement and is potentially general. Moreover, it is deeply related to a certain statistical paradox. However, the method of Sokolovska et al. (2008) assumes a very limited situation, i.e., classification, discrete covariates, n(')→∞ and a maximum likelihood estimator. In this paper, we extend their method by modifying the weight. We prove that our proposal is safe in a significantly wide range of situations as long as n≤n('). Further, we give a geometrical interpretation of the proof of safety through the relationship with the above-mentioned statistical paradox. Finally, we show that the above proposal is asymptotically safe even when n(')
Clinical supervision in a community setting.
Evans, Carol; Marcroft, Emma
Clinical supervision is a formal process of professional support, reflection and learning that contributes to individual development. First Community Health and Care is committed to providing clinical supervision to nurses and allied healthcare professionals to support the provision and maintenance of high-quality care. In 2012, we developed new guidelines for nurses and AHPs on supervision, incorporating a clinical supervision framework. This offers a range of options to staff so supervision accommodates variations in work settings and individual learning needs and styles.
Berglund, Mia; Sjögren, Reet; Ekebergh, Margaretha
2012-03-01
To describe the importance of supervisors working together in supporting the learning process of nurse students through reflective caring science supervision. A supervision model has been developed in order to meet the need for interweaving theory and practice. The model is characterized by learning reflection in caring science. A unique aspect of the present project was that the student groups were led by a teacher and a nurse. Data were collected through interviews with the supervisors. The analysis was performed with a phenomenological approach. The results showed that theory and practice can be made more tangible and interwoven by using two supervisors in a dual supervision. The essential structure is built on the constituents 'Reflection as Learning Support', 'Interweaving Caring Science with the Patient's Narrative', 'The Student as a Learning Subject' and 'The Learning Environment of Supervision'. The study concludes that supervision in pairs provides unique possibilities for interweaving and developing theory and practice. The supervision model offers unique opportunities for cooperation, for the development of theory and practice and for the development of the professional roll of nurses and teachers. © 2012 Blackwell Publishing Ltd.
NASA Technical Reports Server (NTRS)
Hall, Lawrence O.; Bensaid, Amine M.; Clarke, Laurence P.; Velthuizen, Robert P.; Silbiger, Martin S.; Bezdek, James C.
1992-01-01
Magnetic resonance (MR) brain section images are segmented and then synthetically colored to give visual representations of the original data with three approaches: the literal and approximate fuzzy c-means unsupervised clustering algorithms and a supervised computational neural network, a dynamic multilayered perception trained with the cascade correlation learning algorithm. Initial clinical results are presented on both normal volunteers and selected patients with brain tumors surrounded by edema. Supervised and unsupervised segmentation techniques provide broadly similar results. Unsupervised fuzzy algorithms were visually observed to show better segmentation when compared with raw image data for volunteer studies. However, for a more complex segmentation problem with tumor/edema or cerebrospinal fluid boundary, where the tissues have similar MR relaxation behavior, inconsistency in rating among experts was observed.
NASA Astrophysics Data System (ADS)
Zhou, Weimin; Anastasio, Mark A.
2018-03-01
It has been advocated that task-based measures of image quality (IQ) should be employed to evaluate and optimize imaging systems. Task-based measures of IQ quantify the performance of an observer on a medically relevant task. The Bayesian Ideal Observer (IO), which employs complete statistical information of the object and noise, achieves the upper limit of the performance for a binary signal classification task. However, computing the IO performance is generally analytically intractable and can be computationally burdensome when Markov-chain Monte Carlo (MCMC) techniques are employed. In this paper, supervised learning with convolutional neural networks (CNNs) is employed to approximate the IO test statistics for a signal-known-exactly and background-known-exactly (SKE/BKE) binary detection task. The receiver operating characteristic (ROC) curve and the area under the ROC curve (AUC) are compared to those produced by the analytically computed IO. The advantages of the proposed supervised learning approach for approximating the IO are demonstrated.
Supervised Learning Applied to Air Traffic Trajectory Classification
NASA Technical Reports Server (NTRS)
Bosson, Christabelle S.; Nikoleris, Tasos
2018-01-01
Given the recent increase of interest in introducing new vehicle types and missions into the National Airspace System, a transition towards a more autonomous air traffic control system is required in order to enable and handle increased density and complexity. This paper presents an exploratory effort of the needed autonomous capabilities by exploring supervised learning techniques in the context of aircraft trajectories. In particular, it focuses on the application of machine learning algorithms and neural network models to a runway recognition trajectory-classification study. It investigates the applicability and effectiveness of various classifiers using datasets containing trajectory records for a month of air traffic. A feature importance and sensitivity analysis are conducted to challenge the chosen time-based datasets and the ten selected features. The study demonstrates that classification accuracy levels of 90% and above can be reached in less than 40 seconds of training for most machine learning classifiers when one track data point, described by the ten selected features at a particular time step, per trajectory is used as input. It also shows that neural network models can achieve similar accuracy levels but at higher training time costs.
A trace ratio maximization approach to multiple kernel-based dimensionality reduction.
Jiang, Wenhao; Chung, Fu-lai
2014-01-01
Most dimensionality reduction techniques are based on one metric or one kernel, hence it is necessary to select an appropriate kernel for kernel-based dimensionality reduction. Multiple kernel learning for dimensionality reduction (MKL-DR) has been recently proposed to learn a kernel from a set of base kernels which are seen as different descriptions of data. As MKL-DR does not involve regularization, it might be ill-posed under some conditions and consequently its applications are hindered. This paper proposes a multiple kernel learning framework for dimensionality reduction based on regularized trace ratio, termed as MKL-TR. Our method aims at learning a transformation into a space of lower dimension and a corresponding kernel from the given base kernels among which some may not be suitable for the given data. The solutions for the proposed framework can be found based on trace ratio maximization. The experimental results demonstrate its effectiveness in benchmark datasets, which include text, image and sound datasets, for supervised, unsupervised as well as semi-supervised settings. Copyright © 2013 Elsevier Ltd. All rights reserved.
Nonlinear Deep Kernel Learning for Image Annotation.
Jiu, Mingyuan; Sahbi, Hichem
2017-02-08
Multiple kernel learning (MKL) is a widely used technique for kernel design. Its principle consists in learning, for a given support vector classifier, the most suitable convex (or sparse) linear combination of standard elementary kernels. However, these combinations are shallow and often powerless to capture the actual similarity between highly semantic data, especially for challenging classification tasks such as image annotation. In this paper, we redefine multiple kernels using deep multi-layer networks. In this new contribution, a deep multiple kernel is recursively defined as a multi-layered combination of nonlinear activation functions, each one involves a combination of several elementary or intermediate kernels, and results into a positive semi-definite deep kernel. We propose four different frameworks in order to learn the weights of these networks: supervised, unsupervised, kernel-based semisupervised and Laplacian-based semi-supervised. When plugged into support vector machines (SVMs), the resulting deep kernel networks show clear gain, compared to several shallow kernels for the task of image annotation. Extensive experiments and analysis on the challenging ImageCLEF photo annotation benchmark, the COREL5k database and the Banana dataset validate the effectiveness of the proposed method.
Semi-supervised prediction of gene regulatory networks using machine learning algorithms.
Patel, Nihir; Wang, Jason T L
2015-10-01
Use of computational methods to predict gene regulatory networks (GRNs) from gene expression data is a challenging task. Many studies have been conducted using unsupervised methods to fulfill the task; however, such methods usually yield low prediction accuracies due to the lack of training data. In this article, we propose semi-supervised methods for GRN prediction by utilizing two machine learning algorithms, namely, support vector machines (SVM) and random forests (RF). The semi-supervised methods make use of unlabelled data for training. We investigated inductive and transductive learning approaches, both of which adopt an iterative procedure to obtain reliable negative training data from the unlabelled data. We then applied our semi-supervised methods to gene expression data of Escherichia coli and Saccharomyces cerevisiae, and evaluated the performance of our methods using the expression data. Our analysis indicated that the transductive learning approach outperformed the inductive learning approach for both organisms. However, there was no conclusive difference identified in the performance of SVM and RF. Experimental results also showed that the proposed semi-supervised methods performed better than existing supervised methods for both organisms.
In-situ trainable intrusion detection system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Symons, Christopher T.; Beaver, Justin M.; Gillen, Rob
A computer implemented method detects intrusions using a computer by analyzing network traffic. The method includes a semi-supervised learning module connected to a network node. The learning module uses labeled and unlabeled data to train a semi-supervised machine learning sensor. The method records events that include a feature set made up of unauthorized intrusions and benign computer requests. The method identifies at least some of the benign computer requests that occur during the recording of the events while treating the remainder of the data as unlabeled. The method trains the semi-supervised learning module at the network node in-situ, such thatmore » the semi-supervised learning modules may identify malicious traffic without relying on specific rules, signatures, or anomaly detection.« less
Generalized query-based active learning to identify differentially methylated regions in DNA.
Haque, Md Muksitul; Holder, Lawrence B; Skinner, Michael K; Cook, Diane J
2013-01-01
Active learning is a supervised learning technique that reduces the number of examples required for building a successful classifier, because it can choose the data it learns from. This technique holds promise for many biological domains in which classified examples are expensive and time-consuming to obtain. Most traditional active learning methods ask very specific queries to the Oracle (e.g., a human expert) to label an unlabeled example. The example may consist of numerous features, many of which are irrelevant. Removing such features will create a shorter query with only relevant features, and it will be easier for the Oracle to answer. We propose a generalized query-based active learning (GQAL) approach that constructs generalized queries based on multiple instances. By constructing appropriately generalized queries, we can achieve higher accuracy compared to traditional active learning methods. We apply our active learning method to find differentially DNA methylated regions (DMRs). DMRs are DNA locations in the genome that are known to be involved in tissue differentiation, epigenetic regulation, and disease. We also apply our method on 13 other data sets and show that our method is better than another popular active learning technique.
Inverse Problems in Geodynamics Using Machine Learning Algorithms
NASA Astrophysics Data System (ADS)
Shahnas, M. H.; Yuen, D. A.; Pysklywec, R. N.
2018-01-01
During the past few decades numerical studies have been widely employed to explore the style of circulation and mixing in the mantle of Earth and other planets. However, in geodynamical studies there are many properties from mineral physics, geochemistry, and petrology in these numerical models. Machine learning, as a computational statistic-related technique and a subfield of artificial intelligence, has rapidly emerged recently in many fields of sciences and engineering. We focus here on the application of supervised machine learning (SML) algorithms in predictions of mantle flow processes. Specifically, we emphasize on estimating mantle properties by employing machine learning techniques in solving an inverse problem. Using snapshots of numerical convection models as training samples, we enable machine learning models to determine the magnitude of the spin transition-induced density anomalies that can cause flow stagnation at midmantle depths. Employing support vector machine algorithms, we show that SML techniques can successfully predict the magnitude of mantle density anomalies and can also be used in characterizing mantle flow patterns. The technique can be extended to more complex geodynamic problems in mantle dynamics by employing deep learning algorithms for putting constraints on properties such as viscosity, elastic parameters, and the nature of thermal and chemical anomalies.
Stanescu, Ana; Caragea, Doina
2015-01-01
Recent biochemical advances have led to inexpensive, time-efficient production of massive volumes of raw genomic data. Traditional machine learning approaches to genome annotation typically rely on large amounts of labeled data. The process of labeling data can be expensive, as it requires domain knowledge and expert involvement. Semi-supervised learning approaches that can make use of unlabeled data, in addition to small amounts of labeled data, can help reduce the costs associated with labeling. In this context, we focus on the problem of predicting splice sites in a genome using semi-supervised learning approaches. This is a challenging problem, due to the highly imbalanced distribution of the data, i.e., small number of splice sites as compared to the number of non-splice sites. To address this challenge, we propose to use ensembles of semi-supervised classifiers, specifically self-training and co-training classifiers. Our experiments on five highly imbalanced splice site datasets, with positive to negative ratios of 1-to-99, showed that the ensemble-based semi-supervised approaches represent a good choice, even when the amount of labeled data consists of less than 1% of all training data. In particular, we found that ensembles of co-training and self-training classifiers that dynamically balance the set of labeled instances during the semi-supervised iterations show improvements over the corresponding supervised ensemble baselines. In the presence of limited amounts of labeled data, ensemble-based semi-supervised approaches can successfully leverage the unlabeled data to enhance supervised ensembles learned from highly imbalanced data distributions. Given that such distributions are common for many biological sequence classification problems, our work can be seen as a stepping stone towards more sophisticated ensemble-based approaches to biological sequence annotation in a semi-supervised framework.
2015-01-01
Background Recent biochemical advances have led to inexpensive, time-efficient production of massive volumes of raw genomic data. Traditional machine learning approaches to genome annotation typically rely on large amounts of labeled data. The process of labeling data can be expensive, as it requires domain knowledge and expert involvement. Semi-supervised learning approaches that can make use of unlabeled data, in addition to small amounts of labeled data, can help reduce the costs associated with labeling. In this context, we focus on the problem of predicting splice sites in a genome using semi-supervised learning approaches. This is a challenging problem, due to the highly imbalanced distribution of the data, i.e., small number of splice sites as compared to the number of non-splice sites. To address this challenge, we propose to use ensembles of semi-supervised classifiers, specifically self-training and co-training classifiers. Results Our experiments on five highly imbalanced splice site datasets, with positive to negative ratios of 1-to-99, showed that the ensemble-based semi-supervised approaches represent a good choice, even when the amount of labeled data consists of less than 1% of all training data. In particular, we found that ensembles of co-training and self-training classifiers that dynamically balance the set of labeled instances during the semi-supervised iterations show improvements over the corresponding supervised ensemble baselines. Conclusions In the presence of limited amounts of labeled data, ensemble-based semi-supervised approaches can successfully leverage the unlabeled data to enhance supervised ensembles learned from highly imbalanced data distributions. Given that such distributions are common for many biological sequence classification problems, our work can be seen as a stepping stone towards more sophisticated ensemble-based approaches to biological sequence annotation in a semi-supervised framework. PMID:26356316
A Hybrid Supervised/Unsupervised Machine Learning Approach to Solar Flare Prediction
NASA Astrophysics Data System (ADS)
Benvenuto, Federico; Piana, Michele; Campi, Cristina; Massone, Anna Maria
2018-01-01
This paper introduces a novel method for flare forecasting, combining prediction accuracy with the ability to identify the most relevant predictive variables. This result is obtained by means of a two-step approach: first, a supervised regularization method for regression, namely, LASSO is applied, where a sparsity-enhancing penalty term allows the identification of the significance with which each data feature contributes to the prediction; then, an unsupervised fuzzy clustering technique for classification, namely, Fuzzy C-Means, is applied, where the regression outcome is partitioned through the minimization of a cost function and without focusing on the optimization of a specific skill score. This approach is therefore hybrid, since it combines supervised and unsupervised learning; realizes classification in an automatic, skill-score-independent way; and provides effective prediction performances even in the case of imbalanced data sets. Its prediction power is verified against NOAA Space Weather Prediction Center data, using as a test set, data in the range between 1996 August and 2010 December and as training set, data in the range between 1988 December and 1996 June. To validate the method, we computed several skill scores typically utilized in flare prediction and compared the values provided by the hybrid approach with the ones provided by several standard (non-hybrid) machine learning methods. The results showed that the hybrid approach performs classification better than all other supervised methods and with an effectiveness comparable to the one of clustering methods; but, in addition, it provides a reliable ranking of the weights with which the data properties contribute to the forecast.
A Robust Geometric Model for Argument Classification
NASA Astrophysics Data System (ADS)
Giannone, Cristina; Croce, Danilo; Basili, Roberto; de Cao, Diego
Argument classification is the task of assigning semantic roles to syntactic structures in natural language sentences. Supervised learning techniques for frame semantics have been recently shown to benefit from rich sets of syntactic features. However argument classification is also highly dependent on the semantics of the involved lexicals. Empirical studies have shown that domain dependence of lexical information causes large performance drops in outside domain tests. In this paper a distributional approach is proposed to improve the robustness of the learning model against out-of-domain lexical phenomena.
NASA Astrophysics Data System (ADS)
Gómez Puente, S. M.; van Eijck, M.; Jochems, W.
2013-11-01
Background: In research on design-based learning (DBL), inadequate attention is paid to the role the teacher plays in supervising students in gathering and applying knowledge to design artifacts, systems, and innovative solutions in higher education. Purpose: In this study, we examine whether teacher actions we previously identified in the DBL literature as important in facilitating learning processes and student supervision are present in current DBL engineering practices. Sample: The sample (N=16) consisted of teachers and supervisors in two engineering study programs at a university of technology: mechanical and electrical engineering. We selected randomly teachers from freshman and second-year bachelor DBL projects responsible for student supervision and assessment. Design and method: Interviews with teachers, and interviews and observations of supervisors were used to examine how supervision and facilitation actions are applied according to the DBL framework. Results: Major findings indicate that formulating questions is the most common practice seen in facilitating learning in open-ended engineering design environments. Furthermore, other DBL actions we expected to see based upon the literature were seldom observed in the coaching practices within these two programs. Conclusions: Professionalization of teachers in supervising students need to include methods to scaffold learning by supporting students in reflecting and in providing formative feedback.
Daelmans, H E M; Overmeer, R M; van der Hem-Stokroos, H H; Scherpbier, A J J A; Stehouwer, C D A; van der Vleuten, C P M
2006-01-01
Supervision and feedback are essential factors that contribute to the learning environment in the context of workplace learning and their frequency and quality can be improved. Assessment is a powerful tool with which to influence students' learning and supervisors' teaching and thus the learning environment. To investigate an in-training assessment (ITA) programme in action and to explore its effects on supervision and feedback. A qualitative study using individual, semistructured interviews. Eight students and 17 assessors (9 members of staff and 8 residents) in the internal medicine undergraduate clerkship at Vrije Universiteit Medical Centre, Amsterdam, the Netherlands. The ITA programme in action differed from the intended programme. Assessors provided hardly any follow-up on supervision and feedback given during assessments. Although students wanted more supervision and feedback, they rarely asked for it. Students and assessors failed to integrate the whole range of competencies included in the ITA programme into their respective learning and supervision and feedback. When giving feedback, assessors rarely gave borderline or fail judgements. If an ITA programme in action is to be congruent with the intended programme, the implementation of the programme must be monitored. It is also necessary to provide full information about the programme and to ensure this information is given repeatedly. Introducing an ITA programme that includes the assessment of several competencies does not automatically lead to more attention being paid to these competencies in terms of supervision and feedback. Measures that facilitate change in the learning environment seem to be a prerequisite for enabling the assessment programme to steer the learning environment.
The Practice of Supervision for Professional Learning: The Example of Future Forensic Specialists
ERIC Educational Resources Information Center
Köpsén, Susanne; Nyström, Sofia
2015-01-01
Supervision intended to support learning is of great interest in professional knowledge development. No single definition governs the implementation and enactment of supervision because of different conditions, intentions, and pedagogical approaches. Uncertainty exists at a time when knowledge and methods are undergoing constant development. This…
L1-norm locally linear representation regularization multi-source adaptation learning.
Tao, Jianwen; Wen, Shiting; Hu, Wenjun
2015-09-01
In most supervised domain adaptation learning (DAL) tasks, one has access only to a small number of labeled examples from target domain. Therefore the success of supervised DAL in this "small sample" regime needs the effective utilization of the large amounts of unlabeled data to extract information that is useful for generalization. Toward this end, we here use the geometric intuition of manifold assumption to extend the established frameworks in existing model-based DAL methods for function learning by incorporating additional information about the target geometric structure of the marginal distribution. We would like to ensure that the solution is smooth with respect to both the ambient space and the target marginal distribution. In doing this, we propose a novel L1-norm locally linear representation regularization multi-source adaptation learning framework which exploits the geometry of the probability distribution, which has two techniques. Firstly, an L1-norm locally linear representation method is presented for robust graph construction by replacing the L2-norm reconstruction measure in LLE with L1-norm one, which is termed as L1-LLR for short. Secondly, considering the robust graph regularization, we replace traditional graph Laplacian regularization with our new L1-LLR graph Laplacian regularization and therefore construct new graph-based semi-supervised learning framework with multi-source adaptation constraint, which is coined as L1-MSAL method. Moreover, to deal with the nonlinear learning problem, we also generalize the L1-MSAL method by mapping the input data points from the input space to a high-dimensional reproducing kernel Hilbert space (RKHS) via a nonlinear mapping. Promising experimental results have been obtained on several real-world datasets such as face, visual video and object. Copyright © 2015 Elsevier Ltd. All rights reserved.
Guo, Yufan; Silins, Ilona; Stenius, Ulla; Korhonen, Anna
2013-06-01
Techniques that are capable of automatically analyzing the information structure of scientific articles could be highly useful for improving information access to biomedical literature. However, most existing approaches rely on supervised machine learning (ML) and substantial labeled data that are expensive to develop and apply to different sub-fields of biomedicine. Recent research shows that minimal supervision is sufficient for fairly accurate information structure analysis of biomedical abstracts. However, is it realistic for full articles given their high linguistic and informational complexity? We introduce and release a novel corpus of 50 biomedical articles annotated according to the Argumentative Zoning (AZ) scheme, and investigate active learning with one of the most widely used ML models-Support Vector Machines (SVM)-on this corpus. Additionally, we introduce two novel applications that use AZ to support real-life literature review in biomedicine via question answering and summarization. We show that active learning with SVM trained on 500 labeled sentences (6% of the corpus) performs surprisingly well with the accuracy of 82%, just 2% lower than fully supervised learning. In our question answering task, biomedical researchers find relevant information significantly faster from AZ-annotated than unannotated articles. In the summarization task, sentences extracted from particular zones are significantly more similar to gold standard summaries than those extracted from particular sections of full articles. These results demonstrate that active learning of full articles' information structure is indeed realistic and the accuracy is high enough to support real-life literature review in biomedicine. The annotated corpus, our AZ classifier and the two novel applications are available at http://www.cl.cam.ac.uk/yg244/12bioinfo.html
Fully Decentralized Semi-supervised Learning via Privacy-preserving Matrix Completion.
Fierimonte, Roberto; Scardapane, Simone; Uncini, Aurelio; Panella, Massimo
2016-08-26
Distributed learning refers to the problem of inferring a function when the training data are distributed among different nodes. While significant work has been done in the contexts of supervised and unsupervised learning, the intermediate case of Semi-supervised learning in the distributed setting has received less attention. In this paper, we propose an algorithm for this class of problems, by extending the framework of manifold regularization. The main component of the proposed algorithm consists of a fully distributed computation of the adjacency matrix of the training patterns. To this end, we propose a novel algorithm for low-rank distributed matrix completion, based on the framework of diffusion adaptation. Overall, the distributed Semi-supervised algorithm is efficient and scalable, and it can preserve privacy by the inclusion of flexible privacy-preserving mechanisms for similarity computation. The experimental results and comparison on a wide range of standard Semi-supervised benchmarks validate our proposal.
A Hybrid Semi-supervised Classification Scheme for Mining Multisource Geospatial Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vatsavai, Raju; Bhaduri, Budhendra L
2011-01-01
Supervised learning methods such as Maximum Likelihood (ML) are often used in land cover (thematic) classification of remote sensing imagery. ML classifier relies exclusively on spectral characteristics of thematic classes whose statistical distributions (class conditional probability densities) are often overlapping. The spectral response distributions of thematic classes are dependent on many factors including elevation, soil types, and ecological zones. A second problem with statistical classifiers is the requirement of large number of accurate training samples (10 to 30 |dimensions|), which are often costly and time consuming to acquire over large geographic regions. With the increasing availability of geospatial databases, itmore » is possible to exploit the knowledge derived from these ancillary datasets to improve classification accuracies even when the class distributions are highly overlapping. Likewise newer semi-supervised techniques can be adopted to improve the parameter estimates of statistical model by utilizing a large number of easily available unlabeled training samples. Unfortunately there is no convenient multivariate statistical model that can be employed for mulitsource geospatial databases. In this paper we present a hybrid semi-supervised learning algorithm that effectively exploits freely available unlabeled training samples from multispectral remote sensing images and also incorporates ancillary geospatial databases. We have conducted several experiments on real datasets, and our new hybrid approach shows over 25 to 35% improvement in overall classification accuracy over conventional classification schemes.« less
Bennett-Levy, James; McManus, Freda; Westling, Bengt E; Fennell, Melanie
2009-10-01
A theoretical and empirical base for CBT training and supervision has started to emerge. Increasingly sophisticated maps of CBT therapist competencies have recently been developed, and there is evidence that CBT training and supervision can produce enhancement of CBT skills. However, the evidence base suggesting which specific training techniques are most effective for the development of CBT competencies is lacking. This paper addresses the question: What training or supervision methods are perceived by experienced therapists to be most effective for training CBT competencies? 120 experienced CBT therapists rated which training or supervision methods in their experience had been most effective in enhancing different types of therapy-relevant knowledge or skills. In line with the main prediction, it was found that different training methods were perceived to be differentially effective. For instance, reading, lectures/talks and modelling were perceived to be most useful for the acquisition of declarative knowledge, while enactive learning strategies (role-play, self-experiential work), together with modelling and reflective practice, were perceived to be most effective in enhancing procedural skills. Self-experiential work and reflective practice were seen as particularly helpful in improving reflective capability and interpersonal skills. The study provides a framework for thinking about the acquisition and refinement of therapist skills that may help trainers, supervisors and clinicians target their learning objectives with the most effective training strategies.
Garcia-Chimeno, Yolanda; Garcia-Zapirain, Begonya
2015-01-01
The classification of subjects' pathologies enables a rigorousness to be applied to the treatment of certain pathologies, as doctors on occasions play with so many variables that they can end up confusing some illnesses with others. Thanks to Machine Learning techniques applied to a health-record database, it is possible to make using our algorithm. hClass contains a non-linear classification of either a supervised, non-supervised or semi-supervised type. The machine is configured using other techniques such as validation of the set to be classified (cross-validation), reduction in features (PCA) and committees for assessing the various classifiers. The tool is easy to use, and the sample matrix and features that one wishes to classify, the number of iterations and the subjects who are going to be used to train the machine all need to be introduced as inputs. As a result, the success rate is shown either via a classifier or via a committee if one has been formed. A 90% success rate is obtained in the ADABoost classifier and 89.7% in the case of a committee (comprising three classifiers) when PCA is applied. This tool can be expanded to allow the user to totally characterise the classifiers by adjusting them to each classification use.
NASA Astrophysics Data System (ADS)
Cruz-Roa, Angel; Arevalo, John; Basavanhally, Ajay; Madabhushi, Anant; González, Fabio
2015-01-01
Learning data representations directly from the data itself is an approach that has shown great success in different pattern recognition problems, outperforming state-of-the-art feature extraction schemes for different tasks in computer vision, speech recognition and natural language processing. Representation learning applies unsupervised and supervised machine learning methods to large amounts of data to find building-blocks that better represent the information in it. Digitized histopathology images represents a very good testbed for representation learning since it involves large amounts of high complex, visual data. This paper presents a comparative evaluation of different supervised and unsupervised representation learning architectures to specifically address open questions on what type of learning architectures (deep or shallow), type of learning (unsupervised or supervised) is optimal. In this paper we limit ourselves to addressing these questions in the context of distinguishing between anaplastic and non-anaplastic medulloblastomas from routine haematoxylin and eosin stained images. The unsupervised approaches evaluated were sparse autoencoders and topographic reconstruct independent component analysis, and the supervised approach was convolutional neural networks. Experimental results show that shallow architectures with more neurons are better than deeper architectures without taking into account local space invariances and that topographic constraints provide useful invariant features in scale and rotations for efficient tumor differentiation.
The clinical learning environment and supervision by staff nurses: developing the instrument.
Saarikoski, Mikko; Leino-Kilpi, Helena
2002-03-01
The aims of this study were (1) to describe students' perceptions of the clinical learning environment and clinical supervision and (2) to develop an evaluation scale by using the empirical results of this study. The data were collected using the Clinical Learning Environment and Supervision instrument (CLES). The instrument was based on the literature review of earlier studies. The derived instrument was tested empirically in a study involving nurse students (N=416) from four nursing colleges in Finland. The results demonstrated that the method of supervision, the number of separate supervision sessions and the psychological content of supervisory contact within a positive ward atmosphere are the most important variables in the students' clinical learning. The results also suggest that ward managers can create the conditions of a positive ward culture and a positive attitude towards students and their learning needs. The construct validity of the instrument was analysed by using exploratory factor analysis. The analysis indicated that the most important factor in the students' clinical learning is the supervisory relationship. The two most important factors constituting a 'good' clinical learning environment are the management style of the ward manager and the premises of nursing on the ward. The results of the factor analysis support the theoretical construction of the clinical learning environment modelled by earlier empirical studies.
Semi-Supervised Marginal Fisher Analysis for Hyperspectral Image Classification
NASA Astrophysics Data System (ADS)
Huang, H.; Liu, J.; Pan, Y.
2012-07-01
The problem of learning with both labeled and unlabeled examples arises frequently in Hyperspectral image (HSI) classification. While marginal Fisher analysis is a supervised method, which cannot be directly applied for Semi-supervised classification. In this paper, we proposed a novel method, called semi-supervised marginal Fisher analysis (SSMFA), to process HSI of natural scenes, which uses a combination of semi-supervised learning and manifold learning. In SSMFA, a new difference-based optimization objective function with unlabeled samples has been designed. SSMFA preserves the manifold structure of labeled and unlabeled samples in addition to separating labeled samples in different classes from each other. The semi-supervised method has an analytic form of the globally optimal solution, and it can be computed based on eigen decomposition. Classification experiments with a challenging HSI task demonstrate that this method outperforms current state-of-the-art HSI-classification methods.
Experiencing Variation: Learning Opportunities in Doctoral Supervision
ERIC Educational Resources Information Center
Kobayashi, Sofie; Berge, Maria; Grout, Brian W. W.; Rump, Camilla Østerberg
2017-01-01
This study contributes towards a better understanding of learning dynamics in doctoral supervision by analysing how learning opportunities are created in the interaction between supervisors and PhD students, using the notion of experiencing variation as a key to learning. Empirically, we have based the study on four video-recorded sessions, with…
Twellmann, Thorsten; Meyer-Baese, Anke; Lange, Oliver; Foo, Simon; Nattkemper, Tim W.
2008-01-01
Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) has become an important tool in breast cancer diagnosis, but evaluation of multitemporal 3D image data holds new challenges for human observers. To aid the image analysis process, we apply supervised and unsupervised pattern recognition techniques for computing enhanced visualizations of suspicious lesions in breast MRI data. These techniques represent an important component of future sophisticated computer-aided diagnosis (CAD) systems and support the visual exploration of spatial and temporal features of DCE-MRI data stemming from patients with confirmed lesion diagnosis. By taking into account the heterogeneity of cancerous tissue, these techniques reveal signals with malignant, benign and normal kinetics. They also provide a regional subclassification of pathological breast tissue, which is the basis for pseudo-color presentations of the image data. Intelligent medical systems are expected to have substantial implications in healthcare politics by contributing to the diagnosis of indeterminate breast lesions by non-invasive imaging. PMID:19255616
McPhee, M J; Walmsley, B J; Skinner, B; Littler, B; Siddell, J P; Cafe, L M; Wilkins, J F; Oddy, V H; Alempijevic, A
2017-04-01
The objective of this study was to develop a proof of concept for using off-the-shelf Red Green Blue-Depth (RGB-D) Microsoft Kinect cameras to objectively assess P8 rump fat (P8 fat; mm) and muscle score (MS) traits in Angus cows and steers. Data from low and high muscled cattle (156 cows and 79 steers) were collected at multiple locations and time points. The following steps were required for the 3-dimensional (3D) image data and subsequent machine learning techniques to learn the traits: 1) reduce the high dimensionality of the point cloud data by extracting features from the input signals to produce a compact and representative feature vector, 2) perform global optimization of the signatures using machine learning algorithms and a parallel genetic algorithm, and 3) train a sensor model using regression-supervised learning techniques on the ultrasound P8 fat and the classified learning techniques for the assessed MS for each animal in the data set. The correlation of estimating hip height (cm) between visually measured and assessed 3D data from RGB-D cameras on cows and steers was 0.75 and 0.90, respectively. The supervised machine learning and global optimization approach correctly classified MS (mean [SD]) 80 (4.7) and 83% [6.6%] for cows and steers, respectively. Kappa tests of MS were 0.74 and 0.79 in cows and steers, respectively, indicating substantial agreement between visual assessment and the learning approaches of RGB-D camera images. A stratified 10-fold cross-validation for P8 fat did not find any differences in the mean bias ( = 0.62 and = 0.42 for cows and steers, respectively). The root mean square error of P8 fat was 1.54 and 1.00 mm for cows and steers, respectively. Additional data is required to strengthen the capacity of machine learning to estimate measured P8 fat and assessed MS. Data sets for and continental cattle are also required to broaden the use of 3D cameras to assess cattle. The results demonstrate the importance of capturing curvature as a form of representing body shape. A data-driven model from shape to trait has established a proof of concept using optimized machine learning techniques to assess P8 fat and MS in Angus cows and steers.
Barriers impacting the utilization of supervision techniques in genetic counseling.
Masunga, Abigail; Wusik, Katie; He, Hua; Yager, Geoffrey; Atzinger, Carrie
2014-12-01
Clinical supervision is an essential element in training genetic counselors. Although live supervision has been identified as the most common supervision technique utilized in genetic counseling, there is limited information on factors influencing its use as well as the use of other techniques. The purpose of this study was to identify barriers supervisors face when implementing supervision techniques. All participants (N = 141) reported utilizing co-counseling. This was most used with novice students (96.1%) and intermediate students (93.7%). Other commonly used techniques included live supervision where the supervisor is silent during session (98.6%) which was used most frequently with advanced students (94.0%), and student self-report (64.7%) used most often with advanced students (61.2%). Though no barrier to these commonly used techniques was identified by a majority of participants, the most frequently reported barriers included time and concern about patient's welfare. The remaining supervision techniques (live remote observation, video, and audio recording) were each used by less than 10% of participants. Barriers that significantly influenced use of these techniques included lack of facilities/equipment and concern about patient reactions to technique. Understanding barriers to implementation of supervisory techniques may allow students to be efficiently trained in the future by reducing supervisor burnout and increasing the diversity of techniques used.
Hepworth, Philip J.; Nefedov, Alexey V.; Muchnik, Ilya B.; Morgan, Kenton L.
2012-01-01
Machine-learning algorithms pervade our daily lives. In epidemiology, supervised machine learning has the potential for classification, diagnosis and risk factor identification. Here, we report the use of support vector machine learning to identify the features associated with hock burn on commercial broiler farms, using routinely collected farm management data. These data lend themselves to analysis using machine-learning techniques. Hock burn, dermatitis of the skin over the hock, is an important indicator of broiler health and welfare. Remarkably, this classifier can predict the occurrence of high hock burn prevalence with accuracy of 0.78 on unseen data, as measured by the area under the receiver operating characteristic curve. We also compare the results with those obtained by standard multi-variable logistic regression and suggest that this technique provides new insights into the data. This novel application of a machine-learning algorithm, embedded in poultry management systems could offer significant improvements in broiler health and welfare worldwide. PMID:22319115
Hepworth, Philip J; Nefedov, Alexey V; Muchnik, Ilya B; Morgan, Kenton L
2012-08-07
Machine-learning algorithms pervade our daily lives. In epidemiology, supervised machine learning has the potential for classification, diagnosis and risk factor identification. Here, we report the use of support vector machine learning to identify the features associated with hock burn on commercial broiler farms, using routinely collected farm management data. These data lend themselves to analysis using machine-learning techniques. Hock burn, dermatitis of the skin over the hock, is an important indicator of broiler health and welfare. Remarkably, this classifier can predict the occurrence of high hock burn prevalence with accuracy of 0.78 on unseen data, as measured by the area under the receiver operating characteristic curve. We also compare the results with those obtained by standard multi-variable logistic regression and suggest that this technique provides new insights into the data. This novel application of a machine-learning algorithm, embedded in poultry management systems could offer significant improvements in broiler health and welfare worldwide.
Automatic classification of fish germ cells through optimum-path forest.
Papa, João P; Gutierrez, Mario E M; Nakamura, Rodrigo Y M; Papa, Luciene P; Vicentini, Irene B F; Vicentini, Carlos A
2011-01-01
The spermatogenesis is crucial to the species reproduction, and its monitoring may shed light over some important information of such process. Thus, the germ cells quantification can provide useful tools to improve the reproduction cycle. In this paper, we present the first work that address this problem in fishes with machine learning techniques. We show here how to obtain high recognition accuracies in order to identify fish germ cells with several state-of-the-art supervised pattern recognition techniques.
Baldwin, DeWitt C; Daugherty, Steven R; Ryan, Patrick M; Yaghmour, Nicholas A; Philibert, Ingrid
2018-04-01
Medical errors and patient safety are major concerns for the medical and medical education communities. Improving clinical supervision for residents is important in avoiding errors, yet little is known about how residents perceive the adequacy of their supervision and how this relates to medical errors and other education outcomes, such as learning and satisfaction. We analyzed data from a 2009 survey of residents in 4 large specialties regarding the adequacy and quality of supervision they receive as well as associations with self-reported data on medical errors and residents' perceptions of their learning environment. Residents' reports of working without adequate supervision were lower than data from a 1999 survey for all 4 specialties, and residents were least likely to rate "lack of supervision" as a problem. While few residents reported that they received inadequate supervision, problems with supervision were negatively correlated with sufficient time for clinical activities, overall ratings of the residency experience, and attending physicians as a source of learning. Problems with supervision were positively correlated with resident reports that they had made a significant medical error, had been belittled or humiliated, or had observed others falsifying medical records. Although working without supervision was not a pervasive problem in 2009, when it happened, it appeared to have negative consequences. The association between inadequate supervision and medical errors is of particular concern.
Classification-free threat detection based on material-science-informed clustering
NASA Astrophysics Data System (ADS)
Yuan, Siyang; Wolter, Scott D.; Greenberg, Joel A.
2017-05-01
X-ray diffraction (XRD) is well-known for yielding composition and structural information about a material. However, in some applications (such as threat detection in aviation security), the properties of a material are more relevant to the task than is a detailed material characterization. Furthermore, the requirement that one first identify a material before determining its class may be difficult or even impossible for a sufficiently large pool of potentially present materials. We therefore seek to learn relevant composition-structure-property relationships between materials to enable material-identification-free classification. We use an expert-informed, data-driven approach operating on a library of XRD spectra from a broad array of stream of commerce materials. We investigate unsupervised learning techniques in order to learn about naturally emergent groupings, and apply supervised learning techniques to determine how well XRD features can be used to separate user-specified classes in the presence of different types and degrees of signal degradation.
Web-conference supervision for advanced psychotherapy training: a practical guide.
Abbass, Allan; Arthey, Stephen; Elliott, Jason; Fedak, Tim; Nowoweiski, Dion; Markovski, Jasmina; Nowoweiski, Sarah
2011-06-01
The advent of readily accessible, inexpensive Web-conferencing applications has opened the door for distance psychotherapy supervision, using video recordings of treated clients. Although relatively new, this method of supervision is advantageous given the ease of use and low cost of various Internet applications. This method allows periodic supervision from point to point around the world, with no travel costs and no long gaps between direct training contacts. Web-conferencing permits face-to-face training so that the learner and supervisor can read each other's emotional responses while reviewing case material. It allows group learning from direct supervision to complement local peer-to-peer learning methods. In this article, we describe the relevant literature on this type of learning method, the practical points in its utilization, its limitations, and its benefits.
Nguyen, Thanh; Bui, Vy; Lam, Van; Raub, Christopher B; Chang, Lin-Ching; Nehmetallah, George
2017-06-26
We propose a fully automatic technique to obtain aberration free quantitative phase imaging in digital holographic microscopy (DHM) based on deep learning. The traditional DHM solves the phase aberration compensation problem by manually detecting the background for quantitative measurement. This would be a drawback in real time implementation and for dynamic processes such as cell migration phenomena. A recent automatic aberration compensation approach using principle component analysis (PCA) in DHM avoids human intervention regardless of the cells' motion. However, it corrects spherical/elliptical aberration only and disregards the higher order aberrations. Traditional image segmentation techniques can be employed to spatially detect cell locations. Ideally, automatic image segmentation techniques make real time measurement possible. However, existing automatic unsupervised segmentation techniques have poor performance when applied to DHM phase images because of aberrations and speckle noise. In this paper, we propose a novel method that combines a supervised deep learning technique with convolutional neural network (CNN) and Zernike polynomial fitting (ZPF). The deep learning CNN is implemented to perform automatic background region detection that allows for ZPF to compute the self-conjugated phase to compensate for most aberrations.
A learning model for nursing students during clinical studies.
Ekebergh, Margaretha
2011-11-01
This paper presents a research project where the aim was to develop a new model for learning support in nursing education that makes it possible for the student to encounter both the theoretical caring science structure and the patient's lived experiences in his/her learning process. A reflective group supervision model was developed and tested. The supervision was lead by a teacher and a nurse and started in patient narratives that the students brought to the supervision sessions. The narratives were analyzed by using caring science concepts with the purpose of creating a unity of theory and lived experiences. Data has been collected and analyzed phenomenologically in order to develop knowledge of the students' reflection and learning when using the supervision model. The result shows that the students have had good use of the theoretical concepts in creating a deeper understanding for the patient. They have learned to reflect more systematically and the learning situation has become more realistic to them as it is now carried out in a patient near context. In order to reach these results, however, demands the necessity of recognizing the students' lifeworld in the supervision process. Copyright © 2011 Elsevier Ltd. All rights reserved.
Hard exudates segmentation based on learned initial seeds and iterative graph cut.
Kusakunniran, Worapan; Wu, Qiang; Ritthipravat, Panrasee; Zhang, Jian
2018-05-01
(Background and Objective): The occurrence of hard exudates is one of the early signs of diabetic retinopathy which is one of the leading causes of the blindness. Many patients with diabetic retinopathy lose their vision because of the late detection of the disease. Thus, this paper is to propose a novel method of hard exudates segmentation in retinal images in an automatic way. (Methods): The existing methods are based on either supervised or unsupervised learning techniques. In addition, the learned segmentation models may often cause miss-detection and/or fault-detection of hard exudates, due to the lack of rich characteristics, the intra-variations, and the similarity with other components in the retinal image. Thus, in this paper, the supervised learning based on the multilayer perceptron (MLP) is only used to identify initial seeds with high confidences to be hard exudates. Then, the segmentation is finalized by unsupervised learning based on the iterative graph cut (GC) using clusters of initial seeds. Also, in order to reduce color intra-variations of hard exudates in different retinal images, the color transfer (CT) is applied to normalize their color information, in the pre-processing step. (Results): The experiments and comparisons with the other existing methods are based on the two well-known datasets, e_ophtha EX and DIARETDB1. It can be seen that the proposed method outperforms the other existing methods in the literature, with the sensitivity in the pixel-level of 0.891 for the DIARETDB1 dataset and 0.564 for the e_ophtha EX dataset. The cross datasets validation where the training process is performed on one dataset and the testing process is performed on another dataset is also evaluated in this paper, in order to illustrate the robustness of the proposed method. (Conclusions): This newly proposed method integrates the supervised learning and unsupervised learning based techniques. It achieves the improved performance, when compared with the existing methods in the literature. The robustness of the proposed method for the scenario of cross datasets could enhance its practical usage. That is, the trained model could be more practical for unseen data in the real-world situation, especially when the capturing environments of training and testing images are not the same. Copyright © 2018 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Roulston, Audrey; Cleak, Helen; Vreugdenhil, Anthea
2018-01-01
Practice learning is integral to the curriculum for qualifying social work students. Accreditation standards require regular student supervision and exposure to specific learning activities. Most agencies offer high-quality placements, but organizational cutbacks may affect supervision and restrict the development of competence and professional…
The Costs of Supervised Classification: The Effect of Learning Task on Conceptual Flexibility
ERIC Educational Resources Information Center
Hoffman, Aaron B.; Rehder, Bob
2010-01-01
Research has shown that learning a concept via standard supervised classification leads to a focus on diagnostic features, whereas learning by inferring missing features promotes the acquisition of within-category information. Accordingly, we predicted that classification learning would produce a deficit in people's ability to draw "novel…
ERIC Educational Resources Information Center
Bee, Clifford P.; And Others
A description is given of a collaborative effort between a state university and a middle school in California. The program is designed to attract, train, and retain future teachers. Among other factors, the program explores effective instruction, curriculum strategies, utilizing clinical supervision, and current teaching/learning techniques. An…
Miller, Vonda H; Jansen, Ben H
2008-12-01
Computer algorithms that match human performance in recognizing written text or spoken conversation remain elusive. The reasons why the human brain far exceeds any existing recognition scheme to date in the ability to generalize and to extract invariant characteristics relevant to category matching are not clear. However, it has been postulated that the dynamic distribution of brain activity (spatiotemporal activation patterns) is the mechanism by which stimuli are encoded and matched to categories. This research focuses on supervised learning using a trajectory based distance metric for category discrimination in an oscillatory neural network model. Classification is accomplished using a trajectory based distance metric. Since the distance metric is differentiable, a supervised learning algorithm based on gradient descent is demonstrated. Classification of spatiotemporal frequency transitions and their relation to a priori assessed categories is shown along with the improved classification results after supervised training. The results indicate that this spatiotemporal representation of stimuli and the associated distance metric is useful for simple pattern recognition tasks and that supervised learning improves classification results.
Semisupervised Clustering by Iterative Partition and Regression with Neuroscience Applications
Qian, Guoqi; Wu, Yuehua; Ferrari, Davide; Qiao, Puxue; Hollande, Frédéric
2016-01-01
Regression clustering is a mixture of unsupervised and supervised statistical learning and data mining method which is found in a wide range of applications including artificial intelligence and neuroscience. It performs unsupervised learning when it clusters the data according to their respective unobserved regression hyperplanes. The method also performs supervised learning when it fits regression hyperplanes to the corresponding data clusters. Applying regression clustering in practice requires means of determining the underlying number of clusters in the data, finding the cluster label of each data point, and estimating the regression coefficients of the model. In this paper, we review the estimation and selection issues in regression clustering with regard to the least squares and robust statistical methods. We also provide a model selection based technique to determine the number of regression clusters underlying the data. We further develop a computing procedure for regression clustering estimation and selection. Finally, simulation studies are presented for assessing the procedure, together with analyzing a real data set on RGB cell marking in neuroscience to illustrate and interpret the method. PMID:27212939
Can Semi-Supervised Learning Explain Incorrect Beliefs about Categories?
ERIC Educational Resources Information Center
Kalish, Charles W.; Rogers, Timothy T.; Lang, Jonathan; Zhu, Xiaojin
2011-01-01
Three experiments with 88 college-aged participants explored how unlabeled experiences--learning episodes in which people encounter objects without information about their category membership--influence beliefs about category structure. Participants performed a simple one-dimensional categorization task in a brief supervised learning phase, then…
Professional Learning: Lessons for Supervision from Doctoral Examining
ERIC Educational Resources Information Center
Wisker, Gina; Kiley, Margaret
2014-01-01
Most research into research supervision practice focuses on functional, collegial or problematic power-related experiences. Work developing the supervisory role concentrates on new supervisors, and on taught development and support programmes. Most literature on academics' professional learning concentrates on learning to be a university teacher…
Gosavi, Arundhati; Vijayakumar, Pradip D; Ng, Bryan SW; Loh, May-Han; Tan, Lay Geok; Johana, Nuryanti; Tan, Yi Wan; Sandikin, Dedy; Su, Lin Lin; Wataganara, Tuangsit; Biswas, Arijit; Choolani, Mahesh A; Mattar, Citra NZ
2017-01-01
INTRODUCTION Management of complicated monochorionic twins and certain intrauterine structural anomalies is a pressing challenge in communities that still lack advanced fetal therapy. We describe our efforts to rapidly initiate selective feticide using radiofrequency ablation (RFA) and selective fetoscopic laser photocoagulation (SFLP) for twin-to-twin transfusion syndrome (TTTS), and present the latter as a potential model for aspiring fetal therapy units. METHODS Five pregnancies with fetal complications were identified for RFA. Three pregnancies with Stage II TTTS were selected for SFLP. While RFA techniques utilising ultrasonography skills were quickly mastered, SFLP required stepwise technical learning with an overseas-based proctor, who provided real-time hands-off supervision. RESULTS All co-twins were live-born following selective feticide; one singleton pregnancy was lost. Fetoscopy techniques were learned in a stepwise manner and procedures were performed by a novice team of surgeons under proctorship. Dichorionisation was completed in only one patient. Five of six twins were live-born near term. One pregnancy developed twin anaemia-polycythaemia sequence, while another was complicated by co-twin demise. DISCUSSION Proctor-supervised directed learning facilitated the rapid provision of basic fetal therapy services by our unit. While traditional apprenticeship is important for building individual expertise, this system is complementary and may benefit other small units committed to providing these services. PMID:27439783
Stone, James R; Wilde, Elisabeth A; Taylor, Brian A; Tate, David F; Levin, Harvey; Bigler, Erin D; Scheibel, Randall S; Newsome, Mary R; Mayer, Andrew R; Abildskov, Tracy; Black, Garrett M; Lennon, Michael J; York, Gerald E; Agarwal, Rajan; DeVillasante, Jorge; Ritter, John L; Walker, Peter B; Ahlers, Stephen T; Tustison, Nicholas J
2016-01-01
White matter hyperintensities (WMHs) are foci of abnormal signal intensity in white matter regions seen with magnetic resonance imaging (MRI). WMHs are associated with normal ageing and have shown prognostic value in neurological conditions such as traumatic brain injury (TBI). The impracticality of manually quantifying these lesions limits their clinical utility and motivates the utilization of machine learning techniques for automated segmentation workflows. This study develops a concatenated random forest framework with image features for segmenting WMHs in a TBI cohort. The framework is built upon the Advanced Normalization Tools (ANTs) and ANTsR toolkits. MR (3D FLAIR, T2- and T1-weighted) images from 24 service members and veterans scanned in the Chronic Effects of Neurotrauma Consortium's (CENC) observational study were acquired. Manual annotations were employed for both training and evaluation using a leave-one-out strategy. Performance measures include sensitivity, positive predictive value, [Formula: see text] score and relative volume difference. Final average results were: sensitivity = 0.68 ± 0.38, positive predictive value = 0.51 ± 0.40, [Formula: see text] = 0.52 ± 0.36, relative volume difference = 43 ± 26%. In addition, three lesion size ranges are selected to illustrate the variation in performance with lesion size. Paired with correlative outcome data, supervised learning methods may allow for identification of imaging features predictive of diagnosis and prognosis in individual TBI patients.
Methods of Sparse Modeling and Dimensionality Reduction to Deal with Big Data
2015-04-01
supervised learning (c). Our framework consists of two separate phases: (a) first find an initial space in an unsupervised manner; then (b) utilize label...model that can learn thousands of topics from a large set of documents and infer the topic mixture of each document, 2) a supervised dimension reduction...model that can learn thousands of topics from a large set of documents and infer the topic mixture of each document, (i) a method of supervised
Integrative gene network construction to analyze cancer recurrence using semi-supervised learning.
Park, Chihyun; Ahn, Jaegyoon; Kim, Hyunjin; Park, Sanghyun
2014-01-01
The prognosis of cancer recurrence is an important research area in bioinformatics and is challenging due to the small sample sizes compared to the vast number of genes. There have been several attempts to predict cancer recurrence. Most studies employed a supervised approach, which uses only a few labeled samples. Semi-supervised learning can be a great alternative to solve this problem. There have been few attempts based on manifold assumptions to reveal the detailed roles of identified cancer genes in recurrence. In order to predict cancer recurrence, we proposed a novel semi-supervised learning algorithm based on a graph regularization approach. We transformed the gene expression data into a graph structure for semi-supervised learning and integrated protein interaction data with the gene expression data to select functionally-related gene pairs. Then, we predicted the recurrence of cancer by applying a regularization approach to the constructed graph containing both labeled and unlabeled nodes. The average improvement rate of accuracy for three different cancer datasets was 24.9% compared to existing supervised and semi-supervised methods. We performed functional enrichment on the gene networks used for learning. We identified that those gene networks are significantly associated with cancer-recurrence-related biological functions. Our algorithm was developed with standard C++ and is available in Linux and MS Windows formats in the STL library. The executable program is freely available at: http://embio.yonsei.ac.kr/~Park/ssl.php.
Using deep learning in image hyper spectral segmentation, classification, and detection
NASA Astrophysics Data System (ADS)
Zhao, Xiuying; Su, Zhenyu
2018-02-01
Recent years have shown that deep learning neural networks are a valuable tool in the field of computer vision. Deep learning method can be used in applications like remote sensing such as Land cover Classification, Detection of Vehicle in Satellite Images, Hyper spectral Image classification. This paper addresses the use of the deep learning artificial neural network in Satellite image segmentation. Image segmentation plays an important role in image processing. The hue of the remote sensing image often has a large hue difference, which will result in the poor display of the images in the VR environment. Image segmentation is a pre processing technique applied to the original images and splits the image into many parts which have different hue to unify the color. Several computational models based on supervised, unsupervised, parametric, probabilistic region based image segmentation techniques have been proposed. Recently, one of the machine learning technique known as, deep learning with convolution neural network has been widely used for development of efficient and automatic image segmentation models. In this paper, we focus on study of deep neural convolution network and its variants for automatic image segmentation rather than traditional image segmentation strategies.
Fuzzy controller training using particle swarm optimization for nonlinear system control.
Karakuzu, Cihan
2008-04-01
This paper proposes and describes an effective utilization of particle swarm optimization (PSO) to train a Takagi-Sugeno (TS)-type fuzzy controller. Performance evaluation of the proposed fuzzy training method using the obtained simulation results is provided with two samples of highly nonlinear systems: a continuous stirred tank reactor (CSTR) and a Van der Pol (VDP) oscillator. The superiority of the proposed learning technique is that there is no need for a partial derivative with respect to the parameter for learning. This fuzzy learning technique is suitable for real-time implementation, especially if the system model is unknown and a supervised training cannot be run. In this study, all parameters of the controller are optimized with PSO in order to prove that a fuzzy controller trained by PSO exhibits a good control performance.
NASA Astrophysics Data System (ADS)
Omenzetter, Piotr; de Lautour, Oliver R.
2010-04-01
Developed for studying long, periodic records of various measured quantities, time series analysis methods are inherently suited and offer interesting possibilities for Structural Health Monitoring (SHM) applications. However, their use in SHM can still be regarded as an emerging application and deserves more studies. In this research, Autoregressive (AR) models were used to fit experimental acceleration time histories from two experimental structural systems, a 3- storey bookshelf-type laboratory structure and the ASCE Phase II SHM Benchmark Structure, in healthy and several damaged states. The coefficients of the AR models were chosen as damage sensitive features. Preliminary visual inspection of the large, multidimensional sets of AR coefficients to check the presence of clusters corresponding to different damage severities was achieved using Sammon mapping - an efficient nonlinear data compression technique. Systematic classification of damage into states based on the analysis of the AR coefficients was achieved using two supervised classification techniques: Nearest Neighbor Classification (NNC) and Learning Vector Quantization (LVQ), and one unsupervised technique: Self-organizing Maps (SOM). This paper discusses the performance of AR coefficients as damage sensitive features and compares the efficiency of the three classification techniques using experimental data.
ERIC Educational Resources Information Center
de Kleijn, Renske A. M.; Mainhard, M. Tim; Meijer, Paulien C.; Pilot, Albert; Brekelmans, Mieke
2012-01-01
Master's thesis supervision is a complex task given the two-fold goal of the thesis (learning and assessment). An important aspect of supervision is the supervisor-student relationship. This quantitative study (N = 401) investigates how perceptions of the supervisor-student relationship are related to three dependent variables: final grade,…
Security system signal supervision
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chritton, M.R.; Matter, J.C.
1991-09-01
This purpose of this NUREG is to present technical information that should be useful to NRC licensees for understanding and applying line supervision techniques to security communication links. A review of security communication links is followed by detailed discussions of link physical protection and DC/AC static supervision and dynamic supervision techniques. Material is also presented on security for atmospheric transmission and video line supervision. A glossary of security communication line supervision terms is appended. 16 figs.
Webly-Supervised Fine-Grained Visual Categorization via Deep Domain Adaptation.
Xu, Zhe; Huang, Shaoli; Zhang, Ya; Tao, Dacheng
2018-05-01
Learning visual representations from web data has recently attracted attention for object recognition. Previous studies have mainly focused on overcoming label noise and data bias and have shown promising results by learning directly from web data. However, we argue that it might be better to transfer knowledge from existing human labeling resources to improve performance at nearly no additional cost. In this paper, we propose a new semi-supervised method for learning via web data. Our method has the unique design of exploiting strong supervision, i.e., in addition to standard image-level labels, our method also utilizes detailed annotations including object bounding boxes and part landmarks. By transferring as much knowledge as possible from existing strongly supervised datasets to weakly supervised web images, our method can benefit from sophisticated object recognition algorithms and overcome several typical problems found in webly-supervised learning. We consider the problem of fine-grained visual categorization, in which existing training resources are scarce, as our main research objective. Comprehensive experimentation and extensive analysis demonstrate encouraging performance of the proposed approach, which, at the same time, delivers a new pipeline for fine-grained visual categorization that is likely to be highly effective for real-world applications.
Being and becoming a psychotherapy supervisor: the crucial triad of learning difficulties.
Watkins, C Edward
2013-01-01
More than 40 years ago eminent psychiatrist Richard Chessick penned a classic, highly prescient psychotherapy supervision paper (that appeared in this journal) in which he identified for supervisors the crucial triad of learning difficulties that tend to confront beginning therapists in their training. These are (a) dealing with the anxiety attendant to the development of psychological mindedness; (b) developing a psychotherapist identity; and (c) developing conviction about the meaningfulness of psychodynamics and psychotherapy. In this paper, I would like to revisit Chessick's seminal contribution about the teaching and learning of psychotherapy and extrapolate his triad of learning difficulties to the process of teaching and learning supervision. The process of being and becoming a psychotherapist has been likened to a developmental journey, and similarly being and becoming a supervisor is increasingly recognized as a developmental journey that is best stimulated by means of didactic and practical experiences (i.e., supervision coursework, seminars, or workshops and the supervision of supervision). In what follows, I would like to explore how Chessick's crucial triad of learning difficulties can be meaningfully extrapolated to and used to inform the supervision training situation. In extrapolating Chessick's triad, beginning supervisors or supervisor trainees can be conceptualized as confronting three critical issues: (a) dealing with the anxiety and demoralization attendant to the development of supervisory mindedness; (b) developing a supervisory identity; and (c) developing conviction about the meaningfulness of psychotherapy supervision. This triadic conceptualization appears to capture nicely core concerns that extend across the arc of the supervisor development process and provides a useful and usable way of thinking about supervisor training and informing it. Each component of the triadic conceptualization is described, and some supervisor education intervention possibilities are considered.
[Learning and supervision in Danish clerkships--a qualitative study].
Wichmann-Hansen, Gitte; Mørcke, Anne Mette; Eika, Berit
2007-10-15
The medical profession and hospital practice have changed over the last decades without a concomitant change in Danish clerkships. Therefore, the aim of this study was to analyze learning and supervision in clerkships and to discuss how traditional clerkship learning matches a modern effective hospital environment. A qualitative field study based on 38 days of observations ( asymptotically equal to 135 hours) with 6 students in 8th Semester in 2 internal medical and 3 surgical wards at 2 teaching hospitals in Aarhus County during 2003. The 6 students were interviewed prior to and following clerkship. Data were coded using Ethnograph and analyzed qualitatively. The students typically participated in 6 learning activities: morning reports, ward rounds, out-patient clinics, on call, clerking, and operating theatres. A common feature for the first 3 activities was the students' observational role in contrast to their more active role in the latter 3 activities. Supervision was primarily indirect as the doctors worked and thereby served as tacit role models. When direct, the supervision was didactic and characterized by information transfer. A clerkship offers important learning opportunities for students. They are exposed to many patients and faced with various clinical problems. However, the benefit of students learning in authentic environments is not fully utilized, and the didactic supervision used by doctors hardly matches the learning conditions in a busy hospital. Consequently, we need to reassess the students' roles and doctors' supervisory methods.
Teacher and learner: Supervised and unsupervised learning in communities.
Shafto, Michael G; Seifert, Colleen M
2015-01-01
How far can teaching methods go to enhance learning? Optimal methods of teaching have been considered in research on supervised and unsupervised learning. Locally optimal methods are usually hybrids of teaching and self-directed approaches. The costs and benefits of specific methods have been shown to depend on the structure of the learning task, the learners, the teachers, and the environment.
Kalra, Ruchi; Modi, Jyoti Nath; Vyas, Rashmi
2015-01-01
Background: Lecture is a common traditional method for teaching, but it may not stimulate higher order thinking and students may also be hesitant to express and interact. The postgraduate (PG) students are less involved with undergraduate (UG) teaching. Team based small group active learning method can contribute to better learning experience. Aim: To-promote active learning skills among the UG students using small group teaching methods involving PG students as facilitators to impart hands-on supervised training in teaching and managerial skills. Methodology: After Institutional approval under faculty supervision 92 UGs and 8 PGs participated in 6 small group sessions utilizing the jigsaw technique. Feedback was collected from both. Observations: Undergraduate Feedback (Percentage of Students Agreed): Learning in small groups was a good experience as it helped in better understanding of the subject (72%), students explored multiple reading resources (79%), they were actively involved in self-learning (88%), students reported initial apprehension of performance (71%), identified their learning gaps (86%), team enhanced their learning process (71%), informal learning in place of lecture was a welcome change (86%), it improved their communication skills (82%), small group learning can be useful for future self-learning (75%). Postgraduate Feedback: Majority performed facilitation for first time, perceived their performance as good (75%), it was helpful in self-learning (100%), felt confident of managing students in small groups (100%), as facilitator they improved their teaching skills, found it more useful and better identified own learning gaps (87.5%). Conclusions: Learning in small groups adopting team based approach involving both UGs and PGs promoted active learning in both and enhanced the teaching skills of the PGs. PMID:26380201
Machine Learning Techniques in Clinical Vision Sciences.
Caixinha, Miguel; Nunes, Sandrina
2017-01-01
This review presents and discusses the contribution of machine learning techniques for diagnosis and disease monitoring in the context of clinical vision science. Many ocular diseases leading to blindness can be halted or delayed when detected and treated at its earliest stages. With the recent developments in diagnostic devices, imaging and genomics, new sources of data for early disease detection and patients' management are now available. Machine learning techniques emerged in the biomedical sciences as clinical decision-support techniques to improve sensitivity and specificity of disease detection and monitoring, increasing objectively the clinical decision-making process. This manuscript presents a review in multimodal ocular disease diagnosis and monitoring based on machine learning approaches. In the first section, the technical issues related to the different machine learning approaches will be present. Machine learning techniques are used to automatically recognize complex patterns in a given dataset. These techniques allows creating homogeneous groups (unsupervised learning), or creating a classifier predicting group membership of new cases (supervised learning), when a group label is available for each case. To ensure a good performance of the machine learning techniques in a given dataset, all possible sources of bias should be removed or minimized. For that, the representativeness of the input dataset for the true population should be confirmed, the noise should be removed, the missing data should be treated and the data dimensionally (i.e., the number of parameters/features and the number of cases in the dataset) should be adjusted. The application of machine learning techniques in ocular disease diagnosis and monitoring will be presented and discussed in the second section of this manuscript. To show the clinical benefits of machine learning in clinical vision sciences, several examples will be presented in glaucoma, age-related macular degeneration, and diabetic retinopathy, these ocular pathologies being the major causes of irreversible visual impairment.
NASA Astrophysics Data System (ADS)
masini, nicola; Lasaponara, Rosa
2013-04-01
The papers deals with the use of VHR satellite multitemporal data set to extract cultural landscape changes in the roman site of Grumentum Grumentum is an ancient town, 50 km south of Potenza, located near the roman road of Via Herculea which connected the Venusia, in the north est of Basilicata, with Heraclea in the Ionian coast. The first settlement date back to the 6th century BC. It was resettled by the Romans in the 3rd century BC. Its urban fabric which evidences a long history from the Republican age to late Antiquity (III BC-V AD) is composed of the typical urban pattern of cardi and decumani. Its excavated ruins include a large amphitheatre, a theatre, the thermae, the Forum and some temples. There are many techniques nowadays available to capture and record differences in two or more images. In this paper we focus and apply the two main approaches which can be distinguished into : (i) unsupervised and (ii) supervised change detection methods. Unsupervised change detection methods are generally based on the transformation of the two multispectral images in to a single band or multiband image which are further analyzed to identify changes Unsupervised change detection techniques are generally based on three basic steps (i) the preprocessing step, (ii) a pixel-by-pixel comparison is performed, (iii). Identification of changes according to the magnitude an direction (positive /negative). Unsupervised change detection are generally based on the transformation of the two multispectral images into a single band or multiband image which are further analyzed to identify changes. Than the separation between changed and unchanged classes is obtained from the magnitude of the resulting spectral change vectors by means of empirical or theoretical well founded approaches Supervised change detection methods are generally based on supervised classification methods, which require the availability of a suitable training set for the learning process of the classifiers. Unsupervised change detection techniques are generally based on three basic steps (i) the preprocessing step, (ii) supervised classification is performed on the single dates or on the map obtained as the difference of two dates, (iii). Identification of changes according to the magnitude an direction (positive /negative). Supervised change detection are generally based on supervised classification methods, which require the availability of a suitable training set for the learning process of the classifiers, therefore these algorithms require a preliminary knowledge necessary: (i) to generate representative parameters for each class of interest; and (ii) to carry out the training stage Advantages and disadvantages of the supervised and unsupervised approaches are discuss. Finally results from the the satellite multitemporal dataset was also integrated with aerial photos from historical archive in order to expand the time window of the investigation and capture landscape changes occurred from the Agrarian Reform, in the 50s, up today.
Supervised machine learning for analysing spectra of exoplanetary atmospheres
NASA Astrophysics Data System (ADS)
Márquez-Neila, Pablo; Fisher, Chloe; Sznitman, Raphael; Heng, Kevin
2018-06-01
The use of machine learning is becoming ubiquitous in astronomy1-3, but remains rare in the study of the atmospheres of exoplanets. Given the spectrum of an exoplanetary atmosphere, a multi-parameter space is swept through in real time to find the best-fit model4-6. Known as atmospheric retrieval, this technique originates in the Earth and planetary sciences7. Such methods are very time-consuming, and by necessity there is a compromise between physical and chemical realism and computational feasibility. Machine learning has previously been used to determine which molecules to include in the model, but the retrieval itself was still performed using standard methods8. Here, we report an adaptation of the `random forest' method of supervised machine learning9,10, trained on a precomputed grid of atmospheric models, which retrieves full posterior distributions of the abundances of molecules and the cloud opacity. The use of a precomputed grid allows a large part of the computational burden to be shifted offline. We demonstrate our technique on a transmission spectrum of the hot gas-giant exoplanet WASP-12b using a five-parameter model (temperature, a constant cloud opacity and the volume mixing ratios or relative abundances of molecules of water, ammonia and hydrogen cyanide)11. We obtain results consistent with the standard nested-sampling retrieval method. We also estimate the sensitivity of the measured spectrum to the model parameters, and we are able to quantify the information content of the spectrum. Our method can be straightforwardly applied using more sophisticated atmospheric models to interpret an ensemble of spectra without having to retrain the random forest.
NASA Technical Reports Server (NTRS)
Garay, Michael J.; Mazzoni, Dominic; Davies, Roger; Wagstaff, Kiri
2004-01-01
Support Vector Machines (SVMs) are a type of supervised learning algorith,, other examples of which are Artificial Neural Networks (ANNs), Decision Trees, and Naive Bayesian Classifiers. Supervised learning algorithms are used to classify objects labled by a 'supervisor' - typically a human 'expert.'.
Global Optimization Ensemble Model for Classification Methods
Anwar, Hina; Qamar, Usman; Muzaffar Qureshi, Abdul Wahab
2014-01-01
Supervised learning is the process of data mining for deducing rules from training datasets. A broad array of supervised learning algorithms exists, every one of them with its own advantages and drawbacks. There are some basic issues that affect the accuracy of classifier while solving a supervised learning problem, like bias-variance tradeoff, dimensionality of input space, and noise in the input data space. All these problems affect the accuracy of classifier and are the reason that there is no global optimal method for classification. There is not any generalized improvement method that can increase the accuracy of any classifier while addressing all the problems stated above. This paper proposes a global optimization ensemble model for classification methods (GMC) that can improve the overall accuracy for supervised learning problems. The experimental results on various public datasets showed that the proposed model improved the accuracy of the classification models from 1% to 30% depending upon the algorithm complexity. PMID:24883382
Semi-supervised Learning for Phenotyping Tasks.
Dligach, Dmitriy; Miller, Timothy; Savova, Guergana K
2015-01-01
Supervised learning is the dominant approach to automatic electronic health records-based phenotyping, but it is expensive due to the cost of manual chart review. Semi-supervised learning takes advantage of both scarce labeled and plentiful unlabeled data. In this work, we study a family of semi-supervised learning algorithms based on Expectation Maximization (EM) in the context of several phenotyping tasks. We first experiment with the basic EM algorithm. When the modeling assumptions are violated, basic EM leads to inaccurate parameter estimation. Augmented EM attenuates this shortcoming by introducing a weighting factor that downweights the unlabeled data. Cross-validation does not always lead to the best setting of the weighting factor and other heuristic methods may be preferred. We show that accurate phenotyping models can be trained with only a few hundred labeled (and a large number of unlabeled) examples, potentially providing substantial savings in the amount of the required manual chart review.
Process Recording in Supervision of Students Learning to Practice with Children
ERIC Educational Resources Information Center
Mullin, Walter J.; Canning, James J.
2007-01-01
This article addresses the use of process recordings in supervising social work students learning to practice with children. Although process recordings are a traditional method of teaching and learning social work practice, they have received little attention in the literature of social work practice and social work education. Process recordings…
Task-driven dictionary learning.
Mairal, Julien; Bach, Francis; Ponce, Jean
2012-04-01
Modeling data with linear combinations of a few elements from a learned dictionary has been the focus of much recent research in machine learning, neuroscience, and signal processing. For signals such as natural images that admit such sparse representations, it is now well established that these models are well suited to restoration tasks. In this context, learning the dictionary amounts to solving a large-scale matrix factorization problem, which can be done efficiently with classical optimization tools. The same approach has also been used for learning features from data for other purposes, e.g., image classification, but tuning the dictionary in a supervised way for these tasks has proven to be more difficult. In this paper, we present a general formulation for supervised dictionary learning adapted to a wide variety of tasks, and present an efficient algorithm for solving the corresponding optimization problem. Experiments on handwritten digit classification, digital art identification, nonlinear inverse image problems, and compressed sensing demonstrate that our approach is effective in large-scale settings, and is well suited to supervised and semi-supervised classification, as well as regression tasks for data that admit sparse representations.
A review of supervised machine learning applied to ageing research.
Fabris, Fabio; Magalhães, João Pedro de; Freitas, Alex A
2017-04-01
Broadly speaking, supervised machine learning is the computational task of learning correlations between variables in annotated data (the training set), and using this information to create a predictive model capable of inferring annotations for new data, whose annotations are not known. Ageing is a complex process that affects nearly all animal species. This process can be studied at several levels of abstraction, in different organisms and with different objectives in mind. Not surprisingly, the diversity of the supervised machine learning algorithms applied to answer biological questions reflects the complexities of the underlying ageing processes being studied. Many works using supervised machine learning to study the ageing process have been recently published, so it is timely to review these works, to discuss their main findings and weaknesses. In summary, the main findings of the reviewed papers are: the link between specific types of DNA repair and ageing; ageing-related proteins tend to be highly connected and seem to play a central role in molecular pathways; ageing/longevity is linked with autophagy and apoptosis, nutrient receptor genes, and copper and iron ion transport. Additionally, several biomarkers of ageing were found by machine learning. Despite some interesting machine learning results, we also identified a weakness of current works on this topic: only one of the reviewed papers has corroborated the computational results of machine learning algorithms through wet-lab experiments. In conclusion, supervised machine learning has contributed to advance our knowledge and has provided novel insights on ageing, yet future work should have a greater emphasis in validating the predictions.
Timoshenko, Janis; Lu, Deyu; Lin, Yuewei; ...
2017-09-29
Tracking the structure of heterogeneous catalysts under operando conditions remains a challenge due to the paucity of experimental techniques that can provide atomic-level information for catalytic metal species. Here we report on the use of X-ray absorption near edge structure (XANES) spectroscopy and supervised machine learning (SML) for refining the three-dimensional geometry of metal catalysts. SML is used to unravel the hidden relationship between the XANES features and catalyst geometry. To train our SML method, we rely on ab-initio XANES simulations. Our approach allows one to solve the structure of a metal catalyst from its experimental XANES, as demonstrated heremore » by reconstructing the average size, shape and morphology of well-defined platinum nanoparticles. This method is applicable to the determination of the nanoparticle structure in operando studies and can be generalized to other nanoscale systems. In conclusion, it also allows on-the-fly XANES analysis, and is a promising approach for high-throughput and time-dependent studies.« less
Comparative Analysis of River Flow Modelling by Using Supervised Learning Technique
NASA Astrophysics Data System (ADS)
Ismail, Shuhaida; Mohamad Pandiahi, Siraj; Shabri, Ani; Mustapha, Aida
2018-04-01
The goal of this research is to investigate the efficiency of three supervised learning algorithms for forecasting monthly river flow of the Indus River in Pakistan, spread over 550 square miles or 1800 square kilometres. The algorithms include the Least Square Support Vector Machine (LSSVM), Artificial Neural Network (ANN) and Wavelet Regression (WR). The forecasting models predict the monthly river flow obtained from the three models individually for river flow data and the accuracy of the all models were then compared against each other. The monthly river flow of the said river has been forecasted using these three models. The obtained results were compared and statistically analysed. Then, the results of this analytical comparison showed that LSSVM model is more precise in the monthly river flow forecasting. It was found that LSSVM has he higher r with the value of 0.934 compared to other models. This indicate that LSSVM is more accurate and efficient as compared to the ANN and WR model.
Using virtual data for training deep model for hand gesture recognition
NASA Astrophysics Data System (ADS)
Nikolaev, E. I.; Dvoryaninov, P. V.; Lensky, Y. Y.; Drozdovsky, N. S.
2018-05-01
Deep learning has shown real promise for the classification efficiency for hand gesture recognition problems. In this paper, the authors present experimental results for a deeply-trained model for hand gesture recognition through the use of hand images. The authors have trained two deep convolutional neural networks. The first architecture produces the hand position as a 2D-vector by input hand image. The second one predicts the hand gesture class for the input image. The first proposed architecture produces state of the art results with an accuracy rate of 89% and the second architecture with split input produces accuracy rate of 85.2%. In this paper, the authors also propose using virtual data for training a supervised deep model. Such technique is aimed to avoid using original labelled images in the training process. The interest of this method in data preparation is motivated by the need to overcome one of the main challenges of deep supervised learning: using a copious amount of labelled data during training.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Timoshenko, Janis; Lu, Deyu; Lin, Yuewei
Tracking the structure of heterogeneous catalysts under operando conditions remains a challenge due to the paucity of experimental techniques that can provide atomic-level information for catalytic metal species. Here we report on the use of X-ray absorption near edge structure (XANES) spectroscopy and supervised machine learning (SML) for refining the three-dimensional geometry of metal catalysts. SML is used to unravel the hidden relationship between the XANES features and catalyst geometry. To train our SML method, we rely on ab-initio XANES simulations. Our approach allows one to solve the structure of a metal catalyst from its experimental XANES, as demonstrated heremore » by reconstructing the average size, shape and morphology of well-defined platinum nanoparticles. This method is applicable to the determination of the nanoparticle structure in operando studies and can be generalized to other nanoscale systems. In conclusion, it also allows on-the-fly XANES analysis, and is a promising approach for high-throughput and time-dependent studies.« less
The influence of supervision on manual adherence and therapeutic processes.
Anderson, Timothy; Crowley, Mary Ellen J; Patterson, Candace L; Heckman, Bernadette D
2012-09-01
To identify the effectiveness of psychotherapy supervision on therapists' immediate (next session) and long-term (1 year) adherence to time-limited dynamic psychotherapy (TLDP). Sixteen therapists from the Vanderbilt II psychotherapy project were assigned new cases in pretraining, training, and booster/posttraining year-long cohorts. Technical adherence to the manual, as well as general therapeutic relational processes, were rated for clinical supervisory sessions in which the third therapy session was discussed. The therapy sessions immediately before and after the supervisory sessions were also rated for technical adherence and relational processes. Postsupervision adherence increased from the presupervision session during the training cohort. In supervision, therapists' discussion of techniques and strategies from the manual in supervision was significantly related to technical adherence in the session prior to (but not after) supervision. However, supervisors' discussion of specific techniques predicted therapists' total technical adherence in the therapy session after (but not before) supervision. In terms of the type of techniques, supervisors' influenced postsupervision therapy adherence on TLDP's unique approach to formulation, the cyclical maladaptive pattern, but did not influence technical adherence on the therapeutic relationship. In supervision, therapists tend to focus on how they adhered to techniques from the previous session, whereas supervisors' comments about specific techniques predicted how the therapist would adhere to techniques in the next therapy session. The findings provide support for the immediate effects of supervision in shaping therapist techniques as well as highlighting the challenges of altering common relational processes through technical training. © 2012 Wiley Periodicals, Inc.
Stable architectures for deep neural networks
NASA Astrophysics Data System (ADS)
Haber, Eldad; Ruthotto, Lars
2018-01-01
Deep neural networks have become invaluable tools for supervised machine learning, e.g. classification of text or images. While often offering superior results over traditional techniques and successfully expressing complicated patterns in data, deep architectures are known to be challenging to design and train such that they generalize well to new data. Critical issues with deep architectures are numerical instabilities in derivative-based learning algorithms commonly called exploding or vanishing gradients. In this paper, we propose new forward propagation techniques inspired by systems of ordinary differential equations (ODE) that overcome this challenge and lead to well-posed learning problems for arbitrarily deep networks. The backbone of our approach is our interpretation of deep learning as a parameter estimation problem of nonlinear dynamical systems. Given this formulation, we analyze stability and well-posedness of deep learning and use this new understanding to develop new network architectures. We relate the exploding and vanishing gradient phenomenon to the stability of the discrete ODE and present several strategies for stabilizing deep learning for very deep networks. While our new architectures restrict the solution space, several numerical experiments show their competitiveness with state-of-the-art networks.
Allan, Helen T; Magnusson, Carin; Evans, Karen; Ball, Elaine; Westwood, Sue; Curtis, Kathy; Horton, Khim; Johnson, Martin
2016-12-01
The invisibility of nursing work has been discussed in the international literature but not in relation to learning clinical skills. Evans and Guile's (Practice-based education: Perspectives and strategies, Rotterdam: Sense, 2012) theory of recontextualisation is used to explore the ways in which invisible or unplanned and unrecognised learning takes place as newly qualified nurses learn to delegate to and supervise the work of the healthcare assistant. In the British context, delegation and supervision are thought of as skills which are learnt "on the job." We suggest that learning "on-the-job" is the invisible construction of knowledge in clinical practice and that delegation is a particularly telling area of nursing practice which illustrates invisible learning. Using an ethnographic case study approach in three hospital sites in England from 2011 to 2014, we undertook participant observation, interviews with newly qualified nurses, ward managers and healthcare assistants. We discuss the invisible ways newly qualified nurses learn in the practice environment and present the invisible steps to learning which encompass the embodied, affective and social, as much as the cognitive components to learning. We argue that there is a need for greater understanding of the "invisible learning" which occurs as newly qualified nurses learn to delegate and supervise. © 2016 John Wiley & Sons Ltd.
Machine Learning Toolkit for Extreme Scale
DOE Office of Scientific and Technical Information (OSTI.GOV)
2014-03-31
Support Vector Machines (SVM) is a popular machine learning technique, which has been applied to a wide range of domains such as science, finance, and social networks for supervised learning. MaTEx undertakes the challenge of designing a scalable parallel SVM training algorithm for large scale systems, which includes commodity multi-core machines, tightly connected supercomputers and cloud computing systems. Several techniques are proposed for improved speed and memory space usage including adaptive and aggressive elimination of samples for faster convergence , and sparse format representation of data samples. Several heuristics for earliest possible to lazy elimination of non-contributing samples are consideredmore » in MaTEx. In many cases, where an early sample elimination might result in a false positive, low overhead mechanisms for reconstruction of key data structures are proposed. The proposed algorithm and heuristics are implemented and evaluated on various publicly available datasets« less
2017-01-01
Web of Things (WoT) platforms are growing fast so as the needs for composing WoT apps more easily and efficiently. We have recently commenced the campaign to develop an interface where users can issue requests for WoT apps entirely in natural language. This requires an effort to build a system that can learn to identify relevant WoT functions that fulfill user’s requests. In our preceding work, we trained a supervised learning system with thousands of publicly-available IFTTT app recipes based on conditional random fields (CRF). However, the sub-par accuracy and excessive training time motivated us to devise a better approach. In this paper, we present a novel solution that creates a separate learning engine for each trigger service. With this approach, parallel and incremental learning becomes possible. For inference, our system first identifies the most relevant trigger service for a given user request by using an information retrieval technique. Then, the learning engine associated with the trigger service predicts the most likely pair of trigger and action functions. We expect that such two-phase inference method given parallel learning engines would improve the accuracy of identifying related WoT functions. We verify our new solution through the empirical evaluation with training and test sets sampled from a pool of refined IFTTT app recipes. We also meticulously analyze the characteristics of the recipes to find future research directions. PMID:29149217
Yoon, Young
2017-01-01
Web of Things (WoT) platforms are growing fast so as the needs for composing WoT apps more easily and efficiently. We have recently commenced the campaign to develop an interface where users can issue requests for WoT apps entirely in natural language. This requires an effort to build a system that can learn to identify relevant WoT functions that fulfill user's requests. In our preceding work, we trained a supervised learning system with thousands of publicly-available IFTTT app recipes based on conditional random fields (CRF). However, the sub-par accuracy and excessive training time motivated us to devise a better approach. In this paper, we present a novel solution that creates a separate learning engine for each trigger service. With this approach, parallel and incremental learning becomes possible. For inference, our system first identifies the most relevant trigger service for a given user request by using an information retrieval technique. Then, the learning engine associated with the trigger service predicts the most likely pair of trigger and action functions. We expect that such two-phase inference method given parallel learning engines would improve the accuracy of identifying related WoT functions. We verify our new solution through the empirical evaluation with training and test sets sampled from a pool of refined IFTTT app recipes. We also meticulously analyze the characteristics of the recipes to find future research directions.
Effects of Supervision in the Training of Nonprofessional Crisis-Intervention Counselors
ERIC Educational Resources Information Center
Doyle, William W., Jr.; And Others
1977-01-01
This study evaluated three major models currently used by crisis-intervention centers to train and supervise nonprofessional counselors. Training groups included preservice training only (PSO), preservice training and delayed supervision (PSD), and preservice training and immediate supervision (PSI). Findings indicate most learning by…
Incremental Support Vector Machine Framework for Visual Sensor Networks
NASA Astrophysics Data System (ADS)
Awad, Mariette; Jiang, Xianhua; Motai, Yuichi
2006-12-01
Motivated by the emerging requirements of surveillance networks, we present in this paper an incremental multiclassification support vector machine (SVM) technique as a new framework for action classification based on real-time multivideo collected by homogeneous sites. The technique is based on an adaptation of least square SVM (LS-SVM) formulation but extends beyond the static image-based learning of current SVM methodologies. In applying the technique, an initial supervised offline learning phase is followed by a visual behavior data acquisition and an online learning phase during which the cluster head performs an ensemble of model aggregations based on the sensor nodes inputs. The cluster head then selectively switches on designated sensor nodes for future incremental learning. Combining sensor data offers an improvement over single camera sensing especially when the latter has an occluded view of the target object. The optimization involved alleviates the burdens of power consumption and communication bandwidth requirements. The resulting misclassification error rate, the iterative error reduction rate of the proposed incremental learning, and the decision fusion technique prove its validity when applied to visual sensor networks. Furthermore, the enabled online learning allows an adaptive domain knowledge insertion and offers the advantage of reducing both the model training time and the information storage requirements of the overall system which makes it even more attractive for distributed sensor networks communication.
ERIC Educational Resources Information Center
Amershi, Saleema; Conati, Cristina
2009-01-01
In this paper, we present a data-based user modeling framework that uses both unsupervised and supervised classification to build student models for exploratory learning environments. We apply the framework to build student models for two different learning environments and using two different data sources (logged interface and eye-tracking data).…
Weakly supervised classification in high energy physics
Dery, Lucio Mwinmaarong; Nachman, Benjamin; Rubbo, Francesco; ...
2017-05-01
As machine learning algorithms become increasingly sophisticated to exploit subtle features of the data, they often become more dependent on simulations. Here, this paper presents a new approach called weakly supervised classification in which class proportions are the only input into the machine learning algorithm. Using one of the most challenging binary classification tasks in high energy physics $-$ quark versus gluon tagging $-$ we show that weakly supervised classification can match the performance of fully supervised algorithms. Furthermore, by design, the new algorithm is insensitive to any mis-modeling of discriminating features in the data by the simulation. Weakly supervisedmore » classification is a general procedure that can be applied to a wide variety of learning problems to boost performance and robustness when detailed simulations are not reliable or not available.« less
Weakly supervised classification in high energy physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dery, Lucio Mwinmaarong; Nachman, Benjamin; Rubbo, Francesco
As machine learning algorithms become increasingly sophisticated to exploit subtle features of the data, they often become more dependent on simulations. Here, this paper presents a new approach called weakly supervised classification in which class proportions are the only input into the machine learning algorithm. Using one of the most challenging binary classification tasks in high energy physics $-$ quark versus gluon tagging $-$ we show that weakly supervised classification can match the performance of fully supervised algorithms. Furthermore, by design, the new algorithm is insensitive to any mis-modeling of discriminating features in the data by the simulation. Weakly supervisedmore » classification is a general procedure that can be applied to a wide variety of learning problems to boost performance and robustness when detailed simulations are not reliable or not available.« less
Value and limitations of auscultation in the management of congenital heart disease.
McNamara, D G
1990-02-01
With advances in technology, especially that of ultrasonography, the art and science of auscultation could become relegated to that of an obsolete technique. Physicians in a cardiovascular training program involved in learning modern instrumentation diagnostic techniques often become expert in these areas before they have mastered the use of the stethoscope. Although the technology of ultrasonic examination, cardiac catheterization, and angiocardiography must be learned, the value of auscultation of the heart cannot be ignored. Many highly competent physicians who are responsible for diagnosis and treatment of the pediatric patient, including some pediatric cardiologists, may not be aware that they have not yet become experts at auscultation. The skill of auscultation of the heart must be learned by supervised experience with patients in whom a wide variety of normal and abnormal heart sounds and murmurs can be heard. Once learned, the skill can be maintained only by frequent practice in hearing and evaluating both subtle and obvious sounds emanating from the heart and from the pulmonary and systemic blood vessels.
Semi-supervised tracking of extreme weather events in global spatio-temporal climate datasets
NASA Astrophysics Data System (ADS)
Kim, S. K.; Prabhat, M.; Williams, D. N.
2017-12-01
Deep neural networks have been successfully applied to solve problem to detect extreme weather events in large scale climate datasets and attend superior performance that overshadows all previous hand-crafted methods. Recent work has shown that multichannel spatiotemporal encoder-decoder CNN architecture is able to localize events in semi-supervised bounding box. Motivated by this work, we propose new learning metric based on Variational Auto-Encoders (VAE) and Long-Short-Term-Memory (LSTM) to track extreme weather events in spatio-temporal dataset. We consider spatio-temporal object tracking problems as learning probabilistic distribution of continuous latent features of auto-encoder using stochastic variational inference. For this, we assume that our datasets are i.i.d and latent features is able to be modeled by Gaussian distribution. In proposed metric, we first train VAE to generate approximate posterior given multichannel climate input with an extreme climate event at fixed time. Then, we predict bounding box, location and class of extreme climate events using convolutional layers given input concatenating three features including embedding, sampled mean and standard deviation. Lastly, we train LSTM with concatenated input to learn timely information of dataset by recurrently feeding output back to next time-step's input of VAE. Our contribution is two-fold. First, we show the first semi-supervised end-to-end architecture based on VAE to track extreme weather events which can apply to massive scaled unlabeled climate datasets. Second, the information of timely movement of events is considered for bounding box prediction using LSTM which can improve accuracy of localization. To our knowledge, this technique has not been explored neither in climate community or in Machine Learning community.
Shahriyari, Leili
2017-11-03
One of the main challenges in machine learning (ML) is choosing an appropriate normalization method. Here, we examine the effect of various normalization methods on analyzing FPKM upper quartile (FPKM-UQ) RNA sequencing data sets. We collect the HTSeq-FPKM-UQ files of patients with colon adenocarcinoma from TCGA-COAD project. We compare three most common normalization methods: scaling, standardizing using z-score and vector normalization by visualizing the normalized data set and evaluating the performance of 12 supervised learning algorithms on the normalized data set. Additionally, for each of these normalization methods, we use two different normalization strategies: normalizing samples (files) or normalizing features (genes). Regardless of normalization methods, a support vector machine (SVM) model with the radial basis function kernel had the maximum accuracy (78%) in predicting the vital status of the patients. However, the fitting time of SVM depended on the normalization methods, and it reached its minimum fitting time when files were normalized to the unit length. Furthermore, among all 12 learning algorithms and 6 different normalization techniques, the Bernoulli naive Bayes model after standardizing files had the best performance in terms of maximizing the accuracy as well as minimizing the fitting time. We also investigated the effect of dimensionality reduction methods on the performance of the supervised ML algorithms. Reducing the dimension of the data set did not increase the maximum accuracy of 78%. However, it leaded to discovery of the 7SK RNA gene expression as a predictor of survival in patients with colon adenocarcinoma with accuracy of 78%. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Assessment of various supervised learning algorithms using different performance metrics
NASA Astrophysics Data System (ADS)
Susheel Kumar, S. M.; Laxkar, Deepak; Adhikari, Sourav; Vijayarajan, V.
2017-11-01
Our work brings out comparison based on the performance of supervised machine learning algorithms on a binary classification task. The supervised machine learning algorithms which are taken into consideration in the following work are namely Support Vector Machine(SVM), Decision Tree(DT), K Nearest Neighbour (KNN), Naïve Bayes(NB) and Random Forest(RF). This paper mostly focuses on comparing the performance of above mentioned algorithms on one binary classification task by analysing the Metrics such as Accuracy, F-Measure, G-Measure, Precision, Misclassification Rate, False Positive Rate, True Positive Rate, Specificity, Prevalence.
Self-Supervised Chinese Ontology Learning from Online Encyclopedias
Shao, Zhiqing; Ruan, Tong
2014-01-01
Constructing ontology manually is a time-consuming, error-prone, and tedious task. We present SSCO, a self-supervised learning based chinese ontology, which contains about 255 thousand concepts, 5 million entities, and 40 million facts. We explore the three largest online Chinese encyclopedias for ontology learning and describe how to transfer the structured knowledge in encyclopedias, including article titles, category labels, redirection pages, taxonomy systems, and InfoBox modules, into ontological form. In order to avoid the errors in encyclopedias and enrich the learnt ontology, we also apply some machine learning based methods. First, we proof that the self-supervised machine learning method is practicable in Chinese relation extraction (at least for synonymy and hyponymy) statistically and experimentally and train some self-supervised models (SVMs and CRFs) for synonymy extraction, concept-subconcept relation extraction, and concept-instance relation extraction; the advantages of our methods are that all training examples are automatically generated from the structural information of encyclopedias and a few general heuristic rules. Finally, we evaluate SSCO in two aspects, scale and precision; manual evaluation results show that the ontology has excellent precision, and high coverage is concluded by comparing SSCO with other famous ontologies and knowledge bases; the experiment results also indicate that the self-supervised models obviously enrich SSCO. PMID:24715819
Self-supervised Chinese ontology learning from online encyclopedias.
Hu, Fanghuai; Shao, Zhiqing; Ruan, Tong
2014-01-01
Constructing ontology manually is a time-consuming, error-prone, and tedious task. We present SSCO, a self-supervised learning based chinese ontology, which contains about 255 thousand concepts, 5 million entities, and 40 million facts. We explore the three largest online Chinese encyclopedias for ontology learning and describe how to transfer the structured knowledge in encyclopedias, including article titles, category labels, redirection pages, taxonomy systems, and InfoBox modules, into ontological form. In order to avoid the errors in encyclopedias and enrich the learnt ontology, we also apply some machine learning based methods. First, we proof that the self-supervised machine learning method is practicable in Chinese relation extraction (at least for synonymy and hyponymy) statistically and experimentally and train some self-supervised models (SVMs and CRFs) for synonymy extraction, concept-subconcept relation extraction, and concept-instance relation extraction; the advantages of our methods are that all training examples are automatically generated from the structural information of encyclopedias and a few general heuristic rules. Finally, we evaluate SSCO in two aspects, scale and precision; manual evaluation results show that the ontology has excellent precision, and high coverage is concluded by comparing SSCO with other famous ontologies and knowledge bases; the experiment results also indicate that the self-supervised models obviously enrich SSCO.
Guided Text Search Using Adaptive Visual Analytics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steed, Chad A; Symons, Christopher T; Senter, James K
This research demonstrates the promise of augmenting interactive visualizations with semi- supervised machine learning techniques to improve the discovery of significant associations and insights in the search and analysis of textual information. More specifically, we have developed a system called Gryffin that hosts a unique collection of techniques that facilitate individualized investigative search pertaining to an ever-changing set of analytical questions over an indexed collection of open-source documents related to critical national infrastructure. The Gryffin client hosts dynamic displays of the search results via focus+context record listings, temporal timelines, term-frequency views, and multiple coordinate views. Furthermore, as the analyst interactsmore » with the display, the interactions are recorded and used to label the search records. These labeled records are then used to drive semi-supervised machine learning algorithms that re-rank the unlabeled search records such that potentially relevant records are moved to the top of the record listing. Gryffin is described in the context of the daily tasks encountered at the US Department of Homeland Security s Fusion Center, with whom we are collaborating in its development. The resulting system is capable of addressing the analysts information overload that can be directly attributed to the deluge of information that must be addressed in the search and investigative analysis of textual information.« less
Dorsey, Shannon; Kerns, Suzanne E U; Lucid, Leah; Pullmann, Michael D; Harrison, Julie P; Berliner, Lucy; Thompson, Kelly; Deblinger, Esther
2018-01-24
Workplace-based clinical supervision as an implementation strategy to support evidence-based treatment (EBT) in public mental health has received limited research attention. A commonly provided infrastructure support, it may offer a relatively cost-neutral implementation strategy for organizations. However, research has not objectively examined workplace-based supervision of EBT and specifically how it might differ from EBT supervision provided in efficacy and effectiveness trials. Data come from a descriptive study of supervision in the context of a state-funded EBT implementation effort. Verbal interactions from audio recordings of 438 supervision sessions between 28 supervisors and 70 clinicians from 17 public mental health organizations (in 23 offices) were objectively coded for presence and intensity coverage of 29 supervision strategies (16 content and 13 technique items), duration, and temporal focus. Random effects mixed models estimated proportion of variance in content and techniques attributable to the supervisor and clinician levels. Interrater reliability among coders was excellent. EBT cases averaged 12.4 min of supervision per session. Intensity of coverage for EBT content varied, with some discussed frequently at medium or high intensity (exposure) and others infrequently discussed or discussed only at low intensity (behavior management; assigning/reviewing client homework). Other than fidelity assessment, supervision techniques common in treatment trials (e.g., reviewing actual practice, behavioral rehearsal) were used rarely or primarily at low intensity. In general, EBT content clustered more at the clinician level; different techniques clustered at either the clinician or supervisor level. Workplace-based clinical supervision may be a feasible implementation strategy for supporting EBT implementation, yet it differs from supervision in treatment trials. Time allotted per case is limited, compressing time for EBT coverage. Techniques that involve observation of clinician skills are rarely used. Workplace-based supervision content appears to be tailored to individual clinicians and driven to some degree by the individual supervisor. Our findings point to areas for intervention to enhance the potential of workplace-based supervision for implementation effectiveness. NCT01800266 , Clinical Trials, Retrospectively Registered (for this descriptive study; registration prior to any intervention [part of phase II RCT, this manuscript is only phase I descriptive results]).
Contemporary machine learning: techniques for practitioners in the physical sciences
NASA Astrophysics Data System (ADS)
Spears, Brian
2017-10-01
Machine learning is the science of using computers to find relationships in data without explicitly knowing or programming those relationships in advance. Often without realizing it, we employ machine learning every day as we use our phones or drive our cars. Over the last few years, machine learning has found increasingly broad application in the physical sciences. This most often involves building a model relationship between a dependent, measurable output and an associated set of controllable, but complicated, independent inputs. The methods are applicable both to experimental observations and to databases of simulated output from large, detailed numerical simulations. In this tutorial, we will present an overview of current tools and techniques in machine learning - a jumping-off point for researchers interested in using machine learning to advance their work. We will discuss supervised learning techniques for modeling complicated functions, beginning with familiar regression schemes, then advancing to more sophisticated decision trees, modern neural networks, and deep learning methods. Next, we will cover unsupervised learning and techniques for reducing the dimensionality of input spaces and for clustering data. We'll show example applications from both magnetic and inertial confinement fusion. Along the way, we will describe methods for practitioners to help ensure that their models generalize from their training data to as-yet-unseen test data. We will finally point out some limitations to modern machine learning and speculate on some ways that practitioners from the physical sciences may be particularly suited to help. This work was performed by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Collective Academic Supervision: A Model for Participation and Learning in Higher Education
ERIC Educational Resources Information Center
Nordentoft, Helle Merete; Thomsen, Rie; Wichmann-Hansen, Gitte
2013-01-01
Supervision of graduate students is a core activity in higher education. Previous research on graduate supervision focuses on individual and relational aspects of the supervisory relationship rather than collective, pedagogical and methodological aspects of the supervision process. In presenting a collective model we have developed for academic…
Onder, Devrim; Sarioglu, Sulen; Karacali, Bilge
2013-04-01
Quasi-supervised learning is a statistical learning algorithm that contrasts two datasets by computing estimate for the posterior probability of each sample in either dataset. This method has not been applied to histopathological images before. The purpose of this study is to evaluate the performance of the method to identify colorectal tissues with or without adenocarcinoma. Light microscopic digital images from histopathological sections were obtained from 30 colorectal radical surgery materials including adenocarcinoma and non-neoplastic regions. The texture features were extracted by using local histograms and co-occurrence matrices. The quasi-supervised learning algorithm operates on two datasets, one containing samples of normal tissues labelled only indirectly, and the other containing an unlabeled collection of samples of both normal and cancer tissues. As such, the algorithm eliminates the need for manually labelled samples of normal and cancer tissues for conventional supervised learning and significantly reduces the expert intervention. Several texture feature vector datasets corresponding to different extraction parameters were tested within the proposed framework. The Independent Component Analysis dimensionality reduction approach was also identified as the one improving the labelling performance evaluated in this series. In this series, the proposed method was applied to the dataset of 22,080 vectors with reduced dimensionality 119 from 132. Regions containing cancer tissue could be identified accurately having false and true positive rates up to 19% and 88% respectively without using manually labelled ground-truth datasets in a quasi-supervised strategy. The resulting labelling performances were compared to that of a conventional powerful supervised classifier using manually labelled ground-truth data. The supervised classifier results were calculated as 3.5% and 95% for the same case. The results in this series in comparison with the benchmark classifier, suggest that quasi-supervised image texture labelling may be a useful method in the analysis and classification of pathological slides but further study is required to improve the results. Copyright © 2013 Elsevier Ltd. All rights reserved.
An Efficient Semi-supervised Learning Approach to Predict SH2 Domain Mediated Interactions.
Kundu, Kousik; Backofen, Rolf
2017-01-01
Src homology 2 (SH2) domain is an important subclass of modular protein domains that plays an indispensable role in several biological processes in eukaryotes. SH2 domains specifically bind to the phosphotyrosine residue of their binding peptides to facilitate various molecular functions. For determining the subtle binding specificities of SH2 domains, it is very important to understand the intriguing mechanisms by which these domains recognize their target peptides in a complex cellular environment. There are several attempts have been made to predict SH2-peptide interactions using high-throughput data. However, these high-throughput data are often affected by a low signal to noise ratio. Furthermore, the prediction methods have several additional shortcomings, such as linearity problem, high computational complexity, etc. Thus, computational identification of SH2-peptide interactions using high-throughput data remains challenging. Here, we propose a machine learning approach based on an efficient semi-supervised learning technique for the prediction of 51 SH2 domain mediated interactions in the human proteome. In our study, we have successfully employed several strategies to tackle the major problems in computational identification of SH2-peptide interactions.
Malmberg-Heimonen, Ira; Natland, Sidsel; Tøge, Anne Grete; Hansen, Helle Cathrine
2016-01-01
Using a cluster-randomised design, this study analyses the effects of a government-administered skill training programme for social workers in Norway. The training programme aims to improve social workers' professional competences by enhancing and systematising follow-up work directed towards longer-term unemployed clients in the following areas: encountering the user, system-oriented efforts and administrative work. The main tools and techniques of the programme are based on motivational interviewing and appreciative inquiry. The data comprise responses to baseline and eighteen-month follow-up questionnaires administered to all social workers (n = 99) in eighteen participating Labour and Welfare offices randomised into experimental and control groups. The findings indicate that the skill training programme positively affected the social workers' evaluations of their professional competences and quality of work supervision received. The acquisition and mastering of combinations of specific tools and techniques, a comprehensive supervision structure and the opportunity to adapt the learned skills to local conditions were important in explaining the results. PMID:27559232
Genetic Classification of Populations Using Supervised Learning
Bridges, Michael; Heron, Elizabeth A.; O'Dushlaine, Colm; Segurado, Ricardo; Morris, Derek; Corvin, Aiden; Gill, Michael; Pinto, Carlos
2011-01-01
There are many instances in genetics in which we wish to determine whether two candidate populations are distinguishable on the basis of their genetic structure. Examples include populations which are geographically separated, case–control studies and quality control (when participants in a study have been genotyped at different laboratories). This latter application is of particular importance in the era of large scale genome wide association studies, when collections of individuals genotyped at different locations are being merged to provide increased power. The traditional method for detecting structure within a population is some form of exploratory technique such as principal components analysis. Such methods, which do not utilise our prior knowledge of the membership of the candidate populations. are termed unsupervised. Supervised methods, on the other hand are able to utilise this prior knowledge when it is available. In this paper we demonstrate that in such cases modern supervised approaches are a more appropriate tool for detecting genetic differences between populations. We apply two such methods, (neural networks and support vector machines) to the classification of three populations (two from Scotland and one from Bulgaria). The sensitivity exhibited by both these methods is considerably higher than that attained by principal components analysis and in fact comfortably exceeds a recently conjectured theoretical limit on the sensitivity of unsupervised methods. In particular, our methods can distinguish between the two Scottish populations, where principal components analysis cannot. We suggest, on the basis of our results that a supervised learning approach should be the method of choice when classifying individuals into pre-defined populations, particularly in quality control for large scale genome wide association studies. PMID:21589856
Dong, Yadong; Sun, Yongqi; Qin, Chao
2018-01-01
The existing protein complex detection methods can be broadly divided into two categories: unsupervised and supervised learning methods. Most of the unsupervised learning methods assume that protein complexes are in dense regions of protein-protein interaction (PPI) networks even though many true complexes are not dense subgraphs. Supervised learning methods utilize the informative properties of known complexes; they often extract features from existing complexes and then use the features to train a classification model. The trained model is used to guide the search process for new complexes. However, insufficient extracted features, noise in the PPI data and the incompleteness of complex data make the classification model imprecise. Consequently, the classification model is not sufficient for guiding the detection of complexes. Therefore, we propose a new robust score function that combines the classification model with local structural information. Based on the score function, we provide a search method that works both forwards and backwards. The results from experiments on six benchmark PPI datasets and three protein complex datasets show that our approach can achieve better performance compared with the state-of-the-art supervised, semi-supervised and unsupervised methods for protein complex detection, occasionally significantly outperforming such methods.
Semi-supervised anomaly detection - towards model-independent searches of new physics
NASA Astrophysics Data System (ADS)
Kuusela, Mikael; Vatanen, Tommi; Malmi, Eric; Raiko, Tapani; Aaltonen, Timo; Nagai, Yoshikazu
2012-06-01
Most classification algorithms used in high energy physics fall under the category of supervised machine learning. Such methods require a training set containing both signal and background events and are prone to classification errors should this training data be systematically inaccurate for example due to the assumed MC model. To complement such model-dependent searches, we propose an algorithm based on semi-supervised anomaly detection techniques, which does not require a MC training sample for the signal data. We first model the background using a multivariate Gaussian mixture model. We then search for deviations from this model by fitting to the observations a mixture of the background model and a number of additional Gaussians. This allows us to perform pattern recognition of any anomalous excess over the background. We show by a comparison to neural network classifiers that such an approach is a lot more robust against misspecification of the signal MC than supervised classification. In cases where there is an unexpected signal, a neural network might fail to correctly identify it, while anomaly detection does not suffer from such a limitation. On the other hand, when there are no systematic errors in the training data, both methods perform comparably.
ERIC Educational Resources Information Center
Gómez Puente, S. M.; van Eijck, M.; Jochems, W.
2013-01-01
Background: In research on design-based learning (DBL), inadequate attention is paid to the role the teacher plays in supervising students in gathering and applying knowledge to design artifacts, systems, and innovative solutions in higher education. Purpose: In this study, we examine whether teacher actions we previously identified in the DBL…
ERIC Educational Resources Information Center
Carr, Linda
This learning unit on using graphs is one in the Choice Series, a self-learning development program for supervisors. Purpose stated for the approximately eight-hour-long unit is to enable the supervisor to look at the usefulness of graphs in displaying figures, use graphs to compare sets of figures, identify trends and seasonal variations in…
Lu, Shen; Xia, Yong; Cai, Tom Weidong; Feng, David Dagan
2015-01-01
Dementia, Alzheimer's disease (AD) in particular is a global problem and big threat to the aging population. An image based computer-aided dementia diagnosis method is needed to providing doctors help during medical image examination. Many machine learning based dementia classification methods using medical imaging have been proposed and most of them achieve accurate results. However, most of these methods make use of supervised learning requiring fully labeled image dataset, which usually is not practical in real clinical environment. Using large amount of unlabeled images can improve the dementia classification performance. In this study we propose a new semi-supervised dementia classification method based on random manifold learning with affinity regularization. Three groups of spatial features are extracted from positron emission tomography (PET) images to construct an unsupervised random forest which is then used to regularize the manifold learning objective function. The proposed method, stat-of-the-art Laplacian support vector machine (LapSVM) and supervised SVM are applied to classify AD and normal controls (NC). The experiment results show that learning with unlabeled images indeed improves the classification performance. And our method outperforms LapSVM on the same dataset.
Jagannatha, Abhyuday N; Fodeh, Samah J; Yu, Hong
2017-01-01
Background Medical terms are a major obstacle for patients to comprehend their electronic health record (EHR) notes. Clinical natural language processing (NLP) systems that link EHR terms to lay terms or definitions allow patients to easily access helpful information when reading through their EHR notes, and have shown to improve patient EHR comprehension. However, high-quality lay language resources for EHR terms are very limited in the public domain. Because expanding and curating such a resource is a costly process, it is beneficial and even necessary to identify terms important for patient EHR comprehension first. Objective We aimed to develop an NLP system, called adapted distant supervision (ADS), to rank candidate terms mined from EHR corpora. We will give EHR terms ranked as high by ADS a higher priority for lay language annotation—that is, creating lay definitions for these terms. Methods Adapted distant supervision uses distant supervision from consumer health vocabulary and transfer learning to adapt itself to solve the problem of ranking EHR terms in the target domain. We investigated 2 state-of-the-art transfer learning algorithms (ie, feature space augmentation and supervised distant supervision) and designed 5 types of learning features, including distributed word representations learned from large EHR data for ADS. For evaluating ADS, we asked domain experts to annotate 6038 candidate terms as important or nonimportant for EHR comprehension. We then randomly divided these data into the target-domain training data (1000 examples) and the evaluation data (5038 examples). We compared ADS with 2 strong baselines, including standard supervised learning, on the evaluation data. Results The ADS system using feature space augmentation achieved the best average precision, 0.850, on the evaluation set when using 1000 target-domain training examples. The ADS system using supervised distant supervision achieved the best average precision, 0.819, on the evaluation set when using only 100 target-domain training examples. The 2 ADS systems both performed significantly better than the baseline systems (P<.001 for all measures and all conditions). Using a rich set of learning features contributed to ADS’s performance substantially. Conclusions ADS can effectively rank terms mined from EHRs. Transfer learning improved ADS’s performance even with a small number of target-domain training examples. EHR terms prioritized by ADS were used to expand a lay language resource that supports patient EHR comprehension. The top 10,000 EHR terms ranked by ADS are available upon request. PMID:29089288
Extracting microRNA-gene relations from biomedical literature using distant supervision
Clarke, Luka A.; Couto, Francisco M.
2017-01-01
Many biomedical relation extraction approaches are based on supervised machine learning, requiring an annotated corpus. Distant supervision aims at training a classifier by combining a knowledge base with a corpus, reducing the amount of manual effort necessary. This is particularly useful for biomedicine because many databases and ontologies have been made available for many biological processes, while the availability of annotated corpora is still limited. We studied the extraction of microRNA-gene relations from text. MicroRNA regulation is an important biological process due to its close association with human diseases. The proposed method, IBRel, is based on distantly supervised multi-instance learning. We evaluated IBRel on three datasets, and the results were compared with a co-occurrence approach as well as a supervised machine learning algorithm. While supervised learning outperformed on two of those datasets, IBRel obtained an F-score 28.3 percentage points higher on the dataset for which there was no training set developed specifically. To demonstrate the applicability of IBRel, we used it to extract 27 miRNA-gene relations from recently published papers about cystic fibrosis. Our results demonstrate that our method can be successfully used to extract relations from literature about a biological process without an annotated corpus. The source code and data used in this study are available at https://github.com/AndreLamurias/IBRel. PMID:28263989
Extracting microRNA-gene relations from biomedical literature using distant supervision.
Lamurias, Andre; Clarke, Luka A; Couto, Francisco M
2017-01-01
Many biomedical relation extraction approaches are based on supervised machine learning, requiring an annotated corpus. Distant supervision aims at training a classifier by combining a knowledge base with a corpus, reducing the amount of manual effort necessary. This is particularly useful for biomedicine because many databases and ontologies have been made available for many biological processes, while the availability of annotated corpora is still limited. We studied the extraction of microRNA-gene relations from text. MicroRNA regulation is an important biological process due to its close association with human diseases. The proposed method, IBRel, is based on distantly supervised multi-instance learning. We evaluated IBRel on three datasets, and the results were compared with a co-occurrence approach as well as a supervised machine learning algorithm. While supervised learning outperformed on two of those datasets, IBRel obtained an F-score 28.3 percentage points higher on the dataset for which there was no training set developed specifically. To demonstrate the applicability of IBRel, we used it to extract 27 miRNA-gene relations from recently published papers about cystic fibrosis. Our results demonstrate that our method can be successfully used to extract relations from literature about a biological process without an annotated corpus. The source code and data used in this study are available at https://github.com/AndreLamurias/IBRel.
A supervised learning rule for classification of spatiotemporal spike patterns.
Lilin Guo; Zhenzhong Wang; Adjouadi, Malek
2016-08-01
This study introduces a novel supervised algorithm for spiking neurons that take into consideration synapse delays and axonal delays associated with weights. It can be utilized for both classification and association and uses several biologically influenced properties, such as axonal and synaptic delays. This algorithm also takes into consideration spike-timing-dependent plasticity as in Remote Supervised Method (ReSuMe). This paper focuses on the classification aspect alone. Spiked neurons trained according to this proposed learning rule are capable of classifying different categories by the associated sequences of precisely timed spikes. Simulation results have shown that the proposed learning method greatly improves classification accuracy when compared to the Spike Pattern Association Neuron (SPAN) and the Tempotron learning rule.
Testing and Validating Machine Learning Classifiers by Metamorphic Testing☆
Xie, Xiaoyuan; Ho, Joshua W. K.; Murphy, Christian; Kaiser, Gail; Xu, Baowen; Chen, Tsong Yueh
2011-01-01
Machine Learning algorithms have provided core functionality to many application domains - such as bioinformatics, computational linguistics, etc. However, it is difficult to detect faults in such applications because often there is no “test oracle” to verify the correctness of the computed outputs. To help address the software quality, in this paper we present a technique for testing the implementations of machine learning classification algorithms which support such applications. Our approach is based on the technique “metamorphic testing”, which has been shown to be effective to alleviate the oracle problem. Also presented include a case study on a real-world machine learning application framework, and a discussion of how programmers implementing machine learning algorithms can avoid the common pitfalls discovered in our study. We also conduct mutation analysis and cross-validation, which reveal that our method has high effectiveness in killing mutants, and that observing expected cross-validation result alone is not sufficiently effective to detect faults in a supervised classification program. The effectiveness of metamorphic testing is further confirmed by the detection of real faults in a popular open-source classification program. PMID:21532969
Matsubara, Takashi
2017-01-01
Precise spike timing is considered to play a fundamental role in communications and signal processing in biological neural networks. Understanding the mechanism of spike timing adjustment would deepen our understanding of biological systems and enable advanced engineering applications such as efficient computational architectures. However, the biological mechanisms that adjust and maintain spike timing remain unclear. Existing algorithms adopt a supervised approach, which adjusts the axonal conduction delay and synaptic efficacy until the spike timings approximate the desired timings. This study proposes a spike timing-dependent learning model that adjusts the axonal conduction delay and synaptic efficacy in both unsupervised and supervised manners. The proposed learning algorithm approximates the Expectation-Maximization algorithm, and classifies the input data encoded into spatio-temporal spike patterns. Even in the supervised classification, the algorithm requires no external spikes indicating the desired spike timings unlike existing algorithms. Furthermore, because the algorithm is consistent with biological models and hypotheses found in existing biological studies, it could capture the mechanism underlying biological delay learning. PMID:29209191
Matsubara, Takashi
2017-01-01
Precise spike timing is considered to play a fundamental role in communications and signal processing in biological neural networks. Understanding the mechanism of spike timing adjustment would deepen our understanding of biological systems and enable advanced engineering applications such as efficient computational architectures. However, the biological mechanisms that adjust and maintain spike timing remain unclear. Existing algorithms adopt a supervised approach, which adjusts the axonal conduction delay and synaptic efficacy until the spike timings approximate the desired timings. This study proposes a spike timing-dependent learning model that adjusts the axonal conduction delay and synaptic efficacy in both unsupervised and supervised manners. The proposed learning algorithm approximates the Expectation-Maximization algorithm, and classifies the input data encoded into spatio-temporal spike patterns. Even in the supervised classification, the algorithm requires no external spikes indicating the desired spike timings unlike existing algorithms. Furthermore, because the algorithm is consistent with biological models and hypotheses found in existing biological studies, it could capture the mechanism underlying biological delay learning.
Aspects of Mentorship in Team Supervision of Doctoral Students in Australia
ERIC Educational Resources Information Center
Robertson, Margaret
2017-01-01
This article examines three aspects of mentorship in collaborative supervision of HDR studies in Australian contexts. The first aspect of mentorship is what the doctoral student learns about supervision--positively or negatively--through the experience of being supervised (supervisor to student). The second aspect is understood as an experienced…
Chang, Hang; Han, Ju; Zhong, Cheng; Snijders, Antoine M.; Mao, Jian-Hua
2017-01-01
The capabilities of (I) learning transferable knowledge across domains; and (II) fine-tuning the pre-learned base knowledge towards tasks with considerably smaller data scale are extremely important. Many of the existing transfer learning techniques are supervised approaches, among which deep learning has the demonstrated power of learning domain transferrable knowledge with large scale network trained on massive amounts of labeled data. However, in many biomedical tasks, both the data and the corresponding label can be very limited, where the unsupervised transfer learning capability is urgently needed. In this paper, we proposed a novel multi-scale convolutional sparse coding (MSCSC) method, that (I) automatically learns filter banks at different scales in a joint fashion with enforced scale-specificity of learned patterns; and (II) provides an unsupervised solution for learning transferable base knowledge and fine-tuning it towards target tasks. Extensive experimental evaluation of MSCSC demonstrates the effectiveness of the proposed MSCSC in both regular and transfer learning tasks in various biomedical domains. PMID:28129148
Ellipsoidal fuzzy learning for smart car platoons
NASA Astrophysics Data System (ADS)
Dickerson, Julie A.; Kosko, Bart
1993-12-01
A neural-fuzzy system combined supervised and unsupervised learning to find and tune the fuzzy-rules. An additive fuzzy system approximates a function by covering its graph with fuzzy rules. A fuzzy rule patch can take the form of an ellipsoid in the input-output space. Unsupervised competitive learning found the statistics of data clusters. The covariance matrix of each synaptic quantization vector defined on ellipsoid centered at the centroid of the data cluster. Tightly clustered data gave smaller ellipsoids or more certain rules. Sparse data gave larger ellipsoids or less certain rules. Supervised learning tuned the ellipsoids to improve the approximation. The supervised neural system used gradient descent to find the ellipsoidal fuzzy patches. It locally minimized the mean-squared error of the fuzzy approximation. Hybrid ellipsoidal learning estimated the control surface for a smart car controller.
Newton, Louise; Pront, Leeanne; Giles, Tracey M
2016-06-01
To examine the literature reporting the experiences and perceptions of registered nurses who supervise international nursing students in the clinical and classroom setting. Nursing education relies on clinical experts to supervise students during classroom and clinical education, and the quality of that supervision has a significant impact on student development and learning. Global migration and internationalisation of nursing education have led to increasing numbers of registered nurses supervising international nursing students. However, a paucity of relevant literature limits our understanding of these experiences. An integrative literature review. Comprehensive database searches of CINAHL, Informit, PubMed, Journals@Ovid, Findit@flinders and Medline were undertaken. Screening of 179 articles resulted in 10 included for review. Appraisal and analysis using Whittemore and Knafl's (Journal of Advanced Nursing, 52, 2005, 546) five stage integrative review recommendations was undertaken. This review highlighted some unique challenges for registered nurses supervising international nursing students. Identified issues were, a heightened sense of responsibility, additional pastoral care challenges, considerable time investments, communication challenges and cultural differences between teaching and learning styles. It is possible that these unique challenges could be minimised by implementing role preparation programmes specific to international nursing student supervision. Further research is needed to provide an in-depth exploration of current levels of preparation and support to make recommendations for future practice, education and policy development. An awareness of the specific cultural learning needs of international nursing students is an important first step to the provision of culturally competent supervision for this cohort of students. There is an urgent need for education and role preparation for all registered nurses supervising international nursing students, along with adequate recognition of the additional time required to effectively supervise these students. © 2016 John Wiley & Sons Ltd.
Identifying images of handwritten digits using deep learning in H2O
NASA Astrophysics Data System (ADS)
Sadhasivam, Jayakumar; Charanya, R.; Kumar, S. Harish; Srinivasan, A.
2017-11-01
Automatic digit recognition is of popular interest today. Deep learning techniques make it possible for object recognition in image data. Perceiving the digit has turned into a fundamental part as far as certifiable applications. Since, digits are composed in various styles in this way to distinguish the digit it is important to perceive and arrange it with the assistance of machine learning methods. This exploration depends on supervised learning vector quantization neural system arranged under counterfeit artificial neural network. The pictures of digits are perceived, prepared and tried. After the system is made digits are prepared utilizing preparing dataset vectors and testing is connected to the pictures of digits which are separated to each other by fragmenting the picture and resizing the digit picture as needs be for better precision.
SU-F-J-72: A Clinical Usable Integrated Contouring Quality Evaluation Software for Radiotherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, S; Dolly, S; Cai, B
Purpose: To introduce the Auto Contour Evaluation (ACE) software, which is the clinical usable, user friendly, efficient and all-in-one toolbox for automatically identify common contouring errors in radiotherapy treatment planning using supervised machine learning techniques. Methods: ACE is developed with C# using Microsoft .Net framework and Windows Presentation Foundation (WPF) for elegant GUI design and smooth GUI transition animations through the integration of graphics engines and high dots per inch (DPI) settings on modern high resolution monitors. The industrial standard software design pattern, Model-View-ViewModel (MVVM) pattern, is chosen to be the major architecture of ACE for neat coding structure, deepmore » modularization, easy maintainability and seamless communication with other clinical software. ACE consists of 1) a patient data importing module integrated with clinical patient database server, 2) a 2D DICOM image and RT structure simultaneously displaying module, 3) a 3D RT structure visualization module using Visualization Toolkit or VTK library and 4) a contour evaluation module using supervised pattern recognition algorithms to detect contouring errors and display detection results. ACE relies on supervised learning algorithms to handle all image processing and data processing jobs. Implementations of related algorithms are powered by Accord.Net scientific computing library for better efficiency and effectiveness. Results: ACE can take patient’s CT images and RT structures from commercial treatment planning software via direct user input or from patients’ database. All functionalities including 2D and 3D image visualization and RT contours error detection have been demonstrated with real clinical patient cases. Conclusion: ACE implements supervised learning algorithms and combines image processing and graphical visualization modules for RT contours verification. ACE has great potential for automated radiotherapy contouring quality verification. Structured with MVVM pattern, it is highly maintainable and extensible, and support smooth connections with other clinical software tools.« less
Applying Information Processing Theory to Supervision: An Initial Exploration
ERIC Educational Resources Information Center
Tangen, Jodi L.; Borders, L. DiAnne
2017-01-01
Although clinical supervision is an educational endeavor (Borders & Brown, [Borders, L. D., 2005]), many scholars neglect theories of learning in working with supervisees. The authors describe 1 learning theory--information processing theory (Atkinson & Shiffrin, 1968, 1971; Schunk, 2016)--and the ways its associated interventions may…
An Online Learning Space Facilitating Supervision Pedagogies in Science
ERIC Educational Resources Information Center
Picard, M. Y.; Wilkinson, K.; Wirthensohn, M.
2011-01-01
Quality research supervision leading to timely completion and student satisfaction involves explicit pedagogy and effective communication. This article describes the development within an action research cycle of an online learning space designed to achieve these goals. The research "spirals" involved interventions in the form of instructive…
Postgraduate Training in Student Learning and Teaching.
ERIC Educational Resources Information Center
Alpay, E.; Mendes-Tatsis, M. A.
2000-01-01
Presents an experiential postgraduate training program for student learning and supervision involving laboratory and pilot plant supervisions in the chemical engineering field. The program addresses some of the current concerns about non-technical training and the further development of the broad science and engineering knowledge of postgraduate…
Guo, Lilin; Wang, Zhenzhong; Cabrerizo, Mercedes; Adjouadi, Malek
2017-05-01
This study introduces a novel learning algorithm for spiking neurons, called CCDS, which is able to learn and reproduce arbitrary spike patterns in a supervised fashion allowing the processing of spatiotemporal information encoded in the precise timing of spikes. Unlike the Remote Supervised Method (ReSuMe), synapse delays and axonal delays in CCDS are variants which are modulated together with weights during learning. The CCDS rule is both biologically plausible and computationally efficient. The properties of this learning rule are investigated extensively through experimental evaluations in terms of reliability, adaptive learning performance, generality to different neuron models, learning in the presence of noise, effects of its learning parameters and classification performance. Results presented show that the CCDS learning method achieves learning accuracy and learning speed comparable with ReSuMe, but improves classification accuracy when compared to both the Spike Pattern Association Neuron (SPAN) learning rule and the Tempotron learning rule. The merit of CCDS rule is further validated on a practical example involving the automated detection of interictal spikes in EEG records of patients with epilepsy. Results again show that with proper encoding, the CCDS rule achieves good recognition performance.
Practice, supervision, consultancy and appraisal: a continuum of learning.
Launer, John
2003-01-01
I examine four different kinds of learning conversation: reflective practice, clinical supervision, work consultancy and performance appraisal. I propose that there is a close and reciprocal relationship between these kinds of conversation, and that they represent different aspects of a unified field, or continuum. I argue that appraisal should be seen as part of this learning continuum rather than as form of monitoring. PMID:14601347
ERIC Educational Resources Information Center
Smith, Kasee L.; Rayfield, John
2016-01-01
Project-based learning has been a component of agricultural education since its inception. In light of the current call for additional emphasis of the Supervised Agricultural Experience (SAE) component of agricultural education, there is a need to revisit the roots of project-based learning. This early historical research study was conducted to…
ERIC Educational Resources Information Center
Johnson, David W.
This learning unit on supervisors and marketing is one in the Choice Series, a self-learning development program for supervisors. Purpose stated for the approximately eight-hour-long unit is to enable the supervisor to understand the nature of marketing both to the organization and to the individual in it, understand how customer needs are met by…
Observation versus classification in supervised category learning.
Levering, Kimery R; Kurtz, Kenneth J
2015-02-01
The traditional supervised classification paradigm encourages learners to acquire only the knowledge needed to predict category membership (a discriminative approach). An alternative that aligns with important aspects of real-world concept formation is learning with a broader focus to acquire knowledge of the internal structure of each category (a generative approach). Our work addresses the impact of a particular component of the traditional classification task: the guess-and-correct cycle. We compare classification learning to a supervised observational learning task in which learners are shown labeled examples but make no classification response. The goals of this work sit at two levels: (1) testing for differences in the nature of the category representations that arise from two basic learning modes; and (2) evaluating the generative/discriminative continuum as a theoretical tool for understand learning modes and their outcomes. Specifically, we view the guess-and-correct cycle as consistent with a more discriminative approach and therefore expected it to lead to narrower category knowledge. Across two experiments, the observational mode led to greater sensitivity to distributional properties of features and correlations between features. We conclude that a relatively subtle procedural difference in supervised category learning substantially impacts what learners come to know about the categories. The results demonstrate the value of the generative/discriminative continuum as a tool for advancing the psychology of category learning and also provide a valuable constraint for formal models and associated theories.
New developments in technology-assisted supervision and training: a practical overview.
Rousmaniere, Tony; Abbass, Allan; Frederickson, Jon
2014-11-01
Clinical supervision and training are now widely available online. In this article, three of the most accessible and widely adopted new developments in clinical supervision and training technology are described: Videoconference supervision, cloud-based file sharing software, and clinical outcome tracking software. Partial transcripts from two online supervision sessions are provided as examples of videoconference-based supervision. The benefits and limitations of technology in supervision and training are discussed, with an emphasis on supervision process, ethics, privacy, and security. Recommendations for supervision practice are made, including methods to enhance experiential learning, the supervisory working alliance, and online security. © 2014 Wiley Periodicals, Inc.
The supervisor as gender analyst: feminist perspectives on group supervision and training.
Schoenholtz-Read, J
1996-10-01
Supervision and training groups have advantages over dyadic supervision and training that include factors to promote group learning and interaction within a sociocultural context. This article focuses on the gender aspects of group supervision and training. It provides a review of feminist theoretical developments and presents their application to group supervision and training in the form of eight guidelines that are illustrated by clinical examples.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pullum, Laura L; Symons, Christopher T
2011-01-01
Machine learning is used in many applications, from machine vision to speech recognition to decision support systems, and is used to test applications. However, though much has been done to evaluate the performance of machine learning algorithms, little has been done to verify the algorithms or examine their failure modes. Moreover, complex learning frameworks often require stepping beyond black box evaluation to distinguish between errors based on natural limits on learning and errors that arise from mistakes in implementation. We present a conceptual architecture, failure model and taxonomy, and failure modes and effects analysis (FMEA) of a semi-supervised, multi-modal learningmore » system, and provide specific examples from its use in a radiological analysis assistant system. The goal of the research described in this paper is to provide a foundation from which dependability analysis of systems using semi-supervised, multi-modal learning can be conducted. The methods presented provide a first step towards that overall goal.« less
Supervised Learning Using Spike-Timing-Dependent Plasticity of Memristive Synapses.
Nishitani, Yu; Kaneko, Yukihiro; Ueda, Michihito
2015-12-01
We propose a supervised learning model that enables error backpropagation for spiking neural network hardware. The method is modeled by modifying an existing model to suit the hardware implementation. An example of a network circuit for the model is also presented. In this circuit, a three-terminal ferroelectric memristor (3T-FeMEM), which is a field-effect transistor with a gate insulator composed of ferroelectric materials, is used as an electric synapse device to store the analog synaptic weight. Our model can be implemented by reflecting the network error to the write voltage of the 3T-FeMEMs and introducing a spike-timing-dependent learning function to the device. An XOR problem was successfully demonstrated as a benchmark learning by numerical simulations using the circuit properties to estimate the learning performance. In principle, the learning time per step of this supervised learning model and the circuit is independent of the number of neurons in each layer, promising a high-speed and low-power calculation in large-scale neural networks.
Cerebellar supervised learning revisited: biophysical modeling and degrees-of-freedom control.
Kawato, Mitsuo; Kuroda, Shinya; Schweighofer, Nicolas
2011-10-01
The biophysical models of spike-timing-dependent plasticity have explored dynamics with molecular basis for such computational concepts as coincidence detection, synaptic eligibility trace, and Hebbian learning. They overall support different learning algorithms in different brain areas, especially supervised learning in the cerebellum. Because a single spine is physically very small, chemical reactions at it are essentially stochastic, and thus sensitivity-longevity dilemma exists in the synaptic memory. Here, the cascade of excitable and bistable dynamics is proposed to overcome this difficulty. All kinds of learning algorithms in different brain regions confront with difficult generalization problems. For resolution of this issue, the control of the degrees-of-freedom can be realized by changing synchronicity of neural firing. Especially, for cerebellar supervised learning, the triangle closed-loop circuit consisting of Purkinje cells, the inferior olive nucleus, and the cerebellar nucleus is proposed as a circuit to optimally control synchronous firing and degrees-of-freedom in learning. Copyright © 2011 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Jin, Lijun; Cox, Jackie L.
This study examined the effects of a clinical supervision course on cooperating teachers' supervision of student teachers. Participants were cooperating teachers enrolled in a clinical supervision class in which supervision strategies were introduced and modeled. Before supervision theories and techniques were introduced, participants completed…
NASA Astrophysics Data System (ADS)
Karsi, Redouane; Zaim, Mounia; El Alami, Jamila
2017-07-01
Thanks to the development of the internet, a large community now has the possibility to communicate and express its opinions and preferences through multiple media such as blogs, forums, social networks and e-commerce sites. Today, it becomes clearer that opinions published on the web are a very valuable source for decision-making, so a rapidly growing field of research called “sentiment analysis” is born to address the problem of automatically determining the polarity (Positive, negative, neutral,…) of textual opinions. People expressing themselves in a particular domain often use specific domain language expressions, thus, building a classifier, which performs well in different domains is a challenging problem. The purpose of this paper is to evaluate the impact of domain for sentiment classification when using machine learning techniques. In our study three popular machine learning techniques: Support Vector Machines (SVM), Naive Bayes and K nearest neighbors(KNN) were applied on datasets collected from different domains. Experimental results show that Support Vector Machines outperforms other classifiers in all domains, since it achieved at least 74.75% accuracy with a standard deviation of 4,08.
Self-organizing neural networks--an alternative way of cluster analysis in clinical chemistry.
Reibnegger, G; Wachter, H
1996-04-15
Supervised learning schemes have been employed by several workers for training neural networks designed to solve clinical problems. We demonstrate that unsupervised techniques can also produce interesting and meaningful results. Using a data set on the chemical composition of milk from 22 different mammals, we demonstrate that self-organizing feature maps (Kohonen networks) as well as a modified version of error backpropagation technique yield results mimicking conventional cluster analysis. Both techniques are able to project a potentially multi-dimensional input vector onto a two-dimensional space whereby neighborhood relationships remain conserved. Thus, these techniques can be used for reducing dimensionality of complicated data sets and for enhancing comprehensibility of features hidden in the data matrix.
ERIC Educational Resources Information Center
Osborne, Cara; Burton, Sheila
2014-01-01
The Educational Psychology Service in this study has responsibility for providing group supervision to Emotional Literacy Support Assistants (ELSAs) working in schools. To date, little research has examined this type of inter-professional supervision arrangement. The current study used a questionnaire to examine ELSAs' views on the supervision…
ERIC Educational Resources Information Center
Collins, Bethan
2015-01-01
Supervision is an essential part of doctoral study, consisting of relationship and process aspects, underpinned by a range of values. To date there has been limited research specifically about disabled doctoral students' experiences of supervision. This paper draws on qualitative, narrative interviews about doctoral supervision with disabled…
Jiang, Yizhang; Wu, Dongrui; Deng, Zhaohong; Qian, Pengjiang; Wang, Jun; Wang, Guanjin; Chung, Fu-Lai; Choi, Kup-Sze; Wang, Shitong
2017-12-01
Recognition of epileptic seizures from offline EEG signals is very important in clinical diagnosis of epilepsy. Compared with manual labeling of EEG signals by doctors, machine learning approaches can be faster and more consistent. However, the classification accuracy is usually not satisfactory for two main reasons: the distributions of the data used for training and testing may be different, and the amount of training data may not be enough. In addition, most machine learning approaches generate black-box models that are difficult to interpret. In this paper, we integrate transductive transfer learning, semi-supervised learning and TSK fuzzy system to tackle these three problems. More specifically, we use transfer learning to reduce the discrepancy in data distribution between the training and testing data, employ semi-supervised learning to use the unlabeled testing data to remedy the shortage of training data, and adopt TSK fuzzy system to increase model interpretability. Two learning algorithms are proposed to train the system. Our experimental results show that the proposed approaches can achieve better performance than many state-of-the-art seizure classification algorithms.
Confronting Well-Learned Lessons in Supervision and Evaluation
ERIC Educational Resources Information Center
Ponticell, Judith A.; Zepeda, Sally J.
2004-01-01
Supervision is supposed to improve classroom teaching by enhancing teacher thinking, rejection, and understanding of teaching. Evaluation systems are supposed to increase effective teaching behaviors and enhance teacher professionalism. Through the lens of symbolic interaction, we learn that "supposed to" does not matter. In a context of increased…
Re/Learning Student Teaching Supervision: A Co/Autoethnographic Self-Study
ERIC Educational Resources Information Center
Butler, Brandon M.; Diacopoulos, Mark M.
2016-01-01
This article documents the critical friendship of an experienced teacher educator and a doctoral student through our joint exploration of student teaching supervision. By adopting a co/autoethnographic approach, we learned from biographical and contemporaneous critical incidents that informed short- and long-term practices. In particular, we…
Automatic Classification Using Supervised Learning in a Medical Document Filtering Application.
ERIC Educational Resources Information Center
Mostafa, J.; Lam, W.
2000-01-01
Presents a multilevel model of the information filtering process that permits document classification. Evaluates a document classification approach based on a supervised learning algorithm, measures the accuracy of the algorithm in a neural network that was trained to classify medical documents on cell biology, and discusses filtering…
Adaptive maritime video surveillance
NASA Astrophysics Data System (ADS)
Gupta, Kalyan Moy; Aha, David W.; Hartley, Ralph; Moore, Philip G.
2009-05-01
Maritime assets such as ports, harbors, and vessels are vulnerable to a variety of near-shore threats such as small-boat attacks. Currently, such vulnerabilities are addressed predominantly by watchstanders and manual video surveillance, which is manpower intensive. Automatic maritime video surveillance techniques are being introduced to reduce manpower costs, but they have limited functionality and performance. For example, they only detect simple events such as perimeter breaches and cannot predict emerging threats. They also generate too many false alerts and cannot explain their reasoning. To overcome these limitations, we are developing the Maritime Activity Analysis Workbench (MAAW), which will be a mixed-initiative real-time maritime video surveillance tool that uses an integrated supervised machine learning approach to label independent and coordinated maritime activities. It uses the same information to predict anomalous behavior and explain its reasoning; this is an important capability for watchstander training and for collecting performance feedback. In this paper, we describe MAAW's functional architecture, which includes the following pipeline of components: (1) a video acquisition and preprocessing component that detects and tracks vessels in video images, (2) a vessel categorization and activity labeling component that uses standard and relational supervised machine learning methods to label maritime activities, and (3) an ontology-guided vessel and maritime activity annotator to enable subject matter experts (e.g., watchstanders) to provide feedback and supervision to the system. We report our findings from a preliminary system evaluation on river traffic video.
Fast and robust segmentation of white blood cell images by self-supervised learning.
Zheng, Xin; Wang, Yong; Wang, Guoyou; Liu, Jianguo
2018-04-01
A fast and accurate white blood cell (WBC) segmentation remains a challenging task, as different WBCs vary significantly in color and shape due to cell type differences, staining technique variations and the adhesion between the WBC and red blood cells. In this paper, a self-supervised learning approach, consisting of unsupervised initial segmentation and supervised segmentation refinement, is presented. The first module extracts the overall foreground region from the cell image by K-means clustering, and then generates a coarse WBC region by touching-cell splitting based on concavity analysis. The second module further uses the coarse segmentation result of the first module as automatic labels to actively train a support vector machine (SVM) classifier. Then, the trained SVM classifier is further used to classify each pixel of the image and achieve a more accurate segmentation result. To improve its segmentation accuracy, median color features representing the topological structure and a new weak edge enhancement operator (WEEO) handling fuzzy boundary are introduced. To further reduce its time cost, an efficient cluster sampling strategy is also proposed. We tested the proposed approach with two blood cell image datasets obtained under various imaging and staining conditions. The experiment results show that our approach has a superior performance of accuracy and time cost on both datasets. Copyright © 2018 Elsevier Ltd. All rights reserved.
A blended supervision model in Australian general practice training.
Ingham, Gerard; Fry, Jennifer
2016-05-01
The Royal Australian College of General Practitioners' Standards for general practice training allow different models of registrar supervision, provided these models achieve the outcomes of facilitating registrars' learning and ensuring patient safety. In this article, we describe a model of supervision called 'blended supervision', and its initial implementation and evaluation. The blended supervision model integrates offsite supervision with available local supervision resources. It is a pragmatic alternative to traditional supervision. Further evaluation of the cost-effectiveness, safety and effectiveness of this model is required, as is the recruitment and training of remote supervisors. A framework of questions was developed to outline the training practice's supervision methods and explain how blended supervision is achieving supervision and teaching outcomes. The supervision and teaching framework can be used to understand the supervision methods of all practices, not just practices using blended supervision.
Supervised Machine Learning for Population Genetics: A New Paradigm
Schrider, Daniel R.; Kern, Andrew D.
2018-01-01
As population genomic datasets grow in size, researchers are faced with the daunting task of making sense of a flood of information. To keep pace with this explosion of data, computational methodologies for population genetic inference are rapidly being developed to best utilize genomic sequence data. In this review we discuss a new paradigm that has emerged in computational population genomics: that of supervised machine learning (ML). We review the fundamentals of ML, discuss recent applications of supervised ML to population genetics that outperform competing methods, and describe promising future directions in this area. Ultimately, we argue that supervised ML is an important and underutilized tool that has considerable potential for the world of evolutionary genomics. PMID:29331490
ERIC Educational Resources Information Center
Ellingham, Richard
This learning unit on needs and rewards is one in the Choice Series, a self-learning development program for supervisors. Purpose stated for the approximately eight-hour-long unit is to enable the supervisor to understand and list the needs that influence work behavior and devise ways in which a work system can be both productive and rewarding for…
Active learning: a step towards automating medical concept extraction.
Kholghi, Mahnoosh; Sitbon, Laurianne; Zuccon, Guido; Nguyen, Anthony
2016-03-01
This paper presents an automatic, active learning-based system for the extraction of medical concepts from clinical free-text reports. Specifically, (1) the contribution of active learning in reducing the annotation effort and (2) the robustness of incremental active learning framework across different selection criteria and data sets are determined. The comparative performance of an active learning framework and a fully supervised approach were investigated to study how active learning reduces the annotation effort while achieving the same effectiveness as a supervised approach. Conditional random fields as the supervised method, and least confidence and information density as 2 selection criteria for active learning framework were used. The effect of incremental learning vs standard learning on the robustness of the models within the active learning framework with different selection criteria was also investigated. The following 2 clinical data sets were used for evaluation: the Informatics for Integrating Biology and the Bedside/Veteran Affairs (i2b2/VA) 2010 natural language processing challenge and the Shared Annotated Resources/Conference and Labs of the Evaluation Forum (ShARe/CLEF) 2013 eHealth Evaluation Lab. The annotation effort saved by active learning to achieve the same effectiveness as supervised learning is up to 77%, 57%, and 46% of the total number of sequences, tokens, and concepts, respectively. Compared with the random sampling baseline, the saving is at least doubled. Incremental active learning is a promising approach for building effective and robust medical concept extraction models while significantly reducing the burden of manual annotation. © The Author 2015. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Supervised versus unsupervised categorization: two sides of the same coin?
Pothos, Emmanuel M; Edwards, Darren J; Perlman, Amotz
2011-09-01
Supervised and unsupervised categorization have been studied in separate research traditions. A handful of studies have attempted to explore a possible convergence between the two. The present research builds on these studies, by comparing the unsupervised categorization results of Pothos et al. ( 2011 ; Pothos et al., 2008 ) with the results from two procedures of supervised categorization. In two experiments, we tested 375 participants with nine different stimulus sets and examined the relation between ease of learning of a classification, memory for a classification, and spontaneous preference for a classification. After taking into account the role of the number of category labels (clusters) in supervised learning, we found the three variables to be closely associated with each other. Our results provide encouragement for researchers seeking unified theoretical explanations for supervised and unsupervised categorization, but raise a range of challenging theoretical questions.
Spatially Regularized Machine Learning for Task and Resting-state fMRI
Song, Xiaomu; Panych, Lawrence P.; Chen, Nan-kuei
2015-01-01
Background Reliable mapping of brain function across sessions and/or subjects in task- and resting-state has been a critical challenge for quantitative fMRI studies although it has been intensively addressed in the past decades. New Method A spatially regularized support vector machine (SVM) technique was developed for the reliable brain mapping in task- and resting-state. Unlike most existing SVM-based brain mapping techniques, which implement supervised classifications of specific brain functional states or disorders, the proposed method performs a semi-supervised classification for the general brain function mapping where spatial correlation of fMRI is integrated into the SVM learning. The method can adapt to intra- and inter-subject variations induced by fMRI nonstationarity, and identify a true boundary between active and inactive voxels, or between functionally connected and unconnected voxels in a feature space. Results The method was evaluated using synthetic and experimental data at the individual and group level. Multiple features were evaluated in terms of their contributions to the spatially regularized SVM learning. Reliable mapping results in both task- and resting-state were obtained from individual subjects and at the group level. Comparison with Existing Methods A comparison study was performed with independent component analysis, general linear model, and correlation analysis methods. Experimental results indicate that the proposed method can provide a better or comparable mapping performance at the individual and group level. Conclusions The proposed method can provide accurate and reliable mapping of brain function in task- and resting-state, and is applicable to a variety of quantitative fMRI studies. PMID:26470627
Chen, Jinying; Jagannatha, Abhyuday N; Fodeh, Samah J; Yu, Hong
2017-10-31
Medical terms are a major obstacle for patients to comprehend their electronic health record (EHR) notes. Clinical natural language processing (NLP) systems that link EHR terms to lay terms or definitions allow patients to easily access helpful information when reading through their EHR notes, and have shown to improve patient EHR comprehension. However, high-quality lay language resources for EHR terms are very limited in the public domain. Because expanding and curating such a resource is a costly process, it is beneficial and even necessary to identify terms important for patient EHR comprehension first. We aimed to develop an NLP system, called adapted distant supervision (ADS), to rank candidate terms mined from EHR corpora. We will give EHR terms ranked as high by ADS a higher priority for lay language annotation-that is, creating lay definitions for these terms. Adapted distant supervision uses distant supervision from consumer health vocabulary and transfer learning to adapt itself to solve the problem of ranking EHR terms in the target domain. We investigated 2 state-of-the-art transfer learning algorithms (ie, feature space augmentation and supervised distant supervision) and designed 5 types of learning features, including distributed word representations learned from large EHR data for ADS. For evaluating ADS, we asked domain experts to annotate 6038 candidate terms as important or nonimportant for EHR comprehension. We then randomly divided these data into the target-domain training data (1000 examples) and the evaluation data (5038 examples). We compared ADS with 2 strong baselines, including standard supervised learning, on the evaluation data. The ADS system using feature space augmentation achieved the best average precision, 0.850, on the evaluation set when using 1000 target-domain training examples. The ADS system using supervised distant supervision achieved the best average precision, 0.819, on the evaluation set when using only 100 target-domain training examples. The 2 ADS systems both performed significantly better than the baseline systems (P<.001 for all measures and all conditions). Using a rich set of learning features contributed to ADS's performance substantially. ADS can effectively rank terms mined from EHRs. Transfer learning improved ADS's performance even with a small number of target-domain training examples. EHR terms prioritized by ADS were used to expand a lay language resource that supports patient EHR comprehension. The top 10,000 EHR terms ranked by ADS are available upon request. ©Jinying Chen, Abhyuday N Jagannatha, Samah J Fodeh, Hong Yu. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 31.10.2017.
ERIC Educational Resources Information Center
Pimmer, Christoph; Chipps, Jennifer; Brysiewicz, Petra; Walters, Fiona; Linxen, Sebastian; Gröhbiel, Urs
2017-01-01
This study analyses the use of a group space on the social networking site Facebook as a way to facilitate research supervision for teams of learners. Borrowing Lee's framework for research supervision, the goal was to understand how supervision and learning was achieved in, and shaped by, the properties of a social networking space. For this…
Sampling algorithms for validation of supervised learning models for Ising-like systems
NASA Astrophysics Data System (ADS)
Portman, Nataliya; Tamblyn, Isaac
2017-12-01
In this paper, we build and explore supervised learning models of ferromagnetic system behavior, using Monte-Carlo sampling of the spin configuration space generated by the 2D Ising model. Given the enormous size of the space of all possible Ising model realizations, the question arises as to how to choose a reasonable number of samples that will form physically meaningful and non-intersecting training and testing datasets. Here, we propose a sampling technique called ;ID-MH; that uses the Metropolis-Hastings algorithm creating Markov process across energy levels within the predefined configuration subspace. We show that application of this method retains phase transitions in both training and testing datasets and serves the purpose of validation of a machine learning algorithm. For larger lattice dimensions, ID-MH is not feasible as it requires knowledge of the complete configuration space. As such, we develop a new ;block-ID; sampling strategy: it decomposes the given structure into square blocks with lattice dimension N ≤ 5 and uses ID-MH sampling of candidate blocks. Further comparison of the performance of commonly used machine learning methods such as random forests, decision trees, k nearest neighbors and artificial neural networks shows that the PCA-based Decision Tree regressor is the most accurate predictor of magnetizations of the Ising model. For energies, however, the accuracy of prediction is not satisfactory, highlighting the need to consider more algorithmically complex methods (e.g., deep learning).
ERIC Educational Resources Information Center
Bailey, Sarah F.; Barber, Larissa K.; Nelson, Videl L.
2017-01-01
This study examined trends in how psychology internships are supervised compared to current experiential learning best practices in the literature. We sent a brief online survey to relevant contact persons for colleges/universities with psychology departments throughout the United States (n = 149 responded). Overall, the majority of institutions…
Arabic Supervised Learning Method Using N-Gram
ERIC Educational Resources Information Center
Sanan, Majed; Rammal, Mahmoud; Zreik, Khaldoun
2008-01-01
Purpose: Recently, classification of Arabic documents is a real problem for juridical centers. In this case, some of the Lebanese official journal documents are classified, and the center has to classify new documents based on these documents. This paper aims to study and explain the useful application of supervised learning method on Arabic texts…
Standards for Instructional Supervision: Enhancing Teaching and Learning
ERIC Educational Resources Information Center
Gordon, Stephen P., Ed.
2005-01-01
The standards in this book will enhance teaching and learning. The list of the book's contributors reads like a "Who's Who" in the field of instructional supervision. These standards are practical, specific, and flexible, so that schools and districts can adapt them to their own contexts and goals. Each set also includes activities for…
ERIC Educational Resources Information Center
Tang, Sylvia Yee Fang; Chow, Alice Wai Kwan
2007-01-01
This article seeks to understand the ways in which feedback was communicated in post-observation conferences in teaching practice supervision within the learning-oriented field experience assessment (LOFEA) framework. 32 post-observation conferences between 21 pairs of supervisors and participants of in-service teacher education programmes, and…
Use of Inverse Reinforcement Learning for Identity Prediction
NASA Technical Reports Server (NTRS)
Hayes, Roy; Bao, Jonathan; Beling, Peter; Horowitz, Barry
2011-01-01
We adopt Markov Decision Processes (MDP) to model sequential decision problems, which have the characteristic that the current decision made by a human decision maker has an uncertain impact on future opportunity. We hypothesize that the individuality of decision makers can be modeled as differences in the reward function under a common MDP model. A machine learning technique, Inverse Reinforcement Learning (IRL), was used to learn an individual's reward function based on limited observation of his or her decision choices. This work serves as an initial investigation for using IRL to analyze decision making, conducted through a human experiment in a cyber shopping environment. Specifically, the ability to determine the demographic identity of users is conducted through prediction analysis and supervised learning. The results show that IRL can be used to correctly identify participants, at a rate of 68% for gender and 66% for one of three college major categories.
Retinal blood vessel segmentation using fully convolutional network with transfer learning.
Jiang, Zhexin; Zhang, Hao; Wang, Yi; Ko, Seok-Bum
2018-04-26
Since the retinal blood vessel has been acknowledged as an indispensable element in both ophthalmological and cardiovascular disease diagnosis, the accurate segmentation of the retinal vessel tree has become the prerequisite step for automated or computer-aided diagnosis systems. In this paper, a supervised method is presented based on a pre-trained fully convolutional network through transfer learning. This proposed method has simplified the typical retinal vessel segmentation problem from full-size image segmentation to regional vessel element recognition and result merging. Meanwhile, additional unsupervised image post-processing techniques are applied to this proposed method so as to refine the final result. Extensive experiments have been conducted on DRIVE, STARE, CHASE_DB1 and HRF databases, and the accuracy of the cross-database test on these four databases is state-of-the-art, which also presents the high robustness of the proposed approach. This successful result has not only contributed to the area of automated retinal blood vessel segmentation but also supports the effectiveness of transfer learning when applying deep learning technique to medical imaging. Copyright © 2018 Elsevier Ltd. All rights reserved.
McCutcheon, Karen; O'Halloran, Peter; Lohan, Maria
2018-06-01
The World Health Organisation amongst others recognises the need for the introduction of clinical supervision education in health professional education as a central strategy for improving patient safety and patient care. Online and blended learning methods are growing exponentially in use in higher education and the systematic evaluation of these methods will aid understanding of how best to teach clinical supervision. The purpose of this study was to test whether undergraduate nursing students who received clinical supervisee skills training via a blended learning approach would score higher in terms of motivation and attitudes towards clinical supervision, knowledge of clinical supervision and satisfaction of learning method, when compared to those students who received an online only teaching approach. A post-test-only randomised controlled trial. Participants were a total of 122 pre-registration nurses enrolled at one United Kingdom university, randomly assigned to the online learning control group (n = 60) or the blended learning intervention group (n = 62). The blended learning intervention group participated in a face-to-face tutorial and the online clinical supervisee skills training app. The online learning control group participated in an online discussion forum and the same online clinical supervisee skills training app. The outcome measures were motivation and attitudes using the modified Manchester Clinical Supervision Scale, knowledge using a 10 point Multiple Choice Questionnaire and satisfaction using a university training evaluation tool. Statistical analysis was performed using independent t-tests to compare the differences between the means of the control group and the intervention group. Thematic analysis was used to analyse responses to open-ended questions. All three of our study hypotheses were confirmed. Participants who received clinical supervisee skills training via a blended learning approach scored higher in terms of motivation and attitudes - mean (m) = 85.5, standard deviation (sd) = 9.78, number of participants (n) = 62 - compared to the online group (m = 79.5, sd = 9.69, n = 60) (p = .001). The blended learning group also scored higher in terms of knowledge (m = 4.2, sd = 1.43, n = 56) compared to the online group (m = 3.51, sd = 1.51, n = 57) (p = .015); and in terms of satisfaction (m = 30.89, sd = 6.54, n = 57) compared to the online group (m = 26.49, sd = 6.93, n = 55) (p = .001). Qualitative data supported results. Blended learning provides added pedagogical value when compared to online learning in terms of teaching undergraduate nurses clinical supervision skills. The evidence is timely given worldwide calls for expanding clinical skills supervision in undergraduate health professional education to improve quality of care and patient safety. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Liang, Yong; Chai, Hua; Liu, Xiao-Ying; Xu, Zong-Ben; Zhang, Hai; Leung, Kwong-Sak
2016-03-01
One of the most important objectives of the clinical cancer research is to diagnose cancer more accurately based on the patients' gene expression profiles. Both Cox proportional hazards model (Cox) and accelerated failure time model (AFT) have been widely adopted to the high risk and low risk classification or survival time prediction for the patients' clinical treatment. Nevertheless, two main dilemmas limit the accuracy of these prediction methods. One is that the small sample size and censored data remain a bottleneck for training robust and accurate Cox classification model. In addition to that, similar phenotype tumours and prognoses are actually completely different diseases at the genotype and molecular level. Thus, the utility of the AFT model for the survival time prediction is limited when such biological differences of the diseases have not been previously identified. To try to overcome these two main dilemmas, we proposed a novel semi-supervised learning method based on the Cox and AFT models to accurately predict the treatment risk and the survival time of the patients. Moreover, we adopted the efficient L1/2 regularization approach in the semi-supervised learning method to select the relevant genes, which are significantly associated with the disease. The results of the simulation experiments show that the semi-supervised learning model can significant improve the predictive performance of Cox and AFT models in survival analysis. The proposed procedures have been successfully applied to four real microarray gene expression and artificial evaluation datasets. The advantages of our proposed semi-supervised learning method include: 1) significantly increase the available training samples from censored data; 2) high capability for identifying the survival risk classes of patient in Cox model; 3) high predictive accuracy for patients' survival time in AFT model; 4) strong capability of the relevant biomarker selection. Consequently, our proposed semi-supervised learning model is one more appropriate tool for survival analysis in clinical cancer research.
Supervised Learning Based Hypothesis Generation from Biomedical Literature.
Sang, Shengtian; Yang, Zhihao; Li, Zongyao; Lin, Hongfei
2015-01-01
Nowadays, the amount of biomedical literatures is growing at an explosive speed, and there is much useful knowledge undiscovered in this literature. Researchers can form biomedical hypotheses through mining these works. In this paper, we propose a supervised learning based approach to generate hypotheses from biomedical literature. This approach splits the traditional processing of hypothesis generation with classic ABC model into AB model and BC model which are constructed with supervised learning method. Compared with the concept cooccurrence and grammar engineering-based approaches like SemRep, machine learning based models usually can achieve better performance in information extraction (IE) from texts. Then through combining the two models, the approach reconstructs the ABC model and generates biomedical hypotheses from literature. The experimental results on the three classic Swanson hypotheses show that our approach outperforms SemRep system.
Automatic Classification of Time-variable X-Ray Sources
NASA Astrophysics Data System (ADS)
Lo, Kitty K.; Farrell, Sean; Murphy, Tara; Gaensler, B. M.
2014-05-01
To maximize the discovery potential of future synoptic surveys, especially in the field of transient science, it will be necessary to use automatic classification to identify some of the astronomical sources. The data mining technique of supervised classification is suitable for this problem. Here, we present a supervised learning method to automatically classify variable X-ray sources in the Second XMM-Newton Serendipitous Source Catalog (2XMMi-DR2). Random Forest is our classifier of choice since it is one of the most accurate learning algorithms available. Our training set consists of 873 variable sources and their features are derived from time series, spectra, and other multi-wavelength contextual information. The 10 fold cross validation accuracy of the training data is ~97% on a 7 class data set. We applied the trained classification model to 411 unknown variable 2XMM sources to produce a probabilistically classified catalog. Using the classification margin and the Random Forest derived outlier measure, we identified 12 anomalous sources, of which 2XMM J180658.7-500250 appears to be the most unusual source in the sample. Its X-ray spectra is suggestive of a ultraluminous X-ray source but its variability makes it highly unusual. Machine-learned classification and anomaly detection will facilitate scientific discoveries in the era of all-sky surveys.
Pervasive Sound Sensing: A Weakly Supervised Training Approach.
Kelly, Daniel; Caulfield, Brian
2016-01-01
Modern smartphones present an ideal device for pervasive sensing of human behavior. Microphones have the potential to reveal key information about a person's behavior. However, they have been utilized to a significantly lesser extent than other smartphone sensors in the context of human behavior sensing. We postulate that, in order for microphones to be useful in behavior sensing applications, the analysis techniques must be flexible and allow easy modification of the types of sounds to be sensed. A simplification of the training data collection process could allow a more flexible sound classification framework. We hypothesize that detailed training, a prerequisite for the majority of sound sensing techniques, is not necessary and that a significantly less detailed and time consuming data collection process can be carried out, allowing even a nonexpert to conduct the collection, labeling, and training process. To test this hypothesis, we implement a diverse density-based multiple instance learning framework, to identify a target sound, and a bag trimming algorithm, which, using the target sound, automatically segments weakly labeled sound clips to construct an accurate training set. Experiments reveal that our hypothesis is a valid one and results show that classifiers, trained using the automatically segmented training sets, were able to accurately classify unseen sound samples with accuracies comparable to supervised classifiers, achieving an average F -measure of 0.969 and 0.87 for two weakly supervised datasets.
Receptive field optimisation and supervision of a fuzzy spiking neural network.
Glackin, Cornelius; Maguire, Liam; McDaid, Liam; Sayers, Heather
2011-04-01
This paper presents a supervised training algorithm that implements fuzzy reasoning on a spiking neural network. Neuron selectivity is facilitated using receptive fields that enable individual neurons to be responsive to certain spike train firing rates and behave in a similar manner as fuzzy membership functions. The connectivity of the hidden and output layers in the fuzzy spiking neural network (FSNN) is representative of a fuzzy rule base. Fuzzy C-Means clustering is utilised to produce clusters that represent the antecedent part of the fuzzy rule base that aid classification of the feature data. Suitable cluster widths are determined using two strategies; subjective thresholding and evolutionary thresholding respectively. The former technique typically results in compact solutions in terms of the number of neurons, and is shown to be particularly suited to small data sets. In the latter technique a pool of cluster candidates is generated using Fuzzy C-Means clustering and then a genetic algorithm is employed to select the most suitable clusters and to specify cluster widths. In both scenarios, the network is supervised but learning only occurs locally as in the biological case. The advantages and disadvantages of the network topology for the Fisher Iris and Wisconsin Breast Cancer benchmark classification tasks are demonstrated and directions of current and future work are discussed. Copyright © 2010 Elsevier Ltd. All rights reserved.
CNN: a speaker recognition system using a cascaded neural network.
Zaki, M; Ghalwash, A; Elkouny, A A
1996-05-01
The main emphasis of this paper is to present an approach for combining supervised and unsupervised neural network models to the issue of speaker recognition. To enhance the overall operation and performance of recognition, the proposed strategy integrates the two techniques, forming one global model called the cascaded model. We first present a simple conventional technique based on the distance measured between a test vector and a reference vector for different speakers in the population. This particular distance metric has the property of weighting down the components in those directions along which the intraspeaker variance is large. The reason for presenting this method is to clarify the discrepancy in performance between the conventional and neural network approach. We then introduce the idea of using unsupervised learning technique, presented by the winner-take-all model, as a means of recognition. Due to several tests that have been conducted and in order to enhance the performance of this model, dealing with noisy patterns, we have preceded it with a supervised learning model--the pattern association model--which acts as a filtration stage. This work includes both the design and implementation of both conventional and neural network approaches to recognize the speakers templates--which are introduced to the system via a voice master card and preprocessed before extracting the features used in the recognition. The conclusion indicates that the system performance in case of neural network is better than that of the conventional one, achieving a smooth degradation in respect of noisy patterns, and higher performance in respect of noise-free patterns.
NASA Technical Reports Server (NTRS)
Oza, Nikunj C.
2011-01-01
A supervised learning task involves constructing a mapping from input data (normally described by several features) to the appropriate outputs. Within supervised learning, one type of task is a classification learning task, in which each output is one or more classes to which the input belongs. In supervised learning, a set of training examples---examples with known output values---is used by a learning algorithm to generate a model. This model is intended to approximate the mapping between the inputs and outputs. This model can be used to generate predicted outputs for inputs that have not been seen before. For example, we may have data consisting of observations of sunspots. In a classification learning task, our goal may be to learn to classify sunspots into one of several types. Each example may correspond to one candidate sunspot with various measurements or just an image. A learning algorithm would use the supplied examples to generate a model that approximates the mapping between each supplied set of measurements and the type of sunspot. This model can then be used to classify previously unseen sunspots based on the candidate's measurements. This chapter discusses methods to perform machine learning, with examples involving astronomy.
2017-12-01
satisfactory performance. We do not use statistical models, and we do not create patterns that require supervised learning. Our methodology is intended...statistical models, and we do not create patterns that require supervised learning. Our methodology is intended for use in personal digital image...THESIS MOTIVATION .........................................................................19 III. METHODOLOGY
ERIC Educational Resources Information Center
Zimmerman, Isa Kaftal, Ed.; Hayes, Mary Forte, Ed.
This yearbook for the Massachusetts Association for Supervision and Curriculum Development (MASCD) provides educators with models of successful practices and raises questions and potential solutions to issues of accountability, policy, long-term planning, funding, and student motivation for learning. This 1998 yearbook assists educators at all…
Detecting Visually Observable Disease Symptoms from Faces.
Wang, Kuan; Luo, Jiebo
2016-12-01
Recent years have witnessed an increasing interest in the application of machine learning to clinical informatics and healthcare systems. A significant amount of research has been done on healthcare systems based on supervised learning. In this study, we present a generalized solution to detect visually observable symptoms on faces using semi-supervised anomaly detection combined with machine vision algorithms. We rely on the disease-related statistical facts to detect abnormalities and classify them into multiple categories to narrow down the possible medical reasons of detecting. Our method is in contrast with most existing approaches, which are limited by the availability of labeled training data required for supervised learning, and therefore offers the major advantage of flagging any unusual and visually observable symptoms.
Deep Learning for Extreme Weather Detection
NASA Astrophysics Data System (ADS)
Prabhat, M.; Racah, E.; Biard, J.; Liu, Y.; Mudigonda, M.; Kashinath, K.; Beckham, C.; Maharaj, T.; Kahou, S.; Pal, C.; O'Brien, T. A.; Wehner, M. F.; Kunkel, K.; Collins, W. D.
2017-12-01
We will present our latest results from the application of Deep Learning methods for detecting, localizing and segmenting extreme weather patterns in climate data. We have successfully applied supervised convolutional architectures for the binary classification tasks of detecting tropical cyclones and atmospheric rivers in centered, cropped patches. We have subsequently extended our architecture to a semi-supervised formulation, which is capable of learning a unified representation of multiple weather patterns, predicting bounding boxes and object categories, and has the capability to detect novel patterns (w/ few, or no labels). We will briefly present our efforts in scaling the semi-supervised architecture to 9600 nodes of the Cori supercomputer, obtaining 15PF performance. Time permitting, we will highlight our efforts in pixel-level segmentation of weather patterns.
Using simulation pedagogy to teach clinical education skills: A randomized trial.
Holdsworth, Clare; Skinner, Elizabeth H; Delany, Clare M
2016-05-01
Supervision of students is a key role of senior physiotherapy clinicians in teaching hospitals. The objective of this study was to test the effect of simulated learning environments (SLE) on educators' self-efficacy in student supervision skills. A pilot prospective randomized controlled trial with concealed allocation was conducted. Clinical educators were randomized to intervention (SLE) or control groups. SLE participants completed two 3-hour workshops, which included simulated clinical teaching scenarios, and facilitated debrief. Standard Education (StEd) participants completed two online learning modules. Change in educator clinical supervision self-efficacy (SE) and student perceptions of supervisor skill were calculated. Between-group comparisons of SE change scores were analyzed with independent t-tests to account for potential baseline differences in education experience. Eighteen educators (n = 18) were recruited (SLE [n = 10], StEd [n = 8]). Significant improvements in SE change scores were seen in SLE participants compared to control participants in three domains of self-efficacy: (1) talking to students about supervision and learning styles (p = 0.01); (2) adapting teaching styles for students' individual needs (p = 0.02); and (3) identifying strategies for future practice while supervising students (p = 0.02). This is the first study investigating SLE for teaching skills of clinical education. SLE improved educators' self-efficacy in three domains of clinical education. Sample size limited the interpretation of student ratings of educator supervision skills. Future studies using SLE would benefit from future large multicenter trials evaluating its effect on educators' teaching skills, student learning outcomes, and subsequent effects on patient care and health outcomes.
Sundler, Annelie J; Björk, Maria; Bisholt, Birgitta; Ohlsson, Ulla; Engström, Agneta Kullén; Gustafsson, Margareta
2014-04-01
The aim was to investigate student nurses' experiences of the clinical learning environment in relation to how the supervision was organized. The clinical environment plays an essential part in student nurses' learning. Even though different models for supervision have been previously set forth, it has been stressed that there is a need both of further empirical studies on the role of preceptorship in undergraduate nursing education and of studies comparing different models. A cross-sectional study with comparative design was carried out with a mixed method approach. Data were collected from student nurses in the final term of the nursing programme at three universities in Sweden by means of a questionnaire. In general the students had positive experiences of the clinical learning environment with respect to pedagogical atmosphere, leadership style of the ward manager, premises of nursing, supervisory relationship, and role of the nurse preceptor and nurse teacher. However, there were significant differences in their ratings of the supervisory relationship (p<0.001) and the pedagogical atmosphere (p 0.025) depending on how the supervision was organized. Students who had the same preceptor all the time were more satisfied with the supervisory relationship than were those who had different preceptors each day. Students' comments on the supervision confirmed the significance of the preceptor and the supervisory relationship. The organization of the supervision was of significance with regard to the pedagogical atmosphere and the students' relation to preceptors. Students with the same preceptor throughout were more positive concerning the supervisory relationship and the pedagogical atmosphere. © 2013.
Training and certification in endobronchial ultrasound-guided transbronchial needle aspiration
Konge, Lars; Nayahangan, Leizl Joy; Clementsen, Paul Frost
2017-01-01
Endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA) plays a key role in the staging of lung cancer, which is crucial for allocation to surgical treatment. EBUS-TBNA is a complicated procedure and simulation-based training is helpful in the first part of the long learning curve prior to performing the procedure on actual patients. New trainees should follow a structured training programme consisting of training on simulators to proficiency as assessed with a validated test followed by supervised practice on patients. The simulation-based training is superior to the traditional apprenticeship model and is recommended in the newest guidelines. EBUS-TBNA and oesophageal ultrasound-guided fine needle aspiration (EUS-FNA or EUS-B-FNA) are complementary to each other and the combined techniques are superior to either technique alone. It is logical to learn and to perform the two techniques in combination, however, for lung cancer staging solely EBUS-TBNA simulators exist, but hopefully in the future simulation-based training in EUS will be possible. PMID:28840013
Attending to Nuanced Emotions: Fostering Supervisees' Emotional Awareness and Complexity
ERIC Educational Resources Information Center
Tangen, Jodi L.
2017-01-01
There is limited supervision research exploring how supervisees learn emotional awareness and complexity. In this article, the 5 levels of emotional awareness and 3 aspects of emotional complexity are explored in light of the supervision enterprise. In addition, 2 supervision intervention guides and a case example are provided.
ERIC Educational Resources Information Center
Strieker, Toni; Adams, Megan; Cone, Neporcha; Hubbard, Daphne; Lim, Woong
2016-01-01
This self-study examined the communication approaches of 15 university supervisors who oversaw teacher candidates enrolled in year-long, co-taught P-12 clinical experiences. Supervisors attended 20 hours of professional learning on pre-service co-teaching, developmental supervision, and instructional coaching. Findings indicated that our…
The Impact of Supervised Mentorship on Music Education Master's Degree Students
ERIC Educational Resources Information Center
Russell, Joshua A.; Haston, Warren
2015-01-01
The purpose of this study was to investigate the influence of supervised mentorship in an authentic-context learning setting on music education graduate students' graduate school experiences. Participants were six current and former graduate music education majors who acted as supervised mentors to undergraduate students teaching instrumental…
Action Research as Instructional Supervision: Suggestions for Principals
ERIC Educational Resources Information Center
Glanz, Jeffrey
2005-01-01
Supervision based on collaboration, participative decision making, and reflective practice is the hallmark of a viable school improvement program that is designed to promote teaching and learning. Action research has gradually emerged as an important form of instructional supervision to engage teachers in reflective practice about their teaching…
Comparing the Effect of Two Internship Structures on Supervision Experience and Learning
ERIC Educational Resources Information Center
Winslow, Robin D.; Eliason, Meghan; Thiede, Keith W.
2016-01-01
The purpose of this study was to examine two different models of internship and competitively evaluate their effectiveness in influencing interns' experience, beliefs, and knowledge of supervision. The research questions for this study were developed from the literature on supervision of instruction and internships in educational leadership…
Visualization techniques for computer network defense
NASA Astrophysics Data System (ADS)
Beaver, Justin M.; Steed, Chad A.; Patton, Robert M.; Cui, Xiaohui; Schultz, Matthew
2011-06-01
Effective visual analysis of computer network defense (CND) information is challenging due to the volume and complexity of both the raw and analyzed network data. A typical CND is comprised of multiple niche intrusion detection tools, each of which performs network data analysis and produces a unique alerting output. The state-of-the-practice in the situational awareness of CND data is the prevalent use of custom-developed scripts by Information Technology (IT) professionals to retrieve, organize, and understand potential threat events. We propose a new visual analytics framework, called the Oak Ridge Cyber Analytics (ORCA) system, for CND data that allows an operator to interact with all detection tool outputs simultaneously. Aggregated alert events are presented in multiple coordinated views with timeline, cluster, and swarm model analysis displays. These displays are complemented with both supervised and semi-supervised machine learning classifiers. The intent of the visual analytics framework is to improve CND situational awareness, to enable an analyst to quickly navigate and analyze thousands of detected events, and to combine sophisticated data analysis techniques with interactive visualization such that patterns of anomalous activities may be more easily identified and investigated.
Supervision that Improves Teaching: Strategies and Techniques. Second Edition
ERIC Educational Resources Information Center
Sullivan, Susan; Glanz, Jeffrey
2004-01-01
In this exciting, new edition of "Supervision That Improves Teaching," the authors have taken their reflective clinical supervision process to a new level, with the planning conference now the heart of the supervision cycle. Sullivan and Glanz have addressed the dilemmas of preserving meaningful supervision in an era of high-stakes…
Antohe, Ileana; Riklikiene, Olga; Tichelaar, Erna; Saarikoski, Mikko
2016-03-01
Nurses underwent different models of education during various historical periods. The recent decade in Europe has been marked with educational transitions for the nursing profession related to Bologna Declaration and enlargement of the European Union. This paper aims to explore the situation of clinical placements for student nurses and assess students' satisfaction with the learning environment in four relatively new member states of European Union: the Czech Republic, Hungary, Lithuania and Romania. The data for cross-sectional quantitative study were collected during the exploratory phase of EmpNURS Project via a web based questionnaire which utilized a part of Clinical Learning Environment scale (CLES + T). The students evaluated their clinical learning environment mainly positively. The students' utter satisfaction with their clinical placements reached a high level and strongly correlated with the supervisory model. Although the commonest model for supervision was traditional group supervision, the most satisfied students had the experience of individualised supervision. The study gives a picture of the satisfaction of students with the learning environment and, moreover, with clinical placement education of student nurses in four EU countries. The results highlight the individualized supervision model as a crucial factor of students' total satisfaction during their clinical training periods. Copyright © 2015 Elsevier Ltd. All rights reserved.
Semi-supervised learning for ordinal Kernel Discriminant Analysis.
Pérez-Ortiz, M; Gutiérrez, P A; Carbonero-Ruz, M; Hervás-Martínez, C
2016-12-01
Ordinal classification considers those classification problems where the labels of the variable to predict follow a given order. Naturally, labelled data is scarce or difficult to obtain in this type of problems because, in many cases, ordinal labels are given by a user or expert (e.g. in recommendation systems). Firstly, this paper develops a new strategy for ordinal classification where both labelled and unlabelled data are used in the model construction step (a scheme which is referred to as semi-supervised learning). More specifically, the ordinal version of kernel discriminant learning is extended for this setting considering the neighbourhood information of unlabelled data, which is proposed to be computed in the feature space induced by the kernel function. Secondly, a new method for semi-supervised kernel learning is devised in the context of ordinal classification, which is combined with our developed classification strategy to optimise the kernel parameters. The experiments conducted compare 6 different approaches for semi-supervised learning in the context of ordinal classification in a battery of 30 datasets, showing (1) the good synergy of the ordinal version of discriminant analysis and the use of unlabelled data and (2) the advantage of computing distances in the feature space induced by the kernel function. Copyright © 2016 Elsevier Ltd. All rights reserved.
Das, Samarjit; Amoedo, Breogan; De la Torre, Fernando; Hodgins, Jessica
2012-01-01
In this paper, we propose to use a weakly supervised machine learning framework for automatic detection of Parkinson's Disease motor symptoms in daily living environments. Our primary goal is to develop a monitoring system capable of being used outside of controlled laboratory settings. Such a system would enable us to track medication cycles at home and provide valuable clinical feedback. Most of the relevant prior works involve supervised learning frameworks (e.g., Support Vector Machines). However, in-home monitoring provides only coarse ground truth information about symptom occurrences, making it very hard to adapt and train supervised learning classifiers for symptom detection. We address this challenge by formulating symptom detection under incomplete ground truth information as a multiple instance learning (MIL) problem. MIL is a weakly supervised learning framework that does not require exact instances of symptom occurrences for training; rather, it learns from approximate time intervals within which a symptom might or might not have occurred on a given day. Once trained, the MIL detector was able to spot symptom-prone time windows on other days and approximately localize the symptom instances. We monitored two Parkinson's disease (PD) patients, each for four days with a set of five triaxial accelerometers and utilized a MIL algorithm based on axis parallel rectangle (APR) fitting in the feature space. We were able to detect subject specific symptoms (e.g. dyskinesia) that conformed with a daily log maintained by the patients.
Machine Learning Topological Invariants with Neural Networks
NASA Astrophysics Data System (ADS)
Zhang, Pengfei; Shen, Huitao; Zhai, Hui
2018-02-01
In this Letter we supervisedly train neural networks to distinguish different topological phases in the context of topological band insulators. After training with Hamiltonians of one-dimensional insulators with chiral symmetry, the neural network can predict their topological winding numbers with nearly 100% accuracy, even for Hamiltonians with larger winding numbers that are not included in the training data. These results show a remarkable success that the neural network can capture the global and nonlinear topological features of quantum phases from local inputs. By opening up the neural network, we confirm that the network does learn the discrete version of the winding number formula. We also make a couple of remarks regarding the role of the symmetry and the opposite effect of regularization techniques when applying machine learning to physical systems.
Venne, Vickie L; Coleman, Darrell
2010-12-01
They are the Millennials--Generation Y. Over the next few decades, they will be entering genetic counseling graduate training programs and the workforce. As a group, they are unlike previous youth generations in many ways, including the way they learn. Therefore, genetic counselors who teach and supervise need to understand the Millennials and explore new ways of teaching to ensure that the next cohort of genetic counselors has both skills and knowledge to represent our profession well. This paper will summarize the distinguishing traits of the Millennial generation as well as authentic learning and evolutionary scaffolding theories of learning that can enhance teaching and supervision. We will then use specific aspects of case preparation during clinical rotations to demonstrate how incorporating authentic learning theory into evolutionary scaffolding results in experiential evolutionary scaffolding, a method that potentially offers a more effective approach when teaching Millennials. We conclude with suggestions for future research.
NASA Astrophysics Data System (ADS)
Jarabo-Amores, María-Pilar; la Mata-Moya, David de; Gil-Pita, Roberto; Rosa-Zurera, Manuel
2013-12-01
The application of supervised learning machines trained to minimize the Cross-Entropy error to radar detection is explored in this article. The detector is implemented with a learning machine that implements a discriminant function, which output is compared to a threshold selected to fix a desired probability of false alarm. The study is based on the calculation of the function the learning machine approximates to during training, and the application of a sufficient condition for a discriminant function to be used to approximate the optimum Neyman-Pearson (NP) detector. In this article, the function a supervised learning machine approximates to after being trained to minimize the Cross-Entropy error is obtained. This discriminant function can be used to implement the NP detector, which maximizes the probability of detection, maintaining the probability of false alarm below or equal to a predefined value. Some experiments about signal detection using neural networks are also presented to test the validity of the study.
Gurková, Elena; Žiaková, Katarína
2018-05-18
The purpose of the cross-sectional descriptive study was to explore and compare the students' experiences of the clinical environment and supervision in Slovakia. Students' clinical learning experience were measured by the valid and reliable clinical learning instrument. A higher frequency of successful supervisory experience was found in the universities which provided accredited mentor preparation programmes or courses and individualised supervisory approaches. Frequency of supervision meetings, the occupational title of a supervisor and mainly the supervision model have an association with students 'perceptions of different domains of clinical learning environment. The duration of the placement was not related to students' experience and perceptions of the learning environment. Slovak students reported higher score regarding the quality of nursing care or ward culture than in the supervisory relationships between students, clinical and school staff. Further studies in this field, extended to different Eastern European countries and clinical settings, may help us to understand factors affecting workplace training.
Network Supervision of Adult Experience and Learning Dependent Sensory Cortical Plasticity.
Blake, David T
2017-06-18
The brain is capable of remodeling throughout life. The sensory cortices provide a useful preparation for studying neuroplasticity both during development and thereafter. In adulthood, sensory cortices change in the cortical area activated by behaviorally relevant stimuli, by the strength of response within that activated area, and by the temporal profiles of those responses. Evidence supports forms of unsupervised, reinforcement, and fully supervised network learning rules. Studies on experience-dependent plasticity have mostly not controlled for learning, and they find support for unsupervised learning mechanisms. Changes occur with greatest ease in neurons containing α-CamKII, which are pyramidal neurons in layers II/III and layers V/VI. These changes use synaptic mechanisms including long term depression. Synaptic strengthening at NMDA-containing synapses does occur, but its weak association with activity suggests other factors also initiate changes. Studies that control learning find support of reinforcement learning rules and limited evidence of other forms of supervised learning. Behaviorally associating a stimulus with reinforcement leads to a strengthening of cortical response strength and enlarging of response area with poor selectivity. Associating a stimulus with omission of reinforcement leads to a selective weakening of responses. In some preparations in which these associations are not as clearly made, neurons with the most informative discharges are relatively stronger after training. Studies analyzing the temporal profile of responses associated with omission of reward, or of plasticity in studies with different discriminanda but statistically matched stimuli, support the existence of limited supervised network learning. © 2017 American Physiological Society. Compr Physiol 7:977-1008, 2017. Copyright © 2017 John Wiley & Sons, Inc.
On the convergence of nanotechnology and Big Data analysis for computer-aided diagnosis.
Rodrigues, Jose F; Paulovich, Fernando V; de Oliveira, Maria Cf; de Oliveira, Osvaldo N
2016-04-01
An overview is provided of the challenges involved in building computer-aided diagnosis systems capable of precise medical diagnostics based on integration and interpretation of data from different sources and formats. The availability of massive amounts of data and computational methods associated with the Big Data paradigm has brought hope that such systems may soon be available in routine clinical practices, which is not the case today. We focus on visual and machine learning analysis of medical data acquired with varied nanotech-based techniques and on methods for Big Data infrastructure. Because diagnosis is essentially a classification task, we address the machine learning techniques with supervised and unsupervised classification, making a critical assessment of the progress already made in the medical field and the prospects for the near future. We also advocate that successful computer-aided diagnosis requires a merge of methods and concepts from nanotechnology and Big Data analysis.
Critical Action Learning: A Method or Strategy for Peer Supervision of Coaching Practice
ERIC Educational Resources Information Center
Turner, Arthur; Tee, David; Crompton, Sally
2017-01-01
This paper deals with the on-going practice of a critical action learning set who come together to meet their needs for coaching supervision as a group of executive coaches working from, and within, the University sector in South Wales. The reasons for the successes of, and the challenges around, this practice of four years standing have been…
ERIC Educational Resources Information Center
Heffron, Mary Claire; Murch, Trudi
2018-01-01
Successful implementation of a reflective supervision (RS) model in an agency or system requires careful attention to the learning needs of supervisees. Although supervisors and managers typically receive orientation and training to help them understand and implement RS, their staff rarely do. In this article, the authors explore supervisees'…
ERIC Educational Resources Information Center
Bayrak, Coskun; Kesim, Eren
2005-01-01
In this study, an e-learning platform was formed to enable school teachers and administrators to attend graduate programs in the field of educational administration, supervision, planning and economics. In this framework, for the non-thesis educational administration, supervision, planning and economics graduate programs to be conducted in the…
ERIC Educational Resources Information Center
Okiror, John James; Matsiko, Biryabaho Frank; Oonyu, Joseph
2011-01-01
School systems in Africa are short of skills that link well with rural communities, yet arguments to vocationalize curricula remain mixed and school agriculture lacks the supervised practical component. This study, conducted in eight primary (elementary) schools in Uganda, sought to compare the learning achievement of pupils taught using…
ERIC Educational Resources Information Center
Jeong, Shinhee; McLean, Gary N.; McLean, Laird D.; Yoo, Sangok; Bartlett, Kenneth
2017-01-01
Purpose: By adopting a multilevel approach, this paper aims to examine the relationships among employee creativity and creative personality, domain expertise (i.e. individual-level factors), non-controlling supervision style and organizational learning culture (i.e. team-level factors). It also investigates the cross-level interactions between…
A review of supervised object-based land-cover image classification
NASA Astrophysics Data System (ADS)
Ma, Lei; Li, Manchun; Ma, Xiaoxue; Cheng, Liang; Du, Peijun; Liu, Yongxue
2017-08-01
Object-based image classification for land-cover mapping purposes using remote-sensing imagery has attracted significant attention in recent years. Numerous studies conducted over the past decade have investigated a broad array of sensors, feature selection, classifiers, and other factors of interest. However, these research results have not yet been synthesized to provide coherent guidance on the effect of different supervised object-based land-cover classification processes. In this study, we first construct a database with 28 fields using qualitative and quantitative information extracted from 254 experimental cases described in 173 scientific papers. Second, the results of the meta-analysis are reported, including general characteristics of the studies (e.g., the geographic range of relevant institutes, preferred journals) and the relationships between factors of interest (e.g., spatial resolution and study area or optimal segmentation scale, accuracy and number of targeted classes), especially with respect to the classification accuracy of different sensors, segmentation scale, training set size, supervised classifiers, and land-cover types. Third, useful data on supervised object-based image classification are determined from the meta-analysis. For example, we find that supervised object-based classification is currently experiencing rapid advances, while development of the fuzzy technique is limited in the object-based framework. Furthermore, spatial resolution correlates with the optimal segmentation scale and study area, and Random Forest (RF) shows the best performance in object-based classification. The area-based accuracy assessment method can obtain stable classification performance, and indicates a strong correlation between accuracy and training set size, while the accuracy of the point-based method is likely to be unstable due to mixed objects. In addition, the overall accuracy benefits from higher spatial resolution images (e.g., unmanned aerial vehicle) or agricultural sites where it also correlates with the number of targeted classes. More than 95.6% of studies involve an area less than 300 ha, and the spatial resolution of images is predominantly between 0 and 2 m. Furthermore, we identify some methods that may advance supervised object-based image classification. For example, deep learning and type-2 fuzzy techniques may further improve classification accuracy. Lastly, scientists are strongly encouraged to report results of uncertainty studies to further explore the effects of varied factors on supervised object-based image classification.
Adaptive distance metric learning for diffusion tensor image segmentation.
Kong, Youyong; Wang, Defeng; Shi, Lin; Hui, Steve C N; Chu, Winnie C W
2014-01-01
High quality segmentation of diffusion tensor images (DTI) is of key interest in biomedical research and clinical application. In previous studies, most efforts have been made to construct predefined metrics for different DTI segmentation tasks. These methods require adequate prior knowledge and tuning parameters. To overcome these disadvantages, we proposed to automatically learn an adaptive distance metric by a graph based semi-supervised learning model for DTI segmentation. An original discriminative distance vector was first formulated by combining both geometry and orientation distances derived from diffusion tensors. The kernel metric over the original distance and labels of all voxels were then simultaneously optimized in a graph based semi-supervised learning approach. Finally, the optimization task was efficiently solved with an iterative gradient descent method to achieve the optimal solution. With our approach, an adaptive distance metric could be available for each specific segmentation task. Experiments on synthetic and real brain DTI datasets were performed to demonstrate the effectiveness and robustness of the proposed distance metric learning approach. The performance of our approach was compared with three classical metrics in the graph based semi-supervised learning framework.
Adaptive Distance Metric Learning for Diffusion Tensor Image Segmentation
Kong, Youyong; Wang, Defeng; Shi, Lin; Hui, Steve C. N.; Chu, Winnie C. W.
2014-01-01
High quality segmentation of diffusion tensor images (DTI) is of key interest in biomedical research and clinical application. In previous studies, most efforts have been made to construct predefined metrics for different DTI segmentation tasks. These methods require adequate prior knowledge and tuning parameters. To overcome these disadvantages, we proposed to automatically learn an adaptive distance metric by a graph based semi-supervised learning model for DTI segmentation. An original discriminative distance vector was first formulated by combining both geometry and orientation distances derived from diffusion tensors. The kernel metric over the original distance and labels of all voxels were then simultaneously optimized in a graph based semi-supervised learning approach. Finally, the optimization task was efficiently solved with an iterative gradient descent method to achieve the optimal solution. With our approach, an adaptive distance metric could be available for each specific segmentation task. Experiments on synthetic and real brain DTI datasets were performed to demonstrate the effectiveness and robustness of the proposed distance metric learning approach. The performance of our approach was compared with three classical metrics in the graph based semi-supervised learning framework. PMID:24651858
Understanding Trust as an Essential Element of Trainee Supervision and Learning in the Workplace
ERIC Educational Resources Information Center
Hauer, Karen E.; ten Cate, Olle; Boscardin, Christy; Irby, David M.; Iobst, William; O'Sullivan, Patricia S.
2014-01-01
Clinical supervision requires that supervisors make decisions about how much independence to allow their trainees for patient care tasks. The simultaneous goals of ensuring quality patient care and affording trainees appropriate and progressively greater responsibility require that the supervising physician trusts the trainee. Trust allows the…
Machine learning for neuroimaging with scikit-learn.
Abraham, Alexandre; Pedregosa, Fabian; Eickenberg, Michael; Gervais, Philippe; Mueller, Andreas; Kossaifi, Jean; Gramfort, Alexandre; Thirion, Bertrand; Varoquaux, Gaël
2014-01-01
Statistical machine learning methods are increasingly used for neuroimaging data analysis. Their main virtue is their ability to model high-dimensional datasets, e.g., multivariate analysis of activation images or resting-state time series. Supervised learning is typically used in decoding or encoding settings to relate brain images to behavioral or clinical observations, while unsupervised learning can uncover hidden structures in sets of images (e.g., resting state functional MRI) or find sub-populations in large cohorts. By considering different functional neuroimaging applications, we illustrate how scikit-learn, a Python machine learning library, can be used to perform some key analysis steps. Scikit-learn contains a very large set of statistical learning algorithms, both supervised and unsupervised, and its application to neuroimaging data provides a versatile tool to study the brain.
Machine learning for neuroimaging with scikit-learn
Abraham, Alexandre; Pedregosa, Fabian; Eickenberg, Michael; Gervais, Philippe; Mueller, Andreas; Kossaifi, Jean; Gramfort, Alexandre; Thirion, Bertrand; Varoquaux, Gaël
2014-01-01
Statistical machine learning methods are increasingly used for neuroimaging data analysis. Their main virtue is their ability to model high-dimensional datasets, e.g., multivariate analysis of activation images or resting-state time series. Supervised learning is typically used in decoding or encoding settings to relate brain images to behavioral or clinical observations, while unsupervised learning can uncover hidden structures in sets of images (e.g., resting state functional MRI) or find sub-populations in large cohorts. By considering different functional neuroimaging applications, we illustrate how scikit-learn, a Python machine learning library, can be used to perform some key analysis steps. Scikit-learn contains a very large set of statistical learning algorithms, both supervised and unsupervised, and its application to neuroimaging data provides a versatile tool to study the brain. PMID:24600388
Quantum-Enhanced Machine Learning
NASA Astrophysics Data System (ADS)
Dunjko, Vedran; Taylor, Jacob M.; Briegel, Hans J.
2016-09-01
The emerging field of quantum machine learning has the potential to substantially aid in the problems and scope of artificial intelligence. This is only enhanced by recent successes in the field of classical machine learning. In this work we propose an approach for the systematic treatment of machine learning, from the perspective of quantum information. Our approach is general and covers all three main branches of machine learning: supervised, unsupervised, and reinforcement learning. While quantum improvements in supervised and unsupervised learning have been reported, reinforcement learning has received much less attention. Within our approach, we tackle the problem of quantum enhancements in reinforcement learning as well, and propose a systematic scheme for providing improvements. As an example, we show that quadratic improvements in learning efficiency, and exponential improvements in performance over limited time periods, can be obtained for a broad class of learning problems.
Multisubject Learning for Common Spatial Patterns in Motor-Imagery BCI
Devlaminck, Dieter; Wyns, Bart; Grosse-Wentrup, Moritz; Otte, Georges; Santens, Patrick
2011-01-01
Motor-imagery-based brain-computer interfaces (BCIs) commonly use the common spatial pattern filter (CSP) as preprocessing step before feature extraction and classification. The CSP method is a supervised algorithm and therefore needs subject-specific training data for calibration, which is very time consuming to collect. In order to reduce the amount of calibration data that is needed for a new subject, one can apply multitask (from now on called multisubject) machine learning techniques to the preprocessing phase. Here, the goal of multisubject learning is to learn a spatial filter for a new subject based on its own data and that of other subjects. This paper outlines the details of the multitask CSP algorithm and shows results on two data sets. In certain subjects a clear improvement can be seen, especially when the number of training trials is relatively low. PMID:22007194
Ensemble learning in fixed expansion layer networks for mitigating catastrophic forgetting.
Coop, Robert; Mishtal, Aaron; Arel, Itamar
2013-10-01
Catastrophic forgetting is a well-studied attribute of most parameterized supervised learning systems. A variation of this phenomenon, in the context of feedforward neural networks, arises when nonstationary inputs lead to loss of previously learned mappings. The majority of the schemes proposed in the literature for mitigating catastrophic forgetting were not data driven and did not scale well. We introduce the fixed expansion layer (FEL) feedforward neural network, which embeds a sparsely encoding hidden layer to help mitigate forgetting of prior learned representations. In addition, we investigate a novel framework for training ensembles of FEL networks, based on exploiting an information-theoretic measure of diversity between FEL learners, to further control undesired plasticity. The proposed methodology is demonstrated on a basic classification task, clearly emphasizing its advantages over existing techniques. The architecture proposed can be enhanced to address a range of computational intelligence tasks, such as regression problems and system control.
2014-01-01
Classification confidence, or informative content of the subsets, is quantified by the Information Divergence. Our approach relates to active learning , semi-supervised learning, mixed generative/discriminative learning.
Ahuja, Jaya
2009-11-01
To evaluate the learning experience of non medical prescribing (NMP) students during their period of learning in practice and to explore strategies for improvement. A self-administered questionnaire was used to collect data from two consecutive NMP student cohorts. Of 57 NMP students, the majority (64.9%) worked in primary care setting. In contrast to those from primary care setting, the students working in secondary/tertiary care setting had significantly greater chance of knowing their designated medical practitioner (DMP) prior to starting their course (p=0.044). However, this did not influence whether the student did a learning agreement and time schedule agreement with the DMP at the beginning of practice setting. A learning agreement and time schedule was done by 91.2% and 57.9% students, respectively, at beginning of the course. Prior time schedule agreement was a significant determinant in determining the number of hours that student spent subsequently under direct supervision of DMP: 75.8% of those who did a prior time schedule spent >30% of practice hours under the direct supervision of DMP as compared to only 50% of those who did not. Spending >30% of the practice hours under direct supervision of the DMP was significantly associated with student satisfaction (p=0.025). There was greater likelihood of a student being assessed formatively if a prior learning agreement had been done (p=0.035) resulting in increased student satisfaction. Time and workload constraints, organisational issues and peer support emerged as barriers to student learning. Students commented on difficulties in getting doctors as a DMP; and therefore suggested that learning experience can be enhanced if a qualified practicing Non Medical Prescriber could act as a "co-mentor". There were also suggestions of providing incentives to doctors and giving them more information about the role of NMP to encourage more doctors to act as DMP. Learning agreement and a time schedule with DMP at the beginning of the supervised period in practice significantly improved the students' learning experience, and was a major determinant of subsequent student satisfaction. Those who spent at least 30% of practice development time under direct supervision of their DMP were likely to be more satisfied with the learning process.
Data Programming: Creating Large Training Sets, Quickly.
Ratner, Alexander; De Sa, Christopher; Wu, Sen; Selsam, Daniel; Ré, Christopher
2016-12-01
Large labeled training sets are the critical building blocks of supervised learning methods and are key enablers of deep learning techniques. For some applications, creating labeled training sets is the most time-consuming and expensive part of applying machine learning. We therefore propose a paradigm for the programmatic creation of training sets called data programming in which users express weak supervision strategies or domain heuristics as labeling functions , which are programs that label subsets of the data, but that are noisy and may conflict. We show that by explicitly representing this training set labeling process as a generative model, we can "denoise" the generated training set, and establish theoretically that we can recover the parameters of these generative models in a handful of settings. We then show how to modify a discriminative loss function to make it noise-aware, and demonstrate our method over a range of discriminative models including logistic regression and LSTMs. Experimentally, on the 2014 TAC-KBP Slot Filling challenge, we show that data programming would have led to a new winning score, and also show that applying data programming to an LSTM model leads to a TAC-KBP score almost 6 F1 points over a state-of-the-art LSTM baseline (and into second place in the competition). Additionally, in initial user studies we observed that data programming may be an easier way for non-experts to create machine learning models when training data is limited or unavailable.
Data Programming: Creating Large Training Sets, Quickly
Ratner, Alexander; De Sa, Christopher; Wu, Sen; Selsam, Daniel; Ré, Christopher
2018-01-01
Large labeled training sets are the critical building blocks of supervised learning methods and are key enablers of deep learning techniques. For some applications, creating labeled training sets is the most time-consuming and expensive part of applying machine learning. We therefore propose a paradigm for the programmatic creation of training sets called data programming in which users express weak supervision strategies or domain heuristics as labeling functions, which are programs that label subsets of the data, but that are noisy and may conflict. We show that by explicitly representing this training set labeling process as a generative model, we can “denoise” the generated training set, and establish theoretically that we can recover the parameters of these generative models in a handful of settings. We then show how to modify a discriminative loss function to make it noise-aware, and demonstrate our method over a range of discriminative models including logistic regression and LSTMs. Experimentally, on the 2014 TAC-KBP Slot Filling challenge, we show that data programming would have led to a new winning score, and also show that applying data programming to an LSTM model leads to a TAC-KBP score almost 6 F1 points over a state-of-the-art LSTM baseline (and into second place in the competition). Additionally, in initial user studies we observed that data programming may be an easier way for non-experts to create machine learning models when training data is limited or unavailable. PMID:29872252
Kaufhold, John P; Tsai, Philbert S; Blinder, Pablo; Kleinfeld, David
2012-08-01
A graph of tissue vasculature is an essential requirement to model the exchange of gasses and nutriments between the blood and cells in the brain. Such a graph is derived from a vectorized representation of anatomical data, provides a map of all vessels as vertices and segments, and may include the location of nonvascular components, such as neuronal and glial somata. Yet vectorized data sets typically contain erroneous gaps, spurious endpoints, and spuriously merged strands. Current methods to correct such defects only address the issue of connecting gaps and further require manual tuning of parameters in a high dimensional algorithm. To address these shortcomings, we introduce a supervised machine learning method that (1) connects vessel gaps by "learned threshold relaxation"; (2) removes spurious segments by "learning to eliminate deletion candidate strands"; and (3) enforces consistency in the joint space of learned vascular graph corrections through "consistency learning." Human operators are only required to label individual objects they recognize in a training set and are not burdened with tuning parameters. The supervised learning procedure examines the geometry and topology of features in the neighborhood of each vessel segment under consideration. We demonstrate the effectiveness of these methods on four sets of microvascular data, each with >800(3) voxels, obtained with all optical histology of mouse tissue and vectorization by state-of-the-art techniques in image segmentation. Through statistically validated sampling and analysis in terms of precision recall curves, we find that learning with bagged boosted decision trees reduces equal-error error rates for threshold relaxation by 5-21% and strand elimination performance by 18-57%. We benchmark generalization performance across datasets; while improvements vary between data sets, learning always leads to a useful reduction in error rates. Overall, learning is shown to more than halve the total error rate, and therefore, human time spent manually correcting such vectorizations. Copyright © 2012 Elsevier B.V. All rights reserved.
Kaufhold, John P.; Tsai, Philbert S.; Blinder, Pablo; Kleinfeld, David
2012-01-01
A graph of tissue vasculature is an essential requirement to model the exchange of gasses and nutriments between the blood and cells in the brain. Such a graph is derived from a vectorized representation of anatomical data, provides a map of all vessels as vertices and segments, and may include the location of nonvascular components, such as neuronal and glial somata. Yet vectorized data sets typically contain erroneous gaps, spurious endpoints, and spuriously merged strands. Current methods to correct such defects only address the issue of connecting gaps and further require manual tuning of parameters in a high dimensional algorithm. To address these shortcomings, we introduce a supervised machine learning method that (1) connects vessel gaps by “learned threshold relaxation”; (2) removes spurious segments by “learning to eliminate deletion candidate strands”; and (3) enforces consistency in the joint space of learned vascular graph corrections through “consistency learning.” Human operators are only required to label individual objects they recognize in a training set and are not burdened with tuning parameters. The supervised learning procedure examines the geometry and topology of features in the neighborhood of each vessel segment under consideration. We demonstrate the effectiveness of these methods on four sets of microvascular data, each with > 8003 voxels, obtained with all optical histology of mouse tissue and vectorization by state-of-the-art techniques in image segmentation. Through statistically validated sampling and analysis in terms of precision recall curves, we find that learning with bagged boosted decision trees reduces equal-error error rates for threshold relaxation by 5 to 21 % and strand elimination performance by 18 to 57 %. We benchmark generalization performance across datasets; while improvements vary between data sets, learning always leads to a useful reduction in error rates. Overall, learning is shown to more than halve the total error rate, and therefore, human time spent manually correcting such vectorizations. PMID:22854035
Use of Live Supervision in Counselor Preparation.
ERIC Educational Resources Information Center
Bubenzer, Donald L.; And Others
1991-01-01
Investigated live supervision in counselor preparation programs by surveying 307 counselor preparation programs. Live supervision was used at 157 institutions and was used in preparing individual, group, and marriage and family counselors. At least 75 percent of programs provided live supervision weekly. Techniques of cotherapy and remote viewing…
Target oriented dimensionality reduction of hyperspectral data by Kernel Fukunaga-Koontz Transform
NASA Astrophysics Data System (ADS)
Binol, Hamidullah; Ochilov, Shuhrat; Alam, Mohammad S.; Bal, Abdullah
2017-02-01
Principal component analysis (PCA) is a popular technique in remote sensing for dimensionality reduction. While PCA is suitable for data compression, it is not necessarily an optimal technique for feature extraction, particularly when the features are exploited in supervised learning applications (Cheriyadat and Bruce, 2003) [1]. Preserving features belonging to the target is very crucial to the performance of target detection/recognition techniques. Fukunaga-Koontz Transform (FKT) based supervised band reduction technique can be used to provide this requirement. FKT achieves feature selection by transforming into a new space in where feature classes have complimentary eigenvectors. Analysis of these eigenvectors under two classes, target and background clutter, can be utilized for target oriented band reduction since each basis functions best represent target class while carrying least information of the background class. By selecting few eigenvectors which are the most relevant to the target class, dimension of hyperspectral data can be reduced and thus, it presents significant advantages for near real time target detection applications. The nonlinear properties of the data can be extracted by kernel approach which provides better target features. Thus, we propose constructing kernel FKT (KFKT) to present target oriented band reduction. The performance of the proposed KFKT based target oriented dimensionality reduction algorithm has been tested employing two real-world hyperspectral data and results have been reported consequently.
Aryal, Kamal Raj; Pereira, Jerome
2014-12-01
E learning means use of electronic media and information technologies in education. Virtual learning environment (VLE) provides learning platforms consisting of online tools, databases and managed resources. This article is a review of use of E learning in medical and surgical education including available evidence favouring this approach. E learning has been shown to be more effective, less costly and more satisfying to the students than the traditional methods. E learning cannot however replace direct consultant supervision at their place of work in surgical trainees and a combination of both called blended learning has been shown to be most useful. As an example of university-based qualification, one such programme is presented to clarify the components and the process of E learning. Increasing use of E learning and occasional face to face focussed supervision by the teacher is likely to enhance surgical training in the future.
Lian, Huiwen; Ferris, D Lance; Brown, Douglas J
2012-01-01
We predicted that the effects of abusive supervision are likely to be moderated by subordinate power distance orientation and that the nature of the moderating effect will depend on the outcome. Drawing upon work suggesting that high power distance orientation subordinates are more tolerant of supervisory mistreatment, we posited that high power distance orientation subordinates would be less likely to view abusive supervision as interpersonally unfair. Drawing upon social learning theory suggestions that high power distance orientation subordinates are more likely to view supervisors as role models, we posited that high power distance orientation subordinates would be more likely to pattern their own interpersonally deviant behavior after that of abusive supervisors. Across 3 samples we found support for our predicted interactions, culminating in a mediated moderation model demonstrating that social learning mediates the interaction of abusive supervision and power distance on subordinate interpersonal deviance, while ruling out alternate self-regulation impairment or displaced aggression explanations. Implications for the abusive supervision literature are discussed.
Zhao, Xiaowei; Ning, Qiao; Chai, Haiting; Ma, Zhiqiang
2015-06-07
As a widespread type of protein post-translational modifications (PTMs), succinylation plays an important role in regulating protein conformation, function and physicochemical properties. Compared with the labor-intensive and time-consuming experimental approaches, computational predictions of succinylation sites are much desirable due to their convenient and fast speed. Currently, numerous computational models have been developed to identify PTMs sites through various types of two-class machine learning algorithms. These methods require both positive and negative samples for training. However, designation of the negative samples of PTMs was difficult and if it is not properly done can affect the performance of computational models dramatically. So that in this work, we implemented the first application of positive samples only learning (PSoL) algorithm to succinylation sites prediction problem, which was a special class of semi-supervised machine learning that used positive samples and unlabeled samples to train the model. Meanwhile, we proposed a novel succinylation sites computational predictor called SucPred (succinylation site predictor) by using multiple feature encoding schemes. Promising results were obtained by the SucPred predictor with an accuracy of 88.65% using 5-fold cross validation on the training dataset and an accuracy of 84.40% on the independent testing dataset, which demonstrated that the positive samples only learning algorithm presented here was particularly useful for identification of protein succinylation sites. Besides, the positive samples only learning algorithm can be applied to build predictors for other types of PTMs sites with ease. A web server for predicting succinylation sites was developed and was freely accessible at http://59.73.198.144:8088/SucPred/. Copyright © 2015 Elsevier Ltd. All rights reserved.
Mikkonen, Kristina; Elo, Satu; Miettunen, Jouko; Saarikoski, Mikko; Kääriäinen, Maria
2017-05-01
Previously, it has been shown that the clinical learning environment causes challenges for international nursing students, but there is a lack of empirical evidence relating to the background factors explaining and influencing the outcomes. To describe international and national students' perceptions of their clinical learning environment and supervision, and explain the related background factors. An explorative cross-sectional design was used in a study conducted in eight universities of applied sciences in Finland during September 2015-May 2016. All nursing students studying English language degree programs were invited to answer a self-administered questionnaire based on both the clinical learning environment, supervision and nurse teacher scale and Cultural and Linguistic Diversity scale with additional background questions. Participants (n=329) included international (n=231) and Finnish (n=98) nursing students. Binary logistic regression was used to identify background factors relating to the clinical learning environment and supervision. International students at a beginner level in Finnish perceived the pedagogical atmosphere as worse than native speakers. In comparison to native speakers, these international students generally needed greater support from the nurse teacher at their university. Students at an intermediate level in Finnish reported two times fewer negative encounters in cultural diversity at their clinical placement than the beginners. To facilitate a successful learning experience, international nursing students require a sufficient level of competence in the native language when conducting clinical placements. Educational interventions in language education are required to test causal effects on students' success in the clinical learning environment. Copyright © 2017 Elsevier Ltd. All rights reserved.
Supporting and Supervising Teachers Working With Adults Learning English. CAELA Network Brief
ERIC Educational Resources Information Center
Young, Sarah
2009-01-01
This brief provides an overview of the knowledge and skills that administrators need in order to support and supervise teachers of adult English language learners. It begins with a review of resources and literature related to teacher supervision in general and to adult ESL education. It continues with information on the background and…
ERIC Educational Resources Information Center
Hu, Yanjuan; van der Rijst, Roeland Matthijs; van Veen, Klaas; Verloop, Nico
2016-01-01
The number of international Chinese students enrolled in research programmes in Western universities is growing. To provide effective research supervision to these students, it is helpful to understand the similarities and differences in the supervision process between the host country and their home country. We explored which learning outcomes…
ERIC Educational Resources Information Center
Gallen, Robert T.; Ash, Jordana; Smith, Conner; Franco, Allison; Willford, Jennifer A.
2016-01-01
Reflective supervision and consultation (RS/C) is often defined as a "relationship for learning"(Fenichel, 1992, p.9). As such, measurement tools should include the perspective of each participant in the supervisory relationship when assessing RS/C fidelity, delivery quality, and the supervisee's experience. The Reflective Supervision…
Minardi, H A; Ritter, S
1999-06-01
Video recording techniques have been used in educational settings for a number of years. They have included viewing video taped lessons, using whole videos or clips of tapes as a trigger for discussion, viewing video recordings to observe role models for practice, and being video recorded in order to receive feedback on performance from peers and tutors. Although this last application has been in use since the 1960s, it has only been evaluated as a teaching method with health care professionals in the past 10 years and mostly in the areas of medical and counsellor education. In nurse education, however, use of video recording techniques has been advocated without any empirical evidence on its efficacy. This study has used nursing degree students and nurse educationalists to categorize statements from four cohorts of students who took part in a 12-day clinical supervision course during which their interpersonal skills were recorded on videotape. There were two categories: positive and negative/neutral. Analysis of the data showed that between 61% and 72% of the subjects gave an overall positive categorization to the statements in the questionnaire. Chi-square tests were significant for all groups in both categories. This suggests that both nursing students and nurse lecturers thought that course participants' statements expressed a positive belief that video tape recording is useful in enhancing students' ability to learn effective interpersonal skills in clinical supervision.
Parker, Stephen; Suetani, Shuichi; Motamarri, Balaji
2017-12-01
The importance of clinical supervision is emphasised in psychiatric training programs. Despite this, the purpose and processes of supervision are often poorly defined. There is limited guidance available for trainees about their role in making supervision work. This paper considers the nature of supervision in psychiatric training and provides practical advice to help supervisees take active steps to make supervision work. In obtaining value from supervision, the active role of the supervisee in seeking feedback, finding value in criticism and building autonomy is emphasised. Additionally, the importance of exploring what value a supervisor can offer and maintaining realistic expectations is considered. Trainees can benefit from taking an active role in planning and managing their supervision to maximise their learning.
Large-scale weakly supervised object localization via latent category learning.
Chong Wang; Kaiqi Huang; Weiqiang Ren; Junge Zhang; Maybank, Steve
2015-04-01
Localizing objects in cluttered backgrounds is challenging under large-scale weakly supervised conditions. Due to the cluttered image condition, objects usually have large ambiguity with backgrounds. Besides, there is also a lack of effective algorithm for large-scale weakly supervised localization in cluttered backgrounds. However, backgrounds contain useful latent information, e.g., the sky in the aeroplane class. If this latent information can be learned, object-background ambiguity can be largely reduced and background can be suppressed effectively. In this paper, we propose the latent category learning (LCL) in large-scale cluttered conditions. LCL is an unsupervised learning method which requires only image-level class labels. First, we use the latent semantic analysis with semantic object representation to learn the latent categories, which represent objects, object parts or backgrounds. Second, to determine which category contains the target object, we propose a category selection strategy by evaluating each category's discrimination. Finally, we propose the online LCL for use in large-scale conditions. Evaluation on the challenging PASCAL Visual Object Class (VOC) 2007 and the large-scale imagenet large-scale visual recognition challenge 2013 detection data sets shows that the method can improve the annotation precision by 10% over previous methods. More importantly, we achieve the detection precision which outperforms previous results by a large margin and can be competitive to the supervised deformable part model 5.0 baseline on both data sets.
Pneumothorax detection in chest radiographs using local and global texture signatures
NASA Astrophysics Data System (ADS)
Geva, Ofer; Zimmerman-Moreno, Gali; Lieberman, Sivan; Konen, Eli; Greenspan, Hayit
2015-03-01
A novel framework for automatic detection of pneumothorax abnormality in chest radiographs is presented. The suggested method is based on a texture analysis approach combined with supervised learning techniques. The proposed framework consists of two main steps: at first, a texture analysis process is performed for detection of local abnormalities. Labeled image patches are extracted in the texture analysis procedure following which local analysis values are incorporated into a novel global image representation. The global representation is used for training and detection of the abnormality at the image level. The presented global representation is designed based on the distinctive shape of the lung, taking into account the characteristics of typical pneumothorax abnormalities. A supervised learning process was performed on both the local and global data, leading to trained detection system. The system was tested on a dataset of 108 upright chest radiographs. Several state of the art texture feature sets were experimented with (Local Binary Patterns, Maximum Response filters). The optimal configuration yielded sensitivity of 81% with specificity of 87%. The results of the evaluation are promising, establishing the current framework as a basis for additional improvements and extensions.
Classification of ROTSE Variable Stars using Machine Learning
NASA Astrophysics Data System (ADS)
Wozniak, P. R.; Akerlof, C.; Amrose, S.; Brumby, S.; Casperson, D.; Gisler, G.; Kehoe, R.; Lee, B.; Marshall, S.; McGowan, K. E.; McKay, T.; Perkins, S.; Priedhorsky, W.; Rykoff, E.; Smith, D. A.; Theiler, J.; Vestrand, W. T.; Wren, J.; ROTSE Collaboration
2001-12-01
We evaluate several Machine Learning algorithms as potential tools for automated classification of variable stars. Using the ROTSE sample of ~1800 variables from a pilot study of 5% of the whole sky, we compare the effectiveness of a supervised technique (Support Vector Machines, SVM) versus unsupervised methods (K-means and Autoclass). There are 8 types of variables in the sample: RR Lyr AB, RR Lyr C, Delta Scuti, Cepheids, detached eclipsing binaries, contact binaries, Miras and LPVs. Preliminary results suggest a very high ( ~95%) efficiency of SVM in isolating a few best defined classes against the rest of the sample, and good accuracy ( ~70-75%) for all classes considered simultaneously. This includes some degeneracies, irreducible with the information at hand. Supervised methods naturally outperform unsupervised methods, in terms of final error rate, but unsupervised methods offer many advantages for large sets of unlabeled data. Therefore, both types of methods should be considered as promising tools for mining vast variability surveys. We project that there are more than 30,000 periodic variables in the ROTSE-I data base covering the entire local sky between V=10 and 15.5 mag. This sample size is already stretching the time capabilities of human analysts.
MutSα's Multi-Domain Allosteric Response to Three DNA Damage Types Revealed by Machine Learning
NASA Astrophysics Data System (ADS)
Melvin, Ryan L.; Thompson, William G.; Godwin, Ryan C.; Gmeiner, William H.; Salsbury, Freddie R.
2017-03-01
MutSalpha is a key component in the mismatch repair (MMR) pathway. This protein is responsible for initiating the signaling pathways for DNA repair or cell death. Herein we investigate this heterodimer’s post-recognition, post-binding response to three types of DNA damage involving cytotoxic, anti-cancer agents - carboplatin, cisplatin, and FdU. Through a combination of supervised and unsupervised machine learning techniques along with more traditional structural and kinetic analysis applied to all-atom molecular dynamics (MD) calculations, we predict that MutSalpha has a distinct response to each of the three damage types. Via a binary classification tree (a supervised machine learning technique), we identify key hydrogen bond motifs unique to each type of damage and suggest residues for experimental mutation studies. Through a combination of a recently developed clustering (unsupervised learning) algorithm, RMSF calculations, PCA, and correlated motions we predict that each type of damage causes MutS↵to explore a specific region of conformation space. Detailed analysis suggests a short range effect for carboplatin - primarily altering the structures and kinetics of residues within 10 angstroms of the damaged DNA - and distinct longer-range effects for cisplatin and FdU. In our simulations, we also observe that a key phenylalanine residue - known to stack with a mismatched or unmatched bases in MMR - stacks with the base complementary to the damaged base in 88.61% of MD frames containing carboplatinated DNA. Similarly, this Phe71 stacks with the base complementary to damage in 91.73% of frames with cisplatinated DNA. This residue, however, stacks with the damaged base itself in 62.18% of trajectory frames with FdU-substituted DNA and has no stacking interaction at all in 30.72% of these frames. Each drug investigated here induces a unique perturbation in the MutS↵complex, indicating the possibility of a distinct signaling event and specific repair or death pathway (or set of pathways) for a given type of damage.
Conditional High-Order Boltzmann Machines for Supervised Relation Learning.
Huang, Yan; Wang, Wei; Wang, Liang; Tan, Tieniu
2017-09-01
Relation learning is a fundamental problem in many vision tasks. Recently, high-order Boltzmann machine and its variants have shown their great potentials in learning various types of data relation in a range of tasks. But most of these models are learned in an unsupervised way, i.e., without using relation class labels, which are not very discriminative for some challenging tasks, e.g., face verification. In this paper, with the goal to perform supervised relation learning, we introduce relation class labels into conventional high-order multiplicative interactions with pairwise input samples, and propose a conditional high-order Boltzmann Machine (CHBM), which can learn to classify the data relation in a binary classification way. To be able to deal with more complex data relation, we develop two improved variants of CHBM: 1) latent CHBM, which jointly performs relation feature learning and classification, by using a set of latent variables to block the pathway from pairwise input samples to output relation labels and 2) gated CHBM, which untangles factors of variation in data relation, by exploiting a set of latent variables to multiplicatively gate the classification of CHBM. To reduce the large number of model parameters generated by the multiplicative interactions, we approximately factorize high-order parameter tensors into multiple matrices. Then, we develop efficient supervised learning algorithms, by first pretraining the models using joint likelihood to provide good parameter initialization, and then finetuning them using conditional likelihood to enhance the discriminant ability. We apply the proposed models to a series of tasks including invariant recognition, face verification, and action similarity labeling. Experimental results demonstrate that by exploiting supervised relation labels, our models can greatly improve the performance.
Patient-specific semi-supervised learning for postoperative brain tumor segmentation.
Meier, Raphael; Bauer, Stefan; Slotboom, Johannes; Wiest, Roland; Reyes, Mauricio
2014-01-01
In contrast to preoperative brain tumor segmentation, the problem of postoperative brain tumor segmentation has been rarely approached so far. We present a fully-automatic segmentation method using multimodal magnetic resonance image data and patient-specific semi-supervised learning. The idea behind our semi-supervised approach is to effectively fuse information from both pre- and postoperative image data of the same patient to improve segmentation of the postoperative image. We pose image segmentation as a classification problem and solve it by adopting a semi-supervised decision forest. The method is evaluated on a cohort of 10 high-grade glioma patients, with segmentation performance and computation time comparable or superior to a state-of-the-art brain tumor segmentation method. Moreover, our results confirm that the inclusion of preoperative MR images lead to a better performance regarding postoperative brain tumor segmentation.
Semi-Supervised Recurrent Neural Network for Adverse Drug Reaction mention extraction.
Gupta, Shashank; Pawar, Sachin; Ramrakhiyani, Nitin; Palshikar, Girish Keshav; Varma, Vasudeva
2018-06-13
Social media is a useful platform to share health-related information due to its vast reach. This makes it a good candidate for public-health monitoring tasks, specifically for pharmacovigilance. We study the problem of extraction of Adverse-Drug-Reaction (ADR) mentions from social media, particularly from Twitter. Medical information extraction from social media is challenging, mainly due to short and highly informal nature of text, as compared to more technical and formal medical reports. Current methods in ADR mention extraction rely on supervised learning methods, which suffer from labeled data scarcity problem. The state-of-the-art method uses deep neural networks, specifically a class of Recurrent Neural Network (RNN) which is Long-Short-Term-Memory network (LSTM). Deep neural networks, due to their large number of free parameters rely heavily on large annotated corpora for learning the end task. But in the real-world, it is hard to get large labeled data, mainly due to the heavy cost associated with the manual annotation. To this end, we propose a novel semi-supervised learning based RNN model, which can leverage unlabeled data also present in abundance on social media. Through experiments we demonstrate the effectiveness of our method, achieving state-of-the-art performance in ADR mention extraction. In this study, we tackle the problem of labeled data scarcity for Adverse Drug Reaction mention extraction from social media and propose a novel semi-supervised learning based method which can leverage large unlabeled corpus available in abundance on the web. Through empirical study, we demonstrate that our proposed method outperforms fully supervised learning based baseline which relies on large manually annotated corpus for a good performance.
Vance, Gillian H S; Burford, Bryan; Shapiro, Ethan; Price, Richard
2017-08-22
Little is known about how best to implement portfolio-based learning in medical school. We evaluated the introduction of a formative e-portfolio-based supervision pilot for final year medical students by seeking views of students, supervisors and graduates on use and educational effects. Students and supervisors were surveyed by questionnaire, with free text comments invited. Interviews were held with new graduates in their first Foundation Programme placement. Most students used the e-portfolio (54%) and met with their supervisor (62%) 'once or twice' only. Students had more negative views: 22% agreed that the pilot was beneficial, while most supervisors thought that e-portfolio (72%) and supervision (86%) were a 'good idea'. More students reported supervision meetings benefited learning (49%) and professional development (55%) than the e-portfolio did (16%; 28%). Only 47% of students felt 'prepared' for future educational processes, though graduates noted benefits for navigating and understanding e-portfolio building and supervision. Factors limiting engagement reflected 'burden', while supervision meetings and early experience of postgraduate processes offered educational value. Final year students have negative attitudes to a formative e-portfolio, though benefits for easing the educational transition are recognised by graduates. Measures to minimize time, repetition and redundancy of processes may encourage use. Engagement is influenced by the supervisor relationship and educational value may be best achieved by supporting supervisors to develop strategies to facilitate, and motivate self-directed learning processes in undergraduates.
Smart Annotation of Cyclic Data Using Hierarchical Hidden Markov Models.
Martindale, Christine F; Hoenig, Florian; Strohrmann, Christina; Eskofier, Bjoern M
2017-10-13
Cyclic signals are an intrinsic part of daily life, such as human motion and heart activity. The detailed analysis of them is important for clinical applications such as pathological gait analysis and for sports applications such as performance analysis. Labeled training data for algorithms that analyze these cyclic data come at a high annotation cost due to only limited annotations available under laboratory conditions or requiring manual segmentation of the data under less restricted conditions. This paper presents a smart annotation method that reduces this cost of labeling for sensor-based data, which is applicable to data collected outside of strict laboratory conditions. The method uses semi-supervised learning of sections of cyclic data with a known cycle number. A hierarchical hidden Markov model (hHMM) is used, achieving a mean absolute error of 0.041 ± 0.020 s relative to a manually-annotated reference. The resulting model was also used to simultaneously segment and classify continuous, 'in the wild' data, demonstrating the applicability of using hHMM, trained on limited data sections, to label a complete dataset. This technique achieved comparable results to its fully-supervised equivalent. Our semi-supervised method has the significant advantage of reduced annotation cost. Furthermore, it reduces the opportunity for human error in the labeling process normally required for training of segmentation algorithms. It also lowers the annotation cost of training a model capable of continuous monitoring of cycle characteristics such as those employed to analyze the progress of movement disorders or analysis of running technique.
Deep imitation learning for 3D navigation tasks.
Hussein, Ahmed; Elyan, Eyad; Gaber, Mohamed Medhat; Jayne, Chrisina
2018-01-01
Deep learning techniques have shown success in learning from raw high-dimensional data in various applications. While deep reinforcement learning is recently gaining popularity as a method to train intelligent agents, utilizing deep learning in imitation learning has been scarcely explored. Imitation learning can be an efficient method to teach intelligent agents by providing a set of demonstrations to learn from. However, generalizing to situations that are not represented in the demonstrations can be challenging, especially in 3D environments. In this paper, we propose a deep imitation learning method to learn navigation tasks from demonstrations in a 3D environment. The supervised policy is refined using active learning in order to generalize to unseen situations. This approach is compared to two popular deep reinforcement learning techniques: deep-Q-networks and Asynchronous actor-critic (A3C). The proposed method as well as the reinforcement learning methods employ deep convolutional neural networks and learn directly from raw visual input. Methods for combining learning from demonstrations and experience are also investigated. This combination aims to join the generalization ability of learning by experience with the efficiency of learning by imitation. The proposed methods are evaluated on 4 navigation tasks in a 3D simulated environment. Navigation tasks are a typical problem that is relevant to many real applications. They pose the challenge of requiring demonstrations of long trajectories to reach the target and only providing delayed rewards (usually terminal) to the agent. The experiments show that the proposed method can successfully learn navigation tasks from raw visual input while learning from experience methods fail to learn an effective policy. Moreover, it is shown that active learning can significantly improve the performance of the initially learned policy using a small number of active samples.
Machine learning applications in genetics and genomics.
Libbrecht, Maxwell W; Noble, William Stafford
2015-06-01
The field of machine learning, which aims to develop computer algorithms that improve with experience, holds promise to enable computers to assist humans in the analysis of large, complex data sets. Here, we provide an overview of machine learning applications for the analysis of genome sequencing data sets, including the annotation of sequence elements and epigenetic, proteomic or metabolomic data. We present considerations and recurrent challenges in the application of supervised, semi-supervised and unsupervised machine learning methods, as well as of generative and discriminative modelling approaches. We provide general guidelines to assist in the selection of these machine learning methods and their practical application for the analysis of genetic and genomic data sets.
Automatic classification of time-variable X-ray sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lo, Kitty K.; Farrell, Sean; Murphy, Tara
2014-05-01
To maximize the discovery potential of future synoptic surveys, especially in the field of transient science, it will be necessary to use automatic classification to identify some of the astronomical sources. The data mining technique of supervised classification is suitable for this problem. Here, we present a supervised learning method to automatically classify variable X-ray sources in the Second XMM-Newton Serendipitous Source Catalog (2XMMi-DR2). Random Forest is our classifier of choice since it is one of the most accurate learning algorithms available. Our training set consists of 873 variable sources and their features are derived from time series, spectra, andmore » other multi-wavelength contextual information. The 10 fold cross validation accuracy of the training data is ∼97% on a 7 class data set. We applied the trained classification model to 411 unknown variable 2XMM sources to produce a probabilistically classified catalog. Using the classification margin and the Random Forest derived outlier measure, we identified 12 anomalous sources, of which 2XMM J180658.7–500250 appears to be the most unusual source in the sample. Its X-ray spectra is suggestive of a ultraluminous X-ray source but its variability makes it highly unusual. Machine-learned classification and anomaly detection will facilitate scientific discoveries in the era of all-sky surveys.« less
Ray, Robin; Sabesan, Sabe
2015-01-01
Objectives Telemedicine has revolutionised the ability to provide care to patients, relieve professional isolation and provide guidance and supervision to junior medical officers in rural areas. This study evaluated the Townsville teleoncology supervision model for the training of junior medical officers in rural areas of North Queensland, Australia. Specifically, the perspectives of junior and senior medical officers were explored to identify recommendations for future implementation. Design A qualitative approach incorporating observation and semistructured interviews was used to collect data. Interviews were uploaded into NVivo 10 data management software. Template analysis enabled themes to be tested and developed through consensus between researchers. Setting One tertiary level and four secondary level healthcare centres in rural and regional Queensland, Australia. Participants 10 junior medical officers (Interns, Registrars) and 10 senior medical officers (Senior Medical Officers, Consultants) who participated in the Townsville teleoncology model of remote supervision via videoconference (TTMRS) were included in the study. Primary and Secondary outcome measures Perspectives on the telemedicine experience, technology, engagement, professional support, satisfaction and limitations were examined. Perspectives on topics raised by participants were also examined as the interviews progressed. Results Four major themes with several subthemes emerged from the data: learning environment, beginning the learning relationship, stimulus for learning and practicalities of remote supervision via videoconference. While some themes were consistent with the current literature, new themes like increased professional edge, recognising non-verbal cues and physical examination challenges were identified. Conclusions Remote supervision via videoconference provides readily available guidance to trainees supporting their delivery of appropriate care to patients. However, resources required for upskilling, training in the use of supervision via videoconference, administration issues and nursing support, as well as physical barriers to examinations, must be addressed to enable more efficient implementation. PMID:25795687
NASA Astrophysics Data System (ADS)
Sun, Hao; Wang, Cheng; Wang, Boliang
2011-02-01
We present a hybrid generative-discriminative learning method for human action recognition from video sequences. Our model combines a bag-of-words component with supervised latent topic models. A video sequence is represented as a collection of spatiotemporal words by extracting space-time interest points and describing these points using both shape and motion cues. The supervised latent Dirichlet allocation (sLDA) topic model, which employs discriminative learning using labeled data under a generative framework, is introduced to discover the latent topic structure that is most relevant to action categorization. The proposed algorithm retains most of the desirable properties of generative learning while increasing the classification performance though a discriminative setting. It has also been extended to exploit both labeled data and unlabeled data to learn human actions under a unified framework. We test our algorithm on three challenging data sets: the KTH human motion data set, the Weizmann human action data set, and a ballet data set. Our results are either comparable to or significantly better than previously published results on these data sets and reflect the promise of hybrid generative-discriminative learning approaches.
Arrangement and Applying of Movement Patterns in the Cerebellum Based on Semi-supervised Learning.
Solouki, Saeed; Pooyan, Mohammad
2016-06-01
Biological control systems have long been studied as a possible inspiration for the construction of robotic controllers. The cerebellum is known to be involved in the production and learning of smooth, coordinated movements. Therefore, highly regular structure of the cerebellum has been in the core of attention in theoretical and computational modeling. However, most of these models reflect some special features of the cerebellum without regarding the whole motor command computational process. In this paper, we try to make a logical relation between the most significant models of the cerebellum and introduce a new learning strategy to arrange the movement patterns: cerebellar modular arrangement and applying of movement patterns based on semi-supervised learning (CMAPS). We assume here the cerebellum like a big archive of patterns that has an efficient organization to classify and recall them. The main idea is to achieve an optimal use of memory locations by more than just a supervised learning and classification algorithm. Surely, more experimental and physiological researches are needed to confirm our hypothesis.
Clinical supervision: an important part of every nurse's practice.
Bifarin, Oladayo; Stonehouse, David
2017-03-23
Clinical supervision involves a supportive relationship between supervisor and supervisee that facilitates reflective learning and is part of professional socialisation. Clinical supervision can take many different forms and may be adapted to suit local circumstances. A working agreement is required between the parties to the supervision and issues surrounding confidentiality must be understood. High-quality clinical supervision leads to greater job satisfaction and less stress. When it is absent or inadequate, however, the results can be serious and it is particularly important that student nurses are well supported in this way. Further research in this area is necessary.
Choy-Brown, Mimi; Stanhope, Victoria; Tiderington, Emmy; Padgett, Deborah K
2016-07-01
Behavioral health organizations use clinical supervision to ensure professional development and practice quality. This qualitative study examined 35 service coordinators' perspectives on supervision in two distinct supportive housing program types (permanent and transitional). Thematic analysis of in-depth interviews yielded three contrast themes: support versus scrutiny, planned versus impromptu time, and housing first versus treatment first. Supervisory content and format resulted in differential perceptions of supervision, thereby influencing opportunities for learning. These findings suggest that unpacking discrete elements of supervision enactment in usual care settings can inform implementation of recovery-oriented practice.
Choy-Brown, Mimi; Stanhope, Victoria; Tiderington, Emmy; Padgett, Deborah K.
2015-01-01
Behavioral health organizations use clinical supervision to ensure professional development and practice quality. This qualitative study examined 35 service coordinators' perspectives on supervision in two distinct supportive housing program types (permanent and transitional). Thematic analysis of in-depth interviews yielded three contrast themes: support versus scrutiny, planned versus impromptu time, and Housing First versus Treatment First. Supervisory content and format resulted in differential perceptions of supervision, thereby influencing opportunities for learning. These findings suggest that unpacking discrete elements of supervision enactment in usual care settings can inform implementation of recovery-oriented practice. PMID:26066866
Rapid Training of Information Extraction with Local and Global Data Views
2012-05-01
56 xiii 4.1 An example of words and their bit string representations. Bold ones are transliterated Arabic words...Natural Language Processing ( NLP ) community faces new tasks and new domains all the time. Without enough labeled data of a new task or a new domain to...conduct supervised learning, semi-supervised learning is particularly attractive to NLP researchers since it only requires a handful of labeled examples
Parodi, Stefano; Manneschi, Chiara; Verda, Damiano; Ferrari, Enrico; Muselli, Marco
2018-03-01
This study evaluates the performance of a set of machine learning techniques in predicting the prognosis of Hodgkin's lymphoma using clinical factors and gene expression data. Analysed samples from 130 Hodgkin's lymphoma patients included a small set of clinical variables and more than 54,000 gene features. Machine learning classifiers included three black-box algorithms ( k-nearest neighbour, Artificial Neural Network, and Support Vector Machine) and two methods based on intelligible rules (Decision Tree and the innovative Logic Learning Machine method). Support Vector Machine clearly outperformed any of the other methods. Among the two rule-based algorithms, Logic Learning Machine performed better and identified a set of simple intelligible rules based on a combination of clinical variables and gene expressions. Decision Tree identified a non-coding gene ( XIST) involved in the early phases of X chromosome inactivation that was overexpressed in females and in non-relapsed patients. XIST expression might be responsible for the better prognosis of female Hodgkin's lymphoma patients.
A deep learning and novelty detection framework for rapid phenotyping in high-content screening
Sommer, Christoph; Hoefler, Rudolf; Samwer, Matthias; Gerlich, Daniel W.
2017-01-01
Supervised machine learning is a powerful and widely used method for analyzing high-content screening data. Despite its accuracy, efficiency, and versatility, supervised machine learning has drawbacks, most notably its dependence on a priori knowledge of expected phenotypes and time-consuming classifier training. We provide a solution to these limitations with CellCognition Explorer, a generic novelty detection and deep learning framework. Application to several large-scale screening data sets on nuclear and mitotic cell morphologies demonstrates that CellCognition Explorer enables discovery of rare phenotypes without user training, which has broad implications for improved assay development in high-content screening. PMID:28954863
NASA Astrophysics Data System (ADS)
Dang, Nguyen Tuan; Akai-Kasada, Megumi; Asai, Tetsuya; Saito, Akira; Kuwahara, Yuji; Hokkaido University Collaboration
2015-03-01
Machine learning using the artificial neuron network research is supposed to be the best way to understand how the human brain trains itself to process information. In this study, we have successfully developed the programs using supervised machine learning algorithm. However, these supervised learning processes for the neuron network required the very strong computing configuration. Derivation from the necessity of increasing in computing ability and in reduction of power consumption, accelerator circuits become critical. To develop such accelerator circuits using supervised machine learning algorithm, conducting polymer micro/nanowires growing process was realized and applied as a synaptic weigh controller. In this work, high conductivity Polypyrrole (PPy) and Poly (3, 4 - ethylenedioxythiophene) PEDOT wires were potentiostatically grown crosslinking the designated electrodes, which were prefabricated by lithography, when appropriate square wave AC voltage and appropriate frequency were applied. Micro/nanowire growing process emulated the neurotransmitter release process of synapses inside a biological neuron and wire's resistance variation during the growing process was preferred to as the variation of synaptic weigh in machine learning algorithm. In a cooperation with Graduate School of Information Science and Technology, Hokkaido University.
Unsupervised active learning based on hierarchical graph-theoretic clustering.
Hu, Weiming; Hu, Wei; Xie, Nianhua; Maybank, Steve
2009-10-01
Most existing active learning approaches are supervised. Supervised active learning has the following problems: inefficiency in dealing with the semantic gap between the distribution of samples in the feature space and their labels, lack of ability in selecting new samples that belong to new categories that have not yet appeared in the training samples, and lack of adaptability to changes in the semantic interpretation of sample categories. To tackle these problems, we propose an unsupervised active learning framework based on hierarchical graph-theoretic clustering. In the framework, two promising graph-theoretic clustering algorithms, namely, dominant-set clustering and spectral clustering, are combined in a hierarchical fashion. Our framework has some advantages, such as ease of implementation, flexibility in architecture, and adaptability to changes in the labeling. Evaluations on data sets for network intrusion detection, image classification, and video classification have demonstrated that our active learning framework can effectively reduce the workload of manual classification while maintaining a high accuracy of automatic classification. It is shown that, overall, our framework outperforms the support-vector-machine-based supervised active learning, particularly in terms of dealing much more efficiently with new samples whose categories have not yet appeared in the training samples.
Accuracy of latent-variable estimation in Bayesian semi-supervised learning.
Yamazaki, Keisuke
2015-09-01
Hierarchical probabilistic models, such as Gaussian mixture models, are widely used for unsupervised learning tasks. These models consist of observable and latent variables, which represent the observable data and the underlying data-generation process, respectively. Unsupervised learning tasks, such as cluster analysis, are regarded as estimations of latent variables based on the observable ones. The estimation of latent variables in semi-supervised learning, where some labels are observed, will be more precise than that in unsupervised, and one of the concerns is to clarify the effect of the labeled data. However, there has not been sufficient theoretical analysis of the accuracy of the estimation of latent variables. In a previous study, a distribution-based error function was formulated, and its asymptotic form was calculated for unsupervised learning with generative models. It has been shown that, for the estimation of latent variables, the Bayes method is more accurate than the maximum-likelihood method. The present paper reveals the asymptotic forms of the error function in Bayesian semi-supervised learning for both discriminative and generative models. The results show that the generative model, which uses all of the given data, performs better when the model is well specified. Copyright © 2015 Elsevier Ltd. All rights reserved.
The collaborative model of fieldwork education: a blueprint for group supervision of students.
Hanson, Debra J; DeIuliis, Elizabeth D
2015-04-01
Historically, occupational therapists have used a traditional one-to-one approach to supervision on fieldwork. Due to the impact of managed care on health-care delivery systems, a dramatic increase in the number of students needing fieldwork placement, and the advantages of group learning, the collaborative supervision model has evolved as a strong alternative to an apprenticeship supervision approach. This article builds on the available research to address barriers to model use, applying theoretical foundations of collaborative supervision to practical considerations for academic fieldwork coordinators and fieldwork educators as they prepare for participation in group supervision of occupational therapy and occupational therapy assistant students on level II fieldwork.
Learning About Climate and Atmospheric Models Through Machine Learning
NASA Astrophysics Data System (ADS)
Lucas, D. D.
2017-12-01
From the analysis of ensemble variability to improving simulation performance, machine learning algorithms can play a powerful role in understanding the behavior of atmospheric and climate models. To learn about model behavior, we create training and testing data sets through ensemble techniques that sample different model configurations and values of input parameters, and then use supervised machine learning to map the relationships between the inputs and outputs. Following this procedure, we have used support vector machines, random forests, gradient boosting and other methods to investigate a variety of atmospheric and climate model phenomena. We have used machine learning to predict simulation crashes, estimate the probability density function of climate sensitivity, optimize simulations of the Madden Julian oscillation, assess the impacts of weather and emissions uncertainty on atmospheric dispersion, and quantify the effects of model resolution changes on precipitation. This presentation highlights recent examples of our applications of machine learning to improve the understanding of climate and atmospheric models. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Quantum Support Vector Machine for Big Data Classification
NASA Astrophysics Data System (ADS)
Rebentrost, Patrick; Mohseni, Masoud; Lloyd, Seth
2014-09-01
Supervised machine learning is the classification of new data based on already classified training examples. In this work, we show that the support vector machine, an optimized binary classifier, can be implemented on a quantum computer, with complexity logarithmic in the size of the vectors and the number of training examples. In cases where classical sampling algorithms require polynomial time, an exponential speedup is obtained. At the core of this quantum big data algorithm is a nonsparse matrix exponentiation technique for efficiently performing a matrix inversion of the training data inner-product (kernel) matrix.
Multilayer Extreme Learning Machine With Subnetwork Nodes for Representation Learning.
Yang, Yimin; Wu, Q M Jonathan
2016-11-01
The extreme learning machine (ELM), which was originally proposed for "generalized" single-hidden layer feedforward neural networks, provides efficient unified learning solutions for the applications of clustering, regression, and classification. It presents competitive accuracy with superb efficiency in many applications. However, ELM with subnetwork nodes architecture has not attracted much research attentions. Recently, many methods have been proposed for supervised/unsupervised dimension reduction or representation learning, but these methods normally only work for one type of problem. This paper studies the general architecture of multilayer ELM (ML-ELM) with subnetwork nodes, showing that: 1) the proposed method provides a representation learning platform with unsupervised/supervised and compressed/sparse representation learning and 2) experimental results on ten image datasets and 16 classification datasets show that, compared to other conventional feature learning methods, the proposed ML-ELM with subnetwork nodes performs competitively or much better than other feature learning methods.
Weakly Supervised Dictionary Learning
NASA Astrophysics Data System (ADS)
You, Zeyu; Raich, Raviv; Fern, Xiaoli Z.; Kim, Jinsub
2018-05-01
We present a probabilistic modeling and inference framework for discriminative analysis dictionary learning under a weak supervision setting. Dictionary learning approaches have been widely used for tasks such as low-level signal denoising and restoration as well as high-level classification tasks, which can be applied to audio and image analysis. Synthesis dictionary learning aims at jointly learning a dictionary and corresponding sparse coefficients to provide accurate data representation. This approach is useful for denoising and signal restoration, but may lead to sub-optimal classification performance. By contrast, analysis dictionary learning provides a transform that maps data to a sparse discriminative representation suitable for classification. We consider the problem of analysis dictionary learning for time-series data under a weak supervision setting in which signals are assigned with a global label instead of an instantaneous label signal. We propose a discriminative probabilistic model that incorporates both label information and sparsity constraints on the underlying latent instantaneous label signal using cardinality control. We present the expectation maximization (EM) procedure for maximum likelihood estimation (MLE) of the proposed model. To facilitate a computationally efficient E-step, we propose both a chain and a novel tree graph reformulation of the graphical model. The performance of the proposed model is demonstrated on both synthetic and real-world data.
Yu, Yinan; Diamantaras, Konstantinos I; McKelvey, Tomas; Kung, Sun-Yuan
2018-02-01
In kernel-based classification models, given limited computational power and storage capacity, operations over the full kernel matrix becomes prohibitive. In this paper, we propose a new supervised learning framework using kernel models for sequential data processing. The framework is based on two components that both aim at enhancing the classification capability with a subset selection scheme. The first part is a subspace projection technique in the reproducing kernel Hilbert space using a CLAss-specific Subspace Kernel representation for kernel approximation. In the second part, we propose a novel structural risk minimization algorithm called the adaptive margin slack minimization to iteratively improve the classification accuracy by an adaptive data selection. We motivate each part separately, and then integrate them into learning frameworks for large scale data. We propose two such frameworks: the memory efficient sequential processing for sequential data processing and the parallelized sequential processing for distributed computing with sequential data acquisition. We test our methods on several benchmark data sets and compared with the state-of-the-art techniques to verify the validity of the proposed techniques.
Feature Inference Learning and Eyetracking
ERIC Educational Resources Information Center
Rehder, Bob; Colner, Robert M.; Hoffman, Aaron B.
2009-01-01
Besides traditional supervised classification learning, people can learn categories by inferring the missing features of category members. It has been proposed that feature inference learning promotes learning a category's internal structure (e.g., its typical features and interfeature correlations) whereas classification promotes the learning of…
Piquette, Dominique; Tarshis, Jordan; Regehr, Glenn; Fowler, Robert A; Pinto, Ruxandra; LeBlanc, Vicki R
2013-12-01
Closer supervision of residents' clinical activities has been promoted to improve patient safety, but may additionally affect resident participation in patient care and learning. The objective of this study was to determine the effects of closer supervision on patient care, resident participation, and the development of resident ability to care independently for critically ill patients during simulated scenarios. This quantitative study represents a component of a larger mixed-methods study. Residents were randomized to one of three levels of supervision, defined by the physical proximity of the supervisor (distant, immediately available, and direct). Each resident completed a simulation scenario under the supervision of a critical care fellow, immediately followed by a modified scenario of similar content without supervision. The simulation center of a tertiary, university-affiliated academic center in a large urban city. Fifty-three residents completing a critical care rotation and 24 critical care fellows were recruited between April 2009 and June 2010. None. During the supervised scenarios, lower team performance checklist scores were obtained for distant supervision compared with immediately available and direct supervision (mean [SD], direct: 72% [12%] vs immediately available: 77% [10%] vs distant: 61% [11%]; p = 0.0013). The percentage of checklist items completed by the residents themselves was significantly lower during direct supervision (median [interquartile range], direct: 40% [21%] vs immediately available: 58% [16%] vs distant: 55% [11%]; p = 0.005). During unsupervised scenarios, no significant differences were found on the outcome measures. Care delivered in the presence of senior supervising physicians was more comprehensive than care delivered without access to a bedside supervisor, but was associated with lower resident participation. However, subsequent resident performance during unsupervised scenarios was not adversely affected. Direct supervision of residents leads to improved care process and does not diminish the subsequent ability of residents to function independently.
Visualization Techniques for Computer Network Defense
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beaver, Justin M; Steed, Chad A; Patton, Robert M
2011-01-01
Effective visual analysis of computer network defense (CND) information is challenging due to the volume and complexity of both the raw and analyzed network data. A typical CND is comprised of multiple niche intrusion detection tools, each of which performs network data analysis and produces a unique alerting output. The state-of-the-practice in the situational awareness of CND data is the prevalent use of custom-developed scripts by Information Technology (IT) professionals to retrieve, organize, and understand potential threat events. We propose a new visual analytics framework, called the Oak Ridge Cyber Analytics (ORCA) system, for CND data that allows an operatormore » to interact with all detection tool outputs simultaneously. Aggregated alert events are presented in multiple coordinated views with timeline, cluster, and swarm model analysis displays. These displays are complemented with both supervised and semi-supervised machine learning classifiers. The intent of the visual analytics framework is to improve CND situational awareness, to enable an analyst to quickly navigate and analyze thousands of detected events, and to combine sophisticated data analysis techniques with interactive visualization such that patterns of anomalous activities may be more easily identified and investigated.« less
ERIC Educational Resources Information Center
Ebele, Uju F.; Olofu, Paul A.
2017-01-01
The study focused on enhancing the standard of teaching and learning in the 21st century via qualitative school-based supervision in secondary schools in Abuja municipal area council. To guide the study, two null hypotheses were formulated. A descriptive survey research design was adopted. The sample of the study constituted of 270 secondary…
Learning Supervised Topic Models for Classification and Regression from Crowds.
Rodrigues, Filipe; Lourenco, Mariana; Ribeiro, Bernardete; Pereira, Francisco C
2017-12-01
The growing need to analyze large collections of documents has led to great developments in topic modeling. Since documents are frequently associated with other related variables, such as labels or ratings, much interest has been placed on supervised topic models. However, the nature of most annotation tasks, prone to ambiguity and noise, often with high volumes of documents, deem learning under a single-annotator assumption unrealistic or unpractical for most real-world applications. In this article, we propose two supervised topic models, one for classification and another for regression problems, which account for the heterogeneity and biases among different annotators that are encountered in practice when learning from crowds. We develop an efficient stochastic variational inference algorithm that is able to scale to very large datasets, and we empirically demonstrate the advantages of the proposed model over state-of-the-art approaches.
Ford, Karen; Courtney-Pratt, Helen; Marlow, Annette; Cooper, John; Williams, Danielle; Mason, Ron
2016-02-01
Clinical placement for students of nursing is a central component of tertiary nursing programs but continues to be a complex and multifaceted experience for all stakeholders. This paper presents findings from a longitudinal 3-year study across multiple sites within the Australian context investigating the quality of clinical placements. A study using cross-sectional survey. Acute care, aged care and subacute health care facilities. A total of 1121 Tasmanian undergraduate nursing students and 932 supervising ward nurses. Survey data were collected at completion of practicum from participating undergraduate students and supervising ward nurses across the domains of "welcome and belonging," "competence and confidence: reflections on learning," and "support for learning." In addition, free text comments were sought to further inform understandings of what constitutes quality clinical placements. Overwhelmingly quantitative data demonstrate high-quality clinical placements are provided. Analysis of free text responses indicates further attention to the intersect between the student and the supervising ward nurse is required, including the differing expectations that each holds for the other. While meaningful interpersonal interactions are pivotal for learning, these seemingly concentrated on the relationship between student and their supervisor-the patient/client was not seen to be present. Meaningful learning occurs within an environment that facilitates mutual respect and shared expectations. The role the patient has in student learning was not made obvious in the results and therefore requires further investigation. Copyright © 2015 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
McCall, Matthew S.
This student guide is intended to assist persons employed as supervisors in understanding the legal aspects of supervision. Discussed in the first four sections are the following topics: the nature of the law (criminal and civil law, why people obey the law, and the law and supervisors); health and safety at work (safety in the workplace, ways of…
Enhancing adult learning in clinical supervision.
Goldman, Stuart
2011-01-01
For decades, across almost every training site, clinical supervision has been considered "central to the development of skills" in psychiatry. The crucial supervisor/supervisee relationship has been described extensively in the literature, most often framed as a clinical apprenticeship of the novice to the master craftsman. This approach fails to directly incorporate adult-learning theory (ALT), despite a clear literature supporting its superiority. In this article, the author describes the basic principles of ALT, reviewing the limitations of current supervisory practice from the ALT perspective. He then describes system insights gleaned from elements of the manufacturing process and integrates them into a model that enhances ALT-informed approaches to clinical supervision that can be utilized in all settings. Although there are clear benefits of ALT and the proposed "pull" manufacturing management-informed approaches to supervision, there are several anticipated areas of likely resistance: the issues of time for the collaborative goal-setting, monitoring progress, and revising the educational plan. Much of this is already a factor in the current, labor-intensive patterns of individual supervision, and, in practice, even the formal monthly review has, in almost all cases, taken appreciably less than half of a supervisory hour. Any possible increases in time or effort would be more than compensated for by the inherent efficiency of resident-specific teaching and learning. Current supervisory practices can be revised to include principles of ALT and "pull" manufacturing systems that can enhance resident education.
Learning Robust and Discriminative Subspace With Low-Rank Constraints.
Li, Sheng; Fu, Yun
2016-11-01
In this paper, we aim at learning robust and discriminative subspaces from noisy data. Subspace learning is widely used in extracting discriminative features for classification. However, when data are contaminated with severe noise, the performance of most existing subspace learning methods would be limited. Recent advances in low-rank modeling provide effective solutions for removing noise or outliers contained in sample sets, which motivates us to take advantage of low-rank constraints in order to exploit robust and discriminative subspace for classification. In particular, we present a discriminative subspace learning method called the supervised regularization-based robust subspace (SRRS) approach, by incorporating the low-rank constraint. SRRS seeks low-rank representations from the noisy data, and learns a discriminative subspace from the recovered clean data jointly. A supervised regularization function is designed to make use of the class label information, and therefore to enhance the discriminability of subspace. Our approach is formulated as a constrained rank-minimization problem. We design an inexact augmented Lagrange multiplier optimization algorithm to solve it. Unlike the existing sparse representation and low-rank learning methods, our approach learns a low-dimensional subspace from recovered data, and explicitly incorporates the supervised information. Our approach and some baselines are evaluated on the COIL-100, ALOI, Extended YaleB, FERET, AR, and KinFace databases. The experimental results demonstrate the effectiveness of our approach, especially when the data contain considerable noise or variations.
Perry, Thomas Ernest; Zha, Hongyuan; Zhou, Ke; Frias, Patricio; Zeng, Dadan; Braunstein, Mark
2014-02-01
Electronic health records possess critical predictive information for machine-learning-based diagnostic aids. However, many traditional machine learning methods fail to simultaneously integrate textual data into the prediction process because of its high dimensionality. In this paper, we present a supervised method using Laplacian Eigenmaps to enable existing machine learning methods to estimate both low-dimensional representations of textual data and accurate predictors based on these low-dimensional representations at the same time. We present a supervised Laplacian Eigenmap method to enhance predictive models by embedding textual predictors into a low-dimensional latent space, which preserves the local similarities among textual data in high-dimensional space. The proposed implementation performs alternating optimization using gradient descent. For the evaluation, we applied our method to over 2000 patient records from a large single-center pediatric cardiology practice to predict if patients were diagnosed with cardiac disease. In our experiments, we consider relatively short textual descriptions because of data availability. We compared our method with latent semantic indexing, latent Dirichlet allocation, and local Fisher discriminant analysis. The results were assessed using four metrics: the area under the receiver operating characteristic curve (AUC), Matthews correlation coefficient (MCC), specificity, and sensitivity. The results indicate that supervised Laplacian Eigenmaps was the highest performing method in our study, achieving 0.782 and 0.374 for AUC and MCC, respectively. Supervised Laplacian Eigenmaps showed an increase of 8.16% in AUC and 20.6% in MCC over the baseline that excluded textual data and a 2.69% and 5.35% increase in AUC and MCC, respectively, over unsupervised Laplacian Eigenmaps. As a solution, we present a supervised Laplacian Eigenmap method to embed textual predictors into a low-dimensional Euclidean space. This method allows many existing machine learning predictors to effectively and efficiently capture the potential of textual predictors, especially those based on short texts.
Deep Visual Attention Prediction
NASA Astrophysics Data System (ADS)
Wang, Wenguan; Shen, Jianbing
2018-05-01
In this work, we aim to predict human eye fixation with view-free scenes based on an end-to-end deep learning architecture. Although Convolutional Neural Networks (CNNs) have made substantial improvement on human attention prediction, it is still needed to improve CNN based attention models by efficiently leveraging multi-scale features. Our visual attention network is proposed to capture hierarchical saliency information from deep, coarse layers with global saliency information to shallow, fine layers with local saliency response. Our model is based on a skip-layer network structure, which predicts human attention from multiple convolutional layers with various reception fields. Final saliency prediction is achieved via the cooperation of those global and local predictions. Our model is learned in a deep supervision manner, where supervision is directly fed into multi-level layers, instead of previous approaches of providing supervision only at the output layer and propagating this supervision back to earlier layers. Our model thus incorporates multi-level saliency predictions within a single network, which significantly decreases the redundancy of previous approaches of learning multiple network streams with different input scales. Extensive experimental analysis on various challenging benchmark datasets demonstrate our method yields state-of-the-art performance with competitive inference time.
Supervised multimedia categorization
NASA Astrophysics Data System (ADS)
Aldershoff, Frank; Salden, Alfons H.; Iacob, Sorin M.; Kempen, Masja
2003-01-01
Static multimedia on the Web can already be hardly structured manually. Although unavoidable and necessary, manual annotation of dynamic multimedia becomes even less feasible when multimedia quickly changes in complexity, i.e. in volume, modality, and usage context. The latter context could be set by learning or other purposes of the multimedia material. This multimedia dynamics calls for categorisation systems that index, query and retrieve multimedia objects on the fly in a similar way as a human expert would. We present and demonstrate such a supervised dynamic multimedia object categorisation system. Our categorisation system comes about by continuously gauging it to a group of human experts who annotate raw multimedia for a certain domain ontology given a usage context. Thus effectively our system learns the categorisation behaviour of human experts. By inducing supervised multi-modal content and context-dependent potentials our categorisation system associates field strengths of raw dynamic multimedia object categorisations with those human experts would assign. After a sufficient long period of supervised machine learning we arrive at automated robust and discriminative multimedia categorisation. We demonstrate the usefulness and effectiveness of our multimedia categorisation system in retrieving semantically meaningful soccer-video fragments, in particular by taking advantage of multimodal and domain specific information and knowledge supplied by human experts.
Sleep in patients with disorders of consciousness characterized by means of machine learning
Lechinger, Julia; Wislowska, Malgorzata; Blume, Christine; Ott, Peter; Wegenkittl, Stefan; del Giudice, Renata; Heib, Dominik P. J.; Mayer, Helmut A.; Laureys, Steven; Pichler, Gerald; Schabus, Manuel
2018-01-01
Sleep has been proposed to indicate preserved residual brain functioning in patients suffering from disorders of consciousness (DOC) after awakening from coma. However, a reliable characterization of sleep patterns in this clinical population continues to be challenging given severely altered brain oscillations, frequent and extended artifacts in clinical recordings and the absence of established staging criteria. In the present study, we try to address these issues and investigate the usefulness of a multivariate machine learning technique based on permutation entropy, a complexity measure. Specifically, we used long-term polysomnography (PSG), along with video recordings in day and night periods in a sample of 23 DOC; 12 patients were diagnosed as Unresponsive Wakefulness Syndrome (UWS) and 11 were diagnosed as Minimally Conscious State (MCS). Eight hour PSG recordings of healthy sleepers (N = 26) were additionally used for training and setting parameters of supervised and unsupervised model, respectively. In DOC, the supervised classification (wake, N1, N2, N3 or REM) was validated using simultaneous videos which identified periods with prolonged eye opening or eye closure.The supervised classification revealed that out of the 23 subjects, 11 patients (5 MCS and 6 UWS) yielded highly accurate classification with an average F1-score of 0.87 representing high overlap between the classifier predicting sleep (i.e. one of the 4 sleep stages) and closed eyes. Furthermore, the unsupervised approach revealed a more complex pattern of sleep-wake stages during the night period in the MCS group, as evidenced by the presence of several distinct clusters. In contrast, in UWS patients no such clustering was found. Altogether, we present a novel data-driven method, based on machine learning that can be used to gain new and unambiguous insights into sleep organization and residual brain functioning of patients with DOC. PMID:29293607
Optimized Graph Learning Using Partial Tags and Multiple Features for Image and Video Annotation.
Song, Jingkuan; Gao, Lianli; Nie, Feiping; Shen, Heng Tao; Yan, Yan; Sebe, Nicu
2016-11-01
In multimedia annotation, due to the time constraints and the tediousness of manual tagging, it is quite common to utilize both tagged and untagged data to improve the performance of supervised learning when only limited tagged training data are available. This is often done by adding a geometry-based regularization term in the objective function of a supervised learning model. In this case, a similarity graph is indispensable to exploit the geometrical relationships among the training data points, and the graph construction scheme essentially determines the performance of these graph-based learning algorithms. However, most of the existing works construct the graph empirically and are usually based on a single feature without using the label information. In this paper, we propose a semi-supervised annotation approach by learning an optimized graph (OGL) from multi-cues (i.e., partial tags and multiple features), which can more accurately embed the relationships among the data points. Since OGL is a transductive method and cannot deal with novel data points, we further extend our model to address the out-of-sample issue. Extensive experiments on image and video annotation show the consistent superiority of OGL over the state-of-the-art methods.
[An overview of clinical practice education models for nursing students: a literature review].
Canzan, Federica; Marognolli, Oliva; Bevilacqua, Anita; Defanti, Francesca; Ambrosi, Elisa; Cavada, Luisa; Saiani, Luisa
2017-01-01
. An overview of education models for nursing students clinical practice: a literature review. In the past decade the nursing education research developed and tested a number of clinical educational models. To describe the most used clinical educational models and to analyze their strengths and weaknesses in fostering the learning processes of nursing students. A literature review of studies on clinical education models for undergraduate nursing student, published in English, was performed. Electronic database Pubmed and Cinhal were searched until November 2016. Nineteen studies were included in the review and five clinical education model identified: 1) the university tutor supervises a group of students and selects learning opportunities; 2) a clinical expert/tutor nurse works side by side with one student; 3) the student is responsible of his/her learning process with the supervision of the ward staff; 4) a clinical tutor of the ward is dedicated to the students' supervision; 5) the student is not assigned to a ward but clinical learning opportunities matched with his/her needs are selected by the university. All the clinical education models shared the focus on students' learning needs. Their specific characteristics better suit them for different stages of students' education and to different clinical settings.
Deep Unfolding for Topic Models.
Chien, Jen-Tzung; Lee, Chao-Hsi
2018-02-01
Deep unfolding provides an approach to integrate the probabilistic generative models and the deterministic neural networks. Such an approach is benefited by deep representation, easy interpretation, flexible learning and stochastic modeling. This study develops the unsupervised and supervised learning of deep unfolded topic models for document representation and classification. Conventionally, the unsupervised and supervised topic models are inferred via the variational inference algorithm where the model parameters are estimated by maximizing the lower bound of logarithm of marginal likelihood using input documents without and with class labels, respectively. The representation capability or classification accuracy is constrained by the variational lower bound and the tied model parameters across inference procedure. This paper aims to relax these constraints by directly maximizing the end performance criterion and continuously untying the parameters in learning process via deep unfolding inference (DUI). The inference procedure is treated as the layer-wise learning in a deep neural network. The end performance is iteratively improved by using the estimated topic parameters according to the exponentiated updates. Deep learning of topic models is therefore implemented through a back-propagation procedure. Experimental results show the merits of DUI with increasing number of layers compared with variational inference in unsupervised as well as supervised topic models.
ERIC Educational Resources Information Center
Watters, Chad M.
2017-01-01
The purpose of this mixed methods study is to examine the perceptions of supervision practices in initial contract, tenured, and distinguished-rated teachers at the elementary level in one large, suburban school district. This study described teacher perceptions of clinical and alternative supervision practices. Six research questions guided this…
Detection of buried objects by fusing dual-band infrared images
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clark, G.A.; Sengupta, S.K.; Sherwood, R.J.
1993-11-01
We have conducted experiments to demonstrate the enhanced detectability of buried land mines using sensor fusion techniques. Multiple sensors, including visible imagery, infrared imagery, and ground penetrating radar (GPR), have been used to acquire data on a number of buried mines and mine surrogates. Because the visible wavelength and GPR data are currently incomplete. This paper focuses on the fusion of two-band infrared images. We use feature-level fusion and supervised learning with the probabilistic neural network (PNN) to evaluate detection performance. The novelty of the work lies in the application of advanced target recognition algorithms, the fusion of dual-band infraredmore » images and evaluation of the techniques using two real data sets.« less
Towards large-scale FAME-based bacterial species identification using machine learning techniques.
Slabbinck, Bram; De Baets, Bernard; Dawyndt, Peter; De Vos, Paul
2009-05-01
In the last decade, bacterial taxonomy witnessed a huge expansion. The swift pace of bacterial species (re-)definitions has a serious impact on the accuracy and completeness of first-line identification methods. Consequently, back-end identification libraries need to be synchronized with the List of Prokaryotic names with Standing in Nomenclature. In this study, we focus on bacterial fatty acid methyl ester (FAME) profiling as a broadly used first-line identification method. From the BAME@LMG database, we have selected FAME profiles of individual strains belonging to the genera Bacillus, Paenibacillus and Pseudomonas. Only those profiles resulting from standard growth conditions have been retained. The corresponding data set covers 74, 44 and 95 validly published bacterial species, respectively, represented by 961, 378 and 1673 standard FAME profiles. Through the application of machine learning techniques in a supervised strategy, different computational models have been built for genus and species identification. Three techniques have been considered: artificial neural networks, random forests and support vector machines. Nearly perfect identification has been achieved at genus level. Notwithstanding the known limited discriminative power of FAME analysis for species identification, the computational models have resulted in good species identification results for the three genera. For Bacillus, Paenibacillus and Pseudomonas, random forests have resulted in sensitivity values, respectively, 0.847, 0.901 and 0.708. The random forests models outperform those of the other machine learning techniques. Moreover, our machine learning approach also outperformed the Sherlock MIS (MIDI Inc., Newark, DE, USA). These results show that machine learning proves very useful for FAME-based bacterial species identification. Besides good bacterial identification at species level, speed and ease of taxonomic synchronization are major advantages of this computational species identification strategy.
Applying active learning to supervised word sense disambiguation in MEDLINE.
Chen, Yukun; Cao, Hongxin; Mei, Qiaozhu; Zheng, Kai; Xu, Hua
2013-01-01
This study was to assess whether active learning strategies can be integrated with supervised word sense disambiguation (WSD) methods, thus reducing the number of annotated samples, while keeping or improving the quality of disambiguation models. We developed support vector machine (SVM) classifiers to disambiguate 197 ambiguous terms and abbreviations in the MSH WSD collection. Three different uncertainty sampling-based active learning algorithms were implemented with the SVM classifiers and were compared with a passive learner (PL) based on random sampling. For each ambiguous term and each learning algorithm, a learning curve that plots the accuracy computed from the test set as a function of the number of annotated samples used in the model was generated. The area under the learning curve (ALC) was used as the primary metric for evaluation. Our experiments demonstrated that active learners (ALs) significantly outperformed the PL, showing better performance for 177 out of 197 (89.8%) WSD tasks. Further analysis showed that to achieve an average accuracy of 90%, the PL needed 38 annotated samples, while the ALs needed only 24, a 37% reduction in annotation effort. Moreover, we analyzed cases where active learning algorithms did not achieve superior performance and identified three causes: (1) poor models in the early learning stage; (2) easy WSD cases; and (3) difficult WSD cases, which provide useful insight for future improvements. This study demonstrated that integrating active learning strategies with supervised WSD methods could effectively reduce annotation cost and improve the disambiguation models.
Applying active learning to supervised word sense disambiguation in MEDLINE
Chen, Yukun; Cao, Hongxin; Mei, Qiaozhu; Zheng, Kai; Xu, Hua
2013-01-01
Objectives This study was to assess whether active learning strategies can be integrated with supervised word sense disambiguation (WSD) methods, thus reducing the number of annotated samples, while keeping or improving the quality of disambiguation models. Methods We developed support vector machine (SVM) classifiers to disambiguate 197 ambiguous terms and abbreviations in the MSH WSD collection. Three different uncertainty sampling-based active learning algorithms were implemented with the SVM classifiers and were compared with a passive learner (PL) based on random sampling. For each ambiguous term and each learning algorithm, a learning curve that plots the accuracy computed from the test set as a function of the number of annotated samples used in the model was generated. The area under the learning curve (ALC) was used as the primary metric for evaluation. Results Our experiments demonstrated that active learners (ALs) significantly outperformed the PL, showing better performance for 177 out of 197 (89.8%) WSD tasks. Further analysis showed that to achieve an average accuracy of 90%, the PL needed 38 annotated samples, while the ALs needed only 24, a 37% reduction in annotation effort. Moreover, we analyzed cases where active learning algorithms did not achieve superior performance and identified three causes: (1) poor models in the early learning stage; (2) easy WSD cases; and (3) difficult WSD cases, which provide useful insight for future improvements. Conclusions This study demonstrated that integrating active learning strategies with supervised WSD methods could effectively reduce annotation cost and improve the disambiguation models. PMID:23364851
Kim, Sun Hee; Yoo, So Yeon; Kim, Yae Young
2018-02-01
This study was conducted to evaluate the validity and reliability of the Korean version of the clinical learning environment, supervision and nurse teacher evaluation scale (CLES+T) that measures the clinical learning environment and the conditions associated with supervision and nurse teachers. The English CLES+T was translated into Korean with forward and back translation. Survey data were collected from 434 nursing students who had more than four days of clinical practice in Korean hospitals. Internal consistency reliability and construct validity using confirmatory and exploratory factor analysis were conducted. SPSS 20.0 and AMOS 22.0 programs were used for data analysis. The exploratory factor analysis revealed seven factors for the thirty three-item scale. Confirmatory factor analysis supported good convergent and discriminant validities. The Cronbach's alpha for the overall scale was .94 and for the seven subscales ranged from .78 to .94. The findings suggest that the 33-items Korean CLES+T is an appropriate instrument to measure Korean nursing students'clinical learning environment with good validity and reliability. © 2018 Korean Society of Nursing Science.
Robust head pose estimation via supervised manifold learning.
Wang, Chao; Song, Xubo
2014-05-01
Head poses can be automatically estimated using manifold learning algorithms, with the assumption that with the pose being the only variable, the face images should lie in a smooth and low-dimensional manifold. However, this estimation approach is challenging due to other appearance variations related to identity, head location in image, background clutter, facial expression, and illumination. To address the problem, we propose to incorporate supervised information (pose angles of training samples) into the process of manifold learning. The process has three stages: neighborhood construction, graph weight computation and projection learning. For the first two stages, we redefine inter-point distance for neighborhood construction as well as graph weight by constraining them with the pose angle information. For Stage 3, we present a supervised neighborhood-based linear feature transformation algorithm to keep the data points with similar pose angles close together but the data points with dissimilar pose angles far apart. The experimental results show that our method has higher estimation accuracy than the other state-of-art algorithms and is robust to identity and illumination variations. Copyright © 2014 Elsevier Ltd. All rights reserved.
Action Learning in Undergraduate Engineering Thesis Supervision
ERIC Educational Resources Information Center
Stappenbelt, Brad
2017-01-01
In the present action learning implementation, twelve action learning sets were conducted over eight years. The action learning sets consisted of students involved in undergraduate engineering research thesis work. The concurrent study accompanying this initiative investigated the influence of the action learning environment on student approaches…
Joint learning of labels and distance metric.
Liu, Bo; Wang, Meng; Hong, Richang; Zha, Zhengjun; Hua, Xian-Sheng
2010-06-01
Machine learning algorithms frequently suffer from the insufficiency of training data and the usage of inappropriate distance metric. In this paper, we propose a joint learning of labels and distance metric (JLLDM) approach, which is able to simultaneously address the two difficulties. In comparison with the existing semi-supervised learning and distance metric learning methods that focus only on label prediction or distance metric construction, the JLLDM algorithm optimizes the labels of unlabeled samples and a Mahalanobis distance metric in a unified scheme. The advantage of JLLDM is multifold: 1) the problem of training data insufficiency can be tackled; 2) a good distance metric can be constructed with only very few training samples; and 3) no radius parameter is needed since the algorithm automatically determines the scale of the metric. Extensive experiments are conducted to compare the JLLDM approach with different semi-supervised learning and distance metric learning methods, and empirical results demonstrate its effectiveness.
Skledar, Susan J.; McKaveney, Teresa P.; Ward, Charles O.; Culley, Colleen M.; Ervin, Kelly C.; Weber, Robert J.
2006-01-01
Objective Establish a 3-year hospital internship within a drug use and disease state management program that would provide doctor of pharmacy students with experiential learning while still completing their classroom studies. Design As paid interns, students engaged in group and individual activities that assessed clinical practice guidelines. Patient monitoring and clinical intervention techniques were learned through prospective evaluation of drug therapy. Students designed evidence-based treatment guidelines and participated in all phases of development, including multidisciplinary approval, implementation, and evaluation stages. Assessment Student competency was continually monitored through direct observation by a preceptor and written examinations. Patient case studies, group discussions, and poster presentations allowed assessment of student growth in knowledge and communication skills. Conclusion The comprehensive structure of this internship provides a broad perspective for understanding the role of the hospital pharmacist in providing pharmaceutical care. Close supervision maximizes student learning potential and fosters a mentoring relationship for both personal and professional growth. PMID:17136188
Agricultural Record Keeping. Instructor Key and Supplementary Units.
ERIC Educational Resources Information Center
Martin, Donna
This teaching manual is designed to help students with special needs learn and apply recordkeeping skills in agriculture. The material applies specifically to recordkeeping for a supervised agricultural experience program. The units presented here supplement the curriculum guide, "Developing Programs of Supervised Agricultural…
Supervision and Administration: Programs, Positions, Perspectives.
ERIC Educational Resources Information Center
Mills, E. Andrew, Ed.
This anthology is a collection of 17 articles by arts supervisors and administrators. The authors discuss both specific and general aspects of art education program supervision. Topics include staff development, evaluation of art learning, integrating community cultural resources, establishing elementary art specialists, coordinating multiple arts…
Chai, Hua; Li, Zi-Na; Meng, De-Yu; Xia, Liang-Yong; Liang, Yong
2017-10-12
Gene selection is an attractive and important task in cancer survival analysis. Most existing supervised learning methods can only use the labeled biological data, while the censored data (weakly labeled data) far more than the labeled data are ignored in model building. Trying to utilize such information in the censored data, a semi-supervised learning framework (Cox-AFT model) combined with Cox proportional hazard (Cox) and accelerated failure time (AFT) model was used in cancer research, which has better performance than the single Cox or AFT model. This method, however, is easily affected by noise. To alleviate this problem, in this paper we combine the Cox-AFT model with self-paced learning (SPL) method to more effectively employ the information in the censored data in a self-learning way. SPL is a kind of reliable and stable learning mechanism, which is recently proposed for simulating the human learning process to help the AFT model automatically identify and include samples of high confidence into training, minimizing interference from high noise. Utilizing the SPL method produces two direct advantages: (1) The utilization of censored data is further promoted; (2) the noise delivered to the model is greatly decreased. The experimental results demonstrate the effectiveness of the proposed model compared to the traditional Cox-AFT model.
Löfmark, A; Wikblad, K
2001-04-01
The aim of this study was to provide information on what the student nurses found facilitating and obstructing for their learning during clinical practice. Earlier studies of experiences of learning in clinical practice have shown that factors as the possibilities of variations of experiences, the culture of the workplace, and communication between the educational institution and health care facilities are of importance. Less is known about the opportunities which students are given in order to practise the skills that they will be expected to perform as new graduate nurses. The experiences of 47 degree student nurses from two colleges in Sweden were gathered in weekly diaries during their final period of clinical practice. A content analysis technique was used to analyse their diaries. The students emphasized responsibility and independence, opportunities to practise different tasks, and receiving feedback as facilitating factors. Other perceived promoting factors included perceptions of control of the situation and understanding of the 'total picture'. Examples of obstructing factors were the nurses as supervisors not relying on the students, supervision that lacked continuity and lack of opportunities to practise. Perception of their own insufficiency and low self-reliance were drawbacks for some students. Recommended proposals are presented to lecturers and supervising staff concerning organizational and educational changes, and changes of attitudes for elucidating the students' experiences of different facilitating and obstructing factors. Changes may contribute to making easier the students' transition into the nursing profession.
MacLaren, Julie-Ann
2018-01-01
Supervised practice as a mentor is currently an integral component of nurse mentor education. However, workplace education literature tends to focus on dyadic mentor-student relationships rather than developmental relationships between colleagues. This paper explores the supportive relationships of nurses undertaking a mentorship qualification, using the novel technique of constellation development to determine the nature of workplace support for this group. Semi-structured interviews were conducted with three recently qualified nurse mentors. All participants developed a mentorship constellation identifying colleagues significant to their own learning in practice. These significant others were also interviewed alongside practice education, and nurse education leads. Constellations were analysed in relation to network size, breadth, strength of relationships, and attributes of individuals. Findings suggest that dyadic forms of supervisory mentorship may not offer the range of skills and attributes that developing mentors require. Redundancy of mentorship attributes within the constellation (overlapping attributes between members) may counteract problems caused when one mentor attempts to fulfil all mentorship roles. Wider nursing teams are well placed to provide the support and supervision required by mentors in training. Where wider and stronger networks were not available to mentorship students, mentorship learning was at risk. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Jamal, Wasifa; Das, Saptarshi; Oprescu, Ioana-Anastasia; Maharatna, Koushik; Apicella, Fabio; Sicca, Federico
2014-08-01
Objective. The paper investigates the presence of autism using the functional brain connectivity measures derived from electro-encephalogram (EEG) of children during face perception tasks. Approach. Phase synchronized patterns from 128-channel EEG signals are obtained for typical children and children with autism spectrum disorder (ASD). The phase synchronized states or synchrostates temporally switch amongst themselves as an underlying process for the completion of a particular cognitive task. We used 12 subjects in each group (ASD and typical) for analyzing their EEG while processing fearful, happy and neutral faces. The minimal and maximally occurring synchrostates for each subject are chosen for extraction of brain connectivity features, which are used for classification between these two groups of subjects. Among different supervised learning techniques, we here explored the discriminant analysis and support vector machine both with polynomial kernels for the classification task. Main results. The leave one out cross-validation of the classification algorithm gives 94.7% accuracy as the best performance with corresponding sensitivity and specificity values as 85.7% and 100% respectively. Significance. The proposed method gives high classification accuracies and outperforms other contemporary research results. The effectiveness of the proposed method for classification of autistic and typical children suggests the possibility of using it on a larger population to validate it for clinical practice.
Gonge, Henrik; Buus, Niels
2016-05-01
This article reports findings from a longitudinal controlled intervention study of 115 psychiatric nursing staff. The twofold objective of the study was: (a) To test whether the intervention could increase clinical supervision participation and effectiveness of existing supervision practices, and (b) To explore organizational constraints to implementation of these strengthened practices. Questionnaire responses and registration of participation in clinical supervision were registered prior and subsequent to the intervention consisting of an action learning oriented reflection on staff's existing clinical supervision practices. Major organizational changes in the intervention group during the study period obstructed the implementation of strengthened clinical supervision practices, but offered an opportunity for studying the influences of organizational constraints. The main findings were that a) diminishing experience of social support from colleagues was associated with reduced participation in clinical supervision, while b) additional quantitative demands were associated with staff reporting difficulties finding time for supervision. This probably explained a negative development in the experienced effectiveness of supervision. It is concluded that organizational support is an imperative for implementation of clinical supervision.
Psychodrama: A Creative Approach for Addressing Parallel Process in Group Supervision
ERIC Educational Resources Information Center
Hinkle, Michelle Gimenez
2008-01-01
This article provides a model for using psychodrama to address issues of parallel process during group supervision. Information on how to utilize the specific concepts and techniques of psychodrama in relation to group supervision is discussed. A case vignette of the model is provided.
Embo, M; Driessen, E; Valcke, M; van der Vleuten, C P M
2015-02-01
Although competency-based education is well established in health care education, research shows that the competencies do not always match the reality of clinical workplaces. Therefore, there is a need to design feasible and evidence-based competency frameworks that fit the workplace reality. This theoretical paper outlines a competency-based framework, designed to facilitate learning, assessment and supervision in clinical workplace education. Integration is the cornerstone of this holistic competency framework. Copyright © 2014 Elsevier Ltd. All rights reserved.
Adaptive Sensing and Fusion of Multi-Sensor Data and Historical Information
2009-11-06
integrate MTL and semi-supervised learning into a single framework , thereby exploiting two forms of contextual information. A key new objective of the...this report we integrate MTL and semi-supervised learning into a single framework , thereby exploiting two forms of contextual information. A key new...process [8], denoted as X ∼ BeP (B), where B is a measure on Ω. If B is continuous, X is a Poisson process with intensity B and can be constructed as X = N
A functional supervised learning approach to the study of blood pressure data.
Papayiannis, Georgios I; Giakoumakis, Emmanuel A; Manios, Efstathios D; Moulopoulos, Spyros D; Stamatelopoulos, Kimon S; Toumanidis, Savvas T; Zakopoulos, Nikolaos A; Yannacopoulos, Athanasios N
2018-04-15
In this work, a functional supervised learning scheme is proposed for the classification of subjects into normotensive and hypertensive groups, using solely the 24-hour blood pressure data, relying on the concepts of Fréchet mean and Fréchet variance for appropriate deformable functional models for the blood pressure data. The schemes are trained on real clinical data, and their performance was assessed and found to be very satisfactory. Copyright © 2017 John Wiley & Sons, Ltd.
Deep learning architecture for recognition of abnormal activities
NASA Astrophysics Data System (ADS)
Khatrouch, Marwa; Gnouma, Mariem; Ejbali, Ridha; Zaied, Mourad
2018-04-01
The video surveillance is one of the key areas in computer vision researches. The scientific challenge in this field involves the implementation of automatic systems to obtain detailed information about individuals and groups behaviors. In particular, the detection of abnormal movements of groups or individuals requires a fine analysis of frames in the video stream. In this article, we propose a new method to detect anomalies in crowded scenes. We try to categorize the video in a supervised mode accompanied by unsupervised learning using the principle of the autoencoder. In order to construct an informative concept for the recognition of these behaviors, we use a technique of representation based on the superposition of human silhouettes. The evaluation of the UMN dataset demonstrates the effectiveness of the proposed approach.
An expert fitness diagnosis system based on elastic cloud computing.
Tseng, Kevin C; Wu, Chia-Chuan
2014-01-01
This paper presents an expert diagnosis system based on cloud computing. It classifies a user's fitness level based on supervised machine learning techniques. This system is able to learn and make customized diagnoses according to the user's physiological data, such as age, gender, and body mass index (BMI). In addition, an elastic algorithm based on Poisson distribution is presented to allocate computation resources dynamically. It predicts the required resources in the future according to the exponential moving average of past observations. The experimental results show that Naïve Bayes is the best classifier with the highest accuracy (90.8%) and that the elastic algorithm is able to capture tightly the trend of requests generated from the Internet and thus assign corresponding computation resources to ensure the quality of service.
DL-ReSuMe: A Delay Learning-Based Remote Supervised Method for Spiking Neurons.
Taherkhani, Aboozar; Belatreche, Ammar; Li, Yuhua; Maguire, Liam P
2015-12-01
Recent research has shown the potential capability of spiking neural networks (SNNs) to model complex information processing in the brain. There is biological evidence to prove the use of the precise timing of spikes for information coding. However, the exact learning mechanism in which the neuron is trained to fire at precise times remains an open problem. The majority of the existing learning methods for SNNs are based on weight adjustment. However, there is also biological evidence that the synaptic delay is not constant. In this paper, a learning method for spiking neurons, called delay learning remote supervised method (DL-ReSuMe), is proposed to merge the delay shift approach and ReSuMe-based weight adjustment to enhance the learning performance. DL-ReSuMe uses more biologically plausible properties, such as delay learning, and needs less weight adjustment than ReSuMe. Simulation results have shown that the proposed DL-ReSuMe approach achieves learning accuracy and learning speed improvements compared with ReSuMe.
NASA Astrophysics Data System (ADS)
Draghici, Sorin; Cumberland, Lonnie T., Jr.; Kovari, Ladislau C.
2000-04-01
This paper presents some results of data mining HIV genotypic and structural data. Our aim is to try to relate structural features of HIV enzymes essential to its reproductive abilities to the drug resistance phenomenon. This paper concentrates on the HIV protease enzyme and Indinavir which is one of the FDA approved protease inhibitors. Our starting point was the current list of HIV mutations related to drug resistance. We used the fact that some molecular structures determined through high resolution X-ray crystallography were available for the protease-Indinavir complex. Starting with these structures and the known mutations, we modelled the mutant proteases and studied the pattern of atomic contacts between the protease and the drug. After suitable pre- processing, these patterns have been used as the input of our data mining process. We have used both supervised and unsupervised learning techniques with the aim of understanding the relationship between structural features at a molecular level and resistance to Indinavir. The supervised learning was aimed at predicting IC90 values for arbitrary mutants. The SOFM was aimed at identifying those structural features that are important for drug resistance and discovering a classifier based on such features. We have used validation and cross validation to test the generalization abilities of the learning paradigm we have designed. The straightforward supervised learning was able to learn very successfully but validation results are less than satisfactory. This is due to the insufficient number of patterns in the training set which in turn is due to the scarcity of the available data. The data mining using SOFM was very successful. We have managed to distinguish between resistant and non-resistant mutants using structural features. We have been able to divide all reported HIV mutants into several categories based on their 3- dimensional molecular structures and the pattern of contacts between the mutant protease and Indinavir. Our classifier shows reasonably good prediction performance being able to predict the drug resistance of previously unseen mutants with an accuracy of between 60% and 70%. We believe that this performance can be greatly improved once more data becomes available. The results presented here support the hypothesis that structural features of the molecular structure can be used in antiviral drug treatment selection and drug design.
Supporting Placement Supervision in Clinical Exercise Physiology
ERIC Educational Resources Information Center
Sealey, Rebecca M.; Raymond, Jacqueline; Groeller, Herb; Rooney, Kieron; Crabb, Meagan; Watt, Kerrianne
2015-01-01
The continued engagement of the professional workforce as supervisors is critical for the sustainability and growth of work-integrated learning activities in university degrees. This study investigated factors that influence the willingness and ability of clinicians to continue to supervise clinical exercise physiology work-integrated learning…
Client-Centered Supervision and Evaluation of Teachers.
ERIC Educational Resources Information Center
Schwartz, Libby Zinman
1978-01-01
Client-centered supervision is a personal participatory, and developmental approach, which finds its roots in the "third force" psychology of Carl Rogers. It requires a supervisor of sensitivity and humanistic orientation. Teacher evaluation criteria under this system focus on three areas: learning climate, program content, and…
ERIC Educational Resources Information Center
Carlson, Ryan G.; Lambie, Glenn W.
2012-01-01
Supervision models for marriage and family counseling student interns primarily focus on the use of traditional systemic techniques. In addition, a supervisee's level of development may not be considered when utilizing systemic tools. Furthermore, the supervisory relationship has been identified as a significant indicator of quality supervision,…
A Gestalt Approach to Group Supervision
ERIC Educational Resources Information Center
Melnick, Joseph; Fall, Marijane
2008-01-01
The authors define and then describe the practice of group supervision. The role of creative experiment in assisting supervisees who perceive themselves as confused, moving in circles, or immobilized is described. Fictional case examples illustrate these issues in supervision. The authors posit the "good fit" of Gestalt theory and techniques with…
Sirola-Karvinen, Pirjo; Hyrkäs, Kristiina
2008-07-01
The aim of this article is to increase knowledge and understanding of administrative clinical supervision. Administrative clinical supervision is a learning process for leaders that is based on experiences. Only a few studies have focused on administrative clinical supervision. The materials for this study were evaluations collected in 2002-2005 using a clinical supervision evaluation scale (MCSS). The respondents (n = 126) in the study were nursing leaders representing different specialties. The data were analysed statistically. The findings showed that the supervision succeeded very well. The contents of the sessions differed depending on the nurse leader's position. Significant differences were found in the evaluations between specialties and within years of work experience. Clinical supervision was utilized best in the psychiatric and mental health sector. The supervisees' who had long work experience scored the importance and value of clinical supervision as high. Clinical supervision is beneficial for nursing leaders. The experiences were positive and the nursing leaders appreciated the importance and value of clinical supervision. It is important to plan and coordinate a longitudinal evaluation so that clinical supervision for nursing leaders is systematically implemented and continuously developed.
Klabjan, Diego; Jonnalagadda, Siddhartha Reddy
2016-01-01
Background Community-based question answering (CQA) sites play an important role in addressing health information needs. However, a significant number of posted questions remain unanswered. Automatically answering the posted questions can provide a useful source of information for Web-based health communities. Objective In this study, we developed an algorithm to automatically answer health-related questions based on past questions and answers (QA). We also aimed to understand information embedded within Web-based health content that are good features in identifying valid answers. Methods Our proposed algorithm uses information retrieval techniques to identify candidate answers from resolved QA. To rank these candidates, we implemented a semi-supervised leaning algorithm that extracts the best answer to a question. We assessed this approach on a curated corpus from Yahoo! Answers and compared against a rule-based string similarity baseline. Results On our dataset, the semi-supervised learning algorithm has an accuracy of 86.2%. Unified medical language system–based (health related) features used in the model enhance the algorithm’s performance by proximately 8%. A reasonably high rate of accuracy is obtained given that the data are considerably noisy. Important features distinguishing a valid answer from an invalid answer include text length, number of stop words contained in a test question, a distance between the test question and other questions in the corpus, and a number of overlapping health-related terms between questions. Conclusions Overall, our automated QA system based on historical QA pairs is shown to be effective according to the dataset in this case study. It is developed for general use in the health care domain, which can also be applied to other CQA sites. PMID:27485666
Nariya, Maulik K; Kim, Jae Hyun; Xiong, Jian; Kleindl, Peter A; Hewarathna, Asha; Fisher, Adam C; Joshi, Sangeeta B; Schöneich, Christian; Forrest, M Laird; Middaugh, C Russell; Volkin, David B; Deeds, Eric J
2017-11-01
There is growing interest in generating physicochemical and biological analytical data sets to compare complex mixture drugs, for example, products from different manufacturers. In this work, we compare various crofelemer samples prepared from a single lot by filtration with varying molecular weight cutoffs combined with incubation for different times at different temperatures. The 2 preceding articles describe experimental data sets generated from analytical characterization of fractionated and degraded crofelemer samples. In this work, we use data mining techniques such as principal component analysis and mutual information scores to help visualize the data and determine discriminatory regions within these large data sets. The mutual information score identifies chemical signatures that differentiate crofelemer samples. These signatures, in many cases, would likely be missed by traditional data analysis tools. We also found that supervised learning classifiers robustly discriminate samples with around 99% classification accuracy, indicating that mathematical models of these physicochemical data sets are capable of identifying even subtle differences in crofelemer samples. Data mining and machine learning techniques can thus identify fingerprint-type attributes of complex mixture drugs that may be used for comparative characterization of products. Copyright © 2017 American Pharmacists Association®. All rights reserved.
Supervised and Unsupervised Learning of Multidimensional Acoustic Categories
ERIC Educational Resources Information Center
Goudbeek, Martijn; Swingley, Daniel; Smits, Roel
2009-01-01
Learning to recognize the contrasts of a language-specific phonemic repertoire can be viewed as forming categories in a multidimensional psychophysical space. Research on the learning of distributionally defined visual categories has shown that categories defined over 1 dimension are easy to learn and that learning multidimensional categories is…
2009 ESTCP UXO Discrimination Study, San Luis Obispo, CA
2010-11-01
SUPERVISED LEARNING . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.5 ACTIVE LEARNING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8...PERFORMANCE . . . . . . . . . . . . . . . . 29 7.2 ACTIVE LEARNING CLASSIFICATION PERFORMANCE . . . . . . . . . . . 30 8 COST ASSESSMENT 32 9... learning on EM61-array and TEMTADS data. During active learning , SIG started with no a priori labeled data, and acquired labels for a small subset that
Visual texture perception via graph-based semi-supervised learning
NASA Astrophysics Data System (ADS)
Zhang, Qin; Dong, Junyu; Zhong, Guoqiang
2018-04-01
Perceptual features, for example direction, contrast and repetitiveness, are important visual factors for human to perceive a texture. However, it needs to perform psychophysical experiment to quantify these perceptual features' scale, which requires a large amount of human labor and time. This paper focuses on the task of obtaining perceptual features' scale of textures by small number of textures with perceptual scales through a rating psychophysical experiment (what we call labeled textures) and a mass of unlabeled textures. This is the scenario that the semi-supervised learning is naturally suitable for. This is meaningful for texture perception research, and really helpful for the perceptual texture database expansion. A graph-based semi-supervised learning method called random multi-graphs, RMG for short, is proposed to deal with this task. We evaluate different kinds of features including LBP, Gabor, and a kind of unsupervised deep features extracted by a PCA-based deep network. The experimental results show that our method can achieve satisfactory effects no matter what kind of texture features are used.
Representational Distance Learning for Deep Neural Networks
McClure, Patrick; Kriegeskorte, Nikolaus
2016-01-01
Deep neural networks (DNNs) provide useful models of visual representational transformations. We present a method that enables a DNN (student) to learn from the internal representational spaces of a reference model (teacher), which could be another DNN or, in the future, a biological brain. Representational spaces of the student and the teacher are characterized by representational distance matrices (RDMs). We propose representational distance learning (RDL), a stochastic gradient descent method that drives the RDMs of the student to approximate the RDMs of the teacher. We demonstrate that RDL is competitive with other transfer learning techniques for two publicly available benchmark computer vision datasets (MNIST and CIFAR-100), while allowing for architectural differences between student and teacher. By pulling the student's RDMs toward those of the teacher, RDL significantly improved visual classification performance when compared to baseline networks that did not use transfer learning. In the future, RDL may enable combined supervised training of deep neural networks using task constraints (e.g., images and category labels) and constraints from brain-activity measurements, so as to build models that replicate the internal representational spaces of biological brains. PMID:28082889
Representational Distance Learning for Deep Neural Networks.
McClure, Patrick; Kriegeskorte, Nikolaus
2016-01-01
Deep neural networks (DNNs) provide useful models of visual representational transformations. We present a method that enables a DNN (student) to learn from the internal representational spaces of a reference model (teacher), which could be another DNN or, in the future, a biological brain. Representational spaces of the student and the teacher are characterized by representational distance matrices (RDMs). We propose representational distance learning (RDL), a stochastic gradient descent method that drives the RDMs of the student to approximate the RDMs of the teacher. We demonstrate that RDL is competitive with other transfer learning techniques for two publicly available benchmark computer vision datasets (MNIST and CIFAR-100), while allowing for architectural differences between student and teacher. By pulling the student's RDMs toward those of the teacher, RDL significantly improved visual classification performance when compared to baseline networks that did not use transfer learning. In the future, RDL may enable combined supervised training of deep neural networks using task constraints (e.g., images and category labels) and constraints from brain-activity measurements, so as to build models that replicate the internal representational spaces of biological brains.
Mujtaba, Ghulam; Shuib, Liyana; Raj, Ram Gopal; Rajandram, Retnagowri; Shaikh, Khairunisa; Al-Garadi, Mohammed Ali
2017-01-01
Widespread implementation of electronic databases has improved the accessibility of plaintext clinical information for supplementary use. Numerous machine learning techniques, such as supervised machine learning approaches or ontology-based approaches, have been employed to obtain useful information from plaintext clinical data. This study proposes an automatic multi-class classification system to predict accident-related causes of death from plaintext autopsy reports through expert-driven feature selection with supervised automatic text classification decision models. Accident-related autopsy reports were obtained from one of the largest hospital in Kuala Lumpur. These reports belong to nine different accident-related causes of death. Master feature vector was prepared by extracting features from the collected autopsy reports by using unigram with lexical categorization. This master feature vector was used to detect cause of death [according to internal classification of disease version 10 (ICD-10) classification system] through five automated feature selection schemes, proposed expert-driven approach, five subset sizes of features, and five machine learning classifiers. Model performance was evaluated using precisionM, recallM, F-measureM, accuracy, and area under ROC curve. Four baselines were used to compare the results with the proposed system. Random forest and J48 decision models parameterized using expert-driven feature selection yielded the highest evaluation measure approaching (85% to 90%) for most metrics by using a feature subset size of 30. The proposed system also showed approximately 14% to 16% improvement in the overall accuracy compared with the existing techniques and four baselines. The proposed system is feasible and practical to use for automatic classification of ICD-10-related cause of death from autopsy reports. The proposed system assists pathologists to accurately and rapidly determine underlying cause of death based on autopsy findings. Furthermore, the proposed expert-driven feature selection approach and the findings are generally applicable to other kinds of plaintext clinical reports.
Mujtaba, Ghulam; Shuib, Liyana; Raj, Ram Gopal; Rajandram, Retnagowri; Shaikh, Khairunisa; Al-Garadi, Mohammed Ali
2017-01-01
Objectives Widespread implementation of electronic databases has improved the accessibility of plaintext clinical information for supplementary use. Numerous machine learning techniques, such as supervised machine learning approaches or ontology-based approaches, have been employed to obtain useful information from plaintext clinical data. This study proposes an automatic multi-class classification system to predict accident-related causes of death from plaintext autopsy reports through expert-driven feature selection with supervised automatic text classification decision models. Methods Accident-related autopsy reports were obtained from one of the largest hospital in Kuala Lumpur. These reports belong to nine different accident-related causes of death. Master feature vector was prepared by extracting features from the collected autopsy reports by using unigram with lexical categorization. This master feature vector was used to detect cause of death [according to internal classification of disease version 10 (ICD-10) classification system] through five automated feature selection schemes, proposed expert-driven approach, five subset sizes of features, and five machine learning classifiers. Model performance was evaluated using precisionM, recallM, F-measureM, accuracy, and area under ROC curve. Four baselines were used to compare the results with the proposed system. Results Random forest and J48 decision models parameterized using expert-driven feature selection yielded the highest evaluation measure approaching (85% to 90%) for most metrics by using a feature subset size of 30. The proposed system also showed approximately 14% to 16% improvement in the overall accuracy compared with the existing techniques and four baselines. Conclusion The proposed system is feasible and practical to use for automatic classification of ICD-10-related cause of death from autopsy reports. The proposed system assists pathologists to accurately and rapidly determine underlying cause of death based on autopsy findings. Furthermore, the proposed expert-driven feature selection approach and the findings are generally applicable to other kinds of plaintext clinical reports. PMID:28166263
Using Machine Learning for Advanced Anomaly Detection and Classification
NASA Astrophysics Data System (ADS)
Lane, B.; Poole, M.; Camp, M.; Murray-Krezan, J.
2016-09-01
Machine Learning (ML) techniques have successfully been used in a wide variety of applications to automatically detect and potentially classify changes in activity, or a series of activities by utilizing large amounts data, sometimes even seemingly-unrelated data. The amount of data being collected, processed, and stored in the Space Situational Awareness (SSA) domain has grown at an exponential rate and is now better suited for ML. This paper describes development of advanced algorithms to deliver significant improvements in characterization of deep space objects and indication and warning (I&W) using a global network of telescopes that are collecting photometric data on a multitude of space-based objects. The Phase II Air Force Research Laboratory (AFRL) Small Business Innovative Research (SBIR) project Autonomous Characterization Algorithms for Change Detection and Characterization (ACDC), contracted to ExoAnalytic Solutions Inc. is providing the ability to detect and identify photometric signature changes due to potential space object changes (e.g. stability, tumble rate, aspect ratio), and correlate observed changes to potential behavioral changes using a variety of techniques, including supervised learning. Furthermore, these algorithms run in real-time on data being collected and processed by the ExoAnalytic Space Operations Center (EspOC), providing timely alerts and warnings while dynamically creating collection requirements to the EspOC for the algorithms that generate higher fidelity I&W. This paper will discuss the recently implemented ACDC algorithms, including the general design approach and results to date. The usage of supervised algorithms, such as Support Vector Machines, Neural Networks, k-Nearest Neighbors, etc., and unsupervised algorithms, for example k-means, Principle Component Analysis, Hierarchical Clustering, etc., and the implementations of these algorithms is explored. Results of applying these algorithms to EspOC data both in an off-line "pattern of life" analysis as well as using the algorithms on-line in real-time, meaning as data is collected, will be presented. Finally, future work in applying ML for SSA will be discussed.
"See one, do one, teach one": inadequacies of current methods to train surgeons in hernia repair.
Zahiri, H Reza; Park, Adrian E; Pugh, Carla M; Vassiliou, Melina; Voeller, Guy
2015-10-01
Residency/fellowship training in hernia repair is still too widely characterized by the "see one, do one, teach one" model. The goal of this study was to perform a needs assessment focused on surgical training to guide the creation of a curriculum by SAGES intended to improve the care of hernia patients. Using mixed methods (interviews and online survey), the SAGES hernia task force (HTF) conducted a study asking subjects about their perceived deficits in resident training to care for hernia patients, preferred training topics about hernias, ideal learning modalities, and education development. Participants included 18 of 24 HTF members, 27 chief residents and fellows, and 31 surgical residents. HTF members agreed that residency exposes trainees to a wide spectrum of hernia repairs by a variety of surgeons. They cited outdated materials, techniques, and paucity of feedback. Additionally, they identified the "see one, do one, teach one" method of training as prevalent and clearly inadequate. The topics least addressed were system-based approach to hernia care (46 %) and patient outcomes (62 %). Training topics residents considered well covered during residency were: preoperative and intraoperative decision-making (90 %), complications (94 %), and technical approach for repairs (98 %). Instructional methods used in residency include assisted/supervised surgery (96 %), Web-based learning (24 %), and simulation (30 %). Residents' preferred learning methods included simulation (82 %), Web-based training (61 %), hands-on laboratory (54 %), and videos (47 %), in addition to supervised surgery. Trainees reported their most desired training topics as basic techniques for inguinal and ventral hernia repairs (41 %) versus advanced technical training (68 %), which mirrored those reported by attending surgeons, 36 % and 71 %, respectively. There was a consensus among HTF members and surgical trainees that a comprehensive, dynamic, and flexible educational program employing various media to address contemporary key deficits in the care of hernia patients would be welcomed by surgeons.
Nandi, Sutanu; Subramanian, Abhishek; Sarkar, Ram Rup
2017-07-25
Prediction of essential genes helps to identify a minimal set of genes that are absolutely required for the appropriate functioning and survival of a cell. The available machine learning techniques for essential gene prediction have inherent problems, like imbalanced provision of training datasets, biased choice of the best model for a given balanced dataset, choice of a complex machine learning algorithm, and data-based automated selection of biologically relevant features for classification. Here, we propose a simple support vector machine-based learning strategy for the prediction of essential genes in Escherichia coli K-12 MG1655 metabolism that integrates a non-conventional combination of an appropriate sample balanced training set, a unique organism-specific genotype, phenotype attributes that characterize essential genes, and optimal parameters of the learning algorithm to generate the best machine learning model (the model with the highest accuracy among all the models trained for different sample training sets). For the first time, we also introduce flux-coupled metabolic subnetwork-based features for enhancing the classification performance. Our strategy proves to be superior as compared to previous SVM-based strategies in obtaining a biologically relevant classification of genes with high sensitivity and specificity. This methodology was also trained with datasets of other recent supervised classification techniques for essential gene classification and tested using reported test datasets. The testing accuracy was always high as compared to the known techniques, proving that our method outperforms known methods. Observations from our study indicate that essential genes are conserved among homologous bacterial species, demonstrate high codon usage bias, GC content and gene expression, and predominantly possess a tendency to form physiological flux modules in metabolism.
ERIC Educational Resources Information Center
New Mexico State Personnel Office, Santa Fe.
The correspondence course in supervision is designed for adults interested in self development who hope either immediately or ultimately to assume supervisory responsibilities. Each of the 10 chapters contains an introduction, a statement of what should be learned from the chapter, written course material in paragraph and outline form, and a…
The Case of the "Open Secrets": Increasing the Effectiveness of Instructional Supervision.
ERIC Educational Resources Information Center
Duffy, Francis M.
Conditions in schools that reduce the effectiveness and perceived value of instructional supervision can be diagnosed and corrected through a cyclical process called "organizational learning." Rather than merely responding to symptoms, this method focuses on eliminating or mitigating the underlying causes of "organizational…
Enhancing Adult Learning in Clinical Supervision
ERIC Educational Resources Information Center
Goldman, Stuart
2011-01-01
Objective/Background: For decades, across almost every training site, clinical supervision has been considered "central to the development of skills" in psychiatry. The crucial supervisor/supervisee relationship has been described extensively in the literature, most often framed as a clinical apprenticeship of the novice to the master craftsman.…
Knowledge-Based Reinforcement Learning for Data Mining
NASA Astrophysics Data System (ADS)
Kudenko, Daniel; Grzes, Marek
Data Mining is the process of extracting patterns from data. Two general avenues of research in the intersecting areas of agents and data mining can be distinguished. The first approach is concerned with mining an agent’s observation data in order to extract patterns, categorize environment states, and/or make predictions of future states. In this setting, data is normally available as a batch, and the agent’s actions and goals are often independent of the data mining task. The data collection is mainly considered as a side effect of the agent’s activities. Machine learning techniques applied in such situations fall into the class of supervised learning. In contrast, the second scenario occurs where an agent is actively performing the data mining, and is responsible for the data collection itself. For example, a mobile network agent is acquiring and processing data (where the acquisition may incur a certain cost), or a mobile sensor agent is moving in a (perhaps hostile) environment, collecting and processing sensor readings. In these settings, the tasks of the agent and the data mining are highly intertwined and interdependent (or even identical). Supervised learning is not a suitable technique for these cases. Reinforcement Learning (RL) enables an agent to learn from experience (in form of reward and punishment for explorative actions) and adapt to new situations, without a teacher. RL is an ideal learning technique for these data mining scenarios, because it fits the agent paradigm of continuous sensing and acting, and the RL agent is able to learn to make decisions on the sampling of the environment which provides the data. Nevertheless, RL still suffers from scalability problems, which have prevented its successful use in many complex real-world domains. The more complex the tasks, the longer it takes a reinforcement learning algorithm to converge to a good solution. For many real-world tasks, human expert knowledge is available. For example, human experts have developed heuristics that help them in planning and scheduling resources in their work place. However, this domain knowledge is often rough and incomplete. When the domain knowledge is used directly by an automated expert system, the solutions are often sub-optimal, due to the incompleteness of the knowledge, the uncertainty of environments, and the possibility to encounter unexpected situations. RL, on the other hand, can overcome the weaknesses of the heuristic domain knowledge and produce optimal solutions. In the talk we propose two techniques, which represent first steps in the area of knowledge-based RL (KBRL). The first technique [1] uses high-level STRIPS operator knowledge in reward shaping to focus the search for the optimal policy. Empirical results show that the plan-based reward shaping approach outperforms other RL techniques, including alternative manual and MDP-based reward shaping when it is used in its basic form. We showed that MDP-based reward shaping may fail and successful experiments with STRIPS-based shaping suggest modifications which can overcome encountered problems. The STRIPSbased method we propose allows expressing the same domain knowledge in a different way and the domain expert can choose whether to define an MDP or STRIPS planning task. We also evaluated the robustness of the proposed STRIPS-based technique to errors in the plan knowledge. In case that STRIPS knowledge is not available, we propose a second technique [2] that shapes the reward with hierarchical tile coding. Where the Q-function is represented with low-level tile coding, a V-function with coarser tile coding can be learned in parallel and used to approximate the potential for ground states. In the context of data mining, our KBRL approaches can also be used for any data collection task where the acquisition of data may incur considerable cost. In addition, observing the data collection agent in specific scenarios may lead to new insights into optimal data collection behaviour in the respective domains. In future work, we intend to demonstrate and evaluate our techniques on concrete real-world data mining applications.
Klegeris, Andis; Hurren, Heather
2011-12-01
Problem-based learning (PBL) can be described as a learning environment where the problem drives the learning. This technique usually involves learning in small groups, which are supervised by tutors. It is becoming evident that PBL in a small-group setting has a robust positive effect on student learning and skills, including better problem-solving skills and an increase in overall motivation. However, very little research has been done on the educational benefits of PBL in a large classroom setting. Here, we describe a PBL approach (using tutorless groups) that was introduced as a supplement to standard didactic lectures in University of British Columbia Okanagan undergraduate biochemistry classes consisting of 45-85 students. PBL was chosen as an effective method to assist students in learning biochemical and physiological processes. By monitoring student attendance and using informal and formal surveys, we demonstrated that PBL has a significant positive impact on student motivation to attend and participate in the course work. Student responses indicated that PBL is superior to traditional lecture format with regard to the understanding of course content and retention of information. We also demonstrated that student problem-solving skills are significantly improved, but additional controlled studies are needed to determine how much PBL exercises contribute to this improvement. These preliminary data indicated several positive outcomes of using PBL in a large classroom setting, although further studies aimed at assessing student learning are needed to further justify implementation of this technique in courses delivered to large undergraduate classes.
Extracting PICO Sentences from Clinical Trial Reports using Supervised Distant Supervision
Wallace, Byron C.; Kuiper, Joël; Sharma, Aakash; Zhu, Mingxi (Brian); Marshall, Iain J.
2016-01-01
Systematic reviews underpin Evidence Based Medicine (EBM) by addressing precise clinical questions via comprehensive synthesis of all relevant published evidence. Authors of systematic reviews typically define a Population/Problem, Intervention, Comparator, and Outcome (a PICO criteria) of interest, and then retrieve, appraise and synthesize results from all reports of clinical trials that meet these criteria. Identifying PICO elements in the full-texts of trial reports is thus a critical yet time-consuming step in the systematic review process. We seek to expedite evidence synthesis by developing machine learning models to automatically extract sentences from articles relevant to PICO elements. Collecting a large corpus of training data for this task would be prohibitively expensive. Therefore, we derive distant supervision (DS) with which to train models using previously conducted reviews. DS entails heuristically deriving ‘soft’ labels from an available structured resource. However, we have access only to unstructured, free-text summaries of PICO elements for corresponding articles; we must derive from these the desired sentence-level annotations. To this end, we propose a novel method – supervised distant supervision (SDS) – that uses a small amount of direct supervision to better exploit a large corpus of distantly labeled instances by learning to pseudo-annotate articles using the available DS. We show that this approach tends to outperform existing methods with respect to automated PICO extraction. PMID:27746703
NASA Astrophysics Data System (ADS)
van Hecke, Kevin; de Croon, Guido C. H. E.; Hennes, Daniel; Setterfield, Timothy P.; Saenz-Otero, Alvar; Izzo, Dario
2017-11-01
Although machine learning holds an enormous promise for autonomous space robots, it is currently not employed because of the inherent uncertain outcome of learning processes. In this article we investigate a learning mechanism, Self-Supervised Learning (SSL), which is very reliable and hence an important candidate for real-world deployment even on safety-critical systems such as space robots. To demonstrate this reliability, we introduce a novel SSL setup that allows a stereo vision equipped robot to cope with the failure of one of its cameras. The setup learns to estimate average depth using a monocular image, by using the stereo vision depths from the past as trusted ground truth. We present preliminary results from an experiment on the International Space Station (ISS) performed with the MIT/NASA SPHERES VERTIGO satellite. The presented experiments were performed on October 8th, 2015 on board the ISS. The main goals were (1) data gathering, and (2) navigation based on stereo vision. First the astronaut Kimiya Yui moved the satellite around the Japanese Experiment Module to gather stereo vision data for learning. Subsequently, the satellite freely explored the space in the module based on its (trusted) stereo vision system and a pre-programmed exploration behavior, while simultaneously performing the self-supervised learning of monocular depth estimation on board. The two main goals were successfully achieved, representing the first online learning robotic experiments in space. These results lay the groundwork for a follow-up experiment in which the satellite will use the learned single-camera depth estimation for autonomous exploration in the ISS, and are an advancement towards future space robots that continuously improve their navigation capabilities over time, even in harsh and completely unknown space environments.
Clinical supervision: from rhetoric to accident and emergency practice.
Castille, K
1996-01-01
Clinical supervision is firmly on the nursing agenda and, when implemented, will affect every practising nurse. However, current literature offers little in the way of advice on the practical application in a setting like the Accident and Emergency department (A & E). The aim of this article is to encourage A & E nurses to consider how clinical supervision can best be implemented into their current practice. A framework is presented to show how one A & E department has embraced the concept of clinical supervision and incorporated in into their A & E nursing practice. The evaluation, to date, has been positive and A & E nurses have reported that they enjoy the sessions and consider clinical supervision to be a useful learning experience.
Particle Filtering for Model-Based Anomaly Detection in Sensor Networks
NASA Technical Reports Server (NTRS)
Solano, Wanda; Banerjee, Bikramjit; Kraemer, Landon
2012-01-01
A novel technique has been developed for anomaly detection of rocket engine test stand (RETS) data. The objective was to develop a system that postprocesses a csv file containing the sensor readings and activities (time-series) from a rocket engine test, and detects any anomalies that might have occurred during the test. The output consists of the names of the sensors that show anomalous behavior, and the start and end time of each anomaly. In order to reduce the involvement of domain experts significantly, several data-driven approaches have been proposed where models are automatically acquired from the data, thus bypassing the cost and effort of building system models. Many supervised learning methods can efficiently learn operational and fault models, given large amounts of both nominal and fault data. However, for domains such as RETS data, the amount of anomalous data that is actually available is relatively small, making most supervised learning methods rather ineffective, and in general met with limited success in anomaly detection. The fundamental problem with existing approaches is that they assume that the data are iid, i.e., independent and identically distributed, which is violated in typical RETS data. None of these techniques naturally exploit the temporal information inherent in time series data from the sensor networks. There are correlations among the sensor readings, not only at the same time, but also across time. However, these approaches have not explicitly identified and exploited such correlations. Given these limitations of model-free methods, there has been renewed interest in model-based methods, specifically graphical methods that explicitly reason temporally. The Gaussian Mixture Model (GMM) in a Linear Dynamic System approach assumes that the multi-dimensional test data is a mixture of multi-variate Gaussians, and fits a given number of Gaussian clusters with the help of the wellknown Expectation Maximization (EM) algorithm. The parameters thus learned are used for calculating the joint distribution of the observations. However, this GMM assumption is essentially an approximation and signals the potential viability of non-parametric density estimators. This is the key idea underlying the new approach.
Supervising Counsellors and Psychotherapists Who Work with Trauma: A Delphi Study
ERIC Educational Resources Information Center
West, Angela
2010-01-01
In this study the Delphi technique was used to identify the main supervision issues that require attention and consideration when supervising counsellors and psychotherapists working with trauma. A panel of supervisors, who were additionally experienced in working with trauma in adulthood, completed a series of three questionnaires comprising two…
A Study of Clinical Supervision Techniques and Training in Substance Abuse Treatment
ERIC Educational Resources Information Center
West, Paul L.; Hamm, Terri
2012-01-01
Data from 57 clinical supervisors in licensed substance abuse treatment programs indicate that 28% had completed formal graduate course work in clinical supervision and 33% were professionally licensed or certified. Findings raise concerns about the scope and quality of clinical supervision available to substance abuse counselors. (Contains 3…
ERIC Educational Resources Information Center
Koltz, Rebecca L.; Feit, Stephen S.
2012-01-01
The experiences of live supervision for three, master's level, pre-practicum counseling students were explored using a phenomenological methodology. Using semi-structured interviews, this study resulted in a thick description of the experience of live supervision capturing participants' thoughts, emotions, and behaviors. Data revealed that live…
Network-based high level data classification.
Silva, Thiago Christiano; Zhao, Liang
2012-06-01
Traditional supervised data classification considers only physical features (e.g., distance or similarity) of the input data. Here, this type of learning is called low level classification. On the other hand, the human (animal) brain performs both low and high orders of learning and it has facility in identifying patterns according to the semantic meaning of the input data. Data classification that considers not only physical attributes but also the pattern formation is, here, referred to as high level classification. In this paper, we propose a hybrid classification technique that combines both types of learning. The low level term can be implemented by any classification technique, while the high level term is realized by the extraction of features of the underlying network constructed from the input data. Thus, the former classifies the test instances by their physical features or class topologies, while the latter measures the compliance of the test instances to the pattern formation of the data. Our study shows that the proposed technique not only can realize classification according to the pattern formation, but also is able to improve the performance of traditional classification techniques. Furthermore, as the class configuration's complexity increases, such as the mixture among different classes, a larger portion of the high level term is required to get correct classification. This feature confirms that the high level classification has a special importance in complex situations of classification. Finally, we show how the proposed technique can be employed in a real-world application, where it is capable of identifying variations and distortions of handwritten digit images. As a result, it supplies an improvement in the overall pattern recognition rate.
ERIC Educational Resources Information Center
McBride, Dawn L.
2010-01-01
Selected clinical and ethical issues associated with providing supervision involving family violence cases are outlined. It is argued that supervisees helping clients with trauma histories require skills beyond learning how to process the trauma with their clients. Advocacy, social action, and coordinating case conferences are some of the…
Supervising Unsuccessful Student Teaching Assignments: Two Terminator's Tales.
ERIC Educational Resources Information Center
St. Maurice, Henry
2001-01-01
Discusses problems that arise when there is a conflict between a student teacher and the supervising teacher and when a student teacher does not perform satisfactorily. Focuses on how supervisors deal with failed assignments and how beginning teachers improve their teaching and learn from failed assignments. (Contains 21 references.) (JOW)
Pedagogical Concerns in Doctoral Supervision: A Challenge for Pedagogy
ERIC Educational Resources Information Center
Zeegers, Margaret; Barron, Deirdre
2012-01-01
Purpose: The purpose of this paper is to focus on pedagogy as a crucial element in postgraduate research undertakings, implying active involvement of both student and supervisor in process of teaching and learning. Design/methodology/approach: Drawing on Australian higher degree research supervision practice to illustrate their argument, the…
Don't Leave Teaching to Chance: Learning Objectives for Psychodynamic Psychotherapy Supervision
ERIC Educational Resources Information Center
Rojas, Alicia; Arbuckle, Melissa; Cabaniss, Deborah
2010-01-01
Objective: The way in which the competencies for psychodynamic psychotherapy specified by the Psychiatry Residency Review Committee of the Accreditation Council for Graduate Medical Education translate into the day-to-day work of individual supervision remains unstudied and unspecified. The authors hypothesized that despite the existence of…
ERIC Educational Resources Information Center
Brandon, Jim; Hollweck, Trista; Donlevy, James Kent; Whalen, Catherine
2018-01-01
This inquiry focuses on the "overall instructional leadership" approaches used by exemplary principals in three high performing Canadian provinces to overcome three persistent obstacles to effective teacher supervision and evaluation: (a) the management challenge, (b) the complexity challenge, and (c) the learning challenge. Analysis of…
Keys to Successful Community Health Worker Supervision
ERIC Educational Resources Information Center
Duthie, Patricia; Hahn, Janet S.; Philippi, Evelyn; Sanchez, Celeste
2012-01-01
For many years community health workers (CHW) have been important to the implementation of many of our health system's community health interventions. Through this experience, we have recognized some unique challenges in community health worker supervision and have highlighted what we have learned in order to help other organizations effectively…
Learning to Supervise: Four Journeys
ERIC Educational Resources Information Center
Turner, Gill
2015-01-01
This article explores the experiences of four early career academics as they begin to undertake doctoral supervision. Each supervisor focused on one of their supervisees and drew and described a Journey Plot depicting the high and low points of their supervisory experience with their student. Two questions were addressed by the research: (1) How…
Australia's Supervising Teachers: Motivators and Challenges to Inform Professional Learning
ERIC Educational Resources Information Center
Nielsen, Wendy; Mena, Juanjo; Clarke, Anthony; O'Shea, Sarah; Hoban, Garry; Collins, John
2017-01-01
This paper offers an overview of what motivates and challenges Australian supervising teachers to work with preservice teachers in their classrooms. In the contemporary Australian context of new National Professional Standards for Teachers, a new national curriculum and new standards for Initial Teacher Education programs, what motivates and…
Building Mental Models by Dissecting Physical Models
ERIC Educational Resources Information Center
Srivastava, Anveshna
2016-01-01
When students build physical models from prefabricated components to learn about model systems, there is an implicit trade-off between the physical degrees of freedom in building the model and the intensity of instructor supervision needed. Models that are too flexible, permitting multiple possible constructions require greater supervision to…
17 CFR 23.451 - Political contributions by certain swap dealers.
Code of Federal Regulations, 2013 CFR
2013-04-01
... any person who supervises, directly or indirectly, such employee; and (iii) Any political action... Special Entity for the swap dealer and any person who supervises, directly or indirectly, such employee...) After learning of the contribution: (A) Has taken all available steps to cause the contributor involved...
17 CFR 23.451 - Political contributions by certain swap dealers.
Code of Federal Regulations, 2012 CFR
2012-04-01
... any person who supervises, directly or indirectly, such employee; and (iii) Any political action... Special Entity for the swap dealer and any person who supervises, directly or indirectly, such employee...) After learning of the contribution: (A) Has taken all available steps to cause the contributor involved...
17 CFR 23.451 - Political contributions by certain swap dealers.
Code of Federal Regulations, 2014 CFR
2014-04-01
... any person who supervises, directly or indirectly, such employee; and (iii) Any political action... Special Entity for the swap dealer and any person who supervises, directly or indirectly, such employee...) After learning of the contribution: (A) Has taken all available steps to cause the contributor involved...
Research Supervision: The Research Management Matrix
ERIC Educational Resources Information Center
Maxwell, T. W.; Smyth, Robyn
2010-01-01
We briefly make a case for re-conceptualising research project supervision/advising as the consideration of three inter-related areas: the learning and teaching process; developing the student; and producing the research project/outcome as a social practice. We use this as our theoretical base for an heuristic tool, "the research management…
Independent School Teachers' Perceptions of Supervision and Evaluation
ERIC Educational Resources Information Center
Graybeal, Anne E.
2017-01-01
This dissertation addressed the teacher supervision process in one independent school in the United States. It explored teachers' approaches to giving and receiving feedback, their perceptions of students' motivation for learning versus their own, and the significance of their professional identities as teachers. The study was motivated by three…
Classification of earth terrain using polarimetric synthetic aperture radar images
NASA Technical Reports Server (NTRS)
Lim, H. H.; Swartz, A. A.; Yueh, H. A.; Kong, J. A.; Shin, R. T.; Van Zyl, J. J.
1989-01-01
Supervised and unsupervised classification techniques are developed and used to classify the earth terrain components from SAR polarimetric images of San Francisco Bay and Traverse City, Michigan. The supervised techniques include the Bayes classifiers, normalized polarimetric classification, and simple feature classification using discriminates such as the absolute and normalized magnitude response of individual receiver channel returns and the phase difference between receiver channels. An algorithm is developed as an unsupervised technique which classifies terrain elements based on the relationship between the orientation angle and the handedness of the transmitting and receiving polariation states. It is found that supervised classification produces the best results when accurate classifier training data are used, while unsupervised classification may be applied when training data are not available.
NASA Astrophysics Data System (ADS)
Widowati, Trisnani; Purwanti, Dwi
2017-03-01
ICT-based learning for SMP Terbuka is a manifestation of the first pillar of DEPDIKNAS Strategic Plan 2005-2009, about the use of ICT as the facility of long distance learning. By implementing ICT-based learning, the communication between the teacher and the students is possible to happen although both parties are in differnet places. The problem in implementing ICT-based learning for SMP Terbuka is the low competence of the teachers in ICT mastery, because this research is aimed to formulate the enhancement model of ICT competence for the teachers of SMP Terbuka in Central Java to support long distance learning program. This research shows that Supervised-Teachers and Tutor Teachers Competence in ICT is still low with the average of Supervised-Teachers competence in operating Ms.Word application of 59.6%, Ms.Excel 55.40%, Power Point 43.40% and internet mastery of 41.8%; while the competence of Tutor Teachers is lower with the average of 40.40% in operating Ms. Word, 35.20% in Ms.Excel, 28.00% in Power Point, and 29% in internet mastery. It means that Supervised-Teachers understand ICT, but they do not master it; while Tutor Teachers have just understood ICT and have a low mastery in Ms.Word. The output of this research is: The new findings of the enhancement model of ICT competence for the teachers of SMP Terbuka in Central Java to support long distance learning program.
Supervised machine learning and active learning in classification of radiology reports.
Nguyen, Dung H M; Patrick, Jon D
2014-01-01
This paper presents an automated system for classifying the results of imaging examinations (CT, MRI, positron emission tomography) into reportable and non-reportable cancer cases. This system is part of an industrial-strength processing pipeline built to extract content from radiology reports for use in the Victorian Cancer Registry. In addition to traditional supervised learning methods such as conditional random fields and support vector machines, active learning (AL) approaches were investigated to optimize training production and further improve classification performance. The project involved two pilot sites in Victoria, Australia (Lake Imaging (Ballarat) and Peter MacCallum Cancer Centre (Melbourne)) and, in collaboration with the NSW Central Registry, one pilot site at Westmead Hospital (Sydney). The reportability classifier performance achieved 98.25% sensitivity and 96.14% specificity on the cancer registry's held-out test set. Up to 92% of training data needed for supervised machine learning can be saved by AL. AL is a promising method for optimizing the supervised training production used in classification of radiology reports. When an AL strategy is applied during the data selection process, the cost of manual classification can be reduced significantly. The most important practical application of the reportability classifier is that it can dramatically reduce human effort in identifying relevant reports from the large imaging pool for further investigation of cancer. The classifier is built on a large real-world dataset and can achieve high performance in filtering relevant reports to support cancer registries. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Characterization and reconstruction of 3D stochastic microstructures via supervised learning.
Bostanabad, R; Chen, W; Apley, D W
2016-12-01
The need for computational characterization and reconstruction of volumetric maps of stochastic microstructures for understanding the role of material structure in the processing-structure-property chain has been highlighted in the literature. Recently, a promising characterization and reconstruction approach has been developed where the essential idea is to convert the digitized microstructure image into an appropriate training dataset to learn the stochastic nature of the morphology by fitting a supervised learning model to the dataset. This compact model can subsequently be used to efficiently reconstruct as many statistically equivalent microstructure samples as desired. The goal of this paper is to build upon the developed approach in three major directions by: (1) extending the approach to characterize 3D stochastic microstructures and efficiently reconstruct 3D samples, (2) improving the performance of the approach by incorporating user-defined predictors into the supervised learning model, and (3) addressing potential computational issues by introducing a reduced model which can perform as effectively as the full model. We test the extended approach on three examples and show that the spatial dependencies, as evaluated via various measures, are well preserved in the reconstructed samples. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.
Helping Hands: Using Augmented Reality to Provide Remote Guidance to Health Professionals.
Mather, Carey; Barnett, Tony; Broucek, Vlasti; Saunders, Annette; Grattidge, Darren; Huang, Weidong
2017-01-01
Access to expert practitioners or geographic distance can compound the capacity for appropriate supervision of health professionals in the workplace. Guidance and support of clinicians and students to undertake new or infrequent procedures can be resource intensive. The Helping Hands remote augmented reality system is an innovation to support the development of, and oversee the acquisition of procedural skills through remote learning and teaching supervision while in clinical practice. Helping Hands is a wearable, portable, hands-free, low cost system comprised of two networked laptops, a head-mounted display worn by the recipient and a display screen used remotely by the instructor. Hand hygiene was used as the test procedure as it is a foundation skill learned by all health profession students. The technology supports unmediated remote gesture guidance by augmenting the object with the Helping Hands of a health professional. A laboratory-based study and field trial tested usability and feasibility of the remote guidance system. The study found the Helping Hands system did not compromise learning outcomes. This innovation has the potential to transform remote learning and teaching supervision by enabling health professionals and students opportunities to develop and improve their procedural performance at the workplace.
Students Chart Their Own IA Programs
ERIC Educational Resources Information Center
Lavender, John; Ross, John
1973-01-01
Junior high school industrial arts students learn in a program in which they select their area of learning, manage their activities, supervise themselves in procedures, and investigate career opportunities. (DS)
Bronas, Ulf G; Hirsch, Alan T; Murphy, Timothy; Badenhop, Dalynn; Collins, Tracie C; Ehrman, Jonathan K; Ershow, Abby G; Lewis, Beth; Treat-Jacobson, Diane J; Walsh, M Eileen; Oldenburg, Niki; Regensteiner, Judith G
2009-11-01
The CLaudication: Exercise Vs Endoluminal Revascularization (CLEVER) study is the first randomized, controlled, clinical, multicenter trial that is evaluating a supervised exercise program compared with revascularization procedures to treat claudication. In this report, the methods and dissemination techniques of the supervised exercise training intervention are described. A total of 217 participants are being recruited and randomized to one of three arms: (1) optimal medical care; (2) aortoiliac revascularization with stent; or (3) supervised exercise training. Of the enrolled patients, 84 will receive supervised exercise therapy. Supervised exercise will be administered according to a protocol designed by a central CLEVER exercise training committee based on validated methods previously used in single center randomized control trials. The protocol will be implemented at each site by an exercise committee member using training methods developed and standardized by the exercise training committee. The exercise training committee reviews progress and compliance with the protocol of each participant weekly. In conclusion, a multicenter approach to disseminate the supervised exercise training technique and to evaluate its efficacy, safety and cost-effectiveness for patients with claudication due to peripheral arterial disease (PAD) is being evaluated for the first time in CLEVER. The CLEVER study will further establish the role of supervised exercise training in the treatment of claudication resulting from PAD and provide standardized methods for use of supervised exercise training in future PAD clinical trials as well as in clinical practice.
Supervised learning of probability distributions by neural networks
NASA Technical Reports Server (NTRS)
Baum, Eric B.; Wilczek, Frank
1988-01-01
Supervised learning algorithms for feedforward neural networks are investigated analytically. The back-propagation algorithm described by Werbos (1974), Parker (1985), and Rumelhart et al. (1986) is generalized by redefining the values of the input and output neurons as probabilities. The synaptic weights are then varied to follow gradients in the logarithm of likelihood rather than in the error. This modification is shown to provide a more rigorous theoretical basis for the algorithm and to permit more accurate predictions. A typical application involving a medical-diagnosis expert system is discussed.
Boareto, Marcelo; Cesar, Jonatas; Leite, Vitor B P; Caticha, Nestor
2015-01-01
We introduce Supervised Variational Relevance Learning (Suvrel), a variational method to determine metric tensors to define distance based similarity in pattern classification, inspired in relevance learning. The variational method is applied to a cost function that penalizes large intraclass distances and favors small interclass distances. We find analytically the metric tensor that minimizes the cost function. Preprocessing the patterns by doing linear transformations using the metric tensor yields a dataset which can be more efficiently classified. We test our methods using publicly available datasets, for some standard classifiers. Among these datasets, two were tested by the MAQC-II project and, even without the use of further preprocessing, our results improve on their performance.
Goal Directed Model Inversion: Learning Within Domain Constraints
NASA Technical Reports Server (NTRS)
Colombano, Silvano P.; Compton, Michael; Raghavan, Bharathi; Friedland, Peter (Technical Monitor)
1994-01-01
Goal Directed Model Inversion (GDMI) is an algorithm designed to generalize supervised learning to the case where target outputs are not available to the learning system. The output of the learning system becomes the input to some external device or transformation, and only the output of this device or transformation can be compared to a desired target. The fundamental driving mechanism of GDMI is to learn from success. Given that a wrong outcome is achieved, one notes that the action that produced that outcome "would have been right if the outcome had been the desired one." The algorithm makes use of these intermediate "successes" to achieve the final goal. A unique and potentially very important feature of this algorithm is the ability to modify the output of the learning module to force upon it a desired syntactic structure. This differs from ordinary supervised learning in the following way: in supervised learning the exact desired output pattern must be provided. In GDMI instead, it is possible to require simply that the output obey certain rules, i.e., that it "make sense" in some way determined by the knowledge domain. The exact pattern that will achieve the desired outcome is then found by the system. The ability to impose rules while allowing the system to search for its own answers in the context of neural networks is potentially a major breakthrough in two ways: (1) it may allow the construction of networks that can incorporate immediately some important knowledge, i.e., would not need to learn everything from scratch as normally required at present; and (2) learning and searching would be limited to the areas where it is necessary, thus facilitating and speeding up the process. These points are illustrated with examples from robotic path planning and parametric design.
Goal Directed Model Inversion: Learning Within Domain Constraints
NASA Technical Reports Server (NTRS)
Colombano, Silvano P.; Compton, Michael; Raghavan, Bharathi; Lum, Henry, Jr. (Technical Monitor)
1994-01-01
Goal Directed Model Inversion (GDMI) is an algorithm designed to generalize supervised learning to the case where target outputs are not available to the learning system. The output of the learning system becomes the input to some external device or transformation, and only the output of this device or transformation can be compared to a desired target. The fundamental driving mechanism of GDMI is to learn from success. Given that a wrong outcome is achieved, one notes that the action that produced that outcome "would have been right if the outcome had been the desired one." The algorithm makes use of these intermediate "successes" to achieve the final goal. A unique and potentially very important feature of this algorithm is the ability to modify the output of the learning module to force upon it a desired syntactic structure. This differs from ordinary supervised learning in the following way: in supervised learning the exact desired output pattern must be provided. In GDMI instead, it is possible to require simply that the output obey certain rules, i.e., that it "make sense" in some way determined by the knowledge domain. The exact pattern that will achieve the desired outcome is then found by the system. The ability to impose rules while allowing the system to search for its own answers in the context of neural networks is potentially a major breakthrough in two ways: 1) it may allow the construction of networks that can incorporate immediately some important knowledge, i.e. would not need to learn everything from scratch as normally required at present, and 2) learning and searching would be limited to the areas where it is necessary, thus facilitating and speeding up the process. These points are illustrated with examples from robotic path planning and parametric design.
When approved is not enough: development of a supervision consultation model.
Green, S; Shilts, L; Bacigalupe, G
2001-10-01
The dramatic increase in the literature that addresses family therapy training and supervision over the last decade has been predominantly in the area of theory, rather than practice. This article describes the development of a meta-supervisory learning context for approved supervisors and provides examples of interactions between supervisors that subsequently influenced both therapy and supervision. We delineate the assumptions that inform our work and offer specific guidelines for supervisors who wish to implement a similar model in their own contexts. We provide suggestions for a proactive refiguring of supervision that may have profound effects and benefits for supervisors and supervisees alike.
Bridging the Learning Gap: Cross-Cultural Learning and Teaching through Distance
ERIC Educational Resources Information Center
Mullings, Delores V.
2015-01-01
This project engaged students, practitioners, and educators from University of Labor and Social Affairs, Cau Giay District, Hanoi and Newfoundland and Labrador, Canada, in a cross-cultural distance learning and teaching collaboration. Two groups met simultaneously through Skype videoconferencing to discuss and learn about field supervision and…
ERIC Educational Resources Information Center
Katz, Jennifer; DuBois, Melinda; Wigderson, Sara
2014-01-01
This study investigated communication outcomes after training or applied service-learning experiences. Pre-practicum trainees learned active listening skills over 10 weeks. Practicum students were successful trainees who staffed a helpline. Community interns were trained and supervised at community agencies. Undergraduate students in psychology…
Medical students' perceptions of their learning environment during a mandatory research project.
Möller, Riitta; Ponzer, Sari; Shoshan, Maria
2017-10-20
To explore medical students´ perceptions of their learning environment during a mandatory 20-week scientific research project. This cross-sectional study was conducted between 2011 and 2013. A total of 651 medical students were asked to fill in the Clinical Learning Environment, Supervision, and Nurse Teacher (CLES+T) questionnaire, and 439 (mean age 26 years, range 21-40, 60% females) returned the questionnaire, which corresponds to a response rate of 67%. The Mann-Whitney U test or the Kruskal-Wallis test were used to compare the research environments. The item My workplace can be regarded as a good learning environment correlated strongly with the item There were sufficient meaningful learning situations (r= 0.71, p<0.001). Overall satisfaction with supervision correlated strongly with the items interaction (r=0.78, p < 0.001), feedback (r=0.76, p<0.001), and a sense of trust (r=0.71, p < 0.001). Supervisors´ failures to bridge the gap between theory and practice or to explain intended learning outcomes were important negative factors. Students with basic science or epidemiological projects rated their learning environments higher than did students with clinical projects (χ 2 (3, N=437) =20.29, p<0.001). A good research environment for medical students comprises multiple meaningful learning activities, individual supervision with continuous feedback, and a trustful atmosphere including interactions with the whole staff. Students should be advised that clinical projects might require a higher degree of student independence than basic science projects, which are usually performed in research groups where members work in close collaboration.
Slabbinck, Bram; Waegeman, Willem; Dawyndt, Peter; De Vos, Paul; De Baets, Bernard
2010-01-30
Machine learning techniques have shown to improve bacterial species classification based on fatty acid methyl ester (FAME) data. Nonetheless, FAME analysis has a limited resolution for discrimination of bacteria at the species level. In this paper, we approach the species classification problem from a taxonomic point of view. Such a taxonomy or tree is typically obtained by applying clustering algorithms on FAME data or on 16S rRNA gene data. The knowledge gained from the tree can then be used to evaluate FAME-based classifiers, resulting in a novel framework for bacterial species classification. In view of learning in a taxonomic framework, we consider two types of trees. First, a FAME tree is constructed with a supervised divisive clustering algorithm. Subsequently, based on 16S rRNA gene sequence analysis, phylogenetic trees are inferred by the NJ and UPGMA methods. In this second approach, the species classification problem is based on the combination of two different types of data. Herein, 16S rRNA gene sequence data is used for phylogenetic tree inference and the corresponding binary tree splits are learned based on FAME data. We call this learning approach 'phylogenetic learning'. Supervised Random Forest models are developed to train the classification tasks in a stratified cross-validation setting. In this way, better classification results are obtained for species that are typically hard to distinguish by a single or flat multi-class classification model. FAME-based bacterial species classification is successfully evaluated in a taxonomic framework. Although the proposed approach does not improve the overall accuracy compared to flat multi-class classification, it has some distinct advantages. First, it has better capabilities for distinguishing species on which flat multi-class classification fails. Secondly, the hierarchical classification structure allows to easily evaluate and visualize the resolution of FAME data for the discrimination of bacterial species. Summarized, by phylogenetic learning we are able to situate and evaluate FAME-based bacterial species classification in a more informative context.
2010-01-01
Background Machine learning techniques have shown to improve bacterial species classification based on fatty acid methyl ester (FAME) data. Nonetheless, FAME analysis has a limited resolution for discrimination of bacteria at the species level. In this paper, we approach the species classification problem from a taxonomic point of view. Such a taxonomy or tree is typically obtained by applying clustering algorithms on FAME data or on 16S rRNA gene data. The knowledge gained from the tree can then be used to evaluate FAME-based classifiers, resulting in a novel framework for bacterial species classification. Results In view of learning in a taxonomic framework, we consider two types of trees. First, a FAME tree is constructed with a supervised divisive clustering algorithm. Subsequently, based on 16S rRNA gene sequence analysis, phylogenetic trees are inferred by the NJ and UPGMA methods. In this second approach, the species classification problem is based on the combination of two different types of data. Herein, 16S rRNA gene sequence data is used for phylogenetic tree inference and the corresponding binary tree splits are learned based on FAME data. We call this learning approach 'phylogenetic learning'. Supervised Random Forest models are developed to train the classification tasks in a stratified cross-validation setting. In this way, better classification results are obtained for species that are typically hard to distinguish by a single or flat multi-class classification model. Conclusions FAME-based bacterial species classification is successfully evaluated in a taxonomic framework. Although the proposed approach does not improve the overall accuracy compared to flat multi-class classification, it has some distinct advantages. First, it has better capabilities for distinguishing species on which flat multi-class classification fails. Secondly, the hierarchical classification structure allows to easily evaluate and visualize the resolution of FAME data for the discrimination of bacterial species. Summarized, by phylogenetic learning we are able to situate and evaluate FAME-based bacterial species classification in a more informative context. PMID:20113515
The beginnings of psychoanalytic supervision: the crucial role of Max Eitingon.
Watkins, C Edward
2013-09-01
Psychoanalytic supervision is moving well into its 2nd century of theory, practice, and (to a limited extent) research. In this paper, I take a look at the pioneering first efforts to define psychoanalytic supervision and its importance to the psychoanalytic education process. Max Eitingon, the "almost forgotten man" of psychoanalysis, looms large in any such consideration. His writings or organizational reports were seemingly the first psychoanalytic published material to address the following supervision issues: rationale, screening, notes, responsibility, supervisee learning/personality issues, and the extent and length of supervision itself. Although Eitingon never wrote formally on supervision, his pioneering work in the area has continued to echo across the decades and can still be seen reflected in contemporary supervision practice. I also recognize the role of Karen Horney-one of the founders of the Berlin Institute and Poliklinik, friend of Eitingon, and active, vital participant in Eitingon's efforts-in contributing to and shaping the beginnings of psychoanalytic education.
Interprofessional supervision in an intercultural context: a qualitative study.
Chipchase, Lucy; Allen, Shelley; Eley, Diann; McAllister, Lindy; Strong, Jenny
2012-11-01
Our understanding of the qualities and value of clinical supervision is based on uniprofessional clinical education models. There is little research regarding the role and qualities needed in the supervisor role for supporting interprofessional placements. This paper reports the views and perceptions of medical and allied heath students and supervisors on the characteristics of clinical supervision in an interprofessional, international context. A qualitative case study was used involving semi-structured interviews of eight health professional students and four clinical supervisors before and after an interprofessional, international clinical placement. Our findings suggest that supervision from educators whose profession differs from that of the students can be a beneficial and rewarding experience leading to the use of alternative learning strategies. Although all participants valued interprofessional supervision, there was agreement that profession-specific supervision was required throughout the placement. Further research is required to understand this view as interprofessional education aims to prepare graduates for collaborative practice where they may work in teams supervised by staff whose profession may differ from their own.
Garcia, Patrick Raymund James M; Restubog, Simon Lloyd D; Kiewitz, Christian; Scott, Kristin L; Tang, Robert L
2014-09-01
In this article, we examine the relationships between supervisor-level factors and abusive supervision. Drawing from social learning theory (Bandura, 1973), we argue that supervisors' history of family aggression indirectly impacts abusive supervision via both hostile cognitions and hostile affect, with angry rumination functioning as a first-stage moderator. Using multisource data, we tested the proposed relationships in a series of 4 studies, each providing evidence of constructive replication. In Study 1, we found positive relationships between supervisors' history of family aggression, hostile affect, explicit hostile cognitions, and abusive supervision. We obtained the same pattern of results in Studies 2, 3, and 4 using an implicit measure of hostile cognitions and controlling for previously established antecedents of abusive supervision. Angry rumination moderated the indirect relationship between supervisors' history of family aggression and abusive supervision via hostile affect only. Overall, the results highlight the important role of supervisor-level factors in the abusive supervision dynamics. PsycINFO Database Record (c) 2014 APA, all rights reserved.
Intrinsic dimensionality predicts the saliency of natural dynamic scenes.
Vig, Eleonora; Dorr, Michael; Martinetz, Thomas; Barth, Erhardt
2012-06-01
Since visual attention-based computer vision applications have gained popularity, ever more complex, biologically inspired models seem to be needed to predict salient locations (or interest points) in naturalistic scenes. In this paper, we explore how far one can go in predicting eye movements by using only basic signal processing, such as image representations derived from efficient coding principles, and machine learning. To this end, we gradually increase the complexity of a model from simple single-scale saliency maps computed on grayscale videos to spatiotemporal multiscale and multispectral representations. Using a large collection of eye movements on high-resolution videos, supervised learning techniques fine-tune the free parameters whose addition is inevitable with increasing complexity. The proposed model, although very simple, demonstrates significant improvement in predicting salient locations in naturalistic videos over four selected baseline models and two distinct data labeling scenarios.
Thomas, Gareth; McNeill, Helen
2018-01-05
Background A '1-hour protected supervision model' is well established for Psychiatry trainees. This model is also extended to GP trainees who are on placement in psychiatry. To explore the experiences of the '1-hour protected supervision model' for GP trainees in psychiatry placements in the UK. Methods Using a mixed methods approach, an anonymous online questionnaire was sent to GP trainees in the North West of England who had completed a placement in Psychiatry between February and August 2015. Results Discussing clinical cases whilst using the e-portfolio was the most useful learning event in this model. Patient care can potentially improve if a positive relationship develops between trainee/supervisor, which is impacted by the knowledge of this model at the start of the placement. Trainees found that clinical pressures were impacting on the occurrence of supervision. Conclusion The model works best when both GP trainees and their supervisors understand the model. The most frequently used and educationally beneficial aspect for GP trainees in psychiatry is the exploration of clinical cases using the learning portfolio as an educational tool. For effective delivery of this model of supervision, organisations must reflect on the balance between service delivery and allowing the supervisor and trainee adequate time for it to occur.
Developing a Language Learning Rationale for African Language Tutorials.
ERIC Educational Resources Information Center
Dwyer, David
1999-01-01
Presents a rationale for the supervised tutorial component of the African language program at Michigan State University. The supervised tutorial is one of two modes through which African languages are offered at Michigan State University. The other, which is teacher led, is offered for high enrollment languages such as Arabic, Swahili, and Hausa.…
New Technology, Changing Pedagogies? Exploring the Concept of Remote Teaching Placement Supervision
ERIC Educational Resources Information Center
Chilton, Helen; McCracken, Wendy
2017-01-01
Mobile technologies continue to have a growing influence on contemporary society, are becoming more commonplace within tertiary educational settings and hold the potential to impact on the learning process. This project evaluation considers the perspectives of participants who trialled the use of new technology to enable remote supervision and…
Remote Video Supervision in Adapted Physical Education
ERIC Educational Resources Information Center
Kelly, Luke; Bishop, Jason
2013-01-01
Supervision for beginning adapted physical education (APE) teachers and inservice general physical education teachers who are learning to work with students with disabilities poses a number of challenges. The purpose of this article is to describe a project aimed at developing a remote video system that could be used by a university supervisor to…
Questions To Ask and Issues To Consider While Supervising Elementary Mathematics Student Teachers.
ERIC Educational Resources Information Center
Philip, Randolph A.
2000-01-01
Presents four questions to consider when supervising elementary mathematics teachers, who come with many preconceptions about teaching and learning mathematics: What mathematical concepts, procedures, or algorithms are you teaching? Are the concepts and procedures part of a unit? What types of questions do you pose? and What understanding of…
Postgraduate Supervision at an Open Distance E-Learning Institution in South Africa
ERIC Educational Resources Information Center
Manyike, Tintswalo Vivian
2017-01-01
Effective postgraduate supervision is a concern at universities worldwide, even under optimal conditions where postgraduate students are studying full-time. Universities are being pressured by their governments to increase the throughput of postgraduates where there is a need for supervisory guidance in order to produce quality graduates within a…
Practical Supervision: The First Line of Management.
ERIC Educational Resources Information Center
Erkkila, John; MacKay, Pamela
1990-01-01
Discusses the problems encountered by first time library supervisors who have to learn not only their new professional jobs but also how to supervise others. A supervisory approach based on work checking is described, and the role that managers should play in assisting their supervisors to acquire necessary skills is outlined. (14 references) (CLB)
When Approved Is not Enough: Development of a Supervision Consultation Model.
ERIC Educational Resources Information Center
Green, Shelley; Shilts, Lee; Bacigalupe, Gonzalo
2001-01-01
The dramatic increase in literature that addresses family therapy training and supervision over the last decade has been predominantly in the area of theory, rather than practice. This article describes the development of a meta-supervisory learning context for approved supervisors and provides examples of interactions between supervisors that…
The Superskills Model: A Supervisory Microskill Competency Training Model
ERIC Educational Resources Information Center
Destler, Dusty
2017-01-01
Streamlined supervision frameworks are needed to enhance and progress the practice and training of supervisors. This author proposes the SuperSkills Model (SSM), grounded in the practice of microskills and supervision common factors, with a focus on the development and foundational learning of supervisors-in-training. The SSM worksheet prompts for…
Supervisors' Experience of Resistance during Online Group Supervision: A Phenomenological Case Study
ERIC Educational Resources Information Center
Morton, James R., Jr.
2017-01-01
Leaders in higher education institutions throughout the United States regard distance learning as an important part of their long-term strategic planning (Allen & Seaman, 2015). Counselor education and supervision training programs are following this trend as demonstrated by the increase of online programs being offered to train professional…
Gran, Sarah Frandsen; Brænd, Anja Maria; Lindbæk, Morten; Frich, Jan C
2016-06-01
Feedback may be scarce and unsystematic during students' clerkship periods. We wanted to explore general practitioners' (GPs) and medical students' experiences with giving and receiving supervision and feedback during a clerkship in general practice, with a focus on their experiences with using a structured tool (StudentPEP) to facilitate feedback and supervision. Qualitative study. Teachers and students from a six-week clerkship in general practice for fifth year medical students were interviewed in two student and two teacher focus groups. 21 GPs and nine medical students. We found that GPs first supported students' development in the familiarization phase by exploring the students' expectations and competency level. When mutual trust had been established through the familiarization phase GPs encouraged students to conduct their own consultations while being available for supervision and feedback. Both students and GPs emphasized that good feedback promoting students' professional development was timely, constructive, supportive, and focused on ways to improve. Among the challenges GPs mentioned were giving feedback on behavioral issues such as body language and insensitive use of electronic devices during consultations or if the student was very insecure, passive, and reluctant to take action or lacked social or language skills. While some GPs experienced StudentPEP as time-consuming and unnecessary, others argued that the tool promoted feedback and learning through mandatory observations and structured questions. Mutual trust builds a learning environment in which supervision and feedback may be given during students' clerkship in general practice. Structured tools may promote feedback, reflection and learning. Key Points Observing the teacher and being supervised are essential components of Medical students' learning during general practice clerkships. Teachers and students build mutual trust in the familiarization phase. Good feedback is based on observations, is timely, encouraging, and instructive. StudentPEP may create an arena for structured feedback and reflection.
A dichoptic custom-made action video game as a treatment for adult amblyopia.
Vedamurthy, Indu; Nahum, Mor; Huang, Samuel J; Zheng, Frank; Bayliss, Jessica; Bavelier, Daphne; Levi, Dennis M
2015-09-01
Previous studies have employed different experimental approaches to enhance visual function in adults with amblyopia including perceptual learning, videogame play, and dichoptic training. Here, we evaluated the efficacy of a novel dichoptic action videogame combining all three approaches. This experimental intervention was compared to a conventional, yet unstudied method of supervised occlusion while watching movies. Adults with unilateral amblyopia were assigned to either play the dichoptic action game (n=23; 'game' group), or to watch movies monocularly while the fellow eye was patched (n=15; 'movies' group) for a total of 40hours. Following training, visual acuity (VA) improved on average by ≈0.14logMAR (≈28%) in the game group, with improvements noted in both anisometropic and strabismic patients. This improvement is similar to that obtained following perceptual learning, video game play or dichoptic training. Surprisingly, patients with anisometropic amblyopia in the movies group showed similar improvement, revealing a greater impact of supervised occlusion in adults than typically thought. Stereoacuity, reading speed, and contrast sensitivity improved more for game group participants compared with movies group participants. Most improvements were largely retained following a 2-month no-contact period. This novel video game, which combines action gaming, perceptual learning and dichoptic presentation, results in VA improvements equivalent to those previously documented with each of these techniques alone. Our game intervention led to greater improvement than control training in a variety of visual functions, thus suggesting that this approach has promise for the treatment of adult amblyopia. Copyright © 2015 Elsevier Ltd. All rights reserved.
A dichoptic custom-made action video game as a treatment for adult amblyopia
Vedamurthy, Indu; Nahum, Mor; Huang, Samuel J.; Zheng, Frank; Bayliss, Jessica; Bavelier, Daphne; Levi, Dennis M.
2015-01-01
Previous studies have employed different experimental approaches to enhance visual function in adults with amblyopia including perceptual learning, videogame play, and dichoptic training. Here, we evaluated the efficacy of a novel dichoptic action videogame combining all three approaches. This experimental intervention was compared to a conventional, yet unstudied method of supervised occlusion while watching movies. Adults with unilateral amblyopia were assigned to either playing the dichoptic action game (n = 23; ‘game’ group), or to watching movies monocularly while the fellow eye was patched (n = 15; ‘movies’ group) for a total of 40 h. Following training, visual acuity (VA) improved on average by ≈0.14 logMAR (≈27%) in the game group, with improvements noted in both anisometropic and strabismic patients. This improvement is similar to that described after perceptual learning, video game play or dichoptic training. Surprisingly, patients with anisometropic amblyopia in the movies group showed similar improvement, revealing a greater impact of supervised occlusion in adults than typically thought. Stereoacuity, reading speed, and contrast sensitivity improved more for game group participants compared with movies group participants. Most improvements were largely retained following a 2-month no-contact period. This novel video game, which combines action gaming, perceptual learning and dichoptic presentation, results in VA improvements equivalent to those previously documented with each of these techniques alone. Interestingly, however, our game intervention led to greater improvement than control training in a variety of visual functions, thus suggesting that this approach has promise for the treatment of adult amblyopia. PMID:25917239
Sweeney, Elizabeth M.; Vogelstein, Joshua T.; Cuzzocreo, Jennifer L.; Calabresi, Peter A.; Reich, Daniel S.; Crainiceanu, Ciprian M.; Shinohara, Russell T.
2014-01-01
Machine learning is a popular method for mining and analyzing large collections of medical data. We focus on a particular problem from medical research, supervised multiple sclerosis (MS) lesion segmentation in structural magnetic resonance imaging (MRI). We examine the extent to which the choice of machine learning or classification algorithm and feature extraction function impacts the performance of lesion segmentation methods. As quantitative measures derived from structural MRI are important clinical tools for research into the pathophysiology and natural history of MS, the development of automated lesion segmentation methods is an active research field. Yet, little is known about what drives performance of these methods. We evaluate the performance of automated MS lesion segmentation methods, which consist of a supervised classification algorithm composed with a feature extraction function. These feature extraction functions act on the observed T1-weighted (T1-w), T2-weighted (T2-w) and fluid-attenuated inversion recovery (FLAIR) MRI voxel intensities. Each MRI study has a manual lesion segmentation that we use to train and validate the supervised classification algorithms. Our main finding is that the differences in predictive performance are due more to differences in the feature vectors, rather than the machine learning or classification algorithms. Features that incorporate information from neighboring voxels in the brain were found to increase performance substantially. For lesion segmentation, we conclude that it is better to use simple, interpretable, and fast algorithms, such as logistic regression, linear discriminant analysis, and quadratic discriminant analysis, and to develop the features to improve performance. PMID:24781953
Liu, Jing; Zhao, Songzheng; Wang, Gang
2018-01-01
With the development of Web 2.0 technology, social media websites have become lucrative but under-explored data sources for extracting adverse drug events (ADEs), which is a serious health problem. Besides ADE, other semantic relation types (e.g., drug indication and beneficial effect) could hold between the drug and adverse event mentions, making ADE relation extraction - distinguishing ADE relationship from other relation types - necessary. However, conducting ADE relation extraction in social media environment is not a trivial task because of the expertise-dependent, time-consuming and costly annotation process, and the feature space's high-dimensionality attributed to intrinsic characteristics of social media data. This study aims to develop a framework for ADE relation extraction using patient-generated content in social media with better performance than that delivered by previous efforts. To achieve the objective, a general semi-supervised ensemble learning framework, SSEL-ADE, was developed. The framework exploited various lexical, semantic, and syntactic features, and integrated ensemble learning and semi-supervised learning. A series of experiments were conducted to verify the effectiveness of the proposed framework. Empirical results demonstrate the effectiveness of each component of SSEL-ADE and reveal that our proposed framework outperforms most of existing ADE relation extraction methods The SSEL-ADE can facilitate enhanced ADE relation extraction performance, thereby providing more reliable support for pharmacovigilance. Moreover, the proposed semi-supervised ensemble methods have the potential of being applied to effectively deal with other social media-based problems. Copyright © 2017 Elsevier B.V. All rights reserved.
Sweeney, Elizabeth M; Vogelstein, Joshua T; Cuzzocreo, Jennifer L; Calabresi, Peter A; Reich, Daniel S; Crainiceanu, Ciprian M; Shinohara, Russell T
2014-01-01
Machine learning is a popular method for mining and analyzing large collections of medical data. We focus on a particular problem from medical research, supervised multiple sclerosis (MS) lesion segmentation in structural magnetic resonance imaging (MRI). We examine the extent to which the choice of machine learning or classification algorithm and feature extraction function impacts the performance of lesion segmentation methods. As quantitative measures derived from structural MRI are important clinical tools for research into the pathophysiology and natural history of MS, the development of automated lesion segmentation methods is an active research field. Yet, little is known about what drives performance of these methods. We evaluate the performance of automated MS lesion segmentation methods, which consist of a supervised classification algorithm composed with a feature extraction function. These feature extraction functions act on the observed T1-weighted (T1-w), T2-weighted (T2-w) and fluid-attenuated inversion recovery (FLAIR) MRI voxel intensities. Each MRI study has a manual lesion segmentation that we use to train and validate the supervised classification algorithms. Our main finding is that the differences in predictive performance are due more to differences in the feature vectors, rather than the machine learning or classification algorithms. Features that incorporate information from neighboring voxels in the brain were found to increase performance substantially. For lesion segmentation, we conclude that it is better to use simple, interpretable, and fast algorithms, such as logistic regression, linear discriminant analysis, and quadratic discriminant analysis, and to develop the features to improve performance.
Player Modeling for Intelligent Difficulty Adjustment
NASA Astrophysics Data System (ADS)
Missura, Olana; Gärtner, Thomas
In this paper we aim at automatically adjusting the difficulty of computer games by clustering players into different types and supervised prediction of the type from short traces of gameplay. An important ingredient of video games is to challenge players by providing them with tasks of appropriate and increasing difficulty. How this difficulty should be chosen and increase over time strongly depends on the ability, experience, perception and learning curve of each individual player. It is a subjective parameter that is very difficult to set. Wrong choices can easily lead to players stopping to play the game as they get bored (if underburdened) or frustrated (if overburdened). An ideal game should be able to adjust its difficulty dynamically governed by the player’s performance. Modern video games utilise a game-testing process to investigate among other factors the perceived difficulty for a multitude of players. In this paper, we investigate how machine learning techniques can be used for automatic difficulty adjustment. Our experiments confirm the potential of machine learning in this application.
Development of machine learning models to predict inhibition of 3-dehydroquinate dehydratase.
de Ávila, Maurício Boff; de Azevedo, Walter Filgueira
2018-04-20
In this study, we describe the development of new machine learning models to predict inhibition of the enzyme 3-dehydroquinate dehydratase (DHQD). This enzyme is the third step of the shikimate pathway and is responsible for the synthesis of chorismate, which is a natural precursor of aromatic amino acids. The enzymes of shikimate pathway are absent in humans, which make them protein targets for the design of antimicrobial drugs. We focus our study on the crystallographic structures of DHQD in complex with competitive inhibitors, for which experimental inhibition constant data is available. Application of supervised machine learning techniques was able to elaborate a robust DHQD-targeted model to predict binding affinity. Combination of high-resolution crystallographic structures and binding information indicates that the prevalence of intermolecular electrostatic interactions between DHQD and competitive inhibitors is of pivotal importance for the binding affinity against this enzyme. The present findings can be used to speed up virtual screening studies focused on the DHQD structure. © 2018 John Wiley & Sons A/S.
Self-reflection in cognitive behavioural therapy and supervision.
Prasko, Jan; Mozny, Petr; Novotny, Miroslav; Slepecky, Milos; Vyskocilova, Jana
2012-12-01
Supervision is a basic part of training and ongoing education in cognitive behavioural therapy. Self-reflection is an important part of supervision. The conscious understanding of one's own emotions, feelings, thoughts, and attitudes at the time of their occurrence, and the ability to continuously follow and recognize them are among the most important abilities of both therapists and supervisors. The objective of this article is to review aspects related to supervision in cognitive behavioural therapy and self-reflection in the literature. This is a narrative review. A literature review was performed using the PubMed, SciVerse Scopus, and Web of Science databases; additional references were found through bibliography reviews of relevant articles published prior to July 2011. The databases were searched for articles containing the following keywords: cognitive behavioural therapy, self-reflection, therapeutic relationship, training, supervision, transference, and countertransference. The review also includes information from monographs referred to by other reviews. We discuss conceptual aspects related to supervision and the role of self-reflection. Self-reflection in therapy is a continuous process which is essential for the establishment of a therapeutic relationship, the professional growth of the therapist, and the ongoing development of therapeutic skills. Recognizing one's own emotions is a basic skill from which other skills necessary for both therapy and emotional self-control stem. Therapists who are skilled in understanding their inner emotions during their encounters with clients are better at making decisions, distinguishing their needs from their clients' needs, understanding transference and countertransference, and considering an optimal response at any time during a session. They know how to handle their feelings so that these correspond with the situation and their response is in the client's best interest. The ability to self-reflect increases the ability to perceive other people's inner emotions, kindles altruism, and increases attunement to subtle signals indicating what others need or want. Self-reflection may be practised by the therapists themselves using traditional cognitive behavioural therapy techniques, or it may be learned in the course of supervision. If therapists are unable to recognize their own thoughts and feelings, or the effects of their attitudes in a therapeutic situation, then they are helpless against these thoughts and feelings, which may control the therapist's behaviour to the disadvantage of the client and therapist alike. Training and supervision focused on self-reflection are beneficial to both supervisees and their clients. The more experienced the supervisor is, the more self-reflection used in therapy and supervision.
Deep learning algorithms for detecting explosive hazards in ground penetrating radar data
NASA Astrophysics Data System (ADS)
Besaw, Lance E.; Stimac, Philip J.
2014-05-01
Buried explosive hazards (BEHs) have been, and continue to be, one of the most deadly threats in modern conflicts. Current handheld sensors rely on a highly trained operator for them to be effective in detecting BEHs. New algorithms are needed to reduce the burden on the operator and improve the performance of handheld BEH detectors. Traditional anomaly detection and discrimination algorithms use "hand-engineered" feature extraction techniques to characterize and classify threats. In this work we use a Deep Belief Network (DBN) to transcend the traditional approaches of BEH detection (e.g., principal component analysis and real-time novelty detection techniques). DBNs are pretrained using an unsupervised learning algorithm to generate compressed representations of unlabeled input data and form feature detectors. They are then fine-tuned using a supervised learning algorithm to form a predictive model. Using ground penetrating radar (GPR) data collected by a robotic cart swinging a handheld detector, our research demonstrates that relatively small DBNs can learn to model GPR background signals and detect BEHs with an acceptable false alarm rate (FAR). In this work, our DBNs achieved 91% probability of detection (Pd) with 1.4 false alarms per square meter when evaluated on anti-tank and anti-personnel targets at temperate and arid test sites. This research demonstrates that DBNs are a viable approach to detect and classify BEHs.
Applying Machine Learning to Star Cluster Classification
NASA Astrophysics Data System (ADS)
Fedorenko, Kristina; Grasha, Kathryn; Calzetti, Daniela; Mahadevan, Sridhar
2016-01-01
Catalogs describing populations of star clusters are essential in investigating a range of important issues, from star formation to galaxy evolution. Star cluster catalogs are typically created in a two-step process: in the first step, a catalog of sources is automatically produced; in the second step, each of the extracted sources is visually inspected by 3-to-5 human classifiers and assigned a category. Classification by humans is labor-intensive and time consuming, thus it creates a bottleneck, and substantially slows down progress in star cluster research.We seek to automate the process of labeling star clusters (the second step) through applying supervised machine learning techniques. This will provide a fast, objective, and reproducible classification. Our data is HST (WFC3 and ACS) images of galaxies in the distance range of 3.5-12 Mpc, with a few thousand star clusters already classified by humans as a part of the LEGUS (Legacy ExtraGalactic UV Survey) project. The classification is based on 4 labels (Class 1 - symmetric, compact cluster; Class 2 - concentrated object with some degree of asymmetry; Class 3 - multiple peak system, diffuse; and Class 4 - spurious detection). We start by looking at basic machine learning methods such as decision trees. We then proceed to evaluate performance of more advanced techniques, focusing on convolutional neural networks and other Deep Learning methods. We analyze the results, and suggest several directions for further improvement.
Nonlinear Semi-Supervised Metric Learning Via Multiple Kernels and Local Topology.
Li, Xin; Bai, Yanqin; Peng, Yaxin; Du, Shaoyi; Ying, Shihui
2018-03-01
Changing the metric on the data may change the data distribution, hence a good distance metric can promote the performance of learning algorithm. In this paper, we address the semi-supervised distance metric learning (ML) problem to obtain the best nonlinear metric for the data. First, we describe the nonlinear metric by the multiple kernel representation. By this approach, we project the data into a high dimensional space, where the data can be well represented by linear ML. Then, we reformulate the linear ML by a minimization problem on the positive definite matrix group. Finally, we develop a two-step algorithm for solving this model and design an intrinsic steepest descent algorithm to learn the positive definite metric matrix. Experimental results validate that our proposed method is effective and outperforms several state-of-the-art ML methods.
Comparison Promotes Learning and Transfer of Relational Categories
ERIC Educational Resources Information Center
Kurtz, Kenneth J.; Boukrina, Olga; Gentner, Dedre
2013-01-01
We investigated the effect of co-presenting training items during supervised classification learning of novel relational categories. Strong evidence exists that comparison induces a structural alignment process that renders common relational structure more salient. We hypothesized that comparisons between exemplars would facilitate learning and…
29 CFR 29.4 - Criteria for apprenticeable occupations.
Code of Federal Regulations, 2010 CFR
2010-07-01
... through a structured, systematic program of on-the-job supervised learning; (b) Be clearly identified and... require the completion of at least 2,000 hours of on-the-job learning to attain; and (d) Require related instruction to supplement the on-the-job learning. ...
Kindermans, Pieter-Jan; Tangermann, Michael; Müller, Klaus-Robert; Schrauwen, Benjamin
2014-06-01
Most BCIs have to undergo a calibration session in which data is recorded to train decoders with machine learning. Only recently zero-training methods have become a subject of study. This work proposes a probabilistic framework for BCI applications which exploit event-related potentials (ERPs). For the example of a visual P300 speller we show how the framework harvests the structure suitable to solve the decoding task by (a) transfer learning, (b) unsupervised adaptation, (c) language model and (d) dynamic stopping. A simulation study compares the proposed probabilistic zero framework (using transfer learning and task structure) to a state-of-the-art supervised model on n = 22 subjects. The individual influence of the involved components (a)-(d) are investigated. Without any need for a calibration session, the probabilistic zero-training framework with inter-subject transfer learning shows excellent performance--competitive to a state-of-the-art supervised method using calibration. Its decoding quality is carried mainly by the effect of transfer learning in combination with continuous unsupervised adaptation. A high-performing zero-training BCI is within reach for one of the most popular BCI paradigms: ERP spelling. Recording calibration data for a supervised BCI would require valuable time which is lost for spelling. The time spent on calibration would allow a novel user to spell 29 symbols with our unsupervised approach. It could be of use for various clinical and non-clinical ERP-applications of BCI.
NASA Astrophysics Data System (ADS)
Kindermans, Pieter-Jan; Tangermann, Michael; Müller, Klaus-Robert; Schrauwen, Benjamin
2014-06-01
Objective. Most BCIs have to undergo a calibration session in which data is recorded to train decoders with machine learning. Only recently zero-training methods have become a subject of study. This work proposes a probabilistic framework for BCI applications which exploit event-related potentials (ERPs). For the example of a visual P300 speller we show how the framework harvests the structure suitable to solve the decoding task by (a) transfer learning, (b) unsupervised adaptation, (c) language model and (d) dynamic stopping. Approach. A simulation study compares the proposed probabilistic zero framework (using transfer learning and task structure) to a state-of-the-art supervised model on n = 22 subjects. The individual influence of the involved components (a)-(d) are investigated. Main results. Without any need for a calibration session, the probabilistic zero-training framework with inter-subject transfer learning shows excellent performance—competitive to a state-of-the-art supervised method using calibration. Its decoding quality is carried mainly by the effect of transfer learning in combination with continuous unsupervised adaptation. Significance. A high-performing zero-training BCI is within reach for one of the most popular BCI paradigms: ERP spelling. Recording calibration data for a supervised BCI would require valuable time which is lost for spelling. The time spent on calibration would allow a novel user to spell 29 symbols with our unsupervised approach. It could be of use for various clinical and non-clinical ERP-applications of BCI.
Mueller, Gerhard; Mylonas, Demetrius; Schumacher, Petra
2018-07-01
Within nursing education, the clinical learning environment is of a high importance in regards to the development of competencies and abilities. The organization, atmosphere, and supervision in the clinical learning environment are only a few factors that influence this development. In Austria there is currently no valid instrument available for the evaluation of influencing factors. The aim of the study was to test the construct validity with principal component analysis as well as the internal consistency of the German Clinical Learning Environment, Supervision and Teacher Scale (CLES+T scale) in Austria. The present validation study has a descriptive-quantitative cross-sectional design. The sample consisted of 385 nursing students from thirteen training institutions in Austria. The data collection was carried out online between March and April 2016. Starting with a polychoric correlation matrix, a parallel analysis with principal component extraction and promax rotation was carried out due to the ordinal data. The exploratory ordinal factor analysis supported a four-component solution and explained 73% of the total variance. The internal consistency of all 25 items reached a Cronbach's α of 0.95 and the four components ranged between 0.83 and 0.95. The German version of the CLES+T scale seems to be a useful instrument for identifying potential areas of improvement in clinical practice in order to derive specific quality measures for the practical learning environment. Copyright © 2018 Elsevier Ltd. All rights reserved.
Undergraduate nursing students' transformational learning during clinical training.
Melin-Johansson, Christina; Österlind, Jane; Hagelin, Carina Lundh; Henoch, Ingela; Ek, Kristina; Bergh, Ingrid; Browall, Maria
2018-04-02
Undergraduate nursing students encounter patients at the end of life during their clinical training. They need to confront dying and death under supportive circumstances in order to be prepared for similar situations in their future career. To explore undergraduate nursing students' descriptions of caring situations with patients at the end of life during supervised clinical training. A qualitative study using the critical incident technique was chosen. A total of 85 students wrote a short text about their experiences of caring for patients at the end of life during their clinical training. These critical incident reports were then analysed using deductive and inductive content analysis. The theme 'students' transformational learning towards becoming a professional nurse during clinical training' summarises how students relate to patients and relatives, interpret the transition from life to death, feel when caring for a dead body and learn end-of-life caring actions from their supervisors. As a preparation for their future profession, students undergoing clinical training need to confront death and dying while supported by trained supervisors and must learn how to communicate about end-of-life issues and cope with emotional stress and grief.
Active Learning for Directed Exploration of Complex Systems
NASA Technical Reports Server (NTRS)
Burl, Michael C.; Wang, Esther
2009-01-01
Physics-based simulation codes are widely used in science and engineering to model complex systems that would be infeasible to study otherwise. Such codes provide the highest-fidelity representation of system behavior, but are often so slow to run that insight into the system is limited. For example, conducting an exhaustive sweep over a d-dimensional input parameter space with k-steps along each dimension requires k(sup d) simulation trials (translating into k(sup d) CPU-days for one of our current simulations). An alternative is directed exploration in which the next simulation trials are cleverly chosen at each step. Given the results of previous trials, supervised learning techniques (SVM, KDE, GP) are applied to build up simplified predictive models of system behavior. These models are then used within an active learning framework to identify the most valuable trials to run next. Several active learning strategies are examined including a recently-proposed information-theoretic approach. Performance is evaluated on a set of thirteen synthetic oracles, which serve as surrogates for the more expensive simulations and enable the experiments to be replicated by other researchers.
MARTA GANs: Unsupervised Representation Learning for Remote Sensing Image Classification
NASA Astrophysics Data System (ADS)
Lin, Daoyu; Fu, Kun; Wang, Yang; Xu, Guangluan; Sun, Xian
2017-11-01
With the development of deep learning, supervised learning has frequently been adopted to classify remotely sensed images using convolutional networks (CNNs). However, due to the limited amount of labeled data available, supervised learning is often difficult to carry out. Therefore, we proposed an unsupervised model called multiple-layer feature-matching generative adversarial networks (MARTA GANs) to learn a representation using only unlabeled data. MARTA GANs consists of both a generative model $G$ and a discriminative model $D$. We treat $D$ as a feature extractor. To fit the complex properties of remote sensing data, we use a fusion layer to merge the mid-level and global features. $G$ can produce numerous images that are similar to the training data; therefore, $D$ can learn better representations of remotely sensed images using the training data provided by $G$. The classification results on two widely used remote sensing image databases show that the proposed method significantly improves the classification performance compared with other state-of-the-art methods.
Adding Learning to Knowledge-Based Systems: Taking the "Artificial" Out of AI
Daniel L. Schmoldt
1997-01-01
Both, knowledge-based systems (KBS) development and maintenance require time-consuming analysis of domain knowledge. Where example cases exist, KBS can be built, and later updated, by incorporating learning capabilities into their architecture. This applies to both supervised and unsupervised learning scenarios. In this paper, the important issues for learning systems-...
Expert Students in Social Learning Management Systems
ERIC Educational Resources Information Center
Avogadro, Paolo; Calegari, Silvia; Dominoni, Matteo Alessandro
2016-01-01
Purpose: A social learning management system (social LMS) is a tool which favors social interactions and allows scholastic institutions to supervise and guide the learning process. The inclusion of the social feature to a "normal" LMS leads to the creation of educational social networks (EduSN), where the students interact and learn. The…
ERIC Educational Resources Information Center
Wood, Lesley; Louw, Ina; Zuber-Skerritt, Ortrun
2017-01-01
As supervisors who advocate the transformational potential of research both to generate theory and practical and emancipatory outcomes, we practice participatory action learning and action research (PALAR). This paper offers an illustrative case of how supervision practices based on action learning can foster emancipatory and lifelong learning…
An online supervised learning method based on gradient descent for spiking neurons.
Xu, Yan; Yang, Jing; Zhong, Shuiming
2017-09-01
The purpose of supervised learning with temporal encoding for spiking neurons is to make the neurons emit a specific spike train encoded by precise firing times of spikes. The gradient-descent-based (GDB) learning methods are widely used and verified in the current research. Although the existing GDB multi-spike learning (or spike sequence learning) methods have good performance, they work in an offline manner and still have some limitations. This paper proposes an online GDB spike sequence learning method for spiking neurons that is based on the online adjustment mechanism of real biological neuron synapses. The method constructs error function and calculates the adjustment of synaptic weights as soon as the neurons emit a spike during their running process. We analyze and synthesize desired and actual output spikes to select appropriate input spikes in the calculation of weight adjustment in this paper. The experimental results show that our method obviously improves learning performance compared with the offline learning manner and has certain advantage on learning accuracy compared with other learning methods. Stronger learning ability determines that the method has large pattern storage capacity. Copyright © 2017 Elsevier Ltd. All rights reserved.
Machine learning for outcome prediction of acute ischemic stroke post intra-arterial therapy.
Asadi, Hamed; Dowling, Richard; Yan, Bernard; Mitchell, Peter
2014-01-01
Stroke is a major cause of death and disability. Accurately predicting stroke outcome from a set of predictive variables may identify high-risk patients and guide treatment approaches, leading to decreased morbidity. Logistic regression models allow for the identification and validation of predictive variables. However, advanced machine learning algorithms offer an alternative, in particular, for large-scale multi-institutional data, with the advantage of easily incorporating newly available data to improve prediction performance. Our aim was to design and compare different machine learning methods, capable of predicting the outcome of endovascular intervention in acute anterior circulation ischaemic stroke. We conducted a retrospective study of a prospectively collected database of acute ischaemic stroke treated by endovascular intervention. Using SPSS®, MATLAB®, and Rapidminer®, classical statistics as well as artificial neural network and support vector algorithms were applied to design a supervised machine capable of classifying these predictors into potential good and poor outcomes. These algorithms were trained, validated and tested using randomly divided data. We included 107 consecutive acute anterior circulation ischaemic stroke patients treated by endovascular technique. Sixty-six were male and the mean age of 65.3. All the available demographic, procedural and clinical factors were included into the models. The final confusion matrix of the neural network, demonstrated an overall congruency of ∼ 80% between the target and output classes, with favourable receiving operative characteristics. However, after optimisation, the support vector machine had a relatively better performance, with a root mean squared error of 2.064 (SD: ± 0.408). We showed promising accuracy of outcome prediction, using supervised machine learning algorithms, with potential for incorporation of larger multicenter datasets, likely further improving prediction. Finally, we propose that a robust machine learning system can potentially optimise the selection process for endovascular versus medical treatment in the management of acute stroke.
Function approximation using combined unsupervised and supervised learning.
Andras, Peter
2014-03-01
Function approximation is one of the core tasks that are solved using neural networks in the context of many engineering problems. However, good approximation results need good sampling of the data space, which usually requires exponentially increasing volume of data as the dimensionality of the data increases. At the same time, often the high-dimensional data is arranged around a much lower dimensional manifold. Here we propose the breaking of the function approximation task for high-dimensional data into two steps: (1) the mapping of the high-dimensional data onto a lower dimensional space corresponding to the manifold on which the data resides and (2) the approximation of the function using the mapped lower dimensional data. We use over-complete self-organizing maps (SOMs) for the mapping through unsupervised learning, and single hidden layer neural networks for the function approximation through supervised learning. We also extend the two-step procedure by considering support vector machines and Bayesian SOMs for the determination of the best parameters for the nonlinear neurons in the hidden layer of the neural networks used for the function approximation. We compare the approximation performance of the proposed neural networks using a set of functions and show that indeed the neural networks using combined unsupervised and supervised learning outperform in most cases the neural networks that learn the function approximation using the original high-dimensional data.
Supervised Learning for Detection of Duplicates in Genomic Sequence Databases.
Chen, Qingyu; Zobel, Justin; Zhang, Xiuzhen; Verspoor, Karin
2016-01-01
First identified as an issue in 1996, duplication in biological databases introduces redundancy and even leads to inconsistency when contradictory information appears. The amount of data makes purely manual de-duplication impractical, and existing automatic systems cannot detect duplicates as precisely as can experts. Supervised learning has the potential to address such problems by building automatic systems that learn from expert curation to detect duplicates precisely and efficiently. While machine learning is a mature approach in other duplicate detection contexts, it has seen only preliminary application in genomic sequence databases. We developed and evaluated a supervised duplicate detection method based on an expert curated dataset of duplicates, containing over one million pairs across five organisms derived from genomic sequence databases. We selected 22 features to represent distinct attributes of the database records, and developed a binary model and a multi-class model. Both models achieve promising performance; under cross-validation, the binary model had over 90% accuracy in each of the five organisms, while the multi-class model maintains high accuracy and is more robust in generalisation. We performed an ablation study to quantify the impact of different sequence record features, finding that features derived from meta-data, sequence identity, and alignment quality impact performance most strongly. The study demonstrates machine learning can be an effective additional tool for de-duplication of genomic sequence databases. All Data are available as described in the supplementary material.
A new similarity measure for link prediction based on local structures in social networks
NASA Astrophysics Data System (ADS)
Aghabozorgi, Farshad; Khayyambashi, Mohammad Reza
2018-07-01
Link prediction is a fundamental problem in social network analysis. There exist a variety of techniques for link prediction which applies the similarity measures to estimate proximity of vertices in the network. Complex networks like social networks contain structural units named network motifs. In this study, a newly developed similarity measure is proposed where these structural units are applied as the source of similarity estimation. This similarity measure is tested through a supervised learning experiment framework, where other similarity measures are compared with this similarity measure. The classification model trained with this similarity measure outperforms others of its kind.
Teaching professional boundaries to psychiatric residents.
Gabbard, Glen O; Crisp-Han, Holly
2010-01-01
The authors demonstrate that the teaching of professional boundaries in psychiatry is an essential component of training to prevent harm to patients and to the profession. The authors illustrate overarching principles that apply to didactic teaching in seminars and to psychotherapy supervision. The teaching of boundaries must be based in sound clinical theory and technique so that transference, countertransference, and frame theory are seen as interwoven with the concept of boundaries and must use case-based learning so that a "one-size-fits-all" approach is avoided. The emphasis in teaching should be on both the clinician's temptations and the management of the patient's wish to transgress therapeutic boundaries.
Speaker emotion recognition: from classical classifiers to deep neural networks
NASA Astrophysics Data System (ADS)
Mezghani, Eya; Charfeddine, Maha; Nicolas, Henri; Ben Amar, Chokri
2018-04-01
Speaker emotion recognition is considered among the most challenging tasks in recent years. In fact, automatic systems for security, medicine or education can be improved when considering the speech affective state. In this paper, a twofold approach for speech emotion classification is proposed. At the first side, a relevant set of features is adopted, and then at the second one, numerous supervised training techniques, involving classic methods as well as deep learning, are experimented. Experimental results indicate that deep architecture can improve classification performance on two affective databases, the Berlin Dataset of Emotional Speech and the SAVEE Dataset Surrey Audio-Visual Expressed Emotion.
Semi-Supervised Learning of Lift Optimization of Multi-Element Three-Segment Variable Camber Airfoil
NASA Technical Reports Server (NTRS)
Kaul, Upender K.; Nguyen, Nhan T.
2017-01-01
This chapter describes a new intelligent platform for learning optimal designs of morphing wings based on Variable Camber Continuous Trailing Edge Flaps (VCCTEF) in conjunction with a leading edge flap called the Variable Camber Krueger (VCK). The new platform consists of a Computational Fluid Dynamics (CFD) methodology coupled with a semi-supervised learning methodology. The CFD component of the intelligent platform comprises of a full Navier-Stokes solution capability (NASA OVERFLOW solver with Spalart-Allmaras turbulence model) that computes flow over a tri-element inboard NASA Generic Transport Model (GTM) wing section. Various VCCTEF/VCK settings and configurations were considered to explore optimal design for high-lift flight during take-off and landing. To determine globally optimal design of such a system, an extremely large set of CFD simulations is needed. This is not feasible to achieve in practice. To alleviate this problem, a recourse was taken to a semi-supervised learning (SSL) methodology, which is based on manifold regularization techniques. A reasonable space of CFD solutions was populated and then the SSL methodology was used to fit this manifold in its entirety, including the gaps in the manifold where there were no CFD solutions available. The SSL methodology in conjunction with an elastodynamic solver (FiDDLE) was demonstrated in an earlier study involving structural health monitoring. These CFD-SSL methodologies define the new intelligent platform that forms the basis for our search for optimal design of wings. Although the present platform can be used in various other design and operational problems in engineering, this chapter focuses on the high-lift study of the VCK-VCCTEF system. Top few candidate design configurations were identified by solving the CFD problem in a small subset of the design space. The SSL component was trained on the design space, and was then used in a predictive mode to populate a selected set of test points outside of the given design space. The new design test space thus populated was evaluated by using the CFD component by determining the error between the SSL predictions and the true (CFD) solutions, which was found to be small. This demonstrates the proposed CFD-SSL methodologies for isolating the best design of the VCK-VCCTEF system, and it holds promise for quantitatively identifying best designs of flight systems, in general.
The helpfulness of category labels in semi-supervised learning depends on category structure.
Vong, Wai Keen; Navarro, Daniel J; Perfors, Amy
2016-02-01
The study of semi-supervised category learning has generally focused on how additional unlabeled information with given labeled information might benefit category learning. The literature is also somewhat contradictory, sometimes appearing to show a benefit to unlabeled information and sometimes not. In this paper, we frame the problem differently, focusing on when labels might be helpful to a learner who has access to lots of unlabeled information. Using an unconstrained free-sorting categorization experiment, we show that labels are useful to participants only when the category structure is ambiguous and that people's responses are driven by the specific set of labels they see. We present an extension of Anderson's Rational Model of Categorization that captures this effect.
Moked, Zahava; Drach-Zahavy, Anat
2016-02-01
To examine whether the interdependent attachment style of students is positively related to their support-seeking behaviour during supervision and whether their over-dependent and counter-dependent attachment styles are negatively related to it. Second, to determine whether the mentors' attachment styles moderate the relationship between the students' support-seeking behaviours and their professional competence, such that this relationship is stronger when supervisors are characterized by higher independent attachment style. The mentor-student encounter during nursing clinical supervision is expected to create a supportive environment aimed at promoting support-seeking behaviours and subsequent positive supervision outcomes. Bowlby's attachment theory suggests that the three attachment styles - independent, counter-dependent and over-dependent - may have implications for clinical supervision. A correlative-prospective study. One hundred and seventy-eight students and 66 clinical mentors completed questionnaires at the beginning and end of a clinical supervision session during 2012-2013. Results demonstrated that high compared with low independent nursing students tended to seek less support. Second, students who seek less support evaluated their professional competence as higher than students who seek more support. Third, mentor's counter-dependent attachment style moderated the relationship between students' support-seeking behaviour and their professional competencies. The results allude to the detrimental meaning of support-seeking in the eyes of nursing students. Results can guide administrators in promoting supervision processes that are compatible with the students' independent learning style, while also preventing the negative implications of autonomic learning. Furthermore, as mentors' counter-dependent attachment style can hinder students' support-seeking, attachment styles should be considered in the selection of mentors. © 2015 John Wiley & Sons Ltd.
Walton, Merrilyn; Harrison, Reema; Burgess, Annette; Foster, Kirsty
2015-10-01
Preventable harm is one of the top six health problems in the developed world. Developing patient safety skills and knowledge among advanced trainee doctors is critical. Clinical supervision is the main form of training for advanced trainees. The use of supervision to develop patient safety competence has not been established. To establish the use of clinical supervision and other workplace training to develop non-technical patient safety competency in advanced trainee doctors. Keywords, synonyms and subject headings were used to search eight electronic databases in addition to hand-searching of relevant journals up to 1 March 2014. Titles and abstracts of retrieved publications were screened by two reviewers and checked by a third. Full-text articles were screened against the eligibility criteria. Data on design, methods and key findings were extracted. Clinical supervision documents were assessed against components common to established patient safety frameworks. Findings from the reviewed articles and document analysis were collated in a narrative synthesis. Clinical supervision is not identified as an avenue for embedding patient safety skills in the workplace and is consequently not evaluated as a method to teach trainees these skills. Workplace training in non-technical patient safety skills is limited, but one-off training courses are sometimes used. Clinical supervision is the primary avenue for learning in postgraduate medical education but the most overlooked in the context of patient safety learning. The widespread implementation of short courses is not matched by evidence of rigorous evaluation. Supporting supervisors to identify teaching moments during supervision and to give weight to non-technical skills and technical skills equally is critical. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Paediatric trainee supervision: management changes and perceived education value.
van den Boom, Mirjam; Pinnock, Ralph; Weller, Jennifer; Reed, Peter; Shulruf, Boaz
2012-07-01
Supervision in postgraduate training is an under-researched area. We measured the amount, type and effect of supervision on patient care and perceived education value in a general paediatric service. We designed a structured observation form and questionnaire to document the type, duration and effect of supervision on patient management and perceived education value. Most supervision occurred without the paediatrician confirming the trainee's findings. Direct observation of the trainee was rare. Management was changed in 30% of patients seen on the inpatient ward round and in 42% of the patients discussed during the chart reviews but not seen by the paediatrician. Management was changed in 48% of the cases when the paediatrician saw the patient with the trainee in outpatients but in only 21% of patients when the patient was but not seen. Changes made to patient management, understanding and perceived education value, differed between inpatient and out patient settings. There was more impact when the paediatrician saw the patient with the trainee in outpatients; while for inpatients, the opposite was true. Trainees rated the value of the supervision more highly than their supervisors did. Trainees' comments on what they learnt from their supervisor related almost exclusively to clinical knowledge rather than professional behaviours. We observed little evidence of supervisors directly observing trainees and trainees learning professional behaviours. A review of supervisory practices to promote more effective learning is needed. Communicating to paediatricians the value their trainees place on their input could have a positive effect on their engagement in supervision. © 2012 The Authors. Journal of Paediatrics and Child Health © 2012 Paediatrics and Child Health Division (Royal Australasian College of Physicians).
Smedts, Anna M; Campbell, Narelle; Sweet, Linda
2013-01-01
This study sought to characterise the allied health professional (AHP) workforce of the Northern Territory (NT), Australia, in order to understand the influence of student supervision on workload, job satisfaction, and recruitment and retention. The national Rural Allied Health Workforce Study survey was adapted for the NT context and distributed through local AHP networks. Valid responses (n=179) representing 16 professions were collated and categorised into 'supervisor' and 'non-supervisor' groups for further analysis. The NT AHP workforce is predominantly female, non-Indigenous, raised in an urban environment, trained outside the NT, now concentrated in the capital city, and principally engaged in individual patient care. Allied health professionals cited income and type of work or clientele as the most frequent factors for attraction to their current positions. While 62% provided student supervision, only half reported having training in mentoring or supervision. Supervising students accounted for an estimated 9% of workload. Almost 20% of existing supervisors and 33% of non-supervising survey respondents expressed an interest in greater supervisory responsibilities. Despite indicating high satisfaction with their current positions, 67% of respondents reported an intention to leave their jobs in less than 5 years. Student supervision was not linked to perceived job satisfaction; however, this study found that professionals who were engaged in student supervision were significantly more likely to report intention to stay in their current jobs (>5 years; p<0.05). The findings are important for supporting ongoing work-integrated learning opportunities for students in a remote context, and highlight the need for efforts to be focused on the training and retention of AHPs as student supervisors.
Su, Hang; Yin, Zhaozheng; Huh, Seungil; Kanade, Takeo
2013-10-01
Phase-contrast microscopy is one of the most common and convenient imaging modalities to observe long-term multi-cellular processes, which generates images by the interference of lights passing through transparent specimens and background medium with different retarded phases. Despite many years of study, computer-aided phase contrast microscopy analysis on cell behavior is challenged by image qualities and artifacts caused by phase contrast optics. Addressing the unsolved challenges, the authors propose (1) a phase contrast microscopy image restoration method that produces phase retardation features, which are intrinsic features of phase contrast microscopy, and (2) a semi-supervised learning based algorithm for cell segmentation, which is a fundamental task for various cell behavior analysis. Specifically, the image formation process of phase contrast microscopy images is first computationally modeled with a dictionary of diffraction patterns; as a result, each pixel of a phase contrast microscopy image is represented by a linear combination of the bases, which we call phase retardation features. Images are then partitioned into phase-homogeneous atoms by clustering neighboring pixels with similar phase retardation features. Consequently, cell segmentation is performed via a semi-supervised classification technique over the phase-homogeneous atoms. Experiments demonstrate that the proposed approach produces quality segmentation of individual cells and outperforms previous approaches. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Satyawati, Sophia Tri; Widyanto, I. Putu; Suemy
2017-03-01
This paper examines the principal's efforts in improving the professionalism of post-certification teachers through academic supervision in vocational school. The certification of educators is expected to improve the professionalism of teachers, there are significant changes between the before and after receiving the certificate of educators. One of the efforts made by the principal on increasing the professionalism of teachers is to carry out academic supervision completely and continuously. This paper examines about how principals at vocational schools carry out the programmed academic supervision, and continuing through mentoring, evaluation and coaching. Academic supervision is performed by individual supervision techniques which includes: classroom or practical visit, classroom or practical observation, individual meetings, inter-class or practical places visit, and self-assessment.
Semi-supervised learning for photometric supernova classification
NASA Astrophysics Data System (ADS)
Richards, Joseph W.; Homrighausen, Darren; Freeman, Peter E.; Schafer, Chad M.; Poznanski, Dovi
2012-01-01
We present a semi-supervised method for photometric supernova typing. Our approach is to first use the non-linear dimension reduction technique diffusion map to detect structure in a data base of supernova light curves and subsequently employ random forest classification on a spectroscopically confirmed training set to learn a model that can predict the type of each newly observed supernova. We demonstrate that this is an effective method for supernova typing. As supernova numbers increase, our semi-supervised method efficiently utilizes this information to improve classification, a property not enjoyed by template-based methods. Applied to supernova data simulated by Kessler et al. to mimic those of the Dark Energy Survey, our methods achieve (cross-validated) 95 per cent Type Ia purity and 87 per cent Type Ia efficiency on the spectroscopic sample, but only 50 per cent Type Ia purity and 50 per cent efficiency on the photometric sample due to their spectroscopic follow-up strategy. To improve the performance on the photometric sample, we search for better spectroscopic follow-up procedures by studying the sensitivity of our machine-learned supernova classification on the specific strategy used to obtain training sets. With a fixed amount of spectroscopic follow-up time, we find that, despite collecting data on a smaller number of supernovae, deeper magnitude-limited spectroscopic surveys are better for producing training sets. For supernova Ia (II-P) typing, we obtain a 44 per cent (1 per cent) increase in purity to 72 per cent (87 per cent) and 30 per cent (162 per cent) increase in efficiency to 65 per cent (84 per cent) of the sample using a 25th (24.5th) magnitude-limited survey instead of the shallower spectroscopic sample used in the original simulations. When redshift information is available, we incorporate it into our analysis using a novel method of altering the diffusion map representation of the supernovae. Incorporating host redshifts leads to a 5 per cent improvement in Type Ia purity and 13 per cent improvement in Type Ia efficiency. A web service for the supernova classification method used in this paper can be found at .
Ensemble Semi-supervised Frame-work for Brain Magnetic Resonance Imaging Tissue Segmentation.
Azmi, Reza; Pishgoo, Boshra; Norozi, Narges; Yeganeh, Samira
2013-04-01
Brain magnetic resonance images (MRIs) tissue segmentation is one of the most important parts of the clinical diagnostic tools. Pixel classification methods have been frequently used in the image segmentation with two supervised and unsupervised approaches up to now. Supervised segmentation methods lead to high accuracy, but they need a large amount of labeled data, which is hard, expensive, and slow to obtain. Moreover, they cannot use unlabeled data to train classifiers. On the other hand, unsupervised segmentation methods have no prior knowledge and lead to low level of performance. However, semi-supervised learning which uses a few labeled data together with a large amount of unlabeled data causes higher accuracy with less trouble. In this paper, we propose an ensemble semi-supervised frame-work for segmenting of brain magnetic resonance imaging (MRI) tissues that it has been used results of several semi-supervised classifiers simultaneously. Selecting appropriate classifiers has a significant role in the performance of this frame-work. Hence, in this paper, we present two semi-supervised algorithms expectation filtering maximization and MCo_Training that are improved versions of semi-supervised methods expectation maximization and Co_Training and increase segmentation accuracy. Afterward, we use these improved classifiers together with graph-based semi-supervised classifier as components of the ensemble frame-work. Experimental results show that performance of segmentation in this approach is higher than both supervised methods and the individual semi-supervised classifiers.
ERIC Educational Resources Information Center
Fenichel, Emily, Ed.
Eighteen work group papers, several of which previously appeared in "Zero to Three," the Bulletin of the National Center for Infant Clinical Progams, are presented under four headings. Under the heading "Findings and Recommendations of ZERO TO THREE/National center for Clinical Infant Programs' Work Group on Supervision and…
ERIC Educational Resources Information Center
Fisher, Amy Killen; Simmons, Christopher; Allen, Susan C.
2016-01-01
This study evaluates an intensive experiential exercise designed to facilitate the provision of high-quality supervision in social work. Data from 46 BSW and MSW students suggest that the exercise can be an effective learning tool. Both quantitative and qualitative findings indicated that the students formed a supervisory working alliance; BSW…