Sample records for supply systems command

  1. A New Approach to Site Demand-Based Level Inventory Optimization

    DTIC Science & Technology

    2016-06-01

    Command (2016) Navy supply chain management. Accessed April 17, 2016, https://www.navsup.navy.mil/navsup/capabilities/nscm Salmeron J, Craparo E (2016...Engineering 53: 122-142. Naval Supply Systems Command (2016a) Navy supply chain management. Accessed April 17, 2016, https://www.navsup.navy.mil...distribution is unlimited 12b. DISTRIBUTION CODE 13. ABSTRACT (maximum 200 words) Naval Supply Systems Command (NAVSUP) supports Navy, Marine Corps

  2. 77 FR 59596 - Procurement List; Proposed Additions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-28

    ... within the authority of Naval Supply Systems Command (NAVSUP) Fleet Logistics Center in Jacksonville, FL, as aggregated by the Naval Supply Systems Command (NAVSUP) Fleet Logistics Center, Jacksonville, FL...

  3. Financial Management: Naval Air Systems Command Financial Reporting of Non-Ammunition Operating Material and Supplies for FY 2002

    DTIC Science & Technology

    2002-11-08

    Financial Management November 8, 2002 Office of the Inspector General of the Department of Defense Naval Air Systems Command Financial Reporting of...from... to) - Title and Subtitle Financial Management: Naval Air Systems Command Financial Reporting of Non-Ammunition Operating Material and...This report is the first in a series of planned reports and discusses the financial reporting of non-ammunition operating materials and supplies

  4. 77 FR 70738 - Procurement List Additions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-27

    ...: C-List for 100% of the requirement of the Naval Supply Systems Command (NAVSUP) Fleet Logistics Center, Jacksonville, FL, as aggregated by the Naval Supply Systems Command (NAVSUP) Fleet Logistics Center, Jacksonville, FL. The Committee for Purchase From People Who Are Blind or Severely Disabled...

  5. Cash Management Improvement in the Navy Stock Fund.

    DTIC Science & Technology

    1986-03-01

    Command, Aviation Supply Office, Fisca.l Ya 1,985 Material Budget Execution Plan , September 1984. 44 Naval Supply Systems Command, Code 60... Material . .. .. .. ... 57 3. Inventory Augmentation Appropriated Funds. .. .. ... 57 I V. CURRENT NAVY STOCK FUND CASH MANAGEMENT PRACTICES . ..59 A...Control Center, Mechanicsburg, Pennsylvania 13 * Fleet Material Support Office, Mechanicsburg, Pennsylvania Aviation Supply Off Ice, Philadelphia

  6. How Does the Supply Requisitioning Process Affect Average Customer Wait Time Onboard U.S. Navy Destroyers?

    DTIC Science & Technology

    2013-06-01

    17  D.  NAVAL TACTICAL COMMAND SUPPORT SYSTEM .........................17  1.  Operational Maintenance Management System–Next Generation...Management .......................................................................................21  4.  Method ...Business Administration MDT Mean Down Time MTBM Mean Time Between Maintenance NAVSUP Naval Supply Systems Command NC Not Carried NIS Not in Stock

  7. An Alignment Analysis of the U.S. Navy Supply Corps Officer’s Career Guidance With Naval Supply Systems Command’s Strategic Publications

    DTIC Science & Technology

    2014-06-03

    relationship to business outcomes such as customer satisfaction , turnover, safety, and productivity” (Shuck, 2011, p. 312). Follow-on studies using...during the analysis efforts of this research. The 339 Level 1 codes span a wide range of ideas from strategy execution to customer satisfaction and...not reflect the radical shift in corporate culture needed by Naval Supply Systems Command (NAVSUP) to better serve U.S. Navy customers . This research

  8. NAVSUP Global Logistics Support

    DTIC Science & Technology

    2012-08-01

    Support $3.5 M Ill SB Contracting Actions Ill SB Value 35% of total spend to Small Business ! NAVAL SUPPLY SYSTEMS COMMAND • Procurement • Barge...Other services now using as well • Awarded Aug 2011, Features: • 100% Sma II Business Set Aside ! • 25 multiple award task order contracts to 8...UP- GLOBAL LOGISTICS I · -~ --; •• ~.c. SUPPORT ,.. NAVAL SUPPLY SYSTEMS COMMAND Fiscal Year 2011 Small Business Contracting Spend: 28,000 actions

  9. Decomposition and control of complex systems - Application to the analysis and control of industrial and economic systems /energy production/ with limited supplies

    NASA Astrophysics Data System (ADS)

    de Coligny, M.

    Optimized control strategies are developed for industrial installations where many variables of energy supply and storage are involved, with a particular focus on characteristics of a solar central tower power plant. It is shown that optimal regulation resides in controlling all disturbances which occur in a limited domain of the entire system, using robust control schemes. Choosing a command is then dependent on defining precise operational limits as constraints on the machines' performances. Attention is given to the development of variational principles used for the elements of the command logic. Particular consideration is given to a limited supply in storage in spatial and temporal terms. Commands for alterations in functions are then available on-line, and discontinuities are not a feature of the control system. The strategy is applied to the case of a field of heliostats and a central tower themal receiver showing that management is possible on the basis of a sliding horizon.

  10. Commander Kenneth D. Bowersox posing with Supply Tank and FCPA as part of the ITCS

    NASA Image and Video Library

    2003-03-18

    ISS006-E-39460 (18 March 2003) --- Astronaut Kenneth D. Bowersox, Expedition Six mission commander, is pictured in the Destiny laboratory on the International Space Station (ISS). The supply tank and Fluid Control Pump Assembly (FCPA), which are a part of the Internal Thermal Control System (ITCS), are visible floating freeing above Bowersox.

  11. Design of multifunction anti-terrorism robotic system based on police dog

    NASA Astrophysics Data System (ADS)

    You, Bo; Liu, Suju; Xu, Jun; Li, Dongjie

    2007-11-01

    Aimed at some typical constraints of police dogs and robots used in the areas of reconnaissance and counterterrorism currently, the multifunction anti-terrorism robotic system based on police dog has been introduced. The system is made up of two parts: portable commanding device and police dog robotic system. The portable commanding device consists of power supply module, microprocessor module, LCD display module, wireless data receiving and dispatching module and commanding module, which implements the remote control to the police dogs and takes real time monitor to the video and images. The police dog robotic system consists of microprocessor module, micro video module, wireless data transmission module, power supply module and offence weapon module, which real time collects and transmits video and image data of the counter-terrorism sites, and gives military attack based on commands. The system combines police dogs' biological intelligence with micro robot. Not only does it avoid the complexity of general anti-terrorism robots' mechanical structure and the control algorithm, but it also widens the working scope of police dog, which meets the requirements of anti-terrorism in the new era.

  12. Reporting of Navy Sponsor Owned Material Stored at the Naval Air Systems Command Activities

    DTIC Science & Technology

    2007-04-23

    Who Should Read This Report and Why? Navy personnel responsible for reporting the amount and value of Sponsor Owned Material stored at Navy facilities should read this report. It discusses the financial reporting and control of Sponsor Owned Material stored by Naval Air Systems Command activities. Background. The Department of the Navy reported $58.8 billion of Operating Materials and Supplies on its first quarter FY 2006 financial statements. This included a sub-category of supplies and materials termed Sponsor Owned Material. The Navy defines Sponsor

  13. Torque shudder protection device and method

    DOEpatents

    King, Robert D.; De Doncker, Rik W. A. A.; Szczesny, Paul M.

    1997-01-01

    A torque shudder protection device for an induction machine includes a flux command generator for supplying a steady state flux command and a torque shudder detector for supplying a status including a negative status to indicate a lack of torque shudder and a positive status to indicate a presence of torque shudder. A flux adapter uses the steady state flux command and the status to supply a present flux command identical to the steady state flux command for a negative status and different from the steady state flux command for a positive status. A limiter can receive the present flux command, prevent the present flux command from exceeding a predetermined maximum flux command magnitude, and supply the present flux command to a field oriented controller. After determining a critical electrical excitation frequency at which a torque shudder occurs for the induction machine, a flux adjuster can monitor the electrical excitation frequency of the induction machine and adjust a flux command to prevent the monitored electrical excitation frequency from reaching the critical electrical excitation frequency.

  14. Torque shudder protection device and method

    DOEpatents

    King, R.D.; Doncker, R.W.A.A. De.; Szczesny, P.M.

    1997-03-11

    A torque shudder protection device for an induction machine includes a flux command generator for supplying a steady state flux command and a torque shudder detector for supplying a status including a negative status to indicate a lack of torque shudder and a positive status to indicate a presence of torque shudder. A flux adapter uses the steady state flux command and the status to supply a present flux command identical to the steady state flux command for a negative status and different from the steady state flux command for a positive status. A limiter can receive the present flux command, prevent the present flux command from exceeding a predetermined maximum flux command magnitude, and supply the present flux command to a field oriented controller. After determining a critical electrical excitation frequency at which a torque shudder occurs for the induction machine, a flux adjuster can monitor the electrical excitation frequency of the induction machine and adjust a flux command to prevent the monitored electrical excitation frequency from reaching the critical electrical excitation frequency. 5 figs.

  15. Improving Control of Two Motor Controllers

    NASA Technical Reports Server (NTRS)

    Toland, Ronald W.

    2004-01-01

    A computer program controls motors that drive translation stages in a metrology system that consists of a pair of two-axis cathetometers. This program is specific to Compumotor Gemini (or equivalent) motors and the Compumotor 6K-series (or equivalent) motor controller. Relative to the software supplied with the controller, this program affords more capabilities and is easier to use. Written as a Virtual Instrument in the LabVIEW software system, the program presents an imitation control panel that the user can manipulate by use of a keyboard and mouse. There are three modes of operation: command, movement, and joystick. In command mode, single commands are sent to the controller for troubleshooting. In movement mode, distance, speed, and/or acceleration commands are sent to the controller. Position readouts from the motors and from position encoders on the translation stages are displayed in marked fields. At any time, the position readouts can be recorded in a file named by the user. In joystick mode, the program yields control of the motors to a joystick. The program sends commands to, and receives data from, the controller via a serial cable connection, using the serial-communication portion of the software supplied with the controller.

  16. Buy Our Spares Smart Annual Report, Fiscal Year 1987.

    DTIC Science & Technology

    1988-01-19

    by Mr. J. J. Genovese , serves as the single focal point for This annual report presents a detailed description implementing and guiding Project BOSS...participating commands or making 43 lyl’e ) p I 4COMPETITION CONTACT POINTS COMMAND ADVOCATE TELEPHONE Naval Supply Systems Command Mr. J.J. Genovese A...20) MMI Laredo Bell MM3 Frederick R. Schnieder STGI Michael D. Fleming EW3 David J. Shallo LT Jeffrey J. Grabarek BT2 Marshall L. Vorhies USS KITTY

  17. Controller for controlling operation of at least one electrical load operating on an AC supply, and a method thereof

    DOEpatents

    Cantin, Luc; Deschenes, Mario; D'Amours, Mario

    1995-08-15

    A controller is provided for controlling operation of at least one electrical load operating on an AC supply having a typical frequency, the AC supply being provided via power transformers by an electrical power distribution grid. The controller is associated with the load and comprises an input interface for coupling the controller to the grid, a frequency detector for detecting the frequency of the AC supply and producing a signal indicative of the frequency, memory modules for storing preprogrammed commands, a frequency monitor for reading the signal indicative of the frequency and producing frequency data derived thereof, a selector for selecting at least one of the preprogrammed commands with respect to the frequency data, a control unit for producing at least one command signal representative of the selected preprogrammed commands, and an output interface including a device responsive to the command signal for controlling the load. Therefore, the load can be controlled by means of the controller depending on the frequency of the AC supply.

  18. Data Center Energy Efficiency Technologies and Methodologies: A Review of Commercial Technologies and Recommendations for Application to Department of Defense Systems

    DTIC Science & Technology

    2015-11-01

    provided by a stand-alone desktop or hand held computing device. This introduces into the discussion a large number of mobile , tactical command...control, communications, and computer (C4) systems across the Services. A couple of examples are mobile command posts mounted on the back of an M1152... infrastructure (DCPI). This term encompasses on-site backup generators, switchgear, uninterruptible power supplies (UPS), power distribution units

  19. Method for controlling powertrain pumps

    DOEpatents

    Sime, Karl Andrew; Spohn, Brian L; Demirovic, Besim; Martini, Ryan D; Miller, Jean Marie

    2013-10-22

    A method of controlling a pump supplying a fluid to a transmission includes sensing a requested power and an excess power for a powertrain. The requested power substantially meets the needs of the powertrain, while the excess power is not part of the requested power. The method includes sensing a triggering condition in response to the ability to convert the excess power into heat in the transmission, and determining that an operating temperature of the transmission is below a maximum. The method also includes determining a calibrated baseline and a dissipation command for the pump. The calibrated baseline command is configured to supply the fluid based upon the requested power, and the dissipation command is configured to supply additional fluid and consume the excess power with the pump. The method operates the pump at a combined command, which is equal to the calibrated baseline command plus the dissipation command.

  20. POWER SUPPLY CONTROL AND MONITORING FOR THE SNS RING AND TRANSPORT SYSTEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LAMBIASE,R.; OERTER,B.; PENG,S.

    2001-06-28

    There are approximately 300 magnet power supplies in the SNS accumulator ring and transport lines. Control and monitoring of the these converters will be primarily accomplished with a new Power Supply Interface and Controller (PSI/PSC) system developed for the SNS project. This PSI/PSC system provides all analog and digital commands and status readbacks in one fiber isolated module. With a maximum rate of 10KHz, the PSI/PSC must be supplemented with higher speed systems for the wide bandwidth pulsed injection supplies, and the even wider bandwidth extraction kickers. This paper describes the implementation of this PSI/PSC system, which was developed throughmore » an industry/laboratory collaboration, and the supplementary equipment used to support the wider bandwidth pulsed supplies.« less

  1. How Does the Supply Requisitioning Process Affect Average Customer Wait Time Onboard U.S. Navy Destroyers?

    DTIC Science & Technology

    2013-05-07

    warfare qualifications SWSCO and NASO. Next, LCDR Saucedo reported to the Fleet Industrial Supply Center, San Diego, where she assumed the duties as the...16  D.  NAVAL TACTICAL COMMAND SUPPORT SYSTEM .................. 17  1.  Operational Maintenance ...21  4.  Method

  2. Lock-up control system for an automatic transmission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Higashi, H.; Yashiki, S.; Waki, K.

    A lock-up control system is described for an automatic transmission including a torque converter coupled with the output portion on an engine, and a power transmitting gear arrangement coupled with the output portion of the torque converter and controlled to vary the transmitting gear ratio therein by gear ratio control means in accordance with a shifting up or down command supplied to the latter. A lock-up clutch is provided for locking up the output portion of the torque converter to the output portion of the engine. The lock-up control system comprises: lock-up operation control means for controlling the lock-up clutchmore » to be in its operative state and in its inoperative state selectively, and for causing the lock-up clutch to be in the inoperative state thereof when the gear ratio control means performs the control with the shifting up or down command, and lock-up command means for preventing the lock-up operation control means from causing the lock-up clutch to be in the inoperative state thereof until a predetermined reductive variation in the speed of the output portion of the torque converter arises after the shifting up command is supplied to the gear ratio control means under the condition in which the lock-up clutch is in operation to hold a lock-up state.« less

  3. Controllable Bidirectional dc Power Sources For Large Loads

    NASA Technical Reports Server (NTRS)

    Tripp, John S.; Daniels, Taumi S.

    1995-01-01

    System redesigned for greater efficiency, durability, and controllability. Modern electronically controlled dc power sources proposed to supply currents to six electromagnets used to position aerodynamic test model in wind tunnel. Six-phase bridge rectifier supplies load with large current at voltage of commanded magnitude and polarity. Current-feedback circuit includes current-limiting feature giving some protection against overload.

  4. Financial Management: Ordnance Accountability at Fleet Combat Training Center Atlantic (D-2003-084)

    DTIC Science & Technology

    2003-04-29

    13, 1994. This report is the third report in a series resulting from an audit of the financial reporting of operating materials and supplies. The first...report discusses the Naval Air System Command’s financial reporting of non-ordnance operating materials and supplies. The second report discusses...Navy efforts to improve the financial reporting of its conventional ordnance portion of operating materials and supplies and its conventional ordnance

  5. The ingestible thermal monitoring system

    NASA Technical Reports Server (NTRS)

    Cutchis, Protagoras N.; Hogrefe, Arthur F.; Lesho, Jeffery C.

    1988-01-01

    A thermal monitoring system for measuring body core temperatures was developed that contains an ingestible pill which is both commandable and rechargeable, and which uses magnetic induction for command and telemetry as well as for recharging. The pill electronics consist of a battery power source, a crystal-controlled oscillator that drives a small air coil, and a command detection circuit. The resulting 262-kHz magnetilc field can be easily detected from a distance of 1 m. The pill oscillator functions at voltages less than 1 V, supplied by a single Ni-Cd battery, which must be recharged after 72 h of continuous transmission. The pill can be recalibrated periodically to compensate for long-term drift.

  6. RHIC BEAM ABORT KICKER POWER SUPPLY SYSTEM COMMISSIONING EXPERIENCE AND REMAINING ISSUES.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    ZHANG,W.; AHRENS,L.A.; MI,J.

    2001-06-18

    The RHIC Beam Abort Kicker Power Supply Systems commissioning experience and the remaining issues will be reported in this paper. The RHIC Blue Ring Beam Abort Kicker Power Supply System initial commissioning took place in June 1999. Its identical system in Yellow Ring was brought on line during Spring 2000. Each of the RHIC Beam Abort Kicker Power Supply Systems consists of five high voltage modulators and subsystems. These systems are critical devices for RHIC machine protection and environmental protection. They are required to be effective, reliable and operating with sufficient redundancy to safely abort the beam to its beammore » dump at the end of accumulation or at any time when they are commanded. To deflect 66 GeV ion beam to the beam absorbers, the RHIC Beam Abort Kicker Power Supply Systems were operated at 22 kV level. The RHIC 2000 commissioning run was very successful.« less

  7. Commander Kenneth D. Bowersox and Flight Engineer Donald R. Pettit are relaxing in the U.S. Lab

    NASA Image and Video Library

    2003-03-18

    ISS006-E-39461 (18 March 2003) --- Astronauts Donald R. Pettit (left), Expedition 6 NASA ISS Science Officer, and Kenneth D. Bowersox, mission commander, are pictured in the Destiny laboratory on the International Space Station (ISS). The supply tank and Fluid Control Pump Assembly (FCPA), which are a part of the Internal Thermal Control System (ITCS), are visible floating freeing above them.

  8. Pegasus power system facility upgrades

    NASA Astrophysics Data System (ADS)

    Lewicki, B. T.; Kujak-Ford, B. A.; Winz, G. R.

    2008-11-01

    Two key Pegasus systems have been recently upgraded: the Ohmic-transformer IGCT bridge control system, and the plasma-gun injector power system. The Ohmic control system contains two new microprocessor controlled components to provide an interface between the PWM controller and the IGCT bridges. An interface board conditions the command signals from the PWM controller. A splitter/combiner board routes the conditioned PWM commands to an array of IGCT bridges and interprets IGCT bridge status. This system allows for any PWM controller to safely control IGCT bridges. Future developments will include a transition to a polyphasic bridge control. This will allow for 3 to 4 times the present pulse length and provide a much higher switching frequency. The plasma gun injector system now includes active current feedback control on gun bias current via PWM buck type power supplies. Near term goals include a doubling or tripling of the applied bias voltage. Future arc bias system power supplies may include a simpler boost type system which will allow access to even higher voltages using existing low voltage energy storage systems.

  9. Skylab Rescue Space Vehicle OAT No. 1 Plugs in Test

    NASA Technical Reports Server (NTRS)

    Jevitt, S. J.

    1973-01-01

    A test is described which demonstrates the compatibility of the Skylab Rescue Space Vehicle systems, the ground support equipment, and off-site support facilities by proceeding through a simulated launch countdown, liftoff, and flight. The functions of propellant loading, umbilical ejection, holddown arm release, service arm retraction, liftoff, and inflight separation are simulated. An external power source supplies transfer power to internal, and instrument unit commands are simulated by the digital command system. The test outline is presented along with a list of references, intercommunications information, radio frequency matrix, and interface control chart.

  10. NAVSUP Naval Supply Systems Command

    DTIC Science & Technology

    2011-08-01

    commands 4 5 ARE YOU READY TO MARKET TO THE GOVERNMENT? •  Certifications? (Size and NAICS) •  Registrations? (CCR, ORCA ) •  Identifiers? (CAGE...Other existing solutions being evaluated based on cost benefit and small business opportunities 15 SMALL BUSINESS TEAM Jane “Lucy” Leu FLC Puget ... Sound 360-476-1985 Lucy.leu@navy.mil TOP 5 NAICS: 33, 54, 32, 42, 31 Carrodena Johnson FLC Norfolk 757-443-1435 Carrodena.johnson@navy.mil TOP 5

  11. Enhanced Control for Local Helicity Injection on the Pegasus ST

    NASA Astrophysics Data System (ADS)

    Pierren, C.; Bongard, M. W.; Fonck, R. J.; Lewicki, B. T.; Perry, J. M.

    2017-10-01

    Local helicity injection (LHI) experiments on Pegasus rely upon programmable control of a 250 MVA modular power supply system that drives the electromagnets and helicity injection systems. Precise control of the central solenoid is critical to experimental campaigns that test the LHI Taylor relaxation limit and the coupling efficiency of LHI-produced plasmas to Ohmic current drive. Enhancement and expansion of the present control system is underway using field programmable gate array (FPGA) technology for digital logic and control, coupled to new 10 MHz optical-to-digital transceivers for semiconductor level device communication. The system accepts optical command signals from existing analog feedback controllers, transmits them to multiple devices in parallel H-bridges, and aggregates their status signals for fault detection. Present device-level multiplexing/de-multiplexing and protection logic is extended to include bridge-level protections with the FPGA. An input command filter protects against erroneous and/or spurious noise generated commands that could otherwise cause device failures. Fault registration and response times with the FPGA system are 25 ns. Initial system testing indicates an increased immunity to power supply induced noise, enabling plasma operations at higher working capacitor bank voltage. This can increase the applied helicity injection drive voltage, enable longer pulse lengths and improve Ohmic loop voltage control. Work supported by US DOE Grant DE-FG02-96ER54375.

  12. Technical and Sociological Investigation of Impacts in Using Lignite Mine Drainage for Irrigation - A Case Study

    NASA Astrophysics Data System (ADS)

    Murugappan, A.; Manoharan, A.; Senthilkumar, G.; Krishnamurthy, J.

    2017-07-01

    Irrigated farming depends on an ample supply of water compatible quality. Presently, a lot of irrigation projects have to depend on inferior quality and not so enviable sources of water supply. In order to prevent troubles during usage of such water supplies of poor quality, there must be meticulous preparation to ensure that the water available with such quality characteristics is put to best use. The effect of water quality upon soil and crops must be better understood in choosing fitting options to manage with impending water quality associated troubles that might decrease soil and crop productivity under existing circumstances of water use. Two tanks (small sized reservoirs) namely, Walajah Tank and Perumal Tank in Cuddalore District, used for irrigation, receive mine drainage water pumped out continuously from the open cast lignite mines of the NLC India Limited, Neyveli, Tamilnadu State. This water has been used by the farmers in the irrigated commands of both Walajah Tank and Perumal Tank for more than three decades. Recently, the beneficiaries had raised fears on the quality of mine drainage waters they had been using for raising crops in the commands of both the tanks. They opined that the coal dust laden mine water used for irrigation had affected the crop yields. This incited us to take up a study to (i) assess the status of quality of surface waters released from the two tanks for irrigation in the respective command areas and (ii) assess the likely impacts of quality of water on soil and on growth and productivity of crops cultivated in the command areas. Further to the technical evaluation of the impacts, a structured questionnaire survey was also conducted among the farmers and the common public in the study area. The findings of the survey confirmed with the outcome of the technical assessment in that the mine drainage had a poor impact in the cultivable command area of Walajah tank system while such impacts were less significant in most parts of the command area of Perumal tank system.

  13. A Wireless Local Area Network Command and Control System for Explosive Ordnance Disposal Incident Response

    DTIC Science & Technology

    2001-09-01

    43 4. GPS ......................................................................................................44 E. POWER SUPPLY HARDWARE...44 Figure 5.6 Earthmate GPS Receiver ........................................................................................45...and 5Watts at 25 Ft Effective Range Minimum range of wireless link is 5 miles. Positional awareness System requires GPS input to determine

  14. Assessment of the USCENTCOM Medical Distribution Structure

    DTIC Science & Technology

    2010-01-01

    General PEO-EIS Program Executive Office–Enterprise Information Systems PMI Patient Movement Items POTUS President of the United States PV Prime Vendor... General of the U.S. Army Medical Research Materiel Command. It should be of broad interest to Department of Defense supply chain managers, logisticians...Initially, USCENTCOM nonmedical theater-level sustainment stocks were stored in Army general support (GS) supply support activities (SSAs), which were

  15. Combat Support Forces (1C6C) Naval Surface Forces Requirements-based Budget Determination for Assault Craft Unit ONE

    DTIC Science & Technology

    2009-06-01

    228,027 AUG 31,098 107,135 AUG - AUG 38,869 136,669 SEP 81,005 166,854 SEP 215,648 551,379 SEP - SEP 16,505 83,549 USS WHIPPLE (FF...Naval Supply System Command: Afloat Supply Procedures : Volume II. Retrived May 18, 2009, from Navy Storekeeper website: http://www.navystorekeeper.com

  16. Self-Contained AFFF Sprinkler System,

    DTIC Science & Technology

    1982-05-01

    aqueous film forming foam ( AFFF ). Such systems are...supply. Extinguishing Agents All fire tests were run with a pre-mixed solution of 6% aqueous film forming foam ( AFFF ) agent in accordance with MIL-F...Applying Aqueous Film Forming Foam on Large-Scale Fires", Civil and Environmental Engineering Development Office (Air Force Systems Command) Report

  17. The Credibility of the Supply Department in the Maintenance Environment.

    DTIC Science & Technology

    1987-12-01

    0 0 0 GROUPS A A L P S S A F S A A U U V L H N C B R I -’:.T F .4- [ ~SOAFL I __ I.........1___I __ __ _ _ [ SOASH ____fl II _I ii [ SOLANT WI! I t U...of afloat and ashore commands within the surface community SO All Supply Corps officer respondents SOAFL Supply Corps officers of afloat commands SOASH

  18. EMC Enhanced Constant ’Z’ Modulator.

    DTIC Science & Technology

    1984-06-01

    TUTHILL, Colonel, USAF Chief, Relilability & Compatibility Division FOR THE COMMANDER: JOHN A. RITZ Acting Chief, Plans Office 0 * - If your address...supply bypasses. 3.2.6 System Testing Breadboard system tests resulted in the replacement of the HP5082-3340 shunt mounted PIN diodes due to a carrer life

  19. Development of a Power Electronics Unit for the Space Station Plasma Contactor

    NASA Technical Reports Server (NTRS)

    Hamley, John A.; Hill, Gerald M.; Patterson, Michael J.; Saggio, Joseph, Jr.; Terdan, Fred; Mansell, Justin D.

    1994-01-01

    A hollow cathode plasma contactor has been baselined as a charge control device for the Space Station (SS) to prevent deleterious interactions of coated structural components with the ambient plasma. NASA LeRC Work Package 4 initiated the development of a plasma contactor system comprised of a Power Electronics Unit (PEU), an Expellant Management Unit (EMU), a command and data interface, and a Plasma Contactor Unit (PCU). A breadboard PEU was designed and fabricated. The breadboard PEU contains a cathode heater and discharge power supply, which were required to operate the PCU, a control and auxiliary power converter, an EMU interface, a command and telemetry interface, and a controller. The cathode heater and discharge supplies utilized a push-pull topology with a switching frequency of 20 kHz and pulse-width-modulated (PWM) control. A pulse ignition circuit derived from that used in arcjet power processors was incorporated in the discharge supply for discharge ignition. An 8088 based microcontroller was utilized in the breadboard model to provide a flexible platform for controller development with a simple command/data interface incorporating a direct connection to SS Mulitplexer/Demultiplexer (MDM) analog and digital I/O cards. Incorporating this in the flight model would eliminate the hardware and software overhead associated with a 1553 serial interface. The PEU autonomously operated the plasma contactor based on command inputs and was successfully integrated with a prototype plasma contactor unit demonstrating reliable ignition of the discharge and steady-state operation.

  20. Analysis, design, and testing of a low cost, direct force command linear proof mass actuator for structural control

    NASA Technical Reports Server (NTRS)

    Slater, G. L.; Shelley, Stuart; Jacobson, Mark

    1993-01-01

    In this paper, the design, analysis, and test of a low cost, linear proof mass actuator for vibration control is presented. The actuator is based on a linear induction coil from a large computer disk drive. Such disk drives are readily available and provide the linear actuator, current feedback amplifier, and power supply for a highly effective, yet inexpensive, experimental laboratory actuator. The device is implemented as a force command input system, and the performance is virtually the same as other, more sophisticated, linear proof mass systems.

  1. GAP: yet another image processing system for solar observations.

    NASA Astrophysics Data System (ADS)

    Keller, C. U.

    GAP is a versatile, interactive image processing system for analyzing solar observations, in particular extended time sequences, and for preparing publication quality figures. It consists of an interpreter that is based on a language with a control flow similar to PASCAL and C. The interpreter may be accessed from a command line editor and from user-supplied functions, procedures, and command scripts. GAP is easily expandable via external FORTRAN programs that are linked to the GAP interface routines. The current version of GAP runs on VAX, DECstation, Sun, and Apollo computers. Versions for MS-DOS and OS/2 are in preparation.

  2. Apollo experience report: Potable water system

    NASA Technical Reports Server (NTRS)

    Sauer, R. L.; Calley, D. J.

    1973-01-01

    A description of the design and function of the Apollo potable water system is presented. The command module potable water is supplied as a byproduct of the fuel cells. The cells, located in the service module, function primarily to supply electrical energy to the spacecraft. The source of the lunar module potable water is three tanks, which are filled before lift-off. The technique of supplying the water in each of these cases and the problems associated with materials compatibility are described. The chemical and microbiological quality of the water is reviewed, as are efforts to maintain the water in a microbially safe condition for drinking and food mixing.

  3. A local network integrated into a balloon-borne apparatus

    NASA Astrophysics Data System (ADS)

    Imori, Masatosi; Ueda, Ikuo; Shimamura, Kotaro; Maeno, Tadashi; Murata, Takahiro; Sasaki, Makoto; Matsunaga, Hiroyuki; Matsumoto, Hiroshi; Shikaze, Yoshiaki; Anraku, Kazuaki; Matsui, Nagataka; Yamagami, Takamasa

    A local network is incorporated into an apparatus for a balloon-borne experiment. A balloon-borne system implemented in the apparatus is composed of subsystems interconnected through a local network, which introduces modular architecture into the system. The network decomposes the balloon-borne system into subsystems, which are similarly structured from the point of view that the systems is kept under the control of a ground station. The subsystem is functionally self-contained and electrically independent. A computer is integrated into a subsystem, keeping the subsystem under the control. An independent group of batteries, being dedicated to a subsystem, supplies the whole electricity of the subsystem. The subsystem could be turned on and off independently of the other subsystems. So communication among the subsystems needs to be based on such a protocol that could guarantee the independence of the individual subsystems. An Omninet protocol is employed to network the subsystems. A ground station sends commands to the balloon-borne system. The command is received and executed at the system, then results of the execution are returned to the ground station. Various commands are available so that the system borne on a balloon could be controlled and monitored remotely from the ground station. A subsystem responds to a specific group of commands. A command is received by a transceiver subsystem and then transferred through the network to the subsystem to which the command is addressed. Then the subsystem executes the command and returns results to the transceiver subsystem, where the results are telemetered to the ground station. The network enhances independence of the individual subsystems, which enables programs of the individual subsystems to be coded independently. Independence facilitates development and debugging of programs, improving the quality of the system borne on a balloon.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ainsworth, Nathan; Heaps, Colton; Symko-Davies, Martha

    The purpose of this report is to propose a technical roadmap for power supply technology to power the Tactical Assault Light Operator Suit (TALOS), an armored, powered exoskeleton currently in development for U.S. Special Operations Command operators. TALOS' power supply system must meet size targets similar to the size of a large backpack while providing significant electrical power for an entire mission cycle without resupply. This report proposes a staged development path based on three fundamental technical approaches.

  5. An Alignment Analysis of the U.S. Navy Supply Corps Officers Career Guidance with Naval Supply Systems Commands Strategic Publications

    DTIC Science & Technology

    2014-06-01

    financial processes…, 7) Develop strategies…to identify solutions to improve quality -of-life services …, 8) Partnering with internal and external...organizational communications and individual development, advertising what the organization viewed as important for career progress at that time. Other military...while leadership and reward/recognition each fall under the cognitive level and emotional level, respectively. Employee communication , development

  6. Focused Logistics: Putting Agility in Agile Logistics

    DTIC Science & Technology

    2011-05-19

    list, ahead of companies like American Express, DuPont and Coca Cola ; Supports nearly 1,900 weapon systems; DLA manages eight supply chains and...35 7) Force Health Protection...Distribution, Information Fusion, Joint Theater Logistics Command and Control, Multinational Logistics, Joint Health Services Support, and Agile

  7. 32 CFR 700.835 - Work, facilities, supplies, or services for other Government departments, State or local...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... STATES NAVY REGULATIONS AND OFFICIAL RECORDS The Commanding Officer Commanding Officers in General § 700..., welfare, and recreational activities with the approval of a commanding officer provided: (1) The cost does... estimated cost have been deposited with the commanding officer or unless otherwise provided by law. (c) Work...

  8. 32 CFR 700.835 - Work, facilities, supplies, or services for other Government departments, State or local...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... STATES NAVY REGULATIONS AND OFFICIAL RECORDS The Commanding Officer Commanding Officers in General § 700..., welfare, and recreational activities with the approval of a commanding officer provided: (1) The cost does... estimated cost have been deposited with the commanding officer or unless otherwise provided by law. (c) Work...

  9. 32 CFR 700.835 - Work, facilities, supplies, or services for other Government departments, State or local...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... STATES NAVY REGULATIONS AND OFFICIAL RECORDS The Commanding Officer Commanding Officers in General § 700..., welfare, and recreational activities with the approval of a commanding officer provided: (1) The cost does... estimated cost have been deposited with the commanding officer or unless otherwise provided by law. (c) Work...

  10. 32 CFR 700.835 - Work, facilities, supplies, or services for other Government departments, State or local...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... STATES NAVY REGULATIONS AND OFFICIAL RECORDS The Commanding Officer Commanding Officers in General § 700..., welfare, and recreational activities with the approval of a commanding officer provided: (1) The cost does... estimated cost have been deposited with the commanding officer or unless otherwise provided by law. (c) Work...

  11. 32 CFR 700.835 - Work, facilities, supplies, or services for other Government departments, State or local...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... STATES NAVY REGULATIONS AND OFFICIAL RECORDS The Commanding Officer Commanding Officers in General § 700..., welfare, and recreational activities with the approval of a commanding officer provided: (1) The cost does... estimated cost have been deposited with the commanding officer or unless otherwise provided by law. (c) Work...

  12. Patriot Express Program Could Be More Cost-Effective for Overseas Permanent Change of Station and Temporary Duty Travel

    DTIC Science & Technology

    2015-07-06

    Department of Defense F r a u d , W a s t e & A b u s e Results in Brief Patriot Express Program Could Be More Cost-Effective for Overseas...availability for passengers traveling overseas. July 6, 2015 As a result , DoD did not maximize its return on investment in the Patriot Express Program and...comments from the Commander, Naval Supply Systems Command, partially addressed Recommendation 3.b. As a result of management comments, we redirected

  13. Development of a Microcontroller-based Battery Charge Controller for an Off-grid Photovoltaic System

    NASA Astrophysics Data System (ADS)

    Rina, Z. S.; Amin, N. A. M.; Hashim, M. S. M.; Majid, M. S. A.; Rojan, M. A.; Zaman, I.

    2017-08-01

    A development of a microcontroller-based charge controller for a 12V battery has been explained in this paper. The system is designed based on a novel algorithm to couple existing solar photovoltaic (PV) charging and main grid supply charging power source. One of the main purposes of the hybrid charge controller is to supply a continuous charging power source to the battery. Furthermore, the hybrid charge controller was developed to shorten the battery charging time taken. The algorithm is programmed in an Arduino Uno R3 microcontroller that monitors the battery voltage and generates appropriate commands for the charging power source selection. The solar energy is utilized whenever the solar irradiation is high. The main grid supply will be only consumed whenever the solar irradiation is low. This system ensures continuous charging power supply and faster charging of the battery.

  14. Demodulator for carrier transducers

    NASA Technical Reports Server (NTRS)

    Roller, R. F. (Inventor)

    1974-01-01

    A carrier type transducer is supplied with a carrier wave via an audio amplifier, a filter, a frequency divider, and an oscillator. The carrier is modulated in accordance with the parameter being measured by the transducer and is fed to the input of a digital data system which may include a voltmeter. The output of the oscillator and the output of each stage of the divider are fed to an AND or a NAND gate and suitable variable and fixed delay circuits to the command input of the digital data system. With this arrangement, the digital data system is commanded to sample at the proper time so that the average voltage of the modulated carrier is measured. It may be utilized with ancillary circuitry for control of the parameter

  15. An Analysis of Serial Number Tracking Automatic Identification Technology as Used in Naval Aviation Programs

    NASA Astrophysics Data System (ADS)

    Csorba, Robert

    2002-09-01

    The Government Accounting Office found that the Navy, between 1996 and 1998, lost 3 billion in materiel in-transit. This thesis explores the benefits and cost of automatic identification and serial number tracking technologies under consideration by the Naval Supply Systems Command and the Naval Air Systems Command. Detailed cost-savings estimates are made for each aircraft type in the Navy inventory. Project and item managers of repairable components using Serial Number Tracking were surveyed as to the value of this system. It concludes that two thirds of the in-transit losses can be avoided with implementation of effective information technology-based logistics and maintenance tracking systems. Recommendations are made for specific steps and components of such an implementation. Suggestions are made for further research.

  16. DSB Task Force on Cyber Supply Chain

    DTIC Science & Technology

    2017-02-06

    27 3.4 Cybersecurity for Commercial and Open Source Components...Communications and Intelligence ASD(L&MR): Assistant Secretary of Defense for Logistics and Materiel Readiness ASD(R&E): Assistant Secretary of Defense...system BSIMM: Building Security in Maturity Model C4ISR: command, control, communications, computers, intelligence , surveillance and

  17. An Analytical History of Provider Organization Support within Navy Enterprise: Naval Supply Systems Command

    DTIC Science & Technology

    2011-12-01

    46 John Moran and Baird Brightman, “Leading organizational change,” Career Development International, 6, 2 (2001), 111. 47 Rune ...management’s greatest lever.” Business Strategy Series, 9, 2 (2008), 132-137. By, Rune T. “Organisational Change Management: A Critical Review.” Journal

  18. 46 CFR 133.20 - Exemptions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Exemptions. 133.20 Section 133.20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS LIFESAVING SYSTEMS General § 133.20 Exemptions. (a) If a District Commander determines that the overall safety of the persons on board an OSV...

  19. 46 CFR 133.20 - Exemptions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Exemptions. 133.20 Section 133.20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS LIFESAVING SYSTEMS General § 133.20 Exemptions. (a) If a District Commander determines that the overall safety of the persons on board an OSV...

  20. Quality Improvement: Does the Air Force Systems Command Practice What It Preaches

    DTIC Science & Technology

    1990-03-01

    without his assistance in getting supplies, computers, and plotters. Another special thanks goes to my committee chairman. Dr Stephen Blank. who provided...N.J.: Prentice-Hall. 1986). 166. 5. Ibid.. 181. 6. Sidney Siegel. Nonparametric Statistics for the Behavioral Sciences (New York: Mc- Graw -Hill. 1956

  1. 48 CFR 247.573-1 - Ocean transportation incidental to a contract for supplies, services, or construction.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Business Management Directorate, MSC; or (ii) The Commander, Military Surface Deployment and Distribution... Commander, MSC, through the Contracts and Business Management Directorate, MSC; or (B) The Commander... MANAGEMENT TRANSPORTATION Ocean Transportation by U.S.-Flag Vessels 247.573-1 Ocean transportation incidental...

  2. Assessment of Arms, Ammunition, and Explosives Accountability and Control; Security Assistance; and Sustainment for the Afghan National Security Forces

    DTIC Science & Technology

    2008-10-24

    COMMANDER, U.S. ARMY MATERIAL COMMAND LOGISTICS SUPPORT ACTIVITY Department of Defense Office of Inspector General Report No. SPO-2009...report the serial numbers of weapons it controlled to the DoD SA/LW Registry maintained by the U.S. Army Material Command Logistics Support... Material Command Logistics Support Activity assist the Combined Security Transition Command- Afghanistan in reporting serial numbers for U.S.-supplied

  3. The Evolution of Centralized Operational Logistics

    DTIC Science & Technology

    2012-05-17

    John Kennedy Ohl, Supplying the Troops, General Somervell and American Logistics in WWII (DeKalb: Northern Illinois University Press, 1994), 60-61. 8...logistics support to the Military Assistance Command Vietnam. Although Admiral John H. Sides, the Commander in Chief, Pacific Fleet, did not want to...Delivering the Goods: The Art of Managing Your Supply Chain (Hoboken: John Wiley and Sons, Inc., 2002), 78. 55 Shrader, United States Army Logistics 1775

  4. West Europe Report, Science and Technology

    DTIC Science & Technology

    1986-01-16

    Nicolas Rousseaux; ZERO UN INFORMATION HEBDO, 30 Sep 85) 93 TECHNOLOGY TRANSFER Briefs Renault Equipment to USSR 96 c - 16 January 1986 AEROSPACE...personnel and has a capacity of 200 persons. From the launch center, where monitoring and command systems are installed, the start up of the remote...supplying of propellants and fluids and hookup of monitoring and control systems -preparation for launch: countdown and launch -possible erection and

  5. Voyager backgrounder

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The Voyager spacecraft and experiments are described. The spacecraft description includes the structure and configuration, communications systems, power supplies, computer command subsystems, and the science platform. The experiments discussed are investigations of cosmic rays, low-energy charged particles, magnetic fields, and plasma waves, along with studies in radio astronomy photopolarimetry. The tracking and data acquisition procedures for the missions are presented.

  6. Orbiter Camera Payload System

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Components for an orbiting camera payload system (OCPS) include the large format camera (LFC), a gas supply assembly, and ground test, handling, and calibration hardware. The LFC, a high resolution large format photogrammetric camera for use in the cargo bay of the space transport system, is also adaptable to use on an RB-57 aircraft or on a free flyer satellite. Carrying 4000 feet of film, the LFC is usable over the visible to near IR, at V/h rates of from 11 to 41 milliradians per second, overlap of 10, 60, 70 or 80 percent and exposure times of from 4 to 32 milliseconds. With a 12 inch focal length it produces a 9 by 18 inch format (long dimension in line of flight) with full format low contrast resolution of 88 lines per millimeter (AWAR), full format distortion of less than 14 microns and a complement of 45 Reseau marks and 12 fiducial marks. Weight of the OCPS as supplied, fully loaded is 944 pounds and power dissipation is 273 watts average when in operation, 95 watts in standby. The LFC contains an internal exposure sensor, or will respond to external command. It is able to photograph starfields for inflight calibration upon command.

  7. Pattern Recognition Control Design

    NASA Technical Reports Server (NTRS)

    Gambone, Elisabeth A.

    2018-01-01

    Spacecraft control algorithms must know the expected vehicle response to any command to the available control effectors, such as reaction thrusters or torque devices. Spacecraft control system design approaches have traditionally relied on the estimated vehicle mass properties to determine the desired force and moment, as well as knowledge of the effector performance to efficiently control the spacecraft. A pattern recognition approach was used to investigate the relationship between the control effector commands and spacecraft responses. Instead of supplying the approximated vehicle properties and the thruster performance characteristics, a database of information relating the thruster ring commands and the desired vehicle response was used for closed-loop control. A Monte Carlo simulation data set of the spacecraft dynamic response to effector commands was analyzed to establish the influence a command has on the behavior of the spacecraft. A tool developed at NASA Johnson Space Center to analyze flight dynamics Monte Carlo data sets through pattern recognition methods was used to perform this analysis. Once a comprehensive data set relating spacecraft responses with commands was established, it was used in place of traditional control methods and gains set. This pattern recognition approach was compared with traditional control algorithms to determine the potential benefits and uses.

  8. The Global Logistics Command: A Strategy to Sustain the Post-War Army

    DTIC Science & Technology

    2014-05-22

    Logistics: Determining Relevance for 21st Century Operations,” 17. 56Jobson and Antell, U.S. Army Materiel Command, 23. Joseph M. Heiser Jr., “Supply...mechanization expanded. Heiser , “Supply Support in Vietnam,” 37. 24 lacked.58 He also formalized in-theater training with two teams, codenamed Project...Airborne Corps History Office, Fort Bragg, NC, 2010. Heiser , Joseph M. Jr. Vietnam Studies Logistics Support. Washington, DC: U.S. Army Center of

  9. Theater Army Medical Management Information System: A MANPRINT evaluation

    DTIC Science & Technology

    1989-06-01

    Management Information System (TAMMIS) and the division level version of the system, TAMMIS-D. TAMMIS/ TAMMIS-D are automated, on-line, interactive, microcomputer systems designed to manage combat medical information but capable of performing peacetime functions as well. The systems were developed to meet the needs of medical commanders by providing timely, accurate, and relevant information on the status of patients, medical units, and medical supplies on the battlefield. The IOT&E was conducted at Fort Lewis, WA in tents erected between two-story barracks

  10. Logistics Automation Master Plan (LAMP). Better Logistics Support through Automation.

    DTIC Science & Technology

    1983-06-01

    office micro-computers, positioned throughout the command chain , by providing real time links between LCA and all users: 2. Goals: Assist HQDA staff in...field i.e., Airland Battle 2000. IV-27 Section V: CONCEPT OF EXECUTION Suply (Retail) A. SRstem Description. I. The Division Logistics Property Book...7. Divisional Direct Support Unit Automated Supply System (DDASS)/Direct pport Level Suply Automation (DLSA). DDASS and DLSA are system development

  11. Business Continuity Management Plan

    DTIC Science & Technology

    2014-12-01

    organization ( Shaw , 2004). Navy Supply Systems Command (NAVSUP) does not have a framework that can help develop a business continuity management (BCM...cites two case studies that demonstrate how an organization mitigated issues during catastrophic events that led to disruptions to their business ...www.uschamber.com/sites/default/files/legacy/ issues /defense/files/guideli nesbc.pdf Comprehensive Emergency Management Associates. (2006). Business continuity

  12. The SAC Mentality: The Origins of Strategic Air Command’s Organizational Culture, 1948-51

    DTIC Science & Technology

    2015-04-01

    following World War II left SAC in a dire predicament as it faced shortages in several critical areas. In May 1946, the AAF autho- rized the command...convictions. McMullen believed in cross-training crew members and assigning them to multiple billets to compensate for manpower short- ages. The constant...atomic outfit from the Pacific theater. According to LeMay, they cleaned the supply warehouses , stocked the parts and supplies the unit needed, and

  13. STS-101: Crew Activity Report/Flight Day 10 Highlights

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This video presents a report from the Space Shuttle Atlantis Crew. The crew consists of James D. Halsell, Jr., Mission Commander; Scott Horowitz, Pilot; and Mission Specialists Mary Ellen Weber, Jeffrey N. Williams, James S. Voss, Susan J. Helms, and Yuri Vladimirovich Usachev. The crew made preparations for the Space Shuttle Atlantis return to Earth. Weber gave a general overview of refurbishments done to the International Space Station such as maintenance of the electrical system, one to three thousands of pounds of new hardware supplied to I.S.S. and a supply of personal hygiene products. Also live animation of the Spacehab Module is given where supplies bound for the Space Station are stored.

  14. NHD, riverspill, and the development of the incident command tool for drinking water protection.

    Treesearch

    William B. Samuels; Rakesh Bahadur; Michael C. Monteith; David E. Amstutz; Jonathan M. Pickus; Katherine Parker; Douglas Ryan

    2006-01-01

    This project involved the development of an information tool that gives Incident Commanders the critical information they need to make informed decisions regarding the consequences of threats to public water supply intakes.

  15. Commander Ken Bowersox films activity in Spacelab

    NASA Image and Video Library

    1995-11-02

    STS073-230-014 (20 October - 5 November 1995) --- Astronaut Kenneth D. Bowersox, STS-73 mission commander, uses a camcorder to record United States Microgravity Laboratory 2 (USML-2) activities onboard the Space Shuttle Columbia. Nearby, astronaut Kathryn C. Thornton, payload commander, prepares to open a supply chest to support one of many science experiments conducted by the seven-member crew during the 16-day USML-2 flight.

  16. Development and Evaluation of Strong-Campbell Interest Inventory Scales to Measure Interests of Military Occupational Specialties of the Marine Corps.

    DTIC Science & Technology

    1982-08-01

    though the two groups were different in terms of SC!I scientific interests and academic orientation scores (the aviation supply sample scored higher on...51 Chemists/Physicists 50 MARINE OFFICERS- COMUNICATION 49 MARINE OFFICERS-DATA SYSTEMS 48 Engineers 47 Biologists 46 Systems Analysts/Computer...Base ( Scientific and Technical Information Office) Commander, Air Force Human Resources Laboratory, Lowry Air Force Base (Technical Training Branch

  17. Never Losing Sight of Our Priorities. Fiscal Year 2010 Department of the Navy Annual Financial Report

    DTIC Science & Technology

    2010-01-01

    our.war-fighting capabilities. We rely too heavily on fossil fuels, leaving us vulnerable to price and supply shocks. In FYlO, I issued five energy...submersibles participated in recovery efforts. The Navy sustained logistical support, equipment and assistance in skimming and salvage operations...Naval Sea Systems Command sent 66,000 feet of inflatable oil boom, skimming systems, related support equipment, and personnel to support clean-up

  18. Pattern Recognition Control Design

    NASA Technical Reports Server (NTRS)

    Gambone, Elisabeth

    2016-01-01

    Spacecraft control algorithms must know the expected spacecraft response to any command to the available control effectors, such as reaction thrusters or torque devices. Spacecraft control system design approaches have traditionally relied on the estimated vehicle mass properties to determine the desired force and moment, as well as knowledge of the effector performance to efficiently control the spacecraft. A pattern recognition approach can be used to investigate the relationship between the control effector commands and the spacecraft responses. Instead of supplying the approximated vehicle properties and the effector performance characteristics, a database of information relating the effector commands and the desired vehicle response can be used for closed-loop control. A Monte Carlo simulation data set of the spacecraft dynamic response to effector commands can be analyzed to establish the influence a command has on the behavior of the spacecraft. A tool developed at NASA Johnson Space Center (Ref. 1) to analyze flight dynamics Monte Carlo data sets through pattern recognition methods can be used to perform this analysis. Once a comprehensive data set relating spacecraft responses with commands is established, it can be used in place of traditional control laws and gains set. This pattern recognition approach can be compared with traditional control algorithms to determine the potential benefits and uses.

  19. Navy Needs to Establish Effective Metrics to Achieve Desired Outcomes for SPY1 Radar Sustainment (Redacted)

    DTIC Science & Technology

    2016-08-01

    a series on SPY-1 radar spare parts. The SPY-1 radar is an advanced , automatic detect and track radar system . The SPY-1 radar is one of 13 major...the AEGIS Weapon System could be adversely impacted if parts needed to maintain the SPY-1 radars are not transported to the warfighters when...for SPY-1 Radar Sustainment (Report No. DODIG-2016-116) We are providing this report for review and comment. Naval Supply Systems Command Weapon

  20. Closing Intelligence Gaps: Synchronizing the Collection Management Process

    DTIC Science & Technology

    information flow. The US military divides the world into six distinct geographic areas with corresponding commanders managing risk and weighing...analyzed information , creating a mismatch between supply and demand. The result is a burden on all facets of the intelligence process. However, if the target...system, or problem requiring analysis is not collected, intelligence fails. Executing collection management under the traditional tasking process

  1. KENNEDY SPACE CENTER, FLA. - The STS-114 crew gathers around the work stand holding the insert for Discovery’s nose cap. From left are Mission Specialists Soichi Noguchi, and Charles Camarda; Commander Eileen Collins; Mission Specialists Andrew Thomas and Wendy Lawrence; Pilot James Kelly; and Mission Specialist Stephen Robinson. Noguchi represents the Japanese Aerospace and Exploration Agency. The insert is being fitted with thermal protection system insulation blankets. The crew is spending time becoming familiar with Shuttle and mission equipment. The mission is Logistics Flight 1, which is scheduled to deliver supplies and equipment plus the external stowage platform to the International Space Station.

    NASA Image and Video Library

    2004-03-05

    KENNEDY SPACE CENTER, FLA. - The STS-114 crew gathers around the work stand holding the insert for Discovery’s nose cap. From left are Mission Specialists Soichi Noguchi, and Charles Camarda; Commander Eileen Collins; Mission Specialists Andrew Thomas and Wendy Lawrence; Pilot James Kelly; and Mission Specialist Stephen Robinson. Noguchi represents the Japanese Aerospace and Exploration Agency. The insert is being fitted with thermal protection system insulation blankets. The crew is spending time becoming familiar with Shuttle and mission equipment. The mission is Logistics Flight 1, which is scheduled to deliver supplies and equipment plus the external stowage platform to the International Space Station.

  2. KENNEDY SPACE CENTER, FLA. - Members of the STS-114 crew spend time becoming familiar with Shuttle and mission equipment. From left (in their blue suits) are Mission Specialists Soichi Noguchi, Stephen Robinson, Charles Camarda, Andrew Thomas and Wendy Lawrence; Commander Eileen Collins and Pilot James Kelly. Noguchi represents the Japanese Aerospace and Exploration Agency. They are looking at the thermal protection system insulation blankets being installed on an insert for Discovery’s nose cap. The STS-114 mission is Logistics Flight 1, which is scheduled to deliver supplies and equipment plus the external stowage platform to the International Space Station.

    NASA Image and Video Library

    2004-03-05

    KENNEDY SPACE CENTER, FLA. - Members of the STS-114 crew spend time becoming familiar with Shuttle and mission equipment. From left (in their blue suits) are Mission Specialists Soichi Noguchi, Stephen Robinson, Charles Camarda, Andrew Thomas and Wendy Lawrence; Commander Eileen Collins and Pilot James Kelly. Noguchi represents the Japanese Aerospace and Exploration Agency. They are looking at the thermal protection system insulation blankets being installed on an insert for Discovery’s nose cap. The STS-114 mission is Logistics Flight 1, which is scheduled to deliver supplies and equipment plus the external stowage platform to the International Space Station.

  3. The Joint Military Medical Executive Skills initiative: an impressive response to changing human resource management rules of engagement.

    PubMed

    Kerr, Bernard J

    2007-01-01

    Confronted with a sudden and substantial change in the rules regarding who could command a military medical treatment facility (MTF), the Military Health System (MHS) responded to the challenge with an impressive human resource management solution-the Joint Medical Executive Skills Program. The history, emergence, and continuing role of this initiative exemplifies the MHS's capacity to fulfill the spirit and intent of an arduous Congressional mandate while enhancing professional development and sustaining the career opportunities of medical officers. The MHS response to the Congressional requirement that candidates for MTF command demonstrate professional administrative skills was decisive, creative, and consistent with the basic principles of human resource management. The Joint Medical Executive Skills Program is a management success story that demonstrates how strategic planning, well-defined skills requirements, and structured training can assure a ready supply of qualified commanders for the military's MTFs.

  4. Total Quality Management: Will It Work in the System Program Office?

    DTIC Science & Technology

    1990-05-01

    Quality Management (TQM) is a relatively new philosophy of management which has high-level Department of Defense support and is presently being implemented in the Air Force. In the Air Force Systems Command, weapon system development and acquisition are carried out in System Program Offices (SPOs), staffed with various functionally oriented specialists supplied to the System Program Director by functional ’home offices’ via a matrix management scheme. Can TQM, relying as it does on cross-functional cooperation and on processes which cross functional lines, be

  5. A Gap Analysis of Life Cycle Management Commands and Best Purchasing and Supply Management Organizations

    DTIC Science & Technology

    2013-01-01

    of the Army’s Life Cycle Management Commands (LCMCs)—those for Aviation and Missiles (AMCOM), Communications - Electronics (CECOM), and Tank-automotive...took time from their busy schedules to participate in our interviews. We would like to thank Lieutenant Colonel John Coombs for helping us track down...Army Communications -Electronics Life Cycle Management Command CPFR collaborative planning, forecasting, and replenishment DCMA Defense Contract

  6. Conceptual definition of a high voltage power supply test facility

    NASA Technical Reports Server (NTRS)

    Biess, John J.; Chu, Teh-Ming; Stevens, N. John

    1989-01-01

    NASA Lewis Research Center is presently developing a 60 GHz traveling wave tube for satellite cross-link communications. The operating voltage for this new tube is - 20 kV. There is concern about the high voltage insulation system and NASA is planning a space station high voltage experiment that will demonstrate both the 60 GHz communications and high voltage electronics technology. The experiment interfaces, requirements, conceptual design, technology issues and safety issues are determined. A block diagram of the high voltage power supply test facility was generated. It includes the high voltage power supply, the 60 GHz traveling wave tube, the communications package, the antenna package, a high voltage diagnostics package and a command and data processor system. The interfaces with the space station and the attached payload accommodations equipment were determined. A brief description of the different subsystems and a discussion of the technology development needs are presented.

  7. EVA Roadmap: New Space Suit for the 21st Century

    NASA Technical Reports Server (NTRS)

    Yowell, Robert

    1998-01-01

    New spacesuit design considerations for the extra vehicular activity (EVA) of a manned Martian exploration mission are discussed. Considerations of the design includes:(1) regenerable CO2 removal, (2) a portable life support system (PLSS) which would include cryogenic oxygen produced from in-situ manufacture, (3) a power supply for the EVA, (4) the thermal control systems, (5) systems engineering, (5) space suit systems (materials, and mobility), (6) human considerations, such as improved biomedical sensors and astronaut comfort, (7) displays and controls, and robotic interfaces, such as rovers, and telerobotic commands.

  8. Controlled impact demonstration on-board (interior) photographic system

    NASA Technical Reports Server (NTRS)

    May, C. J.

    1986-01-01

    Langley Research Center (LaRC) was responsible for the design, manufacture, and integration of all hardware required for the photographic system used to film the interior of the controlled impact demonstration (CID) B-720 aircraft during actual crash conditions. Four independent power supplies were constructed to operate the ten high-speed 16 mm cameras and twenty-four floodlights. An up-link command system, furnished by Ames Dryden Flight Research Facility (ADFRF), was necessary to activate the power supplies and start the cameras. These events were accomplished by initiation of relays located on each of the photo power pallets. The photographic system performed beyond expectations. All four power distribution pallets with their 20 year old Minuteman batteries performed flawlessly. All 24 lamps worked. All ten on-board high speed (400 fps) 16 mm cameras containing good resolution film data were recovered.

  9. Controlling a Four-Quadrant Brushless Three-Phase dc Motor

    NASA Technical Reports Server (NTRS)

    Nola, F. J.

    1986-01-01

    Control circuit commutates windings of brushless, three-phase, permanent-magnet motor operating from power supply. With single analog command voltage, controller makes motor accelerate, drive steadily, or brake regeneratively, in clockwise or counterclockwise direction. Controller well suited for use with energy-storage flywheels, actuators for aircraft-control surfaces, cranes, industrial robots, and other electromechanical systems requiring bidirectional control or sudden stopping and reversal.

  10. Development of a Naval Supply Systems Command Acquisition Supplement - A Business Practice Improvement

    DTIC Science & Technology

    2015-09-01

    The information reviewed for this project will help the reader understand how acquisition rules and regulations flow down to the acquisition...ACQUISITIONS IN SUPPORT OF OPERATIONS IN AFGHANISTAN Aug-09 N Obsolete 09-26 PASSIVE RADIO FREQUENCY IDENTIFICATION ( RFID ) DFARS COMPLIANCE REPORTING...been made. Many of the instructions and publications refer readers to additional instructions and publications, and often reference specific policy

  11. Year-End Review & FY15 Projections (Naval Supply Systems Command)

    DTIC Science & Technology

    2014-08-12

    Industries  and/or  socio-­‐economic  Concerns   Plan  to  Increase  SB  performance   Knowing our $mall Business SB – 26.0%, SDB ...26.0% SDB – 8.0% SDVOSB – 3.5% WOSB – 6.6% HUBZone – 0.6% Sweetspot – 81% N/A •  Expiring services contract deep-dive analysis initiative

  12. Demand Forecasting: An Evaluation of DODs Accuracy Metric and Navys Procedures

    DTIC Science & Technology

    2016-06-01

    inventory management improvement plan, mean of absolute scaled error, lead time adjusted squared error, forecast accuracy, benchmarking, naïve method...Manager JASA Journal of the American Statistical Association LASE Lead-time Adjusted Squared Error LCI Life Cycle Indicator MA Moving Average MAE...Mean Squared Error xvi NAVSUP Naval Supply Systems Command NDAA National Defense Authorization Act NIIN National Individual Identification Number

  13. 40. Upper level, electronic racks, left to rightstatus command message ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    40. Upper level, electronic racks, left to right--status command message processing group, UHF radio, impss rack security, power supply group rack - Ellsworth Air Force Base, Delta Flight, Launch Facility, On County Road T512, south of Exit 116 off I-90, Interior, Jackson County, SD

  14. AERCam Autonomy: Intelligent Software Architecture for Robotic Free Flying Nanosatellite Inspection Vehicles

    NASA Technical Reports Server (NTRS)

    Fredrickson, Steven E.; Duran, Steve G.; Braun, Angela N.; Straube, Timothy M.; Mitchell, Jennifer D.

    2006-01-01

    The NASA Johnson Space Center has developed a nanosatellite-class Free Flyer intended for future external inspection and remote viewing of human spacecraft. The Miniature Autonomous Extravehicular Robotic Camera (Mini AERCam) technology demonstration unit has been integrated into the approximate form and function of a flight system. The spherical Mini AERCam Free Flyer is 7.5 inches in diameter and weighs approximately 10 pounds, yet it incorporates significant additional capabilities compared to the 35-pound, 14-inch diameter AERCam Sprint that flew as a Shuttle flight experiment in 1997. Mini AERCam hosts a full suite of miniaturized avionics, instrumentation, communications, navigation, power, propulsion, and imaging subsystems, including digital video cameras and a high resolution still image camera. The vehicle is designed for either remotely piloted operations or supervised autonomous operations, including automatic stationkeeping, point-to-point maneuvering, and waypoint tracking. The Mini AERCam Free Flyer is accompanied by a sophisticated control station for command and control, as well as a docking system for automated deployment, docking, and recharge at a parent spacecraft. Free Flyer functional testing has been conducted successfully on both an airbearing table and in a six-degree-of-freedom closed-loop orbital simulation with avionics hardware in the loop. Mini AERCam aims to provide beneficial on-orbit views that cannot be obtained from fixed cameras, cameras on robotic manipulators, or cameras carried by crewmembers during extravehicular activities (EVA s). On Shuttle or International Space Station (ISS), for example, Mini AERCam could support external robotic operations by supplying orthogonal views to the intravehicular activity (IVA) robotic operator, supply views of EVA operations to IVA and/or ground crews monitoring the EVA, and carry out independent visual inspections of areas of interest around the spacecraft. To enable these future benefits with minimal impact on IVA operators and ground controllers, the Mini AERCam system architecture incorporates intelligent systems attributes that support various autonomous capabilities. 1) A robust command sequencer enables task-level command scripting. Command scripting is employed for operations such as automatic inspection scans over a region of interest, and operator-hands-off automated docking. 2) A system manager built on the same expert-system software as the command sequencer provides detection and smart-response capability for potential system-level anomalies, like loss of communications between the Free Flyer and control station. 3) An AERCam dynamics manager provides nominal and off-nominal management of guidance, navigation, and control (GN&C) functions. It is employed for safe trajectory monitoring, contingency maneuvering, and related roles. This paper will describe these architectural components of Mini AERCam autonomy, as well as the interaction of these elements with a human operator during supervised autonomous control.

  15. Guidelines for the Development and Implementation of a Logistic Resource Annex to the Five Year Defense Program. Volume 4. A Logistic Resource Annex for the Marine Corps Section of the DNFYP

    DTIC Science & Technology

    1978-10-01

    Information ; Logistics Planning; Management Planning and Control; Management Information Systems; Management; Military Supplies; Acquisition; JO...Arlington, Virginia 22202 Contract DAHC 15-73C-0200 Task 78-II-1 CONTENTS GLOSSARY : v SUMMARY ix I. INTRODUCTION 1 II. MARINE CORPS SUPPORT OP...Materiel Command Navy Cost Information System/FYDP Subsystem Non-Industrial Fund Non-Telecommunications Offfice of the Assistant Secretary of Defense

  16. Compact self-contained electrical-to-optical converter/transmitter

    DOEpatents

    Seligmann, Daniel A.; Moss, William C.; Valk, Theodore C.; Conder, Alan D.

    1995-01-01

    A first optical receiver and a second optical receiver are provided for receiving a calibrate command and a power switching signal, respectively, from a remote processor. A third receiver is provided for receiving an analog electrical signal from a transducer. A calibrator generates a reference signal in response to the calibrate command. A combiner mixes the electrical signal with the reference signal to form a calibrated signal. A converter converts the calibrated signal to an optical signal. A transmitter transmits the optical signal to the remote processor. A primary battery supplies power to the calibrator, the combiner, the converter, and the transmitter. An optically-activated switch supplies power to the calibrator, the combiner, the converter, and the transmitter in response to the power switching signal. An auxiliary battery supplies power continuously to the switch.

  17. Naval Supply Systems Command Fleet Logistics Center

    DTIC Science & Technology

    2012-08-08

    Partial small business set - aside is a potential consideration   12-month Base plus two options   Synopsis N00604-11-R-3006 on NECO and FedBizOpps...2012 Navy Gold Coast Small Business Procurement Event 8 August 2012 #1 PRIORITY = Operating Forces Support …while ensuring Joint...while ensuring Joint Base Success FedBid.com Reverse Auction Website 8 Small Business Assistance #1 PRIORITY = Operating Forces

  18. Chemical release module facility

    NASA Technical Reports Server (NTRS)

    Reasoner, D. L.

    1980-01-01

    The chemical release module provides the capability to conduct: (1) thermite based metal vapor releases; (2) pressurized gas releases; (3) dispersed liquid releases; (4) shaped charge releases from ejected submodules; and (5) diagnostic measurements with pi supplied instruments. It also provides a basic R-F and electrical system for: (1) receiving and executing commands; (2) telemetering housekeeping data; (3) tracking; (4) monitoring housekeeping and control units; and (5) ultrasafe disarming and control monitoring.

  19. Threats at Our Threshold: Homeland Defense and Homeland Security in the New Century

    DTIC Science & Technology

    2006-10-21

    evacuation. Meanwhile, DoD C4ISR (Command, Control, Communications, Computers , Intelligence, Surveillance and Reconnaissance) assets can provide state-of...hurricane and flooding. In addition, he challenged the company to find a way to track all supplies even though the computer systems were down...relevant to the homeland security realm. In general terms, individuals empowered with computing and communications technology and connected by

  20. Integration & Validation of LCU with Different Sub-systems for Diacrode based amplifier

    NASA Astrophysics Data System (ADS)

    Rajnish, Kumar; Verma, Sriprakash; Soni, Dipal; Patel, Hriday; Suthar, Gajendra; Dalicha, Hrushikesh; Dhola, Hitesh; Patel, Amit; Upadhayay, Dishang; Jha, Akhil; Patel, Manoj; Trivedi, Rajesh; Machchhar, Harsha; Singh, Raghuraj; Mukherjee, Aparajita

    2017-04-01

    ITER-India is responsible to deliver nine (8+1 spare) ICH & CD Power Sources to ITER. Each power source is capable to deliver 2.5 MW at 35 to 65 MHz frequency range with a load condition up to VSWR 2:1. For remote operation of different subsystems, Local Control Unit (LCU) is developed. LCU is developed using PXI hardware and Schneider PLC with Lab VIEW-RT developmental environment. All the protection function of the amplifier is running on PXI 7841 R module that ensures hard wired protection logic. There are three level of protection function- first by power supply itself that detects overcurrent/overvoltage and trips itself and generate trip signal for further action. There are some direct hardwired signal interfaces between power supplies to protect the amplifier. Second level of protection is generated through integrated controller of amplifier i.e. Command Control Embedded (CCE) against arc and Anode over current. Third level of Protection is through LCU where different fault signals are received and processed to generate off command for different sub-systems. Before connecting different subsystem with High power RF amplifiers (Driver & Final stage), each subsystem is individually tested through LCU. All protection functions are tested before hooking up the subsystems with main amplifier and initiating RF operation.

  1. KENNEDY SPACE CENTER, FLA. - STS-114 Commander Eileen Collins and Mission Specialist Wendy Lawrence look over mission equipment in the Space Station Processing Facility. Crew members are at KSC for equipment familiarization. STS-114 is classified as Logistics Flight 1 to the International Space Station, delivering new supplies and replacing one of the orbital outpost’s Control Moment Gyroscopes (CMGs). STS-114 will also carry a Raffaello Multi-Purpose Logistics Module and the External Stowage Platform-2. The crew is slated to conduct at least three spacewalks: They will demonstrate repair techniques of the Shuttle’s Thermal Protection System, replace the failed CMG with one delivered by the Shuttle, and install the External Stowage Platform.

    NASA Image and Video Library

    2004-01-27

    KENNEDY SPACE CENTER, FLA. - STS-114 Commander Eileen Collins and Mission Specialist Wendy Lawrence look over mission equipment in the Space Station Processing Facility. Crew members are at KSC for equipment familiarization. STS-114 is classified as Logistics Flight 1 to the International Space Station, delivering new supplies and replacing one of the orbital outpost’s Control Moment Gyroscopes (CMGs). STS-114 will also carry a Raffaello Multi-Purpose Logistics Module and the External Stowage Platform-2. The crew is slated to conduct at least three spacewalks: They will demonstrate repair techniques of the Shuttle’s Thermal Protection System, replace the failed CMG with one delivered by the Shuttle, and install the External Stowage Platform.

  2. KENNEDY SPACE CENTER, FLA. - STS-114 Commander Eileen Collins talks with workers in the Orbiter Processing Facility. She and other crew members are at KSC to become familiar with Shuttle and mission equipment. The mission is Logistics Flight 1, which is scheduled to deliver supplies and equipment plus the external stowage platform to the International Space Station.

    NASA Image and Video Library

    2004-03-05

    KENNEDY SPACE CENTER, FLA. - STS-114 Commander Eileen Collins talks with workers in the Orbiter Processing Facility. She and other crew members are at KSC to become familiar with Shuttle and mission equipment. The mission is Logistics Flight 1, which is scheduled to deliver supplies and equipment plus the external stowage platform to the International Space Station.

  3. Compact self-contained electrical-to-optical converter/transmitter

    DOEpatents

    Seligmann, D.A.; Moss, W.C.; Valk, T.C.; Conder, A.D.

    1995-11-21

    A first optical receiver and a second optical receiver are provided for receiving a calibrate command and a power switching signal, respectively, from a remote processor. A third receiver is provided for receiving an analog electrical signal from a transducer. A calibrator generates a reference signal in response to the calibrate command. A combiner mixes the electrical signal with the reference signal to form a calibrated signal. A converter converts the calibrated signal to an optical signal. A transmitter transmits the optical signal to the remote processor. A primary battery supplies power to the calibrator, the combiner, the converter, and the transmitter. An optically-activated switch supplies power to the calibrator, the combiner, the converter, and the transmitter in response to the power switching signal. An auxiliary battery supplies power continuously to the switch. 13 figs.

  4. Method of operating a thermoelectric generator

    DOEpatents

    Reynolds, Michael G; Cowgill, Joshua D

    2013-11-05

    A method for operating a thermoelectric generator supplying a variable-load component includes commanding the variable-load component to operate at a first output and determining a first load current and a first load voltage to the variable-load component while operating at the commanded first output. The method also includes commanding the variable-load component to operate at a second output and determining a second load current and a second load voltage to the variable-load component while operating at the commanded second output. The method includes calculating a maximum power output of the thermoelectric generator from the determined first load current and voltage and the determined second load current and voltage, and commanding the variable-load component to operate at a third output. The commanded third output is configured to draw the calculated maximum power output from the thermoelectric generator.

  5. Targets for Marine Corps Purchasing and Supply Management Initiatives: Spend Analysis Findings

    DTIC Science & Technology

    2011-01-01

    TRANSPORTATION INTERNATIONAL AFFAIRS LAW AND BUSINESS NATIONAL SECURITY POPULATION AND AGING PUBLIC SAFETY SCIENCE AND TECHNOLOGY TERRORISM AND...States Transportation Command UNICOR Federal Prison Industries, Inc. USMC United States Marine Corps WHS/SIAD Washington Headquarters Services...Services Admin- istration (GSA), and the United States Transportation Command (TRANSCOM), as well as via Military Interdepartmental Purchase Requests

  6. The Noble Train of Artillery: A Study Comparison of Current Doctrinal Concepts of the Mission Command Philosophy in History

    DTIC Science & Technology

    2015-06-12

    of Bunker Hill ammunition and powder was in low supply.40 Washington was counting on the fruits of the Canadian campaign the Continental Congress...Continental Congress had authorized a Canadian campaign to take place earlier in the year. Recently promoted Major General Schuyler commanded the Canadian

  7. Emergency Preparedness in the Workplace: The Flulapalooza Model for Mass Vaccination.

    PubMed

    Swift, Melanie D; Aliyu, Muktar H; Byrne, Daniel W; Qian, Keqin; McGown, Paula; Kinman, Patricia O; Hanson, Katherine Louise; Culpepper, Demoyne; Cooley, Tamara J; Yarbrough, Mary I

    2017-09-01

    To explore whether an emergency preparedness structure is a feasible, efficient, and sustainable way for health care organizations to manage mass vaccination events. We used the Hospital Incident Command System to conduct a 1-day annual mass influenza vaccination event at Vanderbilt University Medical Center over 5 successive years (2011-2015). Using continuous quality improvement principles, we assessed whether changes in layout, supply management, staffing, and documentation systems improved efficiency. A total of 66 591 influenza vaccines were administered at 5 annual Flulapalooza events; 13 318 vaccines per event on average. Changes to the physical layout, staffing mix, and documentation processes improved vaccination efficiency 74%, from approximately 38 to 67 vaccines per hour per vaccinator, while reducing overall staffing needs by 38%. An unexpected finding was the role of social media in facilitating active engagement. Health care organizations can use a closed point-of-dispensing model and Hospital Incident Command System to conduct mass vaccination events, and can adopt the "Flulapalooza method" as a best practice model to enhance efficiency.

  8. Digital frequency control of satellite frequency standards. [Defense Navigation Satellites

    NASA Technical Reports Server (NTRS)

    Nichols, S. A.

    1973-01-01

    In the Frequency and Time Standard Development Program of the TIMATION System, a new miniaturized rubidium vapor frequency standard has been tested and analyzed for possible use on the TIMATION 3A launch, as part of the Defense Navigation Satellite Development Program. The design and construction of a digital frequency control was required to remotely control this rubidium vapor frequency standard as well as the quartz oscillator in current use. This control must be capable of accepting commands from a satellite telemetry system, verify that the correct commands have been sent and control the frequency to the requirements of the system. Several modifications must be performed to the rubidium vapor frequency standard to allow it to be compatible with the digital frequency control. These include the addition of a varactor to voltage tune the coarse range of the flywheel oscillator, and a modification to supply the C field current externally. The digital frequency control for the rubidium vapor frequency standard has been successfully tested in prototype form.

  9. Task-Related Job Reading Inventory: Development and Field Trial of a Prototype.

    DTIC Science & Technology

    1983-07-01

    or other data are used for any purpose other than in connection with a definitely Government -related procurement , the United States Government incurs...unlimited. C E S LABORATORY AIR FORCE SYSTEMS COMMAND BROOKS AIR FORCE BASE,TEXAS 78235 83 07 26 153 NOTICE When Government drawings, specifications...no responsibility or any obligation whatsoever. The fact that the Government may have formulated or in any way supplied the said drawings

  10. Standard Port-Visit Cost Forecasting Model for U.S. Navy Husbanding Contracts

    DTIC Science & Technology

    2009-12-01

    Protocol (HTTP) server.35 2. MySQL . An open-source database.36 3. PHP . A common scripting language used for Web development.37 E. IMPLEMENTATION OF...Inc. (2009). MySQL Community Server (Version 5.1) [Software]. Available from http://dev.mysql.com/downloads/ 37 The PHP Group (2009). PHP (Version...Logistics Services MySQL My Structured Query Language NAVSUP Navy Supply Systems Command NC Non-Contract Items NPS Naval Postgraduate

  11. Modular Research-Based Composably Trustworthy Mission-Oriented Resilient Clouds (MRC2)

    DTIC Science & Technology

    2016-02-01

    obtain in this way, encapsulation is a very promising technique to apply to larger cloud components. For example, ‘ big data ’ processing systems, such...UNITED STATES AIR FORCE  ROME, NY 13441 AIR FORCE MATERIEL COMMAND NOTICE AND SIGNATURE PAGE Using Government drawings, specifications, or other data ...Government formulated or supplied the drawings, specifications, or other data does not license the holder or any other person or corporation; or convey

  12. Naval Supply Systems Command: Data Administration Planning and Implementation

    DTIC Science & Technology

    1989-03-01

    determined that management’s lack of understanding is an inhibitor of successful DA. Equally important is the DA group’s comprehension of...is the actual staff responsible for DA. Kahn [Ref. 5] found that an insufficient DA staff was another inhibitor of successful DA implementation. Two...Logistic Network ( NLN ) architecture. 7 3. NAVSUP Strategic Directions Three of NAVSUP’s strategic directions pertain to this study. The first is the

  13. Naval Aviation IMA Repair Capability: A Readiness to Resources Approach.

    DTIC Science & Technology

    1983-12-01

    systems commands and offices. 3, .-. e , No. cFE 0000 CP15PATL OR BMS REouWE gKIATRE_ woms CENTIP KEOscu. coNTiO.mI AMoCES COPYw co 5( US &Lp6J4 PE PM3K...U December 1983 " Thesis Advisor: A. W. McMasters Approved for public release; distribution unlimited. 4𔃺 8 4 04 25 069 -* ,** *- a’’ e ...29 2. Maintenance/Supply InterrelationshiDs ------ 32 E . MAINTENANCE DATA SYSTEM ------------------------- 33 IV. PLANNING "I" LEVEL

  14. Ice Crystal Icing Engine Testing in the NASA Glenn Research Center's Propulsion Systems Laboratory (PSL): Altitude Investigation

    NASA Technical Reports Server (NTRS)

    Oliver, Michael J.

    2015-01-01

    The National Aeronautics and Space Administration conducted a full scale ice crystal icing turbofan engine test in the NASA Glenn Research Centers Propulsion Systems Laboratory (PSL) Facility in February 2013. Honeywell Engines supplied the test article, an obsolete, unmodified Lycoming ALF502-R5 turbofan engine serial number LF01 that experienced an un-commanded loss of thrust event while operating at certain high altitude ice crystal icing conditions. These known conditions were duplicated in the PSL for this testing.

  15. Candid views of the STS-81 and Mir 22 crews on the orbiter's middeck

    NASA Image and Video Library

    1997-01-16

    STS081-E-05498 (16 Jan. 1997) --- Supplies and equipment transfer are the topic of the day, as the Space Shuttle Atlantis and Russia's Mir Space Station respective commanders have a discussion aboard the Orbiter. Left to right are cosmonauts Valeri G. Korzun and Aleksandr Y. Kaleri, Mir-22 commander and flight engineer respectively; along with astronaut Michael A. Baker, mission commander. The photograph was recorded with an Electronic Still Camera (ESC) and later was downlinked to flight controllers in Houston, Texas.

  16. Organizational Analysis of Food Service Management

    DTIC Science & Technology

    2011-06-01

    35  d.  Senior Culinary Specialists on “Twilight” Tour ...................35  e.  NAVSUP Controls Quality of Life...Supply Centers COMSUBFOR Commander Submarine Force CS Culinary Specialist CSCS Culinary Specialist Senior Chief CVN Carrier Vessel Nuclear DDG Guided...attention of the Culinary Specialists. The type of assist visit can be tailored to the requirements identified by the requesting command. Normally

  17. 32 CFR 50.6 - Procedures.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... person who was solicited to the office designated by the installation commander on the back of the...) Procuring, attempting to procure, supplying, or attempting to supply non-public listings of DoD personnel... footnote 1 to § 50.3. (13) Soliciting door to door or without an appointment. (14) Unauthorized advertising...

  18. 32 CFR 50.6 - Procedures.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... person who was solicited to the office designated by the installation commander on the back of the...) Procuring, attempting to procure, supplying, or attempting to supply non-public listings of DoD personnel... footnote 1 to § 50.3. (13) Soliciting door to door or without an appointment. (14) Unauthorized advertising...

  19. 32 CFR 50.6 - Procedures.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... person who was solicited to the office designated by the installation commander on the back of the...) Procuring, attempting to procure, supplying, or attempting to supply non-public listings of DoD personnel... footnote 1 to § 50.3. (13) Soliciting door to door or without an appointment. (14) Unauthorized advertising...

  20. Analysis of Central Design Agency Alternatives for Navy Industrial Fund Accounting Systems: A Proposed Methodology.

    DTIC Science & Technology

    1980-03-01

    creation of a "buyer- seller" relationship between the producer of the good or ser- vice and the customer activity. The notion of "free" supplies and...riors in the customers ’ chains of command from whom they receive their funding) [2;28-30]. C. NAVY INDUSTRIAL FUND ORGANIZATIONAL RELATIONSHIPS The...project budget levels unchanged 2. standardization efforts hindered 3. current customer relationships 3. inefficient ptilization of unc hanged

  1. Command History 1970. Volume 3. Sanitized

    DTIC Science & Technology

    1970-01-01

    1970 * ~USMACV Command History in prohibited except with the permission of COMUSMACV or higher * authority. 4. This document will be transported ...were stored at the C~ambodian arm~y comnpound at Lovek, northwest of Phnoom Pernh. The munitions avid other supplies were then transported over Carn...now living along the bank of the Mekong River. This Mekong area may fit the transportation , postal- / communication, and signal communication strategy

  2. 17 CFR 3.12 - Registration of associated persons of futures commission merchants, introducing brokers...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... this section; (ii) The sponsor has verified the information supplied by the applicant in response to... publicly available information supplied by the applicant on Form 8-R is accurate and complete: Provided...; (iii) The chief operating officer, general partner or other person in the supervisory chain-of-command...

  3. Assessment of Logistical Support for Expeditionary Units

    DTIC Science & Technology

    2014-06-01

    AVAILABILITY STATEMENT Approved for public release; distribution is unlimited 12b. DISTRIBUTION CODE A 13. ABSTRACT (maximum 200 words ...port and air cargo handling, customs inspections, contingency contracting, fuels procurement and distribution, freight terminal and warehouse...Supply department is the principal financial, procurement, inventory, and customer service managers within the command. Both Supply and Materiel

  4. 17 CFR 3.12 - Registration of associated persons of futures commission merchants, retail foreign exchange...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... the information supplied by the applicant in response to the questions on Form 8-R which relate to the... sponsor's knowledge, information, and belief, all of the publicly available information supplied by the...) The chief operating officer, general partner or other person in the supervisory chain-of-command...

  5. 17 CFR 3.12 - Registration of associated persons of futures commission merchants, retail foreign exchange...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... the information supplied by the applicant in response to the questions on Form 8-R which relate to the... sponsor's knowledge, information, and belief, all of the publicly available information supplied by the...) The chief operating officer, general partner or other person in the supervisory chain-of-command...

  6. Smart Grid Enabled EVSE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    2015-01-12

    The combined team of GE Global Research, Federal Express, National Renewable Energy Laboratory, and Consolidated Edison has successfully achieved the established goals contained within the Department of Energy’s Smart Grid Capable Electric Vehicle Supply Equipment funding opportunity. The final program product, shown charging two vehicles in Figure 1, reduces by nearly 50% the total installed system cost of the electric vehicle supply equipment (EVSE) as well as enabling a host of new Smart Grid enabled features. These include bi-directional communications, load control, utility message exchange and transaction management information. Using the new charging system, Utilities or energy service providers willmore » now be able to monitor transportation related electrical loads on their distribution networks, send load control commands or preferences to individual systems, and then see measured responses. Installation owners will be able to authorize usage of the stations, monitor operations, and optimally control their electricity consumption. These features and cost reductions have been developed through a total system design solution.« less

  7. Automatic Thermal Infrared Panoramic Imaging Sensor

    DTIC Science & Technology

    2006-11-01

    hibernation, in which power supply to the server computer , the wireless network hardware, the GPS receiver, and the electronic compass / tilt sensor...prototype. At the operator’s command on the client laptop, the receiver wakeup device on the server side will switch on the ATX power supply at the...server, to resume the power supply to all the APTIS components. The embedded computer will resume all of the functions it was performing when put

  8. NASA ARCH- A FILE ARCHIVAL SYSTEM FOR THE DEC VAX

    NASA Technical Reports Server (NTRS)

    Scott, P. J.

    1994-01-01

    The function of the NASA ARCH system is to provide a permanent storage area for files that are infrequently accessed. The NASA ARCH routines were designed to provide a simple mechanism by which users can easily store and retrieve files. The user treats NASA ARCH as the interface to a black box where files are stored. There are only five NASA ARCH user commands, even though NASA ARCH employs standard VMS directives and the VAX BACKUP utility. Special care is taken to provide the security needed to insure file integrity over a period of years. The archived files may exist in any of three storage areas: a temporary buffer, the main buffer, and a magnetic tape library. When the main buffer fills up, it is transferred to permanent magnetic tape storage and deleted from disk. Files may be restored from any of the three storage areas. A single file, multiple files, or entire directories can be stored and retrieved. archived entities hold the same name, extension, version number, and VMS file protection scheme as they had in the user's account prior to archival. NASA ARCH is capable of handling up to 7 directory levels. Wildcards are supported. User commands include TEMPCOPY, DISKCOPY, DELETE, RESTORE, and DIRECTORY. The DIRECTORY command searches a directory of savesets covering all three archival areas, listing matches according to area, date, filename, or other criteria supplied by the user. The system manager commands include 1) ARCHIVE- to transfer the main buffer to duplicate magnetic tapes, 2) REPORTto determine when the main buffer is full enough to archive, 3) INCREMENT- to back up the partially filled main buffer, and 4) FULLBACKUP- to back up the entire main buffer. On-line help files are provided for all NASA ARCH commands. NASA ARCH is written in DEC VAX DCL for interactive execution and has been implemented on a DEC VAX computer operating under VMS 4.X. This program was developed in 1985.

  9. KENNEDY SPACE CENTER, FLA. - STS-114 Mission Commander Eileen Collins is pleased to be back at KSC after arriving aboard a T-38 jet aircraft. She and other crew members are at the Center for familiarization activities with equipment. The mission is Logistics Flight 1, scheduled to deliver to the Space Station the external stowage platform and the Multi-Purpose Logistics Module with supplies and equipment.

    NASA Image and Video Library

    2004-03-05

    KENNEDY SPACE CENTER, FLA. - STS-114 Mission Commander Eileen Collins is pleased to be back at KSC after arriving aboard a T-38 jet aircraft. She and other crew members are at the Center for familiarization activities with equipment. The mission is Logistics Flight 1, scheduled to deliver to the Space Station the external stowage platform and the Multi-Purpose Logistics Module with supplies and equipment.

  10. Kotov during Albedo Experiment in the SM

    NASA Image and Video Library

    2013-11-18

    ISS038-E-005022 (20 Nov. 2013) --- At a window in the International Space Station?s Zvezda Service Module, Russian cosmonaut Oleg Kotov, Expedition 38 commander, uses a digital camera photospectral system to perform a session for the Albedo Experiment. The experiment measures Earth?s albedo, or the amount of solar radiation reflected from the surface, in the hopes to develop methods to harness the reflected radiation to supplement the station?s power supply. The light reflection phenomenon is measured in units called albedo.

  11. Kotov during Albedo Experiment in the SM

    NASA Image and Video Library

    2013-11-18

    ISS038-E-005014 (20 Nov. 2013) --- At a window in the International Space Station’s Zvezda Service Module, Russian cosmonaut Oleg Kotov, Expedition 38 commander, uses a digital camera photospectral system to perform a session for the Albedo Experiment. The experiment measures Earth’s albedo, or the amount of solar radiation reflected from the surface, in the hopes to develop methods to harness the reflected radiation to supplement the station’s power supply. The light reflection phenomenon is measured in units called albedo.

  12. Kotov during Albedo Experiment in the SM

    NASA Image and Video Library

    2013-11-18

    ISS038-E-005023 (20 Nov. 2013) --- At a window in the International Space Station?s Zvezda Service Module, Russian cosmonaut Oleg Kotov, Expedition 38 commander, uses a digital camera photospectral system to perform a session for the Albedo Experiment. The experiment measures Earth?s albedo, or the amount of solar radiation reflected from the surface, in the hopes to develop methods to harness the reflected radiation to supplement the station?s power supply. The light reflection phenomenon is measured in units called albedo.

  13. Kotov during Albedo Experiment in the SM

    NASA Image and Video Library

    2013-11-18

    ISS038-E-005031 (20 Nov. 2013) --- At a window in the International Space Station?s Zvezda Service Module, Russian cosmonaut Oleg Kotov, Expedition 38 commander, uses a digital camera photospectral system to perform a session for the Albedo Experiment. The experiment measures Earth?s albedo, or the amount of solar radiation reflected from the surface, in the hopes to develop methods to harness the reflected radiation to supplement the station?s power supply. The light reflection phenomenon is measured in units called albedo.

  14. Kotov during Albedo Experiment in the SM

    NASA Image and Video Library

    2013-11-18

    ISS038-E-005016 (20 Nov. 2013) --- At a window in the International Space Station?s Zvezda Service Module, Russian cosmonaut Oleg Kotov, Expedition 38 commander, uses a digital camera photospectral system to perform a session for the Albedo Experiment. The experiment measures Earth?s albedo, or the amount of solar radiation reflected from the surface, in the hopes to develop methods to harness the reflected radiation to supplement the station?s power supply. The light reflection phenomenon is measured in units called albedo.

  15. Kotov during Albedo Experiment in the SM

    NASA Image and Video Library

    2013-11-18

    ISS038-E-005019 (20 Nov. 2013) --- At a window in the International Space Station?s Zvezda Service Module, Russian cosmonaut Oleg Kotov, Expedition 38 commander, uses a digital camera photospectral system to perform a session for the Albedo Experiment. The experiment measures Earth?s albedo, or the amount of solar radiation reflected from the surface, in the hopes to develop methods to harness the reflected radiation to supplement the station?s power supply. The light reflection phenomenon is measured in units called albedo.

  16. A Logical Design of a Session Services Control Layer of a Distributed Network Architecture for SPLICE (Stock Point Logistics Integrated Communication Environment).

    DTIC Science & Technology

    1984-06-01

    Eacn stock point is autonomous witn respect to how it implements data processing support, as long as it accommodates the Navy Supply Systems Command...has its own data elements, files, programs , transactions, users, reports, and some have additional hardware. To augment them all and not force redesign... programs are written to request session establishments among them using only logical addressing names (mailboxes) whicn are independent from physical

  17. Powerplexer

    NASA Technical Reports Server (NTRS)

    Woods, J. M. (Inventor)

    1973-01-01

    An electrical power distribution system is described for use in providing different dc voltage levels. A circuit is supplied with DC voltage levels and commutates pulses for timed intervals onto a pair of distribution wires. The circuit is driven by a command generator which places pulses on the wires in a timed sequence. The pair of wires extend to voltage strippers connected to the various loads. The voltage strippers each respond to the pulse dc levels on the pair of wires and form different output voltages communicated to each load.

  18. Navy Command Control and Communications System: Layered Analytic Model.

    DTIC Science & Technology

    1981-09-27

    of these persons can be prescribed in terms of the model. Thus the Fleet, CINC, OTC, CO, TAO , Operations Officer, Air Intercept Controller, Supply...04 o-r 4 400 0n 0.14 to r WQ I 0 tvm 9 u 3t~ *w 0)o) 04 P40U u w) 4) 4- 0 4- -4()04) .4.) 41 41 41 0 r 0 4 > 4 4)(L 4 L tw 0 M 4 4J 04 $4 (a-3 4)J 40

  19. Emergency Preparedness in the Workplace: The Flulapalooza Model for Mass Vaccination

    PubMed Central

    Aliyu, Muktar H.; Byrne, Daniel W.; Qian, Keqin; McGown, Paula; Kinman, Patricia O.; Hanson, Katherine Louise; Culpepper, Demoyne; Cooley, Tamara J.; Yarbrough, Mary I.

    2017-01-01

    Objectives. To explore whether an emergency preparedness structure is a feasible, efficient, and sustainable way for health care organizations to manage mass vaccination events. Methods. We used the Hospital Incident Command System to conduct a 1-day annual mass influenza vaccination event at Vanderbilt University Medical Center over 5 successive years (2011–2015). Using continuous quality improvement principles, we assessed whether changes in layout, supply management, staffing, and documentation systems improved efficiency. Results. A total of 66 591 influenza vaccines were administered at 5 annual Flulapalooza events; 13 318 vaccines per event on average. Changes to the physical layout, staffing mix, and documentation processes improved vaccination efficiency 74%, from approximately 38 to 67 vaccines per hour per vaccinator, while reducing overall staffing needs by 38%. An unexpected finding was the role of social media in facilitating active engagement. Conclusions. Health care organizations can use a closed point-of-dispensing model and Hospital Incident Command System to conduct mass vaccination events, and can adopt the “Flulapalooza method” as a best practice model to enhance efficiency. PMID:28892449

  20. Methods, systems and apparatus for controlling operation of two alternating current (AC) machines

    DOEpatents

    Gallegos-Lopez, Gabriel [Torrance, CA; Nagashima, James M [Cerritos, CA; Perisic, Milun [Torrance, CA; Hiti, Silva [Redondo Beach, CA

    2012-02-14

    A system is provided for controlling two AC machines. The system comprises a DC input voltage source that provides a DC input voltage, a voltage boost command control module (VBCCM), a five-phase PWM inverter module coupled to the two AC machines, and a boost converter coupled to the inverter module and the DC input voltage source. The boost converter is designed to supply a new DC input voltage to the inverter module having a value that is greater than or equal to a value of the DC input voltage. The VBCCM generates a boost command signal (BCS) based on modulation indexes from the two AC machines. The BCS controls the boost converter such that the boost converter generates the new DC input voltage in response to the BCS. When the two AC machines require additional voltage that exceeds the DC input voltage required to meet a combined target mechanical power required by the two AC machines, the BCS controls the boost converter to drive the new DC input voltage generated by the boost converter to a value greater than the DC input voltage.

  1. The implementation of Prime Vendor Europe and its successful impact on an overseas naval medical treatment facility.

    PubMed

    Koerner, S D; Anaya, M A

    1996-10-01

    Prime Vendor Europe (PVE) is the commercial pharmaceutical ordering and delivery program that is revolutionizing overseas health care delivery at military health care treatment facilities located in the European theater. Mirroring civilian programs already available and replacing the Federal Supply System, PVE offers many benefits never before realized at overseas military health care treatment facilities, including: diminished order turnaround times with resultant decreased Operating Target requirements; rapid order confirmation after order placement; lower carrying costs and inventory needs; better dating of pharmaceuticals received; redistribution and increased efficiency of the current manhours needed to operate a pharmacy supply system; order tracking capabilities; and enhancement of the present cooperative and constructive dichotomous relationship between medical logistics and pharmacy regarding pharmaceutical purchasing practices. This paper will explore the fundamentals, past performance, continuous quality improvement of logistical functions, frame-work establishment for PVE, implementation of PVE, and subsequent observed command benefits of PVE realization.

  2. Network, system, and status software enhancements for the autonomously managed electrical power system breadboard. Volume 3: Commands specification

    NASA Technical Reports Server (NTRS)

    Mckee, James W.

    1990-01-01

    This volume (3 of 4) contains the specification for the command language for the AMPS system. The volume contains a requirements specification for the operating system and commands and a design specification for the operating system and command. The operating system and commands sits on top of the protocol. The commands are an extension of the present set of AMPS commands in that the commands are more compact, allow multiple sub-commands to be bundled into one command, and have provisions for identifying the sender and the intended receiver. The commands make no change to the actual software that implement the commands.

  3. 17 CFR 3.12 - Registration of associated persons of futures commission merchants, retail foreign exchange...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... information supplied by the applicant in response to the questions on Form 8-R which relate to the applicant's... knowledge, information, and belief, all of the publicly available information supplied by the applicant on... partner or other person in the supervisory chain-of-command, provided the futures commission merchant...

  4. Attitude control of the space construction base: A modular approach

    NASA Technical Reports Server (NTRS)

    Oconnor, D. A.

    1982-01-01

    A planar model of a space base and one module is considered. For this simplified system, a feedback controller which is compatible with the modular construction method is described. The systems dynamics are decomposed into two parts corresponding to base and module. The information structure of the problem is non-classical in that not all system information is supplied to each controller. The base controller is designed to accommodate structural changes that occur as the module is added and the module controller is designed to regulate its own states and follow commands from the base. Overall stability of the system is checked by Liapunov analysis and controller effectiveness is verified by computer simulation.

  5. STS-108 and Expedition 4 crews visit Mobile Command Center at CCAFS

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- STS-108 crew visit the Mobile Command Center at Cape Canaveral Air Force Station. From left are Pilot Mark E. Kelly, Mission Specialist Daniel M. Tani; Commander Dominic L. Gorie and Mission Specialist Linda A. Godwin; and Expedition 4 Commander Onufrienko and Daniel W. Bursch and Carl E. Walz. Crew members are at KSC for Terminal Countdown Demonstration Test activities that include a simulated launch countdown, and emergency exit training from the orbiter and launch pad. STS-108 is a Utilization Flight that will carry the replacement Expedition 4 crew to the International Space Station, as well as the Multi-Purpose Logistics Module Raffaello, filled with supplies and equipment. The l1-day mission is scheduled for launch Nov. 29 on Space Shuttle Endeavour.

  6. The C3-System User. Volume II. Workshop Notes

    DTIC Science & Technology

    1977-02-01

    system that provides the means for operational direction and technical administrative support involved in the function of command and control of U.S...information systems of the Headquarters of the Military Depart- ments; the command and control systems of the Headquarters of the Service Component Commands...the Service Component Commands - Military Airlift Command - Military Sealift Command - Military Traffic Management Command - 3.2.5 Command and

  7. The CMS tracker control system

    NASA Astrophysics Data System (ADS)

    Dierlamm, A.; Dirkes, G. H.; Fahrer, M.; Frey, M.; Hartmann, F.; Masetti, L.; Militaru, O.; Shah, S. Y.; Stringer, R.; Tsirou, A.

    2008-07-01

    The Tracker Control System (TCS) is a distributed control software to operate about 2000 power supplies for the silicon modules of the CMS Tracker and monitor its environmental sensors. TCS must thus be able to handle about 104 power supply parameters, about 103 environmental probes from the Programmable Logic Controllers of the Tracker Safety System (TSS), about 105 parameters read via DAQ from the DCUs in all front end hybrids and from CCUs in all control groups. TCS is built on top of an industrial SCADA program (PVSS) extended with a framework developed at CERN (JCOP) and used by all LHC experiments. The logical partitioning of the detector is reflected in the hierarchical structure of the TCS, where commands move down to the individual hardware devices, while states are reported up to the root which is interfaced to the broader CMS control system. The system computes and continuously monitors the mean and maximum values of critical parameters and updates the percentage of currently operating hardware. Automatic procedures switch off selected parts of the detector using detailed granularity and avoiding widespread TSS intervention.

  8. KENNEDY SPACE CENTER, FLA. - STS-114 Mission Specialist Andrew Thomas (right) shows some of the mission equipment to other crew members (from left) Wendy Lawrence, mission specialist; Eileen Collins, commander; and Charles Camarda, mission specialist. Crew members are at KSC for equipment familiarization. STS-114 is classified as Logistics Flight 1 to the International Space Station, delivering new supplies and replacing one of the orbital outpost’s Control Moment Gyroscopes (CMGs). STS-114 will also carry a Raffaello Multi-Purpose Logistics Module and the External Stowage Platform-2. The crew is slated to conduct at least three spacewalks: They will demonstrate repair techniques of the Shuttle’s Thermal Protection System, replace the failed CMG with one delivered by the Shuttle, and install the External Stowage Platform.

    NASA Image and Video Library

    2004-01-27

    KENNEDY SPACE CENTER, FLA. - STS-114 Mission Specialist Andrew Thomas (right) shows some of the mission equipment to other crew members (from left) Wendy Lawrence, mission specialist; Eileen Collins, commander; and Charles Camarda, mission specialist. Crew members are at KSC for equipment familiarization. STS-114 is classified as Logistics Flight 1 to the International Space Station, delivering new supplies and replacing one of the orbital outpost’s Control Moment Gyroscopes (CMGs). STS-114 will also carry a Raffaello Multi-Purpose Logistics Module and the External Stowage Platform-2. The crew is slated to conduct at least three spacewalks: They will demonstrate repair techniques of the Shuttle’s Thermal Protection System, replace the failed CMG with one delivered by the Shuttle, and install the External Stowage Platform.

  9. Fuel cell system logic for differentiating between rapid and normal shutdown commands

    DOEpatents

    Keskula, Donald H.; Doan, Tien M.; Clingerman, Bruce J.

    2000-01-01

    A method of controlling the operation of a fuel cell system wherein each shutdown command for the system is subjected to decision logic which determines whether the command should be a normal shutdown command or rapid shutdown command. If the logic determines that the shutdown command should be a normal shutdown command, then the system is shutdown in a normal step-by-step process in which the hydrogen stream is consumed within the system. If the logic determines that the shutdown command should be a rapid shutdown command, the hydrogen stream is removed from the system either by dumping to atmosphere or routing to storage.

  10. 32 CFR 518.5 - Authority.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... They may not use Government equipment, supplies, or postage to prepare personal FOIA requests. It is not necessary for soldiers or civilian employees to go through the chain of command to request...

  11. 32 CFR 518.5 - Authority.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... They may not use Government equipment, supplies, or postage to prepare personal FOIA requests. It is not necessary for soldiers or civilian employees to go through the chain of command to request...

  12. The Concurrent Implementation of Radio Frequency Identification and Unique Item Identification at Naval Surface Warfare Center, Crane, IN as a Model for a Navy Supply Chain Application

    DTIC Science & Technology

    2007-12-01

    electromagnetic theory related to RFID in his works “ Field measurements using active scatterers” and “Theory of loaded scatterers”. At the same time...Business Case Analysis BRE: Bangor Radio Frequency Evaluation C4ISR: Command, Control, Communications, Computers, Intelligence, Surveillance...Surveillance EEDSKs: Early Entry Deployment Support Kits EHF: Extremely High Frequency xvi EUCOM: European Command FCC : Federal Communications

  13. System and method for tracking a signal source. [employing feedback control

    NASA Technical Reports Server (NTRS)

    Mogavero, L. N.; Johnson, E. G.; Evans, J. M., Jr.; Albus, J. S. (Inventor)

    1978-01-01

    A system for tracking moving signal sources is disclosed which is particularly adaptable for use in tracking stage performers. A miniature transmitter is attached to the person or object to be tracked and emits a detectable signal of a predetermined frequency. A plurality of detectors positioned in a preset pattern sense the signal and supply output information to a phase detector which applies signals representing the angular orientation of the transmitter to a computer. The computer provides command signals to a servo network which drives a device such as a motor driven mirror reflecting the beam of a spotlight, to track the moving transmitter.

  14. Progress 37P on approach to the ISS

    NASA Image and Video Library

    2010-05-01

    ISS023-E-030552 (1 May 2010) --- An unpiloted ISS Progress resupply vehicle approaches the International Space Station, bringing 2.6 tons of food, fuel, oxygen, propellant and supplies for the Expedition 23 crew members aboard the station. Progress 37 docked to the Pirs Docking Compartment at 2:30 p.m. (EDT) on May 1, 2010, after a three-day flight from the Baikonur Cosmodrome in Kazakhstan. The docking was conducted by Russian cosmonaut Oleg Kotov, commander, in manual control through the TORU (telerobotically operated) rendezvous system due to a jet failure on the Progress that forced a shutdown of the Kurs automated rendezvous system.

  15. Progress 37P on approach to the ISS

    NASA Image and Video Library

    2010-05-01

    ISS023-E-030578 (1 May 2010) --- An unpiloted ISS Progress resupply vehicle approaches the International Space Station, bringing 2.6 tons of food, fuel, oxygen, propellant and supplies for the Expedition 23 crew members aboard the station. Progress 37 docked to the Pirs Docking Compartment at 2:30 p.m. (EDT) on May 1, 2010, after a three-day flight from the Baikonur Cosmodrome in Kazakhstan. The docking was conducted by Russian cosmonaut Oleg Kotov, commander, in manual control through the TORU (telerobotically operated) rendezvous system due to a jet failure on the Progress that forced a shutdown of the Kurs automated rendezvous system.

  16. Progress 37P on approach to the ISS

    NASA Image and Video Library

    2010-05-01

    ISS023-E-030563 (1 May 2010) --- An unpiloted ISS Progress resupply vehicle approaches the International Space Station, bringing 2.6 tons of food, fuel, oxygen, propellant and supplies for the Expedition 23 crew members aboard the station. Progress 37 docked to the Pirs Docking Compartment at 2:30 p.m. (EDT) on May 1, 2010, after a three-day flight from the Baikonur Cosmodrome in Kazakhstan. The docking was conducted by Russian cosmonaut Oleg Kotov, commander, in manual control through the TORU (telerobotically operated) rendezvous system due to a jet failure on the Progress that forced a shutdown of the Kurs automated rendezvous system.

  17. Progress 37P on approach to the ISS

    NASA Image and Video Library

    2010-05-01

    ISS023-E-030460 (1 May 2010) --- An unpiloted ISS Progress resupply vehicle approaches the International Space Station, bringing 2.6 tons of food, fuel, oxygen, propellant and supplies for the Expedition 23 crew members aboard the station. Progress 37 docked to the Pirs Docking Compartment at 2:30 p.m. (EDT) on May 1, 2010, after a three-day flight from the Baikonur Cosmodrome in Kazakhstan. The docking was conducted by Russian cosmonaut Oleg Kotov, commander, in manual control through the TORU (telerobotically operated) rendezvous system due to a jet failure on the Progress that forced a shutdown of the Kurs automated rendezvous system.

  18. Progress 37P on approach to the ISS

    NASA Image and Video Library

    2010-05-01

    ISS023-E-030445 (1 May 2010) --- An unpiloted ISS Progress resupply vehicle approaches the International Space Station, bringing 2.6 tons of food, fuel, oxygen, propellant and supplies for the Expedition 23 crew members aboard the station. Progress 37 docked to the Pirs Docking Compartment at 2:30 p.m. (EDT) on May 1, 2010, after a three-day flight from the Baikonur Cosmodrome in Kazakhstan. The docking was conducted by Russian cosmonaut Oleg Kotov, commander, in manual control through the TORU (telerobotically operated) rendezvous system due to a jet failure on the Progress that forced a shutdown of the Kurs automated rendezvous system.

  19. Progress 37P on approach to the ISS

    NASA Image and Video Library

    2010-05-01

    ISS023-E-030584 (1 May 2010) --- An unpiloted ISS Progress resupply vehicle approaches the International Space Station, bringing 2.6 tons of food, fuel, oxygen, propellant and supplies for the Expedition 23 crew members aboard the station. Progress 37 docked to the Pirs Docking Compartment at 2:30 p.m. (EDT) on May 1, 2010, after a three-day flight from the Baikonur Cosmodrome in Kazakhstan. The docking was conducted by Russian cosmonaut Oleg Kotov, commander, in manual control through the TORU (telerobotically operated) rendezvous system due to a jet failure on the Progress that forced a shutdown of the Kurs automated rendezvous system.

  20. Progress 37P on approach to the ISS

    NASA Image and Video Library

    2010-05-01

    ISS023-E-030444 (1 May 2010) --- An unpiloted ISS Progress resupply vehicle approaches the International Space Station, bringing 2.6 tons of food, fuel, oxygen, propellant and supplies for the Expedition 23 crew members aboard the station. Progress 37 docked to the Pirs Docking Compartment at 2:30 p.m. (EDT) on May 1, 2010, after a three-day flight from the Baikonur Cosmodrome in Kazakhstan. The docking was conducted by Russian cosmonaut Oleg Kotov, commander, in manual control through the TORU (telerobotically operated) rendezvous system due to a jet failure on the Progress that forced a shutdown of the Kurs automated rendezvous system.

  1. Progress 37P on approach to the ISS

    NASA Image and Video Library

    2010-05-01

    ISS023-E-030528 (1 May 2010) --- An unpiloted ISS Progress resupply vehicle approaches the International Space Station, bringing 2.6 tons of food, fuel, oxygen, propellant and supplies for the Expedition 23 crew members aboard the station. Progress 37 docked to the Pirs Docking Compartment at 2:30 p.m. (EDT) on May 1, 2010, after a three-day flight from the Baikonur Cosmodrome in Kazakhstan. The docking was conducted by Russian cosmonaut Oleg Kotov, commander, in manual control through the TORU (telerobotically operated) rendezvous system due to a jet failure on the Progress that forced a shutdown of the Kurs automated rendezvous system.

  2. Vectorial Command of Induction Motor Pumping System Supplied by a Photovoltaic Generator

    NASA Astrophysics Data System (ADS)

    Makhlouf, Messaoud; Messai, Feyrouz; Benalla, Hocine

    2011-01-01

    With the continuous decrease of the cost of solar cells, there is an increasing interest and needs in photovoltaic (PV) system applications following standard of living improvements. Water pumping system powered by solar-cell generators are one of the most important applications. The fluctuation of solar energy on one hand, and the necessity to optimise available solar energy on the other, it is useful to develop new efficient and flexible modes to control motors that entrain the pump. A vectorial control of an asynchronous motor fed by a photovoltaic system is proposed. This paper investigates a photovoltaic-electro mechanic chain, composed of a PV generator, DC-AC converter, a vector controlled induction motor and centrifugal pump. The PV generator is forced to operate at its maximum power point by using an appropriate search algorithm integrated in the vector control. The optimization is realized without need to adding a DC-DC converter to the chain. The motor supply is also ensured in all insolation conditions. Simulation results show the effectiveness and feasibility of such an approach.

  3. Re-engineering the Multimission Command System at the Jet Propulsion Laboratory

    NASA Technical Reports Server (NTRS)

    Alexander, Scott; Biesiadecki, Jeff; Cox, Nagin; Murphy, Susan C.; Reeve, Tim

    1994-01-01

    The Operations Engineering Lab (OEL) at JPL has developed the multimission command system as part of JPL's Advanced Multimission Operations System. The command system provides an advanced multimission environment for secure, concurrent commanding of multiple spacecraft. The command functions include real-time command generation, command translation and radiation, status reporting, some remote control of Deep Space Network antenna functions, and command file management. The mission-independent architecture has allowed easy adaptation to new flight projects and the system currently supports all JPL planetary missions (Voyager, Galileo, Magellan, Ulysses, Mars Pathfinder, and CASSINI). This paper will discuss the design and implementation of the command software, especially trade-offs and lessons learned from practical operational use. The lessons learned have resulted in a re-engineering of the command system, especially in its user interface and new automation capabilities. The redesign has allowed streamlining of command operations with significant improvements in productivity and ease of use. In addition, the new system has provided a command capability that works equally well for real-time operations and within a spacecraft testbed. This paper will also discuss new development work including a multimission command database toolkit, a universal command translator for sequencing and real-time commands, and incorporation of telecommand capabilities for new missions.

  4. The SAS-3 delayed command system

    NASA Technical Reports Server (NTRS)

    Hoffman, E. J.

    1975-01-01

    To meet the requirements arising from the increased complexity of the power, attitude control and telemetry systems, a full redundant high-performance control section with delayed command capability was designed for the Small Astronomy Satellite-3 (SAS-3). The relay command system of SAS-3 is characterized by 56 bystate relay commands, with capability for handling up to 64 commands in future versions. The 'short' data command service of SAS-1 and SAS-2 consisting of shifting 24-bit words to two users was expanded to five users and augmented with a 'long load' data command service (up to 4080 bits) used to program the telemetry system and the delayed command subsystem. The inclusion of a delayed command service ensures a program of up to 30 relay or short data commands to be loaded for execution at designated times. The design and system operation of the SAS-3 command section are analyzed, with special attention given to the delayed command subsystem.

  5. 14 CFR 417.303 - Command control system requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... flight termination system used for each launch. (f) Electromagnetic interference. Each command control system component must function within the electromagnetic environment to which it is exposed. A command... must prevent electromagnetic interference. (g) Command transmitter failover. A command control system...

  6. 14 CFR 417.303 - Command control system requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... flight termination system used for each launch. (f) Electromagnetic interference. Each command control system component must function within the electromagnetic environment to which it is exposed. A command... must prevent electromagnetic interference. (g) Command transmitter failover. A command control system...

  7. 14 CFR 417.303 - Command control system requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... flight termination system used for each launch. (f) Electromagnetic interference. Each command control system component must function within the electromagnetic environment to which it is exposed. A command... must prevent electromagnetic interference. (g) Command transmitter failover. A command control system...

  8. 14 CFR 417.303 - Command control system requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... flight termination system used for each launch. (f) Electromagnetic interference. Each command control system component must function within the electromagnetic environment to which it is exposed. A command... must prevent electromagnetic interference. (g) Command transmitter failover. A command control system...

  9. 14 CFR 417.303 - Command control system requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... flight termination system used for each launch. (f) Electromagnetic interference. Each command control system component must function within the electromagnetic environment to which it is exposed. A command... must prevent electromagnetic interference. (g) Command transmitter failover. A command control system...

  10. A propulsion and steering control system for the Mars rover

    NASA Technical Reports Server (NTRS)

    Turner, J. M.

    1980-01-01

    The design of a propulsion and steering control system for the Rensselaer Polytechnic Institute prototype autonomous Mars roving vehicle is presented. The vehicle is propelled and steered by four independent electric motors. The control system must regulate the speeds of the motors so they work in unison during turns and on irregular terrain. An analysis of the motor coordination problem on irregular terrain, where each motor must supply a different torque at a different speed is presented. A procedure was developed to match the output of each motor to the varying load. A design for the control system is given. The controller uses a microprocessor which interprets speed and steering commands from an off-board computer, and produces the appropriate drive voltages for the motors.

  11. International Space Station (ISS)

    NASA Image and Video Library

    2002-06-05

    Aboard the Space Shuttle Orbiter Endeavour, the STS-111 mission was launched on June 5, 2002 at 5:22 pm EDT from Kennedy's launch pad. On board were the STS-111 and Expedition Five crew members. Astronauts Kenneth D. Cockrell, commander; Paul S. Lockhart, pilot, and mission specialists Franklin R. Chang-Diaz and Philippe Perrin were the STS-111 crew members. Expedition Five crew members included Cosmonaut Valeri G. Korzun, commander, Astronaut Peggy A. Whitson and Cosmonaut Sergei Y. Treschev, flight engineers. Three space walks enabled the STS-111 crew to accomplish mission objectives: the delivery and installation of a new platform for the ISS robotic arm, the Mobile Base System (MBS) which is an important part of the Station's Mobile Servicing System allowing the robotic arm to travel the length of the Station; the replacement of a wrist roll joint on the Station's robotic arm; and unloading supplies and science experiments from the Leonardo Multi-Purpose Logistics Module, which made its third trip to the orbital outpost. Landing on June 19, 2002, the 14-day STS-111 mission was the 14th Shuttle mission to visit the ISS.

  12. KSC-02pd0771

    NASA Image and Video Library

    2002-05-27

    KENNEDY SPACE CENTER, FLA. -- After their arrival at the Shuttle Landing Facility, the STS-111 and Expedition 5 crews wave to spectators. From left are Mission Commander Kenneth Cockrell, Pilot Paul Lockhart and Mission Specialists Philippe Perrin and Franklin Chang-Diaz; Expedition 5 Commander Valeri Korzun, astronaut Peggy Whitson and cosmonaut Sergei Treschev. Perrin is with the French Space Agency; Korzun and Treschev are with the Russian Space Agency. The crews have arrived to prepare for launch. Expedition 5 is traveling to the International Space Station on Space Shuttle Endeavour as the replacement crew for Expedition 4, who will return to Earth aboard the orbiter. Known as Utilization Flight 2, STS-111 is carrying supplies and equipment to the Station. The payload includes the Multi-Purpose Logistics Module Leonardo, the Mobile Base System, which will be installed on the Mobile Transporter to complete the Canadian Mobile Servicing System, or MSS, and a replacement wrist/roll joint for Canadarm 2. The mechanical arm will then have the capability to "inchworm" from the U.S. Lab Destiny to the MSS and travel along the truss to work sites. Launch is scheduled for May 30, 2002

  13. KSC-02pd0674

    NASA Image and Video Library

    2002-05-15

    KENNEDY SPACE CENTER, FLA. -- The Expedition 5 and STS-111 crews pose at the Shuttle Landing Facility after their arrival to take part in Terminal Countdown Demonstration Test (TCDT) activities for launch of mission STS-111. From left, they are the Expedition Five crew -- Commander Valeri Korzun and Sergei Treschev, both of the Russian Space Agency, and Peggy Whitson -- and the STS-111 crew -- Pilot Paul Lockhart, Commander Kenneth Cockrell, and Mission Specialists Phillipe Perrin, of the French Space Agency, and Franklin Chang-Diaz. Expedition 5 will travel on Space Shuttle Endeavour to the International Space Station as a replacement crew for Expedition 4. The TCDT is a rehearsal for launch and includes emergency egress training, familiarization with payload and a simulated launch countdown. Mission STS-111 is a utilization flight that will deliver equipment and supplies to the Station. Along with the Multi-Purpose Logisitics Module Leonardo, the payload includes the Mobile Base System, part of the Canadian Mobile Servicing System, or MSS, and an Orbital Replacement Unit, the replacement wrist/roll joint for the SSRMS (Canadarm2). Launch of Endeavour is scheduled for May 30, 2002

  14. KENNEDY SPACE CENTER, FLA. - STS-114 Commander Eileen Collins and Mission Specialists Charles Camarda and Soichi Noguchi sit outside the crew hatch on the orbiter Discovery. Noguchi is with the Japanese Aerospace and Exploration Agency. They and other crew members are at KSC becoming familiar with Shuttle and mission equipment. The mission is Logistics Flight 1, which is scheduled to deliver supplies and equipment plus the external stowage platform to the International Space Station.

    NASA Image and Video Library

    2004-03-05

    KENNEDY SPACE CENTER, FLA. - STS-114 Commander Eileen Collins and Mission Specialists Charles Camarda and Soichi Noguchi sit outside the crew hatch on the orbiter Discovery. Noguchi is with the Japanese Aerospace and Exploration Agency. They and other crew members are at KSC becoming familiar with Shuttle and mission equipment. The mission is Logistics Flight 1, which is scheduled to deliver supplies and equipment plus the external stowage platform to the International Space Station.

  15. The Army Study Program Fiscal Year 1992 Report

    DTIC Science & Technology

    1991-11-25

    Investigation Command (ATTN: CIRM-M-S) 2 US Army Military District of Washington (ATTN: ANRM-RE) 2 US Army Health Services Command (ATTN: HSCM-R) 2 US Army...0 QA AM40 SURVEILLANCE TASK COST ANALYSIS (TCA) 1 9003 9004 AMC MEA AMQEI01C 0 SUPPLY AND SERVICES TASK COST ANALYSIS (TCA) ( 1 9003 9004 AMC MEA 4...CONFLICT MODEL DEVELOPMENT 1 9110 9210 TRADOC T/OAC ATRCLMOC1 P COMBAT SERVICE SUPPORT FORCE DESIGN ANALYSIS 2 9110 9212 TRADOC T/LEE ATRCLMOC2 P

  16. Command Post Exercise Control at Division Level

    DTIC Science & Technology

    1964-05-01

    assistance i n supplying pertinant information concerning t heir extensive command post exercise control experience. iii . ~ ) PREFACE •••• LIST...Effectiveness Conversion Graph • • . . . Combat Power Indicies • • • • • • • • . . . . . . . vii 69 93 95 ( 20. 21. 22. 23. 24. 25. 26. 27. 28...soldiers. 2 While this first attempt at a war game ’t-tas desi~ned for pleasure and for the nobi lity, it set t he spark t hat kept variations of

  17. Duplicate Class IV (Lumber) Ordering Within Defense Logistics Agency and Its Impact in Each Combatant Command

    DTIC Science & Technology

    2015-12-01

    this vignette, the assumption is that all processes occur as they are designed with no variability, and that all lumber supply stocks have been...is available, then SGT Doe, or a designated command representative, can pick up the lumber at the SSA using a manual paper form, conducting a process...requested by SGT Doe’s order, then a new government contract is solicited after the designated contract administration service (CAS) approves the request

  18. Ground station software for receiving and handling Irecin telemetry data

    NASA Astrophysics Data System (ADS)

    Ferrante, M.; Petrozzi, M.; Di Ciolo, L.; Ortenzi, A.; Troso, G

    2004-11-01

    The on board resources, needed to perform the mission tasks, are very limited in nano-satellites. This paper proposes a software system to receive, manage and process in Real Time the Telemetry data coming from IRECIN nanosatellite and transmit operator manual commands and operative procedures. During the receiving phase, it shows the IRECIN subsystem physical values, visualizes the IRECIN attitude, and performs other suitable functions. The IRECIN Ground Station program is in charge to exchange information between IRECIN and the Ground segment. It carries out, in real time during IRECIN transmission phase, IRECIN attitude drawing, sun direction drawing, power supply received from Sun, visualization of the telemetry data, visualization of Earth magnetic field and more other functions. The received data are memorized and interpreted by a module, parser, and distribute to the suitable modules. Moreover it allows sending manual and automatic commands. Manual commands are delivered by an operator, on the other hand, automatic commands are provided by pre-configured operative procedures. Operative procedures development is realized in a previous phase called configuration phase. This program is also in charge to carry out a test session by mean the scheduler and commanding modules allowing execution of specific tasks without operator control. A log module to memorize received and transmitted data is realized. A phase to analyze, filter and visualize in off line the collected data, called post analysis, is based on the data extraction form the log module. At the same time, the Ground Station Software can work in network allowing managing, receiving and sending data/commands from different sites. The proposed system constitutes the software of IRECIN Ground Station. IRECIN is a modular nanosatellite weighting less than 2 kg, constituted by sixteen external sides with surface-mounted solar cells and three internal Al plates, kept together by four steel bars. Lithium-ions batteries are used. Attitude is determined by two three-axis magnetometers and the solar panels data. Control is provided by an active magnetic control system. The spacecraft will be spin- stabilized with the spin-axis normal to the orbit. All IRECIN electronic components are SMD technology in order to reduce weight and size. The realized Electronic board are completely developed, realized and tested at the Vitrociset S.P.A. under control of Research and Develop Group

  19. A Low-Power Wearable Stand-Alone Tongue Drive System for People With Severe Disabilities.

    PubMed

    Jafari, Ali; Buswell, Nathanael; Ghovanloo, Maysam; Mohsenin, Tinoosh

    2018-02-01

    This paper presents a low-power stand-alone tongue drive system (sTDS) used for individuals with severe disabilities to potentially control their environment such as computer, smartphone, and wheelchair using their voluntary tongue movements. A low-power local processor is proposed, which can perform signal processing to convert raw magnetic sensor signals to user-defined commands, on the sTDS wearable headset, rather than sending all raw data out to a PC or smartphone. The proposed sTDS significantly reduces the transmitter power consumption and subsequently increases the battery life. Assuming the sTDS user issues one command every 20 ms, the proposed local processor reduces the data volume that needs to be wirelessly transmitted by a factor of 64, from 9.6 to 0.15 kb/s. The proposed processor consists of three main blocks: serial peripheral interface bus for receiving raw data from magnetic sensors, external magnetic interference attenuation to attenuate external magnetic field from the raw magnetic signal, and a machine learning classifier for command detection. A proof-of-concept prototype sTDS has been implemented with a low-power IGLOO-nano field programmable gate array (FPGA), bluetooth low energy, battery and magnetic sensors on a headset, and tested. At clock frequency of 20 MHz, the processor takes 6.6 s and consumes 27 nJ for detecting a command with a detection accuracy of 96.9%. To further reduce power consumption, an application-specified integrated circuit processor for the sTDS is implemented at the postlayout level in 65-nm CMOS technology with 1-V power supply, and it consumes 0.43 mW, which is 10 lower than FPGA power consumption and occupies an area of only 0.016 mm.

  20. Multi-agent autonomous system

    NASA Technical Reports Server (NTRS)

    Fink, Wolfgang (Inventor); Dohm, James (Inventor); Tarbell, Mark A. (Inventor)

    2010-01-01

    A multi-agent autonomous system for exploration of hazardous or inaccessible locations. The multi-agent autonomous system includes simple surface-based agents or craft controlled by an airborne tracking and command system. The airborne tracking and command system includes an instrument suite used to image an operational area and any craft deployed within the operational area. The image data is used to identify the craft, targets for exploration, and obstacles in the operational area. The tracking and command system determines paths for the surface-based craft using the identified targets and obstacles and commands the craft using simple movement commands to move through the operational area to the targets while avoiding the obstacles. Each craft includes its own instrument suite to collect information about the operational area that is transmitted back to the tracking and command system. The tracking and command system may be further coupled to a satellite system to provide additional image information about the operational area and provide operational and location commands to the tracking and command system.

  1. Enduring Attraction: America’s Dependence on and Need to Secure Its Supply of Permanent Magnets

    DTIC Science & Technology

    2011-02-16

    AIR WAR COLLEGE AIR UNIVERSITY ENDURING ATTRACTION: AMERICA‟S DEPENDENCE ON AND NEED TO SECURE ITS SUPPLY OF PERMANENT MAGNETS by...February 2011 Distribution A: Approved for public release; distribution unlimited ii DISCLAIMER The views expressed in this academic...command of the 628th Mission Support Group at Joint Base Charleston, South Carolina following graduation from Air War College. iv TABLE OF CONTENTS

  2. Nondestructive Evaluation of Metallized Tape Bonds Formed by Tape Automated Bonding (TAB)

    DTIC Science & Technology

    1989-04-01

    powered by micro-positioning linear actuators. 3) Interchangeable sample-holding fixtures mounted upon top of slide assembly. 4) Coverslip gantry mounted...Controller Unit 1) Motor power supplies 2) Motor output servo driver amplifiers 3) "Macro-language" command Interpreter 4) Two-way cormunications with...adjustments are manual knobs giving approximately one degree of tilt adjustment per turn. The servo controller has self-contained power supplies for

  3. 2. BUILDING 324, WEST SIDE, FROM NEAR SOUTHWEST CORNER OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. BUILDING 324, WEST SIDE, FROM NEAR SOUTHWEST CORNER OF BUILDING 322, LOOKING EAST. - Oakland Naval Supply Center, Commanding Officers Residences, Between E & F Streets, West of Fourth Street, Oakland, Alameda County, CA

  4. Demonstration of Integrated Services Switched Network for Advanced C4I Aircraft.

    DTIC Science & Technology

    1996-06-01

    the Airborne Air Command Center (AACC), and the Objective Widebody (OW). Future commercial aircraft will be supplying multimedia communications to each passenger seat via telephones, movies, video games , and catalog ordering.

  5. Multi-agent autonomous system and method

    NASA Technical Reports Server (NTRS)

    Fink, Wolfgang (Inventor); Dohm, James (Inventor); Tarbell, Mark A. (Inventor)

    2010-01-01

    A method of controlling a plurality of crafts in an operational area includes providing a command system, a first craft in the operational area coupled to the command system, and a second craft in the operational area coupled to the command system. The method further includes determining a first desired destination and a first trajectory to the first desired destination, sending a first command from the command system to the first craft to move a first distance along the first trajectory, and moving the first craft according to the first command. A second desired destination and a second trajectory to the second desired destination are determined and a second command is sent from the command system to the second craft to move a second distance along the second trajectory.

  6. An implementation of the programming structural synthesis system (PROSSS)

    NASA Technical Reports Server (NTRS)

    Rogers, J. L., Jr.; Sobieszczanski-Sobieski, J.; Bhat, R. B.

    1981-01-01

    A particular implementation of the programming structural synthesis system (PROSSS) is described. This software system combines a state of the art optimization program, a production level structural analysis program, and user supplied, problem dependent interface programs. These programs are combined using standard command language features existing in modern computer operating systems. PROSSS is explained in general with respect to this implementation along with the steps for the preparation of the programs and input data. Each component of the system is described in detail with annotated listings for clarification. The components include options, procedures, programs and subroutines, and data files as they pertain to this implementation. An example exercising each option in this implementation to allow the user to anticipate the type of results that might be expected is presented.

  7. NASIS data base management system: IBM 360 TSS implementation. Volume 5: Retrieval command system reference manual

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The retrieval command subsystem reference manual for the NASA Aerospace Safety Information System (NASIS) is presented. The command subsystem may be operated conversationally or in the batch mode. Retrieval commands are categorized into search-oriented and output-oriented commands. The characteristics of ancillary commands and their application are reported.

  8. Active books: the design of an implantable stimulator that minimizes cable count using integrated circuits very close to electrodes.

    PubMed

    Liu, Xiao; Demosthenous, Andreas; Vanhoestenberghe, Anne; Jiang, Dai; Donaldson, Nick

    2012-06-01

    This paper presents an integrated stimulator that can be embedded in implantable electrode books for interfacing with nerve roots at the cauda equina. The Active Book overcomes the limitation of conventional nerve root stimulators which can only support a small number of stimulating electrodes due to cable count restriction through the dura. Instead, a distributed stimulation system with many tripole electrodes can be configured using several Active Books which are addressed sequentially. The stimulator was fabricated in a 0.6-μm high-voltage CMOS process and occupies a silicon area of 4.2 × 6.5 mm(2). The circuit was designed to deliver up to 8 mA stimulus current to tripole electrodes from an 18 V power supply. Input pad count is limited to five (two power and three control lines) hence requiring a specific procedure for downloading stimulation commands to the chip and extracting information from it. Supported commands include adjusting the amplitude of stimulus current, varying the current ratio at the two anodes in each channel, and measuring relative humidity inside the chip package. In addition to stimulation mode, the chip supports quiescent mode, dissipating less than 100 nA current from the power supply. The performance of the stimulator chip was verified with bench tests including measurements using tripoles in saline.

  9. Pulsed Power Supply Based on Magnetic Energy Storage for Non-Destructive High Field Magnets

    NASA Astrophysics Data System (ADS)

    Aubert, G.; Defoug, S.; Joss, W.; Sala, P.; Dubois, M.; Kuchinsk, V.

    2004-11-01

    The first test results of a recently built pulsed power supply based on magnetic energy storage will be described. The system consists of the 16 kV shock alternator with a short-circuit power of 3600 MVA of the VOLTA Testing Center of the Schneider Electric SA company, a step-down transformer with a ratio of 1/24, a three-phase diode bridge designed for a current rising exponentially to 120 kA, and a big, 10 ton, heavy, 10 mH aluminum storage coil. The system is designed to store 72 MJ, normal operation will be at 50 MJ, and will work with voltages up to 20 kV. A transfer of 20% of the stored energy into the high field coil should be possible. Special making switches and interrupters have been developed to switch the high currents in a very short time. For safety and redundancy two independent monitoring systems control the energy transfer. A sequencing control system operates the switches on the ac side and protective switches on the dc side, a specially developed real-time control-monitoring system checks several currents and voltages and commands the dc circuit breakers and making switches.

  10. Special-Purpose High-Torque Permanent-Magnet Motors

    NASA Technical Reports Server (NTRS)

    Doane, George B., III

    1995-01-01

    Permanent-magnet brushless motors that must provide high commanded torques and satisfy unusual heat-removal requirement are developed. Intended for use as thrust-vector-control actuators in large rocket engines. Techniques and concepts used to design improved motors for special terrestrial applications. Conceptual motor design calls for use of rotor containing latest high-energy-product rare-earth permanent magnets so that motor produces required torque while drawing smallest possible currents from power supply. Torque generated by electromagnetic interaction between stator and permanent magnets in rotor when associated electronic circuits applied appropriately temporally and spatially phased currents to stator windings. Phase relationships needed to produce commanded torque computed in response to torque command and to electronically sensed angular position of rotor relative to stator.

  11. 75 FR 49482 - Privacy Act of 1974; System of Records

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-13

    ... replace with ``Incident Report Records.'' System location: Delete entry and replace with ``Command Support... may be accessed only by the Commander, Deputy Commander, Chief, Command Support Division, or other... and replace with ``Command Support Division, EU1, Defense Information Systems Agency-Europe, APO AE...

  12. Endeavour lands atop 747 after downtime at Palmdale, CA

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The Space Shuttle Orbiter Endeavour arrives at KSCs Shuttle Landing Facility atop NASAs Boeing 747 Shuttle Carrier Aircraft (SCA) as it returns March 27, 1997 from Palmdale, Calif., after an eight-month Orbiter Maintenance Down Period (OMDP). Nearly 100 modifications were made to Endeavour during that time period, including some that were directly associated with work required to support International Space Station Operations. The most extensive of those was the installation of an external airlock to allow the orbiter to dock with the Station. Other modifications included upgrades to Endeavours power supply system, general purpose computers and thermal protection system, along with the installation of new light-weight commander and pilot seats and other weight-saving modifications.

  13. Command and Control Element, (C2E), ILS Concept Plan

    DTIC Science & Technology

    1992-05-01

    1824. ROBERT F. PHELPS LtCol, USAF Acting Director, BMC3 Attachment Distribution SDIO/SDA SDIO/TD SDIO/ SDG SDIO/SDN SDIO/SDT SDIO/TIC OJCS...3 5 APPENDIX A-PLANNING BY LOGISTICS FUNCTIONAL AREAS A -1 1.0 Maintenance Planning A-2 2.0 Supply Support A-1 0 3.0 Technical...Functional communities and establishments - experts and specialists in fields such as training, maintenance, supply , engineering, computer programming and

  14. STS-26 crewmembers participate in bench review at offsite Boeing Bldg

    NASA Technical Reports Server (NTRS)

    1988-01-01

    STS-26 Discovery, Orbiter Vehicle (OV) 103, crewmembers participate in bench review at the offsite Boeing Building. Commander Frederick H. Hauck reviews a checklist of necessary supplies with Flight Equipment Processing engineer Laura E. Duvall. Pilot Richard O. Covey makes notations on checklist in background. Hygiene supplies (razors, deodorants, brushes, combs, etc.) are displayed on table behind Hauck. Photograph was taken by Keith Meyers of the NEW YORK TIMES.

  15. International Space Station (ISS)

    NASA Image and Video Library

    2002-06-01

    Huddled together in the Destiny laboratory of the International Space Station (ISS) are the Expedition Four crew (dark blue shirts), Expedition Five crew (medium blue shirts) and the STS-111 crew (green shirts). The Expedition Four crewmembers are, from front to back, Cosmonaut Ury I. Onufrienko, mission commander; and Astronauts Daniel W. Bursch and Carl E. Waltz, flight engineers. The ISS crewmembers are, from front to back, Astronauts Kerneth D. Cockrell, mission commander; Franklin R. Chang-Diaz, mission specialist; Paul S. Lockhart, pilot; and Philippe Perrin, mission specialist. Expedition Five crewmembers are, from front to back, Cosmonaut Valery G. Korzun, mission commander; Astronaut Peggy A. Whitson and Cosmonaut Sergei Y. Treschev, flight engineers. The ISS recieved a new crew, Expedition Five, replacing Expedition Four after a record-setting 196 days in space, when the Space Shuttle Orbiter Endeavour STS-111 mission visited in June 2002. Three spacewalks enabled the STS-111 crew to accomplish additional mission objectives: the delivery and installation of the Mobile Base System (MBS), which is an important part of the station's Mobile Servicing System allowing the robotic arm to travel the length of the station; the replacement of a wrist roll joint on the Station's robotic arm; and unloading supplies and science experiments from the Leonardo Multi-Purpose Logistics Module, which made its third trip to the orbital outpost. The STS-111 mission, the 14th Shuttle mission to visit the ISS, was launched on June 5, 2002 and landed June 19, 2002.

  16. Expedition Crews Four and Five and STS-111 Crew Aboard the ISS

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Huddled together in the Destiny laboratory of the International Space Station (ISS) are the Expedition Four crew (dark blue shirts), Expedition Five crew (medium blue shirts) and the STS-111 crew (green shirts). The Expedition Four crewmembers are, from front to back, Cosmonaut Ury I. Onufrienko, mission commander; and Astronauts Daniel W. Bursch and Carl E. Waltz, flight engineers. The ISS crewmembers are, from front to back, Astronauts Kerneth D. Cockrell, mission commander; Franklin R. Chang-Diaz, mission specialist; Paul S. Lockhart, pilot; and Philippe Perrin, mission specialist. Expedition Five crewmembers are, from front to back, Cosmonaut Valery G. Korzun, mission commander; Astronaut Peggy A. Whitson and Cosmonaut Sergei Y. Treschev, flight engineers. The ISS recieved a new crew, Expedition Five, replacing Expedition Four after a record-setting 196 days in space, when the Space Shuttle Orbiter Endeavour STS-111 mission visited in June 2002. Three spacewalks enabled the STS-111 crew to accomplish additional mission objectives: the delivery and installation of the Mobile Base System (MBS), which is an important part of the station's Mobile Servicing System allowing the robotic arm to travel the length of the station; the replacement of a wrist roll joint on the Station's robotic arm; and unloading supplies and science experiments from the Leonardo Multi-Purpose Logistics Module, which made its third trip to the orbital outpost. The STS-111 mission, the 14th Shuttle mission to visit the ISS, was launched on June 5, 2002 and landed June 19, 2002.

  17. 14 CFR 417.305 - Command control system testing.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Command control system testing. 417.305..., DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH SAFETY Flight Safety System § 417.305 Command control system testing. (a) General. (1) A command control system, including its subsystems and components must undergo...

  18. 14 CFR 417.305 - Command control system testing.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Command control system testing. 417.305..., DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH SAFETY Flight Safety System § 417.305 Command control system testing. (a) General. (1) A command control system, including its subsystems and components must undergo...

  19. 14 CFR 417.305 - Command control system testing.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Command control system testing. 417.305..., DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH SAFETY Flight Safety System § 417.305 Command control system testing. (a) General. (1) A command control system, including its subsystems and components must undergo...

  20. 14 CFR 417.305 - Command control system testing.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Command control system testing. 417.305..., DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH SAFETY Flight Safety System § 417.305 Command control system testing. (a) General. (1) A command control system, including its subsystems and components must undergo...

  1. 14 CFR 417.305 - Command control system testing.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Command control system testing. 417.305..., DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH SAFETY Flight Safety System § 417.305 Command control system testing. (a) General. (1) A command control system, including its subsystems and components must undergo...

  2. CDR Brown on middeck

    NASA Image and Video Library

    1999-12-20

    S103-E-5007 (20 December 1999) --- Astronaut Curtis L. Brown, mission commander, retrieves supplies from a mid deck stowage locker onboard the Space Shuttle Discovery. He and six other astronauts will spend a great deal of time later in the week performing a variety of service tasks on the Hubble Space Telescope (HST). As commander of the mission, Brown will remain inside Discovery while several of the other crew members will perform service tasks on HST. The photo was taken with an electronic still camera (ESC) at 16:12:27 GMT, Dec. 20, 1999.

  3. KSC-2011-5745

    NASA Image and Video Library

    2011-07-21

    CAPE CANAVERAL, Fla. -- The Convoy Command Center vehicle is positioned on the Shuttle Landing Facility (SLF) at NASA's Kennedy Space Center in Florida awaiting the landing of space shuttle Atlantis. The command vehicle is equipped to control critical communications between the crew still aboard Atlantis and the Launch Control Center. The team will monitor the health of the orbiter systems and direct convoy operations made up of about 40 vehicles, including 25 specially designed vehicles to assist the crew in leaving the shuttle, and prepare the vehicle for towing from the SLF to its processing hangar. Accompanying the command convoy team are STS-135 Assistant Launch Director Pete Nickolenko (right), NASA astronaut Janet Kavandi and Chris Hasselbring, USA Operations Manager (left). Securing the space shuttle fleet's place in history, Atlantis marks the 26th nighttime landing of NASA's Space Shuttle Program and the 78th landing at Kennedy. Atlantis and its crew delivered to the International Space Station the Raffaello multi-purpose logistics module packed with more than 9,400 pounds of spare parts, equipment and supplies that will sustain station operations for the next year. STS-135 is the 33rd and final flight for Atlantis and the final mission of the Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Ben Smegelsky

  4. KSC-2011-5805

    NASA Image and Video Library

    2011-07-21

    CAPE CANAVERAL, Fla. -- In the Flight Vehicle Support Building at NASA Kennedy Space Center's Shuttle Landing Facility (SLF), Mission Convoy Commander Tim Obrien strategies with NASA managers and convoy crew members during a prelanding meeting. A Convoy Command Center vehicle will be positioned near shuttle Atlantis on the SLF. The command vehicle is equipped to control critical communications between the crew still aboard Atlantis and the Launch Control Center. The team will monitor the health of the orbiter systems and direct convoy operations made up of about 40 vehicles, including 25 specially designed vehicles to assist the crew in leaving the shuttle, and prepare the vehicle for towing from the SLF to its processing hangar. Securing the space shuttle fleet's place in history, Atlantis will mark the 26th nighttime landing of NASA's Space Shuttle Program and the 78th landing at Kennedy. Atlantis and its crew delivered to the International Space Station the Raffaello multi-purpose logistics module packed with more than 9,400 pounds of spare parts, equipment and supplies that will sustain station operations for the next year. STS-135 is the 33rd and final flight for Atlantis and final mission of the Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett

  5. Development of the Macro Command Editing Executive System for Factory Workers-Oriented Programless Visual Inspection System

    NASA Astrophysics Data System (ADS)

    Anezaki, Takashi; Wakitani, Kouichi; Nakamura, Masatoshi; Kubo, Hiroyasu

    Because visual inspection systems are difficult to tune, they create many problems for the kaizen process. This results in increased development costs and time to assure that the inspection systems function properly. In order to improve inspection system development, we designed an easy-tuning system called a “Program-less” visual inspection system. The ROI macro command which consisted of eight kinds of shape recognition macro commands and decision, operation, control commands was built. Furthermore, the macro command editing executive system was developed by the operation of only the GUI without editing source program. The validity of the ROI macro command was proved by the application of 488 places.

  6. Operating and Support Costing Guide: Army Weapon Systems

    DTIC Science & Technology

    1974-12-23

    First US Army 1 Commandant, US Army Logistics Management Center (Director Administration and Services) 2 Commander, US Army Management Systems Support...Army Logistics Management Center (Director, Administration and Services) Commander, US Army Management Systems Support Agency (DACS-AME) Commander

  7. Customer Service Analysis of Tactical Air Command Base Level Supply Support

    DTIC Science & Technology

    1990-09-01

    function. A large number of respondents described customer service as an activity such as order processing , handling of complaints, or troubleshooting...thru 14 General Service .69 19 thru 28 Demeanor of Supply .86 Representatives 29 thru 36 Order Processing .82 37 thru 40 Order Cycle Time .84 41 thru...Representatives 23 thru 30 Order Processing .83 31 thru 34 Order Cycle Time .75 35 thru 39 Item Availability .80 40 thru 45 Responsiveness .86 Univariate

  8. Analyses of Mobilization Manpower Supply and Demand.

    DTIC Science & Technology

    1982-03-01

    7AD-AI30 148 ANALYSES OF MOBIL ZATION MANPOWER SUPPLY AND DEMAND U) l1 . ADMINISTRATIVE SCIENCES CORP SPRINOFIELD VA BREAU EAL MAR82 ASCR134...79-C-0527 for use in identifying and quantifying issues in the CPAM process, and to employ the model for selected quantitative ard qualitative analyses...nurses and corpsmen) to operate on a Commander FX Microcomputer, to be used by 2 the Bureau of Medicine and Surgery to develop inputs for Navy-wide

  9. STS-111 Crew in white room during TCDT

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- In the White Room, Launch Pad 39A, the STS-111 and Expedition 5 crews pose in front of the entry into Space Shuttle Endeavour. From left are Expedition 5 crew member Sergei Treschev and Commander Valeri Korzun, with the Russian Space Agency; STS-111 Mission Specialist Philippe Perrin, with the French Space Agency; Commander Kenneth Cockrell and Pilot Paul Lockhart; Expedition 5 crew member Peggy Whitson; and Mission Specialist Franklin Chang-Diaz. The crews are taking part in Terminal Countdown Demonstration Test activities at the pad, which include emergency egress training and a simulated launch countdown. The mission is Utilization Flight 2, carrying supplies and equipment to the International Space Station, the Mobile Base System, which will be installed on the Mobile Transporter to complete the Canadian Mobile Servicing System, or MSS, and a replacement wrist/roll joint for Canadarm 2. The mechanical arm will then have the capability to 'inchworm' from the U.S. Lab Destiny to the MSS and travel along the truss to work sites. Expedition 5 will travel to the Station on Endeavour as the replacement crew for Expedition 4, who will return to Earth aboard the orbiter. Launch is scheduled for May 30, 2002.

  10. KSC-02pd0726

    NASA Image and Video Library

    2002-05-17

    KENNEDY SPACE CENTER, FLA. -- Expedition 5 Commander Valeri Korzun (with microphone) speaks to the media before leaving KSC. Behind him (left to right) are STS-111 Commander Kenneth Cockrell and Pilot Paul Lockhart; astronaut Peggy Whitson and cosmonaut Sergei Treschev; Mission Specialists Philippe Perrin and Franklin Chang-Diaz. Korzun and Treschev are with the Russian Space Agency; Perrin is with the French Space Agency. They have been taking part in Terminal Countdown Demonstration Test activities that include emergency egress training and a simulated launch countdown. Expedition 5 will travel to the International Space Station on mission STS-111 as the replacement crew for Expedition 4, who will return to Earth aboard the orbiter. Mission STS-111 is known as Utilization Flight 2, carrying supplies and equipment in the Multi-Purpose Logistics Module Leonardo to the International Space Station. The payload also includes the Mobile Base System, which will be installed on the Mobile Transporter to complete the Canadian Mobile Servicing System, or MSS, and a replacement wrist/roll joint for Canadarm 2. The mechanical arm will then have the capability to "inchworm" from the U.S. Lab Destiny to the MSS and travel along the truss to work sites. Launch is scheduled for May 30, 2002

  11. Fatigue Performance under Multiaxial Loading

    DTIC Science & Technology

    1990-01-01

    Director, Structural Integrity Engineering Officer (N7) Subgroup ( SEA 55Y) Military Seaift Command Naval Sea Systems Command Dr. Donald Liu CDR Michael K...REPRESENTATIVES Mr. William J. Siekierka Mr. Greg D. Woods SEA 55Y3 SEA 55Y3 Naval Sea Systems Command Naval Sea Systems Command SHIP STRUCTURE...AMERICAN BUREAU OF SHIPPING NAVAL SEA SYSTEMS COMMAND Mr. Stephen G. Arntson (Chairman) Mr. Robert A. Sielski Mr. John F. Conlon Mr. Charles L. Null Mr

  12. A compact, low jitter, nanosecond rise time, high voltage pulse generator with variable amplitude.

    PubMed

    Mao, Jiubing; Wang, Xin; Tang, Dan; Lv, Huayi; Li, Chengxin; Shao, Yanhua; Qin, Lan

    2012-07-01

    In this paper, a compact, low jitter, nanosecond rise time, command triggered, high peak power, gas-switch pulse generator system is developed for high energy physics experiment. The main components of the system are a high voltage capacitor, the spark gap switch and R = 50 Ω load resistance built into a structure to obtain a fast high power pulse. The pulse drive unit, comprised of a vacuum planar triode and a stack of avalanche transistors, is command triggered by a single or multiple TTL (transistor-transistor logic) level pulses generated by a trigger pulse control unit implemented using the 555 timer circuit. The control unit also accepts user input TTL trigger signal. The vacuum planar triode in the pulse driving unit that close the first stage switches is applied to drive the spark gap reducing jitter. By adjusting the charge voltage of a high voltage capacitor charging power supply, the pulse amplitude varies from 5 kV to 10 kV, with a rise time of <3 ns and the maximum peak current up to 200 A (into 50 Ω). The jitter of the pulse generator system is less than 1 ns. The maximum pulse repetition rate is set at 10 Hz that limited only by the gas-switch and available capacitor recovery time.

  13. Enabling Design

    DTIC Science & Technology

    2009-05-21

    Figure 1. Methodology in Hierarchical Context. 2 Peter Checkland , Systems Thinking, System...Joint Forces Command, 2008. Checkland , Peter. Systems Thinking, System Practice. Chichester: John Wiley & Sons, 1981. FM 6-0 Mission Command: Command

  14. Environmental control system transducer development study

    NASA Technical Reports Server (NTRS)

    Brudnicki, M. J.

    1973-01-01

    A failure evaluation of the transducers used in the environmental control systems of the Apollo command service module, lunar module, and portable life support system is presented in matrix form for several generic categories of transducers to enable identification of chronic failure modes. Transducer vendors were contacted and asked to supply detailed information. The evaluation data generated for each category of transducer were compiled and published in failure design evaluation reports. The evaluation reports also present a review of the failure and design data for the transducers and suggest both design criteria to improve reliability of the transducers and, where necessary, design concepts for required redesign of the transducers. Remedial designs were implemented on a family of pressure transducers and on the oxygen flow transducer. The design concepts were subjected to analysis, breadboard fabrication, and verification testing.

  15. A design proposal of a certain missile tactical command system based on Beidou satellite communication and GPS positioning techniques

    NASA Astrophysics Data System (ADS)

    Ma, Jian; Hao, Yongsheng; Miao, Jian; Zhang, Jianmao

    2007-11-01

    This paper introduced a design proposal of tactical command system that applied to a kind of anti-tank missile carriers. The tactical command system was made up of embedded computer system based on PC104 bus, Linux operating system, digital military map, Beidou satellite communication equipments and GPS positioning equipments. The geographic coordinates was measured by the GPS receiver, the positioning data, commands and information were transmitted real-time between tactical command systems, tactical command systems and command center, by the Beidou satellite communication systems. The Beidou satellite communication equipments and GPS positioning equipments were integrated to an independent module, exchanging data with embedded computer through RS232 serial ports and USB ports. The decision support system software based on information fusion, calculates positioning data, geography information and battle field information synthetically, shows the position of allies and the position of enemy on the military map, and assesses the various threats of different enemy objects, educes a situation assessment and threat assessment.

  16. 12. BUILDING 324, INTERIOR, ENTRY HALL AND STAIRWAY, FROM SOUTH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. BUILDING 324, INTERIOR, ENTRY HALL AND STAIRWAY, FROM SOUTH ENTRY, LOOKING NORTH, WITH HALL LEADING TO GARAGE TO RIGHT OF STAIRWAY. - Oakland Naval Supply Center, Commanding Officers Residences, Between E & F Streets, West of Fourth Street, Oakland, Alameda County, CA

  17. Logistics Planning for Coalition Command and Control

    DTIC Science & Technology

    2005-12-01

    Journal of Production Economics , 55(3), pp. 281-294. Coalition Operations Handbook (2001). Retrieved from: (http://www.abca-armies.org/). Desimone, R...2010 (1996). Retrieved from: http://www.army.mil/2010/ Beamon, Benita M. (1998). Supply Chain Design and Analysis: Models and Methods. International

  18. 25. PARK AND ROSE GARDEN ALONG SOUTH SIDE OF F ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. PARK AND ROSE GARDEN ALONG SOUTH SIDE OF F STREET, FROM HALFWAY BETWEEN 3RD AND 4TH STREETS, LOOKING WEST. COMMANDING OFFICER'S RESIDENCES AT FAR RIGHT. - Oakland Naval Supply Center, Maritime Street at Seventh Street, Oakland, Alameda County, CA

  19. Stability boundaries for command augmentation systems

    NASA Technical Reports Server (NTRS)

    Shrivastava, P. C.

    1987-01-01

    The Stability Augmentation System (SAS) is a special case of the Command Augmentation System (CAS). Control saturation imposes bounds on achievable commands. The state equilibrium depends only on the open loop dynamics and control deflection. The control magnitude to achieve a desired command equilibrium is independent of the feedback gain. A feedback controller provides the desired response, maintains the system equilibrium under disturbances, but it does not affect the equilibrium values of states and control. The saturation boundaries change with commands, but the location of the equilibrium points in the saturated region remains unchanged. Nonzero command vectors yield saturation boundaries that are asymmetric with respect to the state equilibrium. Except for the saddle point case with MCE control law, the stability boundaries change with commands. For the cases of saddle point and unstable nodes, the region of stability decreases with increasing command magnitudes.

  20. Computer aided system engineering and analysis (CASE/A) modeling package for ECLS systems - An overview

    NASA Technical Reports Server (NTRS)

    Dalee, Robert C.; Bacskay, Allen S.; Knox, James C.

    1990-01-01

    An overview of the CASE/A-ECLSS series modeling package is presented. CASE/A is an analytical tool that has supplied engineering productivity accomplishments during ECLSS design activities. A components verification program was performed to assure component modeling validity based on test data from the Phase II comparative test program completed at the Marshall Space Flight Center. An integrated plotting feature has been added to the program which allows the operator to analyze on-screen data trends or get hard copy plots from within the CASE/A operating environment. New command features in the areas of schematic, output, and model management, and component data editing have been incorporated to enhance the engineer's productivity during a modeling program.

  1. A Work Station For Control Of Changing Systems

    NASA Technical Reports Server (NTRS)

    Mandl, Daniel J.

    1988-01-01

    Touch screen and microcomputer enable flexible control of complicated systems. Computer work station equipped to produce graphical displays used as command panel and status indicator for command-and-control system. Operator uses images of control buttons displayed on touch screen to send prestored commands. Use of prestored library of commands reduces incidence of errors. If necessary, operator uses conventional keyboard to enter commands in real time to handle unforeseeable situations.

  2. The Vital Presence: The Generalship of Field Marshal Viscount William Slim General Officer Commanding XIV Army in the Burma Theater 1943-1945

    DTIC Science & Technology

    2013-03-25

    for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and...Nationalist Forces operating in Southern China.10 To do so, the Allies were reliant upon the uncertain flow of combat supplies and equipment across the...Burma, could allow the Allies to maintain a major road link for combat supplies and heavy equipment into Southern China. Over the course of the war

  3. Early MPT Estimation Methods: An Evaluation of the LHX Test-Bed Research Program. Volumes 1 and 2

    DTIC Science & Technology

    1990-02-01

    with parts from the Headquarters and Supply Company ( HSC ) prescribed load list (3) with parts from the Division authorized stockage list (4) with parts...located by an in theater lateral search (5) with parts from CONUS b. Repairs performed at the HSC : (1) without parts (2) with parts from the HSC ... HSC of the Supply and Transportation Battalion (S&T BN) in the Division Support Command (DISCOM). FM 1-104 (Headquarters, Department of the Army [HQS

  4. Progress re-supply ship

    NASA Image and Video Library

    2010-01-14

    ISS01-324-002 (18 November 2000) --- A Progress supply ship linked up to the orbiting International Space Station (ISS) at 3:48 GMT, November 18, bringing Expedition 1 commander William M. Shepherd, pilot Yuri P. Gidzenko and flight engineer Sergei K. Krikalev two tons of food, clothing, hardware and holiday gifts from their families. The photograph was taken with a 35mm camera and the film was later handed over to the STS-97 crew members for return to Earth and subsequent processing.

  5. U.S. Army Nurse Membership, Accession and Loss Profiles (1987). Volume 1, Reserves

    DTIC Science & Technology

    1988-12-01

    nurses. In past years , maintaining an adequate supply of required nursing personnel was more easily controlled through recruitment or retention efforts...1984). A recent information paper on the U.S. Army Health Services COmmand Nurse Staffing Philosophy (1988) shcws an actual operating strength shortfall...the supply of bachelor’s degree- prepared IRNs will fall short of the demand by about 390,000 by 1990 and by about 578,000 by the year 2000. In

  6. Marine Corps NBC Warfare: Determining Clinical Supply Requirements for Treatment of Battlefield Casualties from Chemical and Biological Warfare

    DTIC Science & Technology

    2003-05-01

    medical supply blocks. Two available botulism antitoxins—the Centers for Disease Control and Prevention (CDC) trivalent equine antitoxin for serotypes...4th Ed. Fort Detrick, MD. U.S. Army Medical Research Institute of Infectious Diseases ; 2001: 9-12. 3. Sidell, FR, Franz, David R. Overview: Defense...Diagnosis and Treatment of Diseases of Tactical Importance to U.S. Central Command. Aberdeen Proving Ground, MD: U.S. Army Center for Health Promotion and

  7. The Effect of China’s Scramble for Resources and African Resource Nationalism on the Supply of Strategic Southern African Minerals: What Can the United States Do?

    DTIC Science & Technology

    2010-01-01

    strategic partnerships, national security planning (and theater security cooperation) and US Africa Command (AFRICOM) in securing long term access to...A potential constraint on the supply of strategic minerals is the lack of a US industrial policy and contingency plans in case the flow of... planning for various contingencies, particularly for the 2020s and beyond. The region contains high concentrations of platinum group metals (PGMs

  8. Toward a More Responsive Consumable Materiel Supply Chain: Leveraging New Metrics to Identify and Classify Items of Concern

    DTIC Science & Technology

    2016-06-01

    managed by teams organized by the four- digit Federal Supply Classification (FSC) code, which classifies a part by type of materiel. When the consumable...Command [NAVSUP], 2015a). The first four digits of the NSN comprise the FSC code, which categorizes the item being ordered; in the present example it...Table 3, requisitions are divided into three priority bins—high (TP 1), medium (TP 2), 15 and low (TP 3). A mission-critical requirement almost

  9. Man/terminal interaction evaluation of computer operating system command and control service concepts. [in Spacelab

    NASA Technical Reports Server (NTRS)

    Dodson, D. W.; Shields, N. L., Jr.

    1978-01-01

    The Experiment Computer Operating System (ECOS) of the Spacelab will allow the onboard Payload Specialist to command experiment devices and display information relative to the performance of experiments. Three candidate ECOS command and control service concepts were reviewed and laboratory data on operator performance was taken for each concept. The command and control service concepts evaluated included a dedicated operator's menu display from which all command inputs were issued, a dedicated command key concept with which command inputs could be issued from any display, and a multi-display concept in which command inputs were issued from several dedicated function displays. Advantages and disadvantages are discussed in terms of training, operational errors, task performance time, and subjective comments of system operators.

  10. Mir 22 and STS-81 crew work with gyrodyne

    NASA Image and Video Library

    1997-02-04

    STS081-301-032 (12-22 Jan. 1997) --- Shortly after the docking of the Space Shuttle Atlantis and Russia's Mir Space Station, crewmembers from the respective spacecraft begin to transfer hardware from the Spacehab Double Module (DM) onto the Mir complex. In this scene, cosmonaut Valeri G. Korzun (second left) Mir-22 commander, along with astronauts Michael A. Baker (second right) commander, and Brent W. Jett, Jr., pilot, unstow a gyrodyne, a device used for attitude control, for transfer to Mir. Astronaut Marsha S. Ivins looks over a lengthy inventory of supplies to be transferred.

  11. Interferometric correction system for a numerically controlled machine

    DOEpatents

    Burleson, Robert R.

    1978-01-01

    An interferometric correction system for a numerically controlled machine is provided to improve the positioning accuracy of a machine tool, for example, for a high-precision numerically controlled machine. A laser interferometer feedback system is used to monitor the positioning of the machine tool which is being moved by command pulses to a positioning system to position the tool. The correction system compares the commanded position as indicated by a command pulse train applied to the positioning system with the actual position of the tool as monitored by the laser interferometer. If the tool position lags the commanded position by a preselected error, additional pulses are added to the pulse train applied to the positioning system to advance the tool closer to the commanded position, thereby reducing the lag error. If the actual tool position is leading in comparison to the commanded position, pulses are deleted from the pulse train where the advance error exceeds the preselected error magnitude to correct the position error of the tool relative to the commanded position.

  12. 75 FR 66741 - Procurement List, Additions and Deletions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-29

    ... Supply Office, 452 Warehouse Street, Norfolk, VA. NPA: Professional Contract Services, Inc., Austin, TX... Research, Development, & Engineering Command, Natick, MA. Coverage: C-List for 100% of the requirement of the U.S. Army, as aggregated by the Department of the Army Research, Development, & Engineering...

  13. 32 CFR 1288.2 - Policy.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 6 2013-07-01 2013-07-01 false Policy. 1288.2 Section 1288.2 National Defense Other Regulations Relating to National Defense DEFENSE LOGISTICS AGENCY MISCELLANEOUS REGISTRATION OF... restraints warranted by existing conditions at a PLFA. For example, commanders of depots and supply centers...

  14. 32 CFR 1288.2 - Policy.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 6 2012-07-01 2012-07-01 false Policy. 1288.2 Section 1288.2 National Defense Other Regulations Relating to National Defense DEFENSE LOGISTICS AGENCY MISCELLANEOUS REGISTRATION OF... restraints warranted by existing conditions at a PLFA. For example, commanders of depots and supply centers...

  15. 32 CFR 1288.2 - Policy.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 6 2014-07-01 2014-07-01 false Policy. 1288.2 Section 1288.2 National Defense Other Regulations Relating to National Defense DEFENSE LOGISTICS AGENCY MISCELLANEOUS REGISTRATION OF... restraints warranted by existing conditions at a PLFA. For example, commanders of depots and supply centers...

  16. 32 CFR 1288.2 - Policy.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 6 2011-07-01 2011-07-01 false Policy. 1288.2 Section 1288.2 National Defense Other Regulations Relating to National Defense DEFENSE LOGISTICS AGENCY MISCELLANEOUS REGISTRATION OF... restraints warranted by existing conditions at a PLFA. For example, commanders of depots and supply centers...

  17. 32 CFR 1288.2 - Policy.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 6 2010-07-01 2010-07-01 false Policy. 1288.2 Section 1288.2 National Defense Other Regulations Relating to National Defense DEFENSE LOGISTICS AGENCY MISCELLANEOUS REGISTRATION OF... restraints warranted by existing conditions at a PLFA. For example, commanders of depots and supply centers...

  18. Major General Melvin Zais and Hamburger Hill

    DTIC Science & Technology

    2012-12-06

    Vietnamese were massing men, supplies, and equipment for a spring offensive) by employing tactics influenced by American material superiority.8 Since 1966...Timeline.” 33 Following the decision to replace 3-187 Infantry with 2-506 Infantry, the Iron Rakkasan commander, Lt. Col. Weldon F. Honeycutt

  19. Kennedy Space Center, Space Shuttle Processing, and International Space Station Program Overview

    NASA Technical Reports Server (NTRS)

    Higginbotham, Scott Alan

    2011-01-01

    Topics include: International Space Station assembly sequence; Electrical power substation; Thermal control substation; Guidance, navigation and control; Command data and handling; Robotics; Human and robotic integration; Additional modes of re-supply; NASA and International partner control centers; Space Shuttle ground operations.

  20. Performance assessment of the Gash Delta Spate Irrigation System, Sudan

    NASA Astrophysics Data System (ADS)

    Ghebreamlak, Araya Z.; Tanakamaru, Haruya; Tada, Akio; Adam, Bashir M. Ahmed; Elamin, Khalid A. E.

    2018-02-01

    The Gash Delta Spate Irrigation System (GDSIS), located in eastern Sudan with a net command area of 100 000 ha (an area currently equipped with irrigation structures), was established in 1924. The land is irrigated every 3 years (3-year rotation) or every 2 years (2-year rotation) so that about 33 000 or 50 000 ha respectively can be cultivated annually. This study deals with assessing the performance of the 3- and 2-year rotation systems using the Monte Carlo simulation. Reliability, which is a measure of how frequently the irrigation water supply satisfies the demand, and vulnerability, which is a measure of the magnitude of failure, were selected as the performance criteria. Combinations of five levels of intake ratio and five levels of irrigation efficiency for the irrigation water supply of each rotation system were analysed. Historical annual flow data of the Gash River for 107 years were fit to several frequency distributions. The Weibull distribution was the best on the basis of the Akaike information criteria and was used for simulating the ensembles of annual river flow. The reliabilities and vulnerabilities of both rotation systems were evaluated at typical values of intake ratio and irrigation efficiency. The results show that (i) the 3-year rotation is more reliable in water supply than the 2-year rotation, (ii) the vulnerability of the 3-year rotation is lower than that of the 2-year rotation and (iii) therefore the 3-year rotation is preferable in the GDSIS. The sensitivities of reliability and vulnerability to changes in intake ratio and irrigation efficiency were also examined.

  1. Photovoltaic power converter system with a controller configured to actively compensate load harmonics

    DOEpatents

    de Rooij, Michael Andrew; Steigerwald, Robert Louis; Delgado, Eladio Clemente

    2008-12-16

    Photovoltaic power converter system including a controller configured to reduce load harmonics is provided. The system comprises a photovoltaic array and an inverter electrically coupled to the array to generate an output current for energizing a load connected to the inverter and to a mains grid supply voltage. The system further comprises a controller including a first circuit coupled to receive a load current to measure a harmonic current in the load current. The controller includes a second circuit to generate a fundamental reference drawn by the load. The controller further includes a third circuit for combining the measured harmonic current and the fundamental reference to generate a command output signal for generating the output current for energizing the load connected to the inverter. The photovoltaic system may be configured to compensate harmonic currents that may be drawn by the load.

  2. User's guide to HYPOINVERSE-2000, a Fortran program to solve for earthquake locations and magnitudes

    USGS Publications Warehouse

    Klein, Fred W.

    2002-01-01

    Hypoinverse is a computer program that processes files of seismic station data for an earthquake (like p wave arrival times and seismogram amplitudes and durations) into earthquake locations and magnitudes. It is one of a long line of similar USGS programs including HYPOLAYR (Eaton, 1969), HYPO71 (Lee and Lahr, 1972), and HYPOELLIPSE (Lahr, 1980). If you are new to Hypoinverse, you may want to start by glancing at the section “SOME SIMPLE COMMAND SEQUENCES” to get a feel of some simpler sessions. This document is essentially an advanced user’s guide, and reading it sequentially will probably plow the reader into more detail than he/she needs. Every user must have a crust model, station list and phase data input files, and glancing at these sections is a good place to begin. The program has many options because it has grown over the years to meet the needs of one the largest seismic networks in the world, but small networks with just a few stations do use the program and can ignore most of the options and commands. History and availability. Hypoinverse was originally written for the Eclipse minicomputer in 1978 (Klein, 1978). A revised version for VAX and Pro-350 computers (Klein, 1985) was later expanded to include multiple crustal models and other capabilities (Klein, 1989). This current report documents the expanded Y2000 version and it supercedes the earlier documents. It serves as a detailed user's guide to the current version running on unix and VAX-alpha computers, and to the version supplied with the Earthworm earthquake digitizing system. Fortran-77 source code (Sun and VAX compatible) and copies of this documentation is available via anonymous ftp from computers in Menlo Park. At present, the computer is swave.wr.usgs.gov and the directory is /ftp/pub/outgoing/klein/hyp2000. If you are running Hypoinverse on one of the Menlo Park EHZ or NCSN unix computers, the executable currently is ~klein/hyp2000/hyp2000. New features. The Y2000 version of Hypoinverse includes all of the previous capabilities, but adds Y2000 formats to those defined earlier. In most cases, the new formats add 2 digits to the year field to accommodate the century. Other fields are sometimes rearranged or expanded to accommodate a better field order. The Y2000 formats are invoked with the “200” command. When the Y2000 flag is turned on, all files are read and written in the new format and there is no mixing of format types in a single run. Some formats without a date field, like station files, have not changed. A separate program called 2000CONV has been written to convert old formats to new. Other new features, like expanded station names, calculating amplitude magnitudes from a variety of digital seismometers, station history files, interactive earthquake processing, and locations from CUSP (Caltech USGS Seismic Processing) binary files have been added. General features. Hypoinverse will locate any number of events in an input file, which can be in one of several different formats. Any or all of printout, summary or archive output may be produced. Hypoinverse is driven by user commands. The various commands define input and output files, set adjustable parameters, and solve for locations of a file of earthquake data using the parameters and files currently set. It is both interactive and "batch" in that commands may be executed either from the keyboard or from a file. You execute the commands in a file by typing @filename at the Hypoinverse prompt. Users may either supply parameters on the command line, or omit them and are prompted interactively. The current parameter values are displayed and may be taken as defaults by pressing just the RETURN key after the prompt. This makes the program very easy to use, providing you can remember the names of the commands. Combining commands with and without their required parameters into a command file permits a variety of customized procedures such as automatic input of crustal model and station data, but prompting for a different phase file each time. All commands are 3 letters long and most require one or more parameters or file names. If they appear on a line with a command, character strings such as filenames must be enclosed in apostrophes (single quotes). Appendix 1 gives this and other free-format rules for supplying parameters, which are parsed in Fortran. When several parameters are required following a command, any of them may be omitted by replacing them with null fields (see appendix 1). A null field leaves that parameter unchanged from its current or default value. When you start HYPOINVERSE, default values are in effect for all parameters except file names. Hypoinverse is a complicated program with many features and options. Many of these "advanced" or seldom used features are documented here, but are more detailed than a typical user needs to read about when first starting with the program. I have put some of this material in smaller type so that a first time user can concentrate on the more important information.

  3. Filtering and Control of High Speed Motor Current in a Flywheel Energy Storage System

    NASA Technical Reports Server (NTRS)

    Kenny, Barbara H.; Santiago, Walter

    2004-01-01

    The NASA Glenn Research Center has been developing technology to enable the use of high speed flywheel energy storage units in future spacecraft for the last several years. An integral part of the flywheel unit is the three phase motor/generator that is used to accelerate and decelerate the flywheel. The motor/generator voltage is supplied from a pulse width modulated (PWM) inverter operating from a fixed DC voltage supply. The motor current is regulated through a closed loop current control that commands the necessary voltage from the inverter to achieve the desired current. The current regulation loop is the innermost control loop of the overall flywheel system and, as a result, must be fast and accurate over the entire operating speed range (20,000 to 60,000 rpm) of the flywheel. The voltage applied to the motor is a high frequency PWM version of the DC bus voltage that results in the commanded fundamental value plus higher order harmonics. Most of the harmonic content is at the switching frequency and above. The higher order harmonics cause a rapid change in voltage to be applied to the motor that can result in large voltage stresses across the motor windings. In addition, the high frequency content in the motor causes sensor noise in the magnetic bearings that leads to disturbances for the bearing control. To alleviate these problems, a filter is used to present a more sinusoidal voltage to the motor/generator. However, the filter adds additional dynamics and phase lag to the motor system that can interfere with the performance of the current regulator. This paper will discuss the tuning methodology and results for the motor/generator current regulator and the impact of the filter on the control. Results at speeds up to 50,000 rpm are presented.

  4. Test Telemetry And Command System (TTACS)

    NASA Technical Reports Server (NTRS)

    Fogel, Alvin J.

    1994-01-01

    The Jet Propulsion Laboratory has developed a multimission Test Telemetry and Command System (TTACS) which provides a multimission telemetry and command data system in a spacecraft test environment. TTACS reuses, in the spacecraft test environment, components of the same data system used for flight operations; no new software is developed for the spacecraft test environment. Additionally, the TTACS is transportable to any spacecraft test site, including the launch site. The TTACS is currently operational in the Galileo spacecraft testbed; it is also being provided to support the Cassini and Mars Surveyor Program projects. Minimal personnel data system training is required in the transition from pre-launch spacecraft test to post-launch flight operations since test personnel are already familiar with the data system's operation. Additionally, data system components, e.g. data display, can be reused to support spacecraft software development; and the same data system components will again be reused during the spacecraft integration and system test phases. TTACS usage also results in early availability of spacecraft data to data system development and, as a result, early data system development feedback to spacecraft system developers. The TTACS consists of a multimission spacecraft support equipment interface and components of the multimission telemetry and command software adapted for a specific project. The TTACS interfaces to the spacecraft, e.g., Command Data System (CDS), support equipment. The TTACS telemetry interface to the CDS support equipment performs serial (RS-422)-to-ethernet conversion at rates between 1 bps and 1 mbps, telemetry data blocking and header generation, guaranteed data transmission to the telemetry data system, and graphical downlink routing summary and control. The TTACS command interface to the CDS support equipment is nominally a command file transferred in non-real-time via ethernet. The CDS support equipment is responsible for metering the commands to the CDS; additionally for Galileo, TTACS includes a real-time-interface to the CDS support equipment. The TTACS provides the basic functionality of the multimission telemetry and command data system used during flight operations. TTACS telemetry capabilities include frame synchronization, Reed-Solomon decoding, packet extraction and channelization, and data storage/query. Multimission data display capabilities are also available. TTACS command capabilities include command generation verification, and storage.

  5. China Report, Agriculture No. 268

    DTIC Science & Technology

    1983-08-11

    Shiyuan . His chicken-raising business has developed from the exclusive raising of meat birds and producing of eggs to a series of products such as the...others will also be affected. "Chicken commander" Xiao Shiyuan of Zunyi supplies many of the surrounding chicken-raising households with baby chicks

  6. System-wide power management control via clock distribution network

    DOEpatents

    Coteus, Paul W.; Gara, Alan; Gooding, Thomas M.; Haring, Rudolf A.; Kopcsay, Gerard V.; Liebsch, Thomas A.; Reed, Don D.

    2015-05-19

    An apparatus, method and computer program product for automatically controlling power dissipation of a parallel computing system that includes a plurality of processors. A computing device issues a command to the parallel computing system. A clock pulse-width modulator encodes the command in a system clock signal to be distributed to the plurality of processors. The plurality of processors in the parallel computing system receive the system clock signal including the encoded command, and adjusts power dissipation according to the encoded command.

  7. Power converters for the 120 V bus supply control

    NASA Astrophysics Data System (ADS)

    Elisabelar, Christian

    1993-03-01

    Power converters for the 120 V bus supply control in such projects as Columbus and Hermes are addressed. Because of the power levels involved and the existing state of the art, several converter modules need to be connected in parallel to supply a single bus. To simplify the study, the power of each converter is set at around 1 kW. Many converter structures which satisfy requirement specifications and several solutions, with or without galvanic insulation, are proposed. The choice and sizing of the converter structure are considered. Stress factors and available technology are selection criteria in determining the most suitable structures. The dimensions of each structure, taking into account the rules of space design enable efficiency to be analytically estimated and it is subsequently verified experimentally. The converter command and its functional performance are then addressed. Numerical simulations with SUCCESS software are run to observe the actual operation of the power part of the converter and to develop the command law with its regulation parameters. The converter is simulated in its entirety and different transients are studied like load variation, no load operating point, short circuit. The response time, stability and behavior under disturbed conditions are thus known. A comparison of the various structures studied enabled the optimal converter to be chosen for some 120 V regulated bus applications.

  8. Assessment of the Combat Developer’s Role in Post-Deployment Software Support (PDSS) 30 June 1980 - 28 February 1981. Volume IV.

    DTIC Science & Technology

    1981-01-31

    Intelligence and Security Command (INSCOM), the US Army Communications Command (USACC), and the US Army Computer Systems Command (USACSC). (3...responsibilities of the US-Army Intelligence and Security Command (INSCOM), the US Army Communications Command (USACC), and the US Army Computer Systems...necessary to sustain, modify, and improve a deployed system’s computer software, as defined by the User or his representative. It includes evaluation

  9. Benefits Of Mission Command: Balance Of Philosophy And System

    DTIC Science & Technology

    2016-05-26

    The Benefits of Mission Command: Balance of Philosophy and System A Monograph by MAJ Robert R. Rodock United...Sa. CONTRACT NUMBER The Benefits of Mission Command: Balance of Philosophy and System Sb. GRANT NUMBER Sc. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Sd... philosophy and system of mission command, when exercised in balance, provides US Anny leaders the agility and adaptability to ’see the elephant’ sooner

  10. Financial Audit: Financial Reporting and Internal Controls at the Air Force Systems Command

    DTIC Science & Technology

    1991-01-01

    As part of GAO’S audits of the Air Force’s financial management and operations for fiscal years 1988 and 1989, GAO evaluated the Air Force Systems Command’s internal accounting controls and financial reporting systems. For fiscal year 1988 and 1989, the Systems Command received about $26.7 billion and $32.4 billion, respectively, in appropriated funds. This report discusses the results of our audits of the Systems Command.

  11. Development of an expert system prototype for determining software functional requirements for command management activities at NASA Goddard

    NASA Technical Reports Server (NTRS)

    Liebowitz, J.

    1985-01-01

    The development of an expert system prototype for determining software functional requirements for NASA Goddard's Command Management System (CMS) is described. The role of the CMS is to transform general requests into specific spacecraft commands with command execution conditions. The CMS is part of the NASA Data System which entails the downlink of science and engineering data from NASA near-earth satellites to the user, and the uplink of command and control data to the spacecraft. Subjects covered include: the problem environment of determining CMS software functional requirements; the expert system approach for handling CMS requirements development; validation and evaluation procedures for the expert system.

  12. 78 FR 25974 - Privacy Act of 1974; System of Records

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-03

    ... Human Resources Command, Reclassification Management Branch, 2461 Eisenhower Avenue, Alexandria, VA... Files. System location: Commander, U.S. Army Human Resources Command, ATTN: AHRC-PED-A, 2461 Eisenhower... Human Resources Command, ATTN: AHRC-PED-A, 2461 Eisenhower Avenue, Alexandria, VA 23321-0482 for Army...

  13. RHETT/EPDM Performance Characterization

    NASA Technical Reports Server (NTRS)

    Haag, T.; Osborn, M.

    1998-01-01

    The 0.6 kW Electric Propulsion Demonstration Module (EPDM) flight thruster system was tested in a large vacuum facility for performance measurements and functional checkout. The thruster was operated at a xenon flow rate of 3.01 mg/s, which was supplied through a self-contained propellant system. All power was provided through a flight-packaged power processing unit, which was mounted in vacuum on a cold plate. The thruster was cycled through 34 individual startup and shutdown sequences. Operating periods ranged from 3 to 3600 seconds. The system responded promptly to each command sequence and there were no involuntary shutdowns. Direct thrust measurements indicated that steady state thrust was temperature sensitive, and varied from a high of 41.7 mN at 16 C, to a low of 34.8 mN at 110 C. Short duration thruster firings showed rapid response and good repeatability.

  14. Technical Capability Upgrades to the NASA Langley Research Center 8 ft. by 15 ft. Thermal Vacuum Chamber

    NASA Technical Reports Server (NTRS)

    Thornblom, Mark N.; Beverly, Joshua; O'Connell, Joseph J.; Duncan, Dwight L.

    2016-01-01

    The 8 ft. by 15 ft. thermal vacuum chamber (TVAC), housed in Building 1250 at the NASA Langley Research Center (LaRC), and managed by the Systems Integration and Test Branch within the Engineering Directorate, has undergone several significant modifications to increase testing capability, safety, and quality of measurements of articles under environmental test. Significant modifications include: a new nitrogen distribution manifold for supplying the shroud and other cold surfaces to liquid nitrogen temperatures; a new power supply and distribution system for accurately controlling a quartz IR lamp suite; a suite of contamination monitoring sensors for outgassing measurements and species identification; a new test article support system; signal and power feed-throughs; elimination of unnecessary penetrations; and a new data acquisition and control commanding system including safety interlocks. This paper will provide a general overview of the LaRC 8 ft. by 15 ft. TVAC chamber, an overview of the new technical capabilities, and will illustrate each upgrade in detail, in terms of mechanical design and predicted performance. Additionally, an overview of the scope of tests currently being performed in the chamber will be documented, and sensor plots from tests will be provided to show chamber temperature and pressure performance with actual flight hardware under test.

  15. Avionics of the Cyclone Global Navigation Satellite System (CYGNSS) microsat constellation

    NASA Astrophysics Data System (ADS)

    Dickinson, John R.; Alvarez, Jennifer L.; Rose, Randall J.; Ruf, Christopher S.; Walls, Buddy J.

    The Cyclone Global Navigation Satellite System (CYGNSS), which was recently selected as the Earth Venture-2 investigation by NASA's Earth Science System Pathfinder (ESSP) Program, measures the ocean surface wind field with unprecedented temporal resolution and spatial coverage, under all precipitating conditions, and over the full dynamic range of wind speeds experienced in a tropical cyclone (TC). The CYGNSS flight segment consists of 8 microsatellite-class observatories, which represent SwRI's first spacecraft bus design, installed on a Deployment Module for launch. They are identical in design but provide their own individual contribution to the CYGNSS science data set. Subsystems include the Attitude Determination and Control System (ADCS), the Communication and Data Subsystem (CDS), the Electrical Power Supply (EPS), and the Structure, Mechanisms, and Thermal Subsystem (SMT). This paper will present an overview of the mission and the avionics, including the ADCS, CDS, and EPS, in detail. Specifically, we will detail how off-the-shelf components can be utilized to do ADCS and will highlight how SwRI's existing avionics solutions will be adapted to meet the requirements and cost constraints of microsat applications. Avionics electronics provided by SwRI include a command and data handling computer, a transceiver radio, a low voltage power supply (LVPS), and a peak power tracker (PPT).

  16. Lunar Reconnaissance Orbiter (LRO) Thruster Control Mode Design and Flight Experience

    NASA Technical Reports Server (NTRS)

    Hsu, Oscar C.

    2010-01-01

    National Aeronautics and Space Administration s (NASA) Goddard Space Flight Center (GSFC) in Greenbelt, MD, designed, built, tested, and launched the Lunar Reconnaissance Orbiter (LRO) from Cape Canaveral Air Force Station on June 18, 2009. The LRO spacecraft is the first operational spacecraft designed to support NASA s return to the Moon, as part of the Vision for Space Exploration. LRO was launched aboard an Atlas V 401 launch vehicle into a direct insertion trajectory to the Moon. Twenty-four hours after separation the propulsion system was used to perform a mid-course correction maneuver. Four days after the mid-course correction a series of propulsion maneuvers were executed to insert LRO into its commissioning orbit. The commission period lasted eighty days and this followed by a second set of thruster maneuvers that inserted LRO into its mission orbit. To date, the spacecraft has been gathering invaluable data in support of human s future return to the moon. The LRO Attitude Control Systems (ACS) contains two thruster based control modes: Delta-H and Delta-V. The design of the two controllers are similar in that they are both used for 3-axis control of the spacecraft with the Delta-H controller used for momentum management and the Delta-V controller used for orbit adjust and maintenance maneuvers. In addition to the nominal purpose of the thruster modes, the Delta-H controller also has the added capability of performing a large angle slew maneuver. A suite of ACS components are used by the thruster based control modes, for both initialization and control. For initialization purposes, a star tracker or the Kalman Filter solution is used for providing attitude knowledge and upon entrance into the thruster based control modes attitude knowledge is provided via rate propagation using a inertial reference unit (IRU). Rate information for the controller is also supplied by the IRU. Three-axis control of the spacecraft in the thruster modes is provided by eight 5-lbf class attitude control thrusters configured in two sets of four thrusters for redundancy purposes. Four additional 20-lbf class thrusters configured in two sets of two thrusters are used for Lunar Orbit Insertion maneuvers. The propulsion system is one the few systems on-board the LRO spacecraft that has built in redundancy. The Delta-H controller consists of a Proportional-Derivative (PD) controller with a structural filter on the thrusters and a Proportional controller on the reaction wheels. The PD control that employs the thrusters is used for attitude and rate control. The Proportional controller on the reaction wheels is used for commanding the wheels to a new momentum state. The ground commands used for the Delta-H controller are the system momentum vector, reaction wheel momentum, maximum expected command time, and which set of attitude control thrusters to use. The ability to command both the system momentum vector and reaction wheel momentum in the Delta-H controller provides both a capability and an additional source of operator error. Large angle slews via the Delta-H controller is achievable via this commands because these commands are used for the exit mode criteria. Setting these commands to non-consistent values prevents the mode from exiting nominally.

  17. A Theory of Rate-Dependent Plasticity

    DTIC Science & Technology

    1984-05-01

    crystal microplasticity use a variety of parameters, such as mobile dislocation density and velocity, all of which are eventually related in some manner...Info Center Bldg. 2925, Box 22 Fort Ord, CA 93941 55 DISTRIBUTION LIST No. of Copies Organization 1 Commander Naval Sea Systems Command...Washington, DC 20360 Commander Naval Sea Systems Command ( SEA -62R41) ATTN: L. Pasiuk Washington, DC 20360 Commander Naval

  18. Digital Gunnery: How Combat Vehicle Gunnery Training Creates a Model for Training the Mission Command System.

    DTIC Science & Technology

    2017-06-09

    DIGITAL GUNNERY: HOW COMBAT VEHICLE GUNNERY TRAINING CREATES A MODEL FOR TRAINING THE MISSION COMMAND SYSTEM A thesis presented...Training Creates a Model for Training the Mission Command System 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S...digital systems that give commanders an unprecedented ability to understand and lead in the battlefields where they operate. Unfortunately, units

  19. Thermal monitoring, measurement, and control system for a Volatile Condensable Materials (VCM) test apparatus

    NASA Technical Reports Server (NTRS)

    Ives, R. E.

    1982-01-01

    A thermal monitoring and control concept is described for a volatile condensable materials (VCM) test apparatus where electric resistance heaters are employed. The technique is computer based, but requires only proportioning ON/OFF relay control signals supplied through a programmable scanner and simple quadrac power controllers. System uniqueness is derived from automatic temperature measurements and the averaging of these measurements in discrete overlapping temperature zones. Overall control tolerance proves to be better than + or - 0.5 C from room ambient temperature to 150 C. Using precisely calibrated thermocouples, the method provides excellent temperature control of a small copper VCM heating plate at 125 + or - 0.2 C over a 24 hr test period. For purposes of unattended operation, the programmable computer/controller provides a continual data printout of system operation. Real time operator command is also provided for, as is automatic shutdown of the system and operator alarm in the event of malfunction.

  20. Method and apparatus for creating time-optimal commands for linear systems

    NASA Technical Reports Server (NTRS)

    Seering, Warren P. (Inventor); Tuttle, Timothy D. (Inventor)

    2004-01-01

    A system for and method of determining an input command profile for substantially any dynamic system that can be modeled as a linear system, the input command profile for transitioning an output of the dynamic system from one state to another state. The present invention involves identifying characteristics of the dynamic system, selecting a command profile which defines an input to the dynamic system based on the identified characteristics, wherein the command profile comprises one or more pulses which rise and fall at switch times, imposing a plurality of constraints on the dynamic system, at least one of the constraints being defined in terms of the switch times, and determining the switch times for the input to the dynamic system based on the command profile and the plurality of constraints. The characteristics may be related to poles and zeros of the dynamic system, and the plurality of constraints may include a dynamics cancellation constraint which specifies that the input moves the dynamic system from a first state to a second state such that the dynamic system remains substantially at the second state.

  1. Situational Awareness During Mass-Casualty Events: Command and Control

    PubMed Central

    Demchak, Barry; Chan, Theordore C.; Griswold, William G.; Lenert, Leslie

    2006-01-01

    In existing Incident Command systems1, situational awareness is achieved manually through paper tracking systems. Such systems often produce high latencies and incomplete data, resulting in inefficient and ineffective resource deployment. The WIISARD2 system collects much more data than a paper-based system, dramatically reducing latency while increasing the kinds and quality of information available to Incident Commanders. The WIISARD Command Center solves the problem of data overload and uncertainty through the careful use of limited screen area and novel visualization techniques. PMID:17238524

  2. 15. BUILDING 324 INTERIOR, MASTER BEDROOM, FROM SOUTHEASTERN CORNER OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. BUILDING 324 INTERIOR, MASTER BEDROOM, FROM SOUTH-EASTERN CORNER OF ROOM, LOOKING NORTHWEST, WITH ENTRY FROM HALLWAY, ENTRY TO BATH AND CLOTHES CLOSET IN SEQUENCE FROM LEFT TO RIGHT. - Oakland Naval Supply Center, Commanding Officers Residences, Between E & F Streets, West of Fourth Street, Oakland, Alameda County, CA

  3. Command Home Page

    Science.gov Websites

    Home Naval Special Warfare Home Subscribe to Navy News Service Search Navy.mil Advanced Search Home coordinator, explains details of the Montgomery G.I. Bill for active-duty service members to Naval Special fees, yearly books and supplies, and a monthly housing allowance to qualified service members. U.S

  4. 2006 Land and Maritime Supply Chains Business Conference and Exhibition

    DTIC Science & Technology

    2006-08-30

    404 Patterson Fan Company.................................602 PDA, LLC........................................................303...210 TW Design & Manufacturing...........................616 Vermont Aerospace Manufacturing.................402 WW Williams ... William M. Lenaers, USA Commanding General, US Army TACOM “What Your Largest Customer Thinks” 1:55pm - Remarks 2:15pm Rear Admiral Charlie M. Lilli

  5. Catchment Area Treatment (CAT) Plan and Crop Area Optimization for Integrated Management in a Water Resource Project

    NASA Astrophysics Data System (ADS)

    Jaiswal, R. K.; Thomas, T.; Galkate, R. V.; Ghosh, N. C.; Singh, S.

    2013-09-01

    A scientifically developed catchment area treatment (CAT) plan and optimized pattern of crop areas may be the key for sustainable development of water resource, profitability in agriculture and improvement of overall economy in drought affected Bundelkhand region of Madhya Pradesh (India). In this study, an attempt has been made to develop a CAT plan using spatial variation of geology, geomorphology, soil, drainage, land use in geographical information system for selection of soil and water conservation measures and crop area optimization using linear programming for maximization of return considering water availability, area affinity, fertilizers, social and market constraints in Benisagar reservoir project of Chhatarpur district (M.P.). The scientifically developed CAT plan based on overlaying of spatial information consists of 58 mechanical measure (49 boulder bunds, 1 check dam, 7 cully plug and 1 percolation tank), 2.60 km2 land for agro forestry, 2.08 km2 land for afforestation in Benisagar dam and 67 mechanical measures (45 boulder bunds and 22 gully plugs), 7.79 km2 land for agro forestry, 5.24 km2 land for afforestation in Beniganj weir catchment with various agronomic measures for agriculture areas. The linear programming has been used for optimization of crop areas in Benisagar command for sustainable development considering various scenarios of water availability, efficiencies, affinity and fertilizers availability in the command. Considering present supply condition of water, fertilizers, area affinity and making command self sufficient in most of crops, the net benefit can be increase to Rs. 1.93 crores from 41.70 km2 irrigable area in Benisagar command by optimizing cropping pattern and reducing losses during conveyance and application of water.

  6. STS-106 Crew Activities Report/Flight Day 9 Highlights

    NASA Technical Reports Server (NTRS)

    2000-01-01

    On this ninth day of the STS-106 Atlantis mission, the flight crew, Commander Commander Terrence W. Wilcutt, Pilot Scott D. Altman, and Mission Specialists Daniel C. Burbank, Edward T. Lu, Richard A. Mastracchio, Yuri Ivanovich Malenchenko, and Boris V. Morukov are shown transferring supplies and equipment. Equipment includes an exercise treadmill, for use by the first resident crew. Altman, Lu, Burbank and Morukov are seen installing the treadmill in the Zvezda module. Footage also shows Lu and Altman participating in a telecommunication interview. A beautiful night shot of the International Space Station (ISS) and Atlantis complex above the Earth is also shown.

  7. SpaceX CRS-12 "What's on Board?" Science Briefing

    NASA Image and Video Library

    2017-08-13

    John London, an engineer for the U.S. Army Space and Missile Defense Command, left, and Chip Hardy, Kestrel Eye program manager for the U.S. Army Space and Missile Defense Command, speak to members of social media in the Kennedy Space Center’s Press Site auditorium. The briefing focused on research planned for launch to the International Space Station. The scientific materials and supplies will be aboard a Dragon spacecraft scheduled for launch from Kennedy’s Launch Complex 39A on Aug. 14 atop a SpaceX Falcon 9 rocket on the company's 12th Commercial Resupply Services mission to the space station.

  8. 32 CFR 536.12 - Commanding General, U.S. Army Medical Command.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 3 2011-07-01 2009-07-01 true Commanding General, U.S. Army Medical Command... AND ACCOUNTS CLAIMS AGAINST THE UNITED STATES The Army Claims System § 536.12 Commanding General, U.S. Army Medical Command. (a) After consulting with the Commander USARCS on the selection of medical claims...

  9. 32 CFR 536.14 - Commanders of major Army commands.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 3 2012-07-01 2009-07-01 true Commanders of major Army commands. 536.14 Section... CLAIMS AGAINST THE UNITED STATES The Army Claims System § 536.14 Commanders of major Army commands... respective commands for compliance with the responsibilities assigned in §§ 536.9 and 536.10. (b) Assist...

  10. 32 CFR 536.12 - Commanding General, U.S. Army Medical Command.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 3 2012-07-01 2009-07-01 true Commanding General, U.S. Army Medical Command... AND ACCOUNTS CLAIMS AGAINST THE UNITED STATES The Army Claims System § 536.12 Commanding General, U.S. Army Medical Command. (a) After consulting with the Commander USARCS on the selection of medical claims...

  11. 32 CFR 536.14 - Commanders of major Army commands.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 3 2010-07-01 2010-07-01 true Commanders of major Army commands. 536.14 Section... CLAIMS AGAINST THE UNITED STATES The Army Claims System § 536.14 Commanders of major Army commands... respective commands for compliance with the responsibilities assigned in §§ 536.9 and 536.10. (b) Assist...

  12. 32 CFR 536.14 - Commanders of major Army commands.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 3 2013-07-01 2013-07-01 false Commanders of major Army commands. 536.14... ACCOUNTS CLAIMS AGAINST THE UNITED STATES The Army Claims System § 536.14 Commanders of major Army commands... respective commands for compliance with the responsibilities assigned in §§ 536.9 and 536.10. (b) Assist...

  13. 32 CFR 536.14 - Commanders of major Army commands.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 3 2011-07-01 2009-07-01 true Commanders of major Army commands. 536.14 Section... CLAIMS AGAINST THE UNITED STATES The Army Claims System § 536.14 Commanders of major Army commands... respective commands for compliance with the responsibilities assigned in §§ 536.9 and 536.10. (b) Assist...

  14. 32 CFR 536.12 - Commanding General, U.S. Army Medical Command.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 3 2014-07-01 2014-07-01 false Commanding General, U.S. Army Medical Command... AND ACCOUNTS CLAIMS AGAINST THE UNITED STATES The Army Claims System § 536.12 Commanding General, U.S. Army Medical Command. (a) After consulting with the Commander USARCS on the selection of medical claims...

  15. 32 CFR 536.12 - Commanding General, U.S. Army Medical Command.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 3 2010-07-01 2010-07-01 true Commanding General, U.S. Army Medical Command... AND ACCOUNTS CLAIMS AGAINST THE UNITED STATES The Army Claims System § 536.12 Commanding General, U.S. Army Medical Command. (a) After consulting with the Commander USARCS on the selection of medical claims...

  16. 32 CFR 536.14 - Commanders of major Army commands.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 3 2014-07-01 2014-07-01 false Commanders of major Army commands. 536.14... ACCOUNTS CLAIMS AGAINST THE UNITED STATES The Army Claims System § 536.14 Commanders of major Army commands... respective commands for compliance with the responsibilities assigned in §§ 536.9 and 536.10. (b) Assist...

  17. 32 CFR 536.12 - Commanding General, U.S. Army Medical Command.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 3 2013-07-01 2013-07-01 false Commanding General, U.S. Army Medical Command... AND ACCOUNTS CLAIMS AGAINST THE UNITED STATES The Army Claims System § 536.12 Commanding General, U.S. Army Medical Command. (a) After consulting with the Commander USARCS on the selection of medical claims...

  18. Development of a user-friendly system for image processing of electron microscopy by integrating a web browser and PIONE with Eos.

    PubMed

    Tsukamoto, Takafumi; Yasunaga, Takuo

    2014-11-01

    Eos (Extensible object-oriented system) is one of the powerful applications for image processing of electron micrographs. In usual cases, Eos works with only character user interfaces (CUI) under the operating systems (OS) such as OS-X or Linux, not user-friendly. Thus, users of Eos need to be expert at image processing of electron micrographs, and have a little knowledge of computer science, as well. However, all the persons who require Eos does not an expert for CUI. Thus we extended Eos to a web system independent of OS with graphical user interfaces (GUI) by integrating web browser.Advantage to use web browser is not only to extend Eos with GUI, but also extend Eos to work under distributed computational environment. Using Ajax (Asynchronous JavaScript and XML) technology, we implemented more comfortable user-interface on web browser. Eos has more than 400 commands related to image processing for electron microscopy, and the usage of each command is different from each other. Since the beginning of development, Eos has managed their user-interface by using the interface definition file of "OptionControlFile" written in CSV (Comma-Separated Value) format, i.e., Each command has "OptionControlFile", which notes information for interface and its usage generation. Developed GUI system called "Zephyr" (Zone for Easy Processing of HYpermedia Resources) also accessed "OptionControlFIle" and produced a web user-interface automatically, because its mechanism is mature and convenient,The basic actions of client side system was implemented properly and can supply auto-generation of web-form, which has functions of execution, image preview, file-uploading to a web server. Thus the system can execute Eos commands with unique options for each commands, and process image analysis. There remain problems of image file format for visualization and workspace for analysis: The image file format information is useful to check whether the input/output file is correct and we also need to provide common workspace for analysis because the client is physically separated from a server. We solved the file format problem by extension of rules of OptionControlFile of Eos. Furthermore, to solve workspace problems, we have developed two type of system. The first system is to use only local environments. The user runs a web server provided by Eos, access to a web client through a web browser, and manipulate the local files with GUI on the web browser. The second system is employing PIONE (Process-rule for Input/Output Negotiation Environment), which is our developing platform that works under heterogenic distributed environment. The users can put their resources, such as microscopic images, text files and so on, into the server-side environment supported by PIONE, and so experts can write PIONE rule definition, which defines a workflow of image processing. PIONE run each image processing on suitable computers, following the defined rule. PIONE has the ability of interactive manipulation, and user is able to try a command with various setting values. In this situation, we contribute to auto-generation of GUI for a PIONE workflow.As advanced functions, we have developed a module to log user actions. The logs include information such as setting values in image processing, procedure of commands and so on. If we use the logs effectively, we can get a lot of advantages. For example, when an expert may discover some know-how of image processing, other users can also share logs including his know-hows and so we may obtain recommendation workflow of image analysis, if we analyze logs. To implement social platform of image processing for electron microscopists, we have developed system infrastructure, as well. © The Author 2014. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Network command processing system overview

    NASA Technical Reports Server (NTRS)

    Nam, Yon-Woo; Murphy, Lisa D.

    1993-01-01

    The Network Command Processing System (NCPS) developed for the National Aeronautics and Space Administration (NASA) Ground Network (GN) stations is a spacecraft command system utilizing a MULTIBUS I/68030 microprocessor. This system was developed and implemented at ground stations worldwide to provide a Project Operations Control Center (POCC) with command capability for support of spacecraft operations such as the LANDSAT, Shuttle, Tracking and Data Relay Satellite, and Nimbus-7. The NCPS consolidates multiple modulation schemes for supporting various manned/unmanned orbital platforms. The NCPS interacts with the POCC and a local operator to process configuration requests, generate modulated uplink sequences, and inform users of the ground command link status. This paper presents the system functional description, hardware description, and the software design.

  20. Integrated command, control, communication and computation system design study. Summary of tasks performed

    NASA Technical Reports Server (NTRS)

    1982-01-01

    A summary of tasks performed on an integrated command, control, communication, and computation system design study is given. The Tracking and Data Relay Satellite System command and control system study, an automated real-time operations study, and image processing work are discussed.

  1. Multiple-use Management of Irrigation Systems: Technical Constraints and Challenges

    NASA Astrophysics Data System (ADS)

    Gowing, J.; Li, Q.; Mayilswami, C.; Gunawardhana, K.

    It is now widely recognised that many irrigation systems, originally planned only for irrigation supply, are de facto multiple-use systems. However, the importance of non- irrigation uses (such as bathing, laundry, livestock watering and fishing), to the liveli- hoods of the rural poor has generally been ignored. This has significant implications for irrigation engineers, water resources managers and other decision-makers. An im- proved understanding of competition and complementarity between these uses and irrigation demands is essential for effective multiple-use management of irrigation systems.This paper presents a study of multiple-use management, where the focus is on integrating aquaculture within irrigation systems with and without secondary storage. The Lower Bhavani scheme in South India and Mahaweli System H in Sri- Lanka were selected as representative smallholder irrigation schemes: - The Lower Bhavani scheme comprises a 200km contour canal serving a command area of 78,500ha. Apart from the main dam, there are no storage structures within the irriga- tion system. - Mahaweli System H comprises a command area of 43,000ha served by three main canals. The feature of particular interest in this scheme is the large number of secondary storage structures (known locally as tanks), which are in- tegrated within the canal network. It is apparent from these two sites and from studies elsewhere that non-irrigation uses are important to the livelihoods of the local peo- ple, but these uses are largely opportunistic. The failure to give explicit recognition to non-irrigation uses has important implications for assessments of economic per- formance and water productivity of irrigation systems. However, any attempt to give proper recognition to these alternative uses also has implication for irrigation project management. This paper describes a detailed study of water management in the two irrigation systems. The method of investigation involves in-depth studies in selected distributary commands combined with longitudinal studies based on available long- term data from the full command. The reliability and duration of flows and/or storages represent a constraint to effective integration of aquaculture within the case-study sys- tems. Although fish production is non-consumptive and can be seen as a complemen- tary use of irrigation water, the challenge is to devise operating procedures that will 1 guarantee reliability and duration of flows and/or storages for fish production without increasing total water-use within the system. This is a particular problem during the rainy season when irrigation demand fluctuates widely and rapidly. The problem is ex- acerbated by deficient information systems, which constrain the scope for responsive management in these extensive canal systems. 2

  2. 77 FR 2052 - Privacy Act of 1974; System of Records

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-13

    ...; System of Records AGENCY: U.S. Strategic Command, DoD. ACTION: Notice to Add a System of Records. SUMMARY: The U.S. Strategic Command proposes to add a system of records to its inventory of record systems...: The U.S. Strategic Command systems of records notices subject to the Privacy Act of 1974 (5 U.S.C...

  3. 75 FR 19627 - Privacy Act of 1974; System of Records

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-15

    ... address: Delete entry and replace with ``Commander, Navy Personnel Command (PERS-31), 5720 Integrity Drive... to the Commander, Navy Personnel Command (PERS-312), 5720 Integrity Drive, Millington, TN 38055-3120... should address written inquiries to Commander, Navy Personnel Command (PERS- 312), 5720 Integrity Drive...

  4. DSN command system Mark III-78. [data processing

    NASA Technical Reports Server (NTRS)

    Stinnett, W. G.

    1978-01-01

    The Deep Space Network command Mark III-78 data processing system includes a capability for a store-and-forward handling method. The functions of (1) storing the command files at a Deep Space station; (2) attaching the files to a queue; and (3) radiating the commands to the spacecraft are straightforward. However, the total data processing capability is a result of assuming worst case, failure-recovery, or nonnominal operating conditions. Optional data processing functions include: file erase, clearing the queue, suspend radiation, command abort, resume command radiation, and close window time override.

  5. 14 CFR 121.443 - Pilot in command qualification: Route and airports.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Pilot in command qualification: Route and... Pilot in command qualification: Route and airports. (a) Each certificate holder shall provide a system... to the pilot in command and appropriate flight operation personnel. The system must also provide an...

  6. 14 CFR 121.443 - Pilot in command qualification: Route and airports.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Pilot in command qualification: Route and... Pilot in command qualification: Route and airports. (a) Each certificate holder shall provide a system... to the pilot in command and appropriate flight operation personnel. The system must also provide an...

  7. 14 CFR 121.443 - Pilot in command qualification: Route and airports.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Pilot in command qualification: Route and... Pilot in command qualification: Route and airports. (a) Each certificate holder shall provide a system... to the pilot in command and appropriate flight operation personnel. The system must also provide an...

  8. 14 CFR 121.443 - Pilot in command qualification: Route and airports.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Pilot in command qualification: Route and... Pilot in command qualification: Route and airports. (a) Each certificate holder shall provide a system... to the pilot in command and appropriate flight operation personnel. The system must also provide an...

  9. 14 CFR 121.443 - Pilot in command qualification: Route and airports.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Pilot in command qualification: Route and... Pilot in command qualification: Route and airports. (a) Each certificate holder shall provide a system... to the pilot in command and appropriate flight operation personnel. The system must also provide an...

  10. Command system output bit verification

    NASA Technical Reports Server (NTRS)

    Odd, C. W.; Abbate, S. F.

    1981-01-01

    An automatic test was developed to test the ability of the deep space station (DSS) command subsystem and exciter to generate and radiate, from the exciter, the correct idle bit sequence for a given flight project or to store and radiate received command data elements and files without alteration. This test, called the command system output bit verification test, is an extension of the command system performance test (SPT) and can be selected as an SPT option. The test compares the bit stream radiated from the DSS exciter with reference sequences generated by the SPT software program. The command subsystem and exciter are verified when the bit stream and reference sequences are identical. It is a key element of the acceptance testing conducted on the command processor assembly (CPA) operational program (DMC-0584-OP-G) prior to its transfer from development to operations.

  11. Terrain Commander: a next-generation remote surveillance system

    NASA Astrophysics Data System (ADS)

    Finneral, Henry J.

    2003-09-01

    Terrain Commander is a fully automated forward observation post that provides the most advanced capability in surveillance and remote situational awareness. The Terrain Commander system was selected by the Australian Government for its NINOX Phase IIB Unattended Ground Sensor Program with the first systems delivered in August of 2002. Terrain Commander offers next generation target detection using multi-spectral peripheral sensors coupled with autonomous day/night image capture and processing. Subsequent intelligence is sent back through satellite communications with unlimited range to a highly sophisticated central monitoring station. The system can "stakeout" remote locations clandestinely for 24 hours a day for months at a time. With its fully integrated SATCOM system, almost any site in the world can be monitored from virtually any other location in the world. Terrain Commander automatically detects and discriminates intruders by precisely cueing its advanced EO subsystem. The system provides target detection capabilities with minimal nuisance alarms combined with the positive visual identification that authorities demand before committing a response. Terrain Commander uses an advanced beamforming acoustic sensor and a distributed array of seismic, magnetic and passive infrared sensors to detect, capture images and accurately track vehicles and personnel. Terrain Commander has a number of emerging military and non-military applications including border control, physical security, homeland defense, force protection and intelligence gathering. This paper reviews the development, capabilities and mission applications of the Terrain Commander system.

  12. COMMAND-AND-CONTROL AND MANAGEMENT DECISION MAKING,

    DTIC Science & Technology

    Reports that the development of command-and-con trol systems in support of decision making and action taking has been accomplished by military...methods applicable to management systems. Concludes that the command-and-control type system for top management decision making is a man-machine system having as its core an on going, dynamic operation. (Author)

  13. The pEst version 2.1 user's manual

    NASA Technical Reports Server (NTRS)

    Murray, James E.; Maine, Richard E.

    1987-01-01

    This report is a user's manual for version 2.1 of pEst, a FORTRAN 77 computer program for interactive parameter estimation in nonlinear dynamic systems. The pEst program allows the user complete generality in definig the nonlinear equations of motion used in the analysis. The equations of motion are specified by a set of FORTRAN subroutines; a set of routines for a general aircraft model is supplied with the program and is described in the report. The report also briefly discusses the scope of the parameter estimation problem the program addresses. The report gives detailed explanations of the purpose and usage of all available program commands and a description of the computational algorithms used in the program.

  14. Bi-directional power control system for voltage converter

    DOEpatents

    Garrigan, Neil Richard; King, Robert Dean; Schwartz, James Edward

    1999-01-01

    A control system for a voltage converter includes: a power comparator for comparing a power signal on input terminals of the converter with a commanded power signal and producing a power comparison signal; a power regulator for transforming the power comparison signal to a commanded current signal; a current comparator for comparing the commanded current signal with a measured current signal on output terminals of the converter and producing a current comparison signal; a current regulator for transforming the current comparison signal to a pulse width modulator (PWM) duty cycle command signal; and a PWM for using the PWM duty cycle command signal to control electrical switches of the converter. The control system may further include: a command multiplier for converting a voltage signal across the output terminals of the converter to a gain signal having a value between zero (0) and unity (1), and a power multiplier for multiplying the commanded power signal by the gain signal to provide a limited commanded power signal, wherein power comparator compares the limited commanded power signal with the power signal on the input terminals.

  15. Bi-directional power control system for voltage converter

    DOEpatents

    Garrigan, N.R.; King, R.D.; Schwartz, J.E.

    1999-05-11

    A control system for a voltage converter includes: a power comparator for comparing a power signal on input terminals of the converter with a commanded power signal and producing a power comparison signal; a power regulator for transforming the power comparison signal to a commanded current signal; a current comparator for comparing the commanded current signal with a measured current signal on output terminals of the converter and producing a current comparison signal; a current regulator for transforming the current comparison signal to a pulse width modulator (PWM) duty cycle command signal; and a PWM for using the PWM duty cycle command signal to control electrical switches of the converter. The control system may further include: a command multiplier for converting a voltage signal across the output terminals of the converter to a gain signal having a value between zero (0) and unity (1), and a power multiplier for multiplying the commanded power signal by the gain signal to provide a limited commanded power signal, wherein power comparator compares the limited commanded power signal with the power signal on the input terminals. 10 figs.

  16. The Combat Vehicle Command and Control System. Combat Performance of Armor Battalions Using Interactive Simulation

    DTIC Science & Technology

    1994-01-31

    ncluded the Commander’s Independent Thermal Viewer and a Command and Control display. Using 1 tank simulators in the Mounted Warfare Test Bed at Fort...CCD), the Commander’s Independent Thermal Viewer (CITV), and digital TOC workstations. Using autoloading tank simulators in the Mounted Warfare Test...identifying ways that the CVCC system might best benefit the battlefield commander, and potential modifications to mounted warfare TTPs. Another area of

  17. 75 FR 80064 - National Offshore Safety Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-21

    ... by coming to Room 5-0622, U.S. Coast Guard Headquarters Building, 2100 Second Street, SW., Washington... first come basis. Written material and requests to make oral presentations should be sent to Commander P... standards for Offshore Supply Vessels with a gross registered tonnage greater than 6000 GRT in light of the...

  18. 5. Photographic copy of construction drawing, dated March (?), 1959, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Photographic copy of construction drawing, dated March (?), 1959, Department of the Air Force Air Defense Command Installations, in possession of Selfridge Base Museum, Mt. Clemens, Michigan. FLOOR PLAN, SHEET 1 OF 1, DRAWING SLF-440-022. - Selfridge Field, Building No. 101, Supply Street east of Maple Street, Mount Clemens, Macomb County, MI

  19. 27 CFR 28.243 - Shipment to armed services.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ....243 Shipment to armed services. On removal of distilled spirits, wines, or beer for export to the armed services of the United States, the shipment shall be consigned to the commanding officer or supply... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Shipment to armed services...

  20. 32 CFR 705.11 - Supplying photographs and services to other than Navy and Marine Corps.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... picture photography for private use are forwarded to the Commanding Officer, Naval Photographic Center..., subparts A-D. (d) Navy aerial photography released for sale to the public is transferred to the United States Department of the Interior. Inquirers regarding the purchase of this photography should be...

  1. 32 CFR 705.11 - Supplying photographs and services to other than Navy and Marine Corps.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... picture photography for private use are forwarded to the Commanding Officer, Naval Photographic Center..., subparts A-D. (d) Navy aerial photography released for sale to the public is transferred to the United States Department of the Interior. Inquirers regarding the purchase of this photography should be...

  2. 32 CFR 705.11 - Supplying photographs and services to other than Navy and Marine Corps.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... picture photography for private use are forwarded to the Commanding Officer, Naval Photographic Center..., subparts A-D. (d) Navy aerial photography released for sale to the public is transferred to the United States Department of the Interior. Inquirers regarding the purchase of this photography should be...

  3. 32 CFR 705.11 - Supplying photographs and services to other than Navy and Marine Corps.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... picture photography for private use are forwarded to the Commanding Officer, Naval Photographic Center..., subparts A-D. (d) Navy aerial photography released for sale to the public is transferred to the United States Department of the Interior. Inquirers regarding the purchase of this photography should be...

  4. 41 CFR 101-26.602-2 - Procurement of packaged petroleum products.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., from the Commander, Defense Logistics Services Center, Attn: DLSC-T, Battle Creek, Mich. 49016... (FPMR 101-26.2) to the Defense General Supply Center (DGSC), Richmond, Va. 23297, using routing... Center (DFSC) procurements under the provisions of § 101-26.602-1 may be submitted to DGSC. DGSC will...

  5. 41 CFR 101-26.602-2 - Procurement of packaged petroleum products.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., from the Commander, Defense Logistics Services Center, Attn: DLSC-T, Battle Creek, Mich. 49016... (FPMR 101-26.2) to the Defense General Supply Center (DGSC), Richmond, Va. 23297, using routing... Center (DFSC) procurements under the provisions of § 101-26.602-1 may be submitted to DGSC. DGSC will...

  6. 41 CFR 101-26.602-2 - Procurement of packaged petroleum products.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., from the Commander, Defense Logistics Services Center, Attn: DLSC-T, Battle Creek, Mich. 49016... (FPMR 101-26.2) to the Defense General Supply Center (DGSC), Richmond, Va. 23297, using routing... Center (DFSC) procurements under the provisions of § 101-26.602-1 may be submitted to DGSC. DGSC will...

  7. 41 CFR 101-26.602-2 - Procurement of packaged petroleum products.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., from the Commander, Defense Logistics Services Center, Attn: DLSC-T, Battle Creek, Mich. 49016... (FPMR 101-26.2) to the Defense General Supply Center (DGSC), Richmond, Va. 23297, using routing... Center (DFSC) procurements under the provisions of § 101-26.602-1 may be submitted to DGSC. DGSC will...

  8. 41 CFR 101-26.602-2 - Procurement of packaged petroleum products.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., from the Commander, Defense Logistics Services Center, Attn: DLSC-T, Battle Creek, Mich. 49016... (FPMR 101-26.2) to the Defense General Supply Center (DGSC), Richmond, Va. 23297, using routing... Center (DFSC) procurements under the provisions of § 101-26.602-1 may be submitted to DGSC. DGSC will...

  9. 32 CFR 705.11 - Supplying photographs and services to other than Navy and Marine Corps.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... picture photography for private use are forwarded to the Commanding Officer, Naval Photographic Center..., subparts A-D. (d) Navy aerial photography released for sale to the public is transferred to the United States Department of the Interior. Inquirers regarding the purchase of this photography should be...

  10. Command History for 1991 (Naval Personnel Research and Development Center)

    DTIC Science & Technology

    1992-08-01

    years of age. 18 Chronology of 1991Events New Emtlovee Lieutenant Rolando Lim Code 151 Regina G. Bragg Paul J. Carney Library Technician Supply Clerk Code...Awards 35 Years Ben Garcia Gene Stout 30 Years Jim Julius Ramona Mouzon Hal Rosen 32 25 Years Jim Chadbourne Bob Harris Dorothy Martin Jan Reynolds 20

  11. STS-81 Cmdr and MS Ivins with Mir 22 Cmdr review transfer checklists

    NASA Image and Video Library

    1997-02-21

    STS081-357-020 (12-22 Jan. 1997) --- Astronaut Marsha S. Ivins, STS-81 mission specialist, compares notes with cosmonaut Valeri G. Korzun, Mir-22 mission commander. The two were involved with the transfer of supplies from the Space Shuttle Atlantis to Russia's Mir Space Station, during the docking mission.

  12. 14 CFR 1215.106 - User command and tracking data.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false User command and tracking data. 1215.106... User command and tracking data. (a) User command data may enter the TDRSS via the NASCOM interface at one of three locations: (1) For Shuttle payloads which utilize the Shuttle commanding system, command...

  13. 14 CFR 1215.106 - User command and tracking data.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false User command and tracking data. 1215.106... User command and tracking data. (a) User command data may enter the TDRSS via the NASCOM interface at one of three locations: (1) For Shuttle payloads which utilize the Shuttle commanding system, command...

  14. 14 CFR 1215.106 - User command and tracking data.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true User command and tracking data. 1215.106... User command and tracking data. (a) User command data may enter the TDRSS via the NASCOM interface at one of three locations: (1) For Shuttle payloads which utilize the Shuttle commanding system, command...

  15. 77 FR 4025 - Privacy Act of 1974; System of Records

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-26

    ...; System of Records AGENCY: U.S. Central Command, DoD. ACTION: Notice to Amend a System of Records. SUMMARY: The U.S. Central Command is amending a system of records notice in its existing inventory of record... INFORMATION: The U.S. Central Command systems of records notices subject to the Privacy Act of 1974 (5 U.S.C...

  16. AirLand Battle and Tactical Command and Control Automation,

    DTIC Science & Technology

    1987-01-07

    Army Tactical Command and Control System (ATCCS) are the primary subjects of the last period. The precepts of AirLand Battle doctrine are examined to...AirLand Battle and the Army Tactical Command and Control System (ATCCS) are thE primary subjects of the last period. The precepts of AirLand Battle...centralized control is identified. AirLand Battle and the Army Tactical Command and Control System (ATCCS) are the primary subjects of the last

  17. 75 FR 11136 - Federal Advisory Committee; U.S. Nuclear Command and Control System Comprehensive Review...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-10

    ... DEPARTMENT OF DEFENSE Office of the Secretary Federal Advisory Committee; U.S. Nuclear Command and Control System Comprehensive Review Committee; Charter Termination AGENCY: Department of Defense (DoD... terminating the charter for the U.S. Nuclear Command and Control System Comprehensive Review Committee. FOR...

  18. Methods, systems and apparatus for adjusting modulation index to improve linearity of phase voltage commands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gallegos-Lopez, Gabriel; Perisic, Milun; Kinoshita, Michael H.

    2017-03-14

    Embodiments of the present invention relate to methods, systems and apparatus for controlling operation of a multi-phase machine in a motor drive system. The disclosed embodiments provide a mechanism for adjusting modulation index of voltage commands to improve linearity of the voltage commands.

  19. 77 FR 60678 - Takes of Marine Mammals Incidental to Specified Activities; U.S. Navy Training and Testing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-04

    ...-submarine warfare; mine warfare; naval special warfare; Naval Air Systems Command (NAVAIR) testing; Naval Sea Systems Command (NAVSEA) testing; Space and Naval Warfare Systems Command (SPAWAR) testing; and Office of Naval Research (ONR) and Naval Research Laboratory (NRL) testing. Detailed descriptions of...

  20. Centralized Command, Distributed Control, and Decentralized Execution - a Command and Control Solution to US Air Force A2/AD Challenges

    DTIC Science & Technology

    2017-04-28

    Regional Air Component Commander (the Leader) 5 CC-DC- DE Solution to A2/AD – Distributed Theater Air Control System (the System) 9 CC-DC- DE ... Control , Decentralized Execution” to a new framework of “Centralized Command, Distributed Control , and Decentralized Execution” (CC-DC- DE ).4 5 This...USAF C2 challenges in A2/AD environments describes a three-part Centralized Command, Distributed Control , and Decentralized Execution (CC-DC- DE

  1. VHF command system study. [spectral analysis of GSFC VHF-PSK and VHF-FSK Command Systems

    NASA Technical Reports Server (NTRS)

    Gee, T. H.; Geist, J. M.

    1973-01-01

    Solutions are provided to specific problems arising in the GSFC VHF-PSK and VHF-FSK Command Systems in support of establishment and maintenance of Data Systems Standards. Signal structures which incorporate transmission on the uplink of a clock along with the PSK or FSK data are considered. Strategies are developed for allocating power between the clock and data, and spectral analyses are performed. Bit error probability and other probabilities pertinent to correct transmission of command messages are calculated. Biphase PCM/PM and PCM/FM are considered as candidate modulation techniques on the telemetry downlink, with application to command verification. Comparative performance of PCM/PM and PSK systems is given special attention, including implementation considerations. Gain in bit error performance due to coding is also considered.

  2. Unit Testing for Command and Control Systems

    NASA Technical Reports Server (NTRS)

    Alexander, Joshua

    2018-01-01

    Unit tests were created to evaluate the functionality of a Data Generation and Publication tool for a command and control system. These unit tests are developed to constantly evaluate the tool and ensure it functions properly as the command and control system grows in size and scope. Unit tests are a crucial part of testing any software project and are especially instrumental in the development of a command and control system. They save resources, time and costs associated with testing, and catch issues before they become increasingly difficult and costly. The unit tests produced for the Data Generation and Publication tool to be used in a command and control system assure the users and stakeholders of its functionality and offer assurances which are vital in the launching of spacecraft safely.

  3. CoNNeCT Baseband Processor Module Boot Code SoftWare (BCSW)

    NASA Technical Reports Server (NTRS)

    Yamamoto, Clifford K.; Orozco, David S.; Byrne, D. J.; Allen, Steven J.; Sahasrabudhe, Adit; Lang, Minh

    2012-01-01

    This software provides essential startup and initialization routines for the CoNNeCT baseband processor module (BPM) hardware upon power-up. A command and data handling (C&DH) interface is provided via 1553 and diagnostic serial interfaces to invoke operational, reconfiguration, and test commands within the code. The BCSW has features unique to the hardware it is responsible for managing. In this case, the CoNNeCT BPM is configured with an updated CPU (Atmel AT697 SPARC processor) and a unique set of memory and I/O peripherals that require customized software to operate. These features include configuration of new AT697 registers, interfacing to a new HouseKeeper with a flash controller interface, a new dual Xilinx configuration/scrub interface, and an updated 1553 remote terminal (RT) core. The BCSW is intended to provide a "safe" mode for the BPM when initially powered on or when an unexpected trap occurs, causing the processor to reset. The BCSW allows the 1553 bus controller in the spacecraft or payload controller to operate the BPM over 1553 to upload code; upload Xilinx bit files; perform rudimentary tests; read, write, and copy the non-volatile flash memory; and configure the Xilinx interface. Commands also exist over 1553 to cause the CPU to jump or call a specified address to begin execution of user-supplied code. This may be in the form of a real-time operating system, test routine, or specific application code to run on the BPM.

  4. Friendly Neighborhood Computer Project. Extension of the IBM NJE network to DEC VAX computers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raffenetti, R.C.; Bertoncini, P.J.; Engert, D.E.

    1984-07-01

    This manual is divided into six chapters. The first is an overview of the VAX NJE emulator system and describes what can be done with the VAX NJE emulator software. The second chapter describes the commands that users of the VAX systems will use. Each command description includes the format of the command, a list of valid options and parameters and their meanings, and several short examples of command use. The third chapter describes the commands and capabilities for sending general, sequential files from and to VAX VMS nodes. The fourth chapter describes how to transmit data to a VAXmore » from other computer systems on the network. The fifth chapter explains how to exchange electronic mail with IBM CMS users and with users of other VAX VMS systems connected by NJE communications. The sixth chapter describes operator procedures and the additional commands operators may use.« less

  5. 14 CFR 135.105 - Exception to second in command requirement: Approval for use of autopilot system.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Exception to second in command requirement... PERSONS ON BOARD SUCH AIRCRAFT Flight Operations § 135.105 Exception to second in command requirement... second in command, if it is equipped with an operative approved autopilot system and the use of that...

  6. 14 CFR 135.105 - Exception to second in command requirement: Approval for use of autopilot system.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Exception to second in command requirement... PERSONS ON BOARD SUCH AIRCRAFT Flight Operations § 135.105 Exception to second in command requirement... second in command, if it is equipped with an operative approved autopilot system and the use of that...

  7. 14 CFR 135.105 - Exception to second in command requirement: Approval for use of autopilot system.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Exception to second in command requirement... PERSONS ON BOARD SUCH AIRCRAFT Flight Operations § 135.105 Exception to second in command requirement... second in command, if it is equipped with an operative approved autopilot system and the use of that...

  8. 14 CFR 135.105 - Exception to second in command requirement: Approval for use of autopilot system.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Exception to second in command requirement... PERSONS ON BOARD SUCH AIRCRAFT Flight Operations § 135.105 Exception to second in command requirement... second in command, if it is equipped with an operative approved autopilot system and the use of that...

  9. 14 CFR 135.105 - Exception to second in command requirement: Approval for use of autopilot system.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Exception to second in command requirement... PERSONS ON BOARD SUCH AIRCRAFT Flight Operations § 135.105 Exception to second in command requirement... second in command, if it is equipped with an operative approved autopilot system and the use of that...

  10. Database interfaces on NASA's heterogeneous distributed database system

    NASA Technical Reports Server (NTRS)

    Huang, Shou-Hsuan Stephen

    1989-01-01

    The syntax and semantics of all commands used in the template are described. Template builders should consult this document for proper commands in the template. Previous documents (Semiannual reports) described other aspects of this project. Appendix 1 contains all substituting commands used in the system. Appendix 2 includes all repeating commands. Appendix 3 is a collection of DEFINE templates from eight different DBMS's.

  11. STS-101 Commander Halsell arrives at KSC for 4th launch attempt

    NASA Technical Reports Server (NTRS)

    2000-01-01

    STS-101 Mission Commander James D. Halsell Jr. arrives at KSC's Shuttle Landing Facility aboard a T-38 jet aircraft to prepare for the launch on May 18. The mission will take the crew of seven to the International Space Station, delivering logistics and supplies, plus preparing the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. Also, the crew will conduct one space walk to perform maintenance on the Space Station. This will be the third assembly flight for the Space Station. STS-101 is targeted for liftoff at 6:38 a.m. EDT from Launch Pad 39A.

  12. Total energy based flight control system

    NASA Technical Reports Server (NTRS)

    Lambregts, Antonius A. (Inventor)

    1985-01-01

    An integrated aircraft longitudinal flight control system uses a generalized thrust and elevator command computation (38), which accepts flight path angle, longitudinal acceleration command signals, along with associated feedback signals, to form energy rate error (20) and energy rate distribution error (18) signals. The engine thrust command is developed (22) as a function of the energy rate distribution error and the elevator position command is developed (26) as a function of the energy distribution error. For any vertical flight path and speed mode the outerloop errors are normalized (30, 34) to produce flight path angle and longitudinal acceleration commands. The system provides decoupled flight path and speed control for all control modes previously provided by the longitudinal autopilot, autothrottle and flight management systems.

  13. Costing Complex Products, Operations, and Support

    DTIC Science & Technology

    2011-04-30

    Symposium, 10-12 May 2011, Seaside, CA. U.S. Government or Federal Rights License 14. ABSTRACT Complex products and systems (CoPS), such as large defense...Program Executive Officer SHIPS • Commander, Naval Sea Systems Command • Army Contracting Command, U.S. Army Materiel Command • Program Manager...Airborne, Maritime and Fixed Station Joint Tactical Radio System = ==================^Åèìáëáíáçå=oÉëÉ~êÅÜW=`ob^qfkd=pvkbodv=clo=fkclojba=`e^kdb=====- ii

  14. Common command-and-control user interface for current force UGS

    NASA Astrophysics Data System (ADS)

    Stolovy, Gary H.

    2009-05-01

    The Current Force Unattended Ground Sensors (UGS) comprise the OmniSense, Scorpion, and Silent Watch systems. As deployed by U.S. Army Central Command in 2006, sensor reports from the three systems were integrated into a common Graphical User Interface (GUI), with three separate vendor-specific applications for Command-and-Control (C2) functions. This paper describes the requirements, system architecture, implementation, and testing of an upgrade to the Processing, Exploitation, and Dissemination back-end server to incorporate common remote Command-and-Control capabilities.

  15. 75 FR 42719 - Privacy Act of 1974; System of Records

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-22

    ...: Commander, Navy Expeditionary Combat Command, 1575 Gator Blvd, Joint Expeditionary Base Little Creek... Expeditionary Combat Command, Code (N8), 1575 Gator Blvd, Joint Expeditionary Base Little Creek, Virginia Beach... to the Commander, Navy Expeditionary Combat Command, Code (N8), 1575 Gator Blvd, Joint Expeditionary...

  16. Innovation for integrated command environments

    NASA Astrophysics Data System (ADS)

    Perry, Amie A.; McKneely, Jennifer A.

    2000-11-01

    Command environments have rarely been able to easily accommodate rapid changes in technology and mission. Yet, command personnel, by their selection criteria, experience, and very nature, tend to be extremely adaptive and flexible, and able to learn new missions and address new challenges fairly easily. Instead, the hardware and software components of the systems do no provide the needed flexibility and scalability for command personnel. How do we solve this problem? In order to even dream of keeping pace with a rapidly changing world, we must begin to think differently about the command environment and its systems. What is the correct definition of the integrated command environment system? What types of tasks must be performed in this environment, and how might they change in the next five to twenty-five years? How should the command environment be developed, maintained, and evolved to provide needed flexibility and scalability? The issues and concepts to be considered as new Integrated Command/Control Environments (ICEs) are designed following a human-centered process. A futuristic model, the Dream Integrated Command Environment (DICE) will be described which demonstrates specific ICE innovations. The major paradigm shift required to be able to think differently about this problem is to center the DICE around the command personnel from its inception. Conference participants may not agree with every concept or idea presented, but will hopefully come away with a clear understanding that to radically improve future systems, designers must focus on the end users.

  17. Assessment of the USCENTCOM Medical Distribution Structure

    PubMed Central

    Welser, William; Yoho, Keenan D.; Robbins, Marc; Peltz, Eric; Van Roo, Ben D.; Resnick, Adam C.; Harper, Ronald E.

    2012-01-01

    Abstract This study examined whether there might be a medical supply and distribution structure for U.S. Central Command (USCENTCOM) that would maintain or improve performance while reducing costs. The authors evaluated the likely performance and cost implications of the range of possibilities, considering both the medical and nonmedical logistics structures, for providing medical supplies to support medical activities in USCENTCOM. They found that three options would preserve or improve performance while either lowering or not increasing costs. Additionally, they considered how the value of these solutions would likely change with future shifts in USCENTCOM operations. PMID:28083245

  18. Semi-autonomous unmanned ground vehicle control system

    NASA Astrophysics Data System (ADS)

    Anderson, Jonathan; Lee, Dah-Jye; Schoenberger, Robert; Wei, Zhaoyi; Archibald, James

    2006-05-01

    Unmanned Ground Vehicles (UGVs) have advantages over people in a number of different applications, ranging from sentry duty, scouting hazardous areas, convoying goods and supplies over long distances, and exploring caves and tunnels. Despite recent advances in electronics, vision, artificial intelligence, and control technologies, fully autonomous UGVs are still far from being a reality. Currently, most UGVs are fielded using tele-operation with a human in the control loop. Using tele-operations, a user controls the UGV from the relative safety and comfort of a control station and sends commands to the UGV remotely. It is difficult for the user to issue higher level commands such as patrol this corridor or move to this position while avoiding obstacles. As computer vision algorithms are implemented in hardware, the UGV can easily become partially autonomous. As Field Programmable Gate Arrays (FPGAs) become larger and more powerful, vision algorithms can run at frame rate. With the rapid development of CMOS imagers for consumer electronics, frame rate can reach as high as 200 frames per second with a small size of the region of interest. This increase in the speed of vision algorithm processing allows the UGVs to become more autonomous, as they are able to recognize and avoid obstacles in their path, track targets, or move to a recognized area. The user is able to focus on giving broad supervisory commands and goals to the UGVs, allowing the user to control multiple UGVs at once while still maintaining the convenience of working from a central base station. In this paper, we will describe a novel control system for the control of semi-autonomous UGVs. This control system combines a user interface similar to a simple tele-operation station along with a control package, including the FPGA and multiple cameras. The control package interfaces with the UGV and provides the necessary control to guide the UGV.

  19. Gas Control System for HEAO-B

    NASA Technical Reports Server (NTRS)

    Taylor, B.; Brissette, R.; Humphrey, A.; Morris, J.; Luger, J.; Swift, W.

    1978-01-01

    The HEAO-B Gas Control System consists of a high pressure gas storage supply together with distribution and regulation assemblies and their associated electronics for management of gas required for HEAO-B X-ray counter experiments. The Gas Control System replenishes a gas mixture (82 percent argon, 12.3 percent carbon dioxide, 5.7 percent xenon) in the counter volumes which is lost by: diffusion through controlled leakage plugs, diffusion through counter windows, and consumption resulting from periodic purges. The gas density in each counter volume is maintained constant to within 0.25 percent by comparison with a sealed reference volume. The system is fully redundant, capable of operating at atmospheric pressure as well as in a vacuum, contains interlocks which shut down gas flow in the event of either leakage or excessive pressure, and is able to shut down counter high voltage if counter pressure is abnormally low. The system is electronically controlled by ground command and self-sustaining in orbit for a period of at least one year.

  20. Commercial Experiment Transporter: COMET

    NASA Astrophysics Data System (ADS)

    Wessling, Francis C.; Robinson, Michael; Martinez, Ramiro S.; Gallimore, Thomas; Combs, Nick

    1994-09-01

    A launch system consisting of ground-support equipment, a four-stage rocket, a service module, a recovery system and a recovery site, and an orbital operations center is being assembled. The system is designed to launch 818 kg (1800 lb) to a 552-km (300-n.mi.) low earth orbit at a 40-deg inclination. Experiment space exists in both the service module and the recovery system. The service module provides space for 68 kg (150 lb) of experiments plus telemetry services, attitude control, and power and uses no consumables to maintain attitude. Consequently, the service module can maintain orbit attitude for years. Power of 400 W is supplied by solar cells and batteries for both experiment operation and housekeeping. The recovery system houses an experiment carrier for 136 kg (300 lb) of experiments, a retro rocket, a heat shield, and a parachute. An orbital operations control center provides tracking, telemetry, and commanding for the satellite. The payloads are also briefly described. The first launch was scheduled for 1995.

  1. Interrogator system for identifying electrical circuits

    DOEpatents

    Jatko, W.B.; McNeilly, D.R.

    1988-04-12

    A system for interrogating electrical leads to correctly ascertain the identity of equipment attached to remote ends of the leads is disclosed. The system includes a source of a carrier signal generated in a controller/receiver to be sent over the leads and an identifier unit at the equipment. The identifier is activated by command of the carrier and uses a portion of the carrier to produce a supply voltage. Each identifier is uniquely programmed for a specific piece of equipment, and causes the impedance of the circuit to be modified whereby the carrier signal is modulated according to that program. The modulation can be amplitude, frequency or phase modulation. A demodulator in the controller/receiver analyzes the modulated carrier signal, and if a verified signal is recognized displays and/or records the information. This information can be utilized in a computer system to prepare a wiring diagram of the electrical equipment attached to specific leads. Specific circuit values are given for amplitude modulation, and the system is particularly described for use with thermocouples. 6 figs.

  2. Interrogator system for identifying electrical circuits

    DOEpatents

    Jatko, William B.; McNeilly, David R.

    1988-01-01

    A system for interrogating electrical leads to correctly ascertain the identity of equipment attached to remote ends of the leads. The system includes a source of a carrier signal generated in a controller/receiver to be sent over the leads and an identifier unit at the equipment. The identifier is activated by command of the carrier and uses a portion of the carrier to produce a supply voltage. Each identifier is uniquely programmed for a specific piece of equipment, and causes the impedance of the circuit to be modified whereby the carrier signal is modulated according to that program. The modulation can be amplitude, frequency or phase modulation. A demodulator in the controller/receiver analyzes the modulated carrier signal, and if a verified signal is recognized displays and/or records the information. This information can be utilized in a computer system to prepare a wiring diagram of the electrical equipment attached to specific leads. Specific circuit values are given for amplitude modulation, and the system is particularly described for use with thermocouples.

  3. Terminal Information Processing System (TIPS) Consolidated CAB Display (CCD) Comparative Analysis.

    DTIC Science & Technology

    1982-04-01

    Barometric pressure 3. Center field wind speed, direction and gusts 4. Runway visual range 5. Low-level wind shear 6. Vortex advisory 7. Runway equipment...PASSWORD Command (standard user) u. PAUSE Command (standard user) v. PMSG Command (standard user) w. PPD Command (standard user) x. PURGE Command (standard

  4. The next generation of command post computing

    NASA Astrophysics Data System (ADS)

    Arnold, Ross D.; Lieb, Aaron J.; Samuel, Jason M.; Burger, Mitchell A.

    2015-05-01

    The future of command post computing demands an innovative new solution to address a variety of challenging operational needs. The Command Post of the Future is the Army's primary command and control decision support system, providing situational awareness and collaborative tools for tactical decision making, planning, and execution management from Corps to Company level. However, as the U.S. Army moves towards a lightweight, fully networked battalion, disconnected operations, thin client architecture and mobile computing become increasingly essential. The Command Post of the Future is not designed to support these challenges in the coming decade. Therefore, research into a hybrid blend of technologies is in progress to address these issues. This research focuses on a new command and control system utilizing the rich collaboration framework afforded by Command Post of the Future coupled with a new user interface consisting of a variety of innovative workspace designs. This new system is called Tactical Applications. This paper details a brief history of command post computing, presents the challenges facing the modern Army, and explores the concepts under consideration for Tactical Applications that meet these challenges in a variety of innovative ways.

  5. Prepared to react? Assessing the functional capacity of the primary health care system in rural Orissa, India to respond to the devastating flood of September 2008.

    PubMed

    Phalkey, Revati; Dash, Shisir R; Mukhopadhyay, Alok; Runge-Ranzinger, Silvia; Marx, Michael

    2012-01-01

    Early detection of an impending flood and the availability of countermeasures to deal with it can significantly reduce its health impacts. In developing countries like India, public primary health care facilities are frontline organizations that deal with disasters particularly in rural settings. For developing robust counter reacting systems evaluating preparedness capacities within existing systems becomes necessary. The objective of the study is to assess the functional capacity of the primary health care system in Jagatsinghpur district of rural Orissa in India to respond to the devastating flood of September 2008. An onsite survey was conducted in all 29 primary and secondary facilities in five rural blocks (administrative units) of Jagatsinghpur district in Orissa state. A pre-tested structured questionnaire was administered face to face in the facilities. The data was entered, processed and analyzed using STATA(®) 10. Data from our primary survey clearly shows that the healthcare facilities are ill prepared to handle the flood despite being faced by them annually. Basic utilities like electricity backup and essential medical supplies are lacking during floods. Lack of human resources along with missing standard operating procedures; pre-identified communication and incident command systems; effective leadership; and weak financial structures are the main hindering factors in mounting an adequate response to the floods. The 2008 flood challenged the primary curative and preventive health care services in Jagatsinghpur. Simple steps like developing facility specific preparedness plans which detail out standard operating procedures during floods and identify clear lines of command will go a long way in strengthening the response to future floods. Performance critiques provided by the grass roots workers, like this one, should be used for institutional learning and effective preparedness planning. Additionally each facility should maintain contingency funds for emergency response along with local vendor agreements to ensure stock supplies during floods. The facilities should ensure that baseline public health standards for health care delivery identified by the Government are met in non-flood periods in order to improve the response during floods. Building strong public primary health care systems is a development challenge. The recovery phases of disasters should be seen as an opportunity to expand and improve services and facilities.

  6. Prepared to react? Assessing the functional capacity of the primary health care system in rural Orissa, India to respond to the devastating flood of September 2008

    PubMed Central

    Phalkey, Revati; Dash, Shisir R.; Mukhopadhyay, Alok; Runge-Ranzinger, Silvia; Marx, Michael

    2012-01-01

    Background Early detection of an impending flood and the availability of countermeasures to deal with it can significantly reduce its health impacts. In developing countries like India, public primary health care facilities are frontline organizations that deal with disasters particularly in rural settings. For developing robust counter reacting systems evaluating preparedness capacities within existing systems becomes necessary. Objective The objective of the study is to assess the functional capacity of the primary health care system in Jagatsinghpur district of rural Orissa in India to respond to the devastating flood of September 2008. Methods An onsite survey was conducted in all 29 primary and secondary facilities in five rural blocks (administrative units) of Jagatsinghpur district in Orissa state. A pre-tested structured questionnaire was administered face to face in the facilities. The data was entered, processed and analyzed using STATA® 10. Results Data from our primary survey clearly shows that the healthcare facilities are ill prepared to handle the flood despite being faced by them annually. Basic utilities like electricity backup and essential medical supplies are lacking during floods. Lack of human resources along with missing standard operating procedures; pre-identified communication and incident command systems; effective leadership; and weak financial structures are the main hindering factors in mounting an adequate response to the floods. Conclusion The 2008 flood challenged the primary curative and preventive health care services in Jagatsinghpur. Simple steps like developing facility specific preparedness plans which detail out standard operating procedures during floods and identify clear lines of command will go a long way in strengthening the response to future floods. Performance critiques provided by the grass roots workers, like this one, should be used for institutional learning and effective preparedness planning. Additionally each facility should maintain contingency funds for emergency response along with local vendor agreements to ensure stock supplies during floods. The facilities should ensure that baseline public health standards for health care delivery identified by the Government are met in non-flood periods in order to improve the response during floods. Building strong public primary health care systems is a development challenge. The recovery phases of disasters should be seen as an opportunity to expand and improve services and facilities. PMID:22435044

  7. Real-Time Reconfigurable Adaptive Speech Recognition Command and Control Apparatus and Method

    NASA Technical Reports Server (NTRS)

    Salazar, George A. (Inventor); Haynes, Dena S. (Inventor); Sommers, Marc J. (Inventor)

    1998-01-01

    An adaptive speech recognition and control system and method for controlling various mechanisms and systems in response to spoken instructions and in which spoken commands are effective to direct the system into appropriate memory nodes, and to respective appropriate memory templates corresponding to the voiced command is discussed. Spoken commands from any of a group of operators for which the system is trained may be identified, and voice templates are updated as required in response to changes in pronunciation and voice characteristics over time of any of the operators for which the system is trained. Provisions are made for both near-real-time retraining of the system with respect to individual terms which are determined not be positively identified, and for an overall system training and updating process in which recognition of each command and vocabulary term is checked, and in which the memory templates are retrained if necessary for respective commands or vocabulary terms with respect to an operator currently using the system. In one embodiment, the system includes input circuitry connected to a microphone and including signal processing and control sections for sensing the level of vocabulary recognition over a given period and, if recognition performance falls below a given level, processing audio-derived signals for enhancing recognition performance of the system.

  8. Smart command recognizer (SCR) - For development, test, and implementation of speech commands

    NASA Technical Reports Server (NTRS)

    Simpson, Carol A.; Bunnell, John W.; Krones, Robert R.

    1988-01-01

    The SCR, a rapid prototyping system for the development, testing, and implementation of speech commands in a flight simulator or test aircraft, is described. A single unit performs all functions needed during these three phases of system development, while the use of common software and speech command data structure files greatly reduces the preparation time for successive development phases. As a smart peripheral to a simulation or flight host computer, the SCR interprets the pilot's spoken input and passes command codes to the simulation or flight computer.

  9. Design of an all-attitude flight control system to execute commanded bank angles and angles of attack

    NASA Technical Reports Server (NTRS)

    Burgin, G. H.; Eggleston, D. M.

    1976-01-01

    A flight control system for use in air-to-air combat simulation was designed. The input to the flight control system are commanded bank angle and angle of attack, the output are commands to the control surface actuators such that the commanded values will be achieved in near minimum time and sideslip is controlled to remain small. For the longitudinal direction, a conventional linear control system with gains scheduled as a function of dynamic pressure is employed. For the lateral direction, a novel control system, consisting of a linear portion for small bank angle errors and a bang-bang control system for large errors and error rates is employed.

  10. Assurance of lubricant supply in wet-lubricated space bearings

    NASA Technical Reports Server (NTRS)

    Glassow, F. A.

    1976-01-01

    Conventional lubrication techniques appear to be satisfactory, but rigorous proof of meeting a ten-year life requirement is lacking. One approach provides additional lubricant only when commanded from ground control, while the other passively augments lubrication at all times. Each technique has specific advantages, and selection should be related to the application to obtain optimum performance.

  11. Moving base simulation evaluation of translational rate command systems for STOVL aircraft in hover

    NASA Technical Reports Server (NTRS)

    Franklin, James A.; Stortz, Michael W.

    1996-01-01

    Using a generalized simulation model, a moving-base simulation of a lift-fan short takeoff/vertical landing fighter aircraft has been conducted on the Vertical Motion Simulator at Ames Research Center. Objectives of the experiment were to determine the influence of system bandwidth and phase delay on flying qualities for translational rate command and vertical velocity command systems. Assessments were made for precision hover control and for landings aboard an LPH type amphibious assault ship in the presence of winds and rough seas. Results obtained define the boundaries between satisfactory and adequate flying qualities for these design features for longitudinal and lateral translational rate command and for vertical velocity command.

  12. Literature review on medical incident command.

    PubMed

    Rimstad, Rune; Braut, Geir Sverre

    2015-04-01

    It is not known what constitutes the optimal emergency management system, nor is there a consensus on how effectiveness and efficiency in emergency response should be measured or evaluated. Literature on the role and tasks of commanders in the prehospital emergency services in the setting of mass-casualty incidents has not been summarized and published. This comprehensive literature review addresses some of the needs for future research in emergency management through three research questions: (1) What are the basic assumptions underlying incident command systems (ICSs)? (2) What are the tasks of ambulance and medical commanders in the field? And (3) How can field commanders' performances be measured and assessed? A systematic literature search in MEDLINE, PubMed, PsycINFO, Embase, Cochrane Central Register of Controlled Trials, Cochrane Library, ISI Web of Science, Scopus, International Security & Counter Terrorism Reference Center, Current Controlled Trials, and PROSPERO covering January 1, 1990 through March 1, 2014 was conducted. Reference lists of included literature were hand searched. Included papers were analyzed using Framework synthesis. The literature search identified 6,049 unique records, of which, 76 articles and books where included in qualitative synthesis. Most ICSs are described commonly as hierarchical, bureaucratic, and based on military principles. These assumptions are contested strongly, as is the applicability of such systems. Linking of the chains of command in cooperating agencies is a basic difficulty. Incident command systems are flexible in the sense that the organization may be expanded as needed. Commanders may command by direction, by planning, or by influence. Commanders' tasks may be summarized as: conducting scene assessment, developing an action plan, distributing resources, monitoring operations, and making decisions. There is considerable variation between authors in nomenclature and what tasks are included or highlighted. There are no widely acknowledged measurement tools of commanders' performances, though several performance indicators have been suggested. The competence and experience of the commanders, upon which an efficient ICS has to rely, cannot be compensated significantly by plans and procedures, or even by guidance from superior organizational elements such as coordination centers. This study finds that neither a certain system or structure, or a specific set of plans, are better than others, nor can it conclude what system prerequisites are necessary or sufficient for efficient incident management. Commanders need to be sure about their authority, responsibility, and the functional demands posed upon them.

  13. Space vehicle onboard command encoder

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A flexible onboard encoder system was designed for the space shuttle. The following areas were covered: (1) implementation of the encoder design into hardware to demonstrate the various encoding algorithms/code formats, (2) modulation techniques in a single hardware package to maintain comparable reliability and link integrity of the existing link systems and to integrate the various techniques into a single design using current technology. The primary function of the command encoder is to accept input commands, generated either locally onboard the space shuttle or remotely from the ground, format and encode the commands in accordance with the payload input requirements and appropriately modulate a subcarrier for transmission by the baseband RF modulator. The following information was provided: command encoder system design, brassboard hardware design, test set hardware and system packaging, and software.

  14. Decrease in medical command errors with use of a "standing orders" protocol system.

    PubMed

    Holliman, C J; Wuerz, R C; Meador, S A

    1994-05-01

    The purpose of this study was to determine the physician medical command error rates and paramedic error rates after implementation of a "standing orders" protocol system for medical command. These patient-care error rates were compared with the previously reported rates for a "required call-in" medical command system (Ann Emerg Med 1992; 21(4):347-350). A secondary aim of the study was to determine if the on-scene time interval was increased by the standing orders system. Prospectively conducted audit of prehospital advanced life support (ALS) trip sheets was made at an urban ALS paramedic service with on-line physician medical command from three local hospitals. All ALS run sheets from the start time of the standing orders system (April 1, 1991) for a 1-year period ending on March 30, 1992 were reviewed as part of an ongoing quality assurance program. Cases were identified as nonjustifiably deviating from regional emergency medical services (EMS) protocols as judged by agreement of three physician reviewers (the same methodology as a previously reported command error study in the same ALS system). Medical command and paramedic errors were identified from the prehospital ALS run sheets and categorized. Two thousand one ALS runs were reviewed; 24 physician errors (1.2% of the 1,928 "command" runs) and eight paramedic errors (0.4% of runs) were identified. The physician error rate was decreased from the 2.6% rate in the previous study (P < .0001 by chi 2 analysis). The on-scene time interval did not increase with the "standing orders" system.(ABSTRACT TRUNCATED AT 250 WORDS)

  15. Ensemble forecasting of short-term system scale irrigation demands using real-time flow data and numerical weather predictions

    NASA Astrophysics Data System (ADS)

    Perera, Kushan C.; Western, Andrew W.; Robertson, David E.; George, Biju; Nawarathna, Bandara

    2016-06-01

    Irrigation demands fluctuate in response to weather variations and a range of irrigation management decisions, which creates challenges for water supply system operators. This paper develops a method for real-time ensemble forecasting of irrigation demand and applies it to irrigation command areas of various sizes for lead times of 1 to 5 days. The ensemble forecasts are based on a deterministic time series model coupled with ensemble representations of the various inputs to that model. Forecast inputs include past flow, precipitation, and potential evapotranspiration. These inputs are variously derived from flow observations from a modernized irrigation delivery system; short-term weather forecasts derived from numerical weather prediction models and observed weather data available from automatic weather stations. The predictive performance for the ensemble spread of irrigation demand was quantified using rank histograms, the mean continuous rank probability score (CRPS), the mean CRPS reliability and the temporal mean of the ensemble root mean squared error (MRMSE). The mean forecast was evaluated using root mean squared error (RMSE), Nash-Sutcliffe model efficiency (NSE) and bias. The NSE values for evaluation periods ranged between 0.96 (1 day lead time, whole study area) and 0.42 (5 days lead time, smallest command area). Rank histograms and comparison of MRMSE, mean CRPS, mean CRPS reliability and RMSE indicated that the ensemble spread is generally a reliable representation of the forecast uncertainty for short lead times but underestimates the uncertainty for long lead times.

  16. KSC-01pp1453

    NASA Image and Video Library

    2001-08-10

    KENNEDY SPACE CENTER, Fla. -- The STS-105 and Expedition Three crews give thumbs up on another opportunity to launch after a 24-hour weather delay. In red shirts, seated left to right, are STS-105 Mission Specialists Patrick Forrester and Daniel Barry, Pilot Rick Sturckow and Commander Scott Horowitz. In blue shirts are the Expedition Three crew, Commander Frank Culbertson, Vladimir Dezhurov and Mikhail Tyurin. Dezhurov and Tyurin are cosmonauts with the Russian Aviation and Space Agency. Highlighting the mission will be the rotation of the International Space Station crew, the third flight of an Italian-built Multi-Purpose Logistics Module delivering additional scientific racks, equipment and supplies for the Space Station, and two spacewalks. Included in the payload is the Early Ammonia Servicer (EAS) tank, which will be attached to the Station during the spacewalks. The EAS will be installed on the P6 truss, which holds the Station’s giant U.S. solar arrays, batteries and the cooling radiators. The EAS contains spare ammonia for the Station’s cooling system. The three-member Expedition Two crew will be returning to Earth aboard Discovery after a five-month stay on the Station. Launch is scheduled for 5:15 p.m. EDT Aug. 10

  17. KSC-02pd0691

    NASA Image and Video Library

    2002-05-15

    KENNEDY SPACE CENTER, FLA. - The STS-111 and Expedition 5 crews pose on top of the M-113 armored personnel carrier they practiced driving during emergency egress training at the pad. Standing, left to right, are Mission Commander Kenneth Cockrell, Mission Specialist Philippe Perrin, Expedition 5 member Peggy Whitson, Pilot Paul Lockhart and Mission Specialist Franklin Chang-Diaz; in front are Expedition 5 members Sergei Treschev (left) and Commander Valeri Korzun (right). The crews are taking part in Terminal Countdown Demonstration Test activities at KSC, which include a simulated launch countdown. Expedition 5 will travel to the International Space Station on mission STS-111 as the replacement crew for Expedition 4, who will return to Earth aboard Endeavour. Known as Utilization Flight -2, the mission includes attaching a Canadian-built mobile base system to the International Space Station that will enable the Canadarm2 robotic arm to move along a railway on the Station's truss to build and maintain the outpost. The crew will also replace a faulty wrist/roll joint on the Canadarm2 as well as unload almost three tons of experiments and supplies from the Italian-built Multi-Purpose Logistics Module Leonardo. Launch of Space Shuttle Endeavour on mission STS-111 is scheduled for May 30, 2002

  18. KSC-2011-5751

    NASA Image and Video Library

    2011-07-21

    CAPE CANAVERAL, Fla. -- The Convoy Command Center vehicle is positioned on the Shuttle Landing Facility (SLF) at NASA's Kennedy Space Center in Florida awaiting the landing of space shuttle Atlantis. The command vehicle is equipped to control critical communications between the crew still aboard Atlantis and the Launch Control Center. The team will monitor the health of the orbiter systems and direct convoy operations made up of about 40 vehicles, including 25 specially designed vehicles to assist the crew in leaving the shuttle, and prepare the vehicle for towing from the SLF to its processing hangar. Seen here is Chris Hasselbring, USA Operations Manager. Securing the space shuttle fleet's place in history, Atlantis marks the 26th nighttime landing of NASA's Space Shuttle Program and the 78th landing at Kennedy. Atlantis and its crew delivered to the International Space Station the Raffaello multi-purpose logistics module packed with more than 9,400 pounds of spare parts, equipment and supplies that will sustain station operations for the next year. STS-135 is the 33rd and final flight for Atlantis and the final mission of the Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Ben Smegelsky

  19. Command and Control of Joint Air Operations through Mission Command

    DTIC Science & Technology

    2016-06-01

    and outlines the C2 architecture systems, processes, and philosophy of com- mand required to enable mission command effectively. Mission Command...General Dempsey highlights the fact that “trust is the moral sinew that binds the distributed Joint Force 2020 together” and observes that “unless...con- fident about how their subordinates will make decisions and adapt to the dynamic battlespace environment. Processes, Systems, and Philosophy of

  20. 14 CFR Special Federal Aviation... - Process for Requesting Waiver of Mandatory Separation Age for a Federal Aviation Administration...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Stations, Enroute or Terminal Facilities, and the David J. Hurley Air Traffic Control System Command Center... Stations, Enroute or Terminal Facilities, and the David J. Hurley Air Traffic Control System Command Center..., enroute facilities, terminal facilities, or at the David J. Hurley Air Traffic Control System Command...

  1. 14 CFR Special Federal Aviation... - Process for Requesting Waiver of Mandatory Separation Age for a Federal Aviation Administration...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Stations, Enroute or Terminal Facilities, and the David J. Hurley Air Traffic Control System Command Center... Stations, Enroute or Terminal Facilities, and the David J. Hurley Air Traffic Control System Command Center..., enroute facilities, terminal facilities, or at the David J. Hurley Air Traffic Control System Command...

  2. 14 CFR Special Federal Aviation... - Process for Requesting Waiver of Mandatory Separation Age for a Federal Aviation Administration...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Stations, Enroute or Terminal Facilities, and the David J. Hurley Air Traffic Control System Command Center... Stations, Enroute or Terminal Facilities, and the David J. Hurley Air Traffic Control System Command Center..., enroute facilities, terminal facilities, or at the David J. Hurley Air Traffic Control System Command...

  3. 14 CFR Special Federal Aviation... - Process for Requesting Waiver of Mandatory Separation Age for a Federal Aviation Administration...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Stations, Enroute or Terminal Facilities, and the David J. Hurley Air Traffic Control System Command Center... Stations, Enroute or Terminal Facilities, and the David J. Hurley Air Traffic Control System Command Center..., enroute facilities, terminal facilities, or at the David J. Hurley Air Traffic Control System Command...

  4. 77 FR 37006 - Privacy Act of 1974; System of Records

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-20

    ... 210, Peterson Air Force Base, CO 80914-4500. Back-up servers: U.S. Strategic Command (USSTRATCOM... JSME Project Manager, U.S. Strategic Command J663, 901 SAC Boulevard, Suite 3J11, Offutt Air Force Base...; System of Records AGENCY: U.S. Strategic Command (USSTRATCOM), DoD. ACTION: Notice to add a system of...

  5. Glossary

    MedlinePlus

    ... effective, directed treatments. Central Nervous System The "central command system" of the body, it includes the brain, ... The central nervous system (CNS) is the "central command system" of the body, and includes the brain, ...

  6. VAPEPS user's reference manual, version 5.0

    NASA Technical Reports Server (NTRS)

    Park, D. M.

    1988-01-01

    This is the reference manual for the VibroAcoustic Payload Environment Prediction System (VAPEPS). The system consists of a computer program and a vibroacoustic database. The purpose of the system is to collect measurements of vibroacoustic data taken from flight events and ground tests, and to retrieve this data and provide a means of using the data to predict future payload environments. This manual describes the operating language of the program. Topics covered include database commands, Statistical Energy Analysis (SEA) prediction commands, stress prediction command, and general computational commands.

  7. Requirements for the Military Message System (MMS) Family: Data Types and User Commands.

    DTIC Science & Technology

    1986-04-11

    AD-A167 126 REQUIREMENTS FOR THE MILITARY MESSASE SYSTEM (NHS) i FRILY: DATA TYPES AND USER CONNNDS(U) NAVAL RESEARCH LAB WASHINGTON DC C L HEITHEVER... System (MMS) Family: Data Types and User Commands CONSTANCE L. HEITMEYER Computer Science and Systems Branch I Information Technology Division April 11...Security Classification) Requirements for the Military Message System (MMS) Family: Data Types and User Commands 12. PERSONAL AUTHOR(S) Heitmeer, Constance

  8. STS-111 Onboard Photo of Endeavour Docking With PMA-2

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The STS-111 mission, the 14th Shuttle mission to visit the International Space Station (ISS), was launched on June 5, 2002 aboard the Space Shuttle Orbiter Endeavour. On board were the STS-111 and Expedition Five crew members. Astronauts Kerneth D. Cockrell, commander; Paul S. Lockhart, pilot, and mission specialists Franklin R. Chang-Diaz and Philippe Perrin were the STS-111 crew members. Expedition Five crew members included Cosmonaut Valeri G. Korzun, commander, Astronaut Peggy A. Whitson and Cosmonaut Sergei Y. Treschev, flight engineers. Three space walks enabled the STS-111 crew to accomplish mission objectives: The delivery and installation of the Mobile Remote Servicer Base System (MBS), an important part of the Station's Mobile Servicing System that allows the robotic arm to travel the length of the Station, which is necessary for future construction tasks; the replacement of a wrist roll joint on the Station's robotic arm; and the task of unloading supplies and science experiments from the Leonardo multipurpose Logistics Module, which made its third trip to the orbital outpost. In this photograph, the Space Shuttle Endeavour, back dropped by the blackness of space, is docked to the pressurized Mating Adapter (PMA-2) at the forward end of the Destiny Laboratory on the ISS. Endeavour's robotic arm is in full view as it is stretched out with the S0 (S-zero) Truss at its end.

  9. STS-111 crew on top of Launch Pad 39-A during TCDT

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- During Terminal Countdown Demonstration Test activities at Launch Pad 39A, the Expedition 5 and STS-111 crews pose on the 295-foot level. Standing, left to right, are Pilot Paul Lockhart, and the Expedition 5 crew Peggy Whitson, Commander Valeri Korzun and Sergei Treschev. Kneeling in front are Mission Specialist Philippe Perrin, Commander Kenneth Cockrell and Mission Specialist Franklin Chang-Diaz. Korzun and Treschev are with the Russian Space Agency, and Perrin is with the French Space Agency. Seen behind the crews are the top of the orange external tank and one of the white solid rocket boosters. The TCDT includes emergency egress training at the pad and a simulated launch countdown. Mission STS-111 is known as Utilization Flight 2, carrying supplies and equipment in the Multi-Purpose Logistics Module Leonardo to the International Space Station. The payload also includes the Mobile Base System, which will be installed on the Mobile Transporter to complete the Canadian Mobile Servicing System, or MSS, and a replacement wrist/roll joint for Canadarm 2. The mechanical arm will then have the capability to 'inchworm' from the U.S. Lab Destiny to the MSS and travel along the truss to work sites. Expedition 5 will travel to the Station on Endeavour as the replacement crew for Expedition 4, who will return to Earth aboard the orbiter. Launch is scheduled for May 30, 2002.

  10. International Space Station (ISS)

    NASA Image and Video Library

    2002-06-09

    The STS-111 mission, the 14th Shuttle mission to visit the International Space Station (ISS), was launched on June 5, 2002 aboard the Space Shuttle Orbiter Endeavour. On board were the STS-111 and Expedition Five crew members. Astronauts Kerneth D. Cockrell, commander; Paul S. Lockhart, pilot, and mission specialists Franklin R. Chang-Diaz and Philippe Perrin were the STS-111 crew members. Expedition Five crew members included Cosmonaut Valeri G. Korzun, commander, Astronaut Peggy A. Whitson and Cosmonaut Sergei Y. Treschev, flight engineers. Three space walks enabled the STS-111 crew to accomplish the delivery and installation of the Mobile Remote Servicer Base System (MBS), an important part of the Station's Mobile Servicing System that allows the robotic arm to travel the length of the Station, which is necessary for future construction tasks; the replacement of a wrist roll joint on the Station's robotic arm; and the task of unloading supplies and science experiments from the Leonardo multipurpose Logistics Module, which made its third trip to the orbital outpost. In this photograph, the Space Shuttle Endeavour, back dropped by the blackness of space, is docked to the pressurized Mating Adapter (PMA-2) at the forward end of the Destiny Laboratory on the ISS. A portion of the Canadarm2 is visible on the right and Endeavour's robotic arm is in full view as it is stretched out with the S0 (S-zero) Truss at its end.

  11. International Space Station (ISS)

    NASA Image and Video Library

    2002-06-09

    The STS-111 mission, the 14th Shuttle mission to visit the International Space Station (ISS), was launched on June 5, 2002 aboard the Space Shuttle Orbiter Endeavour. On board were the STS-111 and Expedition Five crew members. Astronauts Kerneth D. Cockrell, commander; Paul S. Lockhart, pilot, and mission specialists Franklin R. Chang-Diaz and Philippe Perrin were the STS-111 crew members. Expedition Five crew members included Cosmonaut Valeri G. Korzun, commander, Astronaut Peggy A. Whitson and Cosmonaut Sergei Y. Treschev, flight engineers. Three space walks enabled the STS-111 crew to accomplish mission objectives: The delivery and installation of the Mobile Remote Servicer Base System (MBS), an important part of the Station's Mobile Servicing System that allows the robotic arm to travel the length of the Station, which is necessary for future construction tasks; the replacement of a wrist roll joint on the Station's robotic arm; and the task of unloading supplies and science experiments from the Leonardo multipurpose Logistics Module, which made its third trip to the orbital outpost. In this photograph, the Space Shuttle Endeavour, back dropped by the blackness of space, is docked to the pressurized Mating Adapter (PMA-2) at the forward end of the Destiny Laboratory on the ISS. Endeavour's robotic arm is in full view as it is stretched out with the S0 (S-zero) Truss at its end.

  12. KSC-02pd0705

    NASA Image and Video Library

    2002-05-17

    KENNEDY SPACE CENTER, FLA. -- During Terminal Countdown Demonstration Test activities at Launch Pad 39A, the Expedition 5 and STS-111 crews pose on the 295-foot level. Standing, left to right, are Pilot Paul Lockhart, and the Expedition 5 crew Peggy Whitson, Commander Valeri Korzun and Sergei Treschev. Kneeling in front are Mission Specialist Philippe Perrin, Commander Kenneth Cockrell and Mission Specialist Franklin Chang-Diaz. Korzun and Treschev are with the Russian Space Agency, and Perrin is with the French Space Agency. Seen behind the crews are the top of the orange external tank and one of the white solid rocket boosters. The TCDT includes emergency egress training at the pad and a simulated launch countdown. Mission STS-111 is known as Utilization Flight 2, carrying supplies and equipment in the Multi-Purpose Logistics Module Leonardo to the International Space Station. The payload also includes the Mobile Base System, which will be installed on the Mobile Transporter to complete the Canadian Mobile Servicing System, or MSS, and a replacement wrist/roll joint for Canadarm 2. The mechanical arm will then have the capability to "inchworm" from the U.S. Lab Destiny to the MSS and travel along the truss to work sites. Expedition 5 will travel to the Station on Endeavour as the replacement crew for Expedition 4, who will return to Earth aboard the orbiter. Launch is scheduled for May 30, 2002

  13. High voltage DC power supply

    DOEpatents

    Droege, T.F.

    1989-12-19

    A high voltage DC power supply having a first series resistor at the output for limiting current in the event of a short-circuited output, a second series resistor for sensing the magnitude of output current, and a voltage divider circuit for providing a source of feedback voltage for use in voltage regulation is disclosed. The voltage divider circuit is coupled to the second series resistor so as to compensate the feedback voltage for a voltage drop across the first series resistor. The power supply also includes a pulse-width modulated control circuit, having dual clock signals, which is responsive to both the feedback voltage and a command voltage, and also includes voltage and current measuring circuits responsive to the feedback voltage and the voltage developed across the second series resistor respectively. 7 figs.

  14. High voltage DC power supply

    DOEpatents

    Droege, Thomas F.

    1989-01-01

    A high voltage DC power supply having a first series resistor at the output for limiting current in the event of a short-circuited output, a second series resistor for sensing the magnitude of output current, and a voltage divider circuit for providing a source of feedback voltage for use in voltage regulation is disclosed. The voltage divider circuit is coupled to the second series resistor so as to compensate the feedback voltage for a voltage drop across the first series resistor. The power supply also includes a pulse-width modulated control circuit, having dual clock signals, which is responsive to both the feedback voltage and a command voltage, and also includes voltage and current measuring circuits responsive to the feedback voltage and the voltage developed across the second series resistor respectively.

  15. An Advanced Commanding and Telemetry System

    NASA Astrophysics Data System (ADS)

    Hill, Maxwell G. G.

    The Loral Instrumentation System 500 configured as an Advanced Commanding and Telemetry System (ACTS) supports the acquisition of multiple telemetry downlink streams, and simultaneously supports multiple uplink command streams for today's satellite vehicles. By using industry and federal standards, the system is able to support, without relying on a host computer, a true distributed dataflow architecture that is complemented by state-of-the-art RISC-based workstations and file servers.

  16. The Combat Vehicle Command and Control System: Combat Performance of Armor Battalions Using Interactive Simulation

    DTIC Science & Technology

    1994-05-01

    Command and Control display. Using Ml tank simulators in the Mounted Warfare Test Bed at Fort Knox, Kentucky, the researchers evaluated tank battalion... Warfare Test Bed (MWTB) at Fort Knox, Kentucky, eight MOS-qualified armor crews (battalion commander, battalion opera- tions officer, three company...concerned with identifying ways that the CVCC system might best benefit the battlefield commander, and potential modifications to mounted warfare TTPs

  17. The Command and Control of the Grand Armee: Napoleon as Organizational Designer

    DTIC Science & Technology

    2009-06-01

    AUTHOR(S) Norman L. Durham 5. FUNDING NUMBERS 7 . PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Naval Postgraduate School Monterey, CA 93943-5000...served as the framework for a highly effective command and control system. This command and control network allowed Napoleon to dominate a war with...within his organizational design was a vast information network that served as the framework for a highly effective command and control system. This

  18. Apparatus and method for data communication in an energy distribution network

    DOEpatents

    Hussain, Mohsin; LaPorte, Brock; Uebel, Udo; Zia, Aftab

    2014-07-08

    A system for communicating information on an energy distribution network is disclosed. In one embodiment, the system includes a local supervisor on a communication network, wherein the local supervisor can collect data from one or more energy generation/monitoring devices. The system also includes a command center on the communication network, wherein the command center can generate one or more commands for controlling the one or more energy generation devices. The local supervisor can periodically transmit a data signal indicative of the data to the command center via a first channel of the communication network at a first interval. The local supervisor can also periodically transmit a request for a command to the command center via a second channel of the communication network at a second interval shorter than the first interval. This channel configuration provides effective data communication without a significant increase in the use of network resources.

  19. KSC-01pp0406

    NASA Image and Video Library

    2001-03-04

    After arrival at the Shuttle Landing Facility, STS-102 Mission Specialist Yury Usachev laughs at a comment from the media. At the right can be seen Commander James Wetherbee. The crew is making the eighth construction flight to the International Space Station. In addition, Usachev is part of the Expedition Two crew who will be replacing Expedition One on the Station. STS-102 will be carrying the Multi-Purpose Logistics Module Leonardo, the primary delivery system used to resupply and return Station cargo requiring a pressurized environment. Leonardo will deliver up to 10 tons of laboratory racks filled with equipment, experiments and supplies for outfitting the newly installed U.S. Laboratory Destiny. STS-102 is scheduled to launch March 8 at 6:42 a.m. EST

  20. Application Of Optical Techniques To Command, Control, And Communications (C3) Systems

    NASA Astrophysics Data System (ADS)

    Weinberg, M.; Steensma, P. D.

    1981-02-01

    This paper identifies and discusses specific applications of the optical transmission technology to various Command Control and Communications (C3) systems. Candidate C3 systems will first be identified and discussed briefly. These will include: 407L/485L Tactical Air Defense Systems (USAF) TAOC-85 Tactical Air Operations Central (USMC) SACDIN Strategic Air Command Digital Integrated Network (USAF) MX-C3 Missile "X" Command Control Communications Network The first tr are classified as tactical C3 systems while the latter two are classified as strategic C systems. Potential optical applications will be identified along with the benefits derived. Each application will be discussed with key parameters, cost performance benefits, potential problem areas, time frame for development identified.

  1. Simulation and optimization model for irrigation planning and management

    NASA Astrophysics Data System (ADS)

    Kuo, Sheng-Feng; Liu, Chen-Wuing

    2003-10-01

    A simulation and optimization model was developed and applied to an irrigated area in Delta, Utah to optimize the economic benefit, simulate the water demand, and search the related crop area percentages with specified water supply and planted area constraints. The user interface model begins with the weather generation submodel, which produces daily weather data, which is based on long-term monthly average and standard deviation data from Delta, Utah. To simulate the daily crop water demand and relative crop yield for seven crops in two command areas, the information provided by this submodel was applied to the on-farm irrigation scheduling submodel. Furthermore, to optimize the project benefit by searching for the best allocation of planted crop areas given the constraints of projected water supply, the results were employed in the genetic algorithm submodel. Optimal planning for the 394·6-ha area of the Delta irrigation project is projected to produce the maximum economic benefit. That is, projected profit equals US$113 826 and projected water demand equals 3·03 × 106 m3. Also, area percentages of crops within UCA#2 command area are 70·1%, 19% and 10·9% for alfalfa, barley and corn, respectively, and within UCA#4 command area are 41·5%, 38·9%, 14·4% and 5·2% for alfalfa, barley, corn and wheat, respectively. As this model can plan irrigation application depths and allocate crop areas for optimal economic benefit, it can thus be applied to many irrigation projects. Copyright

  2. Integrated command, control, communications and computation system functional architecture

    NASA Technical Reports Server (NTRS)

    Cooley, C. G.; Gilbert, L. E.

    1981-01-01

    The functional architecture for an integrated command, control, communications, and computation system applicable to the command and control portion of the NASA End-to-End Data. System is described including the downlink data processing and analysis functions required to support the uplink processes. The functional architecture is composed of four elements: (1) the functional hierarchy which provides the decomposition and allocation of the command and control functions to the system elements; (2) the key system features which summarize the major system capabilities; (3) the operational activity threads which illustrate the interrelationahip between the system elements; and (4) the interfaces which illustrate those elements that originate or generate data and those elements that use the data. The interfaces also provide a description of the data and the data utilization and access techniques.

  3. Information retrieval and display system

    NASA Technical Reports Server (NTRS)

    Groover, J. L.; King, W. L.

    1977-01-01

    Versatile command-driven data management system offers users, through simplified command language, a means of storing and searching data files, sorting data files into specified orders, performing simple or complex computations, effecting file updates, and printing or displaying output data. Commands are simple to use and flexible enough to meet most data management requirements.

  4. View of Atlantis leaving the ISS

    NASA Image and Video Library

    2011-07-19

    ISS028-E-017501 (19 July 2011) --- This picture of the space shuttle Atlantis was photographed from the International Space Station as the orbiting complex and the shuttle performed their relative separation in the early hours of July 19, 2011. The Raffaello multi-purpose logistics module, which transported tons of supplies to the complex, can be seen in the cargo bay. It is filled with different materials from the station for return to Earth. Onboard the station were Russian cosmonauts Andrey Borisenko, commander; Sergei Volkov and Alexander Samokutyaev, both flight engineers; Japan Aerospace Exploration astronaut Satoshi Furukawa, and NASA astronauts Mike Fossum and Ron Garan, all flight engineers. Onboard the shuttle were NASA astronauts Chris Ferguson, commander; Doug Hurley, pilot; and Sandy Magnus and Rex Walheim, both mission specialists.

  5. PCDAQ, A Windows Based DAQ System

    NASA Astrophysics Data System (ADS)

    Hogan, Gary

    1998-10-01

    PCDAQ is a Windows NT based general DAQ/Analysis/Monte Carlo shell developed as part of the Proton Radiography project at LANL (Los Alamos National Laboratory). It has been adopted by experiments outside of the Proton Radiography project at Brookhaven National Laboratory (BNL) and at LANL. The program provides DAQ, Monte Carlo, and replay (disk file input) modes. Data can be read from hardware (CAMAC) or other programs (ActiveX servers). Future versions will read VME. User supplied data analysis routines can be written in Fortran, C++, or Visual Basic. Histogramming, testing, and plotting packages are provided. Histogram data can be exported to spreadsheets or analyzed in user supplied programs. Plots can be copied and pasted as bitmap objects into other Windows programs or printed. A text database keyed by the run number is provided. Extensive software control flags are provided so that the user can control the flow of data through the program. Control flags can be set either in script command files or interactively. The program can be remotely controlled and data accessed over the Internet through its ActiveX DCOM interface.

  6. Control apparatus and method for efficiently heating a fuel processor in a fuel cell system

    DOEpatents

    Doan, Tien M.; Clingerman, Bruce J.

    2003-08-05

    A control apparatus and method for efficiently controlling the amount of heat generated by a fuel cell processor in a fuel cell system by determining a temperature error between actual and desired fuel processor temperatures. The temperature error is converted to a combustor fuel injector command signal or a heat dump valve position command signal depending upon the type of temperature error. Logic controls are responsive to the combustor fuel injector command signals and the heat dump valve position command signal to prevent the combustor fuel injector command signal from being generated if the heat dump valve is opened or, alternately, from preventing the heat dump valve position command signal from being generated if the combustor fuel injector is opened.

  7. Built-In Diagnostics (BID) Of Equipment/Systems

    NASA Technical Reports Server (NTRS)

    Granieri, Michael N.; Giordano, John P.; Nolan, Mary E.

    1995-01-01

    Diagnostician(TM)-on-Chip (DOC) technology identifies faults and commands systems reconfiguration. Smart microcontrollers operating in conjunction with other system-control circuits, command self-correcting system/equipment actions in real time. DOC microcontroller generates commands for associated built-in test equipment to stimulate unit of equipment diagnosed, collects and processes response data obtained by built-in test equipment, and performs diagnostic reasoning on response data, using diagnostic knowledge base derived from design data.

  8. Circuit Regulates Speed Of dc Motor

    NASA Technical Reports Server (NTRS)

    Weaver, Charles; Padden, Robin; Brown, Floyd A., Jr.

    1990-01-01

    Driving circuit regulates speed of small dc permanent-magnet motor in tape recorder. Two nested feedback loops maintain speed within 1 percent of constant value. Inner loop provides coarse regulation, while outer loop removes most of variation in speed that remains in the presence of regulation by the inner loop. Compares speed of motor with commanded speed and adjusts current supplied to motor accordingly.

  9. Increase the Government Purchase Card Limit

    DTIC Science & Technology

    2014-06-01

    Acquisition BPA blanket purchase agreement CCPMD Consolidated Card Program Management Division COTS commercial, off-the-shelf CPI consumer price index...purchase agreements ( BPA ) or indefinite delivery/indefinite quantity (ID/IQ) contracts for repetitive orders. This authority is discussed further in...where they can purchase up to $150,000 in supplies from established mandatory sources and BPAs , for example. (3) Fewer commands have “ordering 2

  10. Analysis of Army Contracting Command Contract Specialist Vacancy Announcements

    DTIC Science & Technology

    2010-09-01

    program CPCM Certified Professional Contracts Manager CPM Certified Purchasing Manager CPOL Civilian Personnel Online CPSM Certified...experience, a Bachelor’s degree and the applicant is 28 required to pass three CPSM examinations. (2) The Certified Purchasing Manager Program ( CPM ...is currently being phased out and is available only for recertification. The CPM required five years of full time professional supply management

  11. Guidance and Control of a Man-Portable Precision Munition Concept

    DTIC Science & Technology

    2014-06-01

    challenges posed by characteristics of spin-stabilized flight dynamics such as limit cycles, center -of- gravity swerve, instability, and practical...Control Line-of-sight rate and closing velocity estimates are used to form proportional navigation commands in classical guidance schemes...Accelerometers and gyroscopes often supply additional necessary feedback. The accelerometers ensure that the airframe is maneuvering the center of gravity

  12. 67. Photocopy of Rudder Bearing Quadrant, Skeg and Rudder Stops. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    67. Photocopy of Rudder Bearing Quadrant, Skeg and Rudder Stops. Erie Concrete & Steel Supply Company, Shipbuilding Division, Erie, Pennsylvania. Coast Guard Headquarters Drawing No. 540-WAGL-2200-17 (right side), dated May 1943. Original drawing property of the U.S. Coast Guard. - U.S. Coast Guard Cutter WHITE HEATH, USGS Integrated Support Command Boston, 427 Commercial Street, Boston, Suffolk County, MA

  13. 66. Photocopy of Rudder Bearing Quadrant, Skeg and Rudder Stops. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    66. Photocopy of Rudder Bearing Quadrant, Skeg and Rudder Stops. Erie Concrete & Steel Supply Company, Shipbuilding Division, Erie, Pennsylvania. Coast Guard Headquarters Drawing No. 540-WAGL-2200-17 (left side), dated May 1943. Original drawing property of the U.S. Coast Guard. - U.S. Coast Guard Cutter WHITE HEATH, USGS Integrated Support Command Boston, 427 Commercial Street, Boston, Suffolk County, MA

  14. Regional Alignment: Phase Zero Logistics Implications

    DTIC Science & Technology

    2014-05-01

    Brigade TDC Theater Distribution Center TPFDL Time Phased Force Deployment List TSC Theater Sustainment Command v INTRODUCTION Not only are...Center ( TDC ) capability in response to the backlog of supplies and equipment required during major combat operation. The TDC was a contracted...organization, constructed to support units based on amount personnel and equipment. This TDC concept was a part of the logistics concept that supported

  15. Fully Adaptive Radar Modeling and Simulation Development

    DTIC Science & Technology

    2017-04-01

    Graeme E . Smith The Ohio State University Bruce L. McKinley Signal Processing Consultants, Inc. APRIL 2017 Final Report THIS IS A...AIR FORCE MATERIEL COMMAND UNITED STATES AIR FORCE NOTICE AND SIGNATURE PAGE Using Government drawings, specifications, or other data ...formulated or supplied the drawings, specifications, or other data does not license the holder or any other person or corporation; or convey any

  16. KENNEDY SPACE CENTER, FLA. - The STS-114 crew stands underneath Discovery in the Orbiter Processing Facility. From left are Mission Specialist Stephen Robinson, Pilot James Kelly, Mission Specialist Charles Camarda, astronaut John Young, Commander Eileen Collins and Mission Specialists Andrew Thomas, Wendy Lawrence and Soichi Noguchi, who is with the Japanese Aerospace and Exploration Agency. Young is associate director, Technical, at Johnson Space Center. The crew is spending time becoming familiar with Shuttle and mission equipment. The mission is Logistics Flight 1, which is scheduled to deliver supplies and equipment plus the external stowage platform to the International Space Station.

    NASA Image and Video Library

    2004-03-05

    KENNEDY SPACE CENTER, FLA. - The STS-114 crew stands underneath Discovery in the Orbiter Processing Facility. From left are Mission Specialist Stephen Robinson, Pilot James Kelly, Mission Specialist Charles Camarda, astronaut John Young, Commander Eileen Collins and Mission Specialists Andrew Thomas, Wendy Lawrence and Soichi Noguchi, who is with the Japanese Aerospace and Exploration Agency. Young is associate director, Technical, at Johnson Space Center. The crew is spending time becoming familiar with Shuttle and mission equipment. The mission is Logistics Flight 1, which is scheduled to deliver supplies and equipment plus the external stowage platform to the International Space Station.

  17. Survey of Command Execution Systems for NASA Spacecraft and Robots

    NASA Technical Reports Server (NTRS)

    Verma, Vandi; Jonsson, Ari; Simmons, Reid; Estlin, Tara; Levinson, Rich

    2005-01-01

    NASA spacecraft and robots operate at long distances from Earth Command sequences generated manually, or by automated planners on Earth, must eventually be executed autonomously onboard the spacecraft or robot. Software systems that execute commands onboard are known variously as execution systems, virtual machines, or sequence engines. Every robotic system requires some sort of execution system, but the level of autonomy and type of control they are designed for varies greatly. This paper presents a survey of execution systems with a focus on systems relevant to NASA missions.

  18. Decisionmaking in Military Command Teams: An Experimental Study

    DTIC Science & Technology

    1992-03-01

    of the problems that remain to be solved by systems designers . The Fogarty report concluded that "The AEGIS combat system’s performance was excellent...1989). He maintains that the designers of the AEGIS system failed to incorporate enough human engineering in their design . Without addressing the fault...Naval Command Teams (RAINCOAT), Composite Warfare Commander - Destributed Dynamc Decisionmaking ICWC-[I)), resource coordination, resource effectiveness

  19. Flight test results for a separate surface stability augmented Beech model 99

    NASA Technical Reports Server (NTRS)

    Jenks, G. E.; Henry, H. F.; Roskam, J.

    1977-01-01

    A flight evaluation of a Beech model 99 equipped with an attitude command control system incorporating separate surface stability augmentation (SSSA) was conducted to determine whether an attitude command control system could be implemented using separate surface controls, and to determine whether the handling and ride qualities of the aircraft were improved by the SSSA attitude command system. The results of the program revealed that SSSA is a viable approach to implementing attitude command and also that SSSA has the capability of performing less demanding augmentation tasks such as yaw damping, wing leveling, and pitch damping. The program also revealed that attitude command did improve the pilot rating and ride qualities of the airplane while flying an IFR mission in turbulence. Some disadvantages of the system included the necessity of holding aileron force in a banked turn and excessive stiffness in the pitch axis.

  20. Adjustable impedance, force feedback and command language aids for telerobotics (parts 1-4 of an 8-part MIT progress report)

    NASA Technical Reports Server (NTRS)

    Sheridan, Thomas B.; Raju, G. Jagganath; Buzan, Forrest T.; Yared, Wael; Park, Jong

    1989-01-01

    Projects recently completed or in progress at MIT Man-Machine Systems Laboratory are summarized. (1) A 2-part impedance network model of a single degree of freedom remote manipulation system is presented in which a human operator at the master port interacts with a task object at the slave port in a remote location is presented. (2) The extension of the predictor concept to include force feedback and dynamic modeling of the manipulator and the environment is addressed. (3) A system was constructed to infer intent from the operator's commands and the teleoperation context, and generalize this information to interpret future commands. (4) A command language system is being designed that is robust, easy to learn, and has more natural man-machine communication. A general telerobot problem selected as an important command language context is finding a collision-free path for a robot.

  1. POBAL-S, the analysis and design of a high altitude airship. Final report, October 1972--March 1975. [For station keeping at an altitude of 21 km for 7 days; 500 W fuel cell power supply

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beemer, J.D.; Parsons, R.R.; Rueter, L.L.

    1975-02-01

    An engineering analysis and development effort has been executed to design a superpressure airship, POBAL-S, capable of station keeping at an altitude of 21 kilometers for a duration of 7 days while supporting a payload weighing 890 Newtons and requiring 500 watts of electrical power. A detailed parametric trade-off between various power sources and other design choices was performed. The computer program used to accomplish this analysis is described and many results are presented. The system concept which resulted was a fuel cell powered, propeller driven airship controlled by an on-board autopilot with basic commands telemetered from a ground controlmore » station. Design of the balloon, power train, gimbaled propeller assembly, and electronic/electrical systems is presented. Flight operations for launch and recovery are discussed.« less

  2. Managing the On-Board Data Storage, Acknowledgment and Retransmission System for Spitzer

    NASA Technical Reports Server (NTRS)

    Sarrel, Marc A.; Carrion, Carlos; Hunt, Joseph C., Jr.

    2006-01-01

    The Spitzer Space Telescope has a two-phase downlink system. Data are transmitted during one telecom session. Then commands are sent during the next session to delete those data that were received and to retransmit those data that were missed. We must build sequences that are as efficient as possible to make the best use of our finite supply of liquid helium, One way to improve efficiency is to use only the minimum time needed during telecom sessions to transmit the predicted volume of data. But, we must also not fill the onboard storage and must allow enough time margin to retransmit missed data. We describe tools and procedures that allow us to build observatory sequences that are single-fault tolerant in this regard and that allow us to recover quickly and safely from anomalies that affect the receipt or acknowledgment of data.

  3. Managing the On-Board Data Storage, Acknowledgement and Retransmission System for Spitzer

    NASA Technical Reports Server (NTRS)

    Sarrel, Marc A.; Carrion, Carlos; Hunt, Joseph C., Jr.

    2006-01-01

    The Spitzer Space Telescope has a two-phase downlink system. Recorded data are transmitted during one telecom session. Then commands are sent during the next session to delete those data that were received on the ground and to retransmit those data that were missed. We must build science sequences that are as efficient as possible to make the best use of our supply of liquid helium. One way to improve efficiency is to use only the minimum time needed during telecom sessions to transmit the predicted volume of data. But, we must also not fill the on-board storage and must allow enough time margin to retransmit missed data. We describe tools and procedures that allow us to build science sequences that are single-fault tolerant in this regard and that allow us to recover quickly and safely from anomalies that affect the receipt or acknowledgment (i.e. deletion) of data.

  4. M1A2 Adjunct Analysis (POSNOV Volume)

    DTIC Science & Technology

    1989-12-01

    MD 20814-2797 Director 2 U.S. Army Materiel Systems Analysis Activity ATTN: AMXSY-CS, AMXSY-GA Aberden Proving Grounds , MD 21005-5071 U.S. Army...Leonard Wood, MO Commander U.S. Army Ordnance Center & School ATTN: ATSL-CD-CS Aberdeen Proving Ground , MD 21005 Commander 2 U.S. Army Soldier Support...NJ Commander U.S. Army Test and Evaluation Command ATrN: AMSTE-CM-R Aberdeen Proving Ground , MD 21005 Commander U.S. Army Tank Automotive Command

  5. Audit Oversight: Quality Control System at U.S. Special Operations Command Inspector General Audit Division

    DTIC Science & Technology

    2002-08-21

    The Audit Division provides the Commander, U.S. Special Operations Command (USSOCOM) with professional auditing services to safeguard, account for...and ensure the proper use of special operations forces assets in accomplishing the USSOCOM mission. The Audit Division reports to the USSOCOM Inspector...U.S. Army Special Operations Command, Naval Special Warfare Command, and the Joint Special Operations Command. Appendix A contains a summary of the Audit Division policy and procedures.

  6. No moving parts safe & arm apparatus and method with monitoring and built-in-test for optical firing of explosive systems

    DOEpatents

    Hendrix, J.L.

    1995-04-11

    A laser initiated ordnance controller apparatus which provides a safe and arm scheme with no moving parts. The safe & arm apparatus provides isolation of firing energy to explosive devices using a combination of polarization isolation and control through acousto-optical deviation of laser energy pulses. The apparatus provides constant monitoring of the systems status and performs 100% built-in-test at any time prior to ordnance ignition without the risk of premature ignition or detonation. The apparatus has a computer controller, a solid state laser, an acousto-optic deflector and RF drive circuitry, built-in-test optics and electronics, and system monitoring capabilities. The optical system is completed from the laser beam power source to the pyrotechnic ordnance through fiber optic cabling, optical splitters and optical connectors. During operation of the apparatus, a command is provided by the computer controller and, simultaneous with laser flashlamp fire, the safe & arm device is opened for approximately 200 microseconds which allows the laser pulse to transmit through the device. The arm signal also energizes the laser power supply and activates the acousto-optical deflector. When the correct fire format command is received, the acousto-optic deflector moves to the selected event channel, and the channel is verified to ensure the system is pointing to the correct position. Laser energy is transmitted through the fiber where an ignitor or detonator designed to be sensitive to optical pulses is fired at the end of the fiber channel. Simultaneous event channels may also be utilized by optically splitting a single event channel. The built-in-test may be performed anytime prior to ordnance ignition. 6 figures.

  7. No moving parts safe & arm apparatus and method with monitoring and built-in-test for optical firing of explosive systems

    DOEpatents

    Hendrix, James L.

    1995-01-01

    A laser initiated ordnance controller apparatus which provides a safe and m scheme with no moving parts. The safe & arm apparatus provides isolation of firing energy to explosive devices using a combination of polarization isolation and control through acousto-optical deviation of laser energy pulses. The apparatus provides constant monitoring of the systems status and performs 100% built-in-test at any time prior to ordnance ignition without the risk of premature ignition or detonation. The apparatus has a computer controller, a solid state laser, an acousto-optic deflector and RF drive circuitry, built-in-test optics and electronics, and system monitoring capabilities. The optical system is completed from the laser beam power source to the pyrotechnic ordnance through fiber optic cabling, optical splitters and optical connectors. During operation of the apparatus, a command is provided by the computer controller and, simultaneous with laser flashlamp fire, the safe & arm device is opened for approximately 200 microseconds which allows the laser pulse to transmit through the device. The arm signal also energizes the laser power supply and activates the acousto-optical deflector. When the correct fire format command is received, the acousto-optic deflector moves to the selected event channel, and the channel is verified to ensure the system is pointing to the correct position. Laser energy is transmitted through the fiber where an ignitor or detonator designed to be sensitive to optical pulses is fired at the end of the fiber channel. Simultaneous event channels may also be utilized by optically splitting a single event channel. The built-in-test may be performed anytime prior to ordnance ignition.

  8. Distance Learning Methodologies. TRANSCOM Regulating and Command & Control Evacuation System (TRAC2ES).

    ERIC Educational Resources Information Center

    Bloomquist, Carroll R.

    The TRANSCOM (Transportation Command) Regulating Command and Control Evacuation System (TRAC2ES), which applies state-of-the-art technology to manage global medical regulating (matching patients to clinical availability) and medical evacuation processes, will be installed at all Department of Defense medical locations globally. A combination of…

  9. AI challenges for spacecraft control programs

    NASA Technical Reports Server (NTRS)

    Lightfoot, Patricia

    1986-01-01

    The application of AI technology to the spacecraft and experiment command and control systems environment is proposed. The disadvantages of the present methods for analyzing and resolving spacecraft experiment command and control problems are discussed. The potential capabilities and advantages of using AI for the spacecraft and experiment command and control systems are described.

  10. 77 FR 13573 - Privacy Act of 1974; System of Records

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-07

    ... FR 71537). Reason: The system at Army Human Resource Command (AHRC) has been deactivated and records... (January 6, 2004, 69 FR 790). Reason: The files are no longer collected at Army Human Resource Command... 8183). Reason: The files are no longer collected at Army Human Resource Command, records have met the...

  11. User guide to a command and control system; a part of a prelaunch wind monitoring program

    NASA Technical Reports Server (NTRS)

    Cowgill, G. R.

    1976-01-01

    A set of programs called Command and Control System (CCS), intended as a user manual, is described for the operation of CCS by the personnel supporting the wind monitoring portion of the launch mission. Wind data obtained by tracking balloons is sent by electronic means using telephone lines to other locations. Steering commands are computed from a system called ADDJUST for the on-board computer and relays this data. Data are received and automatically stored in a microprocessor, then via a real time program transferred to the UNIVAC 1100/40 computer. At this point the data is available to be used by the Command and Control system.

  12. Commander Wilcutt works at the commander's workstation during STS-106

    NASA Image and Video Library

    2000-09-11

    STS106-352-009 (8-20 September 2000) --- Astronaut Terrence W. Wilcutt, STS-106 mission commander, performs a firing of the reaction control system on the flight deck of the Space Shuttle Atlantis. Earth’s horizon is visible through the commander’s window.

  13. Helicopter force-feel and stability augmentation system with parallel servo-actuator

    NASA Technical Reports Server (NTRS)

    Hoh, Roger H. (Inventor)

    2006-01-01

    A force-feel system is implemented by mechanically coupling a servo-actuator to and in parallel with a flight control system. The servo-actuator consists of an electric motor, a gearing device, and a clutch. A commanded cockpit-flight-controller position is achieved by pilot actuation of a trim-switch. The position of the cockpit-flight-controller is compared with the commanded position to form a first error which is processed by a shaping function to correlate the first error with a commanded force at the cockpit-flight-controller. The commanded force on the cockpit-flight-controller provides centering forces and improved control feel for the pilot. In an embodiment, the force-feel system is used as the basic element of stability augmentation system (SAS). The SAS provides a stabilization signal that is compared with the commanded position to form a second error signal. The first error is summed with the second error for processing by the shaping function.

  14. Step 1: Human System Integration Simulation and Flight Test Progress Report

    NASA Technical Reports Server (NTRS)

    2005-01-01

    The Access 5 Human Systems Integration Work Package produced simulation and flight demonstration planning products for use throughout the program. These included: Test Objectives for Command, Control, Communications; Pilot Questionnaire for Command, Control, Communications; Air Traffic Controller Questionnaire for Command, Control, Communications; Test Objectives for Collision Avoidance; Pilot Questionnaire for Collision Avoidance; Plans for Unmanned Aircraft Systems Control Station Simulations Flight Requirements for the Airspace Operations Demonstration

  15. 32 CFR 536.3 - Command and organizational relationships.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 3 2014-07-01 2014-07-01 false Command and organizational relationships. 536.3... ACCOUNTS CLAIMS AGAINST THE UNITED STATES The Army Claims System § 536.3 Command and organizational.... Army Claims Service. USARCS, a command and component of the Office of TJAG, is the agency through which...

  16. 32 CFR 536.3 - Command and organizational relationships.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 3 2012-07-01 2009-07-01 true Command and organizational relationships. 536.3... ACCOUNTS CLAIMS AGAINST THE UNITED STATES The Army Claims System § 536.3 Command and organizational.... Army Claims Service. USARCS, a command and component of the Office of TJAG, is the agency through which...

  17. 32 CFR 536.3 - Command and organizational relationships.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 3 2011-07-01 2009-07-01 true Command and organizational relationships. 536.3... ACCOUNTS CLAIMS AGAINST THE UNITED STATES The Army Claims System § 536.3 Command and organizational.... Army Claims Service. USARCS, a command and component of the Office of TJAG, is the agency through which...

  18. 32 CFR 536.3 - Command and organizational relationships.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 3 2010-07-01 2010-07-01 true Command and organizational relationships. 536.3... ACCOUNTS CLAIMS AGAINST THE UNITED STATES The Army Claims System § 536.3 Command and organizational.... Army Claims Service. USARCS, a command and component of the Office of TJAG, is the agency through which...

  19. 32 CFR 536.3 - Command and organizational relationships.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 3 2013-07-01 2013-07-01 false Command and organizational relationships. 536.3... ACCOUNTS CLAIMS AGAINST THE UNITED STATES The Army Claims System § 536.3 Command and organizational.... Army Claims Service. USARCS, a command and component of the Office of TJAG, is the agency through which...

  20. Pilot Non-Conformance to Alerting System Commands During Closely Spaced Parallel Approaches

    NASA Technical Reports Server (NTRS)

    Pritchett, Amy Ruth; Hansman, R. John; Corker, Kevin (Technical Monitor)

    1997-01-01

    Cockpit alerting systems monitor potentially hazardous situations, both inside and outside the aircraft. When a hazard is projected to occur, the alerting system displays alerts and/or command decisions to the pilot. However, pilots have been observed to not conform to alerting system commands by delaying their response or by not following the automatic commands exactly. This non-conformance to the automatic alerting system can reduce its benefit. Therefore, a need exists to understand the causes and effects of pilot non-conformance in order to develop automatic alerting systems whose commands the pilots are more likely to follow. These considerations were examined through flight simulator evaluations of the collision avoidance task during closely spaced parallel approaches. This task provided a useful case-study because the effects of non-conformance can be significant, given the time-critical nature of the task. A preliminary evaluation of alerting systems identified non-conformance in over 40% of the cases and a corresponding drop in collision avoidance performance. A follow-on experiment found subjects' alerting and maneuver selection criteria were consistent with different strategies than those used by automatic systems, indicating the pilot may potentially disagree with the alerting system if the pilot attempts to verify automatic alerts and commanded avoidance maneuvers. A final experiment found supporting automatic alerts with the explicit display of its underlying criteria resulted in more consistent subject reactions. In light of these experimental results, a general discussion of pilot non-conformance is provided. Contributing factors in pilot non-conformance include a lack of confidence in the automatic system and mismatches between the alerting system's commands and the pilots' own decisions based on the information available to them. The effects of non-conformance on system performance are discussed. Possible methods of reconciling mismatches are given, and design considerations for alerting systems which alleviate the problem of non-conformance are provided.

  1. A Productivity Enhancement Study for the U.S. Army Information Systems Engineering Command.

    DTIC Science & Technology

    1985-09-01

    This is not to say "doing one’s homework" is unimportant. It is as long as it does not snuff out enthusiasm and innovativeness. Peters tells us: The...Commander 10 U.S. Army Information Systems Engineering Command Ft Belvoir, Virginia 22060-5456 134 71" ~..-.-------..~.-.-........ -PV S FILMED

  2. Marine Tactical Command and Control System (MTACCS) Field Development System-1 (FDS-1) assessment: Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Avery, L.W.; Hunt, S.T.; Savage, S.F.

    1992-04-01

    The United State Marine Corps (USMC) is continuing the development and fielding of the Marine Corps Tactical Command and Control System (MTACCS), a system which exists in varying states of development, fielding, or modernization. MTACCS is currently composed of the following components: Tactical Combat Operations System (TCO) for ground command and control (C2), Intelligence Analysis System (IAS) with a Genser terminal connected to a TCO workstation for intelligence C2, Marine Integrated Personnel System (MIPS) and a TCO workstation using the Marine Combat Personnel System (MCPERS) software for personnel C2, Marine Integrated Logistics System (MILOGS) which is composed of the Landingmore » Force Asset Distribution System (LFADS), the Marine Air-Ground Task Force (MAGTF) II, and a TCO terminal using the Marine Combat Logistics System (MCLOG) for logistics C2, Marine Corps Fire Support System (MCFSS) for fire support C2, and Advanced Tactical Air Command Central (ATACC) and the Improved Direct Air Support Central for aviation C2.« less

  3. Status of Centrifugal Impeller Internal Aerodynamics: Experiments and Calculations

    DTIC Science & Technology

    1979-02-01

    Dan Adler February 1979 TJ Approved for public release; distribution unlimited 267.5 16 Prepared for: A35 Naval Air Systems Command Washington...The work reported herein was supported by the Naval Air Systems Command, Washington, DC. Reproduction of all or part of this report is authorized...6115 3N; N00019-79-WR-91115 II. CONTROLLING OFFICE NAME AND ADDRESS Naval Air Systems Command Washington, DC 20361 12. REPORT DATE

  4. The Design and Transfer of Advanced Command and Control (C2) Computer-Based Systems

    DTIC Science & Technology

    1980-03-31

    TECHNICAL REPORT 80-02 QUARTERLY TECHNICAL REPORT: THE DESIGN AND TRANSFER OF ADVANCED COMMAND AND CONTROL (C 2 ) COMPUTER-BASED SYSTEMS ARPA...The Tasks/Objectives and/or Purposes of the overall project are connected with the design , development, demonstration and transfer of advanced...command and control (C2 ) computer-based systems; this report covers work in the computer-based design and transfer areas only. The Technical Problems thus

  5. Macintosh II based space Telemetry and Command (MacTac) system

    NASA Technical Reports Server (NTRS)

    Dominy, Carol T.; Chesney, James R.; Collins, Aaron S.; Kay, W. K.

    1991-01-01

    The general architecture and the principal functions of the Macintosh II based Telemetry and Command system, presently under development, are described, with attention given to custom telemetry cards, input/output interfaces, and the icon driven user interface. The MacTac is a low-cost, transportable, easy to use, compact system designed to meet the requirements specified by the Consultative Committeee for Space Data Systems while remaining flexible enough to support a wide variety of other user specific telemetry processing requirements, such as TDM data. In addition, the MacTac can accept or generate forward data (such as spacecraft commands), calculate and append a Polynomial Check Code, and output these data to NASCOM to provide full Telemetry and Command capability.

  6. Water Quality Monitor

    NASA Technical Reports Server (NTRS)

    1982-01-01

    An automated water quality monitoring system was developed by Langley Research Center to meet a need of the Environmental Protection Agency (EPA). Designed for unattended operation in water depths up to 100 feet, the system consists of a subsurface buoy anchored in the water, a surface control unit (SCU) and a hydrophone link for acoustic communication between buoy and SCU. Primary functional unit is the subsurface buoy. It incorporates 16 cells for water sampling, plus sensors for eight water quality measurements. Buoy contains all the electronic equipment needed for collecting and storing sensor data, including a microcomputer and a memory unit. Power for the electronics is supplied by a rechargeable nickel cadmium battery that is designed to operate for about two weeks. Through hydrophone link the subsurface buoy reports its data to the SCU, which relays it to land stations. Link allows two-way communications. If system encounters a problem, it automatically shuts down and sends alert signal. Sequence of commands sent via hydrophone link causes buoy to release from anchor and float to the surface for recovery.

  7. Common Conditions of the Hand for the Nurse Practitioner: How to Diagnose, How to Manage, and When to Refer to a Hand Surgeon.

    PubMed

    Young, Amanda L

    In many parts of the United States, a plastics-trained hand surgeon can be in limited supply. Depending on individual state law, nurse practitioners can manage common and moderately complex hand conditions, the undertaking of which requires extensive training, high command of the anatomy, and knowing when referral is necessary.

  8. KSC-04pd1058

    NASA Image and Video Library

    2004-05-07

    KENNEDY SPACE CENTER, FLA. -- In the Space Shuttle Main Engine Shop at KSC, Boeing Product Support Director Dan Hausman (left) talks with STS-114 Mission Commander Eileen Collins. Behind them is one of the main engines. Crew members are touring several areas on Center. The STS-114 mission is Logistics Flight 1, which is scheduled to deliver supplies and equipment plus the external stowage platform to the International Space Station.

  9. A Dictionary of Acquisition and Contracting Terms

    DTIC Science & Technology

    1990-12-01

    consolidated national effort had been undertaken in this regard. Various individuals, commands and schools have attempted to assemble elements of definitions...however, the lack of a consolidated effort has caused a disparity in the definitions of terms. Previous graduate theses have researched definitions and...Supply Corps (SC), United States Navy (USN) initiated the consolidation of baseline consensus definitions in 1988. In 1989, Captain (CPT) John Cannaday

  10. STS-26 crewmembers participate in bench review at offsite Boeing Bldg

    NASA Technical Reports Server (NTRS)

    1988-01-01

    STS-26 Discovery, Orbiter Vehicle (OV) 103, crewmembers participate in bench review at the offsite Boeing Building. Left to right Mission Specialist (MS) David C. Hilmers, MS George D. Nelson, Commander Frederick H. Hauck, and Pilot Richard O. Covey, holding clipboards with checklists, look over hygiene supplies (razors, deodorants, tooth paste, etc.). Photograph was taken by Keith Meyers of the NEW YORK TIMES.

  11. Closed Loop Analysis Meta-Language Program (CLAMP)

    DTIC Science & Technology

    2012-05-01

    formats of Spreadsheets, XML, MCPML, or something else should be the ( anthropometry or other) experts’ productivity in: 1) crafting data 2) applying...FORCE MATERIEL COMMAND UNITED STATES AIR FORCE NOTICE AND SIGNATURE PAGE Using Government drawings, specifications, or other data included in...formulated or supplied the drawings, specifications, or other data does not license the holder or any other person or corporation; or convey any rights or

  12. Joint Command and Control of Cyber Operations: The Joint Force Cyber Component Command (JFCCC)

    DTIC Science & Technology

    2012-05-04

    relies so heavily on complex command and control systems and interconnectivity in general, cyber warfare has become a serious topic of interest at the...defensive cyber warfare into current and future operations and plans. In particular, Joint Task Force (JTF) Commanders must develop an optimum method to

  13. The Ndynamics package—Numerical analysis of dynamical systems and the fractal dimension of boundaries

    NASA Astrophysics Data System (ADS)

    Avellar, J.; Duarte, L. G. S.; da Mota, L. A. C. P.; de Melo, N.; Skea, J. E. F.

    2012-09-01

    A set of Maple routines is presented, fully compatible with the new releases of Maple (14 and higher). The package deals with the numerical evolution of dynamical systems and provide flexible plotting of the results. The package also brings an initial conditions generator, a numerical solver manager, and a focusing set of routines that allow for better analysis of the graphical display of the results. The novelty that the package presents an optional C interface is maintained. This allows for fast numerical integration, even for the totally inexperienced Maple user, without any C expertise being required. Finally, the package provides the routines to calculate the fractal dimension of boundaries (via box counting). New version program summary Program Title: Ndynamics Catalogue identifier: %Leave blank, supplied by Elsevier. Licensing provisions: no. Programming language: Maple, C. Computer: Intel(R) Core(TM) i3 CPU M330 @ 2.13 GHz. Operating system: Windows 7. RAM: 3.0 GB Keywords: Dynamical systems, Box counting, Fractal dimension, Symbolic computation, Differential equations, Maple. Classification: 4.3. Catalogue identifier of previous version: ADKH_v1_0. Journal reference of previous version: Comput. Phys. Commun. 119 (1999) 256. Does the new version supersede the previous version?: Yes. Nature of problem Computation and plotting of numerical solutions of dynamical systems and the determination of the fractal dimension of the boundaries. Solution method The default method of integration is a fifth-order Runge-Kutta scheme, but any method of integration present on the Maple system is available via an argument when calling the routine. A box counting [1] method is used to calculate the fractal dimension [2] of the boundaries. Reasons for the new version The Ndynamics package met a demand of our research community for a flexible and friendly environment for analyzing dynamical systems. All the user has to do is create his/her own Maple session, with the system to be studied, and use the commands on the package to (for instance) calculate the fractal dimension of a certain boundary, without knowing or worrying about a single line of C programming. So the package combines the flexibility and friendly aspect of Maple with the fast and robust numerical integration of the compiled (for example C) basin. The package is old, but the problems it was designed to dealt with are still there. Since Maple evolved, the package stopped working, and we felt compelled to produce this version, fully compatible with the latest version of Maple, to make it again available to the Maple user. Summary of revisions Deprecated Maple Packages and Commands: Paraphrasing the Maple in-built help files, "Some Maple commands and packages are deprecated. A command (or package) is deprecated when its functionality has been replaced by an improved implementation. The newer command is said to supersede the older one, and use of the newer command is strongly recommended". So, we have examined our code to see if some of these occurrences could be dangerous for it. For example, the "readlib" command is unnecessary, and we have removed its occurrences from our code. We have checked and changed all the necessary commands in order for us to be safe in respect to danger from this source. Another change we had to make was related to the tools we have implemented in order to use the interface for performing the numerical integration in C, externally, via the use of the Maple command "ssystem". In the past, we had used, for the external C integration, the DJGPP system. But now we present the package with (free) Borland distribution. The compilation and compiling commands are now slightly changed. For example, to compile only, we had used "gcc-c"; now, we use "bcc32-c", etc. All this installation (Borland) is explained on a "README" file we are submitting here to help the potential user. Restrictions Besides the inherent restrictions of numerical integration methods, this version of the package only deals with systems of first-order differential equations. Unusual features This package provides user-friendly software tools for analyzing the character of a dynamical system, whether it displays chaotic behaviour, and so on. Options within the package allow the user to specify characteristics that separate the trajectories into families of curves. In conjunction with the facilities for altering the user's viewpoint, this provides a graphical interface for the speedy and easy identification of regions with interesting dynamics. An unusual characteristic of the package is its interface for performing the numerical integrations in C using a fifth-order Runge-Kutta method (default). This potentially improves the speed of the numerical integration by some orders of magnitude and, in cases where it is necessary to calculate thousands of graphs in regions of difficult integration, this feature is very desirable. Besides that tool, somewhat more experienced users can produce their own C integrator and, by using the commands available in the package, use it as the C integrator provided with the package as long as the new integrator manages the input and output in the same format as the default one does. Running time This depends strongly on the dynamical system. With an Intel® Core™ i3 CPU M330 @ 2.13 GHz, the integration of 50 graphs, for a system of two first-order equations, typically takes less than a second to run (with the C integration interface). Without the C interface, it takes a few seconds. In order to calculate the fractal dimension, where we typically use 10,000 points to integrate, using the C interface it takes from 20 to 30 s. Without the C interface, it becomes really impractical, taking, sometimes, for the same case, almost an hour. For some cases, it takes many hours.

  14. 77 FR 27202 - 36(b)(1) Arms Sales Notification

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-09

    ... includes: Electronic Warfare Systems, Command, Control, Communication, Computers and Intelligence/Communication, Navigational and Identifications (C4I/CNI), Autonomic Logistics Global Support System (ALGS... Systems, Command, Control, Communication, Computers and Intelligence/Communication, Navigational and...

  15. Core commands across airway facilities systems.

    DOT National Transportation Integrated Search

    2003-05-01

    This study takes a high-level approach to evaluate computer systems without regard to the specific method of : interaction. This document analyzes the commands that Airway Facilities (AF) use across different systems and : the meanings attributed to ...

  16. Unix Survival Guide.

    PubMed

    Stein, Lincoln D

    2015-09-03

    Most bioinformatics software has been designed to run on Linux and other Unix-like systems. Unix is different from most desktop operating systems because it makes extensive use of a text-only command-line interface. It can be a challenge to become familiar with the command line, but once a person becomes used to it, there are significant rewards, such as the ability to string a commonly used series of commands together with a script. This appendix will get you started with the command line and other Unix essentials. Copyright © 2015 John Wiley & Sons, Inc.

  17. Fuzzy Finite-Time Command Filtered Control of Nonlinear Systems With Input Saturation.

    PubMed

    Yu, Jinpeng; Zhao, Lin; Yu, Haisheng; Lin, Chong; Dong, Wenjie

    2017-08-22

    This paper considers the fuzzy finite-time tracking control problem for a class of nonlinear systems with input saturation. A novel fuzzy finite-time command filtered backstepping approach is proposed by introducing the fuzzy finite-time command filter, designing the new virtual control signals and the modified error compensation signals. The proposed approach not only holds the advantages of the conventional command-filtered backstepping control, but also guarantees the finite-time convergence. A practical example is included to show the effectiveness of the proposed method.

  18. Pendulation control system and method for rotary boom cranes

    DOEpatents

    Robinett, III, Rush D.; Groom, Kenneth N.; Feddema, John T.; Parker, Gordon G.

    2002-01-01

    A command shaping control system and method for rotary boom cranes provides a way to reduce payload pendulation caused by real-time input signals, from either operator command or automated crane maneuvers. The method can take input commands and can apply a command shaping filter to reduce contributors to payload pendulation due to rotation, elevation, and hoisting movements in order to control crane response and reduce tangential and radial payload pendulation. A filter can be applied to a pendulation excitation frequency to reduce residual radial pendulation and tangential pendulation amplitudes.

  19. TRICCS: A proposed teleoperator/robot integrated command and control system for space applications

    NASA Technical Reports Server (NTRS)

    Will, R. W.

    1985-01-01

    Robotic systems will play an increasingly important role in space operations. An integrated command and control system based on the requirements of space-related applications and incorporating features necessary for the evolution of advanced goal-directed robotic systems is described. These features include: interaction with a world model or domain knowledge base, sensor feedback, multiple-arm capability and concurrent operations. The system makes maximum use of manual interaction at all levels for debug, monitoring, and operational reliability. It is shown that the robotic command and control system may most advantageously be implemented as packages and tasks in Ada.

  20. Laboratory testing of candidate robotic applications for space

    NASA Technical Reports Server (NTRS)

    Purves, R. B.

    1987-01-01

    Robots have potential for increasing the value of man's presence in space. Some categories with potential benefit are: (1) performing extravehicular tasks like satellite and station servicing, (2) supporting the science mission of the station by manipulating experiment tasks, and (3) performing intravehicular activities which would be boring, tedious, exacting, or otherwise unpleasant for astronauts. An important issue in space robotics is selection of an appropriate level of autonomy. In broad terms three levels of autonomy can be defined: (1) teleoperated - an operator explicitly controls robot movement; (2) telerobotic - an operator controls the robot directly, but by high-level commands, without, for example, detailed control of trajectories; and (3) autonomous - an operator supplies a single high-level command, the robot does all necessary task sequencing and planning to satisfy the command. Researchers chose three projects for their exploration of technology and implementation issues in space robots, one each of the three application areas, each with a different level of autonomy. The projects were: (1) satellite servicing - teleoperated; (2) laboratory assistant - telerobotic; and (3) on-orbit inventory manager - autonomous. These projects are described and some results of testing are summarized.

  1. KSC-01pp1481

    NASA Image and Video Library

    2001-08-10

    KENNEDY SPACE CENTER, Fla. - Expedition Three crew member Vladimir Dezhurov (left) is ready for his first space flight, under the guidance of STS-105 Commander Scott Horowitz (center). Helping with flight equipment before launch is (right) USA Mechanical Technician Al Schmidt. The payload on the STS-105 mission to the International Space Station includes the third flight of the Italian-built Multi-Purpose Logistics Module Leonardo, delivering additional scientific racks, equipment and supplies for the Space Station, and the Early Ammonia Servicer (EAS) tank. The EAS, which will be attached to the Station during two spacewalks, contains spare ammonia for the Station’s cooling system. Also, the Expedition Three crew is aboard to replace the Expedition Two crew on the International Space Station, who will be returning to Earth aboard Discovery after a five-month stay on the Station

  2. STS-106 Crew Activity Report/Flight Day 8 Highlights

    NASA Technical Reports Server (NTRS)

    2000-01-01

    On this eighth day of the STS-106 Atlantis mission, the flight crew, Commander Terrence W. Wilcutt, Pilot Scott T. Altman, and Mission Specialists Daniel C. Burbank, Edward T. Lu, Richard A. Mastracchio, Yuri Ivanovich Malenchenko, and Boris V. Morukov move into the second half of preparing the International Space Station (ISS) for its first resident crew. Lu and Malenchenko are seen installing the power converters in the Zvezda module and components of the primary oxygen generation system. Mastracchio and Wilcutt moves supplies and logistics from the payload of Atlantis to the ISS. Wilcutt and Altman participate in several interviews and the crew wishes the Olympiads in Sydney good luck in their endeavors. Scenes also include external views of the ISS and images of Earth, including Sydney, Australia.

  3. Information Dominance in Military Decision Making.

    DTIC Science & Technology

    1999-06-04

    This study considers how ABCS (Army Battle Command System) capabilities achieve information dominance and how they influence the military decision...making process. The work examines how ABCS enables commanders and staffs to achieve information dominance at the brigade and battalion levels. Further...future digitized systems that will gain information dominance for the future commander. It promotes the continued development information dominance technologies

  4. 2015 Assessment of the Ballistic Missile Defense System (BMDS)

    DTIC Science & Technology

    2016-04-01

    performance and test adequacy of the BMDS, its four autonomous BMDS systems, and its sensor/command and control architecture. The four autonomous BMDS...Patriot. The Command and Control , Battle Management, and Communications (C2BMC) element anchors the sensor/command and control architecture. This...Warfare operations against a cruise missile surrogate. Ground-based Midcourse Defense (GMD). GMD has demonstrated capability against small

  5. M1A2 tank commander's independent thermal viewer optics: system engineering perspective

    NASA Astrophysics Data System (ADS)

    Ratcliff, David D.

    1993-08-01

    As successful as the M1A1 Abrams tank was in the Gulf War, a program has been under way for several years to improve and modernize the M1A1 to keep pace with new threats and to take advantage of new technology. This program has resulted in the M1A2 upgrade program which significantly improves the survivability and lethality of the tank. First, the point-to-point wiring and analog signal processing was replaced with digital processing and control with a modern, aircraft-style digital data bus. Additional command and control aspects of the upgrade greatly improved the situational awareness of the M1A2 commander. Finally, an additional thermal imaging system was added for the commander. This system, the M1A2 Commander's Independent Thermal Viewer (CITV) is the topic of the following paper, which details the design from a system engineering perspective, and a companion paper that presents the optical design perspective.

  6. A Wireless 32-Channel Implantable Bidirectional Brain Machine Interface

    PubMed Central

    Su, Yi; Routhu, Sudhamayee; Moon, Kee S.; Lee, Sung Q.; Youm, WooSub; Ozturk, Yusuf

    2016-01-01

    All neural information systems (NIS) rely on sensing neural activity to supply commands and control signals for computers, machines and a variety of prosthetic devices. Invasive systems achieve a high signal-to-noise ratio (SNR) by eliminating the volume conduction problems caused by tissue and bone. An implantable brain machine interface (BMI) using intracortical electrodes provides excellent detection of a broad range of frequency oscillatory activities through the placement of a sensor in direct contact with cortex. This paper introduces a compact-sized implantable wireless 32-channel bidirectional brain machine interface (BBMI) to be used with freely-moving primates. The system is designed to monitor brain sensorimotor rhythms and present current stimuli with a configurable duration, frequency and amplitude in real time to the brain based on the brain activity report. The battery is charged via a novel ultrasonic wireless power delivery module developed for efficient delivery of power into a deeply-implanted system. The system was successfully tested through bench tests and in vivo tests on a behaving primate to record the local field potential (LFP) oscillation and stimulate the target area at the same time. PMID:27669264

  7. Exploring the Impact of Fuel Data Acquisition Technology on the USMC Expeditionary Energy Command and Control System

    DTIC Science & Technology

    2016-09-01

    suggested interventions that may reduce inefficient energy practices (Salem & Gallenson, 2014). The E2O selected a commercial-off-the-shelf (COTS) wireless ...IMPACT OF FUEL DATA ACQUISITION TECHNOLOGY ON THE USMC EXPEDITIONARY ENERGY COMMAND AND CONTROL SYSTEM by Jeremy F. Thomas September 2016...ON THE USMC EXPEDITIONARY ENERGY COMMAND AND CONTROL SYSTEM 5. FUNDING NUMBERS 6. AUTHOR(S) Jeremy F. Thomas 7. PERFORMING ORGANIZATION NAME(S

  8. NASIS data base management system - IBM 360/370 OS MVT implementation. 5: Retrieval command system reference manual

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The retrieval command subsystem reference manual for the NASA Aerospace Safety Information System (NASIS) is presented. The output oriented classification of retrieval commands provides the user with the ability to review a set of data items for verification or inspection as a typewriter or CRT terminal and to print a set of data on a remote printer. Predefined and user-definable data formatting are available for both output media.

  9. An intelligent automated command and control system for spacecraft mission operations

    NASA Technical Reports Server (NTRS)

    Stoffel, A. William

    1994-01-01

    The Intelligent Command and Control (ICC) System research project is intended to provide the technology base necessary for producing an intelligent automated command and control (C&C) system capable of performing all the ground control C&C functions currently performed by Mission Operations Center (MOC) project Flight Operations Team (FOT). The ICC research accomplishments to date, details of the ICC, and the planned outcome of the ICC research, mentioned above, are discussed in detail.

  10. High angle of attack flying qualities criteria for longitudinal rate command systems

    NASA Technical Reports Server (NTRS)

    Wilson, David J.; Citurs, Kevin D.; Davidson, John B.

    1994-01-01

    This study was designed to investigate flying qualities requirements of alternate pitch command systems for fighter aircraft at high angle of attack. Flying qualities design guidelines have already been developed for angle of attack command systems at 30, 45, and 60 degrees angle of attack, so this research fills a similar need for rate command systems. Flying qualities tasks that require post-stall maneuvering were tested during piloted simulations in the McDonnell Douglas Aerospace Manned Air Combat Simulation facility. A generic fighter aircraft model was used to test angle of attack rate and pitch rate command systems for longitudinal gross acquisition and tracking tasks at high angle of attack. A wide range of longitudinal dynamic variations were tested at 30, 45, and 60 degrees angle of attack. Pilot comments, Cooper-Harper ratings, and pilot induced oscillation ratings were taken from five pilots from NASA, USN, CAF, and McDonnell Douglas Aerospace. This data was used to form longitudinal design guidelines for rate command systems at high angle of attack. These criteria provide control law design guidance for fighter aircraft at high angle of attack, low speed flight conditions. Additional time history analyses were conducted using the longitudinal gross acquisition data to look at potential agility measures of merit and correlate agility usage to flying qualities boundaries. This paper presents an overview of this research.

  11. History of Command and Control at KSC: Kennedy Engineering Academy Series

    NASA Technical Reports Server (NTRS)

    Hurt, George Richard

    2007-01-01

    Agenda for this presentation is: Evolution of Command and Control (C&C), C&C history, Launch Processing System overview, Core System Overview, Checkout & Launch Control System, Overview and Commercial-Off-The-Shelf guidelines

  12. Variable speed wind turbine generator with zero-sequence filter

    DOEpatents

    Muljadi, Eduard

    1998-01-01

    A variable speed wind turbine generator system to convert mechanical power into electrical power or energy and to recover the electrical power or energy in the form of three phase alternating current and return the power or energy to a utility or other load with single phase sinusoidal waveform at sixty (60) hertz and unity power factor includes an excitation controller for generating three phase commanded current, a generator, and a zero sequence filter. Each commanded current signal includes two components: a positive sequence variable frequency current signal to provide the balanced three phase excitation currents required in the stator windings of the generator to generate the rotating magnetic field needed to recover an optimum level of real power from the generator; and a zero frequency sixty (60) hertz current signal to allow the real power generated by the generator to be supplied to the utility. The positive sequence current signals are balanced three phase signals and are prevented from entering the utility by the zero sequence filter. The zero sequence current signals have zero phase displacement from each other and are prevented from entering the generator by the star connected stator windings. The zero sequence filter allows the zero sequence current signals to pass through to deliver power to the utility.

  13. Variable Speed Wind Turbine Generator with Zero-sequence Filter

    DOEpatents

    Muljadi, Eduard

    1998-08-25

    A variable speed wind turbine generator system to convert mechanical power into electrical power or energy and to recover the electrical power or energy in the form of three phase alternating current and return the power or energy to a utility or other load with single phase sinusoidal waveform at sixty (60) hertz and unity power factor includes an excitation controller for generating three phase commanded current, a generator, and a zero sequence filter. Each commanded current signal includes two components: a positive sequence variable frequency current signal to provide the balanced three phase excitation currents required in the stator windings of the generator to generate the rotating magnetic field needed to recover an optimum level of real power from the generator; and a zero frequency sixty (60) hertz current signal to allow the real power generated by the generator to be supplied to the utility. The positive sequence current signals are balanced three phase signals and are prevented from entering the utility by the zero sequence filter. The zero sequence current signals have zero phase displacement from each other and are prevented from entering the generator by the star connected stator windings. The zero sequence filter allows the zero sequence current signals to pass through to deliver power to the utility.

  14. Variable speed wind turbine generator with zero-sequence filter

    DOEpatents

    Muljadi, E.

    1998-08-25

    A variable speed wind turbine generator system to convert mechanical power into electrical power or energy and to recover the electrical power or energy in the form of three phase alternating current and return the power or energy to a utility or other load with single phase sinusoidal waveform at sixty (60) hertz and unity power factor includes an excitation controller for generating three phase commanded current, a generator, and a zero sequence filter. Each commanded current signal includes two components: a positive sequence variable frequency current signal to provide the balanced three phase excitation currents required in the stator windings of the generator to generate the rotating magnetic field needed to recover an optimum level of real power from the generator; and a zero frequency sixty (60) hertz current signal to allow the real power generated by the generator to be supplied to the utility. The positive sequence current signals are balanced three phase signals and are prevented from entering the utility by the zero sequence filter. The zero sequence current signals have zero phase displacement from each other and are prevented from entering the generator by the star connected stator windings. The zero sequence filter allows the zero sequence current signals to pass through to deliver power to the utility. 14 figs.

  15. KSC-2011-5224

    NASA Image and Video Library

    2011-07-08

    CAPE CANAVERAL, Fla. -- T-38 jets and a Shuttle Training Aircraft (STA) sit parked on the tarmac at NASA Kennedy Space Center's Shuttle Landing Facility. An STA is a Gulfstream II jet that is modified to mimic the shuttle's handling during the final phase of landing. STS-135 Commander Chris Ferguson and Pilot Doug Hurley practiced landings as part of standard procedure before space shuttle Atlantis' launch to the International Space Station. Atlantis and its crew of four -- Commander Chris Ferguson, Pilot Doug Hurley and Mission Specialists Sandy Magnus and Rex Walheim -- are scheduled to lift off at 11:26 a.m. EDT on July 8 to deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts to the International Space Station. Atlantis also will fly the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 will be the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Frank Michaux

  16. KSC-2011-5806

    NASA Image and Video Library

    2011-07-21

    CAPE CANAVERAL, Fla. -- In the Flight Vehicle Support Building at NASA Kennedy Space Center's Shuttle Landing Facility (SLF), NASA Administrator Charles Bolden discusses strategies with NASA managers and convoy crew members during a prelanding convoy meeting. A Convoy Command Center vehicle will be positioned near shuttle Atlantis on the SLF. The command vehicle is equipped to control critical communications between the crew still aboard Atlantis and the Launch Control Center. The team will monitor the health of the orbiter systems and direct convoy operations made up of about 40 vehicles, including 25 specially designed vehicles to assist the crew in leaving the shuttle, and prepare the vehicle for towing from the SLF to its processing hangar. Securing the space shuttle fleet's place in history, Atlantis will mark the 26th nighttime landing of NASA's Space Shuttle Program and the 78th landing at Kennedy. Atlantis and its crew delivered to the International Space Station the Raffaello multi-purpose logistics module packed with more than 9,400 pounds of spare parts, equipment and supplies that will sustain station operations for the next year. STS-135 is the 33rd and final flight for Atlantis and final mission of the Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett

  17. STS-111 Onboard Photo of Endeavour Docking With PMA-2

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The STS-111 mission, the 14th Shuttle mission to visit the International Space Station (ISS), was launched on June 5, 2002 aboard the Space Shuttle Orbiter Endeavour. On board were the STS-111 and Expedition Five crew members. Astronauts Kerneth D. Cockrell, commander; Paul S. Lockhart, pilot, and mission specialists Franklin R. Chang-Diaz and Philippe Perrin were the STS-111 crew members. Expedition Five crew members included Cosmonaut Valeri G. Korzun, commander, Astronaut Peggy A. Whitson and Cosmonaut Sergei Y. Treschev, flight engineers. Three space walks enabled the STS-111 crew to accomplish the delivery and installation of the Mobile Remote Servicer Base System (MBS), an important part of the Station's Mobile Servicing System that allows the robotic arm to travel the length of the Station, which is necessary for future construction tasks; the replacement of a wrist roll joint on the Station's robotic arm; and the task of unloading supplies and science experiments from the Leonardo multipurpose Logistics Module, which made its third trip to the orbital outpost. In this photograph, the Space Shuttle Endeavour, back dropped by the blackness of space, is docked to the pressurized Mating Adapter (PMA-2) at the forward end of the Destiny Laboratory on the ISS. A portion of the Canadarm2 is visible on the right and Endeavour's robotic arm is in full view as it is stretched out with the S0 (S-zero) Truss at its end.

  18. Lambert W function for applications in physics

    NASA Astrophysics Data System (ADS)

    Veberič, Darko

    2012-12-01

    The Lambert W(x) function and its possible applications in physics are presented. The actual numerical implementation in C++ consists of Halley's and Fritsch's iterations with initial approximations based on branch-point expansion, asymptotic series, rational fits, and continued-logarithm recursion. Program summaryProgram title: LambertW Catalogue identifier: AENC_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AENC_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License version 3 No. of lines in distributed program, including test data, etc.: 1335 No. of bytes in distributed program, including test data, etc.: 25 283 Distribution format: tar.gz Programming language: C++ (with suitable wrappers it can be called from C, Fortran etc.), the supplied command-line utility is suitable for other scripting languages like sh, csh, awk, perl etc. Computer: All systems with a C++ compiler. Operating system: All Unix flavors, Windows. It might work with others. RAM: Small memory footprint, less than 1 MB Classification: 1.1, 4.7, 11.3, 11.9. Nature of problem: Find fast and accurate numerical implementation for the Lambert W function. Solution method: Halley's and Fritsch's iterations with initial approximations based on branch-point expansion, asymptotic series, rational fits, and continued logarithm recursion. Additional comments: Distribution file contains the command-line utility lambert-w. Doxygen comments, included in the source files. Makefile. Running time: The tests provided take only a few seconds to run.

  19. Commande en boucle fermee sur un profil d'aile deformable dans la soufflerie Price-Paidoussis

    NASA Astrophysics Data System (ADS)

    Brossard, Jeremy

    The purpose of the ATR-42 project is to apply the concept of morphing wings by fabricating a morphing composite wing model of the Regional Transport Aircraft-42 to reduce drag and improve the aerodynamic performance. A control-command system coupled to an actuator mechanism will morph the wing skin. However, for best results, the control of the deformation must be studied carefully to insure the precision. Thus, a dual digitalexperimental approach is required. The solution proposed in this paper focuses on the controlled deformation of the upper wing of the ATR-42. A composite wing model with morphing capabilities was built and tested in the wind tunnel to evaluate its aerodynamic performance and serve as reference. A deformation mechanism, consisting of two engines and two camshafts, was subsequently designed and integrated within this model to obtain the optimum wing shapes according to the different flight condition. A control loop position was modeled in Matlab / Simulink and implemented experimentally to control the mechanism. Two types of results have been obtained. The first set concerned regulation and the second concerned aerodynamics. The control loop has achieved the desired skin displacement with an accuracy of 5%. Deformations of the upper skin were performed by a actuation system driven by motors, limitations supply were assured by the regulation architecture. For several flight conditions, the pressure measurements, validated with simulation results, have confirmed a reduction of the induced drag, compared to the original ATR-42 airfoil drag reduction.

  20. Implementing the Hospital Emergency Incident Command System: an integrated delivery system's experience.

    PubMed

    Zane, Richard D; Prestipino, Ann L

    2004-01-01

    Hospital disaster manuals and response plans often lack formal command structure; instead, they rely on the presence of key individuals who are familiar with hospital operations, or who are in leadership positions during routine, day-to-day operations. Although this structure occasionally may prove to be successful, it is unreliable, as this leadership may be unavailable at the time of the crisis, and may not be sustainable during a prolonged event. The Hospital Emergency Incident Command System (HEICS) provides a command structure that does not rely on specific individuals, is flexible and expandable, and is ubiquitous in the fire service, emergency medical services, military, and police agencies, thus allowing for ease of communication during event management. A descriptive report of the implementation of the HEICS throughout a large healthcare network is reviewed. Implementation of the HEICS provides a consistent command structure for hospitals that enables consistency and commonality with other hospitals and disaster response entities.

  1. Mature data transport and command management services for the Space Station

    NASA Technical Reports Server (NTRS)

    Carper, R. D.

    1986-01-01

    The duplex space/ground/space data services for the Space Station are described. The need to separate the uplink data service functions from the command functions is discussed. Command management is a process shared by an operation control center and a command management system and consists of four functions: (1) uplink data communications, (2) management of the on-board computer, (3) flight resource allocation and management, and (4) real command management. The new data service capabilities provided by microprocessors, ground and flight nodes, and closed loop and open loop capabilities are studied. The need for and functions of a flight resource allocation management service are examined. The system is designed so only users can access the system; the problems encountered with open loop uplink access are analyzed. The procedures for delivery of operational, verification, computer, and surveillance and monitoring data directly to users are reviewed.

  2. XTCE GOVSAT Tool Suite 1.0

    NASA Technical Reports Server (NTRS)

    Rice, J. Kevin

    2013-01-01

    The XTCE GOVSAT software suite contains three tools: validation, search, and reporting. The Extensible Markup Language (XML) Telemetric and Command Exchange (XTCE) GOVSAT Tool Suite is written in Java for manipulating XTCE XML files. XTCE is a Consultative Committee for Space Data Systems (CCSDS) and Object Management Group (OMG) specification for describing the format and information in telemetry and command packet streams. These descriptions are files that are used to configure real-time telemetry and command systems for mission operations. XTCE s purpose is to exchange database information between different systems. XTCE GOVSAT consists of rules for narrowing the use of XTCE for missions. The Validation Tool is used to syntax check GOVSAT XML files. The Search Tool is used to search (i.e. command and telemetry mnemonics) the GOVSAT XML files and view the results. Finally, the Reporting Tool is used to create command and telemetry reports. These reports can be displayed or printed for use by the operations team.

  3. Development of an Integrated Package of Physics Models for Scene Simulation Studies to Support Smart Weapons Design Studies

    DTIC Science & Technology

    1992-03-17

    No. 1 Approved for Public Release; Distribution Unlimited PHILLIPS LABORATORY AIR FORCE SYSTEMS COMMAND HANSCOM AIR FORCE BASE, MASSACHUSETTS 01731...the SWOE thermal models and the design of a new Command Interface System and User Interface System . 14. SUBJECT TERMS 15. NUMBER OF PAGES 116 BTI/SWOE...to the 3-D Tree Model 24 4.2.1 Operation Via the SWOE Command Interface System 26 4.2.2 Addition of Radiation Exchange to the Environment 26 4.2.3

  4. Tone-Based Command of Deep Space Probes using Ground Antennas

    NASA Technical Reports Server (NTRS)

    Bokulic, Robert S.; Jensen, J. Robert

    2008-01-01

    A document discusses a technique for enabling the reception of spacecraft commands at received signal levels as much as three orders of magnitude below those of current deep space systems. Tone-based commanding deals with the reception of commands that are sent in the form of precise frequency offsets using an open-loop receiver. The key elements of this technique are an ultrastable oscillator and open-loop receiver onboard the spacecraft, both of which are part of the existing New Horizons (Pluto flyby) communications system design. This enables possible flight experimentation for tone-based commanding during the long cruise of the spacecraft to Pluto. In this technique, it is also necessary to accurately remove Doppler shift from the uplink signal presented to the spacecraft. A signal processor in the spacecraft performs a discrete Fourier transform on the received signal to determine the frequency of the received signal. Due to the long-term drift in the oscillators and orbit prediction model, the system is likely to be implemented differentially, where changes in the uplink frequency convey the command information.

  5. The Army's Use of the Advanced Communications Technology Satellite

    NASA Technical Reports Server (NTRS)

    Ilse, Kenneth

    1996-01-01

    Tactical operations require military commanders to be mobile and have a high level of independence in their actions. Communications capabilities providing intelligence and command orders in these tactical situations have been limited to simple voice communications or low-rate narrow bandwidth communications because of the need for immediate reliable connectivity. The Advanced Communications Technology Satellite (ACTS) has brought an improved communications tool to the tactical commander giving the ability to gain access to a global communications system using high data rates and wide bandwidths. The Army has successfully tested this new capability of bandwidth-on-demand and high data rates for commanders in real-world conditions during Operation UPHOLD DEMOCRACY in Haiti during the fall and winter of 1994. This paper examines ACTS use by field commanders and details the success of the ACTS system in support of a wide variety of field condition command functions.

  6. Command Filtering-Based Fuzzy Control for Nonlinear Systems With Saturation Input.

    PubMed

    Yu, Jinpeng; Shi, Peng; Dong, Wenjie; Lin, Chong

    2017-09-01

    In this paper, command filtering-based fuzzy control is designed for uncertain multi-input multioutput (MIMO) nonlinear systems with saturation nonlinearity input. First, the command filtering method is employed to deal with the explosion of complexity caused by the derivative of virtual controllers. Then, fuzzy logic systems are utilized to approximate the nonlinear functions of MIMO systems. Furthermore, error compensation mechanism is introduced to overcome the drawback of the dynamics surface approach. The developed method will guarantee all signals of the systems are bounded. The effectiveness and advantages of the theoretic result are obtained by a simulation example.

  7. System and method for islanding detection and prevention in distributed generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhowmik, Shibashis; Mazhari, Iman; Parkhideh, Babak

    Various examples are directed to systems and methods for detecting an islanding condition at an inverter configured to couple a distributed generation system to an electrical grid network. A controller may determine a command frequency and a command frequency variation. The controller may determine that the command frequency variation indicates a potential islanding condition and send to the inverter an instruction to disconnect the distributed generation system from the electrical grid network. When the distributed generation system is disconnected from the electrical grid network, the controller may determine whether the grid network is valid.

  8. [Network Design of the Spaceport Command and Control System

    NASA Technical Reports Server (NTRS)

    Teijeiro, Antonio

    2017-01-01

    I helped the Launch Control System (LCS) hardware team sustain the network design of the Spaceport Command and Control System. I wrote the procedure that will be used to satisfy an official hardware test for the hardware carrying data from the Launch Vehicle. I installed hardware and updated design documents in support of the ongoing development of the Spaceport Command and Control System and applied firewall experience I gained during my spring 2017 semester to inspect and create firewall security policies as requested. Finally, I completed several online courses concerning networking fundamentals and Unix operating systems.

  9. Simulation evaluation of two VTOL control/display systems in IMC approach and shipboard landing

    NASA Technical Reports Server (NTRS)

    Merrick, V. K.

    1984-01-01

    Two control/display systems, which differed in overall complexity but were both designed for VTOL flight operations to and from small ships in instrument meteorological conditions (IMC), were tested using the Ames Flight Simulator for Advanced Aircraft (FSAA). Both systems have attitude command in transition and horizontal-velocity command in hover; the more complex system also has longitudinal-acceleration and flightpath-angle command in transition, and vertical-velocity command in hover. The most important overall distinction between the two systems for the viewpoint of implementation is that in one - the more complex - engine power and nozzle position are operated indirectly through flight controllers, whereas in the other they are operated directly by the pilot. Simulated landings were made on a moving model of a DD 963 Spruance-class destroyer. Acceptable transitions can be performed in turbulence of 3 m/sec rms using either system. Acceptable landings up to sea state 6 can be performed using the more complex system, and up to sea state 5 using the other system.

  10. Aeromedical Transport Operations Using Helicopters during the 2016 Kumamoto Earthquake in Japan.

    PubMed

    Motomura, Tomokazu; Hirabayashi, Atsushi; Matsumoto, Hisashi; Yamauchi, Nobutaka; Nakamura, Mitsunobu; Machida, Hiroshi; Fujizuka, Kenji; Otsuka, Naomi; Satoh, Tomoko; Anan, Hideaki; Kondo, Hisayoshi; Koido, Yuichi

    2018-01-01

    More than 6,000 people died in the Great Hanshin (Kobe) Earthquake in 1995, and it was later reported that there were around 500 preventable trauma deaths. In response, the Japanese government developed the helicopter emergency medical service in 2001, known in Japan as the "Doctor-Heli" (DH), which had 46 DHs and 2 private medical helicopters as of April 2016. DHs transport physicians and nurses to provide pre-hospital medical care at the scene of medical emergencies. Following lessons learned in the Great East Japan Earthquake in 2011, a research group in the Ministry of Health, Labour and Welfare developed a command and control system for the DH fleet as well as the Disaster Relief Aircraft Management System Network (D-NET), which uses a satellite communications network to monitor the location of the fleet and weather in real-time during disasters. During the Kumamoto Earthquake disaster in April 2016, 75 patients were transported by 13 DHs and 1 private medical helicopter in the first 5 days. When medical demand for the DHs exceeded supply, 5 patients, 8 patients, and 1 patient were transported by Self-Defense Force, Fire Department, and Coast Guard helicopters, respectively. Of the 89 patients who were transported, 30 (34%) had trauma, 3 (3%) had pulmonary embolisms caused by sleeping in vehicles, and 17 (19%) were pregnant women or newborns. This was the first time that the command and control system for aeromedical transport and D-NET, established after the Great East Japan Earthquake in 2011, were operated in an actual large-scale disaster. Aeromedical transport by DHs and helicopters belonging to several other organizations was accomplished smoothly because the commanders of the involved organizations could communicate directly with each other in person within the Aviation Coordination Section of the prefectural government office. However, ongoing challenges in the detailed operating methods for aeromedical transport were highlighted and include improving shared knowledge and training across the organizational framework. These are particularly important issues to address given the Nankai Trough and Tokyo inland earthquakes that are predicted for the near future in Japan.

  11. Standardized emergency management system and response to a smallpox emergency.

    PubMed

    Kim-Farley, Robert J; Celentano, John T; Gunter, Carol; Jones, Jessica W; Stone, Rogelio A; Aller, Raymond D; Mascola, Laurene; Grigsby, Sharon F; Fielding, Jonathan E

    2003-01-01

    The smallpox virus is a high-priority, Category-A agent that poses a global, terrorism security risk because it: (1) easily can be disseminated and transmitted from person to person; (2) results in high mortality rates and has the potential for a major public health impact; (3) might cause public panic and social disruption; and (4) requires special action for public health preparedness. In recognition of this risk, the Los Angeles County Department of Health Services (LAC-DHS) developed the Smallpox Preparedness, Response, and Recovery Plan for LAC to prepare for the possibility of an outbreak of smallpox. A unique feature of the LAC-DHS plan is its explicit use of the Standardized Emergency Management System (SEMS) framework for detailing the functions needed to respond to a smallpox emergency. The SEMS includes the Incident Command System (ICS) structure (management, operations, planning/intelligence, logistics, and finance/administration), the mutual-aid system, and the multi/interagency coordination required during a smallpox emergency. Management for incident command includes setting objectives and priorities, information (risk communications), safety, and liaison. Operations includes control and containment of a smallpox outbreak including ring vaccination, mass vaccination, adverse events monitoring and assessment, management of confirmed and suspected smallpox cases, contact tracing, active surveillance teams and enhanced hospital-based surveillance, and decontamination. Planning/intelligence functions include developing the incident action plan, epidemiological investigation and analysis of smallpox cases, and epidemiological assessment of the vaccination coverage status of populations at risk. Logistics functions include receiving, handling, inventorying, and distributing smallpox vaccine and vaccination clinic supplies; personnel; transportation; communications; and health care of personnel. Finally, finance/administration functions include monitoring costs related to the smallpox emergency, procurement, and administrative aspects that are not handled by other functional divisions of incident command systems. The plan was developed and is under frequent review by the LAC-DHS Smallpox Planning Working Group, and is reviewed periodically by the LAC Bioterrorism Advisory Committee, and draws upon the Smallpox Response Plan and Guidelines of the Centers for Disease Control and Prevention (CDC) and recommendations of the Advisory Committee on Immunization Practices (ACIP). The Smallpox Preparedness, Response, and Recovery Plan, with its SEMS framework and ICS structure, now is serving as a model for the development of LAC-DHS plans for responses to other terrorist or natural-outbreak responses.

  12. CCSDS Mission Operations Action Service Core Capabilities

    NASA Technical Reports Server (NTRS)

    Reynolds, Walter F.; Lucord, Steven A.; Stevens, John E.

    2009-01-01

    This slide presentation reviews the operations concepts of the command (action) services. Since the consequences of sending the wrong command are unacceptable, the command system provides a collaborative and distributed work environment for flight controllers and operators. The system prescribes a review and approval process where each command is viewed by other individuals before being sent to the vehicle. The action service needs additional capabilities to support he operations concepts of manned space flight. These are : (1) Action Service methods (2) Action attributes (3) Action parameter/argument attributes (4 ) Support for dynamically maintained action data. (5) Publish subscri be capabilities.

  13. GSFC Systems Test and Operation Language (STOL) functional requirements and language description

    NASA Technical Reports Server (NTRS)

    Desjardins, R.; Hall, G.; Mcguire, J.; Merwarth, P.; Mocarsky, W.; Truszkowski, W.; Villasenor, A.; Brosi, F.; Burch, P.; Carey, D.

    1978-01-01

    The Systems Tests and Operation Language (STOL) provides the means for user communication with payloads, applications programs, and other ground system elements. It is a systems operation language that enables an operator or user to communicate a command to a computer system. The system interprets each high level language directive from the user and performs the indicated action, such as executing a program, printing out a snapshot, or sending a payload command. This document presents the following: (1) required language features and implementation considerations; (2) basic capabilities; (3) telemetry, command, and input/output directives; (4) procedure definition and control; (5) listing, extension, and STOL nucleus capabilities.

  14. TRAVEL WITH COMMANDER QUALICIA

    EPA Science Inventory

    Commander Qualicia is a cartoon character created for an on-line training course that describes the quality system for the National Exposure Research Laboratory. In the training, which was developed by the QA staff and graphics/IT support contractors, Commander Qualicia and the ...

  15. Wakata with Fresh Fruit in the Cupola

    NASA Image and Video Library

    2014-04-01

    ISS039-E-008095 (1 April 2014) --- Expedition 39 Commander Koichi Wakata, representing the Japan Aerospace Exploration Agency (JAXA), seems very elated that three new members of the crew have brought up food and supplies, especially fresh fruit, as depicted in this photo -- among the first sets of imagery documented with all six Expedition 39 crew members onboard the International Space Station. Wakata is in the orbiting outpost's Cupola module.

  16. China Report, Political, Sociological and Military Affairs

    DTIC Science & Technology

    1983-11-10

    Commander Hudson Austin lifted its round-the-clock curfew for four hours Friday to allow people to buy food and other supplies for the weekend. The...were born in China by artificial fertilization with frozen sperm, which can be said to be a trial in the prevention of hereditary diseases. CSO: 4005...in the struggle against economic offences and guard against ideological contamination. Facing the spread of unhealthy and even corrupt capitalist

  17. Effectiveness Through Control: Centralized Execution in Air Mobility Operations

    DTIC Science & Technology

    2013-03-01

    decentralized execution, as “the delegation of authority to designated lower-level commanders and other tactical-level decision makers to achieve effective span...asset “into a flying hospital of sorts with cardiac monitors, defibrillators , intubation devices, litters and various supplies to sustain many types... designated , versus dedicated airlift. A 2006 Air Force Magazine article described the flexibility of this concept, highlighting “When an injured service

  18. Gulf War Air Power Survey. Volume 3. Logistics and Support

    DTIC Science & Technology

    1993-01-01

    miss casualty ground war would have been transported speedily to the most appropri- ate medical facilities. Command and control of airevac missions de ...maintenance of the force, and its transportation necessary for war. The second report, Sup. port, concerns itself with the air base and airbase operations... transportation , supply, maintenance, and the myriad aspects of logistics planning and coordination. Mr. Richard Gunkel was the Logistics, Support, and Space

  19. Sourcing and Global Distribution of Medical Supplies

    DTIC Science & Technology

    2014-01-01

    dots in this figure represent OCONUS MTFs and the yellow star icons indicate locations of the OCONUS theater lead agents for medical materiel (TLAMMs... Symbol Definition AFMOA Air Force Medical Operations Agency AMC Air Mobility Command APS Army prepositioned stock Cat A Category A CJCS chairman of...provide medical materiel to military units. DLA has enacted PV and other contracts to support all military units that make it possible for units around

  20. KSC-04pd1060

    NASA Image and Video Library

    2004-05-07

    KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility, STS-114 crew members look at one of the Rudder Speed Brake actuators. Seen at right are Mission Specialist Charles Camarda, Mission Commander Eileen Collins and Mission Specialist Wendy Lawrence. Crew members are touring several areas on Center. The STS-114 mission is Logistics Flight 1, which is scheduled to deliver supplies and equipment plus the external stowage platform to the International Space Station.

  1. Gulf War Logistics: Theory Into Practice

    DTIC Science & Technology

    1995-04-01

    sources are documentary in nature, emphasizing statistics like tonnage of supplies moved and number of troops sustained in the field. Other sources...Washington: GPO, 1993), 207-208. See also, Table 23 in Gulf War Air Power Survey Statistical Compendium. In Vol 3 of Gulf War Air Power Survey...Operational Structures Coursebook , (Maxwell AFB: Air Command and Staff College, 1995), 58. 40"Theater Logistics in the Gulf War: August 1990-December 1991

  2. Reflections of a Technocrat: Managing Defense, Air, and Space Programs during the Cold War

    DTIC Science & Technology

    2006-08-01

    per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing...any other US government agency. Cleared for public release: distribution unlimited. Air University Library Cataloging Data McLucas, John L...Sturdevant of the Air Force Space Command, Kenneth Werrell of the Air University, and R. Cargill Hall of the NRO, who also supplied useful unclassified

  3. Managing the Service Supply Chain in the Department of Defense: Implications for the Program Management Infrastructure

    DTIC Science & Technology

    2007-11-27

    underlying technical problem—perhaps as a syndrome (collection of symptoms ) or perhaps in terms of the underlying mechanism. The medical analogy is...be noted that the procuring contracting officer ( PCO ) at the Major Command headquarters, where the services acquisition was centrally planned and...executed, delegated the contract to the administrative contracting officer at the installation where the contract was administered. Thus, the PCO

  4. The Need to Proactively Develop Flexible, Adaptable Plans for Logistics

    DTIC Science & Technology

    2013-03-01

    operational reach.6 The deployment and distribution capability moves forces 4 and logistic support globally and on time meeting the required...forcing function, as supplies were moving efficiently through Pakistan. The northern routes were more expensive, so there was not a keen interest in...products to State valuing relationships more than rank.22 Clarifying the boundaries of what combatant commanders could do to move the agenda along

  5. Should the Defense Fuel Supply Center Trade in the Futures Market?

    DTIC Science & Technology

    1993-12-01

    reform, and Federal and State Law. 4 Over 30 hours of personal interviews were conducted with people from DFSC, the Department of Energy (DOE), the...Management, Finance and Accounting, and Personal Staff. (Defense Logistics Agency Command Support Office, 1993) Of particular interest is the Office of...member can beat the market price, attract hungry customers, improve personal market share, and thereby improve total revenue and profits. In effect

  6. KSC-04PD-1060

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility, STS-114 crew members look at one of the Rudder Speed Brake actuators. Seen at right are Mission Specialist Charles Camarda, Mission Commander Eileen Collins and Mission Specialist Wendy Lawrence. Crew members are touring several areas on Center. The STS-114 mission is Logistics Flight 1, which is scheduled to deliver supplies and equipment plus the external stowage platform to the International Space Station.

  7. Using the Non-Intrusive Load Monitor for Shipboard Supervisory Control

    DTIC Science & Technology

    2007-06-01

    consists of a NEMA certified enclosure with voltage transducers and a DC power supply inside, appropriately sized current transducers, and a...command to the UEC. UEC starts a 300-second (5 minutes). “GTM __ TRANSITIONING TO COOLDOWN” is displayed on the AMLCD. “ NORM STOP/COOLDOWN...MMA-010, 01 Jul 1992. 80 Appendix A NILM Parts List Nomenclature Manufacturer Part Number Quantity NEMA Enclosure Rittal Corporation

  8. Delivery Time Variance Reduction in the Military Supply Chain

    DTIC Science & Technology

    2010-03-01

    Donald Rumsfeld, designated “U.S. Transportation Command as the single Department of Defense Distribution Process Owner (DPO)” (USTRANSCOM, 2004...paragraphs explain OptQuest’s 54 functionality and capabilities as described by Laguna (1997) and Glover et al. (1999) as well as the OptQuest for ARENA...throughout the solution space ( Glover et al., 1999). Heuristics are strategies (in this case algorithms) that use different techniques and available

  9. Design and engineering analysis of material procurement mobile operation platform

    NASA Astrophysics Data System (ADS)

    Ding, H.; Li, J.

    2014-03-01

    The material procurement mobile operation platform (MPMOP) consists of six modules, including network operation, truck transportation, remote communication, satellite positioning, power supply and environment regulation. The MPMOP is designed to have six major functions, including online procurement, command control, remote communication, satellite positioning, information management and auxiliary decision. The paper implements an engineering analysis on the MPMOP from three aspects, including transportation transfinite, centroid, and power dissipation.

  10. KENNEDY SPACE CENTER, FLA. - While touring the SRB Retrieval Ship Freedom Star, STS-114 Commander Eileen Collins and Mission Specialist Soichi Noguchi point at something on the Banana River. Noguchi is with the Japanese space agency NASDA. The ships routinely are docked at Hangar AF on the river. On their mission, the crew - which also includes Pilot James Kelly and Mission Specialist Stephen Robinson - will carry the MultiPurpose Logistics Module (MPLM) Raffaello and External Stowage Platform 2 to the International Space Station. The MPLM will contain supplies and equipment. Another goal of the mission is to remove and replace a Control Moment Gyro. Launch date for mission STS-114 is under review.

    NASA Image and Video Library

    2003-08-13

    KENNEDY SPACE CENTER, FLA. - While touring the SRB Retrieval Ship Freedom Star, STS-114 Commander Eileen Collins and Mission Specialist Soichi Noguchi point at something on the Banana River. Noguchi is with the Japanese space agency NASDA. The ships routinely are docked at Hangar AF on the river. On their mission, the crew - which also includes Pilot James Kelly and Mission Specialist Stephen Robinson - will carry the MultiPurpose Logistics Module (MPLM) Raffaello and External Stowage Platform 2 to the International Space Station. The MPLM will contain supplies and equipment. Another goal of the mission is to remove and replace a Control Moment Gyro. Launch date for mission STS-114 is under review.

  11. KENNEDY SPACE CENTER, FLA. - The STS-114 crew poses on deck with the captain of the Liberty Star, one of the SRB Retrieval Ships docked at Hangar AF on the Banana River. From left are Pilot James Kelly, Mission Specialist Soichi Noguchi, Capt. Bren Wade, Commander Eileen Collins and Mission Specialist Stephen Robinson. Noguchi is with the Japanese space agency NASDA. Mission STS-114 will carry the MultiPurpose Logistics Module (MPLM) Raffaello and External Stowage Platform 2 to the International Space Station. The MPLM will contain supplies and equipment. Another goal of the mission is to remove and replace a Control Moment Gyro. Launch date for mission STS-114 is under review.

    NASA Image and Video Library

    2003-08-13

    KENNEDY SPACE CENTER, FLA. - The STS-114 crew poses on deck with the captain of the Liberty Star, one of the SRB Retrieval Ships docked at Hangar AF on the Banana River. From left are Pilot James Kelly, Mission Specialist Soichi Noguchi, Capt. Bren Wade, Commander Eileen Collins and Mission Specialist Stephen Robinson. Noguchi is with the Japanese space agency NASDA. Mission STS-114 will carry the MultiPurpose Logistics Module (MPLM) Raffaello and External Stowage Platform 2 to the International Space Station. The MPLM will contain supplies and equipment. Another goal of the mission is to remove and replace a Control Moment Gyro. Launch date for mission STS-114 is under review.

  12. KENNEDY SPACE CENTER, FLA. - STS-114 Pilot James Kelly talks with Bren Wade, captain of the Liberty Star, one of the SRB Retrieval Ships docked at Hangar AF on the Banana River. Kelly and other crew members Commander Eileen Collins and Mission Specialists Soichi Noguchi and Stephen Robinson toured the ships. Noguchi is with the Japanese space agency NASDA. Mission STS-114 will carry the MultiPurpose Logistics Module (MPLM) Raffaello and External Stowage Platform 2 to the International Space Station. The MPLM will contain supplies and equipment. Another goal of the mission is to remove and replace a Control Moment Gyro. Launch date for mission STS-114 is under review.

    NASA Image and Video Library

    2003-08-13

    KENNEDY SPACE CENTER, FLA. - STS-114 Pilot James Kelly talks with Bren Wade, captain of the Liberty Star, one of the SRB Retrieval Ships docked at Hangar AF on the Banana River. Kelly and other crew members Commander Eileen Collins and Mission Specialists Soichi Noguchi and Stephen Robinson toured the ships. Noguchi is with the Japanese space agency NASDA. Mission STS-114 will carry the MultiPurpose Logistics Module (MPLM) Raffaello and External Stowage Platform 2 to the International Space Station. The MPLM will contain supplies and equipment. Another goal of the mission is to remove and replace a Control Moment Gyro. Launch date for mission STS-114 is under review.

  13. KENNEDY SPACE CENTER, FLA. - STS-114 Mission Specialist Soichi Noguchi, who is with the Japanese space agency NASDA, poses on the deck of one of the SRB Retrieval Ships docked at Hangar AF on the Banana River. He and other crew members Commander Eileen Collins, Pilot James Kelly and Mission Specialist Stephen Robinson toured the ships. Mission STS-114 will carry the MultiPurpose Logistics Module (MPLM) Raffaello and External Stowage Platform 2 to the International Space Station. The MPLM will contain supplies and equipment. Another goal of the mission is to remove and replace a Control Moment Gyro. Launch date for mission STS-114 is under review.

    NASA Image and Video Library

    2003-08-13

    KENNEDY SPACE CENTER, FLA. - STS-114 Mission Specialist Soichi Noguchi, who is with the Japanese space agency NASDA, poses on the deck of one of the SRB Retrieval Ships docked at Hangar AF on the Banana River. He and other crew members Commander Eileen Collins, Pilot James Kelly and Mission Specialist Stephen Robinson toured the ships. Mission STS-114 will carry the MultiPurpose Logistics Module (MPLM) Raffaello and External Stowage Platform 2 to the International Space Station. The MPLM will contain supplies and equipment. Another goal of the mission is to remove and replace a Control Moment Gyro. Launch date for mission STS-114 is under review.

  14. Creating and Sustaining Effective Partnership between Government and Industry

    DTIC Science & Technology

    2011-04-30

    defense industry, fielding, contracting, interoperability, organizational behavior, risk management , cost estimating, and many others. Approaches...Finance from Cameron University and an MBA from Drury University. [scott.fouse@dau.mil] Allen Green—Engineer and Program Manager , SAIC, Inc...Program Executive Officer SHIPS • Commander, Naval Sea Systems Command • Army Contracting Command, U.S. Army Materiel Command • Program Manager , Airborne

  15. Joint Command Decision Support System

    DTIC Science & Technology

    2011-06-01

    2010 Olympics and Paralympics games , about a hundred agencies and organizations were involved with the safety and security of the games . Accordingly...Joint Task Force Games (JTFG) staff members were augmented with other Command Staff from Canada Command and Canadian Operational Support Command...CANOSCOM) to create an operational HQ. The scenario used for demonstration was based on fictitious Olympic Games (Breton and Guitouni 2008). The scenario

  16. Mass Storage System - Gyrfalcon | High-Performance Computing | NREL

    Science.gov Websites

    . At the command line of one of Peregrine's login nodes, enter one of the following commands to copy directory.tgz /mss/ Option 3: The rsync command compares one directory to another and makes > Option 4: The simple Linux cp command can be used to copy a file from one directory to another

  17. A self-learning rule base for command following in dynamical systems

    NASA Technical Reports Server (NTRS)

    Tsai, Wei K.; Lee, Hon-Mun; Parlos, Alexander

    1992-01-01

    In this paper, a self-learning Rule Base for command following in dynamical systems is presented. The learning is accomplished though reinforcement learning using an associative memory called SAM. The main advantage of SAM is that it is a function approximator with explicit storage of training samples. A learning algorithm patterned after the dynamic programming is proposed. Two artificially created, unstable dynamical systems are used for testing, and the Rule Base was used to generate a feedback control to improve the command following ability of the otherwise uncontrolled systems. The numerical results are very encouraging. The controlled systems exhibit a more stable behavior and a better capability to follow reference commands. The rules resulting from the reinforcement learning are explicitly stored and they can be modified or augmented by human experts. Due to overlapping storage scheme of SAM, the stored rules are similar to fuzzy rules.

  18. Servo control booster system for minimizing following error

    DOEpatents

    Wise, William L.

    1985-01-01

    A closed-loop feedback-controlled servo system is disclosed which reduces command-to-response error to the system's position feedback resolution least increment, .DELTA.S.sub.R, on a continuous real-time basis for all operating speeds. The servo system employs a second position feedback control loop on a by exception basis, when the command-to-response error .gtoreq..DELTA.S.sub.R, to produce precise position correction signals. When the command-to-response error is less than .DELTA.S.sub.R, control automatically reverts to conventional control means as the second position feedback control loop is disconnected, becoming transparent to conventional servo control means. By operating the second unique position feedback control loop used herein at the appropriate clocking rate, command-to-response error may be reduced to the position feedback resolution least increment. The present system may be utilized in combination with a tachometer loop for increased stability.

  19. Apollo Command and Service Module Propulsion Systems Overview

    NASA Technical Reports Server (NTRS)

    Interbartolo, Michael A.

    2009-01-01

    An overview of the Apollo Command and Service Module (CSM) propulsion systems is provided. The systems for CSM propulsion and control are defined, the times during the mission when each system is used are listed, and, the basic components and operation of the service propulsion system, SM reaction control system and CM reaction control system are described.

  20. Spills of National Significance Response Management System

    DOT National Transportation Integrated Search

    1997-07-15

    This Instruction contains guidance for establishing an Incident Command System : (ICS) Area Command Structure for a Spill of National Significance (SONS). : Reference (a), the National Contingency Plan (NCP), assigns responsibilities for : emergency ...

Top