A Power Transformers Fault Diagnosis Model Based on Three DGA Ratios and PSO Optimization SVM
NASA Astrophysics Data System (ADS)
Ma, Hongzhe; Zhang, Wei; Wu, Rongrong; Yang, Chunyan
2018-03-01
In order to make up for the shortcomings of existing transformer fault diagnosis methods in dissolved gas-in-oil analysis (DGA) feature selection and parameter optimization, a transformer fault diagnosis model based on the three DGA ratios and particle swarm optimization (PSO) optimize support vector machine (SVM) is proposed. Using transforming support vector machine to the nonlinear and multi-classification SVM, establishing the particle swarm optimization to optimize the SVM multi classification model, and conducting transformer fault diagnosis combined with the cross validation principle. The fault diagnosis results show that the average accuracy of test method is better than the standard support vector machine and genetic algorithm support vector machine, and the proposed method can effectively improve the accuracy of transformer fault diagnosis is proved.
A simulation-optimization-based decision support tool for mitigating traffic congestion.
DOT National Transportation Integrated Search
2009-12-01
"Traffic congestion has grown considerably in the United States over the past twenty years. In this paper, we develop : a robust decision support tool based on simulation optimization to evaluate and recommend congestion-mitigation : strategies to tr...
Optimization of life support systems and their systems reliability
NASA Technical Reports Server (NTRS)
Fan, L. T.; Hwang, C. L.; Erickson, L. E.
1971-01-01
The identification, analysis, and optimization of life support systems and subsystems have been investigated. For each system or subsystem that has been considered, the procedure involves the establishment of a set of system equations (or mathematical model) based on theory and experimental evidences; the analysis and simulation of the model; the optimization of the operation, control, and reliability; analysis of sensitivity of the system based on the model; and, if possible, experimental verification of the theoretical and computational results. Research activities include: (1) modeling of air flow in a confined space; (2) review of several different gas-liquid contactors utilizing centrifugal force: (3) review of carbon dioxide reduction contactors in space vehicles and other enclosed structures: (4) application of modern optimal control theory to environmental control of confined spaces; (5) optimal control of class of nonlinear diffusional distributed parameter systems: (6) optimization of system reliability of life support systems and sub-systems: (7) modeling, simulation and optimal control of the human thermal system: and (8) analysis and optimization of the water-vapor eletrolysis cell.
Aircraft Engine Thrust Estimator Design Based on GSA-LSSVM
NASA Astrophysics Data System (ADS)
Sheng, Hanlin; Zhang, Tianhong
2017-08-01
In view of the necessity of highly precise and reliable thrust estimator to achieve direct thrust control of aircraft engine, based on support vector regression (SVR), as well as least square support vector machine (LSSVM) and a new optimization algorithm - gravitational search algorithm (GSA), by performing integrated modelling and parameter optimization, a GSA-LSSVM-based thrust estimator design solution is proposed. The results show that compared to particle swarm optimization (PSO) algorithm, GSA can find unknown optimization parameter better and enables the model developed with better prediction and generalization ability. The model can better predict aircraft engine thrust and thus fulfills the need of direct thrust control of aircraft engine.
Vector-model-supported approach in prostate plan optimization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Eva Sau Fan; Department of Health Technology and Informatics, The Hong Kong Polytechnic University; Wu, Vincent Wing Cheung
Lengthy time consumed in traditional manual plan optimization can limit the use of step-and-shoot intensity-modulated radiotherapy/volumetric-modulated radiotherapy (S&S IMRT/VMAT). A vector model base, retrieving similar radiotherapy cases, was developed with respect to the structural and physiologic features extracted from the Digital Imaging and Communications in Medicine (DICOM) files. Planning parameters were retrieved from the selected similar reference case and applied to the test case to bypass the gradual adjustment of planning parameters. Therefore, the planning time spent on the traditional trial-and-error manual optimization approach in the beginning of optimization could be reduced. Each S&S IMRT/VMAT prostate reference database comprised 100more » previously treated cases. Prostate cases were replanned with both traditional optimization and vector-model-supported optimization based on the oncologists' clinical dose prescriptions. A total of 360 plans, which consisted of 30 cases of S&S IMRT, 30 cases of 1-arc VMAT, and 30 cases of 2-arc VMAT plans including first optimization and final optimization with/without vector-model-supported optimization, were compared using the 2-sided t-test and paired Wilcoxon signed rank test, with a significance level of 0.05 and a false discovery rate of less than 0.05. For S&S IMRT, 1-arc VMAT, and 2-arc VMAT prostate plans, there was a significant reduction in the planning time and iteration with vector-model-supported optimization by almost 50%. When the first optimization plans were compared, 2-arc VMAT prostate plans had better plan quality than 1-arc VMAT plans. The volume receiving 35 Gy in the femoral head for 2-arc VMAT plans was reduced with the vector-model-supported optimization compared with the traditional manual optimization approach. Otherwise, the quality of plans from both approaches was comparable. Vector-model-supported optimization was shown to offer much shortened planning time and iteration number without compromising the plan quality.« less
Some Results of Weak Anticipative Concept Applied in Simulation Based Decision Support in Enterprise
NASA Astrophysics Data System (ADS)
Kljajić, Miroljub; Kofjač, Davorin; Kljajić Borštnar, Mirjana; Škraba, Andrej
2010-11-01
The simulation models are used as for decision support and learning in enterprises and in schools. Tree cases of successful applications demonstrate usefulness of weak anticipative information. Job shop scheduling production with makespan criterion presents a real case customized flexible furniture production optimization. The genetic algorithm for job shop scheduling optimization is presented. Simulation based inventory control for products with stochastic lead time and demand describes inventory optimization for products with stochastic lead time and demand. Dynamic programming and fuzzy control algorithms reduce the total cost without producing stock-outs in most cases. Values of decision making information based on simulation were discussed too. All two cases will be discussed from optimization, modeling and learning point of view.
Garner, Melissa J; McGregor, Bonnie A; Murphy, Karly M; Koenig, Alex L; Dolan, Emily D; Albano, Denise
2015-12-01
Breast cancer risk is a chronic stressor associated with depression. Optimism is associated with lower levels of depression among breast cancer survivors. However, to our knowledge, no studies have explored the relationship between optimism and depression among women at risk for breast cancer. We hypothesized that women at risk for breast cancer who have higher levels of optimism would report lower levels of depression and that social support would mediate this relationship. Participants (N = 199) with elevated distress were recruited from the community and completed self-report measures of depression, optimism, and social support. Participants were grouped based on their family history of breast cancer. Path analysis was used to examine the cross-sectional relationship between optimism, social support, and depressive symptoms in each group. Results indicated that the variance in depressive symptoms was partially explained through direct paths from optimism and social support among women with a family history of breast cancer. The indirect path from optimism to depressive symptoms via social support was significant (β = -.053; 90% CI = -.099 to -.011, p = .037) in this group. However, among individuals without a family history of breast cancer, the indirect path from optimism to depressive symptoms via social support was not significant. These results suggest that social support partially mediates the relationship between optimism and depression among women at risk for breast cancer. Social support may be an important intervention target to reduce depression among women at risk for breast cancer. Copyright © 2015 John Wiley & Sons, Ltd.
Research on intrusion detection based on Kohonen network and support vector machine
NASA Astrophysics Data System (ADS)
Shuai, Chunyan; Yang, Hengcheng; Gong, Zeweiyi
2018-05-01
In view of the problem of low detection accuracy and the long detection time of support vector machine, which directly applied to the network intrusion detection system. Optimization of SVM parameters can greatly improve the detection accuracy, but it can not be applied to high-speed network because of the long detection time. a method based on Kohonen neural network feature selection is proposed to reduce the optimization time of support vector machine parameters. Firstly, this paper is to calculate the weights of the KDD99 network intrusion data by Kohonen network and select feature by weight. Then, after the feature selection is completed, genetic algorithm (GA) and grid search method are used for parameter optimization to find the appropriate parameters and classify them by support vector machines. By comparing experiments, it is concluded that feature selection can reduce the time of parameter optimization, which has little influence on the accuracy of classification. The experiments suggest that the support vector machine can be used in the network intrusion detection system and reduce the missing rate.
Recent developments in the structural design and optimization of ITER neutral beam manifold
NASA Astrophysics Data System (ADS)
Chengzhi, CAO; Yudong, PAN; Zhiwei, XIA; Bo, LI; Tao, JIANG; Wei, LI
2018-02-01
This paper describes a new design of the neutral beam manifold based on a more optimized support system. A proposed alternative scheme has presented to replace the former complex manifold supports and internal pipe supports in the final design phase. Both the structural reliability and feasibility were confirmed with detailed analyses. Comparative analyses between two typical types of manifold support scheme were performed. All relevant results of mechanical analyses for typical operation scenarios and fault conditions are presented. Future optimization activities are described, which will give useful information for a refined setting of components in the next phase.
The Effects of a Concept Map-Based Support Tool on Simulation-Based Inquiry Learning
ERIC Educational Resources Information Center
Hagemans, Mieke G.; van der Meij, Hans; de Jong, Ton
2013-01-01
Students often need support to optimize their learning in inquiry learning environments. In 2 studies, we investigated the effects of adding concept-map-based support to a simulation-based inquiry environment on kinematics. The concept map displayed the main domain concepts and their relations, while dynamic color coding of the concepts displayed…
[Development of a medical equipment support information system based on PDF portable document].
Cheng, Jiangbo; Wang, Weidong
2010-07-01
According to the organizational structure and management system of the hospital medical engineering support, integrate medical engineering support workflow to ensure the medical engineering data effectively, accurately and comprehensively collected and kept in electronic archives. Analyse workflow of the medical, equipment support work and record all work processes by the portable electronic document. Using XML middleware technology and SQL Server database, complete process management, data calculation, submission, storage and other functions. The practical application shows that the medical equipment support information system optimizes the existing work process, standardized and digital, automatic and efficient orderly and controllable. The medical equipment support information system based on portable electronic document can effectively optimize and improve hospital medical engineering support work, improve performance, reduce costs, and provide full and accurate digital data
A Swarm Optimization approach for clinical knowledge mining.
Christopher, J Jabez; Nehemiah, H Khanna; Kannan, A
2015-10-01
Rule-based classification is a typical data mining task that is being used in several medical diagnosis and decision support systems. The rules stored in the rule base have an impact on classification efficiency. Rule sets that are extracted with data mining tools and techniques are optimized using heuristic or meta-heuristic approaches in order to improve the quality of the rule base. In this work, a meta-heuristic approach called Wind-driven Swarm Optimization (WSO) is used. The uniqueness of this work lies in the biological inspiration that underlies the algorithm. WSO uses Jval, a new metric, to evaluate the efficiency of a rule-based classifier. Rules are extracted from decision trees. WSO is used to obtain different permutations and combinations of rules whereby the optimal ruleset that satisfies the requirement of the developer is used for predicting the test data. The performance of various extensions of decision trees, namely, RIPPER, PART, FURIA and Decision Tables are analyzed. The efficiency of WSO is also compared with the traditional Particle Swarm Optimization. Experiments were carried out with six benchmark medical datasets. The traditional C4.5 algorithm yields 62.89% accuracy with 43 rules for liver disorders dataset where as WSO yields 64.60% with 19 rules. For Heart disease dataset, C4.5 is 68.64% accurate with 98 rules where as WSO is 77.8% accurate with 34 rules. The normalized standard deviation for accuracy of PSO and WSO are 0.5921 and 0.5846 respectively. WSO provides accurate and concise rulesets. PSO yields results similar to that of WSO but the novelty of WSO lies in its biological motivation and it is customization for rule base optimization. The trade-off between the prediction accuracy and the size of the rule base is optimized during the design and development of rule-based clinical decision support system. The efficiency of a decision support system relies on the content of the rule base and classification accuracy. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Technology Assessment in Support of the Presidential Vision for Space Exploration
NASA Technical Reports Server (NTRS)
Weisbin, Charles R.; Lincoln, William; Mrozinski, Joe; Hua, Hook; Merida, Sofia; Shelton, Kacie; Adumitroaie, Virgil; Derleth, Jason; Silberg, Robert
2006-01-01
This document is a viewgraph presentation that contains: (1) pictorial description of lunar context, (2) Definition of base case, (3) Optimization results, (4) Effects of cost uncertainties for base case and different assumed annual budget levels and (5) Effects of temporal optimization.
area, which includes work on whole building energy modeling, cost-based optimization, model accuracy optimization tool used to provide support for the Building America program's teams and energy efficiency goals Colorado graduate student exploring enhancements to building optimization in terms of robustness and speed
Framework Requirements for MDO Application Development
NASA Technical Reports Server (NTRS)
Salas, A. O.; Townsend, J. C.
1999-01-01
Frameworks or problem solving environments that support application development form an active area of research. The Multidisciplinary Optimization Branch at NASA Langley Research Center is investigating frameworks for supporting multidisciplinary analysis and optimization research. The Branch has generated a list of framework requirements, based on the experience gained from the Framework for Interdisciplinary Design Optimization project and the information acquired during a framework evaluation process. In this study, four existing frameworks are examined against these requirements. The results of this examination suggest several topics for further framework research.
Research on logistics scheduling based on PSO
NASA Astrophysics Data System (ADS)
Bao, Huifang; Zhou, Linli; Liu, Lei
2017-08-01
With the rapid development of e-commerce based on the network, the logistics distribution support of e-commerce is becoming more and more obvious. The optimization of vehicle distribution routing can improve the economic benefit and realize the scientific of logistics [1]. Therefore, the study of logistics distribution vehicle routing optimization problem is not only of great theoretical significance, but also of considerable value of value. Particle swarm optimization algorithm is a kind of evolutionary algorithm, which is based on the random solution and the optimal solution by iteration, and the quality of the solution is evaluated through fitness. In order to obtain a more ideal logistics scheduling scheme, this paper proposes a logistics model based on particle swarm optimization algorithm.
NASA Astrophysics Data System (ADS)
Langton, John T.; Caroli, Joseph A.; Rosenberg, Brad
2008-04-01
To support an Effects Based Approach to Operations (EBAO), Intelligence, Surveillance, and Reconnaissance (ISR) planners must optimize collection plans within an evolving battlespace. A need exists for a decision support tool that allows ISR planners to rapidly generate and rehearse high-performing ISR plans that balance multiple objectives and constraints to address dynamic collection requirements for assessment. To meet this need we have designed an evolutionary algorithm (EA)-based "Integrated ISR Plan Analysis and Rehearsal System" (I2PARS) to support Effects-based Assessment (EBA). I2PARS supports ISR mission planning and dynamic replanning to coordinate assets and optimize their routes, allocation and tasking. It uses an evolutionary algorithm to address the large parametric space of route-finding problems which is sometimes discontinuous in the ISR domain because of conflicting objectives such as minimizing asset utilization yet maximizing ISR coverage. EAs are uniquely suited for generating solutions in dynamic environments and also allow user feedback. They are therefore ideal for "streaming optimization" and dynamic replanning of ISR mission plans. I2PARS uses the Non-dominated Sorting Genetic Algorithm (NSGA-II) to automatically generate a diverse set of high performing collection plans given multiple objectives, constraints, and assets. Intended end users of I2PARS include ISR planners in the Combined Air Operations Centers and Joint Intelligence Centers. Here we show the feasibility of applying the NSGA-II algorithm and EAs in general to the ISR planning domain. Unique genetic representations and operators for optimization within the ISR domain are presented along with multi-objective optimization criteria for ISR planning. Promising results of the I2PARS architecture design, early software prototype, and limited domain testing of the new algorithm are discussed. We also present plans for future research and development, as well as technology transition goals.
Development of transportation asset management decision support tools : final report.
DOT National Transportation Integrated Search
2017-08-09
This study developed a web-based prototype decision support platform to demonstrate the benefits of transportation asset management in monitoring asset performance, supporting asset funding decisions, planning budget tradeoffs, and optimizing resourc...
[Diagnosis and the technology for optimizing the medical support of a troop unit].
Korshever, N G; Polkovov, S V; Lavrinenko, O V; Krupnov, P A; Anastasov, K N
2000-05-01
The work is devoted to investigation of the system of military unit medical support with the use of principles and states of organizational diagnosis; development of the method allowing to assess its functional activity; and determination of optimization trends. Basing on the conducted organizational diagnosis and expert inquiry the informative criteria were determined which characterize the stages of functioning of the military unit medical support system. To evaluate the success of military unit medical support the complex multi-criteria pattern was developed and algorithm of this process optimization was substantiated. Using the results obtained, particularly realization of principles and states of decision taking theory in machine program it is possible to solve more complex problem of comparison between any number of military units: to dispose them according to priority decrease; to select the programmed number of the best and worst; to determine the trends of activity optimization in corresponding medical service personnel.
NASA Technical Reports Server (NTRS)
Kerstman, Eric; Saile, Lynn; Freire de Carvalho, Mary; Myers, Jerry; Walton, Marlei; Butler, Douglas; Lopez, Vilma
2011-01-01
Introduction The Integrated Medical Model (IMM) is a decision support tool that is useful to space flight mission managers and medical system designers in assessing risks and optimizing medical systems. The IMM employs an evidence-based, probabilistic risk assessment (PRA) approach within the operational constraints of space flight. Methods Stochastic computational methods are used to forecast probability distributions of medical events, crew health metrics, medical resource utilization, and probability estimates of medical evacuation and loss of crew life. The IMM can also optimize medical kits within the constraints of mass and volume for specified missions. The IMM was used to forecast medical evacuation and loss of crew life probabilities, as well as crew health metrics for a near-earth asteroid (NEA) mission. An optimized medical kit for this mission was proposed based on the IMM simulation. Discussion The IMM can provide information to the space program regarding medical risks, including crew medical impairment, medical evacuation and loss of crew life. This information is valuable to mission managers and the space medicine community in assessing risk and developing mitigation strategies. Exploration missions such as NEA missions will have significant mass and volume constraints applied to the medical system. Appropriate allocation of medical resources will be critical to mission success. The IMM capability of optimizing medical systems based on specific crew and mission profiles will be advantageous to medical system designers. Conclusion The IMM is a decision support tool that can provide estimates of the impact of medical events on human space flight missions, such as crew impairment, evacuation, and loss of crew life. It can be used to support the development of mitigation strategies and to propose optimized medical systems for specified space flight missions. Learning Objectives The audience will learn how an evidence-based decision support tool can be used to help assess risk, develop mitigation strategies, and optimize medical systems for exploration space flight missions.
Support vector machine firefly algorithm based optimization of lens system.
Shamshirband, Shahaboddin; Petković, Dalibor; Pavlović, Nenad T; Ch, Sudheer; Altameem, Torki A; Gani, Abdullah
2015-01-01
Lens system design is an important factor in image quality. The main aspect of the lens system design methodology is the optimization procedure. Since optimization is a complex, nonlinear task, soft computing optimization algorithms can be used. There are many tools that can be employed to measure optical performance, but the spot diagram is the most useful. The spot diagram gives an indication of the image of a point object. In this paper, the spot size radius is considered an optimization criterion. Intelligent soft computing scheme support vector machines (SVMs) coupled with the firefly algorithm (FFA) are implemented. The performance of the proposed estimators is confirmed with the simulation results. The result of the proposed SVM-FFA model has been compared with support vector regression (SVR), artificial neural networks, and generic programming methods. The results show that the SVM-FFA model performs more accurately than the other methodologies. Therefore, SVM-FFA can be used as an efficient soft computing technique in the optimization of lens system designs.
NASA Astrophysics Data System (ADS)
Oh, Sehyeong; Lee, Boogeon; Park, Hyungmin; Choi, Haecheon
2017-11-01
We investigate a hovering rhinoceros beetle using numerical simulation and blade element theory. Numerical simulations are performed using an immersed boundary method. In the simulation, the hindwings are modeled as a rigid flat plate, and three-dimensionally scanned elytra and body are used. The results of simulation indicate that the lift force generated by the hindwings alone is sufficient to support the weight, and the elytra generate negligible lift force. Considering the hindwings only, we present a blade element model based on quasi-steady assumptions to identify the mechanisms of aerodynamic force generation and power expenditure in the hovering flight of a rhinoceros beetle. We show that the results from the present blade element model are in excellent agreement with numerical ones. Based on the current blade element model, we find the optimal wing kinematics minimizing the aerodynamic power requirement using a hybrid optimization algorithm combining a clustering genetic algorithm with a gradient-based optimizer. We show that the optimal wing kinematics reduce the aerodynamic power consumption, generating enough lift force to support the weight. This research was supported by a Grant to Bio-Mimetic Robot Research Center Funded by Defense Acquisition Program Administration, and by Agency for Defense Development (UD130070ID) and NRF-2016R1E1A1A02921549 of the MSIP of Korea.
Optimal policy for mitigating emissions in the European transport sector
NASA Astrophysics Data System (ADS)
Leduc, Sylvain; Piera, Patrizio; Sennai, Mesfun; Igor, Staritsky; Berien, Elbersen; Tijs, Lammens; Florian, Kraxner
2017-04-01
A geographic explicit techno-economic model, BeWhere (www.iiasa.ac.at/bewhere), has been developed at the European scale (Europe 28, the Balkans countries, Turkey, Moldavia and Ukraine) at a 40km grid size, to assess the potential of bioenergy from non-food feedstock. Based on the minimization of the supply chain from feedstock collection to the final energy product distribution, the model identifies the optimal bioenergy production plants in terms of spatial location, technology and capacity. The feedstock of interests are woody biomass (divided into eight types from conifers and non-conifers) and five different crop residuals. For each type of feedstock, one or multiple technologies can be applied for either heat, electricity or biofuel production. The model is run for different policy tools such as carbon cost, biofuel support, or subsidies, and the optimal mix of technologies and biomass needed is optimized to reach a production cost competitive against the actual reference system which is fossil fuel based. From this approach, the optimal mix of policy tools that can be applied country wide in Europe will be identified. The preliminary results show that high carbon tax and biofuel support contribute to the development of large scale biofuel production based on woody biomass plants mainly located in the northern part of Europe. Finally the highest emission reduction is reached with low biofuel support and high carbon tax evenly distributed in Europe.
FY04 Advanced Life Support Architecture and Technology Studies: Mid-Year Presentation
NASA Technical Reports Server (NTRS)
Lange, Kevin; Anderson, Molly; Duffield, Bruce; Hanford, Tony; Jeng, Frank
2004-01-01
Long-Term Objective: Identify optimal advanced life support system designs that meet existing and projected requirements for future human spaceflight missions. a) Include failure-tolerance, reliability, and safe-haven requirements. b) Compare designs based on multiple criteria including equivalent system mass (ESM), technology readiness level (TRL), simplicity, commonality, etc. c) Develop and evaluate new, more optimal, architecture concepts and technology applications.
ERIC Educational Resources Information Center
Kaplan, Haya
2018-01-01
The study is based on self-determination theory and focuses on the motivation of high-achieving Bedouin students who belong to a hierarchical-collectivist society. The study focuses on the question: What are the relations between teachers' autonomy support and control and an optimal learning experience among students? The study is unique in its…
Relevance of Linear Stability Results to Enhanced Oil Recovery
NASA Astrophysics Data System (ADS)
Ding, Xueru; Daripa, Prabir
2012-11-01
How relevant can the results based on linear stability theory for any problem for that matter be to full scale simulation results? Put it differently, is the optimal design of a system based on linear stability results is optimal or even near optimal for the complex nonlinear system with certain objectives of interest in mind? We will address these issues in the context of enhanced oil recovery by chemical flooding. This will be based on an ongoing work. Supported by Qatar National Research Fund (a member of the Qatar Foundation).
Advanced Intelligent System Application to Load Forecasting and Control for Hybrid Electric Bus
NASA Technical Reports Server (NTRS)
Momoh, James; Chattopadhyay, Deb; Elfayoumy, Mahmoud
1996-01-01
The primary motivation for this research emanates from providing a decision support system to the electric bus operators in the municipal and urban localities which will guide the operators to maintain an optimal compromise among the noise level, pollution level, fuel usage etc. This study is backed up by our previous studies on study of battery characteristics, permanent magnet DC motor studies and electric traction motor size studies completed in the first year. The operator of the Hybrid Electric Car must determine optimal power management schedule to meet a given load demand for different weather and road conditions. The decision support system for the bus operator comprises three sub-tasks viz. forecast of the electrical load for the route to be traversed divided into specified time periods (few minutes); deriving an optimal 'plan' or 'preschedule' based on the load forecast for the entire time-horizon (i.e., for all time periods) ahead of time; and finally employing corrective control action to monitor and modify the optimal plan in real-time. A fully connected artificial neural network (ANN) model is developed for forecasting the kW requirement for hybrid electric bus based on inputs like climatic conditions, passenger load, road inclination, etc. The ANN model is trained using back-propagation algorithm employing improved optimization techniques like projected Lagrangian technique. The pre-scheduler is based on a Goal-Programming (GP) optimization model with noise, pollution and fuel usage as the three objectives. GP has the capability of analyzing the trade-off among the conflicting objectives and arriving at the optimal activity levels, e.g., throttle settings. The corrective control action or the third sub-task is formulated as an optimal control model with inputs from the real-time data base as well as the GP model to minimize the error (or deviation) from the optimal plan. These three activities linked with the ANN forecaster proving the output to the GP model which in turn produces the pre-schedule of the optimal control model. Some preliminary results based on a hypothetical test case will be presented for the load forecasting module. The computer codes for the three modules will be made available fe adoption by bus operating agencies. Sample results will be provided using these models. The software will be a useful tool for supporting the control systems for the Electric Bus project of NASA.
Building Better Decision-Support by Using Knowledge Discovery.
ERIC Educational Resources Information Center
Jurisica, Igor
2000-01-01
Discusses knowledge-based decision-support systems that use artificial intelligence approaches. Addresses the issue of how to create an effective case-based reasoning system for complex and evolving domains, focusing on automated methods for system optimization and domain knowledge evolution that can supplement knowledge acquired from domain…
Hybrid PSO-ASVR-based method for data fitting in the calibration of infrared radiometer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Sen; Li, Chengwei, E-mail: heikuanghit@163.com
2016-06-15
The present paper describes a hybrid particle swarm optimization-adaptive support vector regression (PSO-ASVR)-based method for data fitting in the calibration of infrared radiometer. The proposed hybrid PSO-ASVR-based method is based on PSO in combination with Adaptive Processing and Support Vector Regression (SVR). The optimization technique involves setting parameters in the ASVR fitting procedure, which significantly improves the fitting accuracy. However, its use in the calibration of infrared radiometer has not yet been widely explored. Bearing this in mind, the PSO-ASVR-based method, which is based on the statistical learning theory, is successfully used here to get the relationship between the radiationmore » of a standard source and the response of an infrared radiometer. Main advantages of this method are the flexible adjustment mechanism in data processing and the optimization mechanism in a kernel parameter setting of SVR. Numerical examples and applications to the calibration of infrared radiometer are performed to verify the performance of PSO-ASVR-based method compared to conventional data fitting methods.« less
Final Report A Multi-Language Environment For Programmable Code Optimization and Empirical Tuning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yi, Qing; Whaley, Richard Clint; Qasem, Apan
This report summarizes our effort and results of building an integrated optimization environment to effectively combine the programmable control and the empirical tuning of source-to-source compiler optimizations within the framework of multiple existing languages, specifically C, C++, and Fortran. The environment contains two main components: the ROSE analysis engine, which is based on the ROSE C/C++/Fortran2003 source-to-source compiler developed by Co-PI Dr.Quinlan et. al at DOE/LLNL, and the POET transformation engine, which is based on an interpreted program transformation language developed by Dr. Yi at University of Texas at San Antonio (UTSA). The ROSE analysis engine performs advanced compiler analysis,more » identifies profitable code transformations, and then produces output in POET, a language designed to provide programmable control of compiler optimizations to application developers and to support the parameterization of architecture-sensitive optimizations so that their configurations can be empirically tuned later. This POET output can then be ported to different machines together with the user application, where a POET-based search engine empirically reconfigures the parameterized optimizations until satisfactory performance is found. Computational specialists can write POET scripts to directly control the optimization of their code. Application developers can interact with ROSE to obtain optimization feedback as well as provide domain-specific knowledge and high-level optimization strategies. The optimization environment is expected to support different levels of automation and programmer intervention, from fully-automated tuning to semi-automated development and to manual programmable control.« less
OPTIMIZING BMP PLACEMENT AT WATERSHED-SCALE USING SUSTAIN
Watershed and stormwater managers need modeling tools to evaluate alternative plans for environmental quality restoration and protection needs in urban and developing areas. A watershed-scale decision-support system, based on cost optimization, provides an essential tool to suppo...
Ye, Fei; Lou, Xin Yuan; Sun, Lin Fu
2017-01-01
This paper proposes a new support vector machine (SVM) optimization scheme based on an improved chaotic fly optimization algorithm (FOA) with a mutation strategy to simultaneously perform parameter setting turning for the SVM and feature selection. In the improved FOA, the chaotic particle initializes the fruit fly swarm location and replaces the expression of distance for the fruit fly to find the food source. However, the proposed mutation strategy uses two distinct generative mechanisms for new food sources at the osphresis phase, allowing the algorithm procedure to search for the optimal solution in both the whole solution space and within the local solution space containing the fruit fly swarm location. In an evaluation based on a group of ten benchmark problems, the proposed algorithm's performance is compared with that of other well-known algorithms, and the results support the superiority of the proposed algorithm. Moreover, this algorithm is successfully applied in a SVM to perform both parameter setting turning for the SVM and feature selection to solve real-world classification problems. This method is called chaotic fruit fly optimization algorithm (CIFOA)-SVM and has been shown to be a more robust and effective optimization method than other well-known methods, particularly in terms of solving the medical diagnosis problem and the credit card problem.
Lou, Xin Yuan; Sun, Lin Fu
2017-01-01
This paper proposes a new support vector machine (SVM) optimization scheme based on an improved chaotic fly optimization algorithm (FOA) with a mutation strategy to simultaneously perform parameter setting turning for the SVM and feature selection. In the improved FOA, the chaotic particle initializes the fruit fly swarm location and replaces the expression of distance for the fruit fly to find the food source. However, the proposed mutation strategy uses two distinct generative mechanisms for new food sources at the osphresis phase, allowing the algorithm procedure to search for the optimal solution in both the whole solution space and within the local solution space containing the fruit fly swarm location. In an evaluation based on a group of ten benchmark problems, the proposed algorithm’s performance is compared with that of other well-known algorithms, and the results support the superiority of the proposed algorithm. Moreover, this algorithm is successfully applied in a SVM to perform both parameter setting turning for the SVM and feature selection to solve real-world classification problems. This method is called chaotic fruit fly optimization algorithm (CIFOA)-SVM and has been shown to be a more robust and effective optimization method than other well-known methods, particularly in terms of solving the medical diagnosis problem and the credit card problem. PMID:28369096
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsumoto, H.; Eki, Y.; Kaji, A.
1993-12-01
An expert system which can support operators of fossil power plants in creating the optimum startup schedule and executing it accurately is described. The optimum turbine speed-up and load-up pattern is obtained through an iterative manner which is based on fuzzy resonating using quantitative calculations as plant dynamics models and qualitative knowledge as schedule optimization rules with fuzziness. The rules represent relationships between stress margins and modification rates of the schedule parameters. Simulations analysis proves that the system provides quick and accurate plant startups.
Mean-variance portfolio analysis data for optimizing community-based photovoltaic investment.
Shakouri, Mahmoud; Lee, Hyun Woo
2016-03-01
The amount of electricity generated by Photovoltaic (PV) systems is affected by factors such as shading, building orientation and roof slope. To increase electricity generation and reduce volatility in generation of PV systems, a portfolio of PV systems can be made which takes advantages of the potential synergy among neighboring buildings. This paper contains data supporting the research article entitled: PACPIM: new decision-support model of optimized portfolio analysis for community-based photovoltaic investment [1]. We present a set of data relating to physical properties of 24 houses in Oregon, USA, along with simulated hourly electricity data for the installed PV systems. The developed Matlab code to construct optimized portfolios is also provided in . The application of these files can be generalized to variety of communities interested in investing on PV systems.
Phylogeny of sipunculan worms: A combined analysis of four gene regions and morphology.
Schulze, Anja; Cutler, Edward B; Giribet, Gonzalo
2007-01-01
The intra-phyletic relationships of sipunculan worms were analyzed based on DNA sequence data from four gene regions and 58 morphological characters. Initially we analyzed the data under direct optimization using parsimony as optimality criterion. An implied alignment resulting from the direct optimization analysis was subsequently utilized to perform a Bayesian analysis with mixed models for the different data partitions. For this we applied a doublet model for the stem regions of the 18S rRNA. Both analyses support monophyly of Sipuncula and most of the same clades within the phylum. The analyses differ with respect to the relationships among the major groups but whereas the deep nodes in the direct optimization analysis generally show low jackknife support, they are supported by 100% posterior probability in the Bayesian analysis. Direct optimization has been useful for handling sequences of unequal length and generating conservative phylogenetic hypotheses whereas the Bayesian analysis under mixed models provided high resolution in the basal nodes of the tree.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Durfee, Justin David; Frazier, Christopher Rawls; Bandlow, Alisa
This document describes the final software design of the Contingency Contractor Optimization Tool - Prototype. Its purpose is to provide the overall architecture of the software and the logic behind this architecture. Documentation for the individual classes is provided in the application Javadoc. The Contingency Contractor Optimization project is intended to address Department of Defense mandates by delivering a centralized strategic planning tool that allows senior decision makers to quickly and accurately assess the impacts, risks, and mitigation strategies associated with utilizing contract support. The Contingency Contractor Optimization Tool - Prototype was developed in Phase 3 of the OSD ATLmore » Contingency Contractor Optimization project to support strategic planning for contingency contractors. The planning tool uses a model to optimize the Total Force mix by minimizing the combined total costs for selected mission scenarios. The model optimizes the match of personnel types (military, DoD civilian, and contractors) and capabilities to meet mission requirements as effectively as possible, based on risk, cost, and other requirements.« less
Zhou, Pei-pei; Shan, Jin-feng; Jiang, Jian-lan
2015-12-01
To optimize the optimal microwave-assisted extraction method of curcuminoids from Curcuma longa. On the base of single factor experiment, the ethanol concentration, the ratio of liquid to solid and the microwave time were selected for further optimization. Support Vector Regression (SVR) and Central Composite Design-Response Surface Methodology (CCD) algorithm were utilized to design and establish models respectively, while Particle Swarm Optimization (PSO) was introduced to optimize the parameters of SVR models and to search optimal points of models. The evaluation indicator, the sum of curcumin, demethoxycurcumin and bisdemethoxycurcumin by HPLC, were used. The optimal parameters of microwave-assisted extraction were as follows: ethanol concentration of 69%, ratio of liquid to solid of 21 : 1, microwave time of 55 s. On those conditions, the sum of three curcuminoids was 28.97 mg/g (per gram of rhizomes powder). Both the CCD model and the SVR model were credible, for they have predicted the similar process condition and the deviation of yield were less than 1.2%.
NASA Technical Reports Server (NTRS)
Rogers, James L.; Feyock, Stefan; Sobieszczanski-Sobieski, Jaroslaw
1988-01-01
The purpose of this research effort is to investigate the benefits that might be derived from applying artificial intelligence tools in the area of conceptual design. Therefore, the emphasis is on the artificial intelligence aspects of conceptual design rather than structural and optimization aspects. A prototype knowledge-based system, called STRUTEX, was developed to initially configure a structure to support point loads in two dimensions. This system combines numerical and symbolic processing by the computer with interactive problem solving aided by the vision of the user by integrating a knowledge base interface and inference engine, a data base interface, and graphics while keeping the knowledge base and data base files separate. The system writes a file which can be input into a structural synthesis system, which combines structural analysis and optimization.
Optimization of monopiles for offshore wind turbines.
Kallehave, Dan; Byrne, Byron W; LeBlanc Thilsted, Christian; Mikkelsen, Kristian Kousgaard
2015-02-28
The offshore wind industry currently relies on subsidy schemes to be competitive with fossil-fuel-based energy sources. For the wind industry to survive, it is vital that costs are significantly reduced for future projects. This can be partly achieved by introducing new technologies and partly through optimization of existing technologies and design methods. One of the areas where costs can be reduced is in the support structure, where better designs, cheaper fabrication and quicker installation might all be possible. The prevailing support structure design is the monopile structure, where the simple design is well suited to mass-fabrication, and the installation approach, based on conventional impact driving, is relatively low-risk and robust for most soil conditions. The range of application of the monopile for future wind farms can be extended by using more accurate engineering design methods, specifically tailored to offshore wind industry design. This paper describes how state-of-the-art optimization approaches are applied to the design of current wind farms and monopile support structures and identifies the main drivers where more accurate engineering methods could impact on a next generation of highly optimized monopiles. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Huaiguang
This work proposes an approach for distribution system load forecasting, which aims to provide highly accurate short-term load forecasting with high resolution utilizing a support vector regression (SVR) based forecaster and a two-step hybrid parameters optimization method. Specifically, because the load profiles in distribution systems contain abrupt deviations, a data normalization is designed as the pretreatment for the collected historical load data. Then an SVR model is trained by the load data to forecast the future load. For better performance of SVR, a two-step hybrid optimization algorithm is proposed to determine the best parameters. In the first step of themore » hybrid optimization algorithm, a designed grid traverse algorithm (GTA) is used to narrow the parameters searching area from a global to local space. In the second step, based on the result of the GTA, particle swarm optimization (PSO) is used to determine the best parameters in the local parameter space. After the best parameters are determined, the SVR model is used to forecast the short-term load deviation in the distribution system.« less
Intelligent fault recognition strategy based on adaptive optimized multiple centers
NASA Astrophysics Data System (ADS)
Zheng, Bo; Li, Yan-Feng; Huang, Hong-Zhong
2018-06-01
For the recognition principle based optimized single center, one important issue is that the data with nonlinear separatrix cannot be recognized accurately. In order to solve this problem, a novel recognition strategy based on adaptive optimized multiple centers is proposed in this paper. This strategy recognizes the data sets with nonlinear separatrix by the multiple centers. Meanwhile, the priority levels are introduced into the multi-objective optimization, including recognition accuracy, the quantity of optimized centers, and distance relationship. According to the characteristics of various data, the priority levels are adjusted to ensure the quantity of optimized centers adaptively and to keep the original accuracy. The proposed method is compared with other methods, including support vector machine (SVM), neural network, and Bayesian classifier. The results demonstrate that the proposed strategy has the same or even better recognition ability on different distribution characteristics of data.
Pulmonary Nodule Recognition Based on Multiple Kernel Learning Support Vector Machine-PSO
Zhu, Zhichuan; Zhao, Qingdong; Liu, Liwei; Zhang, Lijuan
2018-01-01
Pulmonary nodule recognition is the core module of lung CAD. The Support Vector Machine (SVM) algorithm has been widely used in pulmonary nodule recognition, and the algorithm of Multiple Kernel Learning Support Vector Machine (MKL-SVM) has achieved good results therein. Based on grid search, however, the MKL-SVM algorithm needs long optimization time in course of parameter optimization; also its identification accuracy depends on the fineness of grid. In the paper, swarm intelligence is introduced and the Particle Swarm Optimization (PSO) is combined with MKL-SVM algorithm to be MKL-SVM-PSO algorithm so as to realize global optimization of parameters rapidly. In order to obtain the global optimal solution, different inertia weights such as constant inertia weight, linear inertia weight, and nonlinear inertia weight are applied to pulmonary nodules recognition. The experimental results show that the model training time of the proposed MKL-SVM-PSO algorithm is only 1/7 of the training time of the MKL-SVM grid search algorithm, achieving better recognition effect. Moreover, Euclidean norm of normalized error vector is proposed to measure the proximity between the average fitness curve and the optimal fitness curve after convergence. Through statistical analysis of the average of 20 times operation results with different inertial weights, it can be seen that the dynamic inertial weight is superior to the constant inertia weight in the MKL-SVM-PSO algorithm. In the dynamic inertial weight algorithm, the parameter optimization time of nonlinear inertia weight is shorter; the average fitness value after convergence is much closer to the optimal fitness value, which is better than the linear inertial weight. Besides, a better nonlinear inertial weight is verified. PMID:29853983
Pulmonary Nodule Recognition Based on Multiple Kernel Learning Support Vector Machine-PSO.
Li, Yang; Zhu, Zhichuan; Hou, Alin; Zhao, Qingdong; Liu, Liwei; Zhang, Lijuan
2018-01-01
Pulmonary nodule recognition is the core module of lung CAD. The Support Vector Machine (SVM) algorithm has been widely used in pulmonary nodule recognition, and the algorithm of Multiple Kernel Learning Support Vector Machine (MKL-SVM) has achieved good results therein. Based on grid search, however, the MKL-SVM algorithm needs long optimization time in course of parameter optimization; also its identification accuracy depends on the fineness of grid. In the paper, swarm intelligence is introduced and the Particle Swarm Optimization (PSO) is combined with MKL-SVM algorithm to be MKL-SVM-PSO algorithm so as to realize global optimization of parameters rapidly. In order to obtain the global optimal solution, different inertia weights such as constant inertia weight, linear inertia weight, and nonlinear inertia weight are applied to pulmonary nodules recognition. The experimental results show that the model training time of the proposed MKL-SVM-PSO algorithm is only 1/7 of the training time of the MKL-SVM grid search algorithm, achieving better recognition effect. Moreover, Euclidean norm of normalized error vector is proposed to measure the proximity between the average fitness curve and the optimal fitness curve after convergence. Through statistical analysis of the average of 20 times operation results with different inertial weights, it can be seen that the dynamic inertial weight is superior to the constant inertia weight in the MKL-SVM-PSO algorithm. In the dynamic inertial weight algorithm, the parameter optimization time of nonlinear inertia weight is shorter; the average fitness value after convergence is much closer to the optimal fitness value, which is better than the linear inertial weight. Besides, a better nonlinear inertial weight is verified.
Multi-objective optimization of riparian buffer networks; valuing present and future benefits
Multi-objective optimization has emerged as a popular approach to support water resources planning and management. This approach provides decision-makers with a suite of management options which are generated based on metrics that represent different social, economic, and environ...
Zhan, Xiaobin; Jiang, Shulan; Yang, Yili; Liang, Jian; Shi, Tielin; Li, Xiwen
2015-09-18
This paper proposes an ultrasonic measurement system based on least squares support vector machines (LS-SVM) for inline measurement of particle concentrations in multicomponent suspensions. Firstly, the ultrasonic signals are analyzed and processed, and the optimal feature subset that contributes to the best model performance is selected based on the importance of features. Secondly, the LS-SVM model is tuned, trained and tested with different feature subsets to obtain the optimal model. In addition, a comparison is made between the partial least square (PLS) model and the LS-SVM model. Finally, the optimal LS-SVM model with the optimal feature subset is applied to inline measurement of particle concentrations in the mixing process. The results show that the proposed method is reliable and accurate for inline measuring the particle concentrations in multicomponent suspensions and the measurement accuracy is sufficiently high for industrial application. Furthermore, the proposed method is applicable to the modeling of the nonlinear system dynamically and provides a feasible way to monitor industrial processes.
Kennedy, Rachel A; McGinley, Jennifer L; Paterson, Kade L; Ryan, Monique M; Carroll, Kate
2018-05-01
Children with Charcot-Marie-Tooth disease (CMT) report problems with gait and footwear. We evaluated differences in spatio-temporal gait variables and gait variability between children with CMT and typically developing (TD) children, and investigated the effect of footwear upon gait. A cross-sectional study of 30 children with CMT and 30 age- and gender-matched TD children aged 4-18 years. Gait was assessed at self-selected speed on an electronic walkway while barefoot and in two types of the child's own footwear; optimal (e.g., athletic-type runners) and suboptimal (e.g., flip-flops). Children with CMT walked more slowly (mean (SD) -13.81 (3.61) cm/s), with shorter steps (-6.28 (1.37) cm), wider base of support (+2.47 (0.66) cm; all p < 0.001) and greater base of support variability (0.48 (0.15) cm, p = 0.002) compared to TD children. Gait was faster in optimal footwear than suboptimal (-7.55 (1.31) cm/s) and barefoot (-7.42 (1.07) cm/sec; both p < 0.001) in the combined group of children. Gait in suboptimal footwear was more variable compared to barefoot and optimal footwear. Greater base of support variability and reduced balance was moderately correlated for both groups (CMT and TD). Gait is slower with shorter, wider steps and greater base of support variability in children with CMT. Poor balance is associated with greater base of support gait variability. Suboptimal footwear negatively affects gait in all children (CMT and TD), which has clinical implications for children and adolescents with CMT who have weaker feet and ankles, and poor balance. Copyright © 2018 Elsevier B.V. All rights reserved.
Mean-variance portfolio analysis data for optimizing community-based photovoltaic investment
Shakouri, Mahmoud; Lee, Hyun Woo
2016-01-01
The amount of electricity generated by Photovoltaic (PV) systems is affected by factors such as shading, building orientation and roof slope. To increase electricity generation and reduce volatility in generation of PV systems, a portfolio of PV systems can be made which takes advantages of the potential synergy among neighboring buildings. This paper contains data supporting the research article entitled: PACPIM: new decision-support model of optimized portfolio analysis for community-based photovoltaic investment [1]. We present a set of data relating to physical properties of 24 houses in Oregon, USA, along with simulated hourly electricity data for the installed PV systems. The developed Matlab code to construct optimized portfolios is also provided in Supplementary materials. The application of these files can be generalized to variety of communities interested in investing on PV systems. PMID:26937458
Spas, Jayson; Ramsey, Susan; Paiva, Andrea L.; Stein, L.A.R.
2012-01-01
Considerable evidence from the literature on treatment outcomes indicates that substance abuse treatment among adolescents with conduct problems varies widely. Treatments commonly used among this population are cognitive-behavioral therapy (CBT), 12-step facilitation, multisystemic therapy (MST), psychoeducation (PE), and motivational interviewing (MI). This manuscript thoroughly and systematically reviews the available literature to determine which treatment is optimal for substance-abusing adolescents with conduct problems. Results suggest that although there are several evidence-based and empirically supported treatments, those that incorporate family-based intervention consistently provide the most positive treatment outcomes. In particular, this review further reveals that although many interventions have gained empirical support over the years, only one holds the prize as being the optimal treatment of choice for substance abuse treatment among adolescents with conduct problems. PMID:23170066
Assessing District Support for Leadership Development: Asking the Right Questions.
ERIC Educational Resources Information Center
Snow-Renner, Ravay
This document provides guiding questions and a process for school district personnel to assess the district's organizational capacity for supporting strong educational leaders in a standards-based system. These questions reflect the most recent research literature about leadership and its optimal organizational supports in high-performing school…
Electrocardiographic signals and swarm-based support vector machine for hypoglycemia detection.
Nuryani, Nuryani; Ling, Steve S H; Nguyen, H T
2012-04-01
Cardiac arrhythmia relating to hypoglycemia is suggested as a cause of death in diabetic patients. This article introduces electrocardiographic (ECG) parameters for artificially induced hypoglycemia detection. In addition, a hybrid technique of swarm-based support vector machine (SVM) is introduced for hypoglycemia detection using the ECG parameters as inputs. In this technique, a particle swarm optimization (PSO) is proposed to optimize the SVM to detect hypoglycemia. In an experiment using medical data of patients with Type 1 diabetes, the introduced ECG parameters show significant contributions to the performance of the hypoglycemia detection and the proposed detection technique performs well in terms of sensitivity and specificity.
NASA Astrophysics Data System (ADS)
Arroyo, Orlando; Gutiérrez, Sergio
2017-07-01
Several seismic optimization methods have been proposed to improve the performance of reinforced concrete framed (RCF) buildings; however, they have not been widely adopted among practising engineers because they require complex nonlinear models and are computationally expensive. This article presents a procedure to improve the seismic performance of RCF buildings based on eigenfrequency optimization, which is effective, simple to implement and efficient. The method is used to optimize a 10-storey regular building, and its effectiveness is demonstrated by nonlinear time history analyses, which show important reductions in storey drifts and lateral displacements compared to a non-optimized building. A second example for an irregular six-storey building demonstrates that the method provides benefits to a wide range of RCF structures and supports the applicability of the proposed method.
Supports for Community-Based Mental Health Care: An Optimistic Review of Federal Legislation.
ERIC Educational Resources Information Center
Bentley, Kia J.
1994-01-01
Describes and summarizes recent relevant federal legislative initiatives and analyzes their potential in providing support for community-based mental health care for adults in United States. Contends that these legislative mandates and options can be source of optimism and ammunition for advocates and change agents as they work to improve mental…
Defraene, Bruno; van Waterschoot, Toon; Diehl, Moritz; Moonen, Marc
2016-07-01
Subjective audio quality evaluation experiments have been conducted to assess the performance of embedded-optimization-based precompensation algorithms for mitigating perceptible linear and nonlinear distortion in audio signals. It is concluded with statistical significance that the perceived audio quality is improved by applying an embedded-optimization-based precompensation algorithm, both in case (i) nonlinear distortion and (ii) a combination of linear and nonlinear distortion is present. Moreover, a significant positive correlation is reported between the collected subjective and objective PEAQ audio quality scores, supporting the validity of using PEAQ to predict the impact of linear and nonlinear distortion on the perceived audio quality.
NASA Astrophysics Data System (ADS)
Vesselinov, V. V.; Harp, D.
2010-12-01
The process of decision making to protect groundwater resources requires a detailed estimation of uncertainties in model predictions. Various uncertainties associated with modeling a natural system, such as: (1) measurement and computational errors; (2) uncertainties in the conceptual model and model-parameter estimates; (3) simplifications in model setup and numerical representation of governing processes, contribute to the uncertainties in the model predictions. Due to this combination of factors, the sources of predictive uncertainties are generally difficult to quantify individually. Decision support related to optimal design of monitoring networks requires (1) detailed analyses of existing uncertainties related to model predictions of groundwater flow and contaminant transport, (2) optimization of the proposed monitoring network locations in terms of their efficiency to detect contaminants and provide early warning. We apply existing and newly-proposed methods to quantify predictive uncertainties and to optimize well locations. An important aspect of the analysis is the application of newly-developed optimization technique based on coupling of Particle Swarm and Levenberg-Marquardt optimization methods which proved to be robust and computationally efficient. These techniques and algorithms are bundled in a software package called MADS. MADS (Model Analyses for Decision Support) is an object-oriented code that is capable of performing various types of model analyses and supporting model-based decision making. The code can be executed under different computational modes, which include (1) sensitivity analyses (global and local), (2) Monte Carlo analysis, (3) model calibration, (4) parameter estimation, (5) uncertainty quantification, and (6) model selection. The code can be externally coupled with any existing model simulator through integrated modules that read/write input and output files using a set of template and instruction files (consistent with the PEST I/O protocol). MADS can also be internally coupled with a series of built-in analytical simulators. MADS provides functionality to work directly with existing control files developed for the code PEST (Doherty 2009). To perform the computational modes mentioned above, the code utilizes (1) advanced Latin-Hypercube sampling techniques (including Improved Distributed Sampling), (2) various gradient-based Levenberg-Marquardt optimization methods, (3) advanced global optimization methods (including Particle Swarm Optimization), and (4) a selection of alternative objective functions. The code has been successfully applied to perform various model analyses related to environmental management of real contamination sites. Examples include source identification problems, quantification of uncertainty, model calibration, and optimization of monitoring networks. The methodology and software codes are demonstrated using synthetic and real case studies where monitoring networks are optimized taking into account the uncertainty in model predictions of contaminant transport.
Zhang, Jinshui; Yuan, Zhoumiqi; Shuai, Guanyuan; Pan, Yaozhong; Zhu, Xiufang
2017-04-26
This paper developed an approach, the window-based validation set for support vector data description (WVS-SVDD), to determine optimal parameters for support vector data description (SVDD) model to map specific land cover by integrating training and window-based validation sets. Compared to the conventional approach where the validation set included target and outlier pixels selected visually and randomly, the validation set derived from WVS-SVDD constructed a tightened hypersphere because of the compact constraint by the outlier pixels which were located neighboring to the target class in the spectral feature space. The overall accuracies for wheat and bare land achieved were as high as 89.25% and 83.65%, respectively. However, target class was underestimated because the validation set covers only a small fraction of the heterogeneous spectra of the target class. The different window sizes were then tested to acquire more wheat pixels for validation set. The results showed that classification accuracy increased with the increasing window size and the overall accuracies were higher than 88% at all window size scales. Moreover, WVS-SVDD showed much less sensitivity to the untrained classes than the multi-class support vector machine (SVM) method. Therefore, the developed method showed its merits using the optimal parameters, tradeoff coefficient ( C ) and kernel width ( s ), in mapping homogeneous specific land cover.
Heberle, Amy E.; Krill, Sarah C.; Briggs-Gowan, Margaret J.; Carter, Alice S.
2014-01-01
Objective This study tested an ecological model predicting children’s behavior problems in kindergarten from risk and protective factors (parent psychological distress, parenting behavior, and social support) during early childhood. Method Study participants were 1161 socio-demographically diverse mother-child pairs who participated in a longitudinal birth cohort study. The predictor variables were collected at two separate time points and based on parent reports; children were an average of two years old at Time 1 and three years old at Time 2. The outcome measures were collected when children reached Kindergarten and were six years old on average. Results Our results show that early maternal psychological distress, mediated by sub-optimal parenting behavior, predicts children’s externalizing and internalizing behaviors in kindergarten. Moreover, early social support buffers the relations between psychological distress and later sub-optimal parenting behaviors and between sub-optimal parenting behavior and later depressive/withdrawn behavior. Conclusions Our findings have several implications for early intervention and prevention efforts. Of note, informal social support appears to play an important protective role in the development of externalizing and internalizing behavior problems, weakening the link between psychological distress and less optimal parenting behavior and between sub-optimal parenting behavior and children’s withdrawal/depression symptoms. Increasing social support may be a productive goal for family and community-level intervention. PMID:24697587
Voltammetric methods for determination of total sulfide concentrations in anoxic sediments utilizing a previously described [1] gold-based mercury amalgam microelectrode were optimized. Systematic studies in NaCl (supporting electrolyte) and porewater indicate variations in ionic...
SME Worker Affective (SWA) index based on environmental ergonomics
NASA Astrophysics Data System (ADS)
Ushada, M.; Kusuma Aji, G.; Okayama, T.; Khidir, M.
2018-04-01
Small-Medium sized (SME) is a focal type of Indonesian industry which contributes to national emerging economies. Indonesian goverment has developed employee social security system (BPJS Ketenagakerjaan) to support worker quality of life. However, there were limited research which could assist BPJS Ketenagakerjaan in evaluating worker quality of life. Worker quality of life could be categorized as the highest worker needs or affective states. SME Worker Affective (SWA) index is being concerned as a basic tool to make balance between worker performance and quality of life in workstation of SMEs. The research objectives are: 1) To optimize the environmental ergonomics in SMEs; 2) To quantify SME Worker Affective (SWA) index based on optimized environmental ergonomics. The research advantage is to support Indonesian goverment in monitoring SMEs good practices to its worker quality of life. Simulated annealing optimized the heart rate and environmental ergonomics parameters. SWA index was determined based on comparison between optimized heart rate and environmental ergonomics parameters. SWA index were quantified for 380 data of worker. The evaluation indicated 51.3% worker in affective and 48.7% in non-affective condition. Research results indicated that stakeholders of SMEs should put more attention on environmental ergonomics and worker affective.
Evaluation of optimal configuration of hybrid Life Support System for Space.
Bartsev, S I; Mezhevikin, V V; Okhonin, V A
2000-01-01
Any comprehensive evaluation of Life Support Systems (LSS) for space applications has to be conducted taking into account not only mass of LSS components but also all relevant equipment and storage: spare parts, additional mass of space ship walls, power supply and heat rejection systems. In this paper different combinations of hybrid LSS (HLSS) components were evaluated. Three variants of power supply were under consideration--solar arrays, direct solar light transmission to plants, and nuclear power. The software based on simplex approach was used for optimizing LSS configuration with respect to its mass. It was shown that there are several LSS configuration, which are optimal for different time intervals. Optimal configurations of physical-chemical (P/C), biological and hybrid LSS for three types of power supply are presented.
NASA Astrophysics Data System (ADS)
Yanti, Rinda; Basukriadi, Adi; Hasroel Thayib, Moh.; Edhie Budhi Soesilo, Tri
2016-01-01
The existing condition of the wanatani management in Amarasi District, Kupang Regency, NTT, has not optimized the welfare of the farmers yet, and the land degradation keeps happening. The objectives of this research was to analyze and obtain information on the ecological, social, and economic benefits of sustainable wanatani in dry land management. The research result shows that based on the observation from the ecological function including vegetation, land fertility, micro climate, erotion, and land suitability, wanatani is at present not optimal and not sustainable in supporting productivity and land conservation. From the economic function, the productivity in wanatani should be optimal, but the lack of institutional support and social function causes the agricultural management to be not optimal and not sustainable.
Genetic particle swarm parallel algorithm analysis of optimization arrangement on mistuned blades
NASA Astrophysics Data System (ADS)
Zhao, Tianyu; Yuan, Huiqun; Yang, Wenjun; Sun, Huagang
2017-12-01
This article introduces a method of mistuned parameter identification which consists of static frequency testing of blades, dichotomy and finite element analysis. A lumped parameter model of an engine bladed-disc system is then set up. A bladed arrangement optimization method, namely the genetic particle swarm optimization algorithm, is presented. It consists of a discrete particle swarm optimization and a genetic algorithm. From this, the local and global search ability is introduced. CUDA-based co-evolution particle swarm optimization, using a graphics processing unit, is presented and its performance is analysed. The results show that using optimization results can reduce the amplitude and localization of the forced vibration response of a bladed-disc system, while optimization based on the CUDA framework can improve the computing speed. This method could provide support for engineering applications in terms of effectiveness and efficiency.
Design Oriented Structural Modeling for Airplane Conceptual Design Optimization
NASA Technical Reports Server (NTRS)
Livne, Eli
1999-01-01
The main goal for research conducted with the support of this grant was to develop design oriented structural optimization methods for the conceptual design of airplanes. Traditionally in conceptual design airframe weight is estimated based on statistical equations developed over years of fitting airplane weight data in data bases of similar existing air- planes. Utilization of such regression equations for the design of new airplanes can be justified only if the new air-planes use structural technology similar to the technology on the airplanes in those weight data bases. If any new structural technology is to be pursued or any new unconventional configurations designed the statistical weight equations cannot be used. In such cases any structural weight estimation must be based on rigorous "physics based" structural analysis and optimization of the airframes under consideration. Work under this grant progressed to explore airframe design-oriented structural optimization techniques along two lines of research: methods based on "fast" design oriented finite element technology and methods based on equivalent plate / equivalent shell models of airframes, in which the vehicle is modelled as an assembly of plate and shell components, each simulating a lifting surface or nacelle / fuselage pieces. Since response to changes in geometry are essential in conceptual design of airplanes, as well as the capability to optimize the shape itself, research supported by this grant sought to develop efficient techniques for parametrization of airplane shape and sensitivity analysis with respect to shape design variables. Towards the end of the grant period a prototype automated structural analysis code designed to work with the NASA Aircraft Synthesis conceptual design code ACS= was delivered to NASA Ames.
Quantum optimization for training support vector machines.
Anguita, Davide; Ridella, Sandro; Rivieccio, Fabio; Zunino, Rodolfo
2003-01-01
Refined concepts, such as Rademacher estimates of model complexity and nonlinear criteria for weighting empirical classification errors, represent recent and promising approaches to characterize the generalization ability of Support Vector Machines (SVMs). The advantages of those techniques lie in both improving the SVM representation ability and yielding tighter generalization bounds. On the other hand, they often make Quadratic-Programming algorithms no longer applicable, and SVM training cannot benefit from efficient, specialized optimization techniques. The paper considers the application of Quantum Computing to solve the problem of effective SVM training, especially in the case of digital implementations. The presented research compares the behavioral aspects of conventional and enhanced SVMs; experiments in both a synthetic and real-world problems support the theoretical analysis. At the same time, the related differences between Quadratic-Programming and Quantum-based optimization techniques are considered.
Optimal design of compact spur gear reductions
NASA Technical Reports Server (NTRS)
Savage, M.; Lattime, S. B.; Kimmel, J. A.; Coe, H. H.
1992-01-01
The optimal design of compact spur gear reductions includes the selection of bearing and shaft proportions in addition to gear mesh parameters. Designs for single mesh spur gear reductions are based on optimization of system life, system volume, and system weight including gears, support shafts, and the four bearings. The overall optimization allows component properties to interact, yielding the best composite design. A modified feasible directions search algorithm directs the optimization through a continuous design space. Interpolated polynomials expand the discrete bearing properties and proportions into continuous variables for optimization. After finding the continuous optimum, the designer can analyze near optimal designs for comparison and selection. Design examples show the influence of the bearings on the optimal configurations.
NASA Astrophysics Data System (ADS)
Goienetxea Uriarte, A.; Ruiz Zúñiga, E.; Urenda Moris, M.; Ng, A. H. C.
2015-05-01
Discrete Event Simulation (DES) is nowadays widely used to support decision makers in system analysis and improvement. However, the use of simulation for improving stochastic logistic processes is not common among healthcare providers. The process of improving healthcare systems involves the necessity to deal with trade-off optimal solutions that take into consideration a multiple number of variables and objectives. Complementing DES with Multi-Objective Optimization (SMO) creates a superior base for finding these solutions and in consequence, facilitates the decision-making process. This paper presents how SMO has been applied for system improvement analysis in a Swedish Emergency Department (ED). A significant number of input variables, constraints and objectives were considered when defining the optimization problem. As a result of the project, the decision makers were provided with a range of optimal solutions which reduces considerably the length of stay and waiting times for the ED patients. SMO has proved to be an appropriate technique to support healthcare system design and improvement processes. A key factor for the success of this project has been the involvement and engagement of the stakeholders during the whole process.
Simulation-based planning for theater air warfare
NASA Astrophysics Data System (ADS)
Popken, Douglas A.; Cox, Louis A., Jr.
2004-08-01
Planning for Theatre Air Warfare can be represented as a hierarchy of decisions. At the top level, surviving airframes must be assigned to roles (e.g., Air Defense, Counter Air, Close Air Support, and AAF Suppression) in each time period in response to changing enemy air defense capabilities, remaining targets, and roles of opposing aircraft. At the middle level, aircraft are allocated to specific targets to support their assigned roles. At the lowest level, routing and engagement decisions are made for individual missions. The decisions at each level form a set of time-sequenced Courses of Action taken by opposing forces. This paper introduces a set of simulation-based optimization heuristics operating within this planning hierarchy to optimize allocations of aircraft. The algorithms estimate distributions for stochastic outcomes of the pairs of Red/Blue decisions. Rather than using traditional stochastic dynamic programming to determine optimal strategies, we use an innovative combination of heuristics, simulation-optimization, and mathematical programming. Blue decisions are guided by a stochastic hill-climbing search algorithm while Red decisions are found by optimizing over a continuous representation of the decision space. Stochastic outcomes are then provided by fast, Lanchester-type attrition simulations. This paper summarizes preliminary results from top and middle level models.
Design Optimization of Gas Generator Hybrid Propulsion Boosters
NASA Technical Reports Server (NTRS)
Weldon, Vincent; Phillips, Dwight; Fink, Larry
1990-01-01
A methodology used in support of a study for NASA/MSFC to optimize the design of gas generator hybrid propulsion booster for uprating the National Space Transportation System (NSTS) is presented. The objective was to compare alternative configurations for this booster approach, optimizing each candidate concept on different bases, in order to develop data for a trade table on which a final decision was based. The methodology is capable of processing a large number of independent and dependent variables, adjusting the overall subsystems characteristics to arrive at a best compromise integrated design to meet various specific optimization criteria subject to selected constraints. For each system considered, a detailed weight statement was generated along with preliminary cost and reliability estimates.
Prediction on sunspot activity based on fuzzy information granulation and support vector machine
NASA Astrophysics Data System (ADS)
Peng, Lingling; Yan, Haisheng; Yang, Zhigang
2018-04-01
In order to analyze the range of sunspots, a combined prediction method of forecasting the fluctuation range of sunspots based on fuzzy information granulation (FIG) and support vector machine (SVM) was put forward. Firstly, employing the FIG to granulate sample data and extract va)alid information of each window, namely the minimum value, the general average value and the maximum value of each window. Secondly, forecasting model is built respectively with SVM and then cross method is used to optimize these parameters. Finally, the fluctuation range of sunspots is forecasted with the optimized SVM model. Case study demonstrates that the model have high accuracy and can effectively predict the fluctuation of sunspots.
Lin, Kuan-Cheng; Hsieh, Yi-Hsiu
2015-10-01
The classification and analysis of data is an important issue in today's research. Selecting a suitable set of features makes it possible to classify an enormous quantity of data quickly and efficiently. Feature selection is generally viewed as a problem of feature subset selection, such as combination optimization problems. Evolutionary algorithms using random search methods have proven highly effective in obtaining solutions to problems of optimization in a diversity of applications. In this study, we developed a hybrid evolutionary algorithm based on endocrine-based particle swarm optimization (EPSO) and artificial bee colony (ABC) algorithms in conjunction with a support vector machine (SVM) for the selection of optimal feature subsets for the classification of datasets. The results of experiments using specific UCI medical datasets demonstrate that the accuracy of the proposed hybrid evolutionary algorithm is superior to that of basic PSO, EPSO and ABC algorithms, with regard to classification accuracy using subsets with a reduced number of features.
Applying Mathematical Optimization Methods to an ACT-R Instance-Based Learning Model.
Said, Nadia; Engelhart, Michael; Kirches, Christian; Körkel, Stefan; Holt, Daniel V
2016-01-01
Computational models of cognition provide an interface to connect advanced mathematical tools and methods to empirically supported theories of behavior in psychology, cognitive science, and neuroscience. In this article, we consider a computational model of instance-based learning, implemented in the ACT-R cognitive architecture. We propose an approach for obtaining mathematical reformulations of such cognitive models that improve their computational tractability. For the well-established Sugar Factory dynamic decision making task, we conduct a simulation study to analyze central model parameters. We show how mathematical optimization techniques can be applied to efficiently identify optimal parameter values with respect to different optimization goals. Beyond these methodological contributions, our analysis reveals the sensitivity of this particular task with respect to initial settings and yields new insights into how average human performance deviates from potential optimal performance. We conclude by discussing possible extensions of our approach as well as future steps towards applying more powerful derivative-based optimization methods.
Optimism, Social Support, and Adjustment in African American Women with Breast Cancer
Shelby, Rebecca A.; Crespin, Tim R.; Wells-Di Gregorio, Sharla M.; Lamdan, Ruth M.; Siegel, Jamie E.; Taylor, Kathryn L.
2013-01-01
Past studies show that optimism and social support are associated with better adjustment following breast cancer treatment. Most studies have examined these relationships in predominantly non-Hispanic White samples. The present study included 77 African American women treated for nonmetastatic breast cancer. Women completed measures of optimism, social support, and adjustment within 10-months of surgical treatment. In contrast to past studies, social support did not mediate the relationship between optimism and adjustment in this sample. Instead, social support was a moderator of the optimism-adjustment relationship, as it buffered the negative impact of low optimism on psychological distress, well-being, and psychosocial functioning. Women with high levels of social support experienced better adjustment even when optimism was low. In contrast, among women with high levels of optimism, increasing social support did not provide an added benefit. These data suggest that perceived social support is an important resource for women with low optimism. PMID:18712591
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beltran, C; Kamal, H
Purpose: To provide a multicriteria optimization algorithm for intensity modulated radiation therapy using pencil proton beam scanning. Methods: Intensity modulated radiation therapy using pencil proton beam scanning requires efficient optimization algorithms to overcome the uncertainties in the Bragg peaks locations. This work is focused on optimization algorithms that are based on Monte Carlo simulation of the treatment planning and use the weights and the dose volume histogram (DVH) control points to steer toward desired plans. The proton beam treatment planning process based on single objective optimization (representing a weighted sum of multiple objectives) usually leads to time-consuming iterations involving treatmentmore » planning team members. We proved a time efficient multicriteria optimization algorithm that is developed to run on NVIDIA GPU (Graphical Processing Units) cluster. The multicriteria optimization algorithm running time benefits from up-sampling of the CT voxel size of the calculations without loss of fidelity. Results: We will present preliminary results of Multicriteria optimization for intensity modulated proton therapy based on DVH control points. The results will show optimization results of a phantom case and a brain tumor case. Conclusion: The multicriteria optimization of the intensity modulated radiation therapy using pencil proton beam scanning provides a novel tool for treatment planning. Work support by a grant from Varian Inc.« less
Adsorbate-mediated strong metal–support interactions in oxide-supported Rh catalysts
Matsubu, John C.; Zhang, Shuyi; DeRita, Leo; ...
2016-09-19
The optimization of supported metal catalysts predominantly focuses on engineering the metal site, for which physical insights based on extensive theoretical and experimental contributions have enabled the rational design of active sites. Although it is well known that supports can influence the catalytic properties of metals, insights into how metal–support interactions can be exploited to optimize metal active-site properties are lacking. Here in this paper, we utilize in situ spectroscopy and microscopy to identify and characterize a support effect in oxide-supported heterogeneous Rh catalysts. This effect is characterized by strongly bound adsorbates (HCO x) on reducible oxide supports (TiO 2more » and Nb 2O 5) that induce oxygen-vacancy formation in the support and cause HCO x-functionalized encapsulation of Rh nanoparticles by the support. The encapsulation layer is permeable to reactants, stable under the reaction conditions and strongly influences the catalytic properties of Rh, which enables rational and dynamic tuning of CO 2-reduction selectivity.« less
Ryan, Alan J; Lackington, William A; Hibbitts, Alan J; Matheson, Austyn; Alekseeva, Tijna; Stejskalova, Anna; Roche, Phoebe; O'Brien, Fergal J
2017-12-01
Clinically available hollow nerve guidance conduits (NGCs) have had limited success in treating large peripheral nerve injuries. This study aims to develop a biphasic NGC combining a physicochemically optimized collagen outer conduit to bridge the transected nerve, and a neuroconductive hyaluronic acid-based luminal filler to support regeneration. The outer conduit is mechanically optimized by manipulating crosslinking and collagen density, allowing the engineering of a high wall permeability to mitigate the risk of neuroma formation, while also maintaining physiologically relevant stiffness and enzymatic degradation tuned to coincide with regeneration rates. Freeze-drying is used to seamlessly integrate the luminal filler into the conduit, creating a longitudinally aligned pore microarchitecture. The luminal stiffness is modulated to support Schwann cells, with laminin incorporation further enhancing bioactivity by improving cell attachment and metabolic activity. Additionally, this biphasic NGC is shown to support neurogenesis and gliogenesis of neural progenitor cells and axonal outgrowth from dorsal root ganglia. These findings highlight the paradigm that a successful NGC requires the concerted optimization of both a mechanical support phase capable of bridging a nerve defect and a neuroconductive phase with an architecture capable of supporting both Schwann cells and neurons in order to achieve functional regenerative outcome. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Chen, Allen Kuan-Liang; Chew, Yi Kong; Tan, Hong Yu; Reuveny, Shaul; Weng Oh, Steve Kah
2015-02-01
Large amounts of human mesenchymal stromal cells (MSCs) are needed for clinical cellular therapy. In a previous publication, we described a microcarrier-based process for expansion of MSCs. The present study optimized this process by selecting suitable basal media, microcarrier concentration and feeding regime to achieve higher cell yields and more efficient medium utilization. MSCs were expanded in stirred cultures on Cytodex 3 microcarriers with media containing 10% fetal bovine serum. Process optimization was carried out in spinner flasks. A 2-L bioreactor with an automated feeding system was used to validate the optimized parameters explored in spinner flask cultures. Minimum essential medium-α-based medium supported faster MSC growth on microcarriers than did Dulbecco's modified Eagle's medium (doubling time, 31.6 ± 1.4 vs 42 ± 1.7 h) and shortened the process time. At microcarrier concentration of 8 mg/mL, a high cell concentration of 1.08 × 10(6) cells/mL with confluent cell concentration of 4.7 × 10(4)cells/cm(2) was achieved. Instead of 50% medium exchange every 2 days, we have designed a full medium feed that is based on glucose consumption rate. The optimal medium feed that consisted of 1.5 g/L glucose supported MSC growth to full confluency while achieving the low medium usage efficiency of 3.29 mL/10(6)cells. Finally, a controlled bioreactor with the optimized parameters achieved maximal confluent cell concentration with 16-fold expansion and a further improved medium usage efficiency of 1.68 mL/10(6)cells. We have optimized the microcarrier-based platform for expansion of MSCs that generated high cell yields in a more efficient and cost-effective manner. This study highlighted the critical parameters in the optimization of MSC production process. Copyright © 2015 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.
OPTIMIZING USABILITY OF AN ECONOMIC DECISION SUPPORT TOOL: PROTOTYPE OF THE EQUIPT TOOL.
Cheung, Kei Long; Hiligsmann, Mickaël; Präger, Maximilian; Jones, Teresa; Józwiak-Hagymásy, Judit; Muñoz, Celia; Lester-George, Adam; Pokhrel, Subhash; López-Nicolás, Ángel; Trapero-Bertran, Marta; Evers, Silvia M A A; de Vries, Hein
2018-01-01
Economic decision-support tools can provide valuable information for tobacco control stakeholders, but their usability may impact the adoption of such tools. This study aims to illustrate a mixed-method usability evaluation of an economic decision-support tool for tobacco control, using the EQUIPT ROI tool prototype as a case study. A cross-sectional mixed methods design was used, including a heuristic evaluation, a thinking aloud approach, and a questionnaire testing and exploring the usability of the Return of Investment tool. A total of sixty-six users evaluated the tool (thinking aloud) and completed the questionnaire. For the heuristic evaluation, four experts evaluated the interface. In total twenty-one percent of the respondents perceived good usability. A total of 118 usability problems were identified, from which twenty-six problems were categorized as most severe, indicating high priority to fix them before implementation. Combining user-based and expert-based evaluation methods is recommended as these were shown to identify unique usability problems. The evaluation provides input to optimize usability of a decision-support tool, and may serve as a vantage point for other developers to conduct usability evaluations to refine similar tools before wide-scale implementation. Such studies could reduce implementation gaps by optimizing usability, enhancing in turn the research impact of such interventions.
DOT National Transportation Integrated Search
2014-12-01
It is common for local street and road pavements to be constructed using : portland cement concrete (PCC) directly supported on natural subgrade : without considering subgrade treatment or structural support layers such : as granular subbase. In orde...
An optimal renewable energy mix for Indonesia
NASA Astrophysics Data System (ADS)
Leduc, Sylvain; Patrizio, Piera; Yowargana, Ping; Kraxner, Florian
2016-04-01
Indonesia has experienced a constant increase of the use of petroleum and coal in the power sector, while the share of renewable sources has remained stable at 6% of the total energy production during the last decade. As its domestic energy demand undeniably continues to grow, Indonesia is committed to increase the production of renewable energy. Mainly to decrease its dependency on fossil fuel-based resources, and to decrease the anthropogenic emissions, the government of Indonesia has established a 23 percent target for renewable energy by 2025, along with a 100 percent electrification target by 2020 (the current rate is 80.4 percent). In that respect, Indonesia has abundant resources to meet these targets, but there is - inter alia - a lack of proper integrated planning, regulatory support, investment, distribution in remote areas of the Archipelago, and missing data to back the planning. To support the government of Indonesia in its sustainable energy system planning, a geographic explicit energy modeling approach is applied. This approach is based on the energy systems optimization model BeWhere, which identifies the optimal location of energy conversion sites based on the minimization of the costs of the supply chain. The model will incorporate the existing fossil fuel-based infrastructures, and evaluate the optimal costs, potentials and locations for the development of renewable energy technologies (i.e., wind, solar, hydro, biomass and geothermal based technologies), as well as the development of biomass co-firing in existing coal plants. With the help of the model, an optimally adapted renewable energy mix - vis-à-vis the competing fossil fuel based resources and applicable policies in order to promote the development of those renewable energy technologies - will be identified. The development of the optimal renewable energy technologies is carried out with special focus on nature protection and cultural heritage areas, where feedstock (e.g., biomass harvesting) and green-field power plant sites will be limited - depending on the protection type and renewable energy technology. The results of the study provide indications to the policy makers on where, how and which technologies should be implemented, and what kind of policy support would be needed in order to increase and meet the Indonesian renewable energy target and to increase the energy access for all.
NASA Astrophysics Data System (ADS)
Ma, Yuan-Zhuo; Li, Hong-Shuang; Yao, Wei-Xing
2018-05-01
The evaluation of the probabilistic constraints in reliability-based design optimization (RBDO) problems has always been significant and challenging work, which strongly affects the performance of RBDO methods. This article deals with RBDO problems using a recently developed generalized subset simulation (GSS) method and a posterior approximation approach. The posterior approximation approach is used to transform all the probabilistic constraints into ordinary constraints as in deterministic optimization. The assessment of multiple failure probabilities required by the posterior approximation approach is achieved by GSS in a single run at all supporting points, which are selected by a proper experimental design scheme combining Sobol' sequences and Bucher's design. Sequentially, the transformed deterministic design optimization problem can be solved by optimization algorithms, for example, the sequential quadratic programming method. Three optimization problems are used to demonstrate the efficiency and accuracy of the proposed method.
Declarative language design for interactive visualization.
Heer, Jeffrey; Bostock, Michael
2010-01-01
We investigate the design of declarative, domain-specific languages for constructing interactive visualizations. By separating specification from execution, declarative languages can simplify development, enable unobtrusive optimization, and support retargeting across platforms. We describe the design of the Protovis specification language and its implementation within an object-oriented, statically-typed programming language (Java). We demonstrate how to support rich visualizations without requiring a toolkit-specific data model and extend Protovis to enable declarative specification of animated transitions. To support cross-platform deployment, we introduce rendering and event-handling infrastructures decoupled from the runtime platform, letting designers retarget visualization specifications (e.g., from desktop to mobile phone) with reduced effort. We also explore optimizations such as runtime compilation of visualization specifications, parallelized execution, and hardware-accelerated rendering. We present benchmark studies measuring the performance gains provided by these optimizations and compare performance to existing Java-based visualization tools, demonstrating scalability improvements exceeding an order of magnitude.
Design optimization of gas generator hybrid propulsion boosters
NASA Technical Reports Server (NTRS)
Weldon, Vincent; Phillips, Dwight U.; Fink, Lawrence E.
1990-01-01
A methodology used in support of a contract study for NASA/MSFC to optimize the design of gas generator hybrid propulsion booster for uprating the National Space Transportation System (NSTS) is presented. The objective was to compare alternative configurations for this booster approach, optimizing each candidate concept on different bases, in order to develop data for a trade table on which a final decision was based. The methodology is capable of processing a large number of independent and dependent variables, adjusting the overall subsystems characteristics to arrive at a best compromise integrated design to meet various specified optimization criteria subject to selected constraints. For each system considered, a detailed weight statement was generated along with preliminary cost and reliability estimates.
What's new in perioperative nutritional support?
Awad, Sherif; Lobo, Dileep N
2011-06-01
To highlight recent developments in the field of perioperative nutritional support by reviewing clinically pertinent English language articles from October 2008 to December 2010, that examined the effects of malnutrition on surgical outcomes, optimizing metabolic function and nutritional status preoperatively and postoperatively. Recognition of patients with or at risk of malnutrition remains poor despite the availability of numerous clinical aids and clear evidence of the adverse effects of poor nutritional status on postoperative clinical outcomes. Unfortunately, poor design and significant heterogeneity remain amongst many studies of nutritional interventions in surgical patients. Patients undergoing elective surgery should be managed within a multimodal pathway that includes evidence-based interventions to optimize nutritional status perioperatively. The aforementioned should include screening patients to identify those at high nutritional risk, perioperative immuno-nutrition, minimizing 'metabolic stress' and insulin resistance by preoperative conditioning with carbohydrate-based drinks, glutamine supplementation, minimal access surgery and enhanced recovery protocols. Finally gut-specific nutrients and prokinetics should be utilized to improve enteral feed tolerance thereby permitting early enteral feeding. An evidence-based multimodal pathway that includes interventions to optimize nutritional status may improve outcomes following elective surgery.
Optimal structural design of the midship of a VLCC based on the strategy integrating SVM and GA
NASA Astrophysics Data System (ADS)
Sun, Li; Wang, Deyu
2012-03-01
In this paper a hybrid process of modeling and optimization, which integrates a support vector machine (SVM) and genetic algorithm (GA), was introduced to reduce the high time cost in structural optimization of ships. SVM, which is rooted in statistical learning theory and an approximate implementation of the method of structural risk minimization, can provide a good generalization performance in metamodeling the input-output relationship of real problems and consequently cuts down on high time cost in the analysis of real problems, such as FEM analysis. The GA, as a powerful optimization technique, possesses remarkable advantages for the problems that can hardly be optimized with common gradient-based optimization methods, which makes it suitable for optimizing models built by SVM. Based on the SVM-GA strategy, optimization of structural scantlings in the midship of a very large crude carrier (VLCC) ship was carried out according to the direct strength assessment method in common structural rules (CSR), which eventually demonstrates the high efficiency of SVM-GA in optimizing the ship structural scantlings under heavy computational complexity. The time cost of this optimization with SVM-GA has been sharply reduced, many more loops have been processed within a small amount of time and the design has been improved remarkably.
Ayres, Cynthia G; Mahat, Ganga
2012-07-01
This study developed and tested a theory to better understand positive health practices (PHP) among Asian Americans aged 18 to 21 years. It tested theoretical relationships postulated between PHP and (a) social support (SS), (b) optimism, and (c) acculturation, and between SS and optimism and acculturation. Optimism and acculturation were also tested as possible mediators in the relationship between SS and PHP. A correlational study design was used. A convenience sample of 163 Asian college students in an urban setting completed four questionnaires assessing SS, PHP, optimism, and acculturation and one demographic questionnaire. There were statistically significant positive relationships between SS and optimism with PHP, between acculturation and PHP, and between optimism and SS. Optimism mediated the relationship between SS and PHP, whereas acculturation did not. Findings extend knowledge regarding these relationships to a defined population of Asian Americans aged 18 to 21 years. Findings contribute to a more comprehensive knowledge base regarding health practices among Asian Americans. The theoretical and empirical findings of this study provide the direction for future research as well. Further studies need to be conducted to identify and test other mediators in order to better understand the relationship between these two variables.
Gao, Xiang-Ming; Yang, Shi-Feng; Pan, San-Bo
2017-01-01
Predicting the output power of photovoltaic system with nonstationarity and randomness, an output power prediction model for grid-connected PV systems is proposed based on empirical mode decomposition (EMD) and support vector machine (SVM) optimized with an artificial bee colony (ABC) algorithm. First, according to the weather forecast data sets on the prediction date, the time series data of output power on a similar day with 15-minute intervals are built. Second, the time series data of the output power are decomposed into a series of components, including some intrinsic mode components IMFn and a trend component Res, at different scales using EMD. The corresponding SVM prediction model is established for each IMF component and trend component, and the SVM model parameters are optimized with the artificial bee colony algorithm. Finally, the prediction results of each model are reconstructed, and the predicted values of the output power of the grid-connected PV system can be obtained. The prediction model is tested with actual data, and the results show that the power prediction model based on the EMD and ABC-SVM has a faster calculation speed and higher prediction accuracy than do the single SVM prediction model and the EMD-SVM prediction model without optimization.
2017-01-01
Predicting the output power of photovoltaic system with nonstationarity and randomness, an output power prediction model for grid-connected PV systems is proposed based on empirical mode decomposition (EMD) and support vector machine (SVM) optimized with an artificial bee colony (ABC) algorithm. First, according to the weather forecast data sets on the prediction date, the time series data of output power on a similar day with 15-minute intervals are built. Second, the time series data of the output power are decomposed into a series of components, including some intrinsic mode components IMFn and a trend component Res, at different scales using EMD. The corresponding SVM prediction model is established for each IMF component and trend component, and the SVM model parameters are optimized with the artificial bee colony algorithm. Finally, the prediction results of each model are reconstructed, and the predicted values of the output power of the grid-connected PV system can be obtained. The prediction model is tested with actual data, and the results show that the power prediction model based on the EMD and ABC-SVM has a faster calculation speed and higher prediction accuracy than do the single SVM prediction model and the EMD-SVM prediction model without optimization. PMID:28912803
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Huaiguang; Zhang, Yingchen; Muljadi, Eduard
In this paper, a short-term load forecasting approach based network reconfiguration is proposed in a parallel manner. Specifically, a support vector regression (SVR) based short-term load forecasting approach is designed to provide an accurate load prediction and benefit the network reconfiguration. Because of the nonconvexity of the three-phase balanced optimal power flow, a second-order cone program (SOCP) based approach is used to relax the optimal power flow problem. Then, the alternating direction method of multipliers (ADMM) is used to compute the optimal power flow in distributed manner. Considering the limited number of the switches and the increasing computation capability, themore » proposed network reconfiguration is solved in a parallel way. The numerical results demonstrate the feasible and effectiveness of the proposed approach.« less
Power line identification of millimeter wave radar based on PCA-GS-SVM
NASA Astrophysics Data System (ADS)
Fang, Fang; Zhang, Guifeng; Cheng, Yansheng
2017-12-01
Aiming at the problem that the existing detection method can not effectively solve the security of UAV's ultra low altitude flight caused by power line, a power line recognition method based on grid search (GS) and the principal component analysis and support vector machine (PCA-SVM) is proposed. Firstly, the candidate line of Hough transform is reduced by PCA, and the main feature of candidate line is extracted. Then, upport vector machine (SVM is) optimized by grid search method (GS). Finally, using support vector machine classifier optimized parameters to classify the candidate line. MATLAB simulation results show that this method can effectively identify the power line and noise, and has high recognition accuracy and algorithm efficiency.
Cutrona, Carolyn E; Russell, Daniel W
2017-02-01
Adult attachment theory provides guidance for providing optimal social support in intimate relationships. According to attachment theory, facilitating autonomy (secure base support) sometimes is more important than providing nurturance (safe haven support). In addition, it is important that couples celebrate one another's triumphs and successes (another form of secure base support). A key construct that explains the development of attachment is responsiveness to the individual's needs. Support that is delivered in a responsive manner (i.e., that leads the individual to feel understood, validated, and cared for) is more likely to enhance the relationship and less likely to damage self-esteem than assistance that is not responsive. A responsive exchange is more likely if emotion dysregulation can be prevented. Attachment theory offers explanations for why people vary in their effectiveness at emotion regulation. Appropriate emotion regulation is more likely if disclosures of current difficulties can be made in a way that is not defensive or accusatory, an ability that varies as a function of attachment orientation. Attachment theory also offers guidance regarding the optimal forms of social support for specific individuals. All these insights from adult attachment theory can be integrated into interventions to help couples become more effective support providers. Copyright © 2016 Elsevier Ltd. All rights reserved.
Kou, Weibin; Chen, Xumei; Yu, Lei; Gong, Huibo
2018-04-18
Most existing signal timing models are aimed to minimize the total delay and stops at intersections, without considering environmental factors. This paper analyzes the trade-off between vehicle emissions and traffic efficiencies on the basis of field data. First, considering the different operating modes of cruising, acceleration, deceleration, and idling, field data of emissions and Global Positioning System (GPS) are collected to estimate emission rates for heavy-duty and light-duty vehicles. Second, multiobjective signal timing optimization model is established based on a genetic algorithm to minimize delay, stops, and emissions. Finally, a case study is conducted in Beijing. Nine scenarios are designed considering different weights of emission and traffic efficiency. The results compared with those using Highway Capacity Manual (HCM) 2010 show that signal timing optimized by the model proposed in this paper can decrease vehicles delay and emissions more significantly. The optimization model can be applied in different cities, which provides supports for eco-signal design and development. Vehicle emissions are heavily at signal intersections in urban area. The multiobjective signal timing optimization model is proposed considering the trade-off between vehicle emissions and traffic efficiencies on the basis of field data. The results indicate that signal timing optimized by the model proposed in this paper can decrease vehicle emissions and delays more significantly. The optimization model can be applied in different cities, which provides supports for eco-signal design and development.
Nana, Roger; Hu, Xiaoping
2010-01-01
k-space-based reconstruction in parallel imaging depends on the reconstruction kernel setting, including its support. An optimal choice of the kernel depends on the calibration data, coil geometry and signal-to-noise ratio, as well as the criterion used. In this work, data consistency, imposed by the shift invariance requirement of the kernel, is introduced as a goodness measure of k-space-based reconstruction in parallel imaging and demonstrated. Data consistency error (DCE) is calculated as the sum of squared difference between the acquired signals and their estimates obtained based on the interpolation of the estimated missing data. A resemblance between DCE and the mean square error in the reconstructed image was found, demonstrating DCE's potential as a metric for comparing or choosing reconstructions. When used for selecting the kernel support for generalized autocalibrating partially parallel acquisition (GRAPPA) reconstruction and the set of frames for calibration as well as the kernel support in temporal GRAPPA reconstruction, DCE led to improved images over existing methods. Data consistency error is efficient to evaluate, robust for selecting reconstruction parameters and suitable for characterizing and optimizing k-space-based reconstruction in parallel imaging.
Statistically optimal perception and learning: from behavior to neural representations
Fiser, József; Berkes, Pietro; Orbán, Gergő; Lengyel, Máté
2010-01-01
Human perception has recently been characterized as statistical inference based on noisy and ambiguous sensory inputs. Moreover, suitable neural representations of uncertainty have been identified that could underlie such probabilistic computations. In this review, we argue that learning an internal model of the sensory environment is another key aspect of the same statistical inference procedure and thus perception and learning need to be treated jointly. We review evidence for statistically optimal learning in humans and animals, and reevaluate possible neural representations of uncertainty based on their potential to support statistically optimal learning. We propose that spontaneous activity can have a functional role in such representations leading to a new, sampling-based, framework of how the cortex represents information and uncertainty. PMID:20153683
Jiang, Huaiguang; Zhang, Yingchen; Muljadi, Eduard; ...
2016-01-01
This paper proposes an approach for distribution system load forecasting, which aims to provide highly accurate short-term load forecasting with high resolution utilizing a support vector regression (SVR) based forecaster and a two-step hybrid parameters optimization method. Specifically, because the load profiles in distribution systems contain abrupt deviations, a data normalization is designed as the pretreatment for the collected historical load data. Then an SVR model is trained by the load data to forecast the future load. For better performance of SVR, a two-step hybrid optimization algorithm is proposed to determine the best parameters. In the first step of themore » hybrid optimization algorithm, a designed grid traverse algorithm (GTA) is used to narrow the parameters searching area from a global to local space. In the second step, based on the result of the GTA, particle swarm optimization (PSO) is used to determine the best parameters in the local parameter space. After the best parameters are determined, the SVR model is used to forecast the short-term load deviation in the distribution system. The performance of the proposed approach is compared to some classic methods in later sections of the paper.« less
Watershed and stormwater managers need modeling tools to evaluate alternative plans for water quality management and flow abatement techniques in urban and developing areas. A watershed-scale, decision-support framework that is based on cost optimization is needed to support gov...
Strömberg, Eric A; Nyberg, Joakim; Hooker, Andrew C
2016-12-01
With the increasing popularity of optimal design in drug development it is important to understand how the approximations and implementations of the Fisher information matrix (FIM) affect the resulting optimal designs. The aim of this work was to investigate the impact on design performance when using two common approximations to the population model and the full or block-diagonal FIM implementations for optimization of sampling points. Sampling schedules for two example experiments based on population models were optimized using the FO and FOCE approximations and the full and block-diagonal FIM implementations. The number of support points was compared between the designs for each example experiment. The performance of these designs based on simulation/estimations was investigated by computing bias of the parameters as well as through the use of an empirical D-criterion confidence interval. Simulations were performed when the design was computed with the true parameter values as well as with misspecified parameter values. The FOCE approximation and the Full FIM implementation yielded designs with more support points and less clustering of sample points than designs optimized with the FO approximation and the block-diagonal implementation. The D-criterion confidence intervals showed no performance differences between the full and block diagonal FIM optimal designs when assuming true parameter values. However, the FO approximated block-reduced FIM designs had higher bias than the other designs. When assuming parameter misspecification in the design evaluation, the FO Full FIM optimal design was superior to the FO block-diagonal FIM design in both of the examples.
Shape and Reinforcement Optimization of Underground Tunnels
NASA Astrophysics Data System (ADS)
Ghabraie, Kazem; Xie, Yi Min; Huang, Xiaodong; Ren, Gang
Design of support system and selecting an optimum shape for the opening are two important steps in designing excavations in rock masses. Currently selecting the shape and support design are mainly based on designer's judgment and experience. Both of these problems can be viewed as material distribution problems where one needs to find the optimum distribution of a material in a domain. Topology optimization techniques have proved to be useful in solving these kinds of problems in structural design. Recently the application of topology optimization techniques in reinforcement design around underground excavations has been studied by some researchers. In this paper a three-phase material model will be introduced changing between normal rock, reinforced rock, and void. Using such a material model both problems of shape and reinforcement design can be solved together. A well-known topology optimization technique used in structural design is bi-directional evolutionary structural optimization (BESO). In this paper the BESO technique has been extended to simultaneously optimize the shape of the opening and the distribution of reinforcements. Validity and capability of the proposed approach have been investigated through some examples.
Hu, X H; Li, Y P; Huang, G H; Zhuang, X W; Ding, X W
2016-05-01
In this study, a Bayesian-based two-stage inexact optimization (BTIO) method is developed for supporting water quality management through coupling Bayesian analysis with interval two-stage stochastic programming (ITSP). The BTIO method is capable of addressing uncertainties caused by insufficient inputs in water quality model as well as uncertainties expressed as probabilistic distributions and interval numbers. The BTIO method is applied to a real case of water quality management for the Xiangxi River basin in the Three Gorges Reservoir region to seek optimal water quality management schemes under various uncertainties. Interval solutions for production patterns under a range of probabilistic water quality constraints have been generated. Results obtained demonstrate compromises between the system benefit and the system failure risk due to inherent uncertainties that exist in various system components. Moreover, information about pollutant emission is accomplished, which would help managers to adjust production patterns of regional industry and local policies considering interactions of water quality requirement, economic benefit, and industry structure.
Parametric Study of Biconic Re-Entry Vehicles
NASA Technical Reports Server (NTRS)
Steele, Bryan; Banks, Daniel W.; Whitmore, Stephen A.
2007-01-01
An optimization based on hypersonic aerodynamic performance and volumetric efficiency was accomplished for a range of biconic configurations. Both axisymmetric and quasi-axisymmetric geometries (bent and flattened) were analyzed. The aerodynamic optimization wag based on hypersonic simple Incidence angle analysis tools. The range of configurations included those suitable for r lunar return trajectory with a lifting aerocapture at Earth and an overall volume that could support a nominal crew. The results yielded five configurations that had acceptable aerodynamic performance and met overall geometry and size limitations
Structural optimization: Status and promise
NASA Astrophysics Data System (ADS)
Kamat, Manohar P.
Chapters contained in this book include fundamental concepts of optimum design, mathematical programming methods for constrained optimization, function approximations, approximate reanalysis methods, dual mathematical programming methods for constrained optimization, a generalized optimality criteria method, and a tutorial and survey of multicriteria optimization in engineering. Also included are chapters on the compromise decision support problem and the adaptive linear programming algorithm, sensitivity analyses of discrete and distributed systems, the design sensitivity analysis of nonlinear structures, optimization by decomposition, mixed elements in shape sensitivity analysis of structures based on local criteria, and optimization of stiffened cylindrical shells subjected to destabilizing loads. Other chapters are on applications to fixed-wing aircraft and spacecraft, integrated optimum structural and control design, modeling concurrency in the design of composite structures, and tools for structural optimization. (No individual items are abstracted in this volume)
Optimism, social support, and mental health outcomes in patients with advanced cancer.
Applebaum, Allison J; Stein, Emma M; Lord-Bessen, Jennifer; Pessin, Hayley; Rosenfeld, Barry; Breitbart, William
2014-03-01
Optimism and social support serve as protective factors against distress in medically ill patients. Very few studies have specifically explored the ways in which these variables interact to impact quality of life (QOL), particularly among patients with advanced cancer. The present study examined the role of optimism as a moderator of the relationship between social support and anxiety, depression, hopelessness, and QOL among patients with advanced cancer. Participants (N = 168) completed self-report assessments of psychosocial, spiritual, and physical well-being, including social support, optimism, hopelessness, depressive and anxious symptoms, and QOL. Hierarchical multiple regression analyses were conducted to determine the extent to which social support and optimism were associated with depressive and anxious symptomatology, hopelessness and QOL, and the potential role of optimism as a moderator of the relationship between social support and these variables. Higher levels of optimism were significantly associated with fewer anxious and depressive symptoms, less hopelessness, and better QOL. Higher levels of perceived social support were also significantly associated with better QOL. Additionally, optimism moderated the relationship between social support and anxiety, such that there was a strong negative association between social support and anxiety for participants with low optimism. This study highlights the importance of optimism and social support in the QOL of patients with advanced cancer. As such, interventions that attend to patients' expectations for positive experiences and the expansion of social support should be the focus of future clinical and research endeavors. Copyright © 2013 John Wiley & Sons, Ltd.
Optimism, Social Support, and Mental Health Outcomes in Patients with Advanced Cancer
Applebaum, Allison J.; Stein, Emma M.; Lord-Bessen, Jennifer; Pessin, Hayley; Rosenfeld, Barry; Breitbart, William
2014-01-01
Objective Optimism and social support serve as protective factors against distress in medically ill patients. Very few studies have specifically explored the ways in which these variables interact to impact quality of life (QOL), particularly among patients with advanced cancer. The present study examined the role of optimism as a moderator of the relationship between social support and anxiety, depression, hopelessness, and QOL among patients with advanced cancer. Methods Participants (N = 168) completed self-report assessments of psychosocial, spiritual, and physical well-being, including social support, optimism, hopelessness, depressive and anxious symptoms, and QOL. Hierarchical multiple regression analyses were conducted to determine the extent to which social support and optimism were associated with depressive and anxious symptomatology, hopelessness and QOL, and the potential role of optimism as a moderator of the relationship between social support and these variables. Results Higher levels of optimism were significantly associated with fewer anxious and depressive symptoms, less hopelessness and better QOL. Higher levels of perceived social support were also significantly associated with better QOL. Additionally, optimism moderated the relationship between social support and anxiety, such that there was a strong negative association between social support and anxiety for participants with low optimism. Conclusions This study highlights the importance of optimism and social support in the QOL of patients with advanced cancer. As such, interventions that attend to patients’ expectations for positive experiences and the expansion of social support should be the focus of future clinical and research endeavors. PMID:24123339
Support Vector Machine Based on Adaptive Acceleration Particle Swarm Optimization
Abdulameer, Mohammed Hasan; Othman, Zulaiha Ali
2014-01-01
Existing face recognition methods utilize particle swarm optimizer (PSO) and opposition based particle swarm optimizer (OPSO) to optimize the parameters of SVM. However, the utilization of random values in the velocity calculation decreases the performance of these techniques; that is, during the velocity computation, we normally use random values for the acceleration coefficients and this creates randomness in the solution. To address this problem, an adaptive acceleration particle swarm optimization (AAPSO) technique is proposed. To evaluate our proposed method, we employ both face and iris recognition based on AAPSO with SVM (AAPSO-SVM). In the face and iris recognition systems, performance is evaluated using two human face databases, YALE and CASIA, and the UBiris dataset. In this method, we initially perform feature extraction and then recognition on the extracted features. In the recognition process, the extracted features are used for SVM training and testing. During the training and testing, the SVM parameters are optimized with the AAPSO technique, and in AAPSO, the acceleration coefficients are computed using the particle fitness values. The parameters in SVM, which are optimized by AAPSO, perform efficiently for both face and iris recognition. A comparative analysis between our proposed AAPSO-SVM and the PSO-SVM technique is presented. PMID:24790584
Optimization in optical systems revisited: Beyond genetic algorithms
NASA Astrophysics Data System (ADS)
Gagnon, Denis; Dumont, Joey; Dubé, Louis
2013-05-01
Designing integrated photonic devices such as waveguides, beam-splitters and beam-shapers often requires optimization of a cost function over a large solution space. Metaheuristics - algorithms based on empirical rules for exploring the solution space - are specifically tailored to those problems. One of the most widely used metaheuristics is the standard genetic algorithm (SGA), based on the evolution of a population of candidate solutions. However, the stochastic nature of the SGA sometimes prevents access to the optimal solution. Our goal is to show that a parallel tabu search (PTS) algorithm is more suited to optimization problems in general, and to photonics in particular. PTS is based on several search processes using a pool of diversified initial solutions. To assess the performance of both algorithms (SGA and PTS), we consider an integrated photonics design problem, the generation of arbitrary beam profiles using a two-dimensional waveguide-based dielectric structure. The authors acknowledge financial support from the Natural Sciences and Engineering Research Council of Canada (NSERC).
History matching through dynamic decision-making
Maschio, Célio; Santos, Antonio Alberto; Schiozer, Denis; Rocha, Anderson
2017-01-01
History matching is the process of modifying the uncertain attributes of a reservoir model to reproduce the real reservoir performance. It is a classical reservoir engineering problem and plays an important role in reservoir management since the resulting models are used to support decisions in other tasks such as economic analysis and production strategy. This work introduces a dynamic decision-making optimization framework for history matching problems in which new models are generated based on, and guided by, the dynamic analysis of the data of available solutions. The optimization framework follows a ‘learning-from-data’ approach, and includes two optimizer components that use machine learning techniques, such as unsupervised learning and statistical analysis, to uncover patterns of input attributes that lead to good output responses. These patterns are used to support the decision-making process while generating new, and better, history matched solutions. The proposed framework is applied to a benchmark model (UNISIM-I-H) based on the Namorado field in Brazil. Results show the potential the dynamic decision-making optimization framework has for improving the quality of history matching solutions using a substantial smaller number of simulations when compared with a previous work on the same benchmark. PMID:28582413
Nguyen, Thi-Tham; Van Le, Duc; Yoon, Seokhoon
2014-01-01
This paper proposes a practical low-complexity MAC (medium access control) scheme for quality of service (QoS)-aware and cluster-based underwater acoustic sensor networks (UASN), in which the provision of differentiated QoS is required. In such a network, underwater sensors (U-sensor) in a cluster are divided into several classes, each of which has a different QoS requirement. The major problem considered in this paper is the maximization of the number of nodes that a cluster can accommodate while still providing the required QoS for each class in terms of the PDR (packet delivery ratio). In order to address the problem, we first estimate the packet delivery probability (PDP) and use it to formulate an optimization problem to determine the optimal value of the maximum packet retransmissions for each QoS class. The custom greedy and interior-point algorithms are used to find the optimal solutions, which are verified by extensive simulations. The simulation results show that, by solving the proposed optimization problem, the supportable number of underwater sensor nodes can be maximized while satisfying the QoS requirements for each class. PMID:24608009
Nguyen, Thi-Tham; Le, Duc Van; Yoon, Seokhoon
2014-03-07
This paper proposes a practical low-complexity MAC (medium access control) scheme for quality of service (QoS)-aware and cluster-based underwater acoustic sensor networks (UASN), in which the provision of differentiated QoS is required. In such a network, underwater sensors (U-sensor) in a cluster are divided into several classes, each of which has a different QoS requirement. The major problem considered in this paper is the maximization of the number of nodes that a cluster can accommodate while still providing the required QoS for each class in terms of the PDR (packet delivery ratio). In order to address the problem, we first estimate the packet delivery probability (PDP) and use it to formulate an optimization problem to determine the optimal value of the maximum packet retransmissions for each QoS class. The custom greedy and interior-point algorithms are used to find the optimal solutions, which are verified by extensive simulations. The simulation results show that, by solving the proposed optimization problem, the supportable number of underwater sensor nodes can be maximized while satisfying the QoS requirements for each class.
NASA Astrophysics Data System (ADS)
Daripa, Prabir
2011-11-01
We numerically investigate the optimal viscous profile in constant time injection policy of enhanced oil recovery. In particular, we investigate the effect of a combination of interfacial and layer instabilities in three-layer porous media flow on the overall growth of instabilities and thereby characterize the optimal viscous profile. Results based on monotonic and non-monotonic viscous profiles will be presented. Time permitting. we will also present results on multi-layer porous media flows for Newtonian and non-Newtonian fluids and compare the results. The support of Qatar National Fund under a QNRF Grant is acknowledged.
Prevention of Infections Associated with Combat-Related Burn Injuries
2011-08-01
morbidity and mortality. This review highlights evidence - based medicine recommendations using military and civilian data to provide the most comprehensive...devitalized tissue, topical antimicrobial therapy, and optimal time to wound coverage. This evidence - based medicine review was produced to support the
[Conceptual approach to formation of a modern system of medical provision].
Belevitin, A B; Miroshnichenko, Iu V; Bunin, S A; Goriachev, A B; Krasavin, K D
2009-09-01
Within the frame of forming of a new face of medical service of the Armed Forces, were determined the principle approaches to optimization of the process of development of the system of medical supply. It was proposed to use the following principles: principle of hierarchic structuring, principle of purposeful orientation, principle of vertical task sharing, principle of horizontal task sharing, principle of complex simulation, principle of permanent perfection. The main direction of optimization of structure and composition of system of medical supply of the Armed Forces are: forming of modern institutes of medical supply--centers of support by technique and facilities on the base of central, regional storehouses, and attachment of several functions of organs of military government to them; creation of medical supply office on the base military hospitals, being basing treatment-prophylaxis institutes, in adjusted territorial zones of responsibility for the purpose of realization of complex of tasks of supplying the units and institutes, attached to them on medical support, by medical equipment. Building of medical support system is realized on three levels: Center - Military region (NAVY region) - territorial zone of responsibility.
Zhang, Ming-Huan; Ma, Jun-Shan; Shen, Ying; Chen, Ying
2016-09-01
This study aimed to investigate the optimal support vector machines (SVM)-based classifier of duchenne muscular dystrophy (DMD) magnetic resonance imaging (MRI) images. T1-weighted (T1W) and T2-weighted (T2W) images of the 15 boys with DMD and 15 normal controls were obtained. Textural features of the images were extracted and wavelet decomposed, and then, principal features were selected. Scale transform was then performed for MRI images. Afterward, SVM-based classifiers of MRI images were analyzed based on the radical basis function and decomposition levels. The cost (C) parameter and kernel parameter [Formula: see text] were used for classification. Then, the optimal SVM-based classifier, expressed as [Formula: see text]), was identified by performance evaluation (sensitivity, specificity and accuracy). Eight of 12 textural features were selected as principal features (eigenvalues [Formula: see text]). The 16 SVM-based classifiers were obtained using combination of (C, [Formula: see text]), and those with lower C and [Formula: see text] values showed higher performances, especially classifier of [Formula: see text]). The SVM-based classifiers of T1W images showed higher performance than T1W images at the same decomposition level. The T1W images in classifier of [Formula: see text]) at level 2 decomposition showed the highest performance of all, and its overall correct sensitivity, specificity, and accuracy reached 96.9, 97.3, and 97.1 %, respectively. The T1W images in SVM-based classifier [Formula: see text] at level 2 decomposition showed the highest performance of all, demonstrating that it was the optimal classification for the diagnosis of DMD.
Optimization-based decision support to assist in logistics planning for hospital evacuations.
Glick, Roger; Bish, Douglas R; Agca, Esra
2013-01-01
The evacuation of the hospital is a very complex process and evacuation planning is an important part of a hospital's emergency management plan. There are numerous factors that affect the evacuation plan including the nature of threat, availability of resources and staff the characteristics of the evacuee population, and risk to patients and staff. The safety and health of patients is of fundamental importance, but safely moving patients to alternative care facilities while under threat is a very challenging task. This article describes the logistical issues and complexities involved in planning and execution of hospital evacuations. Furthermore, this article provides examples of how optimization-based decision support tools can help evacuation planners to better plan for complex evacuations by providing real-world solutions to various evacuation scenarios.
A Scatter-Based Prototype Framework and Multi-Class Extension of Support Vector Machines
Jenssen, Robert; Kloft, Marius; Zien, Alexander; Sonnenburg, Sören; Müller, Klaus-Robert
2012-01-01
We provide a novel interpretation of the dual of support vector machines (SVMs) in terms of scatter with respect to class prototypes and their mean. As a key contribution, we extend this framework to multiple classes, providing a new joint Scatter SVM algorithm, at the level of its binary counterpart in the number of optimization variables. This enables us to implement computationally efficient solvers based on sequential minimal and chunking optimization. As a further contribution, the primal problem formulation is developed in terms of regularized risk minimization and the hinge loss, revealing the score function to be used in the actual classification of test patterns. We investigate Scatter SVM properties related to generalization ability, computational efficiency, sparsity and sensitivity maps, and report promising results. PMID:23118845
Baron, S; Kaufmann Alves, I; Schmitt, T G; Schöffel, S; Schwank, J
2015-01-01
Predicted demographic, climatic and socio-economic changes will require adaptations of existing water supply and wastewater disposal systems. Especially in rural areas, these new challenges will affect the functionality of the present systems. This paper presents a joint interdisciplinary research project with the objective of developing an innovative software-based optimization and decision support system for the implementation of long-term transformations of existing infrastructures of water supply, wastewater and energy. The concept of the decision support and optimization tool is described and visualization methods for the presentation of results are illustrated. The model is tested in a rural case study region in the Southwest of Germany. A transformation strategy for a decentralized wastewater treatment concept and its visualization are presented for a model village.
NASA Technical Reports Server (NTRS)
Kerstman, Eric; Minard, Charles G.; Saile, Lynn; FreiredeCarvalho, Mary; Myers, Jerry; Walton, Marlei; Butler, Douglas; Lopez, Vilma
2010-01-01
The Integrated Medical Model (IMM) is a decision support tool that is useful to space flight mission planners and medical system designers in assessing risks and optimizing medical systems. The IMM employs an evidence-based, probabilistic risk assessment (PRA) approach within the operational constraints of space flight.
Study on Web-Based Tool for Regional Agriculture Industry Structure Optimization Using Ajax
NASA Astrophysics Data System (ADS)
Huang, Xiaodong; Zhu, Yeping
According to the research status of regional agriculture industry structure adjustment information system and the current development of information technology, this paper takes web-based regional agriculture industry structure optimization tool as research target. This paper introduces Ajax technology and related application frameworks to build an auxiliary toolkit of decision support system for agricultural policy maker and economy researcher. The toolkit includes a “one page” style component of regional agriculture industry structure optimization which provides agile arguments setting method that enables applying sensitivity analysis and usage of data and comparative advantage analysis result, and a component that can solve the linear programming model and its dual problem by simplex method.
Optimization research of railway passenger transfer scheme based on ant colony algorithm
NASA Astrophysics Data System (ADS)
Ni, Xiang
2018-05-01
The optimization research of railway passenger transfer scheme can provide strong support for railway passenger transport system, and its essence is path search. This paper realized the calculation of passenger transfer scheme for high speed railway when giving the time and stations of departure and arrival. The specific method that used were generating a passenger transfer service network of high-speed railway, establishing optimization model and searching by Ant Colony Algorithm. Finally, making analysis on the scheme from LanZhouxi to BeiJingXi which were based on high-speed railway network of China in 2017. The results showed that the transfer network and model had relatively high practical value and operation efficiency.
NASA Astrophysics Data System (ADS)
Enzenhöfer, R.; Geiges, A.; Nowak, W.
2011-12-01
Advection-based well-head protection zones are commonly used to manage the contamination risk of drinking water wells. Considering the insufficient knowledge about hazards and transport properties within the catchment, current Water Safety Plans recommend that catchment managers and stakeholders know, control and monitor all possible hazards within the catchments and perform rational risk-based decisions. Our goal is to supply catchment managers with the required probabilistic risk information, and to generate tools that allow for optimal and rational allocation of resources between improved monitoring versus extended safety margins and risk mitigation measures. To support risk managers with the indispensable information, we address the epistemic uncertainty of advective-dispersive solute transport and well vulnerability (Enzenhoefer et al., 2011) within a stochastic simulation framework. Our framework can separate between uncertainty of contaminant location and actual dilution of peak concentrations by resolving heterogeneity with high-resolution Monte-Carlo simulation. To keep computational costs low, we solve the reverse temporal moment transport equation. Only in post-processing, we recover the time-dependent solute breakthrough curves and the deduced well vulnerability criteria from temporal moments by non-linear optimization. Our first step towards optimal risk management is optimal positioning of sampling locations and optimal choice of data types to reduce best the epistemic prediction uncertainty for well-head delineation, using the cross-bred Likelihood Uncertainty Estimator (CLUE, Leube et al., 2011) for optimal sampling design. Better monitoring leads to more reliable and realistic protection zones and thus helps catchment managers to better justify smaller, yet conservative safety margins. In order to allow an optimal choice in sampling strategies, we compare the trade-off in monitoring versus the delineation costs by accounting for ill-delineated fractions of protection zones. Within an illustrative simplified 2D synthetic test case, we demonstrate our concept, involving synthetic transmissivity and head measurements for conditioning. We demonstrate the worth of optimally collected data in the context of protection zone delineation by assessing the reduced areal demand of delineated area at user-specified risk acceptance level. Results indicate that, thanks to optimally collected data, risk-aware delineation can be made at low to moderate additional costs compared to conventional delineation strategies.
NASA Astrophysics Data System (ADS)
Wang, Tian; Cui, Xiaoxin; Ni, Yewen; Liao, Kai; Liao, Nan; Yu, Dunshan; Cui, Xiaole
2017-04-01
With shrinking transistor feature size, the fin-type field-effect transistor (FinFET) has become the most promising option in low-power circuit design due to its superior capability to suppress leakage. To support the VLSI digital system flow based on logic synthesis, we have designed an optimized high-performance low-power FinFET standard cell library based on employing the mixed FBB/RBB technique in the existing stacked structure of each cell. This paper presents the reliability evaluation of the optimized cells under process and operating environment variations based on Monte Carlo analysis. The variations are modelled with Gaussian distribution of the device parameters and 10000 sweeps are conducted in the simulation to obtain the statistical properties of the worst-case delay and input-dependent leakage for each cell. For comparison, a set of non-optimal cells that adopt the same topology without employing the mixed biasing technique is also generated. Experimental results show that the optimized cells achieve standard deviation reduction of 39.1% and 30.7% at most in worst-case delay and input-dependent leakage respectively while the normalized deviation shrinking in worst-case delay and input-dependent leakage can be up to 98.37% and 24.13%, respectively, which demonstrates that our optimized cells are less sensitive to variability and exhibit more reliability. Project supported by the National Natural Science Foundation of China (No. 61306040), the State Key Development Program for Basic Research of China (No. 2015CB057201), the Beijing Natural Science Foundation (No. 4152020), and Natural Science Foundation of Guangdong Province, China (No. 2015A030313147).
NASA Technical Reports Server (NTRS)
Hastrup, Rolf; Weinberg, Aaron; Mcomber, Robert
1991-01-01
Results of on-going studies to develop navigation/telecommunications network concepts to support future robotic and human missions to Mars are presented. The performance and connectivity improvements provided by the relay network will permit use of simpler, lower performance, and less costly telecom subsystems for the in-situ mission exploration elements. Orbiting relay satellites can serve as effective navigation aids by supporting earth-based tracking as well as providing Mars-centered radiometric data for mission elements approaching, in orbit, or on the surface of Mars. The relay satellite orbits may be selected to optimize navigation aid support and communication coverage for specific mission sets.
NASA Astrophysics Data System (ADS)
Hastrup, Rolf; Weinberg, Aaron; McOmber, Robert
1991-09-01
Results of on-going studies to develop navigation/telecommunications network concepts to support future robotic and human missions to Mars are presented. The performance and connectivity improvements provided by the relay network will permit use of simpler, lower performance, and less costly telecom subsystems for the in-situ mission exploration elements. Orbiting relay satellites can serve as effective navigation aids by supporting earth-based tracking as well as providing Mars-centered radiometric data for mission elements approaching, in orbit, or on the surface of Mars. The relay satellite orbits may be selected to optimize navigation aid support and communication coverage for specific mission sets.
A Study of Business Incubators: Models, Best Practices, and Recommendations for NASA and Florida
NASA Technical Reports Server (NTRS)
1997-01-01
This study was conducted to provide NASA-Kennedy Space Center with information and recommendations to support establishing one or more technology-based business incubators In Florida. The study involved assembling information about incubators: why they succeed, why they fail, how they are organized, and what services they provide. Consequently, this study focuses on widely-recognized "best practices," needed to establish successful technology- based business incubators. The findings are used to optimize the design and implementation of one or more technology-based business incubators to be established in Florida. Recommendations reflect both the essential characteristics of successful incubators and the optimal business demographics in Florida. Appendix A provides a fuller description of the objectives of the study. Technology-based business incubators are an increasing catalyst of new business development across the USi Incubators focus on providing entrepreneurs and small start-up firms with a wide array of support services necessary to bring forth new products and processes based on technologies developed in the nation's federal and private laboratories and universities. Appendix B provides extensive discussion of findings relative to technology- based business incubators.
Research on vehicle routing optimization for the terminal distribution of B2C E-commerce firms
NASA Astrophysics Data System (ADS)
Zhang, Shiyun; Lu, Yapei; Li, Shasha
2018-05-01
In this paper, we established a half open multi-objective optimization model for the vehicle routing problem of B2C (business-to-customer) E-Commerce firms. To minimize the current transport distance as well as the disparity between the excepted shipments and the transport capacity in the next distribution, we applied the concept of dominated solution and Pareto solutions to the standard particle swarm optimization and proposed a MOPSO (multi-objective particle swarm optimization) algorithm to support the model. Besides, we also obtained the optimization solution of MOPSO algorithm based on data randomly generated through the system, which verified the validity of the model.
Gap Analysis and Conservation Network for Freshwater Wetlands in Central Yangtze Ecoregion
Xiaowen, Li; Haijin, Zhuge; Li, Mengdi
2013-01-01
The Central Yangtze Ecoregion contains a large area of internationally important freshwater wetlands and supports a huge number of endangered waterbirds; however, these unique wetlands and the biodiversity they support are under the constant threats of human development pressures, and the prevailing conservation strategies generated based on the local scale cannot adequately be used as guidelines for ecoregion-based conservation initiatives for Central Yangtze at the broad scale. This paper aims at establishing and optimizing an ecological network for freshwater wetland conservation in the Central Yangtze Ecoregion based on large-scale gap analysis. A group of focal species and GIS-based extrapolation technique were employed to identify the potential habitats and conservation gaps, and the optimized conservation network was then established by combining existing protective system and identified conservation gaps. Our results show that only 23.49% of the potential habitats of the focal species have been included in the existing nature reserves in the Central Yangtze Ecoregion. To effectively conserve over 80% of the potential habitats for the focal species by optimizing the existing conservation network for the freshwater wetlands in Central Yangtze Ecoregion, it is necessary to establish new wetland nature reserves in 22 county units across Hubei, Anhui, and Jiangxi provinces. PMID:24062632
Gap analysis and conservation network for freshwater wetlands in Central Yangtze Ecoregion.
Xiaowen, Li; Haijin, Zhuge; Li, Mengdi
2013-01-01
The Central Yangtze Ecoregion contains a large area of internationally important freshwater wetlands and supports a huge number of endangered waterbirds; however, these unique wetlands and the biodiversity they support are under the constant threats of human development pressures, and the prevailing conservation strategies generated based on the local scale cannot adequately be used as guidelines for ecoregion-based conservation initiatives for Central Yangtze at the broad scale. This paper aims at establishing and optimizing an ecological network for freshwater wetland conservation in the Central Yangtze Ecoregion based on large-scale gap analysis. A group of focal species and GIS-based extrapolation technique were employed to identify the potential habitats and conservation gaps, and the optimized conservation network was then established by combining existing protective system and identified conservation gaps. Our results show that only 23.49% of the potential habitats of the focal species have been included in the existing nature reserves in the Central Yangtze Ecoregion. To effectively conserve over 80% of the potential habitats for the focal species by optimizing the existing conservation network for the freshwater wetlands in Central Yangtze Ecoregion, it is necessary to establish new wetland nature reserves in 22 county units across Hubei, Anhui, and Jiangxi provinces.
A web-based Decision Support System for the optimal management of construction and demolition waste.
Banias, G; Achillas, Ch; Vlachokostas, Ch; Moussiopoulos, N; Papaioannou, I
2011-12-01
Wastes from construction activities constitute nowadays the largest by quantity fraction of solid wastes in urban areas. In addition, it is widely accepted that the particular waste stream contains hazardous materials, such as insulating materials, plastic frames of doors, windows, etc. Their uncontrolled disposal result to long-term pollution costs, resource overuse and wasted energy. Within the framework of the DEWAM project, a web-based Decision Support System (DSS) application - namely DeconRCM - has been developed, aiming towards the identification of the optimal construction and demolition waste (CDW) management strategy that minimises end-of-life costs and maximises the recovery of salvaged building materials. This paper addresses both technical and functional structure of the developed web-based application. The web-based DSS provides an accurate estimation of the generated CDW quantities of twenty-one different waste streams (e.g. concrete, bricks, glass, etc.) for four different types of buildings (residential, office, commercial and industrial). With the use of mathematical programming, the DeconRCM provides also the user with the optimal end-of-life management alternative, taking into consideration both economic and environmental criteria. The DSS's capabilities are illustrated through a real world case study of a typical five floor apartment building in Thessaloniki, Greece. Copyright © 2011 Elsevier Ltd. All rights reserved.
Human Support Technology Research to Enable Exploration
NASA Technical Reports Server (NTRS)
Joshi, Jitendra
2003-01-01
Contents include the following: Advanced life support. System integration, modeling, and analysis. Progressive capabilities. Water processing. Air revitalization systems. Why advanced CO2 removal technology? Solid waste resource recovery systems: lyophilization. ISRU technologies for Mars life support. Atmospheric resources of Mars. N2 consumable/make-up for Mars life. Integrated test beds. Monitoring and controlling the environment. Ground-based commercial technology. Optimizing size vs capability. Water recovery systems. Flight verification topics.
Scaling Support Vector Machines On Modern HPC Platforms
DOE Office of Scientific and Technical Information (OSTI.GOV)
You, Yang; Fu, Haohuan; Song, Shuaiwen
2015-02-01
We designed and implemented MIC-SVM, a highly efficient parallel SVM for x86 based multicore and many-core architectures, such as the Intel Ivy Bridge CPUs and Intel Xeon Phi co-processor (MIC). We propose various novel analysis methods and optimization techniques to fully utilize the multilevel parallelism provided by these architectures and serve as general optimization methods for other machine learning tools.
NASA Astrophysics Data System (ADS)
Chen, B.; Harp, D. R.; Lin, Y.; Keating, E. H.; Pawar, R.
2017-12-01
Monitoring is a crucial aspect of geologic carbon sequestration (GCS) risk management. It has gained importance as a means to ensure CO2 is safely and permanently stored underground throughout the lifecycle of a GCS project. Three issues are often involved in a monitoring project: (i) where is the optimal location to place the monitoring well(s), (ii) what type of data (pressure, rate and/or CO2 concentration) should be measured, and (iii) What is the optimal frequency to collect the data. In order to address these important issues, a filtering-based data assimilation procedure is developed to perform the monitoring optimization. The optimal monitoring strategy is selected based on the uncertainty reduction of the objective of interest (e.g., cumulative CO2 leak) for all potential monitoring strategies. To reduce the computational cost of the filtering-based data assimilation process, two machine-learning algorithms: Support Vector Regression (SVR) and Multivariate Adaptive Regression Splines (MARS) are used to develop the computationally efficient reduced-order-models (ROMs) from full numerical simulations of CO2 and brine flow. The proposed framework for GCS monitoring optimization is demonstrated with two examples: a simple 3D synthetic case and a real field case named Rock Spring Uplift carbon storage site in Southwestern Wyoming.
CFD-based optimization in plastics extrusion
NASA Astrophysics Data System (ADS)
Eusterholz, Sebastian; Elgeti, Stefanie
2018-05-01
This paper presents novel ideas in numerical design of mixing elements in single-screw extruders. The actual design process is reformulated as a shape optimization problem, given some functional, but possibly inefficient initial design. Thereby automatic optimization can be incorporated and the design process is advanced, beyond the simulation-supported, but still experience-based approach. This paper proposes concepts to extend a method which has been developed and validated for die design to the design of mixing-elements. For simplicity, it focuses on single-phase flows only. The developed method conducts forward-simulations to predict the quasi-steady melt behavior in the relevant part of the extruder. The result of each simulation is used in a black-box optimization procedure based on an efficient low-order parameterization of the geometry. To minimize user interaction, an objective function is formulated that quantifies the products' quality based on the forward simulation. This paper covers two aspects: (1) It reviews the set-up of the optimization framework as discussed in [1], and (2) it details the necessary extensions for the optimization of mixing elements in single-screw extruders. It concludes with a presentation of first advances in the unsteady flow simulation of a metering and mixing section with the SSMUM [2] using the Carreau material model.
Gradient-based adaptation of general gaussian kernels.
Glasmachers, Tobias; Igel, Christian
2005-10-01
Gradient-based optimizing of gaussian kernel functions is considered. The gradient for the adaptation of scaling and rotation of the input space is computed to achieve invariance against linear transformations. This is done by using the exponential map as a parameterization of the kernel parameter manifold. By restricting the optimization to a constant trace subspace, the kernel size can be controlled. This is, for example, useful to prevent overfitting when minimizing radius-margin generalization performance measures. The concepts are demonstrated by training hard margin support vector machines on toy data.
2018-01-01
Exhaust gas recirculation (EGR) is one of the main methods of reducing NOX emissions and has been widely used in marine diesel engines. This paper proposes an optimized comprehensive assessment method based on multi-objective grey situation decision theory, grey relation theory and grey entropy analysis to evaluate the performance and optimize rate determination of EGR, which currently lack clear theoretical guidance. First, multi-objective grey situation decision theory is used to establish the initial decision-making model according to the main EGR parameters. The optimal compromise between diesel engine combustion and emission performance is transformed into a decision-making target weight problem. After establishing the initial model and considering the characteristics of EGR under different conditions, an optimized target weight algorithm based on grey relation theory and grey entropy analysis is applied to generate the comprehensive evaluation and decision-making model. Finally, the proposed method is successfully applied to a TBD234V12 turbocharged diesel engine, and the results clearly illustrate the feasibility of the proposed method for providing theoretical support and a reference for further EGR optimization. PMID:29377956
Zu, Xianghuan; Yang, Chuanlei; Wang, Hechun; Wang, Yinyan
2018-01-01
Exhaust gas recirculation (EGR) is one of the main methods of reducing NOX emissions and has been widely used in marine diesel engines. This paper proposes an optimized comprehensive assessment method based on multi-objective grey situation decision theory, grey relation theory and grey entropy analysis to evaluate the performance and optimize rate determination of EGR, which currently lack clear theoretical guidance. First, multi-objective grey situation decision theory is used to establish the initial decision-making model according to the main EGR parameters. The optimal compromise between diesel engine combustion and emission performance is transformed into a decision-making target weight problem. After establishing the initial model and considering the characteristics of EGR under different conditions, an optimized target weight algorithm based on grey relation theory and grey entropy analysis is applied to generate the comprehensive evaluation and decision-making model. Finally, the proposed method is successfully applied to a TBD234V12 turbocharged diesel engine, and the results clearly illustrate the feasibility of the proposed method for providing theoretical support and a reference for further EGR optimization.
NASA Astrophysics Data System (ADS)
He, Fei; Liu, Yuanning; Zhu, Xiaodong; Huang, Chun; Han, Ye; Dong, Hongxing
2014-12-01
Gabor descriptors have been widely used in iris texture representations. However, fixed basic Gabor functions cannot match the changing nature of diverse iris datasets. Furthermore, a single form of iris feature cannot overcome difficulties in iris recognition, such as illumination variations, environmental conditions, and device variations. This paper provides multiple local feature representations and their fusion scheme based on a support vector regression (SVR) model for iris recognition using optimized Gabor filters. In our iris system, a particle swarm optimization (PSO)- and a Boolean particle swarm optimization (BPSO)-based algorithm is proposed to provide suitable Gabor filters for each involved test dataset without predefinition or manual modulation. Several comparative experiments on JLUBR-IRIS, CASIA-I, and CASIA-V4-Interval iris datasets are conducted, and the results show that our work can generate improved local Gabor features by using optimized Gabor filters for each dataset. In addition, our SVR fusion strategy may make full use of their discriminative ability to improve accuracy and reliability. Other comparative experiments show that our approach may outperform other popular iris systems.
Resolvent analysis of shear flows using One-Way Navier-Stokes equations
NASA Astrophysics Data System (ADS)
Rigas, Georgios; Schmidt, Oliver; Towne, Aaron; Colonius, Tim
2017-11-01
For three-dimensional flows, questions of stability, receptivity, secondary flows, and coherent structures require the solution of large partial-derivative eigenvalue problems. Reduced-order approximations are thus required for engineering prediction since these problems are often computationally intractable or prohibitively expensive. For spatially slowly evolving flows, such as jets and boundary layers, the One-Way Navier-Stokes (OWNS) equations permit a fast spatial marching procedure that results in a huge reduction in computational cost. Here, an adjoint-based optimization framework is proposed and demonstrated for calculating optimal boundary conditions and optimal volumetric forcing. The corresponding optimal response modes are validated against modes obtained in terms of global resolvent analysis. For laminar base flows, the optimal modes reveal modal and non-modal transition mechanisms. For turbulent base flows, they predict the evolution of coherent structures in a statistical sense. Results from the application of the method to three-dimensional laminar wall-bounded flows and turbulent jets will be presented. This research was supported by the Office of Naval Research (N00014-16-1-2445) and Boeing Company (CT-BA-GTA-1).
Vibration control of rotor shaft
NASA Technical Reports Server (NTRS)
Nonami, K.
1985-01-01
Suppression of flexural forced vibration or the self-excited vibration of a rotating shaft system not by passive elements but by active elements is described. The distinctive feature of this method is not to dissipate the vibration energy but to provide the force cancelling the vibration displacement and the vibration velocity through the bearing housing in rotation. Therefore the bearings of this kind are appropriately named Active Control Bearings. A simple rotor system having one disk at the center of the span on flexible supports is investigated in this paper. The actuators of the electrodynamic transducer are inserted in the sections of the bearing housing. First, applying the optimal regulator of optimal control theory, the flexural vibration control of the rotating shaft and the vibration control of support systems are performed by the optimal state feedback system using these actuators. Next, the quasi-modal control based on a modal analysis is applied to this rotor system. This quasi-modal control system is constructed by means of optimal velocity feedback loops. The differences between optimal control and quasi-modal control are discussed and their merits and demerits are made clear. Finally, the experiments are described concerning only the optimal regulator method.
Short-Term Load Forecasting Based Automatic Distribution Network Reconfiguration: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Huaiguang; Ding, Fei; Zhang, Yingchen
In the traditional dynamic network reconfiguration study, the optimal topology is determined at every scheduled time point by using the real load data measured at that time. The development of load forecasting technique can provide accurate prediction of load power that will happen in future time and provide more information about load changes. With the inclusion of load forecasting, the optimal topology can be determined based on the predicted load conditions during the longer time period instead of using the snapshot of load at the time when the reconfiguration happens, and thus it can provide information to the distribution systemmore » operator (DSO) to better operate the system reconfiguration to achieve optimal solutions. Thus, this paper proposes a short-term load forecasting based approach for automatically reconfiguring distribution systems in a dynamic and pre-event manner. Specifically, a short-term and high-resolution distribution system load forecasting approach is proposed with support vector regression (SVR) based forecaster and parallel parameters optimization. And the network reconfiguration problem is solved by using the forecasted load continuously to determine the optimal network topology with the minimum loss at the future time. The simulation results validate and evaluate the proposed approach.« less
A Decision Support Model and Tool to Assist Financial Decision-Making in Universities
ERIC Educational Resources Information Center
Bhayat, Imtiaz; Manuguerra, Maurizio; Baldock, Clive
2015-01-01
In this paper, a model and tool is proposed to assist universities and other mission-based organisations to ascertain systematically the optimal portfolio of projects, in any year, meeting the organisations risk tolerances and available funds. The model and tool presented build on previous work on university operations and decision support systems…
NASA Technical Reports Server (NTRS)
Desantis, A.
1994-01-01
In this paper the approximation problem for a class of optimal compensators for flexible structures is considered. The particular case of a simply supported truss with an offset antenna is dealt with. The nonrational positive real optimal compensator transfer function is determined, and it is proposed that an approximation scheme based on a continued fraction expansion method be used. Comparison with the more popular modal expansion technique is performed in terms of stability margin and parameters sensitivity of the relative approximated closed loop transfer functions.
NASA Astrophysics Data System (ADS)
Jiang, Xue; Lu, Wenxi; Hou, Zeyu; Zhao, Haiqing; Na, Jin
2015-11-01
The purpose of this study was to identify an optimal surfactant-enhanced aquifer remediation (SEAR) strategy for aquifers contaminated by dense non-aqueous phase liquid (DNAPL) based on an ensemble of surrogates-based optimization technique. A saturated heterogeneous medium contaminated by nitrobenzene was selected as case study. A new kind of surrogate-based SEAR optimization employing an ensemble surrogate (ES) model together with a genetic algorithm (GA) is presented. Four methods, namely radial basis function artificial neural network (RBFANN), kriging (KRG), support vector regression (SVR), and kernel extreme learning machines (KELM), were used to create four individual surrogate models, which were then compared. The comparison enabled us to select the two most accurate models (KELM and KRG) to establish an ES model of the SEAR simulation model, and the developed ES model as well as these four stand-alone surrogate models was compared. The results showed that the average relative error of the average nitrobenzene removal rates between the ES model and the simulation model for 20 test samples was 0.8%, which is a high approximation accuracy, and which indicates that the ES model provides more accurate predictions than the stand-alone surrogate models. Then, a nonlinear optimization model was formulated for the minimum cost, and the developed ES model was embedded into this optimization model as a constrained condition. Besides, GA was used to solve the optimization model to provide the optimal SEAR strategy. The developed ensemble surrogate-optimization approach was effective in seeking a cost-effective SEAR strategy for heterogeneous DNAPL-contaminated sites. This research is expected to enrich and develop the theoretical and technical implications for the analysis of remediation strategy optimization of DNAPL-contaminated aquifers.
NASA Astrophysics Data System (ADS)
Lu, W., Sr.; Xin, X.; Luo, J.; Jiang, X.; Zhang, Y.; Zhao, Y.; Chen, M.; Hou, Z.; Ouyang, Q.
2015-12-01
The purpose of this study was to identify an optimal surfactant-enhanced aquifer remediation (SEAR) strategy for aquifers contaminated by dense non-aqueous phase liquid (DNAPL) based on an ensemble of surrogates-based optimization technique. A saturated heterogeneous medium contaminated by nitrobenzene was selected as case study. A new kind of surrogate-based SEAR optimization employing an ensemble surrogate (ES) model together with a genetic algorithm (GA) is presented. Four methods, namely radial basis function artificial neural network (RBFANN), kriging (KRG), support vector regression (SVR), and kernel extreme learning machines (KELM), were used to create four individual surrogate models, which were then compared. The comparison enabled us to select the two most accurate models (KELM and KRG) to establish an ES model of the SEAR simulation model, and the developed ES model as well as these four stand-alone surrogate models was compared. The results showed that the average relative error of the average nitrobenzene removal rates between the ES model and the simulation model for 20 test samples was 0.8%, which is a high approximation accuracy, and which indicates that the ES model provides more accurate predictions than the stand-alone surrogate models. Then, a nonlinear optimization model was formulated for the minimum cost, and the developed ES model was embedded into this optimization model as a constrained condition. Besides, GA was used to solve the optimization model to provide the optimal SEAR strategy. The developed ensemble surrogate-optimization approach was effective in seeking a cost-effective SEAR strategy for heterogeneous DNAPL-contaminated sites. This research is expected to enrich and develop the theoretical and technical implications for the analysis of remediation strategy optimization of DNAPL-contaminated aquifers.
NASA Astrophysics Data System (ADS)
Aydogan, Selen
This dissertation considers the problem of process synthesis and design of life-support systems for manned space missions. A life-support system is a set of technologies to support human life for short and long-term spaceflights, via providing the basic life-support elements, such as oxygen, potable water, and food. The design of the system needs to meet the crewmember demand for the basic life-support elements (products of the system) and it must process the loads generated by the crewmembers. The system is subject to a myriad of uncertainties because most of the technologies involved are still under development. The result is high levels of uncertainties in the estimates of the model parameters, such as recovery rates or process efficiencies. Moreover, due to the high recycle rates within the system, the uncertainties are amplified and propagated within the system, resulting in a complex problem. In this dissertation, two algorithms have been successfully developed to help making design decisions for life-support systems. The algorithms utilize a simulation-based optimization approach that combines a stochastic discrete-event simulation and a deterministic mathematical programming approach to generate multiple, unique realizations of the controlled evolution of the system. The timelines are analyzed using time series data mining techniques and statistical tools to determine the necessary technologies, their deployment schedules and capacities, and the necessary basic life-support element amounts to support crew life and activities for the mission duration.
Liu, W; Mohan, R
2012-06-01
Proton dose distributions, IMPT in particular, are highly sensitive to setup and range uncertainties. We report a novel method, based on per-voxel standard deviation (SD) of dose distributions, to evaluate the robustness of proton plans and to robustly optimize IMPT plans to render them less sensitive to uncertainties. For each optimization iteration, nine dose distributions are computed - the nominal one, and one each for ± setup uncertainties along x, y and z axes and for ± range uncertainty. SD of dose in each voxel is used to create SD-volume histogram (SVH) for each structure. SVH may be considered a quantitative representation of the robustness of the dose distribution. For optimization, the desired robustness may be specified in terms of an SD-volume (SV) constraint on the CTV and incorporated as a term in the objective function. Results of optimization with and without this constraint were compared in terms of plan optimality and robustness using the so called'worst case' dose distributions; which are obtained by assigning the lowest among the nine doses to each voxel in the clinical target volume (CTV) and the highest to normal tissue voxels outside the CTV. The SVH curve and the area under it for each structure were used as quantitative measures of robustness. Penalty parameter of SV constraint may be varied to control the tradeoff between robustness and plan optimality. We applied these methods to one case each of H&N and lung. In both cases, we found that imposing SV constraint improved plan robustness but at the cost of normal tissue sparing. SVH-based optimization and evaluation is an effective tool for robustness evaluation and robust optimization of IMPT plans. Studies need to be conducted to test the methods for larger cohorts of patients and for other sites. This research is supported by National Cancer Institute (NCI) grant P01CA021239, the University Cancer Foundation via the Institutional Research Grant program at the University of Texas MD Anderson Cancer Center, and MD Anderson’s cancer center support grant CA016672. © 2012 American Association of Physicists in Medicine.
Respiratory support in patients with acute respiratory distress syndrome: an expert opinion.
Chiumello, Davide; Brochard, Laurent; Marini, John J; Slutsky, Arthur S; Mancebo, Jordi; Ranieri, V Marco; Thompson, B Taylor; Papazian, Laurent; Schultz, Marcus J; Amato, Marcelo; Gattinoni, Luciano; Mercat, Alain; Pesenti, Antonio; Talmor, Daniel; Vincent, Jean-Louis
2017-09-12
Acute respiratory distress syndrome (ARDS) is a common condition in intensive care unit patients and remains a major concern, with mortality rates of around 30-45% and considerable long-term morbidity. Respiratory support in these patients must be optimized to ensure adequate gas exchange while minimizing the risks of ventilator-induced lung injury. The aim of this expert opinion document is to review the available clinical evidence related to ventilator support and adjuvant therapies in order to provide evidence-based and experience-based clinical recommendations for the management of patients with ARDS.
Weight optimization of large span steel truss structures with genetic algorithm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mojolic, Cristian; Hulea, Radu; Pârv, Bianca Roxana
2015-03-10
The paper presents the weight optimization process of the main steel truss that supports the Slatina Sport Hall roof. The structure was loaded with self-weight, dead loads, live loads, snow, wind and temperature, grouped in eleven load cases. The optimization of the structure was made using genetic algorithms implemented in a Matlab code. A total number of four different cases were taken into consideration when trying to determine the lowest weight of the structure, depending on the types of connections with the concrete structure ( types of supports, bearing modes), and the possibility of the lower truss chord nodes tomore » change their vertical position. A number of restrictions for tension, maximum displacement and buckling were enforced on the elements, and the cross sections are chosen by the program from a user data base. The results in each of the four cases were analyzed in terms of weight, element tension, element section and displacement. The paper presents the optimization process and the conclusions drawn.« less
NASA Astrophysics Data System (ADS)
Chen, Jing; Qiu, Xiaojie; Yin, Cunyi; Jiang, Hao
2018-02-01
An efficient method to design the broadband gain-flattened Raman fiber amplifier with multiple pumps is proposed based on least squares support vector regression (LS-SVR). A multi-input multi-output LS-SVR model is introduced to replace the complicated solving process of the nonlinear coupled Raman amplification equation. The proposed approach contains two stages: offline training stage and online optimization stage. During the offline stage, the LS-SVR model is trained. Owing to the good generalization capability of LS-SVR, the net gain spectrum can be directly and accurately obtained when inputting any combination of the pump wavelength and power to the well-trained model. During the online stage, we incorporate the LS-SVR model into the particle swarm optimization algorithm to find the optimal pump configuration. The design results demonstrate that the proposed method greatly shortens the computation time and enhances the efficiency of the pump parameter optimization for Raman fiber amplifier design.
NASA Astrophysics Data System (ADS)
Keum, Jongho; Coulibaly, Paulin
2017-07-01
Adequate and accurate hydrologic information from optimal hydrometric networks is an essential part of effective water resources management. Although the key hydrologic processes in the water cycle are interconnected, hydrometric networks (e.g., streamflow, precipitation, groundwater level) have been routinely designed individually. A decision support framework is proposed for integrated design of multivariable hydrometric networks. The proposed method is applied to design optimal precipitation and streamflow networks simultaneously. The epsilon-dominance hierarchical Bayesian optimization algorithm was combined with Shannon entropy of information theory to design and evaluate hydrometric networks. Specifically, the joint entropy from the combined networks was maximized to provide the most information, and the total correlation was minimized to reduce redundant information. To further optimize the efficiency between the networks, they were designed by maximizing the conditional entropy of the streamflow network given the information of the precipitation network. Compared to the traditional individual variable design approach, the integrated multivariable design method was able to determine more efficient optimal networks by avoiding the redundant stations. Additionally, four quantization cases were compared to evaluate their effects on the entropy calculations and the determination of the optimal networks. The evaluation results indicate that the quantization methods should be selected after careful consideration for each design problem since the station rankings and the optimal networks can change accordingly.
Fruit fly optimization based least square support vector regression for blind image restoration
NASA Astrophysics Data System (ADS)
Zhang, Jiao; Wang, Rui; Li, Junshan; Yang, Yawei
2014-11-01
The goal of image restoration is to reconstruct the original scene from a degraded observation. It is a critical and challenging task in image processing. Classical restorations require explicit knowledge of the point spread function and a description of the noise as priors. However, it is not practical for many real image processing. The recovery processing needs to be a blind image restoration scenario. Since blind deconvolution is an ill-posed problem, many blind restoration methods need to make additional assumptions to construct restrictions. Due to the differences of PSF and noise energy, blurring images can be quite different. It is difficult to achieve a good balance between proper assumption and high restoration quality in blind deconvolution. Recently, machine learning techniques have been applied to blind image restoration. The least square support vector regression (LSSVR) has been proven to offer strong potential in estimating and forecasting issues. Therefore, this paper proposes a LSSVR-based image restoration method. However, selecting the optimal parameters for support vector machine is essential to the training result. As a novel meta-heuristic algorithm, the fruit fly optimization algorithm (FOA) can be used to handle optimization problems, and has the advantages of fast convergence to the global optimal solution. In the proposed method, the training samples are created from a neighborhood in the degraded image to the central pixel in the original image. The mapping between the degraded image and the original image is learned by training LSSVR. The two parameters of LSSVR are optimized though FOA. The fitness function of FOA is calculated by the restoration error function. With the acquired mapping, the degraded image can be recovered. Experimental results show the proposed method can obtain satisfactory restoration effect. Compared with BP neural network regression, SVR method and Lucy-Richardson algorithm, it speeds up the restoration rate and performs better. Both objective and subjective restoration performances are studied in the comparison experiments.
Bioregenerative food system cost based on optimized menus for advanced life support
NASA Technical Reports Server (NTRS)
Waters, Geoffrey C R.; Olabi, Ammar; Hunter, Jean B.; Dixon, Mike A.; Lasseur, Christophe
2002-01-01
Optimized menus for a bioregenerative life support system have been developed based on measures of crop productivity, food item acceptability, menu diversity, and nutritional requirements of crew. Crop-specific biomass requirements were calculated from menu recipe demands while accounting for food processing and preparation losses. Under the assumption of staggered planting, the optimized menu demanded a total crop production area of 453 m2 for six crew. Cost of the bioregenerative food system is estimated at 439 kg per menu cycle or 7.3 kg ESM crew-1 day-1, including agricultural waste processing costs. On average, about 60% (263.6 kg ESM) of the food system cost is tied up in equipment, 26% (114.2 kg ESM) in labor, and 14% (61.5 kg ESM) in power and cooling. This number is high compared to the STS and ISS (nonregenerative) systems but reductions in ESM may be achieved through intensive crop productivity improvements, reductions in equipment masses associated with crop production, and planning of production, processing, and preparation to minimize the requirement for crew labor.
NASA Astrophysics Data System (ADS)
Khehra, Baljit Singh; Pharwaha, Amar Partap Singh
2017-04-01
Ductal carcinoma in situ (DCIS) is one type of breast cancer. Clusters of microcalcifications (MCCs) are symptoms of DCIS that are recognized by mammography. Selection of robust features vector is the process of selecting an optimal subset of features from a large number of available features in a given problem domain after the feature extraction and before any classification scheme. Feature selection reduces the feature space that improves the performance of classifier and decreases the computational burden imposed by using many features on classifier. Selection of an optimal subset of features from a large number of available features in a given problem domain is a difficult search problem. For n features, the total numbers of possible subsets of features are 2n. Thus, selection of an optimal subset of features problem belongs to the category of NP-hard problems. In this paper, an attempt is made to find the optimal subset of MCCs features from all possible subsets of features using genetic algorithm (GA), particle swarm optimization (PSO) and biogeography-based optimization (BBO). For simulation, a total of 380 benign and malignant MCCs samples have been selected from mammogram images of DDSM database. A total of 50 features extracted from benign and malignant MCCs samples are used in this study. In these algorithms, fitness function is correct classification rate of classifier. Support vector machine is used as a classifier. From experimental results, it is also observed that the performance of PSO-based and BBO-based algorithms to select an optimal subset of features for classifying MCCs as benign or malignant is better as compared to GA-based algorithm.
Equation-based languages – A new paradigm for building energy modeling, simulation and optimization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wetter, Michael; Bonvini, Marco; Nouidui, Thierry S.
Most of the state-of-the-art building simulation programs implement models in imperative programming languages. This complicates modeling and excludes the use of certain efficient methods for simulation and optimization. In contrast, equation-based modeling languages declare relations among variables, thereby allowing the use of computer algebra to enable much simpler schematic modeling and to generate efficient code for simulation and optimization. We contrast the two approaches in this paper. We explain how such manipulations support new use cases. In the first of two examples, we couple models of the electrical grid, multiple buildings, HVAC systems and controllers to test a controller thatmore » adjusts building room temperatures and PV inverter reactive power to maintain power quality. In the second example, we contrast the computing time for solving an optimal control problem for a room-level model predictive controller with and without symbolic manipulations. As a result, exploiting the equation-based language led to 2, 200 times faster solution« less
Generalized SMO algorithm for SVM-based multitask learning.
Cai, Feng; Cherkassky, Vladimir
2012-06-01
Exploiting additional information to improve traditional inductive learning is an active research area in machine learning. In many supervised-learning applications, training data can be naturally separated into several groups, and incorporating this group information into learning may improve generalization. Recently, Vapnik proposed a general approach to formalizing such problems, known as "learning with structured data" and its support vector machine (SVM) based optimization formulation called SVM+. Liang and Cherkassky showed the connection between SVM+ and multitask learning (MTL) approaches in machine learning, and proposed an SVM-based formulation for MTL called SVM+MTL for classification. Training the SVM+MTL classifier requires the solution of a large quadratic programming optimization problem which scales as O(n(3)) with sample size n. So there is a need to develop computationally efficient algorithms for implementing SVM+MTL. This brief generalizes Platt's sequential minimal optimization (SMO) algorithm to the SVM+MTL setting. Empirical results show that, for typical SVM+MTL problems, the proposed generalized SMO achieves over 100 times speed-up, in comparison with general-purpose optimization routines.
Equation-based languages – A new paradigm for building energy modeling, simulation and optimization
Wetter, Michael; Bonvini, Marco; Nouidui, Thierry S.
2016-04-01
Most of the state-of-the-art building simulation programs implement models in imperative programming languages. This complicates modeling and excludes the use of certain efficient methods for simulation and optimization. In contrast, equation-based modeling languages declare relations among variables, thereby allowing the use of computer algebra to enable much simpler schematic modeling and to generate efficient code for simulation and optimization. We contrast the two approaches in this paper. We explain how such manipulations support new use cases. In the first of two examples, we couple models of the electrical grid, multiple buildings, HVAC systems and controllers to test a controller thatmore » adjusts building room temperatures and PV inverter reactive power to maintain power quality. In the second example, we contrast the computing time for solving an optimal control problem for a room-level model predictive controller with and without symbolic manipulations. As a result, exploiting the equation-based language led to 2, 200 times faster solution« less
Abedini, Mohammad; Moradi, Mohammad H; Hosseinian, S M
2016-03-01
This paper proposes a novel method to address reliability and technical problems of microgrids (MGs) based on designing a number of self-adequate autonomous sub-MGs via adopting MGs clustering thinking. In doing so, a multi-objective optimization problem is developed where power losses reduction, voltage profile improvement and reliability enhancement are considered as the objective functions. To solve the optimization problem a hybrid algorithm, named HS-GA, is provided, based on genetic and harmony search algorithms, and a load flow method is given to model different types of DGs as droop controller. The performance of the proposed method is evaluated in two case studies. The results provide support for the performance of the proposed method. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ridolfi, E.; Napolitano, F., E-mail: francesco.napolitano@uniroma1.it; Alfonso, L.
2016-06-08
The description of river topography has a crucial role in accurate one-dimensional (1D) hydraulic modelling. Specifically, cross-sectional data define the riverbed elevation, the flood-prone area, and thus, the hydraulic behavior of the river. Here, the problem of the optimal cross-sectional spacing is solved through an information theory-based concept. The optimal subset of locations is the one with the maximum information content and the minimum amount of redundancy. The original contribution is the introduction of a methodology to sample river cross sections in the presence of bridges. The approach is tested on the Grosseto River (IT) and is compared to existingmore » guidelines. The results show that the information theory-based approach can support traditional methods to estimate rivers’ cross-sectional spacing.« less
Optimizing Web-Based Instruction: A Case Study Using Poultry Processing Unit Operations
ERIC Educational Resources Information Center
O' Bryan, Corliss A.; Crandall, Philip G.; Shores-Ellis, Katrina; Johnson, Donald M.; Ricke, Steven C.; Marcy, John
2009-01-01
Food companies and supporting industries need inexpensive, revisable training methods for large numbers of hourly employees due to continuing improvements in Hazard Analysis Critical Control Point (HACCP) programs, new processing equipment, and high employee turnover. HACCP-based food safety programs have demonstrated their value by reducing the…
Optimization Design of Minimum Total Resistance Hull Form Based on CFD Method
NASA Astrophysics Data System (ADS)
Zhang, Bao-ji; Zhang, Sheng-long; Zhang, Hui
2018-06-01
In order to reduce the resistance and improve the hydrodynamic performance of a ship, two hull form design methods are proposed based on the potential flow theory and viscous flow theory. The flow fields are meshed using body-fitted mesh and structured grids. The parameters of the hull modification function are the design variables. A three-dimensional modeling method is used to alter the geometry. The Non-Linear Programming (NLP) method is utilized to optimize a David Taylor Model Basin (DTMB) model 5415 ship under the constraints, including the displacement constraint. The optimization results show an effective reduction of the resistance. The two hull form design methods developed in this study can provide technical support and theoretical basis for designing green ships.
HOMER® Micropower Optimization Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lilienthal, P.
2005-01-01
NREL has developed the HOMER micropower optimization model. The model can analyze all of the available small power technologies individually and in hybrid configurations to identify least-cost solutions to energy requirements. This capability is valuable to a diverse set of energy professionals and applications. NREL has actively supported its growing user base and developed training programs around the model. These activities are helping to grow the global market for solar technologies.
A Bayesian model averaging method for the derivation of reservoir operating rules
NASA Astrophysics Data System (ADS)
Zhang, Jingwen; Liu, Pan; Wang, Hao; Lei, Xiaohui; Zhou, Yanlai
2015-09-01
Because the intrinsic dynamics among optimal decision making, inflow processes and reservoir characteristics are complex, functional forms of reservoir operating rules are always determined subjectively. As a result, the uncertainty of selecting form and/or model involved in reservoir operating rules must be analyzed and evaluated. In this study, we analyze the uncertainty of reservoir operating rules using the Bayesian model averaging (BMA) model. Three popular operating rules, namely piecewise linear regression, surface fitting and a least-squares support vector machine, are established based on the optimal deterministic reservoir operation. These individual models provide three-member decisions for the BMA combination, enabling the 90% release interval to be estimated by the Markov Chain Monte Carlo simulation. A case study of China's the Baise reservoir shows that: (1) the optimal deterministic reservoir operation, superior to any reservoir operating rules, is used as the samples to derive the rules; (2) the least-squares support vector machine model is more effective than both piecewise linear regression and surface fitting; (3) BMA outperforms any individual model of operating rules based on the optimal trajectories. It is revealed that the proposed model can reduce the uncertainty of operating rules, which is of great potential benefit in evaluating the confidence interval of decisions.
NASA Astrophysics Data System (ADS)
Duan, Libin; Xiao, Ning-cong; Li, Guangyao; Cheng, Aiguo; Chen, Tao
2017-07-01
Tailor-rolled blank thin-walled (TRB-TH) structures have become important vehicle components owing to their advantages of light weight and crashworthiness. The purpose of this article is to provide an efficient lightweight design for improving the energy-absorbing capability of TRB-TH structures under dynamic loading. A finite element (FE) model for TRB-TH structures is established and validated by performing a dynamic axial crash test. Different material properties for individual parts with different thicknesses are considered in the FE model. Then, a multi-objective crashworthiness design of the TRB-TH structure is constructed based on the ɛ-support vector regression (ɛ-SVR) technique and non-dominated sorting genetic algorithm-II. The key parameters (C, ɛ and σ) are optimized to further improve the predictive accuracy of ɛ-SVR under limited sample points. Finally, the technique for order preference by similarity to the ideal solution method is used to rank the solutions in Pareto-optimal frontiers and find the best compromise optima. The results demonstrate that the light weight and crashworthiness performance of the optimized TRB-TH structures are superior to their uniform thickness counterparts. The proposed approach provides useful guidance for designing TRB-TH energy absorbers for vehicle bodies.
Manavalan, Balachandran; Shin, Tae Hwan; Lee, Gwang
2018-01-05
DNase I hypersensitive sites (DHSs) are genomic regions that provide important information regarding the presence of transcriptional regulatory elements and the state of chromatin. Therefore, identifying DHSs in uncharacterized DNA sequences is crucial for understanding their biological functions and mechanisms. Although many experimental methods have been proposed to identify DHSs, they have proven to be expensive for genome-wide application. Therefore, it is necessary to develop computational methods for DHS prediction. In this study, we proposed a support vector machine (SVM)-based method for predicting DHSs, called DHSpred (DNase I Hypersensitive Site predictor in human DNA sequences), which was trained with 174 optimal features. The optimal combination of features was identified from a large set that included nucleotide composition and di- and trinucleotide physicochemical properties, using a random forest algorithm. DHSpred achieved a Matthews correlation coefficient and accuracy of 0.660 and 0.871, respectively, which were 3% higher than those of control SVM predictors trained with non-optimized features, indicating the efficiency of the feature selection method. Furthermore, the performance of DHSpred was superior to that of state-of-the-art predictors. An online prediction server has been developed to assist the scientific community, and is freely available at: http://www.thegleelab.org/DHSpred.html.
Manavalan, Balachandran; Shin, Tae Hwan; Lee, Gwang
2018-01-01
DNase I hypersensitive sites (DHSs) are genomic regions that provide important information regarding the presence of transcriptional regulatory elements and the state of chromatin. Therefore, identifying DHSs in uncharacterized DNA sequences is crucial for understanding their biological functions and mechanisms. Although many experimental methods have been proposed to identify DHSs, they have proven to be expensive for genome-wide application. Therefore, it is necessary to develop computational methods for DHS prediction. In this study, we proposed a support vector machine (SVM)-based method for predicting DHSs, called DHSpred (DNase I Hypersensitive Site predictor in human DNA sequences), which was trained with 174 optimal features. The optimal combination of features was identified from a large set that included nucleotide composition and di- and trinucleotide physicochemical properties, using a random forest algorithm. DHSpred achieved a Matthews correlation coefficient and accuracy of 0.660 and 0.871, respectively, which were 3% higher than those of control SVM predictors trained with non-optimized features, indicating the efficiency of the feature selection method. Furthermore, the performance of DHSpred was superior to that of state-of-the-art predictors. An online prediction server has been developed to assist the scientific community, and is freely available at: http://www.thegleelab.org/DHSpred.html PMID:29416743
A trial-based economic evaluation of 2 nurse-led disease management programs in heart failure.
Postmus, Douwe; Pari, Anees A Abdul; Jaarsma, Tiny; Luttik, Marie Louise; van Veldhuisen, Dirk J; Hillege, Hans L; Buskens, Erik
2011-12-01
Although previously conducted meta-analyses suggest that nurse-led disease management programs in heart failure (HF) can improve patient outcomes, uncertainty regarding the cost-effectiveness of such programs remains. To compare the relative merits of 2 variants of a nurse-led disease management program (basic or intensive support by a nurse specialized in the management of patients with HF) against care as usual (routine follow-up by a cardiologist), a trial-based economic evaluation was conducted alongside the COACH study. In terms of costs per life-year, basic support was found to dominate care as usual, whereas the incremental cost-effectiveness ratio between intensive support and basic support was found to be equal to €532,762 per life-year; in terms of costs per quality-adjusted life-year (QALY), basic support was found to dominate both care as usual and intensive support. An assessment of the uncertainty surrounding these findings showed that, at a threshold value of €20,000 per life-year/€20,000 per QALY, basic support was found to have a probability of 69/62% of being optimal against 17/30% and 14/8% for care as usual and intensive support, respectively. The results of our subgroup analysis suggest that a stratified approach based on offering basic support to patients with mild to moderate HF and intensive support to patients with severe HF would be optimal if the willingness-to-pay threshold exceeds €45,345 per life-year/€59,289 per QALY. Although the differences in costs and effects among the 3 study groups were not statistically significant, from a decision-making perspective, basic support still had a relatively large probability of generating the highest health outcomes at the lowest costs. Our results also substantiated that a stratified approach based on offering basic support to patients with mild to moderate HF and intensive support to patients with severe HF could further improve health outcomes at slightly higher costs. Copyright © 2011 Mosby, Inc. All rights reserved.
Collaboration pathway(s) using new tools for optimizing operational climate monitoring from space
NASA Astrophysics Data System (ADS)
Helmuth, Douglas B.; Selva, Daniel; Dwyer, Morgan M.
2014-10-01
Consistently collecting the earth's climate signatures remains a priority for world governments and international scientific organizations. Architecting a solution requires transforming scientific missions into an optimized robust `operational' constellation that addresses the needs of decision makers, scientific investigators and global users for trusted data. The application of new tools offers pathways for global architecture collaboration. Recent (2014) rulebased decision engine modeling runs that targeted optimizing the intended NPOESS architecture, becomes a surrogate for global operational climate monitoring architecture(s). This rule-based systems tools provide valuable insight for Global climate architectures, through the comparison and evaluation of alternatives considered and the exhaustive range of trade space explored. A representative optimization of Global ECV's (essential climate variables) climate monitoring architecture(s) is explored and described in some detail with thoughts on appropriate rule-based valuations. The optimization tools(s) suggest and support global collaboration pathways and hopefully elicit responses from the audience and climate science shareholders.
NASA Astrophysics Data System (ADS)
Chiadamrong, N.; Piyathanavong, V.
2017-12-01
Models that aim to optimize the design of supply chain networks have gained more interest in the supply chain literature. Mixed-integer linear programming and discrete-event simulation are widely used for such an optimization problem. We present a hybrid approach to support decisions for supply chain network design using a combination of analytical and discrete-event simulation models. The proposed approach is based on iterative procedures until the difference between subsequent solutions satisfies the pre-determined termination criteria. The effectiveness of proposed approach is illustrated by an example, which shows closer to optimal results with much faster solving time than the results obtained from the conventional simulation-based optimization model. The efficacy of this proposed hybrid approach is promising and can be applied as a powerful tool in designing a real supply chain network. It also provides the possibility to model and solve more realistic problems, which incorporate dynamism and uncertainty.
Design and implementation of intelligent electronic warfare decision making algorithm
NASA Astrophysics Data System (ADS)
Peng, Hsin-Hsien; Chen, Chang-Kuo; Hsueh, Chi-Shun
2017-05-01
Electromagnetic signals and the requirements of timely response have been a rapid growth in modern electronic warfare. Although jammers are limited resources, it is possible to achieve the best electronic warfare efficiency by tactical decisions. This paper proposes the intelligent electronic warfare decision support system. In this work, we develop a novel hybrid algorithm, Digital Pheromone Particle Swarm Optimization, based on Particle Swarm Optimization (PSO), Ant Colony Optimization (ACO) and Shuffled Frog Leaping Algorithm (SFLA). We use PSO to solve the problem and combine the concept of pheromones in ACO to accumulate more useful information in spatial solving process and speed up finding the optimal solution. The proposed algorithm finds the optimal solution in reasonable computation time by using the method of matrix conversion in SFLA. The results indicated that jammer allocation was more effective. The system based on the hybrid algorithm provides electronic warfare commanders with critical information to assist commanders in effectively managing the complex electromagnetic battlefield.
Optimization of Airport Surface Traffic: A Case-Study of Incheon International Airport
NASA Technical Reports Server (NTRS)
Eun, Yeonju; Jeon, Daekeun; Lee, Hanbong; Jung, Yoon C.; Zhu, Zhifan; Jeong, Myeongsook; Kim, Hyounkong; Oh, Eunmi; Hong, Sungkwon
2017-01-01
This study aims to develop a controllers decision support tool for departure and surface management of ICN. Airport surface traffic optimization for Incheon International Airport (ICN) in South Korea was studied based on the operational characteristics of ICN and airspace of Korea. For surface traffic optimization, a multiple runway scheduling problem and a taxi scheduling problem were formulated into two Mixed Integer Linear Programming (MILP) optimization models. The Miles-In-Trail (MIT) separation constraint at the departure fix shared by the departure flights from multiple runways and the runway crossing constraints due to the taxi route configuration specific to ICN were incorporated into the runway scheduling and taxiway scheduling problems, respectively. Since the MILP-based optimization model for the multiple runway scheduling problem may be computationally intensive, computation times and delay costs of different solving methods were compared for a practical implementation. This research was a collaboration between Korea Aerospace Research Institute (KARI) and National Aeronautics and Space Administration (NASA).
Optimization of Airport Surface Traffic: A Case-Study of Incheon International Airport
NASA Technical Reports Server (NTRS)
Eun, Yeonju; Jeon, Daekeun; Lee, Hanbong; Jung, Yoon Chul; Zhu, Zhifan; Jeong, Myeong-Sook; Kim, Hyoun Kyoung; Oh, Eunmi; Hong, Sungkwon
2017-01-01
This study aims to develop a controllers' decision support tool for departure and surface management of ICN. Airport surface traffic optimization for Incheon International Airport (ICN) in South Korea was studied based on the operational characteristics of ICN and airspace of Korea. For surface traffic optimization, a multiple runway scheduling problem and a taxi scheduling problem were formulated into two Mixed Integer Linear Programming (MILP) optimization models. The Miles-In-Trail (MIT) separation constraint at the departure fix shared by the departure flights from multiple runways and the runway crossing constraints due to the taxi route configuration specific to ICN were incorporated into the runway scheduling and taxiway scheduling problems, respectively. Since the MILP-based optimization model for the multiple runway scheduling problem may be computationally intensive, computation times and delay costs of different solving methods were compared for a practical implementation. This research was a collaboration between Korea Aerospace Research Institute (KARI) and National Aeronautics and Space Administration (NASA).
Lightweight structure design for supporting plate of primary mirror
NASA Astrophysics Data System (ADS)
Wang, Xiao; Wang, Wei; Liu, Bei; Qu, Yan Jun; Li, Xu Peng
2017-10-01
A topological optimization design for the lightweight technology of supporting plate of the primary mirror is presented in this paper. The supporting plate of the primary mirror is topologically optimized under the condition of determined shape, loads and environment. And the optimal structure is obtained. The diameter of the primary mirror in this paper is 450mm, and the material is SiC1 . It is better to select SiC/Al as the supporting material. Six points of axial relative displacement can be used as constraints in optimization2 . Establishing the supporting plate model and setting up the model parameters. After analyzing the force of the main mirror on the supporting plate, the model is applied with force and constraints. Modal analysis and static analysis of supporting plates are calculated. The continuum structure topological optimization mathematical model is created with the variable-density method. The maximum deformation of the surface of supporting plate under the gravity of the mirror and the first model frequency are assigned to response variable, and the entire volume of supporting structure is converted to object function. The structures before and after optimization are analyzed using the finite element method. Results show that the optimized fundamental frequency increases 29.85Hz and has a less displacement compared with the traditional structure.
Cho, Ming-Yuan; Hoang, Thi Thom
2017-01-01
Fast and accurate fault classification is essential to power system operations. In this paper, in order to classify electrical faults in radial distribution systems, a particle swarm optimization (PSO) based support vector machine (SVM) classifier has been proposed. The proposed PSO based SVM classifier is able to select appropriate input features and optimize SVM parameters to increase classification accuracy. Further, a time-domain reflectometry (TDR) method with a pseudorandom binary sequence (PRBS) stimulus has been used to generate a dataset for purposes of classification. The proposed technique has been tested on a typical radial distribution network to identify ten different types of faults considering 12 given input features generated by using Simulink software and MATLAB Toolbox. The success rate of the SVM classifier is over 97%, which demonstrates the effectiveness and high efficiency of the developed method.
Seawell, Asani H.; Cutrona, Carolyn E.; Russell, Daniel W.
2012-01-01
The present longitudinal study examined the role of general and tailored social support in mitigating the deleterious impact of racial discrimination on depressive symptoms and optimism in a large sample of African American women. Participants were 590 African American women who completed measures assessing racial discrimination, general social support, tailored social support for racial discrimination, depressive symptoms, and optimism at two time points (2001–2002 and 2003–2004). Our results indicated that higher levels of general and tailored social support predicted optimism one year later; changes in both types of support also predicted changes in optimism over time. Although initial levels of neither measure of social support predicted depressive symptoms over time, changes in tailored support predicted changes in depressive symptoms. We also sought to determine whether general and tailored social support “buffer” or diminish the negative effects of racial discrimination on depressive symptoms and optimism. Our results revealed a classic buffering effect of tailored social support, but not general support on depressive symptoms for women experiencing high levels of discrimination. PMID:24443614
NASA Technical Reports Server (NTRS)
Vonderesch, A. H.
1972-01-01
The baseline SRM design for the space shuttle employs proven technology based on actual motor firings. Supporting research and technology are therefore required only to address system technology that is specific to the shuttle requirements, and that is needed for optimization of design features. Eight programs are recommended to meet these requirements.
Particle Swarm Optimization Toolbox
NASA Technical Reports Server (NTRS)
Grant, Michael J.
2010-01-01
The Particle Swarm Optimization Toolbox is a library of evolutionary optimization tools developed in the MATLAB environment. The algorithms contained in the library include a genetic algorithm (GA), a single-objective particle swarm optimizer (SOPSO), and a multi-objective particle swarm optimizer (MOPSO). Development focused on both the SOPSO and MOPSO. A GA was included mainly for comparison purposes, and the particle swarm optimizers appeared to perform better for a wide variety of optimization problems. All algorithms are capable of performing unconstrained and constrained optimization. The particle swarm optimizers are capable of performing single and multi-objective optimization. The SOPSO and MOPSO algorithms are based on swarming theory and bird-flocking patterns to search the trade space for the optimal solution or optimal trade in competing objectives. The MOPSO generates Pareto fronts for objectives that are in competition. A GA, based on Darwin evolutionary theory, is also included in the library. The GA consists of individuals that form a population in the design space. The population mates to form offspring at new locations in the design space. These offspring contain traits from both of the parents. The algorithm is based on this combination of traits from parents to hopefully provide an improved solution than either of the original parents. As the algorithm progresses, individuals that hold these optimal traits will emerge as the optimal solutions. Due to the generic design of all optimization algorithms, each algorithm interfaces with a user-supplied objective function. This function serves as a "black-box" to the optimizers in which the only purpose of this function is to evaluate solutions provided by the optimizers. Hence, the user-supplied function can be numerical simulations, analytical functions, etc., since the specific detail of this function is of no concern to the optimizer. These algorithms were originally developed to support entry trajectory and guidance design for the Mars Science Laboratory mission but may be applied to any optimization problem.
Zhang, Yu-xin; Cheng, Zhi-feng; Xu, Zheng-ping; Bai, Jing
2015-01-01
In order to solve the problems such as complex operation, consumption for the carrier gas and long test period in traditional power transformer fault diagnosis approach based on dissolved gas analysis (DGA), this paper proposes a new method which is detecting 5 types of characteristic gas content in transformer oil such as CH4, C2H2, C2H4, C2H6 and H2 based on photoacoustic Spectroscopy and C2H2/C2H4, CH4/H2, C2H4/C2H6 three-ratios data are calculated. The support vector machine model was constructed using cross validation method under five support vector machine functions and four kernel functions, heuristic algorithms were used in parameter optimization for penalty factor c and g, which to establish the best SVM model for the highest fault diagnosis accuracy and the fast computing speed. Particles swarm optimization and genetic algorithm two types of heuristic algorithms were comparative studied in this paper for accuracy and speed in optimization. The simulation result shows that SVM model composed of C-SVC, RBF kernel functions and genetic algorithm obtain 97. 5% accuracy in test sample set and 98. 333 3% accuracy in train sample set, and genetic algorithm was about two times faster than particles swarm optimization in computing speed. The methods described in this paper has many advantages such as simple operation, non-contact measurement, no consumption for the carrier gas, long test period, high stability and sensitivity, the result shows that the methods described in this paper can instead of the traditional transformer fault diagnosis by gas chromatography and meets the actual project needs in transformer fault diagnosis.
Joint-layer encoder optimization for HEVC scalable extensions
NASA Astrophysics Data System (ADS)
Tsai, Chia-Ming; He, Yuwen; Dong, Jie; Ye, Yan; Xiu, Xiaoyu; He, Yong
2014-09-01
Scalable video coding provides an efficient solution to support video playback on heterogeneous devices with various channel conditions in heterogeneous networks. SHVC is the latest scalable video coding standard based on the HEVC standard. To improve enhancement layer coding efficiency, inter-layer prediction including texture and motion information generated from the base layer is used for enhancement layer coding. However, the overall performance of the SHVC reference encoder is not fully optimized because rate-distortion optimization (RDO) processes in the base and enhancement layers are independently considered. It is difficult to directly extend the existing joint-layer optimization methods to SHVC due to the complicated coding tree block splitting decisions and in-loop filtering process (e.g., deblocking and sample adaptive offset (SAO) filtering) in HEVC. To solve those problems, a joint-layer optimization method is proposed by adjusting the quantization parameter (QP) to optimally allocate the bit resource between layers. Furthermore, to make more proper resource allocation, the proposed method also considers the viewing probability of base and enhancement layers according to packet loss rate. Based on the viewing probability, a novel joint-layer RD cost function is proposed for joint-layer RDO encoding. The QP values of those coding tree units (CTUs) belonging to lower layers referenced by higher layers are decreased accordingly, and the QP values of those remaining CTUs are increased to keep total bits unchanged. Finally the QP values with minimal joint-layer RD cost are selected to match the viewing probability. The proposed method was applied to the third temporal level (TL-3) pictures in the Random Access configuration. Simulation results demonstrate that the proposed joint-layer optimization method can improve coding performance by 1.3% for these TL-3 pictures compared to the SHVC reference encoder without joint-layer optimization.
Optimizing Perioperative Decision Making: Improved Information for Clinical Workflow Planning
Doebbeling, Bradley N.; Burton, Matthew M.; Wiebke, Eric A.; Miller, Spencer; Baxter, Laurence; Miller, Donald; Alvarez, Jorge; Pekny, Joseph
2012-01-01
Perioperative care is complex and involves multiple interconnected subsystems. Delayed starts, prolonged cases and overtime are common. Surgical procedures account for 40–70% of hospital revenues and 30–40% of total costs. Most planning and scheduling in healthcare is done without modern planning tools, which have potential for improving access by assisting in operations planning support. We identified key planning scenarios of interest to perioperative leaders, in order to examine the feasibility of applying combinatorial optimization software solving some of those planning issues in the operative setting. Perioperative leaders desire a broad range of tools for planning and assessing alternate solutions. Our modeled solutions generated feasible solutions that varied as expected, based on resource and policy assumptions and found better utilization of scarce resources. Combinatorial optimization modeling can effectively evaluate alternatives to support key decisions for planning clinical workflow and improving care efficiency and satisfaction. PMID:23304284
Optimizing perioperative decision making: improved information for clinical workflow planning.
Doebbeling, Bradley N; Burton, Matthew M; Wiebke, Eric A; Miller, Spencer; Baxter, Laurence; Miller, Donald; Alvarez, Jorge; Pekny, Joseph
2012-01-01
Perioperative care is complex and involves multiple interconnected subsystems. Delayed starts, prolonged cases and overtime are common. Surgical procedures account for 40-70% of hospital revenues and 30-40% of total costs. Most planning and scheduling in healthcare is done without modern planning tools, which have potential for improving access by assisting in operations planning support. We identified key planning scenarios of interest to perioperative leaders, in order to examine the feasibility of applying combinatorial optimization software solving some of those planning issues in the operative setting. Perioperative leaders desire a broad range of tools for planning and assessing alternate solutions. Our modeled solutions generated feasible solutions that varied as expected, based on resource and policy assumptions and found better utilization of scarce resources. Combinatorial optimization modeling can effectively evaluate alternatives to support key decisions for planning clinical workflow and improving care efficiency and satisfaction.
Decision support tool to assess importance of transportation facilities.
DOT National Transportation Integrated Search
2008-01-01
Assessing the importance of transportation facilities is an increasingly growing topic of interest to federal and state transportation agencies. This work proposes an optimization based model that uses concepts and techniques of complex networks scie...
NASA Astrophysics Data System (ADS)
Wei, J.; Wang, G.; Liu, R.
2008-12-01
The Tarim River Basin is the longest inland river in China. Due to water scarcity, ecologically-fragile is becoming a significant constraint to sustainable development in this region. To effectively manage the limited water resources for ecological purposes and for conventional water utilization purposes, a real-time water resources allocation Decision Support System (DSS) has been developed. Based on workflows of the water resources regulations and comprehensive analysis of the efficiency and feasibility of water management strategies, the DSS includes information systems that perform data acquisition, management and visualization, and model systems that perform hydrological forecast, water demand prediction, flow routing simulation and water resources optimization of the hydrological and water utilization process. An optimization and process control strategy is employed to dynamically allocate the water resources among the different stakeholders. The competitive targets and constraints are taken into considered by multi-objective optimization and with different priorities. The DSS of the Tarim River Basin has been developed and been successfully utilized to support the water resources management of the Tarim River Basin since 2005.
NASA Technical Reports Server (NTRS)
Kerstman, Eric L.; Minard, Charles; FreiredeCarvalho, Mary H.; Walton, Marlei E.; Myers, Jerry G., Jr.; Saile, Lynn G.; Lopez, Vilma; Butler, Douglas J.; Johnson-Throop, Kathy A.
2011-01-01
This slide presentation reviews the Integrated Medical Model (IMM) and its use as a risk assessment and decision support tool for human space flight missions. The IMM is an integrated, quantified, evidence-based decision support tool useful to NASA crew health and mission planners. It is intended to assist in optimizing crew health, safety and mission success within the constraints of the space flight environment for in-flight operations. It uses ISS data to assist in planning for the Exploration Program and it is not intended to assist in post flight research. The IMM was used to update Probability Risk Assessment (PRA) for the purpose of updating forecasts for the conditions requiring evacuation (EVAC) or Loss of Crew Life (LOC) for the ISS. The IMM validation approach includes comparison with actual events and involves both qualitative and quantitaive approaches. The results of these comparisons are reviewed. Another use of the IMM is to optimize the medical kits taking into consideration the specific mission and the crew profile. An example of the use of the IMM to optimize the medical kits is reviewed.
Construction of Pancreatic Cancer Classifier Based on SVM Optimized by Improved FOA
Ma, Xiaoqi
2015-01-01
A novel method is proposed to establish the pancreatic cancer classifier. Firstly, the concept of quantum and fruit fly optimal algorithm (FOA) are introduced, respectively. Then FOA is improved by quantum coding and quantum operation, and a new smell concentration determination function is defined. Finally, the improved FOA is used to optimize the parameters of support vector machine (SVM) and the classifier is established by optimized SVM. In order to verify the effectiveness of the proposed method, SVM and other classification methods have been chosen as the comparing methods. The experimental results show that the proposed method can improve the classifier performance and cost less time. PMID:26543867
Optimization of fixture layouts of glass laser optics using multiple kernel regression.
Su, Jianhua; Cao, Enhua; Qiao, Hong
2014-05-10
We aim to build an integrated fixturing model to describe the structural properties and thermal properties of the support frame of glass laser optics. Therefore, (a) a near global optimal set of clamps can be computed to minimize the surface shape error of the glass laser optic based on the proposed model, and (b) a desired surface shape error can be obtained by adjusting the clamping forces under various environmental temperatures based on the model. To construct the model, we develop a new multiple kernel learning method and call it multiple kernel support vector functional regression. The proposed method uses two layer regressions to group and order the data sources by the weights of the kernels and the factors of the layers. Because of that, the influences of the clamps and the temperature can be evaluated by grouping them into different layers.
Scenarios for optimizing potato productivity in a lunar CELSS
NASA Technical Reports Server (NTRS)
Wheeler, R. M.; Morrow, R. C.; Tibbitts, T. W.; Bula, R. J.
1992-01-01
The use of controlled ecological life support system (CELSS) in the development and growth of large-scale bases on the Moon will reduce the expense of supplying life support materials from Earth. Such systems would use plants to produce food and oxygen, remove carbon dioxide, and recycle water and minerals. In a lunar CELSS, several factors are likely to be limiting to plant productivity, including the availability of growing area, electrical power, and lamp/ballast weight for lighting systems. Several management scenarios are outlined in this discussion for the production of potatoes based on their response to irradiance, photoperiod, and carbon dioxide concentration. Management scenarios that use 12-hr photoperiods, high carbon dioxide concentrations, and movable lamp banks to alternately irradiate halves of the growing area appear to be the most efficient in terms of growing area, electrical power, and lamp weights. However, the optimal scenario will be dependent upon the relative 'costs' of each factor.
Density-based penalty parameter optimization on C-SVM.
Liu, Yun; Lian, Jie; Bartolacci, Michael R; Zeng, Qing-An
2014-01-01
The support vector machine (SVM) is one of the most widely used approaches for data classification and regression. SVM achieves the largest distance between the positive and negative support vectors, which neglects the remote instances away from the SVM interface. In order to avoid a position change of the SVM interface as the result of an error system outlier, C-SVM was implemented to decrease the influences of the system's outliers. Traditional C-SVM holds a uniform parameter C for both positive and negative instances; however, according to the different number proportions and the data distribution, positive and negative instances should be set with different weights for the penalty parameter of the error terms. Therefore, in this paper, we propose density-based penalty parameter optimization of C-SVM. The experiential results indicated that our proposed algorithm has outstanding performance with respect to both precision and recall.
Rule-based optimization and multicriteria decision support for packaging a truck chassis
NASA Astrophysics Data System (ADS)
Berger, Martin; Lindroth, Peter; Welke, Richard
2017-06-01
Trucks are highly individualized products where exchangeable parts are flexibly combined to suit different customer requirements, this leading to a great complexity in product development. Therefore, an optimization approach based on constraint programming is proposed for automatically packaging parts of a truck chassis by following packaging rules expressed as constraints. A multicriteria decision support system is developed where a database of truck layouts is computed, among which interactive navigation then can be performed. The work has been performed in cooperation with Volvo Group Trucks Technology (GTT), from which specific rules have been used. Several scenarios are described where the methods developed can be successfully applied and lead to less time-consuming manual work, fewer mistakes, and greater flexibility in configuring trucks. A numerical evaluation is also presented showing the efficiency and practical relevance of the methods, which are implemented in a software tool.
Effective 2D-3D medical image registration using Support Vector Machine.
Qi, Wenyuan; Gu, Lixu; Zhao, Qiang
2008-01-01
Registration of pre-operative 3D volume dataset and intra-operative 2D images gradually becomes an important technique to assist radiologists in diagnosing complicated diseases easily and quickly. In this paper, we proposed a novel 2D/3D registration framework based on Support Vector Machine (SVM) to compensate the disadvantages of generating large number of DRR images in the stage of intra-operation. Estimated similarity metric distribution could be built up from the relationship between parameters of transform and prior sparse target metric values by means of SVR method. Based on which, global optimal parameters of transform are finally searched out by an optimizer in order to guide 3D volume dataset to match intra-operative 2D image. Experiments reveal that our proposed registration method improved performance compared to conventional registration method and also provided a precise registration result efficiently.
Evolutionary Optimization of Centrifugal Nozzles for Organic Vapours
NASA Astrophysics Data System (ADS)
Persico, Giacomo
2017-03-01
This paper discusses the shape-optimization of non-conventional centrifugal turbine nozzles for Organic Rankine Cycle applications. The optimal aerodynamic design is supported by the use of a non-intrusive, gradient-free technique specifically developed for shape optimization of turbomachinery profiles. The method is constructed as a combination of a geometrical parametrization technique based on B-Splines, a high-fidelity and experimentally validated Computational Fluid Dynamic solver, and a surrogate-based evolutionary algorithm. The non-ideal gas behaviour featuring the flow of organic fluids in the cascades of interest is introduced via a look-up-table approach, which is rigorously applied throughout the whole optimization process. Two transonic centrifugal nozzles are considered, featuring very different loading and radial extension. The use of a systematic and automatic design method to such a non-conventional configuration highlights the character of centrifugal cascades; the blades require a specific and non-trivial definition of the shape, especially in the rear part, to avoid the onset of shock waves. It is shown that the optimization acts in similar way for the two cascades, identifying an optimal curvature of the blade that both provides a relevant increase of cascade performance and a reduction of downstream gradients.
Magnetic design for the PediaFlow ventricular assist device.
Noh, Myounggyu D; Antaki, James F; Ricci, Michael; Gardiner, Jeff; Paden, Dave; Wu, Jingchun; Prem, Ed; Borovetz, Harvey; Paden, Bradley E
2008-02-01
This article describes a design process for a new pediatric ventricular assist device, the PediaFlow. The pump is embodied in a magnetically levitated turbodynamic design that was developed explicitly based on the requirements for chronic support of infants and small children. The procedure entailed the consideration of multiple pump topologies, from which an axial mixed-flow configuration was chosen for further development. The magnetic design includes permanent-magnet (PM) passive bearings for radial support of the rotor, an actively controlled thrust actuator for axial support, and a brushless direct current (DC) motor for rotation. These components are closely coupled both geometrically and magnetically, and were therefore optimized in parallel, using electromagnetic, rotordynamic models and fluid models, and in consideration of hydrodynamic requirements. Multiple design objectives were considered, including efficiency, size, and margin between critical speeds to operating speed. The former depends upon the radial and yaw stiffnesses of the PM bearings. Analytical expressions for the stiffnesses were derived and verified through finite element analysis (FEA). A toroidally wound motor was designed for high efficiency and minimal additional negative radial stiffness. The design process relies heavily on optimization at the component level and system level. The results of this preliminary design optimization yielded a pump design with an overall stability margin of 15%, based on a pressure rise of 100 mm Hg at 0.5 lpm running at 16,000 rpm.
NASA Astrophysics Data System (ADS)
Li, Zhi; Li, Chunhui; Wang, Xuan; Peng, Cong; Cai, Yanpeng; Huang, Weichen
2018-01-01
Problems with water resources restrict the sustainable development of a city with water shortages. Based on system dynamics (SD) theory, a model of sustainable utilization of water resources using the STELLA software has been established. This model consists of four subsystems: population system, economic system, water supply system and water demand system. The boundaries of the four subsystems are vague, but they are closely related and interdependent. The model is applied to Zhengzhou City, China, which has a serious water shortage. The difference between the water supply and demand is very prominent in Zhengzhou City. The model was verified with data from 2009 to 2013. The results show that water demand of Zhengzhou City will reach 2.57 billion m3 in 2020. A water resources optimization model is developed based on interval-parameter two-stage stochastic programming. The objective of the model is to allocate water resources to each water sector and make the lowest cost under the minimum water demand. Using the simulation results, decision makers can easily weigh the costs of the system, the water allocation objectives, and the system risk. The hybrid system dynamics method and optimization model is a rational try to support water resources management in many cities, particularly for cities with potential water shortage and it is solidly supported with previous studies and collected data.
Optimizing the Office Visit for Adolescents with Special Health Care Needs.
Nathawad, Rita; Hanks, Christopher
2017-08-01
Youth with special health care needs (YSHCN) experience health care disparities and often need additional support to receive optimal medical care, particularly in adolescence as they prepare to transition to adult care. Many medical practices struggle to address their needs. Here, we discuss approaches to improve medical care in office-based settings for YSHCN. Office visits can be optimized by training staff in developmentally appropriate care and ensuring that the physical office space facilitates care. Participating in previsit preparation, including managing patient registries of YSHCN, engaging in regular team huddles, and incorporating previsit planning, can improve preparation and ensure that important needs are not overlooked. Additionally, approaches to improve patient and medical provider comfort with office visits with YSHCN, including approaches to measuring vital signs, examining patients, and communicating with patients with various disabilities, are reviewed. Finally, we discuss methods of supporting adolescents with special health care needs in developing self-management skills that will allow them to be better prepared to enter adult health care settings when appropriate. Although YSHCN can present challenges to medical teams, their care can be improved by developing office-based changes and processes to support improved care for these patients. This may help overcome the health care disparities they experience and increase comfort for all members of the medical team. Copyright © 2017. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
Macian-Sorribes, Hector; Pulido-Velazquez, Manuel
2016-04-01
This contribution presents a methodology for defining optimal seasonal operating rules in multireservoir systems coupling expert criteria and stochastic optimization. Both sources of information are combined using fuzzy logic. The structure of the operating rules is defined based on expert criteria, via a joint expert-technician framework consisting in a series of meetings, workshops and surveys carried out between reservoir managers and modelers. As a result, the decision-making process used by managers can be assessed and expressed using fuzzy logic: fuzzy rule-based systems are employed to represent the operating rules and fuzzy regression procedures are used for forecasting future inflows. Once done that, a stochastic optimization algorithm can be used to define optimal decisions and transform them into fuzzy rules. Finally, the optimal fuzzy rules and the inflow prediction scheme are combined into a Decision Support System for making seasonal forecasts and simulate the effect of different alternatives in response to the initial system state and the foreseen inflows. The approach presented has been applied to the Jucar River Basin (Spain). Reservoir managers explained how the system is operated, taking into account the reservoirs' states at the beginning of the irrigation season and the inflows previewed during that season. According to the information given by them, the Jucar River Basin operating policies were expressed via two fuzzy rule-based (FRB) systems that estimate the amount of water to be allocated to the users and how the reservoir storages should be balanced to guarantee those deliveries. A stochastic optimization model using Stochastic Dual Dynamic Programming (SDDP) was developed to define optimal decisions, which are transformed into optimal operating rules embedding them into the two FRBs previously created. As a benchmark, historical records are used to develop alternative operating rules. A fuzzy linear regression procedure was employed to foresee future inflows depending on present and past hydrological and meteorological variables actually used by the reservoir managers to define likely inflow scenarios. A Decision Support System (DSS) was created coupling the FRB systems and the inflow prediction scheme in order to give the user a set of possible optimal releases in response to the reservoir states at the beginning of the irrigation season and the fuzzy inflow projections made using hydrological and meteorological information. The results show that the optimal DSS created using the FRB operating policies are able to increase the amount of water allocated to the users in 20 to 50 Mm3 per irrigation season with respect to the current policies. Consequently, the mechanism used to define optimal operating rules and transform them into a DSS is able to increase the water deliveries in the Jucar River Basin, combining expert criteria and optimization algorithms in an efficient way. This study has been partially supported by the IMPADAPT project (CGL2013-48424-C2-1-R) with Spanish MINECO (Ministerio de Economía y Competitividad) and FEDER funds. It also has received funding from the European Union's Horizon 2020 research and innovation programme under the IMPREX project (grant agreement no: 641.811).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nehrir, M. Hashem
In this Project we collaborated with two DOE National Laboratories, Pacific Northwest National Lab (PNNL) and Lawrence Berkeley National Lab (LBL). Dr. Hammerstrom of PNNL initially supported our project and was on the graduate committee of one of the Ph.D. students (graduated in 2014) who was supported by this project. He is also a committee member of a current graduate student of the PI who was supported by this project in the last two years (August 2014-July 2016). The graduate student is now supported be the Electrical and Computer Engineering (ECE) Department at Montana State University (MSU). Dr. Chris Marneymore » of LBL provided actual load data, and the software WEBOPT developed at LBL for microgrid (MG) design for our project. NEC-Labs America, a private industry, also supported our project, providing expert support and modest financial support. We also used the software “HOMER,” originally developed at the National Renewable Energy Laboratory (NREL) and the most recent version made available to us by HOMER Energy, Inc., for MG (hybrid energy system) unit sizing. We compared the findings from WebOpt and HOMER and designed appropriately sized hybrid systems for our case studies. The objective of the project was to investigate real-time power management strategies for MGs using intelligent control, considering maximum feasible energy sustainability, reliability and efficiency while, minimizing cost and undesired environmental impact (emissions). Through analytic and simulation studies, we evaluated the suitability of several heuristic and artificial-intelligence (AI)-based optimization techniques that had potential for real-time MG power management, including genetic algorithms (GA), ant colony optimization (ACO), particle swarm optimization (PSO), and multi-agent systems (MAS), which is based on the negotiation of smart software-based agents. We found that PSO and MAS, in particular, distributed MAS, were more efficient and better suited for our work. We investigated the following: • Intelligent load control - demand response (DR) - for frequency stabilization in islanded MGs (partially supported by PNNL). • The impact of high penetration of solar photovoltaic (PV)-generated power at the distribution level (partially supported by PNNL). • The application of AI approaches to renewable (wind, PV) power forecasting (proposed by the reviewers of our proposal). • Application of AI approaches and DR for real-time MG power management (partially supported by NEC Labs-America) • Application of DR in dealing with the variability of wind power • Real-time MG power management using DR and storage (partially supported by NEC Labs-America) • Application of DR in enhancing the performance of load-frequency controller • MAS-based whole-sale and retail power market design for smart grid A« less
Cognitive radio adaptation for power consumption minimization using biogeography-based optimization
NASA Astrophysics Data System (ADS)
Qi, Pei-Han; Zheng, Shi-Lian; Yang, Xiao-Niu; Zhao, Zhi-Jin
2016-12-01
Adaptation is one of the key capabilities of cognitive radio, which focuses on how to adjust the radio parameters to optimize the system performance based on the knowledge of the radio environment and its capability and characteristics. In this paper, we consider the cognitive radio adaptation problem for power consumption minimization. The problem is formulated as a constrained power consumption minimization problem, and the biogeography-based optimization (BBO) is introduced to solve this optimization problem. A novel habitat suitability index (HSI) evaluation mechanism is proposed, in which both the power consumption minimization objective and the quality of services (QoS) constraints are taken into account. The results show that under different QoS requirement settings corresponding to different types of services, the algorithm can minimize power consumption while still maintaining the QoS requirements. Comparison with particle swarm optimization (PSO) and cat swarm optimization (CSO) reveals that BBO works better, especially at the early stage of the search, which means that the BBO is a better choice for real-time applications. Project supported by the National Natural Science Foundation of China (Grant No. 61501356), the Fundamental Research Funds of the Ministry of Education, China (Grant No. JB160101), and the Postdoctoral Fund of Shaanxi Province, China.
Short-Term Load Forecasting Based Automatic Distribution Network Reconfiguration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Huaiguang; Ding, Fei; Zhang, Yingchen
In a traditional dynamic network reconfiguration study, the optimal topology is determined at every scheduled time point by using the real load data measured at that time. The development of the load forecasting technique can provide an accurate prediction of the load power that will happen in a future time and provide more information about load changes. With the inclusion of load forecasting, the optimal topology can be determined based on the predicted load conditions during a longer time period instead of using a snapshot of the load at the time when the reconfiguration happens; thus, the distribution system operatormore » can use this information to better operate the system reconfiguration and achieve optimal solutions. This paper proposes a short-term load forecasting approach to automatically reconfigure distribution systems in a dynamic and pre-event manner. Specifically, a short-term and high-resolution distribution system load forecasting approach is proposed with a forecaster based on support vector regression and parallel parameters optimization. The network reconfiguration problem is solved by using the forecasted load continuously to determine the optimal network topology with the minimum amount of loss at the future time. The simulation results validate and evaluate the proposed approach.« less
Short-Term Load Forecasting-Based Automatic Distribution Network Reconfiguration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Huaiguang; Ding, Fei; Zhang, Yingchen
In a traditional dynamic network reconfiguration study, the optimal topology is determined at every scheduled time point by using the real load data measured at that time. The development of the load forecasting technique can provide an accurate prediction of the load power that will happen in a future time and provide more information about load changes. With the inclusion of load forecasting, the optimal topology can be determined based on the predicted load conditions during a longer time period instead of using a snapshot of the load at the time when the reconfiguration happens; thus, the distribution system operatormore » can use this information to better operate the system reconfiguration and achieve optimal solutions. This paper proposes a short-term load forecasting approach to automatically reconfigure distribution systems in a dynamic and pre-event manner. Specifically, a short-term and high-resolution distribution system load forecasting approach is proposed with a forecaster based on support vector regression and parallel parameters optimization. The network reconfiguration problem is solved by using the forecasted load continuously to determine the optimal network topology with the minimum amount of loss at the future time. The simulation results validate and evaluate the proposed approach.« less
Research on bearing fault diagnosis of large machinery based on mathematical morphology
NASA Astrophysics Data System (ADS)
Wang, Yu
2018-04-01
To study the automatic diagnosis of large machinery fault based on support vector machine, combining the four common faults of the large machinery, the support vector machine is used to classify and identify the fault. The extracted feature vectors are entered. The feature vector is trained and identified by multi - classification method. The optimal parameters of the support vector machine are searched by trial and error method and cross validation method. Then, the support vector machine is compared with BP neural network. The results show that the support vector machines are short in time and high in classification accuracy. It is more suitable for the research of fault diagnosis in large machinery. Therefore, it can be concluded that the training speed of support vector machines (SVM) is fast and the performance is good.
How to support forest management in a world of change: results of some regional studies.
Fürst, C; Lorz, C; Vacik, H; Potocic, N; Makeschin, F
2010-12-01
This article presents results of several studies in Middle, Eastern and Southeastern Europe on needs and application areas, desirable attributes and marketing potentials of forest management support tools. By comparing present and future application areas, a trend from sectoral planning towards landscape planning and integration of multiple stakeholder needs is emerging. In terms of conflicts, where management support tools might provide benefit, no clear tendencies were found, neither on local nor on regional level. In contrast, on national and European levels, support of the implementation of laws, directives, and regulations was found to be of highest importance. Following the user-requirements analysis, electronic tools supporting communication are preferred against paper-based instruments. The users identified most important attributes of optimized management support tools: (i) a broad accessibility for all users at any time should be guaranteed, (ii) the possibility to integrate iteratively experiences from case studies and from regional experts into the knowledge base (learning system) should be given, and (iii) a self-explanatory user interface is demanded, which is also suitable for users rather inexperienced with electronic tools. However, a market potential analysis revealed that the willingness to pay for management tools is very limited, although the participants specified realistic ranges of maximal amounts of money, which would be invested if the products were suitable and payment inevitable. To bridge the discrepancy between unwillingness to pay and the need to use management support tools, optimized financing or cooperation models between practice and science must be found.
How to Support Forest Management in a World of Change: Results of Some Regional Studies
NASA Astrophysics Data System (ADS)
Fürst, C.; Lorz, C.; Vacik, H.; Potocic, N.; Makeschin, F.
2010-12-01
This article presents results of several studies in Middle, Eastern and Southeastern Europe on needs and application areas, desirable attributes and marketing potentials of forest management support tools. By comparing present and future application areas, a trend from sectoral planning towards landscape planning and integration of multiple stakeholder needs is emerging. In terms of conflicts, where management support tools might provide benefit, no clear tendencies were found, neither on local nor on regional level. In contrast, on national and European levels, support of the implementation of laws, directives, and regulations was found to be of highest importance. Following the user-requirements analysis, electronic tools supporting communication are preferred against paper-based instruments. The users identified most important attributes of optimized management support tools: (i) a broad accessibility for all users at any time should be guaranteed, (ii) the possibility to integrate iteratively experiences from case studies and from regional experts into the knowledge base (learning system) should be given, and (iii) a self-explanatory user interface is demanded, which is also suitable for users rather inexperienced with electronic tools. However, a market potential analysis revealed that the willingness to pay for management tools is very limited, although the participants specified realistic ranges of maximal amounts of money, which would be invested if the products were suitable and payment inevitable. To bridge the discrepancy between unwillingness to pay and the need to use management support tools, optimized financing or cooperation models between practice and science must be found.
Li, Yongbao; Tian, Zhen; Song, Ting; Wu, Zhaoxia; Liu, Yaqiang; Jiang, Steve; Jia, Xun
2017-01-07
Monte Carlo (MC)-based spot dose calculation is highly desired for inverse treatment planning in proton therapy because of its accuracy. Recent studies on biological optimization have also indicated the use of MC methods to compute relevant quantities of interest, e.g. linear energy transfer. Although GPU-based MC engines have been developed to address inverse optimization problems, their efficiency still needs to be improved. Also, the use of a large number of GPUs in MC calculation is not favorable for clinical applications. The previously proposed adaptive particle sampling (APS) method can improve the efficiency of MC-based inverse optimization by using the computationally expensive MC simulation more effectively. This method is more efficient than the conventional approach that performs spot dose calculation and optimization in two sequential steps. In this paper, we propose a computational library to perform MC-based spot dose calculation on GPU with the APS scheme. The implemented APS method performs a non-uniform sampling of the particles from pencil beam spots during the optimization process, favoring those from the high intensity spots. The library also conducts two computationally intensive matrix-vector operations frequently used when solving an optimization problem. This library design allows a streamlined integration of the MC-based spot dose calculation into an existing proton therapy inverse planning process. We tested the developed library in a typical inverse optimization system with four patient cases. The library achieved the targeted functions by supporting inverse planning in various proton therapy schemes, e.g. single field uniform dose, 3D intensity modulated proton therapy, and distal edge tracking. The efficiency was 41.6 ± 15.3% higher than the use of a GPU-based MC package in a conventional calculation scheme. The total computation time ranged between 2 and 50 min on a single GPU card depending on the problem size.
NASA Astrophysics Data System (ADS)
Li, Yongbao; Tian, Zhen; Song, Ting; Wu, Zhaoxia; Liu, Yaqiang; Jiang, Steve; Jia, Xun
2017-01-01
Monte Carlo (MC)-based spot dose calculation is highly desired for inverse treatment planning in proton therapy because of its accuracy. Recent studies on biological optimization have also indicated the use of MC methods to compute relevant quantities of interest, e.g. linear energy transfer. Although GPU-based MC engines have been developed to address inverse optimization problems, their efficiency still needs to be improved. Also, the use of a large number of GPUs in MC calculation is not favorable for clinical applications. The previously proposed adaptive particle sampling (APS) method can improve the efficiency of MC-based inverse optimization by using the computationally expensive MC simulation more effectively. This method is more efficient than the conventional approach that performs spot dose calculation and optimization in two sequential steps. In this paper, we propose a computational library to perform MC-based spot dose calculation on GPU with the APS scheme. The implemented APS method performs a non-uniform sampling of the particles from pencil beam spots during the optimization process, favoring those from the high intensity spots. The library also conducts two computationally intensive matrix-vector operations frequently used when solving an optimization problem. This library design allows a streamlined integration of the MC-based spot dose calculation into an existing proton therapy inverse planning process. We tested the developed library in a typical inverse optimization system with four patient cases. The library achieved the targeted functions by supporting inverse planning in various proton therapy schemes, e.g. single field uniform dose, 3D intensity modulated proton therapy, and distal edge tracking. The efficiency was 41.6 ± 15.3% higher than the use of a GPU-based MC package in a conventional calculation scheme. The total computation time ranged between 2 and 50 min on a single GPU card depending on the problem size.
Li, Yongbao; Tian, Zhen; Song, Ting; Wu, Zhaoxia; Liu, Yaqiang; Jiang, Steve; Jia, Xun
2016-01-01
Monte Carlo (MC)-based spot dose calculation is highly desired for inverse treatment planning in proton therapy because of its accuracy. Recent studies on biological optimization have also indicated the use of MC methods to compute relevant quantities of interest, e.g. linear energy transfer. Although GPU-based MC engines have been developed to address inverse optimization problems, their efficiency still needs to be improved. Also, the use of a large number of GPUs in MC calculation is not favorable for clinical applications. The previously proposed adaptive particle sampling (APS) method can improve the efficiency of MC-based inverse optimization by using the computationally expensive MC simulation more effectively. This method is more efficient than the conventional approach that performs spot dose calculation and optimization in two sequential steps. In this paper, we propose a computational library to perform MC-based spot dose calculation on GPU with the APS scheme. The implemented APS method performs a non-uniform sampling of the particles from pencil beam spots during the optimization process, favoring those from the high intensity spots. The library also conducts two computationally intensive matrix-vector operations frequently used when solving an optimization problem. This library design allows a streamlined integration of the MC-based spot dose calculation into an existing proton therapy inverse planning process. We tested the developed library in a typical inverse optimization system with four patient cases. The library achieved the targeted functions by supporting inverse planning in various proton therapy schemes, e.g. single field uniform dose, 3D intensity modulated proton therapy, and distal edge tracking. The efficiency was 41.6±15.3% higher than the use of a GPU-based MC package in a conventional calculation scheme. The total computation time ranged between 2 and 50 min on a single GPU card depending on the problem size. PMID:27991456
Smart LED lighting for major reductions in power and energy use for plant lighting in space
NASA Astrophysics Data System (ADS)
Poulet, Lucie
Launching or resupplying food, oxygen, and water into space for long-duration, crewed missions to distant destinations, such as Mars, is currently impossible. Bioregenerative life-support systems under development worldwide involving photoautotrophic organisms offer a solution to the food dilemma. However, using traditional Earth-based lighting methods, growth of food crops consumes copious energy, and since sunlight will not always be available at different space destinations, efficient electric lighting solutions are badly needed to reduce the Equivalent System Mass (ESM) of life-support infrastructure to be launched and transported to future space destinations with sustainable human habitats. The scope of the present study was to demonstrate that using LEDs coupled to plant detection, and optimizing spectral and irradiance parameters of LED light, the model crop lettuce (
Shah, Peer Azmat; Hasbullah, Halabi B; Lawal, Ibrahim A; Aminu Mu'azu, Abubakar; Tang Jung, Low
2014-01-01
Due to the proliferation of handheld mobile devices, multimedia applications like Voice over IP (VoIP), video conferencing, network music, and online gaming are gaining popularity in recent years. These applications are well known to be delay sensitive and resource demanding. The mobility of mobile devices, running these applications, across different networks causes delay and service disruption. Mobile IPv6 was proposed to provide mobility support to IPv6-based mobile nodes for continuous communication when they roam across different networks. However, the Route Optimization procedure in Mobile IPv6 involves the verification of mobile node's reachability at the home address and at the care-of address (home test and care-of test) that results in higher handover delays and signalling overhead. This paper presents an enhanced procedure, time-based one-time password Route Optimization (TOTP-RO), for Mobile IPv6 Route Optimization that uses the concepts of shared secret Token, time based one-time password (TOTP) along with verification of the mobile node via direct communication and maintaining the status of correspondent node's compatibility. The TOTP-RO was implemented in network simulator (NS-2) and an analytical analysis was also made. Analysis showed that TOTP-RO has lower handover delays, packet loss, and signalling overhead with an increased level of security as compared to the standard Mobile IPv6's Return-Routability-based Route Optimization (RR-RO).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, W; Zaghian, M; Lim, G
2015-06-15
Purpose: The current practice of considering the relative biological effectiveness (RBE) of protons in intensity modulated proton therapy (IMPT) planning is to use a generic RBE value of 1.1. However, RBE is indeed a variable depending on the dose per fraction, the linear energy transfer, tissue parameters, etc. In this study, we investigate the impact of using variable RBE based optimization (vRBE-OPT) on IMPT dose distributions compared by conventional fixed RBE based optimization (fRBE-OPT). Methods: Proton plans of three head and neck cancer patients were included for our study. In order to calculate variable RBE, tissue specific parameters were obtainedmore » from the literature and dose averaged LET values were calculated by Monte Carlo simulations. Biological effects were calculated using the linear quadratic model and they were utilized in the variable RBE based optimization. We used a Polak-Ribiere conjugate gradient algorithm to solve the model. In fixed RBE based optimization, we used conventional physical dose optimization to optimize doses weighted by 1.1. IMPT plans for each patient were optimized by both methods (vRBE-OPT and fRBE-OPT). Both variable and fixed RBE weighted dose distributions were calculated for both methods and compared by dosimetric measures. Results: The variable RBE weighted dose distributions were more homogenous within the targets, compared with the fixed RBE weighted dose distributions for the plans created by vRBE-OPT. We observed that there were noticeable deviations between variable and fixed RBE weighted dose distributions if the plan were optimized by fRBE-OPT. For organs at risk sparing, dose distributions from both methods were comparable. Conclusion: Biological dose based optimization rather than conventional physical dose based optimization in IMPT planning may bring benefit in improved tumor control when evaluating biologically equivalent dose, without sacrificing OAR sparing, for head and neck cancer patients. The research is supported in part by National Institutes of Health Grant No. 2U19CA021239-35.« less
Alentado, Vincent J.; Lubelski, Daniel; Steinmetz, Michael P.; Benzel, Edward C.; Mroz, Thomas E.
2014-01-01
Study Design Literature review. Objective Since the 1970s, spine surgeons have commonly required 6 weeks of failed conservative treatment prior to considering surgical intervention for various spinal pathologies. It is unclear, however, if this standard has been validated in the literature. The authors review the natural history, outcomes, and cost-effectiveness studies relating to the current standard of 6 weeks of nonoperative care prior to surgery for patients with spinal pathologies. Methods A systematic Medline search from 1953 to 2013 was performed to identify natural history, outcomes, and cost-effectiveness studies relating to the optimal period of conservative management prior to surgical intervention for both cervical and lumbar radiculopathy. Demographic information, operative indications, and clinical outcomes are reviewed for each study. Results A total of 5,719 studies were identified; of these, 13 studies were selected for inclusion. Natural history studies demonstrated that 88% of patients with cervical radiculopathy and 70% of patients with lumbar radiculopathy showed improvement within 4 weeks following onset of symptoms. Outcomes and cost-effectiveness studies supported surgical intervention within 8 weeks of symptom onset for both cervical and lumbar radiculopathy. Conclusions There are limited studies supporting any optimal duration of conservative treatment prior to surgery for cervical and lumbar radiculopathy. Therefore, evidence-based conclusions cannot be made. Based on the available literature, we suggest that an optimal timing for surgery following cervical radiculopathy is within 8 weeks of onset of symptoms. A shorter period of 4 weeks may be appropriate based on natural history studies. Additionally, we found that optimal timing for surgery following lumbar radiculopathy is between 4 and 8 weeks. A prospective study is needed to explicitly identify the optimal duration of conservative therapy prior to surgery so that costs may be reduced and patient outcomes improved. PMID:25396110
NASA Astrophysics Data System (ADS)
Gu, Z.; Bao, Q.; Taschereau, R.; Wang, H.; Bai, B.; Chatziioannou, A. F.
2014-06-01
Small animal positron emission tomography (PET) systems are often designed by employing close geometry configurations. Due to the different characteristics caused by geometrical factors, these tomographs require data acquisition protocols that differ from those optimized for conventional large diameter ring systems. In this work we optimized the energy window for data acquisitions with PETbox4, a 50 mm detector separation (box-like geometry) pre-clinical PET scanner, using the Geant4 Application for Tomographic Emission (GATE). The fractions of different types of events were estimated using a voxelized phantom including a mouse as well as its supporting chamber, mimicking a realistic mouse imaging environment. Separate code was developed to extract additional information about the gamma interactions for more accurate event type classification. Three types of detector backscatter events were identified in addition to the trues, phantom scatters and randoms. The energy window was optimized based on the noise equivalent count rate (NECR) and scatter fraction (SF) with lower-level discriminators (LLD) corresponding to energies from 150 keV to 450 keV. The results were validated based on the calculated image uniformity, spillover ratio (SOR) and recovery coefficient (RC) from physical measurements using the National Electrical Manufacturers Association (NEMA) NU-4 image quality phantom. These results indicate that when PETbox4 is operated with a more narrow energy window (350-650 keV), detector backscatter rejection is unnecessary. For the NEMA NU-4 image quality phantom, the SOR for the water chamber decreases by about 45% from 15.1% to 8.3%, and the SOR for the air chamber decreases by 31% from 12.0% to 8.3% at the LLDs of 150 and 350 keV, without obvious change in uniformity, further supporting the simulation based optimization. The optimization described in this work is not limited to PETbox4, but also applicable or helpful to other small inner diameter geometry scanners.
A Survey of Reliability, Maintainability, Supportability, and Testability Software Tools
1991-04-01
designs in terms of their contributions toward forced mission termination and vehicle or function loss . Includes the ability to treat failure modes of...ABSTRACT: Inputs: MTBFs, MTTRs, support equipment costs, equipment weights and costs, available targets, military occupational specialty skill level and...US Army CECOM NAME: SPARECOST ABSTRACT: Calculates expected number of failures and performs spares holding optimization based on cost, weight , or
NASA Astrophysics Data System (ADS)
Ichii, K.; Kondo, M.; Wang, W.; Hashimoto, H.; Nemani, R. R.
2012-12-01
Various satellite-based spatial products such as evapotranspiration (ET) and gross primary productivity (GPP) are now produced by integration of ground and satellite observations. Effective use of these multiple satellite-based products in terrestrial biosphere models is an important step toward better understanding of terrestrial carbon and water cycles. However, due to the complexity of terrestrial biosphere models with large number of model parameters, the application of these spatial data sets in terrestrial biosphere models is difficult. In this study, we established an effective but simple framework to refine a terrestrial biosphere model, Biome-BGC, using multiple satellite-based products as constraints. We tested the framework in the monsoon Asia region covered by AsiaFlux observations. The framework is based on the hierarchical analysis (Wang et al. 2009) with model parameter optimization constrained by satellite-based spatial data. The Biome-BGC model is separated into several tiers to minimize the freedom of model parameter selections and maximize the independency from the whole model. For example, the snow sub-model is first optimized using MODIS snow cover product, followed by soil water sub-model optimized by satellite-based ET (estimated by an empirical upscaling method; Support Vector Regression (SVR) method; Yang et al. 2007), photosynthesis model optimized by satellite-based GPP (based on SVR method), and respiration and residual carbon cycle models optimized by biomass data. As a result of initial assessment, we found that most of default sub-models (e.g. snow, water cycle and carbon cycle) showed large deviations from remote sensing observations. However, these biases were removed by applying the proposed framework. For example, gross primary productivities were initially underestimated in boreal and temperate forest and overestimated in tropical forests. However, the parameter optimization scheme successfully reduced these biases. Our analysis shows that terrestrial carbon and water cycle simulations in monsoon Asia were greatly improved, and the use of multiple satellite observations with this framework is an effective way for improving terrestrial biosphere models.
U.S. EPA's Watershed Management Research Activities
Watershed and stormwater managers need modeling tools to evaluate alternative plans for environmental quality restoration and protection needs in urban and developing areas. A watershed-scale decision-support system, based on cost optimization, provides an essential tool to suppo...
Optimizing BMP Placement at Watershed-Scale Using SUSTAIN. A presentation
SUSTAIN is intended to support local and county government engineers/planners, federal/state regulatory reviewers, private consulting engineers, concerned citizens, stakeholders, and academicians in the development of watershed-based management plans. The users are expec...
NASA Astrophysics Data System (ADS)
Khatibinia, M.; Salajegheh, E.; Salajegheh, J.; Fadaee, M. J.
2013-10-01
A new discrete gravitational search algorithm (DGSA) and a metamodelling framework are introduced for reliability-based design optimization (RBDO) of reinforced concrete structures. The RBDO of structures with soil-structure interaction (SSI) effects is investigated in accordance with performance-based design. The proposed DGSA is based on the standard gravitational search algorithm (GSA) to optimize the structural cost under deterministic and probabilistic constraints. The Monte-Carlo simulation (MCS) method is considered as the most reliable method for estimating the probabilities of reliability. In order to reduce the computational time of MCS, the proposed metamodelling framework is employed to predict the responses of the SSI system in the RBDO procedure. The metamodel consists of a weighted least squares support vector machine (WLS-SVM) and a wavelet kernel function, which is called WWLS-SVM. Numerical results demonstrate the efficiency and computational advantages of DGSA and the proposed metamodel for RBDO of reinforced concrete structures.
Robbins, Spring Chenoa Cooper; Bernard, Diana; McCaffery, Kirsten; Skinner, S Rachel
2010-09-01
To date, no published studies examine procedural factors of the school-based human papillomavirus (HPV) vaccination program from the perspective of those involved. This study examines the factors that were perceived to impact optimal vaccination experience. Schools across Sydney were selected to reflect a range of vaccination coverage at the school level and different school types to ensure a range of experiences. Semi-structured focus groups were conducted with girls; and one-on-one interviews were undertaken with parents, teachers and nurses until saturation of data in all emergent themes was reached. Focus groups and interviews explored participants' experiences in school-based HPV vaccination. Transcripts were analysed, letting themes emerge. Themes related to participants' experience of the organisational, logistical and procedural aspects of the vaccination program and their perceptions of an optimal process were organised into two categories: (1) preparation for the vaccination program and (2) vaccination day strategies. In (1), themes emerged regarding commitment to the process from those involved, planning time and space for vaccinations, communication within and between agencies, and flexibility. In (2), themes included vaccinating the most anxious girls first, facilitating peer support, use of distraction techniques, minimising waiting time girls, and support staff. A range of views exists on what constitutes an optimal school-based program. Several findings were identified that should be considered in the development of guidelines for implementing school-based programs. Future research should evaluate how different approaches to acquiring parental consent, and the use of anxiety and fear reduction strategies impact experience and uptake in the school-based setting.
Adolfsson, Annsofie; Linden, Karolina; Sparud-Lundin, Carina; Larsson, Per-Göran; Berg, Marie
2014-12-29
Women with type 1 diabetes face particular demands in their lives in relation to childbearing. During pregnancy, in order to optimize the probability of giving birth to a healthy child, their blood glucose levels need to be as normal as possible. After childbirth, they experience a 'double stress': in addition to the ordinary challenges they face as new mothers, they also need to focus on getting their blood glucose levels normal. To improve self-management of diabetes and overall well-being in women with type 1 diabetes, a person-centered web-based support was designed to be tested in a randomized controlled trial (RCT) to be used during pregnancy and early motherhood. This protocol outlines the design of this RCT, which will evaluate the effectiveness of the specially designed web-based support for mothers with type 1 diabetes in Sweden. The study is designed as an RCT. The web support consists of three parts: 1) evidence-based information, 2) a self-care diary, and 3) communication with peers. The primary outcome is general well-being evaluated with the Well-Being Questionnaire short version (W-BQ12) and diabetes management evaluated with the Diabetes Empowerment Scale, short version (SWE-DES). Women attending six hospital-based antenatal care centers in Sweden are invited to participate. The inclusion period is November 2011 to late 2014. The allocation of participants to web support (intervention group) and to usual care (control group) is equal (1:1). In total, 68 participants in each group will be needed to reach a statistical power of 80% with significance level 0.05. The web support is expected to strengthen the women's personal capacity and autonomy during pregnancy, breastfeeding, and early motherhood, leading to optimal well-being and diabetes management. ClinicalTrials.gov: NCT01565824 (registration date March 27th 2012).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Newpower, M; Ge, S; Mohan, R
Purpose: To report an approach to quantify the normal tissue sparing for 4D robustly-optimized versus PTV-optimized IMPT plans. Methods: We generated two sets of 90 DVHs from a patient’s 10-phase 4D CT set; one by conventional PTV-based optimization done in the Eclipse treatment planning system, and the other by an in-house robust optimization algorithm. The 90 DVHs were created for the following scenarios in each of the ten phases of the 4DCT: ± 5mm shift along x, y, z; ± 3.5% range uncertainty and a nominal scenario. A Matlab function written by Gay and Niemierko was modified to calculate EUDmore » for each DVH for the following structures: esophagus, heart, ipsilateral lung and spinal cord. An F-test determined whether or not the variances of each structure’s DVHs were statistically different. Then a t-test determined if the average EUDs for each optimization algorithm were statistically significantly different. Results: T-test results showed each structure had a statistically significant difference in average EUD when comparing robust optimization versus PTV-based optimization. Under robust optimization all structures except the spinal cord received lower EUDs than PTV-based optimization. Using robust optimization the average EUDs decreased 1.45% for the esophagus, 1.54% for the heart and 5.45% for the ipsilateral lung. The average EUD to the spinal cord increased 24.86% but was still well below tolerance. Conclusion: This work has helped quantify a qualitative relationship noted earlier in our work: that robust optimization leads to plans with greater normal tissue sparing compared to PTV-based optimization. Except in the case of the spinal cord all structures received a lower EUD under robust optimization and these results are statistically significant. While the average EUD to the spinal cord increased to 25.06 Gy under robust optimization it is still well under the TD50 value of 66.5 Gy from Emami et al. Supported in part by the NCI U19 CA021239.« less
Switching and optimizing control for coal flotation process based on a hybrid model
Dong, Zhiyong; Wang, Ranfeng; Fan, Minqiang; Fu, Xiang
2017-01-01
Flotation is an important part of coal preparation, and the flotation column is widely applied as efficient flotation equipment. This process is complex and affected by many factors, with the froth depth and reagent dosage being two of the most important and frequently manipulated variables. This paper proposes a new method of switching and optimizing control for the coal flotation process. A hybrid model is built and evaluated using industrial data. First, wavelet analysis and principal component analysis (PCA) are applied for signal pre-processing. Second, a control model for optimizing the set point of the froth depth is constructed based on fuzzy control, and a control model is designed to optimize the reagent dosages based on expert system. Finally, the least squares-support vector machine (LS-SVM) is used to identify the operating conditions of the flotation process and to select one of the two models (froth depth or reagent dosage) for subsequent operation according to the condition parameters. The hybrid model is developed and evaluated on an industrial coal flotation column and exhibits satisfactory performance. PMID:29040305
Si, Lei; Wang, Zhongbin; Liu, Xinhua; Tan, Chao; Liu, Ze; Xu, Jing
2016-01-01
Shearers play an important role in fully mechanized coal mining face and accurately identifying their cutting pattern is very helpful for improving the automation level of shearers and ensuring the safety of coal mining. The least squares support vector machine (LSSVM) has been proven to offer strong potential in prediction and classification issues, particularly by employing an appropriate meta-heuristic algorithm to determine the values of its two parameters. However, these meta-heuristic algorithms have the drawbacks of being hard to understand and reaching the global optimal solution slowly. In this paper, an improved fly optimization algorithm (IFOA) to optimize the parameters of LSSVM was presented and the LSSVM coupled with IFOA (IFOA-LSSVM) was used to identify the shearer cutting pattern. The vibration acceleration signals of five cutting patterns were collected and the special state features were extracted based on the ensemble empirical mode decomposition (EEMD) and the kernel function. Some examples on the IFOA-LSSVM model were further presented and the results were compared with LSSVM, PSO-LSSVM, GA-LSSVM and FOA-LSSVM models in detail. The comparison results indicate that the proposed approach was feasible, efficient and outperformed the others. Finally, an industrial application example at the coal mining face was demonstrated to specify the effect of the proposed system. PMID:26771615
Liu, Xue-song; Sun, Fen-fang; Jin, Ye; Wu, Yong-jiang; Gu, Zhi-xin; Zhu, Li; Yan, Dong-lan
2015-12-01
A novel method was developed for the rapid determination of multi-indicators in corni fructus by means of near infrared (NIR) spectroscopy. Particle swarm optimization (PSO) based least squares support vector machine was investigated to increase the levels of quality control. The calibration models of moisture, extractum, morroniside and loganin were established using the PSO-LS-SVM algorithm. The performance of PSO-LS-SVM models was compared with partial least squares regression (PLSR) and back propagation artificial neural network (BP-ANN). The calibration and validation results of PSO-LS-SVM were superior to both PLS and BP-ANN. For PSO-LS-SVM models, the correlation coefficients (r) of calibrations were all above 0.942. The optimal prediction results were also achieved by PSO-LS-SVM models with the RMSEP (root mean square error of prediction) and RSEP (relative standard errors of prediction) less than 1.176 and 15.5% respectively. The results suggest that PSO-LS-SVM algorithm has a good model performance and high prediction accuracy. NIR has a potential value for rapid determination of multi-indicators in Corni Fructus.
The role of optimization in the next generation of computer-based design tools
NASA Technical Reports Server (NTRS)
Rogan, J. Edward
1989-01-01
There is a close relationship between design optimization and the emerging new generation of computer-based tools for engineering design. With some notable exceptions, the development of these new tools has not taken full advantage of recent advances in numerical design optimization theory and practice. Recent work in the field of design process architecture has included an assessment of the impact of next-generation computer-based design tools on the design process. These results are summarized, and insights into the role of optimization in a design process based on these next-generation tools are presented. An example problem has been worked out to illustrate the application of this technique. The example problem - layout of an aircraft main landing gear - is one that is simple enough to be solved by many other techniques. Although the mathematical relationships describing the objective function and constraints for the landing gear layout problem can be written explicitly and are quite straightforward, an approximation technique has been used in the solution of this problem that can just as easily be applied to integrate supportability or producibility assessments using theory of measurement techniques into the design decision-making process.
NASA Astrophysics Data System (ADS)
Molde, H.; Zwick, D.; Muskulus, M.
2014-12-01
Support structures for offshore wind turbines are contributing a large part to the total project cost, and a cost saving of a few percent would have considerable impact. At present support structures are designed with simplified methods, e.g., spreadsheet analysis, before more detailed load calculations are performed. Due to the large number of loadcases only a few semimanual design iterations are typically executed. Computer-assisted optimization algorithms could help to further explore design limits and avoid unnecessary conservatism. In this study the simultaneous perturbation stochastic approximation method developed by Spall in the 1990s was assessed with respect to its suitability for support structure optimization. The method depends on a few parameters and an objective function that need to be chosen carefully. In each iteration the structure is evaluated by time-domain analyses, and joint fatigue lifetimes and ultimate strength utilization are computed from stress concentration factors. A pseudo-gradient is determined from only two analysis runs and the design is adjusted in the direction that improves it the most. The algorithm is able to generate considerably improved designs, compared to other methods, in a few hundred iterations, which is demonstrated for the NOWITECH 10 MW reference turbine.
Effect of perceived social support and dispositional optimism on the depression of burn patients.
He, Fei; Zhou, Qin; Zhao, Zhijing; Zhang, Yuan; Guan, Hao
2016-06-01
Burn wounds have a significant impact on the mental health of patients. This study aimed to investigate the impact of perceived social support and dispositional optimism on depression of burn patients. A total of 246 burn patients accomplished the Multidimensional Scale of Perceived Social Support, the Revised Life Orientation Test, and Depression Scale. The results revealed that both perceived social support and optimism were significantly correlated with depression. Structural equation modeling indicated that optimism partially mediated the relationship between perceived social support and depression. Implications for prevention of depression in burn patients were discussed. © The Author(s) 2014.
Cripe, Larry D; Perkins, Susan M; Cottingham, Ann; Tong, Yan; Kozak, Mary Ann; Mehta, Rakesh
2017-09-01
Palliative sedation for refractory existential distress (PS-ED) is ethically troubling but potentially critical to quality end-of-life (EOL) care. Physicians' in postgraduate training support toward PS-ED is unknown nor is it known how empathy, hope, optimism, or intrinsic religious motivation (IRM) affect their support. These knowledge gaps hinder efforts to support physicians who struggle with patients' EOL care preferences. One hundred thirty-four postgraduate physicians rated their support of PS for refractory physical pain (PS-PP) or PS-ED, ranked the importance of patient preferences in ethically challenging situations, and completed measures of empathy, hope, optimism, and IRM. Predictors of PS-ED and PS-PP support were examined using binary and multinomial logistic regression. Only 22.7% of residents were very supportive of PS-ED, and 82.0% were very supportive of PS-PP. Support for PS-PP or PS-ED did not correlate with levels of empathy, hope, optimism, or IRM; however, for residents with lower IRM, greater optimism was associated with greater PS-ED support. In contrast, among residents with higher IRM, optimism was not associated with PS-ED support. Comparing current results to published surveys, a similar proportion of residents and practicing physicians support PS-ED and PS-PP. In contrast to practicing physicians, however, IRM does not directly influence residents' supportiveness. The interaction between optimism and IRM suggests residents' beliefs and characteristics are salient to their EOL decisions. End-of-life curricula should provide physicians opportunities to reflect on the personal and ethical factors that influence their support for PS-ED.
Production of Low Cost Carbon-Fiber through Energy Optimization of Stabilization Process.
Golkarnarenji, Gelayol; Naebe, Minoo; Badii, Khashayar; Milani, Abbas S; Jazar, Reza N; Khayyam, Hamid
2018-03-05
To produce high quality and low cost carbon fiber-based composites, the optimization of the production process of carbon fiber and its properties is one of the main keys. The stabilization process is the most important step in carbon fiber production that consumes a large amount of energy and its optimization can reduce the cost to a large extent. In this study, two intelligent optimization techniques, namely Support Vector Regression (SVR) and Artificial Neural Network (ANN), were studied and compared, with a limited dataset obtained to predict physical property (density) of oxidative stabilized PAN fiber (OPF) in the second zone of a stabilization oven within a carbon fiber production line. The results were then used to optimize the energy consumption in the process. The case study can be beneficial to chemical industries involving carbon fiber manufacturing, for assessing and optimizing different stabilization process conditions at large.
Production of Low Cost Carbon-Fiber through Energy Optimization of Stabilization Process
Golkarnarenji, Gelayol; Naebe, Minoo; Badii, Khashayar; Milani, Abbas S.; Jazar, Reza N.; Khayyam, Hamid
2018-01-01
To produce high quality and low cost carbon fiber-based composites, the optimization of the production process of carbon fiber and its properties is one of the main keys. The stabilization process is the most important step in carbon fiber production that consumes a large amount of energy and its optimization can reduce the cost to a large extent. In this study, two intelligent optimization techniques, namely Support Vector Regression (SVR) and Artificial Neural Network (ANN), were studied and compared, with a limited dataset obtained to predict physical property (density) of oxidative stabilized PAN fiber (OPF) in the second zone of a stabilization oven within a carbon fiber production line. The results were then used to optimize the energy consumption in the process. The case study can be beneficial to chemical industries involving carbon fiber manufacturing, for assessing and optimizing different stabilization process conditions at large. PMID:29510592
Fatigue design of a cellular phone folder using regression model-based multi-objective optimization
NASA Astrophysics Data System (ADS)
Kim, Young Gyun; Lee, Jongsoo
2016-08-01
In a folding cellular phone, the folding device is repeatedly opened and closed by the user, which eventually results in fatigue damage, particularly to the front of the folder. Hence, it is important to improve the safety and endurance of the folder while also reducing its weight. This article presents an optimal design for the folder front that maximizes its fatigue endurance while minimizing its thickness. Design data for analysis and optimization were obtained experimentally using a test jig. Multi-objective optimization was carried out using a nonlinear regression model. Three regression methods were employed: back-propagation neural networks, logistic regression and support vector machines. The AdaBoost ensemble technique was also used to improve the approximation. Two-objective Pareto-optimal solutions were identified using the non-dominated sorting genetic algorithm (NSGA-II). Finally, a numerically optimized solution was validated against experimental product data, in terms of both fatigue endurance and thickness index.
Optimism and the experience of pain: benefits of seeing the glass as half full
Goodin, Burel R.; Bulls, Hailey W.
2014-01-01
There is a strong body of literature that lends support to the health-promoting effects of an optimistic personality disposition, observed across various physical and psychological dimensions. In accordance with this evidence base, it has been suggested that optimism may positively influence the course and experience of pain. Although the associations among optimism and pain outcomes have only recently begun to be adequately studied, emerging experimental and clinical research links optimism to lower pain sensitivity and better adjustment to chronic pain. This review highlights recent studies that have examined the effects of optimism on the pain experience using samples of individuals with clinically painful conditions as well as healthy samples in laboratory settings. Furthermore, factors such as catastrophizing, hope, acceptance and coping strategies, which are thought to play a role in how optimism exerts its beneficial effects on pain, are also addressed. PMID:23519832
76 FR 26310 - National Cancer Institute; Notice of Closed Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-06
... Support; 93.398, Cancer Research Manpower; 93.399, Cancer Control, National Institutes of Health, HHS... personal privacy. Name of Committee: National Cancer Institute Special Emphasis Panel, Population-based Research Optimizing Screening through Personalized Regimens (PROSPR) for Cancer and Statistical...
Knoke, Thomas; Paul, Carola; Hildebrandt, Patrick; Calvas, Baltazar; Castro, Luz Maria; Härtl, Fabian; Döllerer, Martin; Hamer, Ute; Windhorst, David; Wiersma, Yolanda F.; Curatola Fernández, Giulia F.; Obermeier, Wolfgang A.; Adams, Julia; Breuer, Lutz; Mosandl, Reinhard; Beck, Erwin; Weber, Michael; Stimm, Bernd; Haber, Wolfgang; Fürst, Christine; Bendix, Jörg
2016-01-01
High landscape diversity is assumed to increase the number and level of ecosystem services. However, the interactions between ecosystem service provision, disturbance and landscape composition are poorly understood. Here we present a novel approach to include uncertainty in the optimization of land allocation for improving the provision of multiple ecosystem services. We refer to the rehabilitation of abandoned agricultural lands in Ecuador including two types of both afforestation and pasture rehabilitation, together with a succession option. Our results show that high compositional landscape diversity supports multiple ecosystem services (multifunction effect). This implicitly provides a buffer against uncertainty. Our work shows that active integration of uncertainty is only important when optimizing single or highly correlated ecosystem services and that the multifunction effect on landscape diversity is stronger than the uncertainty effect. This is an important insight to support a land-use planning based on ecosystem services. PMID:27292766
NASA Astrophysics Data System (ADS)
Wu, Qi
2010-03-01
Demand forecasts play a crucial role in supply chain management. The future demand for a certain product is the basis for the respective replenishment systems. Aiming at demand series with small samples, seasonal character, nonlinearity, randomicity and fuzziness, the existing support vector kernel does not approach the random curve of the sales time series in the space (quadratic continuous integral space). In this paper, we present a hybrid intelligent system combining the wavelet kernel support vector machine and particle swarm optimization for demand forecasting. The results of application in car sale series forecasting show that the forecasting approach based on the hybrid PSOWv-SVM model is effective and feasible, the comparison between the method proposed in this paper and other ones is also given, which proves that this method is, for the discussed example, better than hybrid PSOv-SVM and other traditional methods.
Knoke, Thomas; Paul, Carola; Hildebrandt, Patrick; Calvas, Baltazar; Castro, Luz Maria; Härtl, Fabian; Döllerer, Martin; Hamer, Ute; Windhorst, David; Wiersma, Yolanda F; Curatola Fernández, Giulia F; Obermeier, Wolfgang A; Adams, Julia; Breuer, Lutz; Mosandl, Reinhard; Beck, Erwin; Weber, Michael; Stimm, Bernd; Haber, Wolfgang; Fürst, Christine; Bendix, Jörg
2016-06-13
High landscape diversity is assumed to increase the number and level of ecosystem services. However, the interactions between ecosystem service provision, disturbance and landscape composition are poorly understood. Here we present a novel approach to include uncertainty in the optimization of land allocation for improving the provision of multiple ecosystem services. We refer to the rehabilitation of abandoned agricultural lands in Ecuador including two types of both afforestation and pasture rehabilitation, together with a succession option. Our results show that high compositional landscape diversity supports multiple ecosystem services (multifunction effect). This implicitly provides a buffer against uncertainty. Our work shows that active integration of uncertainty is only important when optimizing single or highly correlated ecosystem services and that the multifunction effect on landscape diversity is stronger than the uncertainty effect. This is an important insight to support a land-use planning based on ecosystem services.
Lukens, J N
1984-01-01
Nutritional support for children with cancer is predicated on the belief that optimal nutrition promotes tolerance of anti-neoplastic therapy and preserves immunologic responsiveness. The use of nutritional support is based on the assumption that there is effective therapy for the primary disease and that there will be a predictable period of nutritional stress. The most common nutritional problem is posed by the failure of sick children willingly to eat enough to maintain nutritional homeostasis. Supplementation of oral intake with a nutritional formula given by a small-bore nasogastric tube is simple, effective, and economical. If the sum of oral and tolerated nasogastric tube feedings is less than that required for optimal nutrition, unmet needs may be satisfied by nutrients given into a peripheral vein. Total parenteral nutrition, given by central vein, is reserved for situations in which the combination of enteral and peripheral venous alimentation is inadequate.
Geometric Reasoning for Automated Planning
NASA Technical Reports Server (NTRS)
Clement, Bradley J.; Knight, Russell L.; Broderick, Daniel
2012-01-01
An important aspect of mission planning for NASA s operation of the International Space Station is the allocation and management of space for supplies and equipment. The Stowage, Configuration Analysis, and Operations Planning teams collaborate to perform the bulk of that planning. A Geometric Reasoning Engine is developed in a way that can be shared by the teams to optimize item placement in the context of crew planning. The ISS crew spends (at the time of this writing) a third or more of their time moving supplies and equipment around. Better logistical support and optimized packing could make a significant impact on operational efficiency of the ISS. Currently, computational geometry and motion planning do not focus specifically on the optimized orientation and placement of 3D objects based on multiple distance and containment preferences and constraints. The software performs reasoning about the manipulation of 3D solid models in order to maximize an objective function based on distance. It optimizes for 3D orientation and placement. Spatial placement optimization is a general problem and can be applied to object packing or asset relocation.
Saini, Sanjay; Zakaria, Nordin; Rambli, Dayang Rohaya Awang; Sulaiman, Suziah
2015-01-01
The high-dimensional search space involved in markerless full-body articulated human motion tracking from multiple-views video sequences has led to a number of solutions based on metaheuristics, the most recent form of which is Particle Swarm Optimization (PSO). However, the classical PSO suffers from premature convergence and it is trapped easily into local optima, significantly affecting the tracking accuracy. To overcome these drawbacks, we have developed a method for the problem based on Hierarchical Multi-Swarm Cooperative Particle Swarm Optimization (H-MCPSO). The tracking problem is formulated as a non-linear 34-dimensional function optimization problem where the fitness function quantifies the difference between the observed image and a projection of the model configuration. Both the silhouette and edge likelihoods are used in the fitness function. Experiments using Brown and HumanEva-II dataset demonstrated that H-MCPSO performance is better than two leading alternative approaches-Annealed Particle Filter (APF) and Hierarchical Particle Swarm Optimization (HPSO). Further, the proposed tracking method is capable of automatic initialization and self-recovery from temporary tracking failures. Comprehensive experimental results are presented to support the claims.
Integrating Parenting Support Within and Beyond the Pediatric Medical Home.
Linton, Julie M; Stockton, Maria Paz; Andrade, Berta; Daniel, Stephanie
2018-01-01
Positive parenting programs, developmental support services, and evidence-based home visiting programs can effectively provide parenting support and improve health and developmental outcomes for at-risk children. Few models, however, have integrated referrals for on-site support and home visiting programs into the provision of routine pediatric care within a medical home. This article describes an innovative approach, through partnership with a community-based organization, to deliver on-site and home visiting support services for children and families within and beyond the medical home. Our model offers a system of on-site services, including parenting, behavior, and/or development support, with optional intensive home visiting services. Assessment included description of the population served, delineation of services provided, and qualitative identification of key themes of the impact of services, illustrated by case examples. This replicable model describes untapped potential of the pediatric medical home as a springboard to mitigate risk and optimize children's health and development.
Janiga, Gábor; Daróczy, László; Berg, Philipp; Thévenin, Dominique; Skalej, Martin; Beuing, Oliver
2015-11-05
The optimal treatment of intracranial aneurysms using flow diverting devices is a fundamental issue for neuroradiologists as well as neurosurgeons. Due to highly irregular manifold aneurysm shapes and locations, the choice of the stent and the patient-specific deployment strategy can be a very difficult decision. To support the therapy planning, a new method is introduced that combines a three-dimensional CFD-based optimization with a realistic deployment of a virtual flow diverting stent for a given aneurysm. To demonstrate the feasibility of this method, it was applied to a patient-specific intracranial giant aneurysm that was successfully treated using a commercial flow diverter. Eight treatment scenarios with different local compressions were considered in a fully automated simulation loop. The impact on the corresponding blood flow behavior was evaluated qualitatively as well as quantitatively, and the optimal configuration for this specific case was identified. The virtual deployment of an uncompressed flow diverter reduced the inflow into the aneurysm by 24.4% compared to the untreated case. Depending on the positioning of the local stent compression below the ostium, blood flow reduction could vary between 27.3% and 33.4%. Therefore, a broad range of potential treatment outcomes was identified, illustrating the variability of a given flow diverter deployment in general. This method represents a proof of concept to automatically identify the optimal treatment for a patient in a virtual study under certain assumptions. Hence, it contributes to the improvement of virtual stenting for intracranial aneurysms and can support physicians during therapy planning in the future. Copyright © 2015 Elsevier Ltd. All rights reserved.
Fitzpatrick, Kevin M
2017-04-01
Optimism has been noted as a primary protective factor in understanding mental health symptomatology in clinical and non-clinical settings. Any exploration of optimism has been absent in understanding mental health outcomes among homeless people. This study, using intensive interviews with 168 homeless adults in Northwest Arkansas, examines the role that social support and optimism play in lessening the negative impact of homeless circumstances/experiences on mental health symptomatology. Using OLS, findings support a mediating/protective role that social support and optimism play in lowering the negative effects of childhood life experiences on depressive symptoms among homeless persons. Despite the overwhelming conditions of homelessness, persons with higher levels of optimism and social support report lower depression and anxiety symptoms. The findings are discussed paying particular attention to the importance of developing and maintaining the perception of support and resiliency in preserving a positive outlook for the future among homeless persons facing often-debilitating circumstances. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Slattery, Éadaoin; McMahon, Jennifer; Gallagher, Stephen
2017-06-01
Researchers have consistently documented the relationship between optimism and benefit finding; however, there is a dearth of research on the psychological mechanisms mediating their association. This cross-sectional study sought to elucidate the mediating role of positive reappraisal and social support in the optimism-benefit finding relationship in parents caring for children with developmental disabilities by testing a parallel multiple mediation model. One hundred and forty-six parents caring for children with developmental disabilities completed an online survey assessing optimism, positive reappraisal, social support and benefit finding. Optimism was not directly related to benefit finding but rather influenced it indirectly through positive reappraisal and social support. Specifically, higher levels of optimism predicted greater positive reappraisal and social support, which in turn led to greater benefit finding in parents. These results underscore the importance of targeting parents' perceptions of benefits through both positive reappraisal and social support in order to help them cope with the demands of the caregiving context. Copyright © 2017 Elsevier Ltd. All rights reserved.
Back analysis of geomechanical parameters in underground engineering using artificial bee colony.
Zhu, Changxing; Zhao, Hongbo; Zhao, Ming
2014-01-01
Accurate geomechanical parameters are critical in tunneling excavation, design, and supporting. In this paper, a displacements back analysis based on artificial bee colony (ABC) algorithm is proposed to identify geomechanical parameters from monitored displacements. ABC was used as global optimal algorithm to search the unknown geomechanical parameters for the problem with analytical solution. To the problem without analytical solution, optimal back analysis is time-consuming, and least square support vector machine (LSSVM) was used to build the relationship between unknown geomechanical parameters and displacement and improve the efficiency of back analysis. The proposed method was applied to a tunnel with analytical solution and a tunnel without analytical solution. The results show the proposed method is feasible.
NASA Astrophysics Data System (ADS)
Babbar-Sebens, M.; Mukhopadhyay, S.
2014-12-01
Web 2.0 technologies are useful resources for reaching out to larger stakeholder communities and involve them in policy making and planning efforts. While these technologies have been used in the past to support education and communication endeavors, we have developed a novel, web-based, interactive planning tool that involves the community in using science-based methods for the design of potential runoff management strategies on their landscape. The tool, Watershed REstoration using Spatio-Temporal Optimization of Resources (WRESTORE), uses a democratic voting process coupled with visualization interfaces, computational simulation and optimization models, and user modeling techniques to support a human-centered design approach. The tool can be used to engage diverse watershed stakeholders and landowners via the internet, thereby improving opportunities for outreach and collaborations. Users are able to (a) design multiple types of conservation practices at their field-scale catchment and at the entire watershed scale, (b) examine impacts and limitations of their decisions on their neighboring catchments and on the entire watershed, (c) compare alternatives via a cost-benefit analysis, (d) vote on their "favorite" designs based on their preferences and constraints, and (e) propose their "favorite" alternatives to policy makers and other stakeholders. In this presentation, we will demonstrate the effectiveness of WRESTORE for designing alternatives of conservation practices to reduce peak flows in a Midwestern watershed, present results on multiple approaches for engaging with larger communities, and discuss potential for future developments.
Optimization of educational paths for higher education
NASA Astrophysics Data System (ADS)
Tarasyev, Alexandr A.; Agarkov, Gavriil; Medvedev, Aleksandr
2017-11-01
In our research, we combine the theory of economic behavior and the methodology of increasing efficiency of the human capital to estimate the optimal educational paths. We provide an optimization model for higher education process to analyze possible educational paths for each rational individual. The preferences of each rational individual are compared to the best economically possible educational path. The main factor of the individual choice, which is formed by the formation of optimal educational path, deals with higher salaries level in the chosen economic sector after graduation. Another factor that influences on the economic profit is the reduction of educational costs or the possibility of the budget support for the student. The main outcome of this research consists in correction of the governmental policy of investment in human capital based on the results of educational paths optimal control.
Economic challenges of hybrid microgrid: An analysis and approaches for rural electrification
NASA Astrophysics Data System (ADS)
Habibullah, Mohammad; Mahmud, Khizir; Koçar, Günnur; Islam, A. K. M. Sadrul; Salehin, Sayedus
2017-06-01
This paper focuses on the integration of three renewable resources: biogas, wind energy and solar energy, utilizing solar PV panels, a biogas generator, and a wind turbine, respectively, to analyze the technical and economic challenges of a hybrid micro-gird. The integration of these sources has been analyzed and optimized based on realistic data for a real location. Different combinations of these sources have been analyzed to find out the optimized combination based on the efficiency and the minimum cost of electricity (COE). Wind and solar energy are considered as the primary sources of power generation during off-peak hours, and any excess power is used to charge a battery bank. During peak hours, biogas generators produce power to support the additional demand. A business strategy to implement the integrated optimized system in rural areas is discussed.
[Dispositional optimism, pessimism and realism in technological potential entrepreneurs].
López Puga, Jorge; García García, Juan
2011-11-01
Optimism has been classically considered a key trait in entrepreneurs' personality but it has been studied from a psychological point of view only in recent years. The main aim of this research is to study the relationship between dispositional optimism, pessimism and realism as a function of the tendency to create technology-based businesses. A sample of undergraduate students (n= 205) filled in an electronic questionnaire containing the Life Orientation Test-Revised after they were classified as potential technological entrepreneurs, potential general entrepreneurs and non-potential entrepreneurs. Our results show that technology-based entrepreneurs are more optimistic than non-potential entrepreneurs, whereas there were no statistical differences in pessimism and realism. The results are interpreted theoretically to define the potential entrepreneur and, from an applied perspective, to design training programmes to support future technological entrepreneurs.
Xing, KeYi; Han, LiBin; Zhou, MengChu; Wang, Feng
2012-06-01
Deadlock-free control and scheduling are vital for optimizing the performance of automated manufacturing systems (AMSs) with shared resources and route flexibility. Based on the Petri net models of AMSs, this paper embeds the optimal deadlock avoidance policy into the genetic algorithm and develops a novel deadlock-free genetic scheduling algorithm for AMSs. A possible solution of the scheduling problem is coded as a chromosome representation that is a permutation with repetition of parts. By using the one-step look-ahead method in the optimal deadlock control policy, the feasibility of a chromosome is checked, and infeasible chromosomes are amended into feasible ones, which can be easily decoded into a feasible deadlock-free schedule. The chromosome representation and polynomial complexity of checking and amending procedures together support the cooperative aspect of genetic search for scheduling problems strongly.
A dual-adaptive support-based stereo matching algorithm
NASA Astrophysics Data System (ADS)
Zhang, Yin; Zhang, Yun
2017-07-01
Many stereo matching algorithms use fixed color thresholds and a rigid cross skeleton to segment supports (viz., Cross method), which, however, does not work well for different images. To address this issue, this paper proposes a novel dual adaptive support (viz., DAS)-based stereo matching method, which uses both appearance and shape information of a local region to segment supports automatically, and, then, integrates the DAS-based cost aggregation with the absolute difference plus census transform cost, scanline optimization and disparity refinement to develop a stereo matching system. The performance of the DAS method is also evaluated in the Middlebury benchmark and by comparing with the Cross method. The results show that the average error for the DAS method 25.06% lower than that for the Cross method, indicating that the proposed method is more accurate, with fewer parameters and suitable for parallel computing.
NASA Astrophysics Data System (ADS)
Gao, Zhengyang; Yang, Weijie; Ding, Xunlei; Lv, Gang; Yan, Weiping
2018-04-01
The effects of support on gas adsorption is crucial for single atom catalysts design and optimization. To gain insight into support effects on gas adsorption characteristics, a comprehensive theoretical study was performed to investigate the adsorption characteristics of toxic gases (NO2, NH3, SO3 and H2S) by utilizing single atom iron catalysts with three graphene-based supports. The adsorption geometry, adsorption energy, electronic and magnetic properties of the adsorption system have been explored. Additionally, the support effects have been analyzed through d-band center and Fermi softness, and thermodynamic analysis has been performed to consider the effect of temperature on gas adsorption. The support effects have a remarkable influence on the adsorption characteristics of four types of toxic gases which is determined by the electronic structure of graphene-based support, and the electronic structure can be characterized by Fermi softness of catalysts. Fermi softness and uplift height of Fe atom could be good descriptors for the adsorption activity of single atom iron catalysts with graphene-based supports. The findings can lay a foundation for the further study of graphene-based support effects in single atom catalysts and provide a guideline for development and design of new graphene-based support materials utilizing the idea of Fermi softness.
Power Consumption Optimization in Tooth Gears Processing
NASA Astrophysics Data System (ADS)
Kanatnikov, N.; Harlamov, G.; Kanatnikova, P.; Pashmentova, A.
2018-01-01
The paper reviews the issue of optimization of technological process of tooth gears production of the power consumption criteria. The authors dwell on the indices used for cutting process estimation by the consumed energy criteria and their applicability in the analysis of the toothed wheel production process. The inventors proposed a method for optimization of power consumptions based on the spatial modeling of cutting pattern. The article is aimed at solving the problem of effective source management in order to achieve economical and ecological effect during the mechanical processing of toothed gears. The research was supported by Russian Science Foundation (project No. 17-79-10316).
NASA Astrophysics Data System (ADS)
Kryuchkov, D. I.; Zalazinsky, A. G.
2017-12-01
Mathematical models and a hybrid modeling system are developed for the implementation of the experimental-calculation method for the engineering analysis and optimization of the plastic deformation of inhomogeneous materials with the purpose of improving metal-forming processes and machines. The created software solution integrates Abaqus/CAE, a subroutine for mathematical data processing, with the use of Python libraries and the knowledge base. Practical application of the software solution is exemplified by modeling the process of extrusion of a bimetallic billet. The results of the engineering analysis and optimization of the extrusion process are shown, the material damage being monitored.
Cluster Size Optimization in Sensor Networks with Decentralized Cluster-Based Protocols
Amini, Navid; Vahdatpour, Alireza; Xu, Wenyao; Gerla, Mario; Sarrafzadeh, Majid
2011-01-01
Network lifetime and energy-efficiency are viewed as the dominating considerations in designing cluster-based communication protocols for wireless sensor networks. This paper analytically provides the optimal cluster size that minimizes the total energy expenditure in such networks, where all sensors communicate data through their elected cluster heads to the base station in a decentralized fashion. LEACH, LEACH-Coverage, and DBS comprise three cluster-based protocols investigated in this paper that do not require any centralized support from a certain node. The analytical outcomes are given in the form of closed-form expressions for various widely-used network configurations. Extensive simulations on different networks are used to confirm the expectations based on the analytical results. To obtain a thorough understanding of the results, cluster number variability problem is identified and inspected from the energy consumption point of view. PMID:22267882
NASA Astrophysics Data System (ADS)
Sudiartha, IKG; Catur Bawa, IGNB
2018-01-01
Information can not be separated from the social life of the community, especially in the world of education. One of the information fields is academic calendar information, activity agenda, announcement and campus activity news. In line with technological developments, text-based information is becoming obsolete. For that need creativity to present information more quickly, accurately and interesting by exploiting the development of digital technology and internet. In this paper will be developed applications for the provision of information in the form of visual display, applied to computer network system with multimedia applications. Network-based applications provide ease in updating data through internet services, attractive presentations with multimedia support. The application “Networking Visual Display Information Unit” can be used as a medium that provides information services for students and academic employee more interesting and ease in updating information than the bulletin board. The information presented in the form of Running Text, Latest Information, Agenda, Academic Calendar and Video provide an interesting presentation and in line with technological developments at the Politeknik Negeri Bali. Through this research is expected to create software “Networking Visual Display Information Unit” with optimal bandwidth usage by combining local data sources and data through the network. This research produces visual display design with optimal bandwidth usage and application in the form of supporting software.
Yu, Xianyu; Wang, Yi; Niu, Ruiqing; Hu, Youjian
2016-01-01
In this study, a novel coupling model for landslide susceptibility mapping is presented. In practice, environmental factors may have different impacts at a local scale in study areas. To provide better predictions, a geographically weighted regression (GWR) technique is firstly used in our method to segment study areas into a series of prediction regions with appropriate sizes. Meanwhile, a support vector machine (SVM) classifier is exploited in each prediction region for landslide susceptibility mapping. To further improve the prediction performance, the particle swarm optimization (PSO) algorithm is used in the prediction regions to obtain optimal parameters for the SVM classifier. To evaluate the prediction performance of our model, several SVM-based prediction models are utilized for comparison on a study area of the Wanzhou district in the Three Gorges Reservoir. Experimental results, based on three objective quantitative measures and visual qualitative evaluation, indicate that our model can achieve better prediction accuracies and is more effective for landslide susceptibility mapping. For instance, our model can achieve an overall prediction accuracy of 91.10%, which is 7.8%–19.1% higher than the traditional SVM-based models. In addition, the obtained landslide susceptibility map by our model can demonstrate an intensive correlation between the classified very high-susceptibility zone and the previously investigated landslides. PMID:27187430
Yu, Xianyu; Wang, Yi; Niu, Ruiqing; Hu, Youjian
2016-05-11
In this study, a novel coupling model for landslide susceptibility mapping is presented. In practice, environmental factors may have different impacts at a local scale in study areas. To provide better predictions, a geographically weighted regression (GWR) technique is firstly used in our method to segment study areas into a series of prediction regions with appropriate sizes. Meanwhile, a support vector machine (SVM) classifier is exploited in each prediction region for landslide susceptibility mapping. To further improve the prediction performance, the particle swarm optimization (PSO) algorithm is used in the prediction regions to obtain optimal parameters for the SVM classifier. To evaluate the prediction performance of our model, several SVM-based prediction models are utilized for comparison on a study area of the Wanzhou district in the Three Gorges Reservoir. Experimental results, based on three objective quantitative measures and visual qualitative evaluation, indicate that our model can achieve better prediction accuracies and is more effective for landslide susceptibility mapping. For instance, our model can achieve an overall prediction accuracy of 91.10%, which is 7.8%-19.1% higher than the traditional SVM-based models. In addition, the obtained landslide susceptibility map by our model can demonstrate an intensive correlation between the classified very high-susceptibility zone and the previously investigated landslides.
NASA Human Health and Performance Information Architecture Panel
NASA Technical Reports Server (NTRS)
Johnson-Throop, Kathy; Kadwa, Binafer; VanBaalen, Mary
2014-01-01
The Human Health and Performance (HH&P) Directorate at NASA's Johnson Space Center has a mission to enable optimization of human health and performance throughout all phases of spaceflight. All HH&P functions are ultimately aimed at achieving this mission. Our activities enable mission success, optimizing human health and productivity in space before, during, and after the actual spaceflight experience of our crews, and include support for ground-based functions. Many of our spaceflight innovations also provide solutions for terrestrial challenges, thereby enhancing life on Earth.
[Design of medical devices management system supporting full life-cycle process management].
Su, Peng; Zhong, Jianping
2014-03-01
Based on the analysis of the present status of medical devices management, this paper optimized management process, developed a medical devices management system with Web technologies. With information technology to dynamic master the use of state of the entire life-cycle of medical devices. Through the closed-loop management with pre-event budget, mid-event control and after-event analysis, improved the delicacy management level of medical devices, optimized asset allocation, promoted positive operation of devices.
TeleProbe: design and development of an efficient system for telepathology
NASA Astrophysics Data System (ADS)
Ahmed, Wamiq M.; Robinson, J. Paul; Ghafoor, Arif
2005-10-01
This paper describes an internet-based system for telepathology. This system provides support for multiple users and exploits the opportunities for optimization that arise in multi-user environment. Techniques for increasing system responsiveness by improving resource utilization and lowering network traffic are explored. Some of the proposed optimizations include an auto-focus module, client and server side caching, and request reordering. These systems can be an economic solution not only for remote pathology consultation but also for pathology and biology education.
Tailoring the Psychotherapy to the Borderline Patient
HORWITZ, LEONARD; GABBARD, GLEN O.; ALLEN, JON G.; COLSON, DONALD B.; FRIESWYK, SIEBOLT; NEWSOM, GAVIN E.; COYNE, LOLAFAYE
1996-01-01
Views still differ as to the optimal psychodynamic treatment of borderline patients. Recommendations range from psychoanalysis and exploratory psychotherapy to an explicitly supportive treatment aimed at strengthening adaptive defenses. The authors contend that no single approach is appropriate for all patients in this wide-ranging diagnostic category, which spans a continuum from close-to-neurotic to close-to-psychotic levels of functioning. Careful differentiations based on developmental considerations, ego structures, and relationship patterns provide the basis for the optimal treatment approach. PMID:22700301
Bayer image parallel decoding based on GPU
NASA Astrophysics Data System (ADS)
Hu, Rihui; Xu, Zhiyong; Wei, Yuxing; Sun, Shaohua
2012-11-01
In the photoelectrical tracking system, Bayer image is decompressed in traditional method, which is CPU-based. However, it is too slow when the images become large, for example, 2K×2K×16bit. In order to accelerate the Bayer image decoding, this paper introduces a parallel speedup method for NVIDA's Graphics Processor Unit (GPU) which supports CUDA architecture. The decoding procedure can be divided into three parts: the first is serial part, the second is task-parallelism part, and the last is data-parallelism part including inverse quantization, inverse discrete wavelet transform (IDWT) as well as image post-processing part. For reducing the execution time, the task-parallelism part is optimized by OpenMP techniques. The data-parallelism part could advance its efficiency through executing on the GPU as CUDA parallel program. The optimization techniques include instruction optimization, shared memory access optimization, the access memory coalesced optimization and texture memory optimization. In particular, it can significantly speed up the IDWT by rewriting the 2D (Tow-dimensional) serial IDWT into 1D parallel IDWT. Through experimenting with 1K×1K×16bit Bayer image, data-parallelism part is 10 more times faster than CPU-based implementation. Finally, a CPU+GPU heterogeneous decompression system was designed. The experimental result shows that it could achieve 3 to 5 times speed increase compared to the CPU serial method.
Positive Psychology as a Framework for Leadership Development in Recreation and Sport.
Barnes, Amy C; Larcus, James
2015-01-01
This chapter connects concepts and research from positive psychology and leadership studies to support using a strengths-based approach to optimize the leadership development of students involved in recreation and athletics. © 2015 Wiley Periodicals, Inc., A Wiley Company.
Improving scanner wafer alignment performance by target optimization
NASA Astrophysics Data System (ADS)
Leray, Philippe; Jehoul, Christiane; Socha, Robert; Menchtchikov, Boris; Raghunathan, Sudhar; Kent, Eric; Schoonewelle, Hielke; Tinnemans, Patrick; Tuffy, Paul; Belen, Jun; Wise, Rich
2016-03-01
In the process nodes of 10nm and below, the patterning complexity along with the processing and materials required has resulted in a need to optimize alignment targets in order to achieve the required precision, accuracy and throughput performance. Recent industry publications on the metrology target optimization process have shown a move from the expensive and time consuming empirical methodologies, towards a faster computational approach. ASML's Design for Control (D4C) application, which is currently used to optimize YieldStar diffraction based overlay (DBO) metrology targets, has been extended to support the optimization of scanner wafer alignment targets. This allows the necessary process information and design methodology, used for DBO target designs, to be leveraged for the optimization of alignment targets. In this paper, we show how we applied this computational approach to wafer alignment target design. We verify the correlation between predictions and measurements for the key alignment performance metrics and finally show the potential alignment and overlay performance improvements that an optimized alignment target could achieve.
Optimism, Social Support, and Well-Being in Mothers of Children with Autism Spectrum Disorder
ERIC Educational Resources Information Center
Ekas, Naomi V.; Lickenbrock, Diane M.; Whitman, Thomas L.
2010-01-01
This study used structural equation modeling to examine the relationship between multiple sources of social support (e.g., partner, family, and friends), optimism, and well-being among mothers of children with ASD. Social support was examined as a mediator and moderator of the optimism-maternal well-being relationship. Moreover, the role of…
Optimal perturbations for nonlinear systems using graph-based optimal transport
NASA Astrophysics Data System (ADS)
Grover, Piyush; Elamvazhuthi, Karthik
2018-06-01
We formulate and solve a class of finite-time transport and mixing problems in the set-oriented framework. The aim is to obtain optimal discrete-time perturbations in nonlinear dynamical systems to transport a specified initial measure on the phase space to a final measure in finite time. The measure is propagated under system dynamics in between the perturbations via the associated transfer operator. Each perturbation is described by a deterministic map in the measure space that implements a version of Monge-Kantorovich optimal transport with quadratic cost. Hence, the optimal solution minimizes a sum of quadratic costs on phase space transport due to the perturbations applied at specified times. The action of the transport map is approximated by a continuous pseudo-time flow on a graph, resulting in a tractable convex optimization problem. This problem is solved via state-of-the-art solvers to global optimality. We apply this algorithm to a problem of transport between measures supported on two disjoint almost-invariant sets in a chaotic fluid system, and to a finite-time optimal mixing problem by choosing the final measure to be uniform. In both cases, the optimal perturbations are found to exploit the phase space structures, such as lobe dynamics, leading to efficient global transport. As the time-horizon of the problem is increased, the optimal perturbations become increasingly localized. Hence, by combining the transfer operator approach with ideas from the theory of optimal mass transportation, we obtain a discrete-time graph-based algorithm for optimal transport and mixing in nonlinear systems.
Shah, Peer Azmat; Hasbullah, Halabi B.; Lawal, Ibrahim A.; Aminu Mu'azu, Abubakar; Tang Jung, Low
2014-01-01
Due to the proliferation of handheld mobile devices, multimedia applications like Voice over IP (VoIP), video conferencing, network music, and online gaming are gaining popularity in recent years. These applications are well known to be delay sensitive and resource demanding. The mobility of mobile devices, running these applications, across different networks causes delay and service disruption. Mobile IPv6 was proposed to provide mobility support to IPv6-based mobile nodes for continuous communication when they roam across different networks. However, the Route Optimization procedure in Mobile IPv6 involves the verification of mobile node's reachability at the home address and at the care-of address (home test and care-of test) that results in higher handover delays and signalling overhead. This paper presents an enhanced procedure, time-based one-time password Route Optimization (TOTP-RO), for Mobile IPv6 Route Optimization that uses the concepts of shared secret Token, time based one-time password (TOTP) along with verification of the mobile node via direct communication and maintaining the status of correspondent node's compatibility. The TOTP-RO was implemented in network simulator (NS-2) and an analytical analysis was also made. Analysis showed that TOTP-RO has lower handover delays, packet loss, and signalling overhead with an increased level of security as compared to the standard Mobile IPv6's Return-Routability-based Route Optimization (RR-RO). PMID:24688398
Boyen, Peter; Van Dyck, Dries; Neven, Frank; van Ham, Roeland C H J; van Dijk, Aalt D J
2011-01-01
Correlated motif mining (cmm) is the problem of finding overrepresented pairs of patterns, called motifs, in sequences of interacting proteins. Algorithmic solutions for cmm thereby provide a computational method for predicting binding sites for protein interaction. In this paper, we adopt a motif-driven approach where the support of candidate motif pairs is evaluated in the network. We experimentally establish the superiority of the Chi-square-based support measure over other support measures. Furthermore, we obtain that cmm is an np-hard problem for a large class of support measures (including Chi-square) and reformulate the search for correlated motifs as a combinatorial optimization problem. We then present the generic metaheuristic slider which uses steepest ascent with a neighborhood function based on sliding motifs and employs the Chi-square-based support measure. We show that slider outperforms existing motif-driven cmm methods and scales to large protein-protein interaction networks. The slider-implementation and the data used in the experiments are available on http://bioinformatics.uhasselt.be.
Advani, Aneel; Jones, Neil; Shahar, Yuval; Goldstein, Mary K; Musen, Mark A
2004-01-01
We develop a method and algorithm for deciding the optimal approach to creating quality-auditing protocols for guideline-based clinical performance measures. An important element of the audit protocol design problem is deciding which guide-line elements to audit. Specifically, the problem is how and when to aggregate individual patient case-specific guideline elements into population-based quality measures. The key statistical issue involved is the trade-off between increased reliability with more general population-based quality measures versus increased validity from individually case-adjusted but more restricted measures done at a greater audit cost. Our intelligent algorithm for auditing protocol design is based on hierarchically modeling incrementally case-adjusted quality constraints. We select quality constraints to measure using an optimization criterion based on statistical generalizability coefficients. We present results of the approach from a deployed decision support system for a hypertension guideline.
USDA-ARS?s Scientific Manuscript database
Supportive parent involvement for adolescents' type 1 diabetes (T1D) self-management promotes optimal diabetes outcomes. However, family conflict is common and can interfere with collaborative family teamwork. Few interventions have used explicitly strengths-based approaches to help reinforce desire...
Adjoint-based Sensitivity of Jet Noise to Near-nozzle Forcing
NASA Astrophysics Data System (ADS)
Chung, Seung Whan; Vishnampet, Ramanathan; Bodony, Daniel; Freund, Jonathan
2017-11-01
Past efforts have used optimal control theory, based on the numerical solution of the adjoint flow equations, to perturb turbulent jets in order to reduce their radiated sound. These efforts have been successful in that sound is reduced, with concomitant changes to the large-scale turbulence structures in the flow. However, they have also been inconclusive, in that the ultimate level of reduction seemed to depend upon the accuracy of the adjoint-based gradient rather than a physical limitation of the flow. The chaotic dynamics of the turbulence can degrade the smoothness of cost functional in the control-parameter space, which is necessary for gradient-based optimization. We introduce a route to overcoming this challenge, in part by leveraging the regularity and accuracy with a dual-consistent, discrete-exact adjoint formulation. We confirm its properties and use it to study the sensitivity and controllability of the acoustic radiation from a simulation of a M = 1.3 turbulent jet, whose statistics matches data. The smoothness of the cost functional over time is quantified by a minimum optimization step size beyond which the gradient cannot have a certain degree of accuracy. Based on this, we achieve a moderate level of sound reduction in the first few optimization steps. This material is based [in part] upon work supported by the Department of Energy, National Nuclear Security Administration, under Award Number DE-NA0002374.
Distance Metric Learning via Iterated Support Vector Machines.
Zuo, Wangmeng; Wang, Faqiang; Zhang, David; Lin, Liang; Huang, Yuchi; Meng, Deyu; Zhang, Lei
2017-07-11
Distance metric learning aims to learn from the given training data a valid distance metric, with which the similarity between data samples can be more effectively evaluated for classification. Metric learning is often formulated as a convex or nonconvex optimization problem, while most existing methods are based on customized optimizers and become inefficient for large scale problems. In this paper, we formulate metric learning as a kernel classification problem with the positive semi-definite constraint, and solve it by iterated training of support vector machines (SVMs). The new formulation is easy to implement and efficient in training with the off-the-shelf SVM solvers. Two novel metric learning models, namely Positive-semidefinite Constrained Metric Learning (PCML) and Nonnegative-coefficient Constrained Metric Learning (NCML), are developed. Both PCML and NCML can guarantee the global optimality of their solutions. Experiments are conducted on general classification, face verification and person re-identification to evaluate our methods. Compared with the state-of-the-art approaches, our methods can achieve comparable classification accuracy and are efficient in training.
Robust Control Design for Systems With Probabilistic Uncertainty
NASA Technical Reports Server (NTRS)
Crespo, Luis G.; Kenny, Sean P.
2005-01-01
This paper presents a reliability- and robustness-based formulation for robust control synthesis for systems with probabilistic uncertainty. In a reliability-based formulation, the probability of violating design requirements prescribed by inequality constraints is minimized. In a robustness-based formulation, a metric which measures the tendency of a random variable/process to cluster close to a target scalar/function is minimized. A multi-objective optimization procedure, which combines stability and performance requirements in time and frequency domains, is used to search for robustly optimal compensators. Some of the fundamental differences between the proposed strategy and conventional robust control methods are: (i) unnecessary conservatism is eliminated since there is not need for convex supports, (ii) the most likely plants are favored during synthesis allowing for probabilistic robust optimality, (iii) the tradeoff between robust stability and robust performance can be explored numerically, (iv) the uncertainty set is closely related to parameters with clear physical meaning, and (v) compensators with improved robust characteristics for a given control structure can be synthesized.
In what ways do communities support optimal antiretroviral treatment in Zimbabwe?
Scott, K; Campbell, C; Madanhire, C; Skovdal, M; Nyamukapa, C; Gregson, S
2014-12-01
Little research has been conducted on how pre-existing indigenous community resources, especially social networks, affect the success of externally imposed HIV interventions. Antiretroviral treatment (ART), an externally initiated biomedical intervention, is being rolled out across sub-Saharan Africa. Understanding the ways in which community networks are working to facilitate optimal ART access and adherence will enable policymakers to better engage with and bolster these pre-existing resources. We conducted 67 interviews and eight focus group discussions with 127 people from three key population groups in Manicaland, eastern Zimbabwe: healthcare workers, adults on ART and carers of children on ART. We also observed over 100 h of HIV treatment sites at local clinics and hospitals. Our research sought to determine how indigenous resources were enabling people to achieve optimal ART access and adherence. We analysed data transcripts using thematic network technique, coding references to supportive community networks that enable local people to achieve ART access and adherence. People on ART or carers of children on ART in Zimbabwe report drawing support from a variety of social networks that enable them to overcome many obstacles to adherence. Key support networks include: HIV groups; food and income support networks; home-based care, church and women's groups; family networks; and relationships with healthcare providers. More attention to the community context in which HIV initiatives occur will help ensure that interventions work with and benefit from pre-existing social capital. © The Author (2013). Published by Oxford University Press.
In what ways do communities support optimal antiretroviral treatment in Zimbabwe?
Scott, K.; Campbell, C.; Madanhire, C.; Skovdal, M.; Nyamukapa, C.; Gregson, S.
2014-01-01
Little research has been conducted on how pre-existing indigenous community resources, especially social networks, affect the success of externally imposed HIV interventions. Antiretroviral treatment (ART), an externally initiated biomedical intervention, is being rolled out across sub-Saharan Africa. Understanding the ways in which community networks are working to facilitate optimal ART access and adherence will enable policymakers to better engage with and bolster these pre-existing resources. We conducted 67 interviews and eight focus group discussions with 127 people from three key population groups in Manicaland, eastern Zimbabwe: healthcare workers, adults on ART and carers of children on ART. We also observed over 100 h of HIV treatment sites at local clinics and hospitals. Our research sought to determine how indigenous resources were enabling people to achieve optimal ART access and adherence. We analysed data transcripts using thematic network technique, coding references to supportive community networks that enable local people to achieve ART access and adherence. People on ART or carers of children on ART in Zimbabwe report drawing support from a variety of social networks that enable them to overcome many obstacles to adherence. Key support networks include: HIV groups; food and income support networks; home-based care, church and women's groups; family networks; and relationships with healthcare providers. More attention to the community context in which HIV initiatives occur will help ensure that interventions work with and benefit from pre-existing social capital. PMID:23503291
Integrated Watershed Management using the Watershed Management Optimization Support Tool (WMOST)
Integrated watershed management is an effective planning strategy to balance tradeoffs between competing water uses within a watershed. WMOST is an Excel-based decision tool to aid planners in making cost effective decisions that meet water quantity and quality regulations. WMOST...
Efficient boundary hunting via vector quantization
NASA Astrophysics Data System (ADS)
Diamantini, Claudia; Panti, Maurizio
2001-03-01
A great amount of information about a classification problem is contained in those instances falling near the decision boundary. This intuition dates back to the earliest studies in pattern recognition, and in the more recent adaptive approaches to the so called boundary hunting, such as the work of Aha et alii on Instance Based Learning and the work of Vapnik et alii on Support Vector Machines. The last work is of particular interest, since theoretical and experimental results ensure the accuracy of boundary reconstruction. However, its optimization approach has heavy computational and memory requirements, which limits its application on huge amounts of data. In the paper we describe an alternative approach to boundary hunting based on adaptive labeled quantization architectures. The adaptation is performed by a stochastic gradient algorithm for the minimization of the error probability. Error probability minimization guarantees the accurate approximation of the optimal decision boundary, while the use of a stochastic gradient algorithm defines an efficient method to reach such approximation. In the paper comparisons to Support Vector Machines are considered.
Torres, Érica Miranda De; Naldi, Luis Fernando; Bernades, Karina Oliveira; Carvalho, Alexandre Leite
2017-01-01
Tooth loss promotes bone and gingival tissue remodeling, thus breaking the harmony between the residual ridge and natural teeth. This is critical in the anterior region of the mouth, and the integration of several dental specialties is often essential to successful rehabilitation with implants. This article describes a multidisciplinary approach to implant-supported oral rehabilitation in the maxillary anterior region, presenting a new technique for optimizing esthetics in implants. A 19-year-old woman was missing her central and lateral incisors and had 2 dental implants in the lateral incisor sites. The patient exhibited deficient thickness of the alveolar edge, loss of lip support, and absence of gingival architecture, and the implants were improperly placed. A multidisciplinary team created a correct emergence profile through a polymethyl methacrylate-based bone cement graft along with connective tissue grafts. This technique may be a useful therapeutic adjunct in dental implantology, showing good predictability and regular healing procedures.
Ren, Jingzheng; Liang, Hanwei; Dong, Liang; Sun, Lu; Gao, Zhiqiu
2016-08-15
Industrial symbiosis provides novel and practical pathway to the design for the sustainability. Decision support tool for its verification is necessary for practitioners and policy makers, while to date, quantitative research is limited. The objective of this work is to present an innovative approach for supporting decision-making in the design for the sustainability with the implementation of industrial symbiosis in chemical complex. Through incorporating the emergy theory, the model is formulated as a multi-objective approach that can optimize both the economic benefit and sustainable performance of the integrated industrial system. A set of emergy based evaluation index are designed. Multi-objective Particle Swarm Algorithm is proposed to solve the model, and the decision-makers are allowed to choose the suitable solutions form the Pareto solutions. An illustrative case has been studied by the proposed method, a few of compromises between high profitability and high sustainability can be obtained for the decision-makers/stakeholders to make decision. Copyright © 2016 Elsevier B.V. All rights reserved.
A Flexible Toolkit Supporting Knowledge-based Tactical Planning for Ground Forces
2011-06-01
assigned to each of the Special Areas to model its temporal behaviour . In Figure 5 an optimal path going over two defined intermediate points is...which area can be reached by an armoured infantry platoon within a given time interval, which path should be taken by a support unit to minimize...al. 2008]. Although trained commanders and staff personnel may achieve very accurate planning results, time consuming procedures are excluded when
An integrated modeling and design tool for advanced optical spacecraft
NASA Technical Reports Server (NTRS)
Briggs, Hugh C.
1992-01-01
Consideration is given to the design and status of the Integrated Modeling of Optical Systems (IMOS) tool and to critical design issues. A multidisciplinary spacecraft design and analysis tool with support for structural dynamics, controls, thermal analysis, and optics, IMOS provides rapid and accurate end-to-end performance analysis, simulations, and optimization of advanced space-based optical systems. The requirements for IMOS-supported numerical arrays, user defined data structures, and a hierarchical data base are outlined, and initial experience with the tool is summarized. A simulation of a flexible telescope illustrates the integrated nature of the tools.
Mehdizadeh, Hamidreza; Bayrak, Elif S; Lu, Chenlin; Somo, Sami I; Akar, Banu; Brey, Eric M; Cinar, Ali
2015-11-01
A multi-layer agent-based model (ABM) of biomaterial scaffold vascularization is extended to consider the effects of scaffold degradation kinetics on blood vessel formation. A degradation model describing the bulk disintegration of porous hydrogels is incorporated into the ABM. The combined degradation-angiogenesis model is used to investigate growing blood vessel networks in the presence of a degradable scaffold structure. Simulation results indicate that higher porosity, larger mean pore size, and rapid degradation allow faster vascularization when not considering the structural support of the scaffold. However, premature loss of structural support results in failure for the material. A strategy using multi-layer scaffold with different degradation rates in each layer was investigated as a way to address this issue. Vascularization was improved with the multi-layered scaffold model compared to the single-layer model. The ABM developed provides insight into the characteristics that influence the selection of optimal geometric parameters and degradation behavior of scaffolds, and enables easy refinement of the model as new knowledge about the underlying biological phenomena becomes available. This paper proposes a multi-layer agent-based model (ABM) of biomaterial scaffold vascularization integrated with a structural-kinetic model describing bulk degradation of porous hydrogels to consider the effects of scaffold degradation kinetics on blood vessel formation. This enables the assessment of scaffold characteristics and in particular the disintegration characteristics of the scaffold on angiogenesis. Simulation results indicate that higher porosity, larger mean pore size, and rapid degradation allow faster vascularization when not considering the structural support of the scaffold. However, premature loss of structural support by scaffold disintegration results in failure of the material and disruption of angiogenesis. A strategy using multi-layer scaffold with different degradation rates in each layer was investigated as away to address this issue. Vascularization was improved with the multi-layered scaffold model compared to the single-layer model. The ABM developed provides insight into the characteristics that influence the selection of optimal geometric and degradation characteristics of tissue engineering scaffolds. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Info-gap robust-satisficing model of foraging behavior: do foragers optimize or satisfice?
Carmel, Yohay; Ben-Haim, Yakov
2005-11-01
In this note we compare two mathematical models of foraging that reflect two competing theories of animal behavior: optimizing and robust satisficing. The optimal-foraging model is based on the marginal value theorem (MVT). The robust-satisficing model developed here is an application of info-gap decision theory. The info-gap robust-satisficing model relates to the same circumstances described by the MVT. We show how these two alternatives translate into specific predictions that at some points are quite disparate. We test these alternative predictions against available data collected in numerous field studies with a large number of species from diverse taxonomic groups. We show that a large majority of studies appear to support the robust-satisficing model and reject the optimal-foraging model.
An Integrated Framework for Parameter-based Optimization of Scientific Workflows.
Kumar, Vijay S; Sadayappan, P; Mehta, Gaurang; Vahi, Karan; Deelman, Ewa; Ratnakar, Varun; Kim, Jihie; Gil, Yolanda; Hall, Mary; Kurc, Tahsin; Saltz, Joel
2009-01-01
Data analysis processes in scientific applications can be expressed as coarse-grain workflows of complex data processing operations with data flow dependencies between them. Performance optimization of these workflows can be viewed as a search for a set of optimal values in a multi-dimensional parameter space. While some performance parameters such as grouping of workflow components and their mapping to machines do not a ect the accuracy of the output, others may dictate trading the output quality of individual components (and of the whole workflow) for performance. This paper describes an integrated framework which is capable of supporting performance optimizations along multiple dimensions of the parameter space. Using two real-world applications in the spatial data analysis domain, we present an experimental evaluation of the proposed framework.
Decision Support Model for Optimal Management of Coastal Gate
NASA Astrophysics Data System (ADS)
Ditthakit, Pakorn; Chittaladakorn, Suwatana
2010-05-01
The coastal areas are intensely settled by human beings owing to their fertility of natural resources. However, at present those areas are facing with water scarcity problems: inadequate water and poor water quality as a result of saltwater intrusion and inappropriate land-use management. To solve these problems, several measures have been exploited. The coastal gate construction is a structural measure widely performed in several countries. This manner requires the plan for suitably operating coastal gates. Coastal gate operation is a complicated task and usually concerns with the management of multiple purposes, which are generally conflicted one another. This paper delineates the methodology and used theories for developing decision support modeling for coastal gate operation scheduling. The developed model was based on coupling simulation and optimization model. The weighting optimization technique based on Differential Evolution (DE) was selected herein for solving multiple objective problems. The hydrodynamic and water quality models were repeatedly invoked during searching the optimal gate operations. In addition, two forecasting models:- Auto Regressive model (AR model) and Harmonic Analysis model (HA model) were applied for forecasting water levels and tide levels, respectively. To demonstrate the applicability of the developed model, it was applied to plan the operations for hypothetical system of Pak Phanang coastal gate system, located in Nakhon Si Thammarat province, southern part of Thailand. It was found that the proposed model could satisfyingly assist decision-makers for operating coastal gates under various environmental, ecological and hydraulic conditions.
NASA Astrophysics Data System (ADS)
Ouyang, Qi; Lu, Wenxi; Lin, Jin; Deng, Wenbing; Cheng, Weiguo
2017-08-01
The surrogate-based simulation-optimization techniques are frequently used for optimal groundwater remediation design. When this technique is used, surrogate errors caused by surrogate-modeling uncertainty may lead to generation of infeasible designs. In this paper, a conservative strategy that pushes the optimal design into the feasible region was used to address surrogate-modeling uncertainty. In addition, chance-constrained programming (CCP) was adopted to compare with the conservative strategy in addressing this uncertainty. Three methods, multi-gene genetic programming (MGGP), Kriging (KRG) and support vector regression (SVR), were used to construct surrogate models for a time-consuming multi-phase flow model. To improve the performance of the surrogate model, ensemble surrogates were constructed based on combinations of different stand-alone surrogate models. The results show that: (1) the surrogate-modeling uncertainty was successfully addressed by the conservative strategy, which means that this method is promising for addressing surrogate-modeling uncertainty. (2) The ensemble surrogate model that combines MGGP with KRG showed the most favorable performance, which indicates that this ensemble surrogate can utilize both stand-alone surrogate models to improve the performance of the surrogate model.
Pittig, Andre; van den Berg, Linda; Vervliet, Bram
2016-01-01
Extinction learning is a major mechanism for fear reduction by means of exposure. Current research targets innovative strategies to enhance fear extinction and thereby optimize exposure-based treatments for anxiety disorders. This selective review updates novel behavioral strategies that may provide cutting-edge clinical implications. Recent studies provide further support for two types of enhancement strategies. Procedural enhancement strategies implemented during extinction training translate to how exposure exercises may be conducted to optimize fear extinction. These strategies mostly focus on a maximized violation of dysfunctional threat expectancies and on reducing context and stimulus specificity of extinction learning. Flanking enhancement strategies target periods before and after extinction training and inform optimal preparation and post-processing of exposure exercises. These flanking strategies focus on the enhancement of learning in general, memory (re-)consolidation, and memory retrieval. Behavioral strategies to enhance fear extinction may provide powerful clinical applications to further maximize the efficacy of exposure-based interventions. However, future replications, mechanistic examinations, and translational studies are warranted to verify long-term effects and naturalistic utility. Future directions also comprise the interplay of optimized fear extinction with (avoidance) behavior and motivational antecedents of exposure.
Fang, Chunying; Li, Haifeng; Ma, Lin; Zhang, Mancai
2017-01-01
Pathological speech usually refers to speech distortion resulting from illness or other biological insults. The assessment of pathological speech plays an important role in assisting the experts, while automatic evaluation of speech intelligibility is difficult because it is usually nonstationary and mutational. In this paper, we carry out an independent innovation of feature extraction and reduction, and we describe a multigranularity combined feature scheme which is optimized by the hierarchical visual method. A novel method of generating feature set based on S -transform and chaotic analysis is proposed. There are BAFS (430, basic acoustics feature), local spectral characteristics MSCC (84, Mel S -transform cepstrum coefficients), and chaotic features (12). Finally, radar chart and F -score are proposed to optimize the features by the hierarchical visual fusion. The feature set could be optimized from 526 to 96 dimensions based on NKI-CCRT corpus and 104 dimensions based on SVD corpus. The experimental results denote that new features by support vector machine (SVM) have the best performance, with a recognition rate of 84.4% on NKI-CCRT corpus and 78.7% on SVD corpus. The proposed method is thus approved to be effective and reliable for pathological speech intelligibility evaluation.
An Enhanced PSO-Based Clustering Energy Optimization Algorithm for Wireless Sensor Network.
Vimalarani, C; Subramanian, R; Sivanandam, S N
2016-01-01
Wireless Sensor Network (WSN) is a network which formed with a maximum number of sensor nodes which are positioned in an application environment to monitor the physical entities in a target area, for example, temperature monitoring environment, water level, monitoring pressure, and health care, and various military applications. Mostly sensor nodes are equipped with self-supported battery power through which they can perform adequate operations and communication among neighboring nodes. Maximizing the lifetime of the Wireless Sensor networks, energy conservation measures are essential for improving the performance of WSNs. This paper proposes an Enhanced PSO-Based Clustering Energy Optimization (EPSO-CEO) algorithm for Wireless Sensor Network in which clustering and clustering head selection are done by using Particle Swarm Optimization (PSO) algorithm with respect to minimizing the power consumption in WSN. The performance metrics are evaluated and results are compared with competitive clustering algorithm to validate the reduction in energy consumption.
Multidisciplinary Shape Optimization of a Composite Blended Wing Body Aircraft
NASA Astrophysics Data System (ADS)
Boozer, Charles Maxwell
A multidisciplinary shape optimization tool coupling aerodynamics, structure, and performance was developed for battery powered aircraft. Utilizing high-fidelity computational fluid dynamics analysis tools and a structural wing weight tool, coupled based on the multidisciplinary feasible optimization architecture; aircraft geometry is modified in the optimization of the aircraft's range or endurance. The developed tool is applied to three geometries: a hybrid blended wing body, delta wing UAS, the ONERA M6 wing, and a modified ONERA M6 wing. First, the optimization problem is presented with the objective function, constraints, and design vector. Next, the tool's architecture and the analysis tools that are utilized are described. Finally, various optimizations are described and their results analyzed for all test subjects. Results show that less computationally expensive inviscid optimizations yield positive performance improvements using planform, airfoil, and three-dimensional degrees of freedom. From the results obtained through a series of optimizations, it is concluded that the newly developed tool is both effective at improving performance and serves as a platform ready to receive additional performance modules, further improving its computational design support potential.
Test results of the LARP Nb$$_3$$Sn quadrupole HQ03a
DiMarco, J.; G. Ambrosio; Chlachidze, G.; ...
2016-03-09
The US LHC Accelerator Research Program (LARP) has been developingmore » $$Nb_3Sn$$ quadrupoles of progressively increasing performance for the high luminosity upgrade of the Large Hadron Collider. The 120 mm aperture High-field Quadrupole (HQ) models are the last step in the R&D phase supporting the development of the new IR Quadrupoles (MQXF). Three series of HQ coils were fabricated and assembled in a shell-based support structure, progressively optimizing the design and fabrication process. The final set of coils consistently applied the optimized design solutions, and was assembled in the HQ03a model. Furthermore, this paper reports a summary of the HQ03a test results, including training, mechanical performance, field quality and quench studies.« less
Seth, Ashok; Gupta, Sajal; Pratap Singh, Vivudh; Kumar, Vijay
2017-09-01
Final stent dimensions remain an important predictor of restenosis, target vessel revascularisation (TVR) and subacute stent thrombosis (ST), even in the drug-eluting stent (DES) era. Stent balloons are usually semi-compliant and thus even high-pressure inflation may not achieve uniform or optimal stent expansion. Post-dilatation with non-compliant (NC) balloons after stent deployment has been shown to enhance stent expansion and could reduce TVR and ST. Based on supporting evidence and in the absence of large prospective randomised outcome-based trials, post-dilatation with an NC balloon to achieve optimal stent expansion and maximal luminal area is a logical technical recommendation, particularly in complex lesion subsets.
A Cockpit-Based Application for Traffic Aware Trajectory Optimization
NASA Technical Reports Server (NTRS)
Woods, Sharon E.; Vivona, Robert A.; Roscoe, David A.; LeFebvre, Brendan C.; Wing, David J.; Ballin, Mark G.
2013-01-01
The Traffic Aware Planner (TAP) is a cockpit-based advisory tool designed to be hosted on a Class 2 Electronic Flight Bag and developed to enable the concept of Traffic Aware Strategic Aircrew Requests (TASAR). This near-term concept provides pilots with optimized route changes that reduce fuel burn or flight time, avoids interactions with known traffic, weather and restricted airspace, and may be used by the pilots to request a trajectory change from air traffic control. TAP's internal architecture and algorithms are derived from the Autonomous Operations Planner, a flight-deck automation system developed by NASA to support research into aircraft self-separation. This paper reviews the architecture, functionality and operation of TAP.
Decision Support Systems for Launch and Range Operations Using Jess
NASA Technical Reports Server (NTRS)
Thirumalainambi, Rajkumar
2007-01-01
The virtual test bed for launch and range operations developed at NASA Ames Research Center consists of various independent expert systems advising on weather effects, toxic gas dispersions and human health risk assessment during space-flight operations. An individual dedicated server supports each expert system and the master system gather information from the dedicated servers to support the launch decision-making process. Since the test bed is based on the web system, reducing network traffic and optimizing the knowledge base is critical to its success of real-time or near real-time operations. Jess, a fast rule engine and powerful scripting environment developed at Sandia National Laboratory has been adopted to build the expert systems providing robustness and scalability. Jess also supports XML representation of knowledge base with forward and backward chaining inference mechanism. Facts added - to working memory during run-time operations facilitates analyses of multiple scenarios. Knowledge base can be distributed with one inference engine performing the inference process. This paper discusses details of the knowledge base and inference engine using Jess for a launch and range virtual test bed.
A miniature ultrasonic actuator-control system for plant stem diameter micro-variation measurements
USDA-ARS?s Scientific Manuscript database
Measurements of micro-variations in plant stem diameter are potentially useful to optimize irrigation decision support systems that are based on plant physiological responses. However, for this technology to be suitable for field applications, problems associated with stem softness and micro variati...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perras, Frédéric A.; Boteju, Kasuni C.; Slowing, Igor I.
In this work, we utilize direct 17O DNP for the characterization of non-protonated oxygens in heterogeneous catalysts. The optimal sample preparation and population transfer approach for 17O direct DNP experiments performed on silica surfaces is determined and applied to the characterization of Zr- and Y-based mesoporous silica-supported single-site catalysts.
LEVERAGING TECHNOLOGY TO ENHANCE ADDICTION TREATMENT AND RECOVERY
Marsch, Lisa A.
2012-01-01
Technology such as the Internet and mobile phones offers considerable promise for affecting the assessment, prevention, and treatment of and recovery from substance use disorders. Technology may enable entirely new models of behavioral health care within and outside of formal systems of care. This article reviews the promise of technology-based therapeutic tools for affecting the quality and reach of addiction treatment and recovery support systems, as well as the empirical support to date for this approach. Potential models for implementing technology-based interventions targeting substance use disorders are described. Opportunities to optimize the effectiveness and impact of technology-based interventions targeting addiction and recovery, along with outstanding research needs, are discussed. PMID:22873192
da Rocha, Leticia; Sloane, Elliot; M Bassani, Jose
2005-01-01
This study describes a framework to support the choice of the maintenance service (in-house or third party contract) for each category of medical equipment based on: a) the real medical equipment maintenance management system currently used by the biomedical engineering group of the public health system of the Universidade Estadual de Campinas located in Brazil to control the medical equipment maintenance service, b) the Activity Based Costing (ABC) method, and c) the Analytic Hierarchy Process (AHP) method. Results show the cost and performance related to each type of maintenance service. Decision-makers can use these results to evaluate possible strategies for the categories of equipment.
Leveraging technology to enhance addiction treatment and recovery.
Marsch, Lisa A
2012-01-01
Technology such as the Internet and mobile phones offers considerable promise for affecting the assessment, prevention, and treatment of and recovery from substance use disorders. Technology may enable entirely new models of behavioral health care within and outside of formal systems of care. This article reviews the promise of technology-based therapeutic tools for affecting the quality and reach of addiction treatment and recovery support systems, as well as the empirical support to date for this approach. Potential models for implementing technology-based interventions targeting substance use disorders are described. Opportunities to optimize the effectiveness and impact of technology-based interventions targeting addiction and recovery, along with outstanding research needs, are discussed.
On-Board Real-Time Optimization Control for Turbo-Fan Engine Life Extending
NASA Astrophysics Data System (ADS)
Zheng, Qiangang; Zhang, Haibo; Miao, Lizhen; Sun, Fengyong
2017-11-01
A real-time optimization control method is proposed to extend turbo-fan engine service life. This real-time optimization control is based on an on-board engine mode, which is devised by a MRR-LSSVR (multi-input multi-output recursive reduced least squares support vector regression method). To solve the optimization problem, a FSQP (feasible sequential quadratic programming) algorithm is utilized. The thermal mechanical fatigue is taken into account during the optimization process. Furthermore, to describe the engine life decaying, a thermal mechanical fatigue model of engine acceleration process is established. The optimization objective function not only contains the sub-item which can get fast response of the engine, but also concludes the sub-item of the total mechanical strain range which has positive relationship to engine fatigue life. Finally, the simulations of the conventional optimization control which just consider engine acceleration performance or the proposed optimization method have been conducted. The simulations demonstrate that the time of the two control methods from idle to 99.5 % of the maximum power are equal. However, the engine life using the proposed optimization method could be surprisingly increased by 36.17 % compared with that using conventional optimization control.
A Low Cost Structurally Optimized Design for Diverse Filter Types
Kazmi, Majida; Aziz, Arshad; Akhtar, Pervez; Ikram, Nassar
2016-01-01
A wide range of image processing applications deploys two dimensional (2D)-filters for performing diversified tasks such as image enhancement, edge detection, noise suppression, multi scale decomposition and compression etc. All of these tasks require multiple type of 2D-filters simultaneously to acquire the desired results. The resource hungry conventional approach is not a viable option for implementing these computationally intensive 2D-filters especially in a resource constraint environment. Thus it calls for optimized solutions. Mostly the optimization of these filters are based on exploiting structural properties. A common shortcoming of all previously reported optimized approaches is their restricted applicability only for a specific filter type. These narrow scoped solutions completely disregard the versatility attribute of advanced image processing applications and in turn offset their effectiveness while implementing a complete application. This paper presents an efficient framework which exploits the structural properties of 2D-filters for effectually reducing its computational cost along with an added advantage of versatility for supporting diverse filter types. A composite symmetric filter structure is introduced which exploits the identities of quadrant and circular T-symmetries in two distinct filter regions simultaneously. These T-symmetries effectually reduce the number of filter coefficients and consequently its multipliers count. The proposed framework at the same time empowers this composite filter structure with additional capabilities of realizing all of its Ψ-symmetry based subtypes and also its special asymmetric filters case. The two-fold optimized framework thus reduces filter computational cost up to 75% as compared to the conventional approach as well as its versatility attribute not only supports diverse filter types but also offers further cost reduction via resource sharing for sequential implementation of diversified image processing applications especially in a constraint environment. PMID:27832133
Filgueira, Ramon; Grant, Jon; Strand, Øivind
2014-06-01
Shellfish carrying capacity is determined by the interaction of a cultured species with its ecosystem, which is strongly influenced by hydrodynamics. Water circulation controls the exchange of matter between farms and the adjacent areas, which in turn establishes the nutrient supply that supports phytoplankton populations. The complexity of water circulation makes necessary the use of hydrodynamic models with detailed spatial resolution in carrying capacity estimations. This detailed spatial resolution also allows for the study of processes that depend on specific spatial arrangements, e.g., the most suitable location to place farms, which is crucial for marine spatial planning, and consequently for decision support systems. In the present study, a fully spatial physical-biogeochemical model has been combined with scenario building and optimization techniques as a proof of concept of the use of ecosystem modeling as an objective tool to inform marine spatial planning. The object of this exercise was to generate objective knowledge based on an ecosystem approach to establish new mussel aquaculture areas in a Norwegian fjord. Scenario building was used to determine the best location of a pump that can be used to bring nutrient-rich deep waters to the euphotic layer, increasing primary production, and consequently, carrying capacity for mussel cultivation. In addition, an optimization tool, parameter estimation (PEST), was applied to the optimal location and mussel standing stock biomass that maximize production, according to a preestablished carrying capacity criterion. Optimization tools allow us to make rational and transparent decisions to solve a well-defined question, decisions that are essential for policy makers. The outcomes of combining ecosystem models with scenario building and optimization facilitate planning based on an ecosystem approach, highlighting the capabilities of ecosystem modeling as a tool for marine spatial planning.
Decision Support for Resilient Communities: EPA’s Watershed Management Optimization Support Tool
The U.S. EPA Atlantic Ecology Division is releasing version 3 of the Watershed Management Optimization Support Tool (WMOST v3) in February 2018. WMOST is a decision-support tool that facilitates integrated water resources management (IWRM) by communities and watershed organizati...
Interpreting linear support vector machine models with heat map molecule coloring
2011-01-01
Background Model-based virtual screening plays an important role in the early drug discovery stage. The outcomes of high-throughput screenings are a valuable source for machine learning algorithms to infer such models. Besides a strong performance, the interpretability of a machine learning model is a desired property to guide the optimization of a compound in later drug discovery stages. Linear support vector machines showed to have a convincing performance on large-scale data sets. The goal of this study is to present a heat map molecule coloring technique to interpret linear support vector machine models. Based on the weights of a linear model, the visualization approach colors each atom and bond of a compound according to its importance for activity. Results We evaluated our approach on a toxicity data set, a chromosome aberration data set, and the maximum unbiased validation data sets. The experiments show that our method sensibly visualizes structure-property and structure-activity relationships of a linear support vector machine model. The coloring of ligands in the binding pocket of several crystal structures of a maximum unbiased validation data set target indicates that our approach assists to determine the correct ligand orientation in the binding pocket. Additionally, the heat map coloring enables the identification of substructures important for the binding of an inhibitor. Conclusions In combination with heat map coloring, linear support vector machine models can help to guide the modification of a compound in later stages of drug discovery. Particularly substructures identified as important by our method might be a starting point for optimization of a lead compound. The heat map coloring should be considered as complementary to structure based modeling approaches. As such, it helps to get a better understanding of the binding mode of an inhibitor. PMID:21439031
Promoting resilience and recovery in a Buddhist mental health support group.
Phoenix, Bethany
2014-04-01
Communities of faith are important arenas for psychiatric mental health nurses to promote emotional well-being and support recovery for persons with mental health problems. This article describes an innovative faith-based mental health group, based on Buddhist philosophy and practice and established by an advanced practice psychiatric nurse, that uses psychoeducation, peer support, and faith encouragement to help participants find hope and meaning in the experience of mental health problems. A brief overview of Buddhism and selected concepts relevant to the philosophical framework of the Buddhist mental health support group is followed by a review of the common themes of the group discussions. These include: finding value in the illness experience; differentiating the proper role of treatment from that of Buddhist practice in optimizing mental health; and experiencing a deeper sense of joy, despite current suffering.
Bicriteria Network Optimization Problem using Priority-based Genetic Algorithm
NASA Astrophysics Data System (ADS)
Gen, Mitsuo; Lin, Lin; Cheng, Runwei
Network optimization is being an increasingly important and fundamental issue in the fields such as engineering, computer science, operations research, transportation, telecommunication, decision support systems, manufacturing, and airline scheduling. In many applications, however, there are several criteria associated with traversing each edge of a network. For example, cost and flow measures are both important in the networks. As a result, there has been recent interest in solving Bicriteria Network Optimization Problem. The Bicriteria Network Optimization Problem is known a NP-hard. The efficient set of paths may be very large, possibly exponential in size. Thus the computational effort required to solve it can increase exponentially with the problem size in the worst case. In this paper, we propose a genetic algorithm (GA) approach used a priority-based chromosome for solving the bicriteria network optimization problem including maximum flow (MXF) model and minimum cost flow (MCF) model. The objective is to find the set of Pareto optimal solutions that give possible maximum flow with minimum cost. This paper also combines Adaptive Weight Approach (AWA) that utilizes some useful information from the current population to readjust weights for obtaining a search pressure toward a positive ideal point. Computer simulations show the several numerical experiments by using some difficult-to-solve network design problems, and show the effectiveness of the proposed method.
NASA Astrophysics Data System (ADS)
Szczepanik, M.; Poteralski, A.
2016-11-01
The paper is devoted to an application of the evolutionary methods and the finite element method to the optimization of shell structures. Optimization of thickness of a car wheel (shell) by minimization of stress functional is considered. A car wheel geometry is built from three surfaces of revolution: the central surface with the holes destined for the fastening bolts, the surface of the ring of the wheel and the surface connecting the two mentioned earlier. The last one is subjected to the optimization process. The structures are discretized by triangular finite elements and subjected to the volume constraints. Using proposed method, material properties or thickness of finite elements are changing evolutionally and some of them are eliminated. As a result the optimal shape, topology and material or thickness of the structures are obtained. The numerical examples demonstrate that the method based on evolutionary computation is an effective technique for solving computer aided optimal design.
Data mining-based coefficient of influence factors optimization of test paper reliability
NASA Astrophysics Data System (ADS)
Xu, Peiyao; Jiang, Huiping; Wei, Jieyao
2018-05-01
Test is a significant part of the teaching process. It demonstrates the final outcome of school teaching through teachers' teaching level and students' scores. The analysis of test paper is a complex operation that has the characteristics of non-linear relation in the length of the paper, time duration and the degree of difficulty. It is therefore difficult to optimize the coefficient of influence factors under different conditions in order to get text papers with clearly higher reliability with general methods [1]. With data mining techniques like Support Vector Regression (SVR) and Genetic Algorithm (GA), we can model the test paper analysis and optimize the coefficient of impact factors for higher reliability. It's easy to find that the combination of SVR and GA can get an effective advance in reliability from the test results. The optimal coefficient of influence factors optimization has a practicability in actual application, and the whole optimizing operation can offer model basis for test paper analysis.
Design of an oil squeeze film damper bearing for a multimass flexible-rotor bearing system
NASA Technical Reports Server (NTRS)
Cunningham, R. E.; Gunter, E. J., Jr.; Fleming, D. P.
1975-01-01
A single-mass flexible-rotor analysis was used to optimize the stiffness and damping of a flexible support for a symmetric five-mass rotor. The flexible, damped support attenuates the amplitudes of motions and forces transmitted to the support bearings when the rotor operates through and above its first bending critical speed. An oil squeeze film damper was designed based on short bearing lubrication theory. The damper design was verified by an unbalance response computer program. Rotor amplitudes were reduced by a factor of 16 and loads reduced by a factor of 36 compared with the same rotor with rigid bearing supports.
Design of a squeeze-film damper for a multi-mass flexible rotor
NASA Technical Reports Server (NTRS)
Cunningham, R. E.; Fleming, D. P.; Gunter, E. J.
1975-01-01
A single mass flexible rotor analysis was used to optimize the stiffness and damping of a flexible support for a symmetric five-mass rotor. The flexible support attenuates the rotor motions and forces transmitted to the support bearings when the rotor operates through and above its first bending critical speed. An oil squeeze-film damper was designed based on short bearing lubrication theory. The damper design was verified by an unbalance response computer program. Rotor amplitudes were reduced by a factor of 16 and loads reduced by a factor of 36 compared with the same rotor on rigid bearing supports.
Social inequalities in adolescent depression: the role of parental social support and optimism.
Piko, Bettina F; Luszczynska, Aleksandra; Fitzpatrick, Kevin M
2013-08-01
Interpersonal theory suggests relationships between socio-economic status (SES) and adolescent psychopathology mediated by negative parenting. This study examines the role of perceived parental social support and optimism in understanding adolescents' depression and self-rated health among a sample of Hungarian youth. Using a self-administered questionnaire, data (N = 881) were collected from high-school students (14-20 years old) in Szeged, Hungary (a regional centre in the southeastern region, near to the Serbian border, with a population of 170,000 inhabitants). To analyse the overall structure of the relationship between objective/subjective SES, parental support, optimism and health outcomes (depression, self-perceived health), structural equation modelling (SEM) was employed. Findings suggest the following: (1) SES variables generate social inequalities in adolescent depression through parental social support, particularly maternal support; and (2) parents provide youths with different levels of social support that in turn may strengthen or weaken optimism during the socialization process. In addressing depression prevention and treatment, we may want to take into account socio-economic differences in social networks and levels of optimism, which may influence youths' psychosocial adjustment and development of psychopathology.
Recreational System Optimization to Reduce Conflict on Public Lands
NASA Astrophysics Data System (ADS)
Shilling, Fraser; Boggs, Jennifer; Reed, Sarah
2012-09-01
In response to federal administrative rule, the Tahoe National Forest (TNF), California, USA engaged in trail-route prioritization for motorized recreation (e.g., off-highway-vehicles) and other recreation types. The prioritization was intended to identify routes that were suitable and ill-suited for maintenance in a transportation system. A recreational user survey was conducted online ( n = 813) for user preferences for trail system characteristics, recreational use patterns, and demographics. Motorized trail users and non-motorized users displayed very clear and contrasting preferences for the same system. As has been found by previous investigators, non-motorized users expressed antagonism to motorized use on the same recreational travel system, whereas motorized users either supported multiple-use routes or dismissed non-motorized recreationists' concerns. To help the TNF plan for reduced conflict, a geographic information system (GIS) based modeling approach was used to identify recreational opportunities and potential environmental impacts of all travel routes. This GIS-based approach was based on an expert-derived rule set. The rules addressed particular environmental and recreation concerns in the TNF. Route segments were identified that could be incorporated into minimal-impact networks to support various types of recreation. The combination of potential impacts and user-benefits supported an optimization approach for an appropriate recreational travel network to minimize environmental impacts and user-conflicts in a multi-purpose system.
NASA Astrophysics Data System (ADS)
Ammendola, R.; Biagioni, A.; Frezza, O.; Lo Cicero, F.; Lonardo, A.; Martinelli, M.; Paolucci, P. S.; Pastorelli, E.; Rossetti, D.; Simula, F.; Tosoratto, L.; Vicini, P.
2015-12-01
In the attempt to develop an interconnection architecture optimized for hybrid HPC systems dedicated to scientific computing, we designed APEnet+, a point-to-point, low-latency and high-performance network controller supporting 6 fully bidirectional off-board links over a 3D torus topology. The first release of APEnet+ (named V4) was a board based on a 40 nm Altera FPGA, integrating 6 channels at 34 Gbps of raw bandwidth per direction and a PCIe Gen2 x8 host interface. It has been the first-of-its-kind device to implement an RDMA protocol to directly read/write data from/to Fermi and Kepler NVIDIA GPUs using NVIDIA peer-to-peer and GPUDirect RDMA protocols, obtaining real zero-copy GPU-to-GPU transfers over the network. The latest generation of APEnet+ systems (now named V5) implements a PCIe Gen3 x8 host interface on a 28 nm Altera Stratix V FPGA, with multi-standard fast transceivers (up to 14.4 Gbps) and an increased amount of configurable internal resources and hardware IP cores to support main interconnection standard protocols. Herein we present the APEnet+ V5 architecture, the status of its hardware and its system software design. Both its Linux Device Driver and the low-level libraries have been redeveloped to support the PCIe Gen3 protocol, introducing optimizations and solutions based on hardware/software co-design.
Recreational system optimization to reduce conflict on public lands.
Shilling, Fraser; Boggs, Jennifer; Reed, Sarah
2012-09-01
In response to federal administrative rule, the Tahoe National Forest (TNF), California, USA engaged in trail-route prioritization for motorized recreation (e.g., off-highway-vehicles) and other recreation types. The prioritization was intended to identify routes that were suitable and ill-suited for maintenance in a transportation system. A recreational user survey was conducted online (n = 813) for user preferences for trail system characteristics, recreational use patterns, and demographics. Motorized trail users and non-motorized users displayed very clear and contrasting preferences for the same system. As has been found by previous investigators, non-motorized users expressed antagonism to motorized use on the same recreational travel system, whereas motorized users either supported multiple-use routes or dismissed non-motorized recreationists' concerns. To help the TNF plan for reduced conflict, a geographic information system (GIS) based modeling approach was used to identify recreational opportunities and potential environmental impacts of all travel routes. This GIS-based approach was based on an expert-derived rule set. The rules addressed particular environmental and recreation concerns in the TNF. Route segments were identified that could be incorporated into minimal-impact networks to support various types of recreation. The combination of potential impacts and user-benefits supported an optimization approach for an appropriate recreational travel network to minimize environmental impacts and user-conflicts in a multi-purpose system.
Hong, Xia
2006-07-01
In this letter, a Box-Cox transformation-based radial basis function (RBF) neural network is introduced using the RBF neural network to represent the transformed system output. Initially a fixed and moderate sized RBF model base is derived based on a rank revealing orthogonal matrix triangularization (QR decomposition). Then a new fast identification algorithm is introduced using Gauss-Newton algorithm to derive the required Box-Cox transformation, based on a maximum likelihood estimator. The main contribution of this letter is to explore the special structure of the proposed RBF neural network for computational efficiency by utilizing the inverse of matrix block decomposition lemma. Finally, the Box-Cox transformation-based RBF neural network, with good generalization and sparsity, is identified based on the derived optimal Box-Cox transformation and a D-optimality-based orthogonal forward regression algorithm. The proposed algorithm and its efficacy are demonstrated with an illustrative example in comparison with support vector machine regression.
Yan, Xu; Zhou, Minxiong; Ying, Lingfang; Yin, Dazhi; Fan, Mingxia; Yang, Guang; Zhou, Yongdi; Song, Fan; Xu, Dongrong
2013-01-01
Diffusion kurtosis imaging (DKI) is a new method of magnetic resonance imaging (MRI) that provides non-Gaussian information that is not available in conventional diffusion tensor imaging (DTI). DKI requires data acquisition at multiple b-values for parameter estimation; this process is usually time-consuming. Therefore, fewer b-values are preferable to expedite acquisition. In this study, we carefully evaluated various acquisition schemas using different numbers and combinations of b-values. Acquisition schemas that sampled b-values that were distributed to two ends were optimized. Compared to conventional schemas using equally spaced b-values (ESB), optimized schemas require fewer b-values to minimize fitting errors in parameter estimation and may thus significantly reduce scanning time. Following a ranked list of optimized schemas resulted from the evaluation, we recommend the 3b schema based on its estimation accuracy and time efficiency, which needs data from only 3 b-values at 0, around 800 and around 2600 s/mm2, respectively. Analyses using voxel-based analysis (VBA) and region-of-interest (ROI) analysis with human DKI datasets support the use of the optimized 3b (0, 1000, 2500 s/mm2) DKI schema in practical clinical applications. PMID:23735303
NASA Astrophysics Data System (ADS)
Bascetin, A.
2007-04-01
The selection of an optimal reclamation method is one of the most important factors in open-pit design and production planning. It also affects economic considerations in open-pit design as a function of plan location and depth. Furthermore, the selection is a complex multi-person, multi-criteria decision problem. The group decision-making process can be improved by applying a systematic and logical approach to assess the priorities based on the inputs of several specialists from different functional areas within the mine company. The analytical hierarchy process (AHP) can be very useful in involving several decision makers with different conflicting objectives to arrive at a consensus decision. In this paper, the selection of an optimal reclamation method using an AHP-based model was evaluated for coal production in an open-pit coal mine located at Seyitomer region in Turkey. The use of the proposed model indicates that it can be applied to improve the group decision making in selecting a reclamation method that satisfies optimal specifications. Also, it is found that the decision process is systematic and using the proposed model can reduce the time taken to select a optimal method.
A Sensor Dynamic Measurement Error Prediction Model Based on NAPSO-SVM.
Jiang, Minlan; Jiang, Lan; Jiang, Dingde; Li, Fei; Song, Houbing
2018-01-15
Dynamic measurement error correction is an effective way to improve sensor precision. Dynamic measurement error prediction is an important part of error correction, and support vector machine (SVM) is often used for predicting the dynamic measurement errors of sensors. Traditionally, the SVM parameters were always set manually, which cannot ensure the model's performance. In this paper, a SVM method based on an improved particle swarm optimization (NAPSO) is proposed to predict the dynamic measurement errors of sensors. Natural selection and simulated annealing are added in the PSO to raise the ability to avoid local optima. To verify the performance of NAPSO-SVM, three types of algorithms are selected to optimize the SVM's parameters: the particle swarm optimization algorithm (PSO), the improved PSO optimization algorithm (NAPSO), and the glowworm swarm optimization (GSO). The dynamic measurement error data of two sensors are applied as the test data. The root mean squared error and mean absolute percentage error are employed to evaluate the prediction models' performances. The experimental results show that among the three tested algorithms the NAPSO-SVM method has a better prediction precision and a less prediction errors, and it is an effective method for predicting the dynamic measurement errors of sensors.
Pre-liver transplant psychosocial evaluation predicts post-transplantation outcomes.
Benson, Ariel A; Rowe, Mina; Eid, Ahmad; Bluth, Keren; Merhav, Hadar; Khalaileh, Abed; Safadi, Rifaat
2018-08-01
Psychosocial factors greatly impact the course of patients throughout the liver transplantation process. A retrospective chart review was performed of patients who underwent liver transplantation at Hadassah-Hebrew University Medical Center between 2002 and 2012. A composite psychosocial score was computed based on the patient's pre-transplant evaluation. Patients were divided into two groups based on compliance, support and insight: Optimal psychosocial score and Non-optimal psychosocial score. Post-liver transplantation survival and complication rates were evaluated. Out of 100 patients who underwent liver transplantation at the Hadassah-Hebrew University Medical Center between 2002 and 2012, 93% had a complete pre-liver transplant psychosocial evaluation in the medical record performed by professional psychologists and social workers. Post-liver transplantation survival was significantly higher in the Optimal group (85%) as compared to the Non-optimal group (56%, p = .002). Post-liver transplantation rate of renal failure was significantly lower in the Optimal group. No significant differences were observed between the groups in other post-transplant complications. A patient's psychosocial status may impact outcomes following transplantation as inferior psychosocial grades were associated with lower overall survival and increased rates of complications. Pre-liver transplant psychosocial evaluations are an important tool to help predict survival following transplantation.
Gradient descent for robust kernel-based regression
NASA Astrophysics Data System (ADS)
Guo, Zheng-Chu; Hu, Ting; Shi, Lei
2018-06-01
In this paper, we study the gradient descent algorithm generated by a robust loss function over a reproducing kernel Hilbert space (RKHS). The loss function is defined by a windowing function G and a scale parameter σ, which can include a wide range of commonly used robust losses for regression. There is still a gap between theoretical analysis and optimization process of empirical risk minimization based on loss: the estimator needs to be global optimal in the theoretical analysis while the optimization method can not ensure the global optimality of its solutions. In this paper, we aim to fill this gap by developing a novel theoretical analysis on the performance of estimators generated by the gradient descent algorithm. We demonstrate that with an appropriately chosen scale parameter σ, the gradient update with early stopping rules can approximate the regression function. Our elegant error analysis can lead to convergence in the standard L 2 norm and the strong RKHS norm, both of which are optimal in the mini-max sense. We show that the scale parameter σ plays an important role in providing robustness as well as fast convergence. The numerical experiments implemented on synthetic examples and real data set also support our theoretical results.
Software Tools to Support the Assessment of System Health
NASA Technical Reports Server (NTRS)
Melcher, Kevin J.
2013-01-01
This presentation provides an overview of three software tools that were developed by the NASA Glenn Research Center to support the assessment of system health: the Propulsion Diagnostic Method Evaluation Strategy (ProDIMES), the Systematic Sensor Selection Strategy (S4), and the Extended Testability Analysis (ETA) tool. Originally developed to support specific NASA projects in aeronautics and space, these software tools are currently available to U.S. citizens through the NASA Glenn Software Catalog. The ProDiMES software tool was developed to support a uniform comparison of propulsion gas path diagnostic methods. Methods published in the open literature are typically applied to dissimilar platforms with different levels of complexity. They often address different diagnostic problems and use inconsistent metrics for evaluating performance. As a result, it is difficult to perform a one ]to ]one comparison of the various diagnostic methods. ProDIMES solves this problem by serving as a theme problem to aid in propulsion gas path diagnostic technology development and evaluation. The overall goal is to provide a tool that will serve as an industry standard, and will truly facilitate the development and evaluation of significant Engine Health Management (EHM) capabilities. ProDiMES has been developed under a collaborative project of The Technical Cooperation Program (TTCP) based on feedback provided by individuals within the aircraft engine health management community. The S4 software tool provides a framework that supports the optimal selection of sensors for health management assessments. S4 is structured to accommodate user ]defined applications, diagnostic systems, search techniques, and system requirements/constraints. One or more sensor suites that maximize this performance while meeting other user ]defined system requirements that are presumed to exist. S4 provides a systematic approach for evaluating combinations of sensors to determine the set or sets of sensors that optimally meet the performance goals and the constraints. It identifies optimal sensor suite solutions by utilizing a merit (i.e., cost) function with one of several available optimization approaches. As part of its analysis, S4 can expose fault conditions that are difficult to diagnose due to an incomplete diagnostic philosophy and/or a lack of sensors. S4 was originally developed and applied to liquid rocket engines. It was subsequently used to study the optimized selection of sensors for a simulation ]based aircraft engine diagnostic system. The ETA Tool is a software ]based analysis tool that augments the testability analysis and reporting capabilities of a commercial ]off ]the ]shelf (COTS) package. An initial diagnostic assessment is performed by the COTS software using a user ]developed, qualitative, directed ]graph model of the system being analyzed. The ETA Tool accesses system design information captured within the model and the associated testability analysis output to create a series of six reports for various system engineering needs. These reports are highlighted in the presentation. The ETA Tool was developed by NASA to support the verification of fault management requirements early in the Launch Vehicle process. Due to their early development during the design process, the TEAMS ]based diagnostic model and the ETA Tool were able to positively influence the system design by highlighting gaps in failure detection, fault isolation, and failure recovery.
NASA Astrophysics Data System (ADS)
Yang, Y.; Chui, T. F. M.
2016-12-01
Green infrastructure (GI) is identified as sustainable and environmentally friendly alternatives to the conventional grey stormwater infrastructure. Commonly used GI (e.g. green roof, bioretention, porous pavement) can provide multifunctional benefits, e.g. mitigation of urban heat island effects, improvements in air quality. Therefore, to optimize the design of GI and grey drainage infrastructure, it is essential to account for their benefits together with the costs. In this study, a comprehensive simulation-optimization modelling framework that considers the economic and hydro-environmental aspects of GI and grey infrastructure for small urban catchment applications is developed. Several modelling tools (i.e., EPA SWMM model, the WERF BMP and LID Whole Life Cycle Cost Modelling Tools) and optimization solvers are coupled together to assess the life-cycle cost-effectiveness of GI and grey infrastructure, and to further develop optimal stormwater drainage solutions. A typical residential lot in New York City is examined as a case study. The life-cycle cost-effectiveness of various GI and grey infrastructure are first examined at different investment levels. The results together with the catchment parameters are then provided to the optimization solvers, to derive the optimal investment and contributing area of each type of the stormwater controls. The relationship between the investment and optimized environmental benefit is found to be nonlinear. The optimized drainage solutions demonstrate that grey infrastructure is preferred at low total investments while more GI should be adopted at high investments. The sensitivity of the optimized solutions to the prices the stormwater controls is evaluated and is found to be highly associated with their utilizations in the base optimization case. The overall simulation-optimization framework can be easily applied to other sites world-wide, and to be further developed into powerful decision support systems.
Hou, Zeyu; Lu, Wenxi; Xue, Haibo; Lin, Jin
2017-08-01
Surrogate-based simulation-optimization technique is an effective approach for optimizing the surfactant enhanced aquifer remediation (SEAR) strategy for clearing DNAPLs. The performance of the surrogate model, which is used to replace the simulation model for the aim of reducing computation burden, is the key of corresponding researches. However, previous researches are generally based on a stand-alone surrogate model, and rarely make efforts to improve the approximation accuracy of the surrogate model to the simulation model sufficiently by combining various methods. In this regard, we present set pair analysis (SPA) as a new method to build ensemble surrogate (ES) model, and conducted a comparative research to select a better ES modeling pattern for the SEAR strategy optimization problems. Surrogate models were developed using radial basis function artificial neural network (RBFANN), support vector regression (SVR), and Kriging. One ES model is assembling RBFANN model, SVR model, and Kriging model using set pair weights according their performance, and the other is assembling several Kriging (the best surrogate modeling method of three) models built with different training sample datasets. Finally, an optimization model, in which the ES model was embedded, was established to obtain the optimal remediation strategy. The results showed the residuals of the outputs between the best ES model and simulation model for 100 testing samples were lower than 1.5%. Using an ES model instead of the simulation model was critical for considerably reducing the computation time of simulation-optimization process and maintaining high computation accuracy simultaneously. Copyright © 2017 Elsevier B.V. All rights reserved.
Alfredsson, Jayne; Plichart, Patrick; Zary, Nabil
2012-01-01
Research on computer supported scoring of assessments in health care education has mainly focused on automated scoring. Little attention has been given to how informatics can support the currently predominant human-based grading approach. This paper reports steps taken to develop a model for a computer supported scoring process that focuses on optimizing a task that was previously undertaken without computer support. The model was also implemented in the open source assessment platform TAO in order to study its benefits. Ability to score test takers anonymously, analytics on the graders reliability and a more time efficient process are example of observed benefits. A computer supported scoring will increase the quality of the assessment results.
United States Air Force Graduate Student Summer Support Program (1987). Program Management Report.
1987-12-01
were briefed on the benefits and research opportunities of the SFRP. The targeted groups within the University community were faculty of the...Effects on Fine Mary C. Robinson Motor Skill and Decoding Tasks 78 Design of a Mechanism to Control Wind Filiberto Santiago Tunnel Turbulence 79 Low...Systems 81 The Integration of Decision Support Jon A. Shupe Problems into Feature Modeling Based Design 89 r 0 82 Optimal Control of the Wing
2011-08-01
of geostationary (GEO) and low-earth-orbiting (LEO) sensors were employed to help guide daily mission planning , forecasts, and outlooks, and also...to enhance postmission analysis studies. This paper chronicles the T-PARC/TCS-08 project’s satellite-observing tools, imagery, and de - rived...how satellite-based remote sensing can be optimized to provide dedicated field campaign support. ReAl-Time miSSiON PlANNiNg , NOw- CASTiNg, AND
Wang, Hui; Qin, Feng; Ruan, Liu; Wang, Rui; Liu, Qi; Ma, Zhanhong; Li, Xiaolong; Cheng, Pei; Wang, Haiguang
2016-01-01
It is important to implement detection and assessment of plant diseases based on remotely sensed data for disease monitoring and control. Hyperspectral data of healthy leaves, leaves in incubation period and leaves in diseased period of wheat stripe rust and wheat leaf rust were collected under in-field conditions using a black-paper-based measuring method developed in this study. After data preprocessing, the models to identify the diseases were built using distinguished partial least squares (DPLS) and support vector machine (SVM), and the disease severity inversion models of stripe rust and the disease severity inversion models of leaf rust were built using quantitative partial least squares (QPLS) and support vector regression (SVR). All the models were validated by using leave-one-out cross validation and external validation. The diseases could be discriminated using both distinguished partial least squares and support vector machine with the accuracies of more than 99%. For each wheat rust, disease severity levels were accurately retrieved using both the optimal QPLS models and the optimal SVR models with the coefficients of determination (R2) of more than 0.90 and the root mean square errors (RMSE) of less than 0.15. The results demonstrated that identification and severity evaluation of stripe rust and leaf rust at the leaf level could be implemented based on the hyperspectral data acquired using the developed method. A scientific basis was provided for implementing disease monitoring by using aerial and space remote sensing technologies.
Ruan, Liu; Wang, Rui; Liu, Qi; Ma, Zhanhong; Li, Xiaolong; Cheng, Pei; Wang, Haiguang
2016-01-01
It is important to implement detection and assessment of plant diseases based on remotely sensed data for disease monitoring and control. Hyperspectral data of healthy leaves, leaves in incubation period and leaves in diseased period of wheat stripe rust and wheat leaf rust were collected under in-field conditions using a black-paper-based measuring method developed in this study. After data preprocessing, the models to identify the diseases were built using distinguished partial least squares (DPLS) and support vector machine (SVM), and the disease severity inversion models of stripe rust and the disease severity inversion models of leaf rust were built using quantitative partial least squares (QPLS) and support vector regression (SVR). All the models were validated by using leave-one-out cross validation and external validation. The diseases could be discriminated using both distinguished partial least squares and support vector machine with the accuracies of more than 99%. For each wheat rust, disease severity levels were accurately retrieved using both the optimal QPLS models and the optimal SVR models with the coefficients of determination (R2) of more than 0.90 and the root mean square errors (RMSE) of less than 0.15. The results demonstrated that identification and severity evaluation of stripe rust and leaf rust at the leaf level could be implemented based on the hyperspectral data acquired using the developed method. A scientific basis was provided for implementing disease monitoring by using aerial and space remote sensing technologies. PMID:27128464
Simulative design and process optimization of the two-stage stretch-blow molding process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hopmann, Ch.; Rasche, S.; Windeck, C.
2015-05-22
The total production costs of PET bottles are significantly affected by the costs of raw material. Approximately 70 % of the total costs are spent for the raw material. Therefore, stretch-blow molding industry intends to reduce the total production costs by an optimized material efficiency. However, there is often a trade-off between an optimized material efficiency and required product properties. Due to a multitude of complex boundary conditions, the design process of new stretch-blow molded products is still a challenging task and is often based on empirical knowledge. Application of current CAE-tools supports the design process by reducing development timemore » and costs. This paper describes an approach to determine optimized preform geometry and corresponding process parameters iteratively. The wall thickness distribution and the local stretch ratios of the blown bottle are calculated in a three-dimensional process simulation. Thereby, the wall thickness distribution is correlated with an objective function and preform geometry as well as process parameters are varied by an optimization algorithm. Taking into account the correlation between material usage, process history and resulting product properties, integrative coupled simulation steps, e.g. structural analyses or barrier simulations, are performed. The approach is applied on a 0.5 liter PET bottle of Krones AG, Neutraubling, Germany. The investigations point out that the design process can be supported by applying this simulative optimization approach. In an optimization study the total bottle weight is reduced from 18.5 g to 15.5 g. The validation of the computed results is in progress.« less
Simulative design and process optimization of the two-stage stretch-blow molding process
NASA Astrophysics Data System (ADS)
Hopmann, Ch.; Rasche, S.; Windeck, C.
2015-05-01
The total production costs of PET bottles are significantly affected by the costs of raw material. Approximately 70 % of the total costs are spent for the raw material. Therefore, stretch-blow molding industry intends to reduce the total production costs by an optimized material efficiency. However, there is often a trade-off between an optimized material efficiency and required product properties. Due to a multitude of complex boundary conditions, the design process of new stretch-blow molded products is still a challenging task and is often based on empirical knowledge. Application of current CAE-tools supports the design process by reducing development time and costs. This paper describes an approach to determine optimized preform geometry and corresponding process parameters iteratively. The wall thickness distribution and the local stretch ratios of the blown bottle are calculated in a three-dimensional process simulation. Thereby, the wall thickness distribution is correlated with an objective function and preform geometry as well as process parameters are varied by an optimization algorithm. Taking into account the correlation between material usage, process history and resulting product properties, integrative coupled simulation steps, e.g. structural analyses or barrier simulations, are performed. The approach is applied on a 0.5 liter PET bottle of Krones AG, Neutraubling, Germany. The investigations point out that the design process can be supported by applying this simulative optimization approach. In an optimization study the total bottle weight is reduced from 18.5 g to 15.5 g. The validation of the computed results is in progress.
Current Perspectives on Profiling and Enhancing Wheelchair Court Sport Performance.
Paulson, Thomas; Goosey-Tolfrey, Victoria
2017-03-01
Despite the growing interest in Paralympic sport, the evidence base for supporting elite wheelchair sport performance remains in its infancy when compared with able-bodied (AB) sport. Subsequently, current practice is often based on theory adapted from AB guidelines, with a heavy reliance on anecdotal evidence and practitioner experience. Many principles in training prescription and performance monitoring with wheelchair athletes are directly transferable from AB practice, including the periodization and tapering of athlete loads around competition, yet considerations for the physiological consequences of an athlete's impairment and the interface between athlete and equipment are vital when targeting interventions to optimize in-competition performance. Researchers and practitioners are faced with the challenge of identifying and implementing reliable protocols that detect small but meaningful changes in impairment-specific physical capacities and on-court performance. Technologies to profile both linear and rotational on-court performance are an essential component of sport-science support to understand sport-specific movement profiles and prescribe training intensities. In addition, an individualized approach to the prescription of athlete training and optimization of the "wheelchair-user interface" is required, accounting for an athlete's anthropometrics, sports classification, and positional role on court. In addition to enhancing physical capacities, interventions must focus on the integration of the athlete and his or her equipment, as well as techniques for limiting environmental influence on performance. Taken together, the optimization of wheelchair sport performance requires a multidisciplinary approach based on the individual requirements of each athlete.
Watershed Management Optimization Support Tool (WMOST) Workshop.
EPA's Watershed Management Optimization Support Tool (WMOST) version 2 is a decision support tool designed to facilitate integrated water management by communities at the small watershed scale. WMOST allows users to look across management options in stormwater (including green i...
Noyes, Jane; Lewis, Mary; Bennett, Virginia; Widdas, David; Brombley, Karen
2014-01-01
To report the first large-scale realistic nurse-led implementation, optimization and evaluation of a complex children's continuing-care policy. Health policies are increasingly complex, involve multiple Government departments and frequently fail to translate into better patient outcomes. Realist methods have not yet been adapted for policy implementation. Research methodology - Evaluation using theory-based realist methods for policy implementation. An expert group developed the policy and supporting tools. Implementation and evaluation design integrated diffusion of innovation theory with multiple case study and adapted realist principles. Practitioners in 12 English sites worked with Consultant Nurse implementers to manipulate the programme theory and logic of new decision-support tools and care pathway to optimize local implementation. Methods included key-stakeholder interviews, developing practical diffusion of innovation processes using key-opinion leaders and active facilitation strategies and a mini-community of practice. New and existing processes and outcomes were compared for 137 children during 2007-2008. Realist principles were successfully adapted to a shorter policy implementation and evaluation time frame. Important new implementation success factors included facilitated implementation that enabled 'real-time' manipulation of programme logic and local context to best-fit evolving theories of what worked; using local experiential opinion to change supporting tools to more realistically align with local context and what worked; and having sufficient existing local infrastructure to support implementation. Ten mechanisms explained implementation success and differences in outcomes between new and existing processes. Realistic policy implementation methods have advantages over top-down approaches, especially where clinical expertise is low and unlikely to diffuse innovations 'naturally' without facilitated implementation and local optimization. © 2013 John Wiley & Sons Ltd.
O'Brien, Casey L; Ski, Chantal F; Thompson, David R; Moore, Gaye; Mancuso, Serafino; Jenkins, Alicia; Ward, Glenn; MacIsaac, Richard J; Loh, Margaret; Knowles, Simon R; Rossell, Susan L; Castle, David J
2016-09-09
After a diagnosis of diabetes mellitus, people not only have to cope with the physical aspects and common complications that require daily self-management, they are also faced with ongoing psychosocial challenges. Subsequently they find themselves having to navigate the health system to engage multidisciplinary supports; the combination of these factors often resulting in reduced health-related quality of life. To maintain optimal diabetes control, interventions need to incorporate psychosocial supports and a skill base for disease management. Therefore, our aim was to evaluate an 'Optimal Health Program' that adopts a person-centred approach and engages collaborative therapy to educate and support the psychosocial health of people diagnosed with type I or II diabetes. This prospective randomised controlled trial will include 166 people diagnosed with diabetes: 83 in the intervention (Optimal Health Program) and 83 in the control (usual care) group. Participants with type diabetes mellitus will be recruited through hospital outpatient clinics and diabetes community organisations. Participants in the intervention group will receive nine (8 + 1 booster session) sequential sessions, based on a structured treatment manual emphasising educational and psychosocial support self-efficacy and skills building. The primary outcome measures will be generalised self-efficacy (GSE) and health-related quality of life (AQoL-6D and EQ-5D). Secondary measures will be anxiety and depression (HADS), social and workplace functioning (WSAS), diabetes-related quality of life (DQoL), diabetes-related distress (PAID), and type of coping strategies (Brief COPE). In addition, a health economic cost analysis and process evaluations will be performed to assess the economic cost and efficacy of the program's operations, implementation and service delivery. We envisage that the Optimal Health Program's emphasis on self-efficacy and self-management will provide participants with the skills and knowledge to achieve increased empowerment and independence in aspects of health, which in turn, will help participants deal more effectively with the physical and psychosocial complexities of diabetes. ACTRN12614001085662 . Registered on 10 October 2014.
Optimizing the atom types of proteins through iterative knowledge-based potentials
NASA Astrophysics Data System (ADS)
Wang, Xin-Xiang; Huang, Sheng-You
2018-02-01
Not Available Project supported by the National Natural Science Foundation of China (Grant No. 31670724), the National Key Research and Development Program of China (Grant Nos. 2016YFC1305800 and 2016YFC1305805), and the Startup Grant of Huazhong University of Science and Technology, China.
78 FR 36035 - Privacy Act of 1974; System of Records
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-14
... is provided by the interactive Web-based survey, telephone, or paper submission and response type... organizational research experts. Such use of such data is explicitly limited to a specific requestor, project... and information may be used in research and management studies that support optimal functioning of VA...
Solar Interferometric imaging from the Moon
NASA Astrophysics Data System (ADS)
Dame, L.; Martic, M.; Porteneuve, J.
1994-06-01
We present the concept of a Lunar Interferometer for Solar Physics. In particular we explain the rationale for a compact 2D array and we propose the use of a novel mechanical support structure based on linear mounting rods-these optimizing room and mass issues for transportation to the Moon.
Use of microcomputers for planning and managing silviculture habitat relationships.
B.G. Marcot; R.S. McNay; R.E. Page
1988-01-01
Microcomputers aid in monitoring, modeling, and decision support for integrating objectives of silviculture and wildlife habitat management. Spreadsheets, data bases, statistics, and graphics programs are described for use in monitoring. Stand growth models, modeling languages, area and geobased information systems, and optimization models are discussed for use in...
Cheung, Christabel K; Zebrack, Brad
2017-01-01
Cancer treatment programs and community-based support organizations are increasingly producing information and support resources geared to adolescent and young adult patients (AYAs); however, systematically-derived knowledge about user preferences for these resources is lacking. The primary purpose of this study was to generate findings from informed AYA cancer patients that resource developers can use to create products consistent with AYAs' expressed preferences for information and support. Utilizing a modified Delphi technique, AYA cancer patients identified barriers to optimal AYA cancer care, cancer resources that address their needs, and specific characteristics of cancer resources they find helpful. The Delphi panel consisted of a convenience sample of 21 patients aged 18-39 years, who were diagnosed with cancer between ages 15-39 and were no more than 8 years out from cancer treatment at the time of the study. Survey data were collected in three consecutive and iterative rounds over the course of 6 months in 2015. Findings indicated that AYA patients prefer resources that reduce feelings of loneliness, create a sense of community or belonging, and provide opportunities to meet other AYA patients. Among the top barriers to optimal cancer care, AYAs identified a lack of cancer care providers specializing in AYA care, a lack of connection to an AYA patient community, and their own lack of ability to navigate the health system. Participants also described aspects of cancer information and supportive care resources that they believe address AYAs' concerns. Information derived from this study will help developers of cancer information and support resources to better reach their intended audience. From the point of view of AYA cancer patients, optimal cancer care and utilization of information and support resources requires that cancer support programs foster meaningful connections among AYA patients. Results also suggest that patient resources should equip AYAs with practical knowledge and skills necessary to navigate the health system and advocate for themselves. Given patient interest in social media, future research should further investigate optimizing online resources to serve the AYA cancer population.
BMP analysis system for watershed-based stormwater management.
Zhen, Jenny; Shoemaker, Leslie; Riverson, John; Alvi, Khalid; Cheng, Mow-Soung
2006-01-01
Best Management Practices (BMPs) are measures for mitigating nonpoint source (NPS) pollution caused mainly by stormwater runoff. Established urban and newly developing areas must develop cost effective means for restoring or minimizing impacts, and planning future growth. Prince George's County in Maryland, USA, a fast-growing region in the Washington, DC metropolitan area, has developed a number of tools to support analysis and decision making for stormwater management planning and design at the watershed level. These tools support watershed analysis, innovative BMPs, and optimization. Application of these tools can help achieve environmental goals and lead to significant cost savings. This project includes software development that utilizes GIS information and technology, integrates BMP processes simulation models, and applies system optimization techniques for BMP planning and selection. The system employs the ESRI ArcGIS as the platform, and provides GIS-based visualization and support for developing networks including sequences of land uses, BMPs, and stream reaches. The system also provides interfaces for BMP placement, BMP attribute data input, and decision optimization management. The system includes a stand-alone BMP simulation and evaluation module, which complements both research and regulatory nonpoint source control assessment efforts, and allows flexibility in the examining various BMP design alternatives. Process based simulation of BMPs provides a technique that is sensitive to local climate and rainfall patterns. The system incorporates a meta-heuristic optimization technique to find the most cost-effective BMP placement and implementation plan given a control target, or a fixed cost. A case study is presented to demonstrate the application of the Prince George's County system. The case study involves a highly urbanized area in the Anacostia River (a tributary to Potomac River) watershed southeast of Washington, DC. An innovative system of management practices is proposed to minimize runoff, improve water quality, and provide water reuse opportunities. Proposed management techniques include bioretention, green roof, and rooftop runoff collection (rain barrel) systems. The modeling system was used to identify the most cost-effective combinations of management practices to help minimize frequency and size of runoff events and resulting combined sewer overflows to the Anacostia River.
Design concepts for the Centrifuge Facility Life Sciences Glovebox
NASA Technical Reports Server (NTRS)
Sun, Sidney C.; Horkachuck, Michael J.; Mckeown, Kellie A.
1989-01-01
The Life Sciences Glovebox will provide the bioisolated environment to support on-orbit operations involving non-human live specimens and samples for human life sceinces experiments. It will be part of the Centrifuge Facility, in which animal and plant specimens are housed in bioisolated Habitat modules and transported to the Glovebox as part of the experiment protocols supported by the crew. At the Glovebox, up to two crew members and two habitat modules must be accommodated to provide flexibility and support optimal operations. This paper will present several innovative design concepts that attempt to satisfy the basic Glovebox requirements. These concepts were evaluated for ergonomics and ease of operations using computer modeling and full-scale mockups. The more promising ideas were presented to scientists and astronauts for their evaluation. Their comments, and the results from other evaluations are presented. Based on the evaluations, the authors recommend designs and features that will help optimize crew performance and facilitate science accommodations, and specify problem areas that require further study.
Examining preferences for website support to parents of adolescents with diabetes.
Nicholas, David B; Gutwin, Carl; Paterson, Barbara
2013-01-01
Diabetes can be stressful as parents seek optimal outcomes for their adolescent with type 1 diabetes. This study examined parents' interest and perspectives related to online diabetes resources. Based on a qualitative description approach, 14 qualitative group interviews were conducted with (i) parents of adolescents with diabetes (n = 29), and (ii) pediatric health care providers (n = 31). Participants were recruited, through a purposive sampling approach, at pediatric centers in three Canadian cities. Qualitative data were subjected to thematic analysis comprising data coding, categorization, and ultimate theme generation. Participants described parental care for adolescents with diabetes as complex and reflective of difficult and nuanced tasks. They recommended the development of a comprehensive parent-based information and support website, and identified crucial elements of the website. Overarching themes comprised the following: complex parenting processes in diabetes care, parents' need for information and support, challenges and benefits of online support, key elements of an online resource, and caution regarding online resources. Based on these findings, website information and support emerged as a viable and desired resource for augmenting pediatric care within clinical settings. Caution was also offered in addressing potential challenges inherent in online support. Findings offer guidance for online support to parents.
Fast-Solving Quasi-Optimal LS-S3VM Based on an Extended Candidate Set.
Ma, Yuefeng; Liang, Xun; Kwok, James T; Li, Jianping; Zhou, Xiaoping; Zhang, Haiyan
2018-04-01
The semisupervised least squares support vector machine (LS-S 3 VM) is an important enhancement of least squares support vector machines in semisupervised learning. Given that most data collected from the real world are without labels, semisupervised approaches are more applicable than standard supervised approaches. Although a few training methods for LS-S 3 VM exist, the problem of deriving the optimal decision hyperplane efficiently and effectually has not been solved. In this paper, a fully weighted model of LS-S 3 VM is proposed, and a simple integer programming (IP) model is introduced through an equivalent transformation to solve the model. Based on the distances between the unlabeled data and the decision hyperplane, a new indicator is designed to represent the possibility that the label of an unlabeled datum should be reversed in each iteration during training. Using the indicator, we construct an extended candidate set consisting of the indices of unlabeled data with high possibilities, which integrates more information from unlabeled data. Our algorithm is degenerated into a special scenario of the previous algorithm when the extended candidate set is reduced into a set with only one element. Two strategies are utilized to determine the descent directions based on the extended candidate set. Furthermore, we developed a novel method for locating a good starting point based on the properties of the equivalent IP model. Combined with the extended candidate set and the carefully computed starting point, a fast algorithm to solve LS-S 3 VM quasi-optimally is proposed. The choice of quasi-optimal solutions results in low computational cost and avoidance of overfitting. Experiments show that our algorithm equipped with the two designed strategies is more effective than other algorithms in at least one of the following three aspects: 1) computational complexity; 2) generalization ability; and 3) flexibility. However, our algorithm and other algorithms have similar levels of performance in the remaining aspects.
Trivedi, Madhukar H; Daly, Ella J
2007-05-01
Despite years of antidepressant drug development and patient and provider education, suboptimal medication dosing and duration of exposure resulting in incomplete remission of symptoms remains the norm in the treatment of depression. Additionally, since no one treatment is effective for all patients, optimal implementation focusing on the measurement of symptoms, side effects, and function is essential to determine effective sequential treatment approaches. There is a need for a paradigm shift in how clinical decision making is incorporated into clinical practice and for a move away from the trial-and-error approach that currently determines the "next best" treatment. This paper describes how our experience with the Texas Medication Algorithm Project (TMAP) and the Sequenced Treatment Alternatives to Relieve Depression (STAR*D) trial has confirmed the need for easy-to-use clinical support systems to ensure fidelity to guidelines. To further enhance guideline fidelity, we have developed an electronic decision support system that provides critical feedback and guidance at the point of patient care. We believe that a measurement-based care (MBC) approach is essential to any decision support system, allowing physicians to individualize and adapt decisions about patient care based on symptom progress, tolerability of medication, and dose optimization. We also believe that successful integration of sequential algorithms with MBC into real-world clinics will facilitate change that will endure and improve patient outcomes. Although we use major depression to illustrate our approach, the issues addressed are applicable to other chronic psychiatric conditions including comorbid depression and substance use disorder as well as other medical illnesses.
Trivedi, Madhukar H.; Daly, Ella J.
2009-01-01
Despite years of antidepressant drug development and patient and provider education, suboptimal medication dosing and duration of exposure resulting in incomplete remission of symptoms remains the norm in the treatment of depression. Additionally, since no one treatment is effective for all patients, optimal implementation focusing on the measurement of symptoms, side effects, and function is essential to determine effective sequential treatment approaches. There is a need for a paradigm shift in how clinical decision making is incorporated into clinical practice and for a move away from the trial-and-error approach that currently determines the “next best” treatment. This paper describes how our experience with the Texas Medication Algorithm Project (TMAP) and the Sequenced Treatment Alternatives to Relieve Depression (STAR*D) trial has confirmed the need for easy-to-use clinical support systems to ensure fidelity to guidelines. To further enhance guideline fidelity, we have developed an electronic decision support system that provides critical feedback and guidance at the point of patient care. We believe that a measurement-based care (MBC) approach is essential to any decision support system, allowing physicians to individualize and adapt decisions about patient care based on symptom progress, tolerability of medication, and dose optimization. We also believe that successful integration of sequential algorithms with MBC into real-world clinics will facilitate change that will endure and improve patient outcomes. Although we use major depression to illustrate our approach, the issues addressed are applicable to other chronic psychiatric conditions including comorbid depression and substance use disorder as well as other medical illnesses. PMID:17320312
NASA Astrophysics Data System (ADS)
Cisty, Milan; Bajtek, Zbynek; Celar, Lubomir; Soldanova, Veronika
2017-04-01
Finding effective ways to build irrigation systems which meet irrigation demands and also achieve positive environmental and economic outcomes requires, among other activities, the development of new modelling tools. Due to the high costs associated with the necessary material and the installation of an irrigation water distribution system (WDS), it is essential to optimize the design of the WDS, while the hydraulic requirements (e.g., the required pressure on irrigation machines) of the network are gratified. In this work an optimal design of a water distribution network is proposed for large irrigation networks. In the present work, a multi-step optimization approach is proposed in such a way that the optimization is accomplished in two phases. In the first phase suboptimal solutions are searched for; in the second phase, the optimization problem is solved with a reduced search space based on these solutions, which significantly supports the finding of an optimal solution. The first phase of the optimization consists of several runs of the NSGA-II, which is applied in this phase by varying its parameters for every run, i.e., changing the population size, the number of generations, and the crossover and mutation parameters. This is done with the aim of obtaining different sub-optimal solutions which have a relatively low cost. These sub-optimal solutions are subsequently used in the second phase of the proposed methodology, in which the final optimization run is built on sub-optimal solutions from the previous phase. The purpose of the second phase is to improve the results of the first phase by searching through the reduced search space. The reduction is based on the minimum and maximum diameters for each pipe from all the networks from the first stage. In this phase, NSGA-II do not consider diameters which are outside of this range. After the NSGA-II second phase computations, the best result published so far for the Balerma benchmark network which was used for methodology testing was achieved in the presented work. The knowledge gained from these computational experiments lies not in offering a new advanced heuristic or hybrid optimization methods of a water distribution network, but in the fact that it is possible to obtain very good results with simple, known methods if they are properly used methodologically. ACKNOWLEDGEMENT This work was supported by the Slovak Research and Development Agency under Contract No. APVV-15-0489 and by the Scientific Grant Agency of the Ministry of Education of the Slovak Republic and the Slovak Academy of Sciences, Grant No. 1/0665/15.
NASA Astrophysics Data System (ADS)
Akhtar, Taimoor; Shoemaker, Christine
2016-04-01
Watershed model calibration is inherently a multi-criteria problem. Conflicting trade-offs exist between different quantifiable calibration criterions indicating the non-existence of a single optimal parameterization. Hence, many experts prefer a manual approach to calibration where the inherent multi-objective nature of the calibration problem is addressed through an interactive, subjective, time-intensive and complex decision making process. Multi-objective optimization can be used to efficiently identify multiple plausible calibration alternatives and assist calibration experts during the parameter estimation process. However, there are key challenges to the use of multi objective optimization in the parameter estimation process which include: 1) multi-objective optimization usually requires many model simulations, which is difficult for complex simulation models that are computationally expensive; and 2) selection of one from numerous calibration alternatives provided by multi-objective optimization is non-trivial. This study proposes a "Hybrid Automatic Manual Strategy" (HAMS) for watershed model calibration to specifically address the above-mentioned challenges. HAMS employs a 3-stage framework for parameter estimation. Stage 1 incorporates the use of an efficient surrogate multi-objective algorithm, GOMORS, for identification of numerous calibration alternatives within a limited simulation evaluation budget. The novelty of HAMS is embedded in Stages 2 and 3 where an interactive visual and metric based analytics framework is available as a decision support tool to choose a single calibration from the numerous alternatives identified in Stage 1. Stage 2 of HAMS provides a goodness-of-fit measure / metric based interactive framework for identification of a small subset (typically less than 10) of meaningful and diverse set of calibration alternatives from the numerous alternatives obtained in Stage 1. Stage 3 incorporates the use of an interactive visual analytics framework for decision support in selection of one parameter combination from the alternatives identified in Stage 2. HAMS is applied for calibration of flow parameters of a SWAT model, (Soil and Water Assessment Tool) designed to simulate flow in the Cannonsville watershed in upstate New York. Results from the application of HAMS to Cannonsville indicate that efficient multi-objective optimization and interactive visual and metric based analytics can bridge the gap between the effective use of both automatic and manual strategies for parameter estimation of computationally expensive watershed models.
Improving the performance of surgery-based clinical pathways: a simulation-optimization approach.
Ozcan, Yasar A; Tànfani, Elena; Testi, Angela
2017-03-01
This paper aims to improve the performance of clinical processes using clinical pathways (CPs). The specific goal of this research is to develop a decision support tool, based on a simulation-optimization approach, which identify the proper adjustment and alignment of resources to achieve better performance for both the patients and the health-care facility. When multiple perspectives are present in a decision problem, critical issues arise and often require the balancing of goals. In our approach, meeting patients' clinical needs in a timely manner, and to avoid worsening of clinical conditions, we assess the level of appropriate resources. The simulation-optimization model seeks and evaluates alternative resource configurations aimed at balancing the two main objectives-meeting patient needs and optimal utilization of beds and operating rooms.Using primary data collected at a Department of Surgery of a public hospital located in Genoa, Italy. The simulation-optimization modelling approach in this study has been applied to evaluate the thyroid surgical treatment together with the other surgery-based CPs. The low rate of bed utilization and the long elective waiting lists of the specialty under study indicates that the wards were oversized while the operating room capacity was the bottleneck of the system. The model enables hospital managers determine which objective has to be given priority, as well as the corresponding opportunity costs.
Watershed Management Optimization Support Tool (WMOST) ...
EPA's Watershed Management Optimization Support Tool (WMOST) version 2 is a decision support tool designed to facilitate integrated water management by communities at the small watershed scale. WMOST allows users to look across management options in stormwater (including green infrastructure), wastewater, drinking water, and land conservation programs to find the least cost solutions. The pdf version of these presentations accompany the recorded webinar with closed captions to be posted on the WMOST web page. The webinar was recorded at the time a training workshop took place for EPA's Watershed Management Optimization Support Tool (WMOST, v2).
NASA Astrophysics Data System (ADS)
Song, Yanpo; Peng, Xiaoqi; Tang, Ying; Hu, Zhikun
2013-07-01
To improve the operation level of copper converter, the approach to optimal decision making modeling for coppermatte converting process based on data mining is studied: in view of the characteristics of the process data, such as containing noise, small sample size and so on, a new robust improved ANN (artificial neural network) modeling method is proposed; taking into account the application purpose of decision making model, three new evaluation indexes named support, confidence and relative confidence are proposed; using real production data and the methods mentioned above, optimal decision making model for blowing time of S1 period (the 1st slag producing period) are developed. Simulation results show that this model can significantly improve the converting quality of S1 period, increase the optimal probability from about 70% to about 85%.
NASA Astrophysics Data System (ADS)
Subagadis, Y. H.; Schütze, N.; Grundmann, J.
2014-09-01
The conventional methods used to solve multi-criteria multi-stakeholder problems are less strongly formulated, as they normally incorporate only homogeneous information at a time and suggest aggregating objectives of different decision-makers avoiding water-society interactions. In this contribution, Multi-Criteria Group Decision Analysis (MCGDA) using a fuzzy-stochastic approach has been proposed to rank a set of alternatives in water management decisions incorporating heterogeneous information under uncertainty. The decision making framework takes hydrologically, environmentally, and socio-economically motivated conflicting objectives into consideration. The criteria related to the performance of the physical system are optimized using multi-criteria simulation-based optimization, and fuzzy linguistic quantifiers have been used to evaluate subjective criteria and to assess stakeholders' degree of optimism. The proposed methodology is applied to find effective and robust intervention strategies for the management of a coastal hydrosystem affected by saltwater intrusion due to excessive groundwater extraction for irrigated agriculture and municipal use. Preliminary results show that the MCGDA based on a fuzzy-stochastic approach gives useful support for robust decision-making and is sensitive to the decision makers' degree of optimism.
Optimal control of a hybrid rhythmic-discrete task: the bouncing ball revisited.
Ronsse, Renaud; Wei, Kunlin; Sternad, Dagmar
2010-05-01
Rhythmically bouncing a ball with a racket is a hybrid task that combines continuous rhythmic actuation of the racket with the control of discrete impact events between racket and ball. This study presents experimental data and a two-layered modeling framework that explicitly addresses the hybrid nature of control: a first discrete layer calculates the state to reach at impact and the second continuous layer smoothly drives the racket to this desired state, based on optimality principles. The testbed for this hybrid model is task performance at a range of increasingly slower tempos. When slowing the rhythm of the bouncing actions, the continuous cycles become separated into a sequence of discrete movements interspersed by dwell times and directed to achieve the desired impact. Analyses of human performance show increasing variability of performance measures with slower tempi, associated with a change in racket trajectories from approximately sinusoidal to less symmetrical velocity profiles. Matching results of model simulations give support to a hybrid control model based on optimality, and therefore suggest that optimality principles are applicable to the sensorimotor control of complex movements such as ball bouncing.
Falloon, Ian RH; Montero, Isabel; Sungur, Mehmet; Mastroeni, Antonino; Malm, Ulf; Economou, Marina; Grawe, Rolf; Harangozo, Judit; Mizuno, Masafumi; Murakami, Masaaki; Hager, Bert; Held, Tilo; Veltro, Franco; Gedye, Robyn
2004-01-01
According to clinical trials literature, every person with a schizophrenic disorder should be provided with the combination of optimal dose antipsychotics, strategies to educate himself and his carers to cope more efficiently with environmental stresses, cognitive-behavioural strategies to enhance work and social goals and reducing residual symptoms, and assertive home-based management to help prevent and resolve major social needs and crises, including recurrent episodes of symptoms. Despite strong scientific support for the routine implementation of these 'evidence-based' strategies, few services provide more than the pharmacotherapy component, and even this is seldom applied in the manner associated with the best results in the clinical trials. An international collaborative group, the Optimal Treatment Project (OTP), has been developed to promote the routine use of evidence-based strategies for schizophrenic disorders. A field trial was started to evaluate the benefits and costs of applying evidence-based strategies over a 5-year period. Centres have been set up in 18 countries. This paper summarises the outcome after 24 months of 'optimal' treatment in 603 cases who had reached this stage in their treatment by the end of 2002. On all measures the evidence-based OTP approach achieved more than double the benefits associated with current best practices. One half of recent cases had achieved full recovery from clinical and social morbidity. These advantages were even more striking in centres where a random-control design was used. PMID:16633471
Falloon, Ian R H; Montero, Isabel; Sungur, Mehmet; Mastroeni, Antonino; Malm, Ulf; Economou, Marina; Grawe, Rolf; Harangozo, Judit; Mizuno, Masafumi; Murakami, Masaaki; Hager, Bert; Held, Tilo; Veltro, Franco; Gedye, Robyn
2004-06-01
According to clinical trials literature, every person with a schizophrenic disorder should be provided with the combination of optimal dose antipsychotics, strategies to educate himself and his carers to cope more efficiently with environmental stresses, cognitive-behavioural strategies to enhance work and social goals and reducing residual symptoms, and assertive home-based management to help prevent and resolve major social needs and crises, including recurrent episodes of symptoms. Despite strong scientific support for the routine implementation of these 'evidence-based' strategies, few services provide more than the pharmacotherapy component, and even this is seldom applied in the manner associated with the best results in the clinical trials. An international collaborative group, the Optimal Treatment Project (OTP), has been developed to promote the routine use of evidence-based strategies for schizophrenic disorders. A field trial was started to evaluate the benefits and costs of applying evidence-based strategies over a 5-year period. Centres have been set up in 18 countries. This paper summarises the outcome after 24 months of 'optimal' treatment in 603 cases who had reached this stage in their treatment by the end of 2002. On all measures the evidence-based OTP approach achieved more than double the benefits associated with current best practices. One half of recent cases had achieved full recovery from clinical and social morbidity. These advantages were even more striking in centres where a random-control design was used.
Watershed Management Optimization Support Tool v3
The Watershed Management Optimization Support Tool (WMOST) is a decision support tool that facilitates integrated water management at the local or small watershed scale. WMOST models the environmental effects and costs of management decisions in a watershed context that is, accou...
NASA Astrophysics Data System (ADS)
Zhao, Yu; Yuan, Sanling
2017-07-01
As well known that the sudden environmental shocks and toxicant can affect the population dynamics of fish species, a mechanistic understanding of how sudden environmental change and toxicant influence the optimal harvesting policy requires development. This paper presents the optimal harvesting of a stochastic two-species competitive model with Lévy noise in a polluted environment, where the Lévy noise is used to describe the sudden climate change. Due to the discontinuity of the Lévy noise, the classical optimal harvesting methods based on the explicit solution of the corresponding Fokker-Planck equation are invalid. The object of this paper is to fill up this gap and establish the optimal harvesting policy. By using of aggregation and ergodic methods, the approximation of the optimal harvesting effort and maximum expectation of sustainable yields are obtained. Numerical simulations are carried out to support these theoretical results. Our analysis shows that the Lévy noise and the mean stress measure of toxicant in organism may affect the optimal harvesting policy significantly.
Gameiro, Sofia; Boivin, Jacky; Domar, Alice
2013-08-01
This review argues that optimal in vitro fertilization in 2020 should include a way of enhancing the delivery of treatment for patients and staff by the minimization of patient, treatment, and clinic sources of burden. Two specific sources of burden are addressed. First, patient vulnerability can be tackled by implementation of pretreatment evidence-based screening for psychological distress, appropriate referral for support, elimination of barriers to acceptance of psychosocial support, and implementation of a routine care flowchart that identifies the specific stages of treatment when psychosocial support should be provided. Second, negative patient-staff interactions can be avoided by training staff in communication/interaction skills, promoting shared decision making, prioritizing psychological interventions that address aspects of care equally problematic for patients and staff, and monitoring the impact of change on patient, staff, and clinic outcomes. In addition, optimal in vitro fertilization should ensure now that the future generations of young adults know what "achieving parenthood" actually entails in the context of the many desired goals of adulthood, greater variety of reproductive techniques available, later age of first births, and, consequently, longer exposure to risk factors (e.g., smoking) that affect fertility. Copyright © 2013 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Liu, Weiqi; Huang, Peng; Peng, Jinye; Fan, Jianping; Zeng, Guihua
2018-02-01
For supporting practical quantum key distribution (QKD), it is critical to stabilize the physical parameters of signals, e.g., the intensity, phase, and polarization of the laser signals, so that such QKD systems can achieve better performance and practical security. In this paper, an approach is developed by integrating a support vector regression (SVR) model to optimize the performance and practical security of the QKD system. First, a SVR model is learned to precisely predict the time-along evolutions of the physical parameters of signals. Second, such predicted time-along evolutions are employed as feedback to control the QKD system for achieving the optimal performance and practical security. Finally, our proposed approach is exemplified by using the intensity evolution of laser light and a local oscillator pulse in the Gaussian modulated coherent state QKD system. Our experimental results have demonstrated three significant benefits of our SVR-based approach: (1) it can allow the QKD system to achieve optimal performance and practical security, (2) it does not require any additional resources and any real-time monitoring module to support automatic prediction of the time-along evolutions of the physical parameters of signals, and (3) it is applicable to any measurable physical parameter of signals in the practical QKD system.
Dumbre, Deepa K; Choudhary, Vasant R; Patil, Nilesh S; Uphade, Balu S; Bhargava, Suresh K
2014-02-01
Gold nanoparticles are deposited on basic CaO supports as catalysts for the selective conversion of styrene into styrene oxide. Synthetic methods, gold loading and calcination temperatures are varied to permit an understanding of their influence on gold nanoparticle size, the presence of cationic gold species and the nature of interaction between the gold nanoparticles and the CaO support. Based on these studies, optimal conditions are designed to make the Au/CaO catalyst efficient for the selective epoxidation of styrene. Copyright © 2013 Elsevier Inc. All rights reserved.
Poza-Lujan, Jose-Luis; Posadas-Yagüe, Juan-Luis; Simó-Ten, José-Enrique; Simarro, Raúl; Benet, Ginés
2015-02-25
This paper is part of a study of intelligent architectures for distributed control and communications systems. The study focuses on optimizing control systems by evaluating the performance of middleware through quality of service (QoS) parameters and the optimization of control using Quality of Control (QoC) parameters. The main aim of this work is to study, design, develop, and evaluate a distributed control architecture based on the Data-Distribution Service for Real-Time Systems (DDS) communication standard as proposed by the Object Management Group (OMG). As a result of the study, an architecture called Frame-Sensor-Adapter to Control (FSACtrl) has been developed. FSACtrl provides a model to implement an intelligent distributed Event-Based Control (EBC) system with support to measure QoS and QoC parameters. The novelty consists of using, simultaneously, the measured QoS and QoC parameters to make decisions about the control action with a new method called Event Based Quality Integral Cycle. To validate the architecture, the first five Braitenberg vehicles have been implemented using the FSACtrl architecture. The experimental outcomes, demonstrate the convenience of using jointly QoS and QoC parameters in distributed control systems.
Poza-Lujan, Jose-Luis; Posadas-Yagüe, Juan-Luis; Simó-Ten, José-Enrique; Simarro, Raúl; Benet, Ginés
2015-01-01
This paper is part of a study of intelligent architectures for distributed control and communications systems. The study focuses on optimizing control systems by evaluating the performance of middleware through quality of service (QoS) parameters and the optimization of control using Quality of Control (QoC) parameters. The main aim of this work is to study, design, develop, and evaluate a distributed control architecture based on the Data-Distribution Service for Real-Time Systems (DDS) communication standard as proposed by the Object Management Group (OMG). As a result of the study, an architecture called Frame-Sensor-Adapter to Control (FSACtrl) has been developed. FSACtrl provides a model to implement an intelligent distributed Event-Based Control (EBC) system with support to measure QoS and QoC parameters. The novelty consists of using, simultaneously, the measured QoS and QoC parameters to make decisions about the control action with a new method called Event Based Quality Integral Cycle. To validate the architecture, the first five Braitenberg vehicles have been implemented using the FSACtrl architecture. The experimental outcomes, demonstrate the convenience of using jointly QoS and QoC parameters in distributed control systems. PMID:25723145
Arthropod phylogeny based on eight molecular loci and morphology
NASA Technical Reports Server (NTRS)
Giribet, G.; Edgecombe, G. D.; Wheeler, W. C.
2001-01-01
The interrelationships of major clades within the Arthropoda remain one of the most contentious issues in systematics, which has traditionally been the domain of morphologists. A growing body of DNA sequences and other types of molecular data has revitalized study of arthropod phylogeny and has inspired new considerations of character evolution. Novel hypotheses such as a crustacean-hexapod affinity were based on analyses of single or few genes and limited taxon sampling, but have received recent support from mitochondrial gene order, and eye and brain ultrastructure and neurogenesis. Here we assess relationships within Arthropoda based on a synthesis of all well sampled molecular loci together with a comprehensive data set of morphological, developmental, ultrastructural and gene-order characters. The molecular data include sequences of three nuclear ribosomal genes, three nuclear protein-coding genes, and two mitochondrial genes (one protein coding, one ribosomal). We devised new optimization procedures and constructed a parallel computer cluster with 256 central processing units to analyse molecular data on a scale not previously possible. The optimal 'total evidence' cladogram supports the crustacean-hexapod clade, recognizes pycnogonids as sister to other euarthropods, and indicates monophyly of Myriapoda and Mandibulata.
When more is less: Feedback effects in perceptual category learning ☆
Maddox, W. Todd; Love, Bradley C.; Glass, Brian D.; Filoteo, J. Vincent
2008-01-01
Rule-based and information-integration category learning were compared under minimal and full feedback conditions. Rule-based category structures are those for which the optimal rule is verbalizable. Information-integration category structures are those for which the optimal rule is not verbalizable. With minimal feedback subjects are told whether their response was correct or incorrect, but are not informed of the correct category assignment. With full feedback subjects are informed of the correctness of their response and are also informed of the correct category assignment. An examination of the distinct neural circuits that subserve rule-based and information-integration category learning leads to the counterintuitive prediction that full feedback should facilitate rule-based learning but should also hinder information-integration learning. This prediction was supported in the experiment reported below. The implications of these results for theories of learning are discussed. PMID:18455155
2013-01-01
Background The prevalence of obesity in men is rising, but they are less likely than women to engage in existing weight management programmes. The potential of professional sports club settings to engage men in health promotion activities is being increasingly recognised. This paper describes the development and optimization of the Football Fans in Training (FFIT) programme, which aims to help overweight men (many of them football supporters) lose weight through becoming more active and adopting healthier eating habits. Methods The MRC Framework for the design and evaluation of complex interventions was used to guide programme development in two phases. In Phase 1, a multidisciplinary working group developed the pilot programme (p-FFIT) and used a scoping review to summarize previous research and identify the target population. Phase 2 involved a process evaluation of p-FFIT in 11 Scottish Premier League (SPL) clubs. Participant and coach feedback, focus group discussions and interviews explored the utility/acceptability of programme components and suggestions for changes. Programme session observations identified examples of good practice and problems/issues with delivery. Together, these findings informed redevelopment of the optimized programme (FFIT), whose components were mapped onto specific behaviour change techniques using an evidence-based taxonomy. Results p-FFIT comprised 12, weekly, gender-sensitised, group-based weight management classroom and ‘pitch-side’ physical activity sessions. These in-stadia sessions were complemented by an incremental, pedometer-based walking programme. p-FFIT was targeted at men aged 35-65 years with body mass index ≥ 27 kg/m2. Phase 2 demonstrated that participants in p-FFIT were enthusiastic about both the classroom and physical activity components, and valued the camaraderie and peer-support offered by the programme. Coaches appreciated the simplicity of the key healthy eating and physical activity messages. Suggestions for improvements that were incorporated into the optimized FFIT programme included: more varied in-stadia physical activity with football-related components; post-programme weight management support (emails and a reunion session); and additional training for coaches in SMART goal setting and the pedometer-based walking programme. Conclusions The Football Fans in Training programme is highly acceptable to participants and SPL coaches, and is appropriate for evaluation in a randomised controlled trial. PMID:23496915
NASA Astrophysics Data System (ADS)
DeSena, J. T.; Martin, S. R.; Clarke, J. C.; Dutrow, D. A.; Newman, A. J.
2012-06-01
As the number and diversity of sensing assets available for intelligence, surveillance and reconnaissance (ISR) operations continues to expand, the limited ability of human operators to effectively manage, control and exploit the ISR ensemble is exceeded, leading to reduced operational effectiveness. Automated support both in the processing of voluminous sensor data and sensor asset control can relieve the burden of human operators to support operation of larger ISR ensembles. In dynamic environments it is essential to react quickly to current information to avoid stale, sub-optimal plans. Our approach is to apply the principles of feedback control to ISR operations, "closing the loop" from the sensor collections through automated processing to ISR asset control. Previous work by the authors demonstrated non-myopic multiple platform trajectory control using a receding horizon controller in a closed feedback loop with a multiple hypothesis tracker applied to multi-target search and track simulation scenarios in the ground and space domains. This paper presents extensions in both size and scope of the previous work, demonstrating closed-loop control, involving both platform routing and sensor pointing, of a multisensor, multi-platform ISR ensemble tasked with providing situational awareness and performing search, track and classification of multiple moving ground targets in irregular warfare scenarios. The closed-loop ISR system is fullyrealized using distributed, asynchronous components that communicate over a network. The closed-loop ISR system has been exercised via a networked simulation test bed against a scenario in the Afghanistan theater implemented using high-fidelity terrain and imagery data. In addition, the system has been applied to space surveillance scenarios requiring tracking of space objects where current deliberative, manually intensive processes for managing sensor assets are insufficiently responsive. Simulation experiment results are presented. The algorithm to jointly optimize sensor schedules against search, track, and classify is based on recent work by Papageorgiou and Raykin on risk-based sensor management. It uses a risk-based objective function and attempts to minimize and balance the risks of misclassifying and losing track on an object. It supports the requirement to generate tasking for metric and feature data concurrently and synergistically, and account for both tracking accuracy and object characterization, jointly, in computing reward and cost for optimizing tasking decisions.
DUKSUP: A Computer Program for High Thrust Launch Vehicle Trajectory Design and Optimization
NASA Technical Reports Server (NTRS)
Williams, C. H.; Spurlock, O. F.
2014-01-01
From the late 1960's through 1997, the leadership of NASA's Intermediate and Large class unmanned expendable launch vehicle projects resided at the NASA Lewis (now Glenn) Research Center (LeRC). One of LeRC's primary responsibilities --- trajectory design and performance analysis --- was accomplished by an internally-developed analytic three dimensional computer program called DUKSUP. Because of its Calculus of Variations-based optimization routine, this code was generally more capable of finding optimal solutions than its contemporaries. A derivation of optimal control using the Calculus of Variations is summarized including transversality, intermediate, and final conditions. The two point boundary value problem is explained. A brief summary of the code's operation is provided, including iteration via the Newton-Raphson scheme and integration of variational and motion equations via a 4th order Runge-Kutta scheme. Main subroutines are discussed. The history of the LeRC trajectory design efforts in the early 1960's is explained within the context of supporting the Centaur upper stage program. How the code was constructed based on the operation of the Atlas/Centaur launch vehicle, the limits of the computers of that era, the limits of the computer programming languages, and the missions it supported are discussed. The vehicles DUKSUP supported (Atlas/Centaur, Titan/Centaur, and Shuttle/Centaur) are briefly described. The types of missions, including Earth orbital and interplanetary, are described. The roles of flight constraints and their impact on launch operations are detailed (such as jettisoning hardware on heating, Range Safety, ground station tracking, and elliptical parking orbits). The computer main frames on which the code was hosted are described. The applications of the code are detailed, including independent check of contractor analysis, benchmarking, leading edge analysis, and vehicle performance improvement assessments. Several of DUKSUP's many major impacts on launches are discussed including Intelsat, Voyager, Pioneer Venus, HEAO, Galileo, and Cassini.
DUKSUP: A Computer Program for High Thrust Launch Vehicle Trajectory Design and Optimization
NASA Technical Reports Server (NTRS)
Spurlock, O. Frank; Williams, Craig H.
2015-01-01
From the late 1960s through 1997, the leadership of NASAs Intermediate and Large class unmanned expendable launch vehicle projects resided at the NASA Lewis (now Glenn) Research Center (LeRC). One of LeRCs primary responsibilities --- trajectory design and performance analysis --- was accomplished by an internally-developed analytic three dimensional computer program called DUKSUP. Because of its Calculus of Variations-based optimization routine, this code was generally more capable of finding optimal solutions than its contemporaries. A derivation of optimal control using the Calculus of Variations is summarized including transversality, intermediate, and final conditions. The two point boundary value problem is explained. A brief summary of the codes operation is provided, including iteration via the Newton-Raphson scheme and integration of variational and motion equations via a 4th order Runge-Kutta scheme. Main subroutines are discussed. The history of the LeRC trajectory design efforts in the early 1960s is explained within the context of supporting the Centaur upper stage program. How the code was constructed based on the operation of the AtlasCentaur launch vehicle, the limits of the computers of that era, the limits of the computer programming languages, and the missions it supported are discussed. The vehicles DUKSUP supported (AtlasCentaur, TitanCentaur, and ShuttleCentaur) are briefly described. The types of missions, including Earth orbital and interplanetary, are described. The roles of flight constraints and their impact on launch operations are detailed (such as jettisoning hardware on heating, Range Safety, ground station tracking, and elliptical parking orbits). The computer main frames on which the code was hosted are described. The applications of the code are detailed, including independent check of contractor analysis, benchmarking, leading edge analysis, and vehicle performance improvement assessments. Several of DUKSUPs many major impacts on launches are discussed including Intelsat, Voyager, Pioneer Venus, HEAO, Galileo, and Cassini.
Entity Bases: Large-Scale Knowledgebases for Intelligence Data
2009-02-01
declaratively expressed as Datalog rules . The EntityBase supports two query scenarios: • Free-Form Querying: A human analyst or a client program can pose...integration, Prometheus follows the Inverse Rules algo- rithm (Duschka 1997) with additional optimizations (Thakkar et al. 2005). We use the mediator...Discovery and Data Mining (PAKDD), Sydney, Australia. Crammer , K., Dekel, O., Keshet, J., Shalev-Shwartz, S., and Singer, Y. (2006). Online passive
NASA Technical Reports Server (NTRS)
Kerstman, Eric; Minard, Charles; Saile, Lynn; Freiere deCarvalho, Mary; Myers, Jerry; Walton, Marlei; Butler, Douglas; Iyengar, Sriram; Johnson-Throop, Kathy; Baumann, David
2010-01-01
The goals of the Integrated Medical Model (IMM) are to develop an integrated, quantified, evidence-based decision support tool useful to crew health and mission planners and to help align science, technology, and operational activities intended to optimize crew health, safety, and mission success. Presentation slides address scope and approach, beneficiaries of IMM capabilities, history, risk components, conceptual models, development steps, and the evidence base. Space adaptation syndrome is used to demonstrate the model's capabilities.
Wavelet-Based Blind Superresolution from Video Sequence and in MRI
2005-12-31
in Fig. 4(e) and (f), respectively. The PSNR- based optimal threshold gives better noise filtering but poor deblurring [see Fig. 4(c) and (e)] while...that ultimately produces the deblurred , noise filtered, superresolved image. Finite support linear shift invariant blurs are reasonable to assume... Deblurred and Noise Filtered HR Image Cameras with different PSFs Figure 1: Multichannel Blind Superresolution Model condition [11] on the zeros of the
Fragment-Based Drug Discovery of Potent Protein Kinase C Iota Inhibitors.
Kwiatkowski, Jacek; Liu, Boping; Tee, Doris Hui Ying; Chen, Guoying; Ahmad, Nur Huda Binte; Wong, Yun Xuan; Poh, Zhi Ying; Ang, Shi Hua; Tan, Eldwin Sum Wai; Ong, Esther Hq; Nurul Dinie; Poulsen, Anders; Pendharkar, Vishal; Sangthongpitag, Kanda; Lee, May Ann; Sepramaniam, Sugunavathi; Ho, Soo Yei; Cherian, Joseph; Hill, Jeffrey; Keller, Thomas H; Hung, Alvin W
2018-05-24
Protein kinase C iota (PKC-ι) is an atypical kinase implicated in the promotion of different cancer types. A biochemical screen of a fragment library has identified several hits from which an azaindole-based scaffold was chosen for optimization. Driven by a structure-activity relationship and supported by molecular modeling, a weakly bound fragment was systematically grown into a potent and selective inhibitor against PKC-ι.
Heuristic-based information acquisition and decision making among pilots.
Wiggins, Mark W; Bollwerk, Sandra
2006-01-01
This research was designed to examine the impact of heuristic-based approaches to the acquisition of task-related information on the selection of an optimal alternative during simulated in-flight decision making. The work integrated features of naturalistic and normative decision making and strategies of information acquisition within a computer-based, decision support framework. The study comprised two phases, the first of which involved familiarizing pilots with three different heuristic-based strategies of information acquisition: frequency, elimination by aspects, and majority of confirming decisions. The second stage enabled participants to choose one of the three strategies of information acquisition to resolve a fourth (choice) scenario. The results indicated that task-oriented experience, rather than the information acquisition strategies, predicted the selection of the optimal alternative. It was also evident that of the three strategies available, the elimination by aspects information acquisition strategy was preferred by most participants. It was concluded that task-oriented experience, rather than the process of information acquisition, predicted task accuracy during the decision-making task. It was also concluded that pilots have a preference for one particular approach to information acquisition. Applications of outcomes of this research include the development of decision support systems that adapt to the information-processing capabilities and preferences of users.
Support and maneuvering apparatus for solar energy receivers
Murphy, L.M.
1988-07-28
A support and maneuvering apparatus is disclosed for a solar energy receiving device adapted for receiving and concentrating solar energy and having a central axis extending through the center thereof. The apparatus includes a frame for mounting the perimeter of said solar energy receiving device. A support member extends along the central axis of the receiving device and has a base end passing through the center of the receiving device and an outer distal end adapted for carrying a solar energy receiving and conversion mechanism. A variable tension mechanism interconnects the support member with the frame to provide stiffening for the support member and the frame and to assist in the alignment of the frame to optimize the optical efficiency of the solar energy receiving device. A rotatable base is provided, and connecting members extend from the base for pivotable attachment to the frame at spaced positions therealong. Finally, an elevation assembly is connected to the receiving device for selectively pivoting the receiving about an axis defined between the attachment positions of the connecting members on the frame. 4 figs.
Support and maneuvering apparatus for solar energy receivers
Murphy, Lawrence M.
1989-01-01
A support and maneuvering apparatus is disclosed for a solar energy receiving device adpated for receiving and concentrating solar energy and having a central axis extending through the center thereof. The apparatus includes a frame for mounting the perimeter of said solar energy receiving device. A support member extends along the central axis of the receiving device and has a base end passing through the center of the receiving device and an outer distal end adapted for carrying a solar energy receiving and conversion mechanism. A variable tension mechanism interconnects the support member with the frame to provide stiffening for the support member and the frame and to assist in the alignment of the frame to optimize the optical efficiency of the solar energy receiving device. A rotatable base is provided, and connecting members extend from the base for pivotable attachment to the frame at spaced positions therealong. Finally, an elevation assembly is connected to the receiving device for selectively pivoting the receiving device about an axis defined between the attachment positions of the connecting members on the frame.
Integrated Medical Model (IMM) Optimization Version 4.0 Functional Improvements
NASA Technical Reports Server (NTRS)
Arellano, John; Young, M.; Boley, L.; Garcia, Y.; Saile, L.; Walton, M.; Kerstman, E.; Reyes, D.; Goodenow, D. A.; Myers, J. G.
2016-01-01
The IMMs ability to assess mission outcome risk levels relative to available resources provides a unique capability to provide guidance on optimal operational medical kit and vehicle resources. Post-processing optimization allows IMM to optimize essential resources to improve a specific model outcome such as maximization of the Crew Health Index (CHI), or minimization of the probability of evacuation (EVAC) or the loss of crew life (LOCL). Mass and or volume constrain the optimized resource set. The IMMs probabilistic simulation uses input data on one hundred medical conditions to simulate medical events that may occur in spaceflight, the resources required to treat those events, and the resulting impact to the mission based on specific crew and mission characteristics. Because IMM version 4.0 provides for partial treatment for medical events, IMM Optimization 4.0 scores resources at the individual resource unit increment level as opposed to the full condition-specific treatment set level, as done in version 3.0. This allows the inclusion of as many resources as possible in the event that an entire set of resources called out for treatment cannot satisfy the constraints. IMM Optimization version 4.0 adds capabilities that increase efficiency by creating multiple resource sets based on differing constraints and priorities, CHI, EVAC, or LOCL. It also provides sets of resources that improve mission-related IMM v4.0 outputs with improved performance compared to the prior optimization. The new optimization represents much improved fidelity that will improve the utility of the IMM 4.0 for decision support.
Watershed Management Optimization Support Tool (WMOST) v3: User Guide
The Watershed Management Optimization Support Tool (WMOST) is a decision support tool that facilitates integrated water management at the local or small watershed scale. WMOST models the environmental effects and costs of management decisions in a watershed context that is, accou...
Watershed Management Optimization Support Tool (WMOST) v3: Theoretical Documentation
The Watershed Management Optimization Support Tool (WMOST) is a decision support tool that facilitates integrated water management at the local or small watershed scale. WMOST models the environmental effects and costs of management decisions in a watershed context, accounting fo...
Watershed Management Optimization Support Tool (WMOST) v2: Theoretical Documentation
The Watershed Management Optimization Support Tool (WMOST) is a decision support tool that evaluates the relative cost-effectiveness of management practices at the local or watershed scale. WMOST models the environmental effects and costs of management decisions in a watershed c...
Software-supported USER cloning strategies for site-directed mutagenesis and DNA assembly.
Genee, Hans Jasper; Bonde, Mads Tvillinggaard; Bagger, Frederik Otzen; Jespersen, Jakob Berg; Sommer, Morten O A; Wernersson, Rasmus; Olsen, Lars Rønn
2015-03-20
USER cloning is a fast and versatile method for engineering of plasmid DNA. We have developed a user friendly Web server tool that automates the design of optimal PCR primers for several distinct USER cloning-based applications. Our Web server, named AMUSER (Automated DNA Modifications with USER cloning), facilitates DNA assembly and introduction of virtually any type of site-directed mutagenesis by designing optimal PCR primers for the desired genetic changes. To demonstrate the utility, we designed primers for a simultaneous two-position site-directed mutagenesis of green fluorescent protein (GFP) to yellow fluorescent protein (YFP), which in a single step reaction resulted in a 94% cloning efficiency. AMUSER also supports degenerate nucleotide primers, single insert combinatorial assembly, and flexible parameters for PCR amplification. AMUSER is freely available online at http://www.cbs.dtu.dk/services/AMUSER/.
Web-Based Learning Support System
NASA Astrophysics Data System (ADS)
Fan, Lisa
Web-based learning support system offers many benefits over traditional learning environments and has become very popular. The Web is a powerful environment for distributing information and delivering knowledge to an increasingly wide and diverse audience. Typical Web-based learning environments, such as Web-CT, Blackboard, include course content delivery tools, quiz modules, grade reporting systems, assignment submission components, etc. They are powerful integrated learning management systems (LMS) that support a number of activities performed by teachers and students during the learning process [1]. However, students who study a course on the Internet tend to be more heterogeneously distributed than those found in a traditional classroom situation. In order to achieve optimal efficiency in a learning process, an individual learner needs his or her own personalized assistance. For a web-based open and dynamic learning environment, personalized support for learners becomes more important. This chapter demonstrates how to realize personalized learning support in dynamic and heterogeneous learning environments by utilizing Adaptive Web technologies. It focuses on course personalization in terms of contents and teaching materials that is according to each student's needs and capabilities. An example of using Rough Set to analyze student personal information to assist students with effective learning and predict student performance is presented.
Information support for decision making on dispatching control of water distribution in irrigation
NASA Astrophysics Data System (ADS)
Yurchenko, I. F.
2018-05-01
The research has been carried out on developing the technique of supporting decision making for on-line control, operational management of water allocation for the interfarm irrigation projects basing on the analytical patterns of dispatcher control. This technique provides an increase of labour productivity as well as higher management quality due to the improved level of automation, as well as decision making optimization taking into account diagnostics of the issues, solutions classification, information being required to the decision makers.
Support Vector Machine-Based Endmember Extraction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Filippi, Anthony M; Archibald, Richard K
Introduced in this paper is the utilization of Support Vector Machines (SVMs) to automatically perform endmember extraction from hyperspectral data. The strengths of SVM are exploited to provide a fast and accurate calculated representation of high-dimensional data sets that may consist of multiple distributions. Once this representation is computed, the number of distributions can be determined without prior knowledge. For each distribution, an optimal transform can be determined that preserves informational content while reducing the data dimensionality, and hence, the computational cost. Finally, endmember extraction for the whole data set is accomplished. Results indicate that this Support Vector Machine-Based Endmembermore » Extraction (SVM-BEE) algorithm has the capability of autonomously determining endmembers from multiple clusters with computational speed and accuracy, while maintaining a robust tolerance to noise.« less
Improved Hierarchical Optimization-Based Classification of Hyperspectral Images Using Shape Analysis
NASA Technical Reports Server (NTRS)
Tarabalka, Yuliya; Tilton, James C.
2012-01-01
A new spectral-spatial method for classification of hyperspectral images is proposed. The HSegClas method is based on the integration of probabilistic classification and shape analysis within the hierarchical step-wise optimization algorithm. First, probabilistic support vector machines classification is applied. Then, at each iteration two neighboring regions with the smallest Dissimilarity Criterion (DC) are merged, and classification probabilities are recomputed. The important contribution of this work consists in estimating a DC between regions as a function of statistical, classification and geometrical (area and rectangularity) features. Experimental results are presented on a 102-band ROSIS image of the Center of Pavia, Italy. The developed approach yields more accurate classification results when compared to previously proposed methods.
A Review of RedOx Cycling of Solid Oxide Fuel Cells Anode
Faes, Antonin; Hessler-Wyser, Aïcha; Zryd, Amédée; Van Herle, Jan
2012-01-01
Solid oxide fuel cells are able to convert fuels, including hydrocarbons, to electricity with an unbeatable efficiency even for small systems. One of the main limitations for long-term utilization is the reduction-oxidation cycling (RedOx cycles) of the nickel-based anodes. This paper will review the effects and parameters influencing RedOx cycles of the Ni-ceramic anode. Second, solutions for RedOx instability are reviewed in the patent and open scientific literature. The solutions are described from the point of view of the system, stack design, cell design, new materials and microstructure optimization. Finally, a brief synthesis on RedOx cycling of Ni-based anode supports for standard and optimized microstructures is depicted. PMID:24958298
Evidence-based guidelines for supportive care of patients with Ebola virus disease.
Lamontagne, François; Fowler, Robert A; Adhikari, Neill K; Murthy, Srinivas; Brett-Major, David M; Jacobs, Michael; Uyeki, Timothy M; Vallenas, Constanza; Norris, Susan L; Fischer, William A; Fletcher, Thomas E; Levine, Adam C; Reed, Paul; Bausch, Daniel G; Gove, Sandy; Hall, Andrew; Shepherd, Susan; Siemieniuk, Reed A; Lamah, Marie-Claude; Kamara, Rashida; Nakyeyune, Phiona; Soka, Moses J; Edwin, Ama; Hazzan, Afeez A; Jacob, Shevin T; Elkarsany, Mubarak Mustafa; Adachi, Takuya; Benhadj, Lynda; Clément, Christophe; Crozier, Ian; Garcia, Armando; Hoffman, Steven J; Guyatt, Gordon H
2018-02-17
The 2013-16 Ebola virus disease outbreak in west Africa was associated with unprecedented challenges in the provision of care to patients with Ebola virus disease, including absence of pre-existing isolation and treatment facilities, patients' reluctance to present for medical care, and limitations in the provision of supportive medical care. Case fatality rates in west Africa were initially greater than 70%, but decreased with improvements in supportive care. To inform optimal care in a future outbreak of Ebola virus disease, we employed the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) methodology to develop evidence-based guidelines for the delivery of supportive care to patients admitted to Ebola treatment units. Key recommendations include administration of oral and, as necessary, intravenous hydration; systematic monitoring of vital signs and volume status; availability of key biochemical testing; adequate staffing ratios; and availability of analgesics, including opioids, for pain relief. Copyright © 2018 Elsevier Ltd. All rights reserved.
Conceptual design of distillation-based hybrid separation processes.
Skiborowski, Mirko; Harwardt, Andreas; Marquardt, Wolfgang
2013-01-01
Hybrid separation processes combine different separation principles and constitute a promising design option for the separation of complex mixtures. Particularly, the integration of distillation with other unit operations can significantly improve the separation of close-boiling or azeotropic mixtures. Although the design of single-unit operations is well understood and supported by computational methods, the optimal design of flowsheets of hybrid separation processes is still a challenging task. The large number of operational and design degrees of freedom requires a systematic and optimization-based design approach. To this end, a structured approach, the so-called process synthesis framework, is proposed. This article reviews available computational methods for the conceptual design of distillation-based hybrid processes for the separation of liquid mixtures. Open problems are identified that must be addressed to finally establish a structured process synthesis framework for such processes.
Liu, Ying-Pei; Liang, Hai-Ping; Gao, Zhong-Ke
2015-01-01
In order to improve the performance of voltage source converter-high voltage direct current (VSC-HVDC) system, we propose an improved auto-disturbance rejection control (ADRC) method based on least squares support vector machines (LSSVM) in the rectifier side. Firstly, we deduce the high frequency transient mathematical model of VSC-HVDC system. Then we investigate the ADRC and LSSVM principles. We ignore the tracking differentiator in the ADRC controller aiming to improve the system dynamic response speed. On this basis, we derive the mathematical model of ADRC controller optimized by LSSVM for direct current voltage loop. Finally we carry out simulations to verify the feasibility and effectiveness of our proposed control method. In addition, we employ the time-frequency representation methods, i.e., Wigner-Ville distribution (WVD) and adaptive optimal kernel (AOK) time-frequency representation, to demonstrate our proposed method performs better than the traditional method from the perspective of energy distribution in time and frequency plane.
Gao, Zhong-Ke
2015-01-01
In order to improve the performance of voltage source converter-high voltage direct current (VSC-HVDC) system, we propose an improved auto-disturbance rejection control (ADRC) method based on least squares support vector machines (LSSVM) in the rectifier side. Firstly, we deduce the high frequency transient mathematical model of VSC-HVDC system. Then we investigate the ADRC and LSSVM principles. We ignore the tracking differentiator in the ADRC controller aiming to improve the system dynamic response speed. On this basis, we derive the mathematical model of ADRC controller optimized by LSSVM for direct current voltage loop. Finally we carry out simulations to verify the feasibility and effectiveness of our proposed control method. In addition, we employ the time-frequency representation methods, i.e., Wigner-Ville distribution (WVD) and adaptive optimal kernel (AOK) time-frequency representation, to demonstrate our proposed method performs better than the traditional method from the perspective of energy distribution in time and frequency plane. PMID:26098556
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deb, Kousik, E-mail: kousik@civil.iitkgp.ernet.in; Dhar, Anirban, E-mail: anirban@civil.iitkgp.ernet.in; Purohit, Sandip, E-mail: sandip.purohit91@gmail.com
Landslide due to rainfall has been and continues to be one of the most important concerns of geotechnical engineering. The paper presents the variation of factor of safety of stone column-supported embankment constructed over soft soil due to change in water level for an incessant period of rainfall. A combined simulation-optimization based methodology has been proposed to predict the critical surface of failure of the embankment and to optimize the corresponding factor of safety under rainfall conditions using an evolutionary genetic algorithm NSGA-II (Non-Dominated Sorted Genetic Algorithm-II). It has been observed that the position of water table can be reliablymore » estimated with varying periods of infiltration using developed numerical method. The parametric study is presented to study the optimum factor of safety of the embankment and its corresponding critical failure surface under the steady-state infiltration condition. Results show that in case of floating stone columns, period of infiltration has no effect on factor of safety. Even critical failure surfaces for a particular floating column length remain same irrespective of rainfall duration.« less
The effectiveness of Teratology Information Services (TIS).
Hancock, Rebecca L; Koren, Gideon; Einarson, Adrienne; Ungar, Wendy J
2007-02-01
Women and their health care providers have few reliable sources of information regarding the safety of exposures in pregnancy and lactation. Evidence-based information on these topics is provided by Teratology Information Services (TIS). Access to TIS, however, is limited in many regions, and many services have difficulty maintaining ongoing funding. The objective of this review is to highlight published reports of the effectiveness of TIS in improving maternal and neonatal health. A search of the Pub Med and Econ Lit databases was performed with no date restriction, using the search terms teratology, information, counseling, pregnancy, effectiveness, birth defects. Information disseminated from TIS has been shown to prevent congenital malformations, unnecessary pregnancy terminations, and occupational risks. TIS support optimal nutritional supplementation in pregnancy and optimal drug therapy in pregnancy and breast-feeding. In addition, they correct misperceptions of risk and facilitate knowledge transfer and translation. TIS have the potential to provide health care cost savings. TIS are vital services in supporting optimal maternal and neonatal health. A formal economic evaluation of TIS is required in order to inform resource allocation decision-making and continued funding of these services.
Geometric modeling of space-optimal unit-cell-based tissue engineering scaffolds
NASA Astrophysics Data System (ADS)
Rajagopalan, Srinivasan; Lu, Lichun; Yaszemski, Michael J.; Robb, Richard A.
2005-04-01
Tissue engineering involves regenerating damaged or malfunctioning organs using cells, biomolecules, and synthetic or natural scaffolds. Based on their intended roles, scaffolds can be injected as space-fillers or be preformed and implanted to provide mechanical support. Preformed scaffolds are biomimetic "trellis-like" structures which, on implantation and integration, act as tissue/organ surrogates. Customized, computer controlled, and reproducible preformed scaffolds can be fabricated using Computer Aided Design (CAD) techniques and rapid prototyping devices. A curved, monolithic construct with minimal surface area constitutes an efficient substrate geometry that promotes cell attachment, migration and proliferation. However, current CAD approaches do not provide such a biomorphic construct. We address this critical issue by presenting one of the very first physical realizations of minimal surfaces towards the construction of efficient unit-cell based tissue engineering scaffolds. Mask programmability, and optimal packing density of triply periodic minimal surfaces are used to construct the optimal pore geometry. Budgeted polygonization, and progressive minimal surface refinement facilitate the machinability of these surfaces. The efficient stress distributions, as deduced from the Finite Element simulations, favor the use of these scaffolds for orthopedic applications.
Social factors predictive of social integration for adults with brain injury.
Batchos, Elisabeth; Easton, Amanda; Haak, Christopher; Ditchman, Nicole
2018-08-01
Individuals with acquired brain injury (ABI) may not only struggle with physical and cognitive impairments, but may also face challenges reintegrating into the community socially. Research has demonstrated that following ABI, individuals' social networks tend to dwindle, support may decline, and isolation increases. This study examined factors impacting social integration in a community-based sample of 102 individuals with ABI. Potential predictors included emotional support, instrumental support, problem solving confidence, and approach-avoidance style (AAS) of problem solving, while controlling for age, gender, education, and time since injury. Hierarchical regression was used to analyze whether these factors were predictive of social integration. The final model accounted for 33% of the variance in social integration outcomes. Results demonstrated that emotional support was initially a significant predictor; however, when controlling for emotional support the variance in social integration was better accounted for by social problem solving - specifically, AAS. A follow-up mediation analysis indicated that the relationship between social problem solving (specifically, AAS) and social integration was partially mediated by emotional support. This suggests that for individuals with ABI, a tendency to approach rather than avoid social problem solving issues is a significant predictor for social integration both directly and indirectly through its association with emotional social support. Implications for Rehabilitation Both instrumental and emotional social support should be assessed in patients with acquired brain injury (ABI), ensuring that emotional needs are met in addition to the more obvious instrumental needs. Barriers to problem solving for people with ABI may limit optimal social integration; thus, assessment and intervention aimed at increasing AAS are recommended. To enhance the social integration outcomes of people with brain injury, strength-based psychosocial rehabilitation should optimally balance an individual's abilities with areas requiring compensation, focusing on how to approach rather than avoid problems as well as strategies to cultivate emotional social support.
Kennedy, Jacob J.; Whiteaker, Jeffrey R.; Schoenherr, Regine M.; Yan, Ping; Allison, Kimberly; Shipley, Melissa; Lerch, Melissa; Hoofnagle, Andrew N.; Baird, Geoffrey Stuart; Paulovich, Amanda G.
2016-01-01
Despite a clinical, economic, and regulatory imperative to develop companion diagnostics, precious few new biomarkers have been successfully translated into clinical use, due in part to inadequate protein assay technologies to support large-scale testing of hundreds of candidate biomarkers in formalin-fixed paraffin embedded (FFPE) tissues. While the feasibility of using targeted, multiple reaction monitoring-mass spectrometry (MRM-MS) for quantitative analyses of FFPE tissues has been demonstrated, protocols have not been systematically optimized for robust quantification across a large number of analytes, nor has the performance of peptide immuno-MRM been evaluated. To address this gap, we used a test battery approach coupled to MRM-MS with the addition of stable isotope labeled standard peptides (targeting 512 analytes) to quantitatively evaluate the performance of three extraction protocols in combination with three trypsin digestion protocols (i.e. 9 processes). A process based on RapiGest buffer extraction and urea-based digestion was identified to enable similar quantitation results from FFPE and frozen tissues. Using the optimized protocols for MRM-based analysis of FFPE tissues, median precision was 11.4% (across 249 analytes). There was excellent correlation between measurements made on matched FFPE and frozen tissues, both for direct MRM analysis (R2 = 0.94) and immuno-MRM (R2 = 0.89). The optimized process enables highly reproducible, multiplex, standardizable, quantitative MRM in archival tissue specimens. PMID:27462933
Bal, Mert; Amasyali, M Fatih; Sever, Hayri; Kose, Guven; Demirhan, Ayse
2014-01-01
The importance of the decision support systems is increasingly supporting the decision making process in cases of uncertainty and the lack of information and they are widely used in various fields like engineering, finance, medicine, and so forth, Medical decision support systems help the healthcare personnel to select optimal method during the treatment of the patients. Decision support systems are intelligent software systems that support decision makers on their decisions. The design of decision support systems consists of four main subjects called inference mechanism, knowledge-base, explanation module, and active memory. Inference mechanism constitutes the basis of decision support systems. There are various methods that can be used in these mechanisms approaches. Some of these methods are decision trees, artificial neural networks, statistical methods, rule-based methods, and so forth. In decision support systems, those methods can be used separately or a hybrid system, and also combination of those methods. In this study, synthetic data with 10, 100, 1000, and 2000 records have been produced to reflect the probabilities on the ALARM network. The accuracy of 11 machine learning methods for the inference mechanism of medical decision support system is compared on various data sets.
Optimization of 3D Field Design
NASA Astrophysics Data System (ADS)
Logan, Nikolas; Zhu, Caoxiang
2017-10-01
Recent progress in 3D tokamak modeling is now leveraged to create a conceptual design of new external 3D field coils for the DIII-D tokamak. Using the IPEC dominant mode as a target spectrum, the Finding Optimized Coils Using Space-curves (FOCUS) code optimizes the currents and 3D geometry of multiple coils to maximize the total set's resonant coupling. The optimized coils are individually distorted in space, creating toroidal ``arrays'' containing a variety of shapes that often wrap around a significant poloidal extent of the machine. The generalized perturbed equilibrium code (GPEC) is used to determine optimally efficient spectra for driving total, core, and edge neoclassical toroidal viscosity (NTV) torque and these too provide targets for the optimization of 3D coil designs. These conceptual designs represent a fundamentally new approach to 3D coil design for tokamaks targeting desired plasma physics phenomena. Optimized coil sets based on plasma response theory will be relevant to designs for future reactors or on any active machine. External coils, in particular, must be optimized for reliable and efficient fusion reactor designs. Work supported by the US Department of Energy under DE-AC02-09CH11466.
Optimality approaches to describe characteristic fluvial patterns on landscapes
Paik, Kyungrock; Kumar, Praveen
2010-01-01
Mother Nature has left amazingly regular geomorphic patterns on the Earth's surface. These patterns are often explained as having arisen as a result of some optimal behaviour of natural processes. However, there is little agreement on what is being optimized. As a result, a number of alternatives have been proposed, often with little a priori justification with the argument that successful predictions will lend a posteriori support to the hypothesized optimality principle. Given that maximum entropy production is an optimality principle attempting to predict the microscopic behaviour from a macroscopic characterization, this paper provides a review of similar approaches with the goal of providing a comparison and contrast between them to enable synthesis. While assumptions of optimal behaviour approach a system from a macroscopic viewpoint, process-based formulations attempt to resolve the mechanistic details whose interactions lead to the system level functions. Using observed optimality trends may help simplify problem formulation at appropriate levels of scale of interest. However, for such an approach to be successful, we suggest that optimality approaches should be formulated at a broader level of environmental systems' viewpoint, i.e. incorporating the dynamic nature of environmental variables and complex feedback mechanisms between fluvial and non-fluvial processes. PMID:20368257
Reliability Impacts in Life Support Architecture and Technology Selection
NASA Technical Reports Server (NTRS)
Lange Kevin E.; Anderson, Molly S.
2012-01-01
Quantitative assessments of system reliability and equivalent system mass (ESM) were made for different life support architectures based primarily on International Space Station technologies. The analysis was applied to a one-year deep-space mission. System reliability was increased by adding redundancy and spares, which added to the ESM. Results were thus obtained allowing a comparison of the ESM for each architecture at equivalent levels of reliability. Although the analysis contains numerous simplifications and uncertainties, the results suggest that achieving necessary reliabilities for deep-space missions will add substantially to the life support ESM and could influence the optimal degree of life support closure. Approaches for reducing reliability impacts were investigated and are discussed.
A Decision Support System for Solving Multiple Criteria Optimization Problems
ERIC Educational Resources Information Center
Filatovas, Ernestas; Kurasova, Olga
2011-01-01
In this paper, multiple criteria optimization has been investigated. A new decision support system (DSS) has been developed for interactive solving of multiple criteria optimization problems (MOPs). The weighted-sum (WS) approach is implemented to solve the MOPs. The MOPs are solved by selecting different weight coefficient values for the criteria…
Vicente, Tiago; Mota, José P B; Peixoto, Cristina; Alves, Paula M; Carrondo, Manuel J T
2011-01-01
The advent of advanced therapies in the pharmaceutical industry has moved the spotlight into virus-like particles and viral vectors produced in cell culture holding great promise in a myriad of clinical targets, including cancer prophylaxis and treatment. Even though a couple of cases have reached the clinic, these products have yet to overcome a number of biological and technological challenges before broad utilization. Concerning the manufacturing processes, there is significant research focusing on the optimization of current cell culture systems and, more recently, on developing scalable downstream processes to generate material for pre-clinical and clinical trials. We review the current options for downstream processing of these complex biopharmaceuticals and underline current advances on knowledge-based toolboxes proposed for rational optimization of their processing. Rational tools developed to increase the yet scarce knowledge on the purification processes of complex biologicals are discussed as alternative to empirical, "black-boxed" based strategies classically used for process development. Innovative methodologies based on surface plasmon resonance, dynamic light scattering, scale-down high-throughput screening and mathematical modeling for supporting ion-exchange chromatography show great potential for a more efficient and cost-effective process design, optimization and equipment prototyping. Copyright © 2011 Elsevier Inc. All rights reserved.
Rate Adaptive Based Resource Allocation with Proportional Fairness Constraints in OFDMA Systems
Yin, Zhendong; Zhuang, Shufeng; Wu, Zhilu; Ma, Bo
2015-01-01
Orthogonal frequency division multiple access (OFDMA), which is widely used in the wireless sensor networks, allows different users to obtain different subcarriers according to their subchannel gains. Therefore, how to assign subcarriers and power to different users to achieve a high system sum rate is an important research area in OFDMA systems. In this paper, the focus of study is on the rate adaptive (RA) based resource allocation with proportional fairness constraints. Since the resource allocation is a NP-hard and non-convex optimization problem, a new efficient resource allocation algorithm ACO-SPA is proposed, which combines ant colony optimization (ACO) and suboptimal power allocation (SPA). To reduce the computational complexity, the optimization problem of resource allocation in OFDMA systems is separated into two steps. For the first one, the ant colony optimization algorithm is performed to solve the subcarrier allocation. Then, the suboptimal power allocation algorithm is developed with strict proportional fairness, and the algorithm is based on the principle that the sums of power and the reciprocal of channel-to-noise ratio for each user in different subchannels are equal. To support it, plenty of simulation results are presented. In contrast with root-finding and linear methods, the proposed method provides better performance in solving the proportional resource allocation problem in OFDMA systems. PMID:26426016
USDA-ARS?s Scientific Manuscript database
Developing better agricultural monitoring capabilities based on Earth Observation data is critical for strengthening food production information and market transparency. The coming Sentinel-2 mission has the optimal capacity for regional to global agriculture monitoring in terms of resolution (10-20...
ERIC Educational Resources Information Center
Guess, Pamela; Bowling, Sara
2014-01-01
Positive psychology represents a conceptual framework that emphasizes the need to capitalize on individuals' strengths in order to facilitate optimal functioning. As applied to the educational setting, these concepts have primarily been investigated via teaching life skills to students that encourage overall wellness. School-based strategies…
An Overview and Analysis of Mobile Internet Protocols in Cellular Environments.
ERIC Educational Resources Information Center
Chao, Han-Chieh
2001-01-01
Notes that cellular is the inevitable future architecture for the personal communication service system. Discusses the current cellular support based on Mobile Internet Protocol version 6 (Ipv6) and points out the shortfalls of using Mobile IP. Highlights protocols especially for mobile management schemes which can optimize a high-speed mobile…
ERIC Educational Resources Information Center
Abós, Ángel; Sevil, Javier; Julián, José Antonio; Abarca-Sos, Alberto; García-González, Luis
2017-01-01
Grounded in self-determination theory and achievement goal theory, this quasi-experimental study evaluated the effectiveness of a teaching intervention programme to improve predisposition towards physical education based on developing a task-oriented motivational climate and supporting basic psychological needs. The final sample consisted of 35…
ERIC Educational Resources Information Center
Kanagarajan, Sujith; Ramakrishnan, Sivakumar
2018-01-01
Ubiquitous Learning Environment (ULE) has been becoming a mobile and sensor based technology equipped environment that suits the modern world education discipline requirements for the past few years. Ambient Intelligence (AmI) makes much smarter the ULE by the support of optimization and intelligent techniques. Various efforts have been so far…
Optimizing Mothers' Social Networks: Information-Sharing Strategies
ERIC Educational Resources Information Center
Lashley, Cynthia O'Nell
2010-01-01
Finding high-quality infant care continues to be challenging for many families. Such challenges are even greater for single mothers with limited resources and English language skills. Several years ago, this challenge formed the basis for an urban, center-based program called the Pregnant-Mothers Support Group (PSG). The PSG served single,…
Buffers of Racial Discrimination: Links with Depression among Rural African American Mothers
ERIC Educational Resources Information Center
Odom, Erica C.; Vernon-Feagans, Lynne
2010-01-01
The current study examines racial discrimination as a predictor of depression in a sample of 414 rural, low-income African American mothers of young children. The potential moderating role of optimism and church-based social support was also examined. Mothers completed questionnaires when their child was 24 months old. Hierarchical regression…
The Normalized-Rate Iterative Algorithm: A Practical Dynamic Spectrum Management Method for DSL
NASA Astrophysics Data System (ADS)
Statovci, Driton; Nordström, Tomas; Nilsson, Rickard
2006-12-01
We present a practical solution for dynamic spectrum management (DSM) in digital subscriber line systems: the normalized-rate iterative algorithm (NRIA). Supported by a novel optimization problem formulation, the NRIA is the only DSM algorithm that jointly addresses spectrum balancing for frequency division duplexing systems and power allocation for the users sharing a common cable bundle. With a focus on being implementable rather than obtaining the highest possible theoretical performance, the NRIA is designed to efficiently solve the DSM optimization problem with the operators' business models in mind. This is achieved with the help of two types of parameters: the desired network asymmetry and the desired user priorities. The NRIA is a centralized DSM algorithm based on the iterative water-filling algorithm (IWFA) for finding efficient power allocations, but extends the IWFA by finding the achievable bitrates and by optimizing the bandplan. It is compared with three other DSM proposals: the IWFA, the optimal spectrum balancing algorithm (OSBA), and the bidirectional IWFA (bi-IWFA). We show that the NRIA achieves better bitrate performance than the IWFA and the bi-IWFA. It can even achieve performance almost as good as the OSBA, but with dramatically lower requirements on complexity. Additionally, the NRIA can achieve bitrate combinations that cannot be supported by any other DSM algorithm.
Blanco, Jesús; García, Andrés; Morenas, Javier de Las
2018-06-09
Energy saving has become a major concern for the developed society of our days. This paper presents a Wireless Sensor and Actuator Network (WSAN) designed to provide support to an automatic intelligent system, based on the Internet of Things (IoT), which enables a responsible consumption of energy. The proposed overall system performs an efficient energetic management of devices, machines and processes, optimizing their operation to achieve a reduction in their overall energy usage at any given time. For this purpose, relevant data is collected from intelligent sensors, which are in-stalled at the required locations, as well as from the energy market through the Internet. This information is analysed to provide knowledge about energy utilization, and to improve efficiency. The system takes autonomous decisions automatically, based on the available information and the specific requirements in each case. The proposed system has been implanted and tested in a food factory. Results show a great optimization of energy efficiency and a substantial improvement on energy and costs savings.
A quantitative model of optimal data selection in Wason's selection task.
Hattori, Masasi
2002-10-01
The optimal data selection model proposed by Oaksford and Chater (1994) successfully formalized Wason's selection task (Wason, 1966). The model, however, involved some questionable assumptions and was also not sufficient as a model of the task because it could not provide quantitative predictions of the card selection frequencies. In this paper, the model was revised to provide quantitative fits to the data. The model can predict the selection frequencies of cards based on a selection tendency function (STF), or conversely, it enables the estimation of subjective probabilities from data. Past experimental data were first re-analysed based on the model. In Experiment 1, the superiority of the revised model was shown. However, when the relationship between antecedent and consequent was forced to deviate from the biconditional form, the model was not supported. In Experiment 2, it was shown that sufficient emphasis on probabilistic information can affect participants' performance. A detailed experimental method to sort participants by probabilistic strategies was introduced. Here, the model was supported by a subgroup of participants who used the probabilistic strategy. Finally, the results were discussed from the viewpoint of adaptive rationality.
NASA Astrophysics Data System (ADS)
Ilhan, Z.; Wehner, W. P.; Schuster, E.; Boyer, M. D.; Gates, D. A.; Gerhardt, S.; Menard, J.
2015-11-01
Active control of the toroidal current density profile is crucial to achieve and maintain high-performance, MHD-stable plasma operation in NSTX-U. A first-principles-driven, control-oriented model describing the temporal evolution of the current profile has been proposed earlier by combining the magnetic diffusion equation with empirical correlations obtained at NSTX-U for the electron density, electron temperature, and non-inductive current drives. A feedforward + feedback control scheme for the requlation of the current profile is constructed by embedding the proposed nonlinear, physics-based model into the control design process. Firstly, nonlinear optimization techniques are used to design feedforward actuator trajectories that steer the plasma to a desired operating state with the objective of supporting the traditional trial-and-error experimental process of advanced scenario planning. Secondly, a feedback control algorithm to track a desired current profile evolution is developed with the goal of adding robustness to the overall control scheme. The effectiveness of the combined feedforward + feedback control algorithm for current profile regulation is tested in predictive simulations carried out in TRANSP. Supported by PPPL.
Watershed Management Optimization Support Tool (WMOST) v2: User Manual and Case Studies
The Watershed Management Optimization Support Tool (WMOST) is a decision support tool that evaluates the relative cost-effectiveness of management practices at the local or watershed scale. WMOST models the environmental effects and costs of management decisions in a watershed c...
Gang, Grace J; Siewerdsen, Jeffrey H; Stayman, J Webster
2017-12-01
This paper presents a joint optimization of dynamic fluence field modulation (FFM) and regularization in quadratic penalized-likelihood reconstruction that maximizes a task-based imaging performance metric. We adopted a task-driven imaging framework for prospective designs of the imaging parameters. A maxi-min objective function was adopted to maximize the minimum detectability index ( ) throughout the image. The optimization algorithm alternates between FFM (represented by low-dimensional basis functions) and local regularization (including the regularization strength and directional penalty weights). The task-driven approach was compared with three FFM strategies commonly proposed for FBP reconstruction (as well as a task-driven TCM strategy) for a discrimination task in an abdomen phantom. The task-driven FFM assigned more fluence to less attenuating anteroposterior views and yielded approximately constant fluence behind the object. The optimal regularization was almost uniform throughout image. Furthermore, the task-driven FFM strategy redistribute fluence across detector elements in order to prescribe more fluence to the more attenuating central region of the phantom. Compared with all strategies, the task-driven FFM strategy not only improved minimum by at least 17.8%, but yielded higher over a large area inside the object. The optimal FFM was highly dependent on the amount of regularization, indicating the importance of a joint optimization. Sample reconstructions of simulated data generally support the performance estimates based on computed . The improvements in detectability show the potential of the task-driven imaging framework to improve imaging performance at a fixed dose, or, equivalently, to provide a similar level of performance at reduced dose.
Global-Local Analysis and Optimization of a Composite Civil Tilt-Rotor Wing
NASA Technical Reports Server (NTRS)
Rais-Rohani, Masound
1999-01-01
This report gives highlights of an investigation on the design and optimization of a thin composite wing box structure for a civil tilt-rotor aircraft. Two different concepts are considered for the cantilever wing: (a) a thin monolithic skin design, and (b) a thick sandwich skin design. Each concept is examined with three different skin ply patterns based on various combinations of 0, +/-45, and 90 degree plies. The global-local technique is used in the analysis and optimization of the six design models. The global analysis is based on a finite element model of the wing-pylon configuration while the local analysis uses a uniformly supported plate representing a wing panel. Design allowables include those on vibration frequencies, panel buckling, and material strength. The design optimization problem is formulated as one of minimizing the structural weight subject to strength, stiffness, and d,vnamic constraints. Six different loading conditions based on three different flight modes are considered in the design optimization. The results of this investigation reveal that of all the loading conditions the one corresponding to the rolling pull-out in the airplane mode is the most stringent. Also the frequency constraints are found to drive the skin thickness limits, rendering the buckling constraints inactive. The optimum skin ply pattern for the monolithic skin concept is found to be (((0/+/-45/90/(0/90)(sub 2))(sub s))(sub s), while for the sandwich skin concept the optimal ply pattern is found to be ((0/+/-45/90)(sub 2s))(sub s).
NASA Astrophysics Data System (ADS)
Mielikainen, Jarno; Huang, Bormin; Huang, Allen H.-L.
2015-05-01
Intel Many Integrated Core (MIC) ushers in a new era of supercomputing speed, performance, and compatibility. It allows the developers to run code at trillions of calculations per second using the familiar programming model. In this paper, we present our results of optimizing the updated Goddard shortwave radiation Weather Research and Forecasting (WRF) scheme on Intel Many Integrated Core Architecture (MIC) hardware. The Intel Xeon Phi coprocessor is the first product based on Intel MIC architecture, and it consists of up to 61 cores connected by a high performance on-die bidirectional interconnect. The co-processor supports all important Intel development tools. Thus, the development environment is familiar one to a vast number of CPU developers. Although, getting a maximum performance out of Xeon Phi will require using some novel optimization techniques. Those optimization techniques are discusses in this paper. The results show that the optimizations improved performance of the original code on Xeon Phi 7120P by a factor of 1.3x.
Optimal satisfaction degree in energy harvesting cognitive radio networks
NASA Astrophysics Data System (ADS)
Li, Zan; Liu, Bo-Yang; Si, Jiang-Bo; Zhou, Fu-Hui
2015-12-01
A cognitive radio (CR) network with energy harvesting (EH) is considered to improve both spectrum efficiency and energy efficiency. A hidden Markov model (HMM) is used to characterize the imperfect spectrum sensing process. In order to maximize the whole satisfaction degree (WSD) of the cognitive radio network, a tradeoff between the average throughput of the secondary user (SU) and the interference to the primary user (PU) is analyzed. We formulate the satisfaction degree optimization problem as a mixed integer nonlinear programming (MINLP) problem. The satisfaction degree optimization problem is solved by using differential evolution (DE) algorithm. The proposed optimization problem allows the network to adaptively achieve the optimal solution based on its required quality of service (Qos). Numerical results are given to verify our analysis. Project supported by the National Natural Science Foundation of China (Grant No. 61301179), the Doctorial Programs Foundation of the Ministry of Education of China (Grant No. 20110203110011), and the 111 Project (Grant No. B08038).
Spatial Query for Planetary Data
NASA Technical Reports Server (NTRS)
Shams, Khawaja S.; Crockett, Thomas M.; Powell, Mark W.; Joswig, Joseph C.; Fox, Jason M.
2011-01-01
Science investigators need to quickly and effectively assess past observations of specific locations on a planetary surface. This innovation involves a location-based search technology that was adapted and applied to planetary science data to support a spatial query capability for mission operations software. High-performance location-based searching requires the use of spatial data structures for database organization. Spatial data structures are designed to organize datasets based on their coordinates in a way that is optimized for location-based retrieval. The particular spatial data structure that was adapted for planetary data search is the R+ tree.
Fox, Aaron D.; Masyukova, Mariya; Cunningham, Chinazo O.
2015-01-01
Background Buprenorphine maintenance treatment is effective and has been successfully integrated into HIV and primary care settings. However, one key barrier to providers prescribing buprenorphine is their perception that they are unable to provide adequate counseling or psychosocial support to patients with opioid addiction. This qualitative study investigated supportive elements of office-based buprenorphine treatment that patients perceived to be most valuable. Methods We conducted five focus groups with 33 buprenorphine treatment-experienced participants. Focus groups were audio-recorded and transcribed. Iterative readings of transcripts and grounded theory analysis revealed common themes. Results Overall, participants perceived that buprenorphine treatment helped them to achieve their treatment goals and valued the flexibility, accessibility, and privacy of treatment. Participants identified interpersonal and structural elements of buprenorphine treatment that provided psychosocial support. Participants desired good physician-patient relationships, but also valued care delivery models that were patient-centered, created a safe place for self-disclosure, and utilized coordinated team-based care. Conclusions Participants derived psychosocial support from their prescribing physician, but were also open to collaborative or team-based models of care, as long as they were voluntary and confidential. Buprenorphine prescribing physicians without access to referral options for psychosocial counseling could focus on maintaining non-judgmental attitudes and shared decision making during patient encounters. Adding structure and psychosocial support to buprenorphine treatment through coordinated team-based care also seems to have great promise. PMID:26566712
Perkins, Rosie; Reid, Helen; Araújo, Liliana S.; Clark, Terry; Williamon, Aaron
2017-01-01
Student health and wellbeing within higher education has been documented as poor in relation to the general population. This is a particular problem among students at music conservatoires, who are studying within a unique educational context that is known to generate both physical and psychological challenges. This article examines how conservatoire students experience health and wellbeing within their institutional context, using a framework from health promotion to focus attention on perceived enablers and barriers to optimal health in relation to three levels: lifestyle, support services, and conservatoire environment. In order to respond to the individuality of students’ experiences, a qualitative approach was taken based on semi-structured interviews with 20 current or recent conservatoire students in the United Kingdom. Thematic analysis revealed a complex set of enablers and barriers: (i) lifestyle enablers included value placed on the importance of optimal health and wellbeing for musicians and daily practices to enable this; lifestyle barriers included struggling to maintain healthy lifestyles within the context of musical practice and learning; (ii) support enablers included accessible support sources within and beyond the conservatoire; support barriers included a perceived lack of availability or awareness of appropriate support; (iii) environmental enablers included positive and enjoyable experiences of performance as well as strong relationships and communities; environmental barriers included experiences of comparison and competition, pressure and stress, challenges with negative performance feedback, psychological distress, and perceived overwork. The findings reveal a need for health promotion to focus not only on individuals but also on the daily practices and routines of conservatoires. Additionally, they suggest that continued work is required to embed health and wellbeing support as an integral component of conservatoire education, raising awareness so that all students are fully informed of where, and how, to seek the information or help that they may need. Finally, they indicate a need for more radical scrutiny of the cultures of conservatoires and an assessment of how these can be modified to best optimize students’ health and wellbeing. PMID:28701968
Perkins, Rosie; Reid, Helen; Araújo, Liliana S; Clark, Terry; Williamon, Aaron
2017-01-01
Student health and wellbeing within higher education has been documented as poor in relation to the general population. This is a particular problem among students at music conservatoires, who are studying within a unique educational context that is known to generate both physical and psychological challenges. This article examines how conservatoire students experience health and wellbeing within their institutional context, using a framework from health promotion to focus attention on perceived enablers and barriers to optimal health in relation to three levels: lifestyle, support services, and conservatoire environment. In order to respond to the individuality of students' experiences, a qualitative approach was taken based on semi-structured interviews with 20 current or recent conservatoire students in the United Kingdom. Thematic analysis revealed a complex set of enablers and barriers: (i) lifestyle enablers included value placed on the importance of optimal health and wellbeing for musicians and daily practices to enable this; lifestyle barriers included struggling to maintain healthy lifestyles within the context of musical practice and learning; (ii) support enablers included accessible support sources within and beyond the conservatoire; support barriers included a perceived lack of availability or awareness of appropriate support; (iii) environmental enablers included positive and enjoyable experiences of performance as well as strong relationships and communities; environmental barriers included experiences of comparison and competition, pressure and stress, challenges with negative performance feedback, psychological distress, and perceived overwork. The findings reveal a need for health promotion to focus not only on individuals but also on the daily practices and routines of conservatoires. Additionally, they suggest that continued work is required to embed health and wellbeing support as an integral component of conservatoire education, raising awareness so that all students are fully informed of where, and how, to seek the information or help that they may need. Finally, they indicate a need for more radical scrutiny of the cultures of conservatoires and an assessment of how these can be modified to best optimize students' health and wellbeing.
Workflow management in large distributed systems
NASA Astrophysics Data System (ADS)
Legrand, I.; Newman, H.; Voicu, R.; Dobre, C.; Grigoras, C.
2011-12-01
The MonALISA (Monitoring Agents using a Large Integrated Services Architecture) framework provides a distributed service system capable of controlling and optimizing large-scale, data-intensive applications. An essential part of managing large-scale, distributed data-processing facilities is a monitoring system for computing facilities, storage, networks, and the very large number of applications running on these systems in near realtime. All this monitoring information gathered for all the subsystems is essential for developing the required higher-level services—the components that provide decision support and some degree of automated decisions—and for maintaining and optimizing workflow in large-scale distributed systems. These management and global optimization functions are performed by higher-level agent-based services. We present several applications of MonALISA's higher-level services including optimized dynamic routing, control, data-transfer scheduling, distributed job scheduling, dynamic allocation of storage resource to running jobs and automated management of remote services among a large set of grid facilities.
Mutually unbiased bases and semi-definite programming
NASA Astrophysics Data System (ADS)
Brierley, Stephen; Weigert, Stefan
2010-11-01
A complex Hilbert space of dimension six supports at least three but not more than seven mutually unbiased bases. Two computer-aided analytical methods to tighten these bounds are reviewed, based on a discretization of parameter space and on Gröbner bases. A third algorithmic approach is presented: the non-existence of more than three mutually unbiased bases in composite dimensions can be decided by a global optimization method known as semidefinite programming. The method is used to confirm that the spectral matrix cannot be part of a complete set of seven mutually unbiased bases in dimension six.
Logical optimization for database uniformization
NASA Technical Reports Server (NTRS)
Grant, J.
1984-01-01
Data base uniformization refers to the building of a common user interface facility to support uniform access to any or all of a collection of distributed heterogeneous data bases. Such a system should enable a user, situated anywhere along a set of distributed data bases, to access all of the information in the data bases without having to learn the various data manipulation languages. Furthermore, such a system should leave intact the component data bases, and in particular, their already existing software. A survey of various aspects of the data bases uniformization problem and a proposed solution are presented.
NASA Astrophysics Data System (ADS)
Tamimi, E.; Ebadi, H.; Kiani, A.
2017-09-01
Automatic building detection from High Spatial Resolution (HSR) images is one of the most important issues in Remote Sensing (RS). Due to the limited number of spectral bands in HSR images, using other features will lead to improve accuracy. By adding these features, the presence probability of dependent features will be increased, which leads to accuracy reduction. In addition, some parameters should be determined in Support Vector Machine (SVM) classification. Therefore, it is necessary to simultaneously determine classification parameters and select independent features according to image type. Optimization algorithm is an efficient method to solve this problem. On the other hand, pixel-based classification faces several challenges such as producing salt-paper results and high computational time in high dimensional data. Hence, in this paper, a novel method is proposed to optimize object-based SVM classification by applying continuous Ant Colony Optimization (ACO) algorithm. The advantages of the proposed method are relatively high automation level, independency of image scene and type, post processing reduction for building edge reconstruction and accuracy improvement. The proposed method was evaluated by pixel-based SVM and Random Forest (RF) classification in terms of accuracy. In comparison with optimized pixel-based SVM classification, the results showed that the proposed method improved quality factor and overall accuracy by 17% and 10%, respectively. Also, in the proposed method, Kappa coefficient was improved by 6% rather than RF classification. Time processing of the proposed method was relatively low because of unit of image analysis (image object). These showed the superiority of the proposed method in terms of time and accuracy.
ERIC Educational Resources Information Center
Thrasher, James F.; Campbell, Marci Kramish; Oates, Veronica
2004-01-01
This study used data from 850 African Americans to test optimal matching theory (OMT). OMT predicts that (1) the most important dimensions of social support depend on the controllability of the behavior and (2) different network members often provide support across health behaviors. Data were gathered on social support source for physical…
Zhang, Litao; Cvijic, Mary Ellen; Lippy, Jonathan; Myslik, James; Brenner, Stephen L; Binnie, Alastair; Houston, John G
2012-07-01
In this paper, we review the key solutions that enabled evolution of the lead optimization screening support process at Bristol-Myers Squibb (BMS) between 2004 and 2009. During this time, technology infrastructure investment and scientific expertise integration laid the foundations to build and tailor lead optimization screening support models across all therapeutic groups at BMS. Together, harnessing advanced screening technology platforms and expanding panel screening strategy led to a paradigm shift at BMS in supporting lead optimization screening capability. Parallel SAR and structure liability relationship (SLR) screening approaches were first and broadly introduced to empower more-rapid and -informed decisions about chemical synthesis strategy and to broaden options for identifying high-quality drug candidates during lead optimization. Copyright © 2012 Elsevier Ltd. All rights reserved.
Behavioral Informatics and Computational Modeling in Support of Proactive Health Management and Care
Jimison, Holly B.; Korhonen, Ilkka; Gordon, Christine M.; Saranummi, Niilo
2016-01-01
Health-related behaviors are among the most significant determinants of health and quality of life. Improving health behavior is an effective way to enhance health outcomes and mitigate the escalating challenges arising from an increasingly aging population and the proliferation of chronic diseases. Although it has been difficult to obtain lasting improvements in health behaviors on a wide scale, advances at the intersection of technology and behavioral science may provide the tools to address this challenge. In this paper, we describe a vision and an approach to improve health behavior interventions using the tools of behavioral informatics, an emerging transdisciplinary research domain based on system-theoretic principles in combination with behavioral science and information technology. The field of behavioral informatics has the potential to optimize interventions through monitoring, assessing, and modeling behavior in support of providing tailored and timely interventions. We describe the components of a closed-loop system for health interventions. These components range from fine grain sensor characterizations to individual-based models of behavior change. We provide an example of a research health coaching platform that incorporates a closed-loop intervention based on these multiscale models. Using this early prototype, we illustrate how the optimized and personalized methodology and technology can support self-management and remote care. We note that despite the existing examples of research projects and our platform, significant future research is required to convert this vision to full-scale implementations. PMID:26441408
A Sensor Dynamic Measurement Error Prediction Model Based on NAPSO-SVM
Jiang, Minlan; Jiang, Lan; Jiang, Dingde; Li, Fei
2018-01-01
Dynamic measurement error correction is an effective way to improve sensor precision. Dynamic measurement error prediction is an important part of error correction, and support vector machine (SVM) is often used for predicting the dynamic measurement errors of sensors. Traditionally, the SVM parameters were always set manually, which cannot ensure the model’s performance. In this paper, a SVM method based on an improved particle swarm optimization (NAPSO) is proposed to predict the dynamic measurement errors of sensors. Natural selection and simulated annealing are added in the PSO to raise the ability to avoid local optima. To verify the performance of NAPSO-SVM, three types of algorithms are selected to optimize the SVM’s parameters: the particle swarm optimization algorithm (PSO), the improved PSO optimization algorithm (NAPSO), and the glowworm swarm optimization (GSO). The dynamic measurement error data of two sensors are applied as the test data. The root mean squared error and mean absolute percentage error are employed to evaluate the prediction models’ performances. The experimental results show that among the three tested algorithms the NAPSO-SVM method has a better prediction precision and a less prediction errors, and it is an effective method for predicting the dynamic measurement errors of sensors. PMID:29342942
NASA Astrophysics Data System (ADS)
Wang, Qingrui; Liu, Ruimin; Men, Cong; Guo, Lijia
2018-05-01
The genetic algorithm (GA) was combined with the Conversion of Land Use and its Effect at Small regional extent (CLUE-S) model to obtain an optimized land use pattern for controlling non-point source (NPS) pollution. The performance of the combination was evaluated. The effect of the optimized land use pattern on the NPS pollution control was estimated by the Soil and Water Assessment Tool (SWAT) model and an assistant map was drawn to support the land use plan for the future. The Xiangxi River watershed was selected as the study area. Two scenarios were used to simulate the land use change. Under the historical trend scenario (Markov chain prediction), the forest area decreased by 2035.06 ha, and was mainly converted into paddy and dryland area. In contrast, under the optimized scenario (genetic algorithm (GA) prediction), up to 3370 ha of dryland area was converted into forest area. Spatially, the conversion of paddy and dryland into forest occurred mainly in the northwest and southeast of the watershed, where the slope land occupied a large proportion. The organic and inorganic phosphorus loads decreased by 3.6% and 3.7%, respectively, in the optimized scenario compared to those in the historical trend scenario. GA showed a better performance in optimized land use prediction. A comparison of the land use patterns in 2010 under the real situation and in 2020 under the optimized situation showed that Shennongjia and Shuiyuesi should convert 1201.76 ha and 1115.33 ha of dryland into forest areas, respectively, which represented the greatest changes in all regions in the watershed. The results of this study indicated that GA and the CLUE-S model can be used to optimize the land use patterns in the future and that SWAT can be used to evaluate the effect of land use optimization on non-point source pollution control. These methods may provide support for land use plan of an area.
Noise sensitivity of portfolio selection in constant conditional correlation GARCH models
NASA Astrophysics Data System (ADS)
Varga-Haszonits, I.; Kondor, I.
2007-11-01
This paper investigates the efficiency of minimum variance portfolio optimization for stock price movements following the Constant Conditional Correlation GARCH process proposed by Bollerslev. Simulations show that the quality of portfolio selection can be improved substantially by computing optimal portfolio weights from conditional covariances instead of unconditional ones. Measurement noise can be further reduced by applying some filtering method on the conditional correlation matrix (such as Random Matrix Theory based filtering). As an empirical support for the simulation results, the analysis is also carried out for a time series of S&P500 stock prices.
Optimizing Spacecraft Placement for Liaison Constellations
NASA Technical Reports Server (NTRS)
Chow, C. Channing; Villac, Benjamin F.; Lo, Martin W.
2011-01-01
A navigation and communications network is proposed to support an anticipated need for infrastructure in the Earth-Moon system. Periodic orbits will host the constellations while a novel, autonomous navigation strategy will guide the spacecraft along their path strictly based on satellite-to-satellite telemetry. In particular, this paper investigates the second stage of a larger constellation optimization scheme for multi-spacecraft systems. That is, following an initial orbit down-selection process, this analysis provides insights into the ancillary problem of spacecraft placement. Two case studies are presented that consider configurations of up to four spacecraft for a halo orbit and a cycler trajectory.
NASA's Human Mission to a Near-Earth Asteroid: Landing on a Moving Target
NASA Technical Reports Server (NTRS)
Smith, Jeffrey H.; Lincoln, William P.; Weisbin, Charles R.
2011-01-01
This paper describes a Bayesian approach for comparing the productivity and cost-risk tradeoffs of sending versus not sending one or more robotic surveyor missions prior to a human mission to land on an asteroid. The expected value of sample information based on productivity combined with parametric variations in the prior probability an asteroid might be found suitable for landing were used to assess the optimal number of spacecraft and asteroids to survey. The analysis supports the value of surveyor missions to asteroids and indicates one launch with two spacecraft going simultaneously to two independent asteroids appears optimal.
Portable parallel portfolio optimization in the Aurora Financial Management System
NASA Astrophysics Data System (ADS)
Laure, Erwin; Moritsch, Hans
2001-07-01
Financial planning problems are formulated as large scale, stochastic, multiperiod, tree structured optimization problems. An efficient technique for solving this kind of problems is the nested Benders decomposition method. In this paper we present a parallel, portable, asynchronous implementation of this technique. To achieve our portability goals we elected the programming language Java for our implementation and used a high level Java based framework, called OpusJava, for expressing the parallelism potential as well as synchronization constraints. Our implementation is embedded within a modular decision support tool for portfolio and asset liability management, the Aurora Financial Management System.
NASA Astrophysics Data System (ADS)
Djuwendah, E.; Priyatna, T.; Kusno, K.; Deliana, Y.; Wulandari, E.
2018-03-01
Building agribusiness model of LEISA is needed as a prototype of sustainable regional and economic development (SRRED) in the watersheds (DAS) of West Java Province. Agribusiness model of LEISA is a sustainable agribusiness system applying low external input. The system was developed in the framework of optimizing local-based productive resources including soil, water, vegetation, microclimate, renewable energy, appropriate technology, social capital, environment and human resources by combining various subsystems including integrated production subsystems of crops, livestock and fish to provide a maximum synergy effect, post-harvest subsystem and processing of results, marketing subsystems and supporting subsystems. In this study, the ecological boundary of Cipunegara sub-watershed ecosystem, administrative boundaries are Surian Subdistricts in Sumedang. The purpose of this study are to identify the potency of natural resources and local agricultural technologies that could support the LEISA model in Surian and to identify the potency of internal and external inputs in the LEISA model. The research used qualitative descriptive method and technical action research. Data were obtained through interviews, documentation, and observation. The results showed that natural resources in the form of agricultural land, water resources, livestock resources, and human labor are sufficient to support agribusiness model of LEISA. LEISA agribusiness model that has been applied in the research location is the integration of beef cattle, agroforestry, and agrosilvopasture. By building LEISA model, agribusiness can optimize the utilization of locally based productive resources, reduce dependence on external resources, and support sustainable food security.
Lee, JongHyup; Pak, Dohyun
2016-01-01
For practical deployment of wireless sensor networks (WSN), WSNs construct clusters, where a sensor node communicates with other nodes in its cluster, and a cluster head support connectivity between the sensor nodes and a sink node. In hybrid WSNs, cluster heads have cellular network interfaces for global connectivity. However, when WSNs are active and the load of cellular networks is high, the optimal assignment of cluster heads to base stations becomes critical. Therefore, in this paper, we propose a game theoretic model to find the optimal assignment of base stations for hybrid WSNs. Since the communication and energy cost is different according to cellular systems, we devise two game models for TDMA/FDMA and CDMA systems employing power prices to adapt to the varying efficiency of recent wireless technologies. The proposed model is defined on the assumptions of the ideal sensing field, but our evaluation shows that the proposed model is more adaptive and energy efficient than local selections. PMID:27589743
Optimizing Distribution of Pandemic Influenza Antiviral Drugs
Huang, Hsin-Chan; Morton, David P.; Johnson, Gregory P.; Gutfraind, Alexander; Galvani, Alison P.; Clements, Bruce; Meyers, Lauren A.
2015-01-01
We provide a data-driven method for optimizing pharmacy-based distribution of antiviral drugs during an influenza pandemic in terms of overall access for a target population and apply it to the state of Texas, USA. We found that during the 2009 influenza pandemic, the Texas Department of State Health Services achieved an estimated statewide access of 88% (proportion of population willing to travel to the nearest dispensing point). However, access reached only 34.5% of US postal code (ZIP code) areas containing <1,000 underinsured persons. Optimized distribution networks increased expected access to 91% overall and 60% in hard-to-reach regions, and 2 or 3 major pharmacy chains achieved near maximal coverage in well-populated areas. Independent pharmacies were essential for reaching ZIP code areas containing <1,000 underinsured persons. This model was developed during a collaboration between academic researchers and public health officials and is available as a decision support tool for Texas Department of State Health Services at a Web-based interface. PMID:25625858
Design sensitivity analysis and optimization tool (DSO) for sizing design applications
NASA Technical Reports Server (NTRS)
Chang, Kuang-Hua; Choi, Kyung K.; Perng, Jyh-Hwa
1992-01-01
The DSO tool, a structural design software system that provides the designer with a graphics-based menu-driven design environment to perform easy design optimization for general applications, is presented. Three design stages, preprocessing, design sensitivity analysis, and postprocessing, are implemented in the DSO to allow the designer to carry out the design process systematically. A framework, including data base, user interface, foundation class, and remote module, has been designed and implemented to facilitate software development for the DSO. A number of dedicated commercial software/packages have been integrated in the DSO to support the design procedures. Instead of parameterizing an FEM, design parameters are defined on a geometric model associated with physical quantities, and the continuum design sensitivity analysis theory is implemented to compute design sensitivity coefficients using postprocessing data from the analysis codes. A tracked vehicle road wheel is given as a sizing design application to demonstrate the DSO's easy and convenient design optimization process.
Computational Support for Technology- Investment Decisions
NASA Technical Reports Server (NTRS)
Adumitroaie, Virgil; Hua, Hook; Lincoln, William; Block, Gary; Mrozinski, Joseph; Shelton, Kacie; Weisbin, Charles; Elfes, Alberto; Smith, Jeffrey
2007-01-01
Strategic Assessment of Risk and Technology (START) is a user-friendly computer program that assists human managers in making decisions regarding research-and-development investment portfolios in the presence of uncertainties and of non-technological constraints that include budgetary and time limits, restrictions related to infrastructure, and programmatic and institutional priorities. START facilitates quantitative analysis of technologies, capabilities, missions, scenarios and programs, and thereby enables the selection and scheduling of value-optimal development efforts. START incorporates features that, variously, perform or support a unique combination of functions, most of which are not systematically performed or supported by prior decision- support software. These functions include the following: Optimal portfolio selection using an expected-utility-based assessment of capabilities and technologies; Temporal investment recommendations; Distinctions between enhancing and enabling capabilities; Analysis of partial funding for enhancing capabilities; and Sensitivity and uncertainty analysis. START can run on almost any computing hardware, within Linux and related operating systems that include Mac OS X versions 10.3 and later, and can run in Windows under the Cygwin environment. START can be distributed in binary code form. START calls, as external libraries, several open-source software packages. Output is in Excel (.xls) file format.
Pargett, Michael; Rundell, Ann E.; Buzzard, Gregery T.; Umulis, David M.
2014-01-01
Discovery in developmental biology is often driven by intuition that relies on the integration of multiple types of data such as fluorescent images, phenotypes, and the outcomes of biochemical assays. Mathematical modeling helps elucidate the biological mechanisms at play as the networks become increasingly large and complex. However, the available data is frequently under-utilized due to incompatibility with quantitative model tuning techniques. This is the case for stem cell regulation mechanisms explored in the Drosophila germarium through fluorescent immunohistochemistry. To enable better integration of biological data with modeling in this and similar situations, we have developed a general parameter estimation process to quantitatively optimize models with qualitative data. The process employs a modified version of the Optimal Scaling method from social and behavioral sciences, and multi-objective optimization to evaluate the trade-off between fitting different datasets (e.g. wild type vs. mutant). Using only published imaging data in the germarium, we first evaluated support for a published intracellular regulatory network by considering alternative connections of the same regulatory players. Simply screening networks against wild type data identified hundreds of feasible alternatives. Of these, five parsimonious variants were found and compared by multi-objective analysis including mutant data and dynamic constraints. With these data, the current model is supported over the alternatives, but support for a biochemically observed feedback element is weak (i.e. these data do not measure the feedback effect well). When also comparing new hypothetical models, the available data do not discriminate. To begin addressing the limitations in data, we performed a model-based experiment design and provide recommendations for experiments to refine model parameters and discriminate increasingly complex hypotheses. PMID:24626201
Mason, Tyler B; Lewis, Robin J
2017-12-01
Binge eating is a significant concern among college age women-both Caucasian and African-American women. Research has shown that social support, coping, and optimism are associated with engaging in fewer negative health behaviors including binge eating among college students. However, the impact of sources of social support (i.e., support from family, friends, and a special person), rumination, and optimism on binge eating as a function of race/ethnicity has received less attention. The purpose of this study was to examine the association between social support, rumination, and optimism and binge eating among Caucasian and American-American women, separately. Caucasian (n = 100) and African-American (n = 84) women from a university in the Mid-Atlantic US completed an online survey about eating behaviors and psychosocial health. Social support from friends was associated with less likelihood of binge eating among Caucasian women. Social support from family was associated with less likelihood of binge eating among African-American women, but greater likelihood of binge eating among Caucasian women. Rumination was associated with greater likelihood of binge eating among Caucasian and African-American women. Optimism was associated with less likelihood of binge eating among African-American women. These results demonstrate similarities and differences in correlates of binge eating as a function of race/ethnicity.
2017-01-01
Background The home environment is where young children spend most of their time, and is critically important to supporting behaviors that promote health and prevent obesity. However, the home environment and lifestyle patterns remain understudied, and few interventions have investigated parent-led makeovers designed to create home environments that are supportive of optimal child health and healthy child weights. Objective The aim of the HomeStyles randomized controlled trial (RCT) is to determine whether the Web-based HomeStyles intervention enables and motivates parents to shape the weight-related aspects of their home environments and lifestyle behavioral practices (diet, exercise, and sleep) to be more supportive of their preschool children’s optimal health and weight. Methods A rigorous RCT utilizing an experimental group and an attention control group, receiving a bona fide contemporaneous treatment equal in nonspecific treatment effects and differing only in subject matter content, will test the effect of HomeStyles on a diverse sample of families with preschool children. This intervention is based on social cognitive theory and uses a social ecological framework, and will assess: intrapersonal characteristics (dietary intake, physical activity level, and sleep) of parents and children; family interpersonal or social characteristics related to diet, physical activity, media use, and parental values and self-efficacy for obesity-preventive practices; and home environment food availability, physical activity space and supports in and near the home, and media availability and controls in the home. Results Enrollment for this study has been completed and statistical data analyses are currently underway. Conclusions This paper describes the HomeStyles intervention with regards to: rationale, the intervention’s logic model, sample eligibility criteria and recruitment, experimental group and attention control intervention content, study design, instruments, data management, and planned analyses. PMID:28442452
DOE Office of Scientific and Technical Information (OSTI.GOV)
Owen, D; Anderson, C; Mayo, C
Purpose: To extend the functionality of a commercial treatment planning system (TPS) to support (i) direct use of quantitative image-based metrics within treatment plan optimization and (ii) evaluation of dose-functional volume relationships to assist in functional image adaptive radiotherapy. Methods: A script was written that interfaces with a commercial TPS via an Application Programming Interface (API). The script executes a program that performs dose-functional volume analyses. Written in C#, the script reads the dose grid and correlates it with image data on a voxel-by-voxel basis through API extensions that can access registration transforms. A user interface was designed through WinFormsmore » to input parameters and display results. To test the performance of this program, image- and dose-based metrics computed from perfusion SPECT images aligned to the treatment planning CT were generated, validated, and compared. Results: The integration of image analysis information was successfully implemented as a plug-in to a commercial TPS. Perfusion SPECT images were used to validate the calculation and display of image-based metrics as well as dose-intensity metrics and histograms for defined structures on the treatment planning CT. Various biological dose correction models, custom image-based metrics, dose-intensity computations, and dose-intensity histograms were applied to analyze the image-dose profile. Conclusion: It is possible to add image analysis features to commercial TPSs through custom scripting applications. A tool was developed to enable the evaluation of image-intensity-based metrics in the context of functional targeting and avoidance. In addition to providing dose-intensity metrics and histograms that can be easily extracted from a plan database and correlated with outcomes, the system can also be extended to a plug-in optimization system, which can directly use the computed metrics for optimization of post-treatment tumor or normal tissue response models. Supported by NIH - P01 - CA059827.« less
NASA Technical Reports Server (NTRS)
Meyn, Larry A.
2018-01-01
One of the goals of NASA's Revolutionary Vertical Lift Technology Project (RVLT) is to provide validated tools for multidisciplinary design, analysis and optimization (MDAO) of vertical lift vehicles. As part of this effort, the software package, RotorCraft Optimization Tools (RCOTOOLS), is being developed to facilitate incorporating key rotorcraft conceptual design codes into optimizations using the OpenMDAO multi-disciplinary optimization framework written in Python. RCOTOOLS, also written in Python, currently supports the incorporation of the NASA Design and Analysis of RotorCraft (NDARC) vehicle sizing tool and the Comprehensive Analytical Model of Rotorcraft Aerodynamics and Dynamics II (CAMRAD II) analysis tool into OpenMDAO-driven optimizations. Both of these tools use detailed, file-based inputs and outputs, so RCOTOOLS provides software wrappers to update input files with new design variable values, execute these codes and then extract specific response variable values from the file outputs. These wrappers are designed to be flexible and easy to use. RCOTOOLS also provides several utilities to aid in optimization model development, including Graphical User Interface (GUI) tools for browsing input and output files in order to identify text strings that are used to identify specific variables as optimization input and response variables. This paper provides an overview of RCOTOOLS and its use
NASA Astrophysics Data System (ADS)
Jafari-Moghaddam, Faezeh; Beyramabadi, S. Ali; Khashi, Maryam; Morsali, Ali
2018-02-01
Three oxovanadium(IV) complexes of the pyridoxal Schiff bases have been newly synthesized and characterized. The used Schiff bases were N,N‧-dipyridoxyl(ethylenediamine), N,N‧-dipyridoxyl(1,3-propanediamine) and N,N‧-dipyridoxyl(1,2-benzenediamine). Also, the optimized geometry, assignment of the IR bands and the Natural Bond Orbital (NBO) analysis of the complexes have been computed using the density functional theory (DFT) methods. Dianionic form of the Schiff bases (L2-) acts as a tetradentate N2O2 ligand. The coordinating atoms of the Schiff base are the phenolate oxygens and imine nitrogens, which occupy four base positions of the square-pyramidal geometry of the complexes. The oxo ligand occupies the apical position of the [VO(L)] complexes. In the optimized geometry of the complexes, the coordinated Schiff bases have more planar structure than their free form. Due to the high-energy gaps, all of the complexes are predicted to be stable. Good agreement between the experimental values and the DFT-computed results supports suitability of the optimized geometries for the complexes. The investigated complexes show high catalytic activities in synthesis of the tetrahydrobenzo[b]pyrans through a three-component cyclocondensation reaction of dimedone, malononitrile and some aromatic aldehydes. The complexes catalyzed the reaction in solvent free conditions and the catalysts were found to be reusable.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guthier, C; University Medical Center Mannheim, Mannheim; Harvard Medical School, Boston, MA
Purpose: Inverse treatment planning (ITP) for interstitial HDR brachytherapy of gynecologic cancers seeks to maximize coverage of the clinical target volumes (tumor and vagina) while respecting dose-volume-histogram related dosimetric measures (DMs) for organs at risk (OARs). Commercially available ITP tools do not support DM-based planning because it is computationally too expensive to solve. In this study we present a novel approach that allows fast ITP for gynecologic cancers based on DMs for the first time. Methods: This novel strategy is an optimization model based on a smooth DM-based objective function. The smooth approximation is achieved by utilizing a logistic functionmore » for the evaluation of DMs. The resulting nonconvex and constrained optimization problem is then optimized with a BFGS algorithm. The model was evaluated using the implant geometry extracted from 20 patient treatment plans under an IRB-approved retrospective study. For each plan, the final DMs were evaluated and compared to the original clinical plans. The CTVs were the contoured tumor volume and the contoured surface of the vagina. Statistical significance was evaluated with a one-sided paired Wilcoxon signed-rank test. Results: As did the clinical plans, all generated plans fulfilled the defined DMs for OARs. The proposed strategy showed a statistically significant improvement (p<0.001) in coverage of the tumor and vagina, with absolute improvements of related DMs of (6.9 +/− 7.9)% and (28.2 +/− 12.0)%, respectively. This was achieved with a statistically significant (p<0.01) decrease of the high-dose-related DM for the tumor. The runtime of the optimization was (2.3 +/− 2.0) seconds. Conclusion: We demonstrated using clinical data that our novel approach allows rapid DM-based optimization with improved coverage of CTVs with fewer hot spots. Being up to three orders of magnitude faster than the current clinical practice, the method dramatically shortens planning time.« less
Navy Enhanced Sierra Mechanics (NESM): Toolbox for predicting Navy shock and damage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moyer, Thomas; Stergiou, Jonathan; Reese, Garth
Here, the US Navy is developing a new suite of computational mechanics tools (Navy Enhanced Sierra Mechanics) for the prediction of ship response, damage, and shock environments transmitted to vital systems during threat weapon encounters. NESM includes fully coupled Euler-Lagrange solvers tailored to ship shock/damage predictions. NESM is optimized to support high-performance computing architectures, providing the physics-based ship response/threat weapon damage predictions needed to support the design and assessment of highly survivable ships. NESM is being employed to support current Navy ship design and acquisition programs while being further developed for future Navy fleet needs.
NASA Astrophysics Data System (ADS)
Dong, Hao; Hu, Yahui
2018-04-01
The bend-torsion coupling dynamics load-sharing model of the helicopter face gear split torque transmission system is established by using concentrated quality standard, to analyzing the dynamic load-sharing characteristic. The mathematical models include nonlinear support stiffness, time-varying meshing stiffness, damping, gear backlash. The results showed that the errors collectively influenced the load sharing characteristics, only reduce a certain error, it is never fully reached the perfect loading sharing characteristics. The system load-sharing performance can be improved through floating shaft support. The above-method will provide a theoretical basis and data support for its dynamic performance optimization design.
Navy Enhanced Sierra Mechanics (NESM): Toolbox for predicting Navy shock and damage
Moyer, Thomas; Stergiou, Jonathan; Reese, Garth; ...
2016-05-25
Here, the US Navy is developing a new suite of computational mechanics tools (Navy Enhanced Sierra Mechanics) for the prediction of ship response, damage, and shock environments transmitted to vital systems during threat weapon encounters. NESM includes fully coupled Euler-Lagrange solvers tailored to ship shock/damage predictions. NESM is optimized to support high-performance computing architectures, providing the physics-based ship response/threat weapon damage predictions needed to support the design and assessment of highly survivable ships. NESM is being employed to support current Navy ship design and acquisition programs while being further developed for future Navy fleet needs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mueller, S; Joosten, A; Fix, MK
Purpose: To estimate the dosimetric potential of mixed beam radiotherapy (MBRT) by using a single process optimizing the shape and weight of photon and electron apertures simultaneously based on Monte Carlo beamlet dose distributions. Methods: A simulated annealing based direct aperture optimization capable to perform simultaneous optimization was developed to generate treatment plans for MERT, photon-IMRT and MBRT. Both photon and electron apertures are collimated with the photon-MLC and are delivered in a segmented manner. For dosimetric comparison and for investigating the dependency on the number of apertures, photon-IMRT, MERT and MBRT plans were generated for an academic case consistingmore » of a water phantom containing two shallow PTVs differing in the maximal depth of 5 and 7 cm, respectively and two OARs in distal and lateral direction to the PTVs. Results: For the superficial PTV, the dose homogeneity (V95%–V107%) and the mean dose (in percent of the prescribed dose) to the distal and the lateral OARs of the MBRT plan (94.9%, 16.9%, 17.8%) are superior or comparable to those for the MERT (74%, 18.4%, 15.4%) and the photon-IMRT plan (89.4%, 20.8%, 24.7%). For the enlarged PTV, the dosimetric superiority of MBRT compared to MERT and photon-IMRT is even more pronounced. Furthermore, an MBRT plan with 12 electron and 10 photon apertures lead to an objective function value 38% lower than that of a photon-IMRT plan with 40 apertures. Conclusion: The results of simultaneous optimization for MBRT are promising with regards to further OAR sparing and improved dose coverage to the PTV compared to photon-IMRT and MERT. Especially superficial targets with deeper subparts (>5 cm) could substantially benefit. Moreover, MBRT seems to be a possible solution of two downsides of photon-IMRT, namely the extended low dose bath and the requirement of numerous apertures. This work was supported by Varian Medical Systems. This work was supported by Varian Medical Systems.« less
Coarse-graining using the relative entropy and simplex-based optimization methods in VOTCA
NASA Astrophysics Data System (ADS)
Rühle, Victor; Jochum, Mara; Koschke, Konstantin; Aluru, N. R.; Kremer, Kurt; Mashayak, S. Y.; Junghans, Christoph
2014-03-01
Coarse-grained (CG) simulations are an important tool to investigate systems on larger time and length scales. Several methods for systematic coarse-graining were developed, varying in complexity and the property of interest. Thus, the question arises which method best suits a specific class of system and desired application. The Versatile Object-oriented Toolkit for Coarse-graining Applications (VOTCA) provides a uniform platform for coarse-graining methods and allows for their direct comparison. We present recent advances of VOTCA, namely the implementation of the relative entropy method and downhill simplex optimization for coarse-graining. The methods are illustrated by coarse-graining SPC/E bulk water and a water-methanol mixture. Both CG models reproduce the pair distributions accurately. SYM is supported by AFOSR under grant 11157642 and by NSF under grant 1264282. CJ was supported in part by the NSF PHY11-25915 at KITP. K. Koschke acknowledges funding by the Nestle Research Center.
MIRATE: MIps RATional dEsign Science Gateway.
Busato, Mirko; Distefano, Rosario; Bates, Ferdia; Karim, Kal; Bossi, Alessandra Maria; López Vilariño, José Manuel; Piletsky, Sergey; Bombieri, Nicola; Giorgetti, Alejandro
2018-06-13
Molecularly imprinted polymers (MIPs) are high affinity robust synthetic receptors, which can be optimally synthesized and manufactured more economically than their biological equivalents (i.e. antibody). In MIPs production, rational design based on molecular modeling is a commonly employed technique. This mostly aids in (i) virtual screening of functional monomers (FMs), (ii) optimization of monomer-template ratio, and (iii) selectivity analysis. We present MIRATE, an integrated science gateway for the intelligent design of MIPs. By combining and adapting multiple state-of-the-art bioinformatics tools into automated and innovative pipelines, MIRATE guides the user through the entire process of MIPs' design. The platform allows the user to fully customize each stage involved in the MIPs' design, with the main goal to support the synthesis in the wet-laboratory. MIRATE is freely accessible with no login requirement at http://mirate.di.univr.it/. All major browsers are supported.
Nishita, Christy; Browne, Colette
2013-02-01
Recent federal policy supports an individual's preference for home and community-based long-term care, even among nursing home residents. Optimizing transitions from the nursing home to home is a complex undertaking that requires addressing the interrelationships between health literacy and cultural-linguistic factors in the nation's increasingly diverse older adult population. We look at four Asian American and Pacific Islander elder populations to illustrate that differing health profiles and cultural-linguistic values can affect the type of care and support needed and preferred. A research gap exists that links these factors together for optimal transitional care. The paper presents a conceptual framework and proposes a six-point research agenda that includes family assessments of health literacy abilities, exploring the relationship between culture, health, and decision-making, and the development/adaptation of transition planning tools.
NASA Astrophysics Data System (ADS)
Xu, Xiaobing; Zhong, Wei; Wu, Liqian; Sun, Yuan; Wang, Tingting; Wang, Yuanqi; Du, Youwei
2018-01-01
Hydrogen evolution reaction (HER) through water splitting at low overpotential is an appealing technology to produce renewable energy, wherein the design of stable electrocatalysts is very critical. To achieve optimal electrochemical performance, a highly efficient and stable noble-metal-free HER catalyst is synthesized by means of a facile hydrothermal co-synthesis. It consists of Ni3S4 nanosheets and MoS2 nanolayers supported on N-doped reduced graphene oxide (Ni3S4/MoS2@N-rGO). The optimized sample provides a large amount of active sites that benefit electron transfer in 3D conductive networks. Thanks to the strong synergistic effect in the catalyst network, we achieved a low overpotential of 94 mV, a small Tafel slope of 56 mV/dec and remarkable durability in an acidic medium.
Breast Cancer Recognition Using a Novel Hybrid Intelligent Method
Addeh, Jalil; Ebrahimzadeh, Ata
2012-01-01
Breast cancer is the second largest cause of cancer deaths among women. At the same time, it is also among the most curable cancer types if it can be diagnosed early. This paper presents a novel hybrid intelligent method for recognition of breast cancer tumors. The proposed method includes three main modules: the feature extraction module, the classifier module, and the optimization module. In the feature extraction module, fuzzy features are proposed as the efficient characteristic of the patterns. In the classifier module, because of the promising generalization capability of support vector machines (SVM), a SVM-based classifier is proposed. In support vector machine training, the hyperparameters have very important roles for its recognition accuracy. Therefore, in the optimization module, the bees algorithm (BA) is proposed for selecting appropriate parameters of the classifier. The proposed system is tested on Wisconsin Breast Cancer database and simulation results show that the recommended system has a high accuracy. PMID:23626945
Li, Yongxin; Li, Yuanqian; Zheng, Bo; Qu, Lingli; Li, Can
2009-06-08
A rapid and sensitive method based on microchip capillary electrophoresis with condition optimization of genetic algorithm-support vector regression (GA-SVR) was developed and applied to simultaneous analysis of multiplex PCR products of four foodborne pathogenic bacteria. Four pairs of oligonucleotide primers were designed to exclusively amplify the targeted gene of Vibrio parahemolyticus, Salmonella, Escherichia coli (E. coli) O157:H7, Shigella and the quadruplex PCR parameters were optimized. At the same time, GA-SVR was employed to optimize the separation conditions of DNA fragments in microchip capillary electrophoresis. The proposed method was applied to simultaneously detect the multiplex PCR products of four foodborne pathogenic bacteria under the optimal conditions within 8 min. The levels of detection were as low as 1.2 x 10(2) CFU mL(-1) of Vibrio parahemolyticus, 2.9 x 10(2) CFU mL(-1) of Salmonella, 8.7 x 10(1) CFU mL(-1) of E. coli O157:H7 and 5.2 x 10(1) CFU mL(-1) of Shigella, respectively. The relative standard deviation of migration time was in the range of 0.74-2.09%. The results demonstrated that the good resolution and less analytical time were achieved due to the application of the multivariate strategy. This study offers an efficient alternative to routine foodborne pathogenic bacteria detection in a fast, reliable, and sensitive way.
Social support mediates the association between benefit finding and quality of life in caregivers.
Brand, Charles; Barry, Lorna; Gallagher, Stephen
2016-06-01
The psychosocial pathways underlying associations between benefit finding and quality of life are poorly understood. Here, we examined associations between benefit finding, social support, optimism and quality of life in a sample of 84 caregivers. Results revealed that quality of life was predicted by benefit finding, optimism and social support. Moreover, the association between benefit finding and quality of life was explained by social support, but not optimism; caregivers who reported greater benefit finding perceived their social support be higher and this, in turn, had a positive effect on their overall quality of life. These results underscore the importance of harnessing benefit finding to enhance caregiver quality of life. © The Author(s) 2014.
NASA Technical Reports Server (NTRS)
Chung, William; Chachad, Girish; Hochstetler, Ronald
2016-01-01
The Integrated Gate Turnaround Management (IGTM) concept was developed to improve the gate turnaround performance at the airport by leveraging relevant historical data to support optimization of airport gate operations, which include: taxi to the gate, gate services, push back, taxi to the runway, and takeoff, based on available resources, constraints, and uncertainties. By analyzing events of gate operations, primary performance dependent attributes of these events were identified for the historical data analysis such that performance models can be developed based on uncertainties to support descriptive, predictive, and prescriptive functions. A system architecture was developed to examine system requirements in support of such a concept. An IGTM prototype was developed to demonstrate the concept using a distributed network and collaborative decision tools for stakeholders to meet on time pushback performance under uncertainties.
NASA Astrophysics Data System (ADS)
Song, Young Joo; Woo, Jong Hun; Shin, Jong Gye
2009-12-01
Today, many middle-sized shipbuilding companies in Korea are experiencing strong competition from shipbuilding companies in other nations. This competition is particularly affecting small- and middle-sized shipyards, rather than the major shipyards that have their own support systems and development capabilities. The acquisition of techniques that would enable maximization of production efficiency and minimization of the gap between planning and execution would increase the competitiveness of small- and middle-sized Korean shipyards. In this paper, research on a simulation-based support system for ship production management, which can be applied to the shipbuilding processes of middle-sized shipbuilding companies, is presented. The simulation research includes layout optimization, load balancing, work stage operation planning, block logistics, and integrated material management. Each item is integrated into a network system with a value chain that includes all shipbuilding processes.
ANSYS UIDL-Based CAE Development of Axial Support System for Optical Mirror
NASA Astrophysics Data System (ADS)
Yang, De-Hua; Shao, Liang
2008-09-01
The Whiffle-tree type axial support mechanism is widely adopted by most relatively large optical mirrors. Based on the secondary developing tools offered by the commonly used Finite Element Anylysis (FEA) software ANSYS, ANSYS Parametric Design Language (APDL) is used for creating the mirror FEA model driven by parameters, and ANSYS User Interface Design Language (UIDL) for generating custom menu of interactive manner, whereby, the relatively independent dedicated Computer Aided Engineering (CAE) module is embedded in ANSYS for calculation and optimization of axial Whiffle-tree support of optical mirrors. An example is also described to illustrate the intuitive and effective usage of the dedicated module by boosting work efficiency and releasing related engineering knowledge of user. The philosophy of secondary-developed special module with commonly used software also suggests itself for product development in other industries.
Oxidation of methane over palladium catalysts: effect of the support.
Escandón, Lara S; Ordóñez, Salvador; Vega, Aurelio; Díez, Fernando V
2005-01-01
This work is focused on the deep catalytic oxidation of methane over supported palladium catalysts. The influences of the metal loading, oxidation state of palladium, nature of supports, presence of promoters in the supports (for zirconia-based supports), and thermal stability have been studied experimentally. Catalysts were prepared by incipient wetness of commercially available supports with aqueous solutions of palladium nitrate. For gamma-alumina support, it was observed that the optimal amount of palladium is between 0.5% and 2%, with higher amounts leading to a loss in specific activity. Concerning the oxidation state of the catalyst, it is concluded that for all the supports tested in the present work, a reduction of the catalyst is not needed, yielding the same conversion at steady state catalysts reduced and oxidised. The thermal stability of various supported catalysts were also studied, zirconia supports being the most active. These supports, specially Y-modified zirconia support, do not suffer appreciable deactivation below 500 degrees C.
An Adjoint-Based Approach to Study a Flexible Flapping Wing in Pitching-Rolling Motion
NASA Astrophysics Data System (ADS)
Jia, Kun; Wei, Mingjun; Xu, Min; Li, Chengyu; Dong, Haibo
2017-11-01
Flapping-wing aerodynamics, with advantages in agility, efficiency, and hovering capability, has been the choice of many flyers in nature. However, the study of bio-inspired flapping-wing propulsion is often hindered by the problem's large control space with different wing kinematics and deformation. The adjoint-based approach reduces largely the computational cost to a feasible level by solving an inverse problem. Facing the complication from moving boundaries, non-cylindrical calculus provides an easy extension of traditional adjoint-based approach to handle the optimization involving moving boundaries. The improved adjoint method with non-cylindrical calculus for boundary treatment is first applied on a rigid pitching-rolling plate, then extended to a flexible one with active deformation to further increase its propulsion efficiency. The comparison of flow dynamics with the initial and optimal kinematics and deformation provides a unique opportunity to understand the flapping-wing mechanism. Supported by AFOSR and ARL.
Social Support and Optimism as Predictors of Life Satisfaction of College Students
ERIC Educational Resources Information Center
Yalcin, Ilhan
2011-01-01
The purpose of this study was to investigate the predictive value of optimism, perceived support from family and perceived support from faculty in determining life satisfaction of college students in Turkey. One hundred and thirty three students completed the Satisfaction with Life Scale (Diener et al., Journal of Personality Assessment…
Makowsky, Robert; Cox, Christian L; Roelke, Corey; Chippindale, Paul T
2010-11-01
Determining the appropriate gene for phylogeny reconstruction can be a difficult process. Rapidly evolving genes tend to resolve recent relationships, but suffer from alignment issues and increased homoplasy among distantly related species. Conversely, slowly evolving genes generally perform best for deeper relationships, but lack sufficient variation to resolve recent relationships. We determine the relationship between sequence divergence and Bayesian phylogenetic reconstruction ability using both natural and simulated datasets. The natural data are based on 28 well-supported relationships within the subphylum Vertebrata. Sequences of 12 genes were acquired and Bayesian analyses were used to determine phylogenetic support for correct relationships. Simulated datasets were designed to determine whether an optimal range of sequence divergence exists across extreme phylogenetic conditions. Across all genes we found that an optimal range of divergence for resolving the correct relationships does exist, although this level of divergence expectedly depends on the distance metric. Simulated datasets show that an optimal range of sequence divergence exists across diverse topologies and models of evolution. We determine that a simple to measure property of genetic sequences (genetic distance) is related to phylogenic reconstruction ability in Bayesian analyses. This information should be useful for selecting the most informative gene to resolve any relationships, especially those that are difficult to resolve, as well as minimizing both cost and confounding information during project design. Copyright © 2010. Published by Elsevier Inc.
A Scientific Rationale to Improve Resistance Training Prescription in Exercise Oncology.
Fairman, Ciaran M; Zourdos, Michael C; Helms, Eric R; Focht, Brian C
2017-08-01
To date, the prevailing evidence in the field of exercise oncology supports the safety and efficacy of resistance training to attenuate many oncology treatment-related adverse effects, such as risk for cardiovascular disease, increased fatigue, and diminished physical functioning and quality of life. Moreover, findings in the extant literature supporting the benefits of exercise for survivors of and patients with cancer have resulted in the release of exercise guidelines from several international agencies. However, despite research progression and international recognition, current exercise oncology-based exercise prescriptions remain relatively basic and underdeveloped, particularly in regards to resistance training. Recent publications have called for a more precise manipulation of training variables such as volume, intensity, and frequency (i.e., periodization), given the large heterogeneity of a cancer population, to truly optimize clinically relevant patient-reported outcomes. Indeed, increased attention to integrating fundamental principles of exercise physiology into the exercise prescription process could optimize the safety and efficacy of resistance training during cancer care. The purpose of this article is to give an overview of the current state of resistance training prescription and discuss novel methods that can contribute to improving approaches to exercise prescription. We hope this article may facilitate further evaluation of best practice regarding resistance training prescription, monitoring, and modification to ultimately optimize the efficacy of integrating resistance training as a supportive care intervention for survivors or and patients with cancer.
Chen, Xudong; Xu, Zhongwen; Yao, Liming; Ma, Ning
2018-03-05
This study considers the two factors of environmental protection and economic benefits to address municipal sewage treatment. Based on considerations regarding the sewage treatment plant construction site, processing technology, capital investment, operation costs, water pollutant emissions, water quality and other indicators, we establish a general multi-objective decision model for optimizing municipal sewage treatment plant construction. Using the construction of a sewage treatment plant in a suburb of Chengdu as an example, this paper tests the general model of multi-objective decision-making for the sewage treatment plant construction by implementing a genetic algorithm. The results show the applicability and effectiveness of the multi-objective decision model for the sewage treatment plant. This paper provides decision and technical support for the optimization of municipal sewage treatment.
Gradient Evolution-based Support Vector Machine Algorithm for Classification
NASA Astrophysics Data System (ADS)
Zulvia, Ferani E.; Kuo, R. J.
2018-03-01
This paper proposes a classification algorithm based on a support vector machine (SVM) and gradient evolution (GE) algorithms. SVM algorithm has been widely used in classification. However, its result is significantly influenced by the parameters. Therefore, this paper aims to propose an improvement of SVM algorithm which can find the best SVMs’ parameters automatically. The proposed algorithm employs a GE algorithm to automatically determine the SVMs’ parameters. The GE algorithm takes a role as a global optimizer in finding the best parameter which will be used by SVM algorithm. The proposed GE-SVM algorithm is verified using some benchmark datasets and compared with other metaheuristic-based SVM algorithms. The experimental results show that the proposed GE-SVM algorithm obtains better results than other algorithms tested in this paper.
Watershed Management Optimization Support Tool (WMOST) Webinar
This webinar will highlight version 3 of EPA’s Watershed Management Optimization Support Tool (WMOST). WMOST facilitates implementation of integrated water management by communities, utilities, watershed management organizations, consultants, and others. There can be many o...
ERIC Educational Resources Information Center
Fernández-González, L.; González-Hernández, A.; Trianes-Torres, M. V.
2015-01-01
Introduction: This research aims to analyse how optimism, self-esteem and social support help to predict academic stress. Method: The sample consisted of 123 students aged 20 to 31 years old, from the 3rd Year in the Psychology Degree. Students completed the Rosenberg Self-esteem Scale, the Life Orientation Optimism Questionnaire (LOT-R), the…
Smoothing optimization of supporting quadratic surfaces with Zernike polynomials
NASA Astrophysics Data System (ADS)
Zhang, Hang; Lu, Jiandong; Liu, Rui; Ma, Peifu
2018-03-01
A new optimization method to get a smooth freeform optical surface from an initial surface generated by the supporting quadratic method (SQM) is proposed. To smooth the initial surface, a 9-vertex system from the neighbor quadratic surface and the Zernike polynomials are employed to establish a linear equation system. A local optimized surface to the 9-vertex system can be build by solving the equations. Finally, a continuous smooth optimization surface is constructed by stitching the above algorithm on the whole initial surface. The spot corresponding to the optimized surface is no longer discrete pixels but a continuous distribution.
Modelling optimal location for pre-hospital helicopter emergency medical services.
Schuurman, Nadine; Bell, Nathaniel J; L'Heureux, Randy; Hameed, Syed M
2009-05-09
Increasing the range and scope of early activation/auto launch helicopter emergency medical services (HEMS) may alleviate unnecessary injury mortality that disproportionately affects rural populations. To date, attempts to develop a quantitative framework for the optimal location of HEMS facilities have been absent. Our analysis used five years of critical care data from tertiary health care facilities, spatial data on origin of transport and accurate road travel time catchments for tertiary centres. A location optimization model was developed to identify where the expansion of HEMS would cover the greatest population among those currently underserved. The protocol was developed using geographic information systems (GIS) to measure populations, distances and accessibility to services. Our model determined Royal Inland Hospital (RIH) was the optimal site for an expanded HEMS - based on denominator population, distance to services and historical usage patterns. GIS based protocols for location of emergency medical resources can provide supportive evidence for allocation decisions - especially when resources are limited. In this study, we were able to demonstrate conclusively that a logical choice exists for location of additional HEMS. This protocol could be extended to location analysis for other emergency and health services.
Unconventional bearing capacity analysis and optimization of multicell box girders.
Tepic, Jovan; Doroslovacki, Rade; Djelosevic, Mirko
2014-01-01
This study deals with unconventional bearing capacity analysis and the procedure of optimizing a two-cell box girder. The generalized model which enables the local stress-strain analysis of multicell girders was developed based on the principle of cross-sectional decomposition. The applied methodology is verified using the experimental data (Djelosevic et al., 2012) for traditionally formed box girders. The qualitative and quantitative evaluation of results obtained for the two-cell box girder is realized based on comparative analysis using the finite element method (FEM) and the ANSYS v12 software. The deflection function obtained by analytical and numerical methods was found consistent provided that the maximum deviation does not exceed 4%. Multicell box girders are rationally designed support structures characterized by much lower susceptibility of their cross-sectional elements to buckling and higher specific capacity than traditionally formed box girders. The developed local stress model is applied for optimizing the cross section of a two-cell box carrier. The author points to the advantages of implementing the model of local stresses in the optimization process and concludes that the technological reserve of bearing capacity amounts to 20% at the same girder weight and constant load conditions.
NASA Astrophysics Data System (ADS)
Niu, Mingfei; Wang, Yufang; Sun, Shaolong; Li, Yongwu
2016-06-01
To enhance prediction reliability and accuracy, a hybrid model based on the promising principle of "decomposition and ensemble" and a recently proposed meta-heuristic called grey wolf optimizer (GWO) is introduced for daily PM2.5 concentration forecasting. Compared with existing PM2.5 forecasting methods, this proposed model has improved the prediction accuracy and hit rates of directional prediction. The proposed model involves three main steps, i.e., decomposing the original PM2.5 series into several intrinsic mode functions (IMFs) via complementary ensemble empirical mode decomposition (CEEMD) for simplifying the complex data; individually predicting each IMF with support vector regression (SVR) optimized by GWO; integrating all predicted IMFs for the ensemble result as the final prediction by another SVR optimized by GWO. Seven benchmark models, including single artificial intelligence (AI) models, other decomposition-ensemble models with different decomposition methods and models with the same decomposition-ensemble method but optimized by different algorithms, are considered to verify the superiority of the proposed hybrid model. The empirical study indicates that the proposed hybrid decomposition-ensemble model is remarkably superior to all considered benchmark models for its higher prediction accuracy and hit rates of directional prediction.
ERIC Educational Resources Information Center
Kielty, Michele L.; Gilligan, Tammy D.; Staton, A. Renee
2017-01-01
With any intervention program, involving all stakeholders in a joint effort toward implementation is most likely to lead to success. Whole-school approaches that involve school personnel, students, families, and local communities have been associated with positive, sustained outcomes. For mindfulness training programs to generate the most…
How to Optimize Learning from Animated Models: A Review of Guidelines Based on Cognitive Load
ERIC Educational Resources Information Center
Wouters, Pieter; Paas, Fred; van Merrienboer, Jeroen J. G.
2008-01-01
Animated models explicate the procedure to solve a problem, as well as the rationale behind this procedure. For abstract cognitive processes, animations might be beneficial, especially when a supportive pedagogical agent provides explanations. This article argues that animated models can be an effective instructional method, provided that they are…
Using a Recommendation System to Support Problem Solving and Case-Based Reasoning Retrieval
ERIC Educational Resources Information Center
Tawfik, Andrew A.; Alhoori, Hamed; Keene, Charles Wayne; Bailey, Christian; Hogan, Maureen
2018-01-01
In case library learning environments, learners are presented with an array of narratives that can be used to guide their problem solving. However, according to theorists, learners struggle to identify and retrieve the optimal case to solve a new problem. Given the challenges novice face during case retrieval, recommender systems can be embedded…
NASA Astrophysics Data System (ADS)
Ramalingam, V. V.; Pandian, A.; Jaiswal, Abhijeet; Bhatia, Nikhar
2018-04-01
This paper presents a novel method based on concept of Machine Learning for Emotion Detection using various algorithms of Support Vector Machine and major emotions described are linked to the Word-Net for enhanced accuracy. The approach proposed plays a promising role to augment the Artificial Intelligence in the near future and could be vital in optimization of Human-Machine Interface.
Direct 17O dynamic nuclear polarization of single-site heterogeneous catalysts
Perras, Frédéric A.; Boteju, Kasuni C.; Slowing, Igor I.; ...
2018-03-13
In this work, we utilize direct 17O DNP for the characterization of non-protonated oxygens in heterogeneous catalysts. The optimal sample preparation and population transfer approach for 17O direct DNP experiments performed on silica surfaces is determined and applied to the characterization of Zr- and Y-based mesoporous silica-supported single-site catalysts.
A domain-specific compiler for a parallel multiresolution adaptive numerical simulation environment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rajbhandari, Samyam; Kim, Jinsung; Krishnamoorthy, Sriram
This paper describes the design and implementation of a layered domain-specific compiler to support MADNESS---Multiresolution ADaptive Numerical Environment for Scientific Simulation. MADNESS is a high-level software environment for the solution of integral and differential equations in many dimensions, using adaptive and fast harmonic analysis methods with guaranteed precision. MADNESS uses k-d trees to represent spatial functions and implements operators like addition, multiplication, differentiation, and integration on the numerical representation of functions. The MADNESS runtime system provides global namespace support and a task-based execution model including futures. MADNESS is currently deployed on massively parallel supercomputers and has enabled many science advances.more » Due to the highly irregular and statically unpredictable structure of the k-d trees representing the spatial functions encountered in MADNESS applications, only purely runtime approaches to optimization have previously been implemented in the MADNESS framework. This paper describes a layered domain-specific compiler developed to address some performance bottlenecks in MADNESS. The newly developed static compile-time optimizations, in conjunction with the MADNESS runtime support, enable significant performance improvement for the MADNESS framework.« less
NASA Astrophysics Data System (ADS)
Su, Lihong
In remote sensing communities, support vector machine (SVM) learning has recently received increasing attention. SVM learning usually requires large memory and enormous amounts of computation time on large training sets. According to SVM algorithms, the SVM classification decision function is fully determined by support vectors, which compose a subset of the training sets. In this regard, a solution to optimize SVM learning is to efficiently reduce training sets. In this paper, a data reduction method based on agglomerative hierarchical clustering is proposed to obtain smaller training sets for SVM learning. Using a multiple angle remote sensing dataset of a semi-arid region, the effectiveness of the proposed method is evaluated by classification experiments with a series of reduced training sets. The experiments show that there is no loss of SVM accuracy when the original training set is reduced to 34% using the proposed approach. Maximum likelihood classification (MLC) also is applied on the reduced training sets. The results show that MLC can also maintain the classification accuracy. This implies that the most informative data instances can be retained by this approach.
Social support needs identified by mothers affected by intimate partner violence.
Letourneau, Nicole; Morris, Catherine Young; Stewart, Miriam; Hughes, Jean; Critchley, Kim A; Secco, Loretta
2013-09-01
In order to offer optimal supports and services for mothers affected by intimate partner violence (IPV), an understanding of these mothers' perceptions of support needs, resources, barriers to support, and preferences for support intervention is warranted. Moreover, the growing recognition of the effects of IPV on maternal-infant relationships and of the importance of these early relationships to long-term child health outcomes suggests interventions are needed to support optimal maternal-infant relationships in these families. Thus, 64 mothers exposed to IPV when their infants were below 12 months of age participated in a retrospective qualitative study to identify mothers' support needs, resources, barriers to support, and preferences for specific support interventions to promote optimal mother-infant relationships. Participants identified both personal needs (including needs for leaving or staying with the violent partner), along with intertwined needs to care for, and help, their infants cope with the experience of violence. Mothers reported that integrated services that include information and practical support from professionals with emotional and affirmation support from peers would promote positive, nurturing mother-infant relationships and healthy child development.
A water management decision support system contributing to sustainability
NASA Astrophysics Data System (ADS)
Horváth, Klaudia; van Esch, Bart; Baayen, Jorn; Pothof, Ivo; Talsma, Jan; van Heeringen, Klaas-Jan
2017-04-01
Deltares and Eindhoven University of Technology are developing a new decision support system (DSS) for regional water authorities. In order to maintain water levels in the Dutch polder system, water should be drained and pumped out from the polders to the sea. The time and amount of pumping depends on the current sea level, the water level in the polder, the weather forecast and the electricity price forecast and possibly local renewable power production. This is a multivariable optimisation problem, where the goal is to keep the water level in the polder within certain bounds. By optimizing the operation of the pumps the energy usage and costs can be reduced, hence the operation of the regional water authorities can be more sustainable, while also anticipating on increasing share of renewables in the energy mix in a cost-effective way. The decision support system, based on Delft-FEWS as operational data-integration platform, is running an optimization model built in RTC-Tools 2, which is performing real-time optimization in order to calculate the pumping strategy. It is taking into account the present and future circumstances. As being the core of the real time decision support system, RTC-Tools 2 fulfils the key requirements to a DSS: it is fast, robust and always finds the optimal solution. These properties are associated with convex optimization. In such problems the global optimum can always be found. The challenge in the development is to maintain the convex formulation of all the non-linear components in the system, i.e. open channels, hydraulic structures, and pumps. The system is introduced through 4 pilot projects, one of which is a pilot of the Dutch Water Authority Rivierenland. This is a typical Dutch polder system: several polders are drained to the main water system, the Linge. The water from the Linge can be released to the main rivers that are subject to tidal fluctuations. In case of low tide, water can be released via the gates. In case of high tide, water should be pumped. The goal of the pilot is to make the operation of the regional water authority more sustainable and cost-efficient. Sustainability can be achieved by minimizing the CO2 production trough minimizing the energy used for pumping. This work is showing the functionalities of the new decision support system, using RTC-Tools 2, through the example of a pilot project.
Lin, Yi; Cai, Fu-Ying; Zhang, Guang-Ya
2007-01-01
A quantitative structure-property relationship (QSPR) model in terms of amino acid composition and the activity of Bacillus thuringiensis insecticidal crystal proteins was established. Support vector machine (SVM) is a novel general machine-learning tool based on the structural risk minimization principle that exhibits good generalization when fault samples are few; it is especially suitable for classification, forecasting, and estimation in cases where small amounts of samples are involved such as fault diagnosis; however, some parameters of SVM are selected based on the experience of the operator, which has led to decreased efficiency of SVM in practical application. The uniform design (UD) method was applied to optimize the running parameters of SVM. It was found that the average accuracy rate approached 73% when the penalty factor was 0.01, the epsilon 0.2, the gamma 0.05, and the range 0.5. The results indicated that UD might be used an effective method to optimize the parameters of SVM and SVM and could be used as an alternative powerful modeling tool for QSPR studies of the activity of Bacillus thuringiensis (Bt) insecticidal crystal proteins. Therefore, a novel method for predicting the insecticidal activity of Bt insecticidal crystal proteins was proposed by the authors of this study.
A Workflow-based Intelligent Network Data Movement Advisor with End-to-end Performance Optimization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Michelle M.; Wu, Chase Q.
2013-11-07
Next-generation eScience applications often generate large amounts of simulation, experimental, or observational data that must be shared and managed by collaborative organizations. Advanced networking technologies and services have been rapidly developed and deployed to facilitate such massive data transfer. However, these technologies and services have not been fully utilized mainly because their use typically requires significant domain knowledge and in many cases application users are even not aware of their existence. By leveraging the functionalities of an existing Network-Aware Data Movement Advisor (NADMA) utility, we propose a new Workflow-based Intelligent Network Data Movement Advisor (WINDMA) with end-to-end performance optimization formore » this DOE funded project. This WINDMA system integrates three major components: resource discovery, data movement, and status monitoring, and supports the sharing of common data movement workflows through account and database management. This system provides a web interface and interacts with existing data/space management and discovery services such as Storage Resource Management, transport methods such as GridFTP and GlobusOnline, and network resource provisioning brokers such as ION and OSCARS. We demonstrate the efficacy of the proposed transport-support workflow system in several use cases based on its implementation and deployment in DOE wide-area networks.« less
The Dopaminergic Midbrain Encodes the Expected Certainty about Desired Outcomes.
Schwartenbeck, Philipp; FitzGerald, Thomas H B; Mathys, Christoph; Dolan, Ray; Friston, Karl
2015-10-01
Dopamine plays a key role in learning; however, its exact function in decision making and choice remains unclear. Recently, we proposed a generic model based on active (Bayesian) inference wherein dopamine encodes the precision of beliefs about optimal policies. Put simply, dopamine discharges reflect the confidence that a chosen policy will lead to desired outcomes. We designed a novel task to test this hypothesis, where subjects played a "limited offer" game in a functional magnetic resonance imaging experiment. Subjects had to decide how long to wait for a high offer before accepting a low offer, with the risk of losing everything if they waited too long. Bayesian model comparison showed that behavior strongly supported active inference, based on surprise minimization, over classical utility maximization schemes. Furthermore, midbrain activity, encompassing dopamine projection neurons, was accurately predicted by trial-by-trial variations in model-based estimates of precision. Our findings demonstrate that human subjects infer both optimal policies and the precision of those inferences, and thus support the notion that humans perform hierarchical probabilistic Bayesian inference. In other words, subjects have to infer both what they should do as well as how confident they are in their choices, where confidence may be encoded by dopaminergic firing. © The Author 2014. Published by Oxford University Press.
The Dopaminergic Midbrain Encodes the Expected Certainty about Desired Outcomes
Schwartenbeck, Philipp; FitzGerald, Thomas H. B.; Mathys, Christoph; Dolan, Ray; Friston, Karl
2015-01-01
Dopamine plays a key role in learning; however, its exact function in decision making and choice remains unclear. Recently, we proposed a generic model based on active (Bayesian) inference wherein dopamine encodes the precision of beliefs about optimal policies. Put simply, dopamine discharges reflect the confidence that a chosen policy will lead to desired outcomes. We designed a novel task to test this hypothesis, where subjects played a “limited offer” game in a functional magnetic resonance imaging experiment. Subjects had to decide how long to wait for a high offer before accepting a low offer, with the risk of losing everything if they waited too long. Bayesian model comparison showed that behavior strongly supported active inference, based on surprise minimization, over classical utility maximization schemes. Furthermore, midbrain activity, encompassing dopamine projection neurons, was accurately predicted by trial-by-trial variations in model-based estimates of precision. Our findings demonstrate that human subjects infer both optimal policies and the precision of those inferences, and thus support the notion that humans perform hierarchical probabilistic Bayesian inference. In other words, subjects have to infer both what they should do as well as how confident they are in their choices, where confidence may be encoded by dopaminergic firing. PMID:25056572
TH-EF-BRB-02: Feasibility of Optimization for Dynamic Trajectory Radiotherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fix, MK; Frei, D; Volken, W
2016-06-15
Purpose: Over the last years, volumetric modulated arc therapy (VMAT) has been widely introduced into clinical routine using a coplanar delivery technique. However, VMAT might be improved by including dynamic couch and collimator rotations, leading to dynamic trajectory radiotherapy (DTRT). In this work the feasibility and the potential benefit of DTRT was investigated. Methods: A general framework for the optimization was developed using the Eclipse Scripting Research Application Programming Interface (ESRAPI). Based on contoured target and organs at risk (OARs), the structures are extracted using the ESRAPI. Sampling potential beam directions, regularly distributed on a sphere using a Fibanocci-lattice, themore » fractional volume-overlap of each OAR and the target is determined and used to establish dynamic gantry-couch movements. Then, for each gantry-couch track the most suitable collimator angle is determined for each control point by optimizing the area between the MLC leaves and the target contour. The resulting dynamic trajectories are used as input to perform the optimization using a research version of the VMAT optimization algorithm and the ESRAPI. The feasibility of this procedure was tested for a clinically motivated head and neck case. Resulting dose distributions for the VMAT plan and for the dynamic trajectory treatment plan were compared based on DVH-parameters. Results: While the DVH for the target is virtually preserved, improvements in maximum dose for the DTRT plan were achieved for all OARs except for the inner-ear, where maximum dose remains the same. The major improvements in maximum dose were 6.5% of the prescribed dose (66 Gy) for the parotid and 5.5% for the myelon and the eye. Conclusion: The result of this work suggests that DTRT has a great potential to reduce dose to OARs with similar target coverage when compared to conventional VMAT treatment plans. This work was supported by Varian Medical Systems. This work was supported by Varian Medical Systems.« less
Metabolic Effects of Infection,
1981-01-01
in which is usually t as indica- Kelaway. C. H .lacCaflum. P,. and Tebbutt, A. H.: r fth tive of increased renal perfusion ss readily RoY llC ission of...since tant metabolic responses, he should be able to they are based on the need for energy-producing plan optimal supportive care as an adjunct to...influenced by changes in acid- base balance. When and others. fever occurs, respiratory rates become faster. The Before amino acids are used for producing glu
Quantum Support Vector Machine for Big Data Classification
NASA Astrophysics Data System (ADS)
Rebentrost, Patrick; Mohseni, Masoud; Lloyd, Seth
2014-09-01
Supervised machine learning is the classification of new data based on already classified training examples. In this work, we show that the support vector machine, an optimized binary classifier, can be implemented on a quantum computer, with complexity logarithmic in the size of the vectors and the number of training examples. In cases where classical sampling algorithms require polynomial time, an exponential speedup is obtained. At the core of this quantum big data algorithm is a nonsparse matrix exponentiation technique for efficiently performing a matrix inversion of the training data inner-product (kernel) matrix.
Artificial intelligence techniques for modeling database user behavior
NASA Technical Reports Server (NTRS)
Tanner, Steve; Graves, Sara J.
1990-01-01
The design and development of the adaptive modeling system is described. This system models how a user accesses a relational database management system in order to improve its performance by discovering use access patterns. In the current system, these patterns are used to improve the user interface and may be used to speed data retrieval, support query optimization and support a more flexible data representation. The system models both syntactic and semantic information about the user's access and employs both procedural and rule-based logic to manipulate the model.
Duan, Li; Guo, Long; Liu, Ke; Liu, E-Hu; Li, Ping
2014-04-25
Citrus herbs have been widely used in traditional medicine and cuisine in China and other countries since the ancient time. However, the authentication and quality control of Citrus herbs has always been a challenging task due to their similar morphological characteristics and the diversity of the multi-components existed in the complicated matrix. In the present investigation, we developed a novel strategy to characterize and classify seven Citrus herbs based on chromatographic analysis and chemometric methods. Firstly, the chemical constituents in seven Citrus herbs were globally characterized by liquid chromatography combined with quadrupole time-of-flight mass spectrometry (LC-QTOF-MS). Based on their retention time, UV spectra and MS fragmentation behavior, a total of 75 compounds were identified or tentatively characterized in these herbal medicines. Secondly, a segmental monitoring method based on LC-variable wavelength detection was developed for simultaneous quantification of ten marker compounds in these Citrus herbs. Thirdly, based on the contents of the ten analytes, genetic algorithm optimized support vector machines (GA-SVM) was employed to differentiate and classify the 64 samples covering these seven herbs. The obtained classifier showed good prediction performance and the overall prediction accuracy reached 96.88%. The proposed strategy is expected to provide new insight for authentication and quality control of traditional herbs. Copyright © 2014 Elsevier B.V. All rights reserved.
Torp, Steffen; Bing-Jonsson, Pia C; Hanson, Elizabeth
2013-09-01
This multi-municipal intervention study explored whether informal carers of frail older people and disabled children living at home made use of information and communication technology (ICT) to gain knowledge about caring and to form informal support networks, thereby improving their health. Seventy-nine informal carers accessed web-based information about caring and an e-based discussion forum via their personal computers. They were able to maintain contact with each other using a web camera and via normal group meetings. After the first 12 months, 17 informal carers participated in focus group interviews and completed a short questionnaire. Four staff members were also interviewed. Participant carers who had prior experiences with a similar ICT-based support network reported greater satisfaction and more extensive use of the network than did participants with no such prior experience. It seems that infrequent usage of the service may be explained by too few other carers to identify with and inappropriate recruitment procedures. Nevertheless, carers of disabled children reported that the intervention had resulted in improved services across the participant municipalities. To achieve optimal effects of an ICT-based support network due attention must be given to recruitment processes and social environment building for which care practitioners require training and support.
Peterson, Jennifer K
2018-06-01
Improved survival has led to increased recognition of developmental delays in infants and children with congenital heart disease. Risk factors for developmental delays in congenital heart disease survivors may not be modifiable; therefore, it is important that lifesaving, high-technology critical care interventions be combined with nursing interventions that are also developmentally supportive. Implementing developmental care in a pediatric cardiac intensive care unit requires change implementation strategies and widespread support from all levels of health care professionals. This manuscript reviews developmentally supportive interventions such as massage, developmentally supportive positioning, kangaroo care, cue-based feeding, effective pain/anxiety management, and procedural preparation and identifies strategies to implement developmentally supportive interventions in the care of infants and children with congenital heart disease. Improving developmental support for these infants and children at high risk for developmental delay may improve their outcomes and help promote family-centered care. ©2018 American Association of Critical-Care Nurses.
NASA Astrophysics Data System (ADS)
Ogoshi, Yasuhiro; Nakai, Akio; Ogoshi, Sakiko; Mitsuhashi, Yoshinori; Araki, Chikahiro
A key aspect of the optimal support of students with special needs is co-ordination and co-operation between school, home and specialized agencies. Communication between these entities is of prime importance and can be facilitated through the use of a support system implementing ICF guidelines as outlined. This communication system can be considered to be a preventative rather than allopathic support.
Design method of redundancy of brace-anchor sharing supporting based on cooperative deformation
NASA Astrophysics Data System (ADS)
Liu, Jun-yan; Li, Bing; Liu, Yan; Cai, Shan-bing
2017-11-01
Because of the complicated environment requirement, the support form of foundation pit is diversified, and the brace-anchor sharing support is widely used. However, the research on the force deformation characteristics and the related aspects of the cooperative response of the brace-anchor sharing support is insufficient. The application of redundancy theory in structural engineering has been more mature, but there is little theoretical research on redundancy theory in underground engineering. Based on the idea of collaborative deformation, the paper calculates the ratio of the redundancy degree of the cooperative deformation by using the local reinforcement design method and the structural component redundancy parameter calculation formula based on Frangopol. Combined with the engineering case, through the calculation of the ratio of cooperative deformation redundancy in the joint of brace-anchor sharing support. This paper explores the optimal anchor distribution form under the condition of cooperative deformation, and through the analysis and research of displacement field and stress field, the results of the collaborative deformation are validated by comparing the field monitoring data. It provides theoretical basis for the design of this kind of foundation pit in the future.
The Iterative Reweighted Mixed-Norm Estimate for Spatio-Temporal MEG/EEG Source Reconstruction.
Strohmeier, Daniel; Bekhti, Yousra; Haueisen, Jens; Gramfort, Alexandre
2016-10-01
Source imaging based on magnetoencephalography (MEG) and electroencephalography (EEG) allows for the non-invasive analysis of brain activity with high temporal and good spatial resolution. As the bioelectromagnetic inverse problem is ill-posed, constraints are required. For the analysis of evoked brain activity, spatial sparsity of the neuronal activation is a common assumption. It is often taken into account using convex constraints based on the l 1 -norm. The resulting source estimates are however biased in amplitude and often suboptimal in terms of source selection due to high correlations in the forward model. In this work, we demonstrate that an inverse solver based on a block-separable penalty with a Frobenius norm per block and a l 0.5 -quasinorm over blocks addresses both of these issues. For solving the resulting non-convex optimization problem, we propose the iterative reweighted Mixed Norm Estimate (irMxNE), an optimization scheme based on iterative reweighted convex surrogate optimization problems, which are solved efficiently using a block coordinate descent scheme and an active set strategy. We compare the proposed sparse imaging method to the dSPM and the RAP-MUSIC approach based on two MEG data sets. We provide empirical evidence based on simulations and analysis of MEG data that the proposed method improves on the standard Mixed Norm Estimate (MxNE) in terms of amplitude bias, support recovery, and stability.
NASA Astrophysics Data System (ADS)
Zhan, Liwei; Li, Chengwei
2017-02-01
A hybrid PSO-SVM-based model is proposed to predict the friction coefficient between aircraft tire and coating. The presented hybrid model combines a support vector machine (SVM) with particle swarm optimization (PSO) technique. SVM has been adopted to solve regression problems successfully. Its regression accuracy is greatly related to optimizing parameters such as the regularization constant C , the parameter gamma γ corresponding to RBF kernel and the epsilon parameter \\varepsilon in the SVM training procedure. However, the friction coefficient which is predicted based on SVM has yet to be explored between aircraft tire and coating. The experiment reveals that drop height and tire rotational speed are the factors affecting friction coefficient. Bearing in mind, the friction coefficient can been predicted using the hybrid PSO-SVM-based model by the measured friction coefficient between aircraft tire and coating. To compare regression accuracy, a grid search (GS) method and a genetic algorithm (GA) are used to optimize the relevant parameters (C , γ and \\varepsilon ), respectively. The regression accuracy could be reflected by the coefficient of determination ({{R}2} ). The result shows that the hybrid PSO-RBF-SVM-based model has better accuracy compared with the GS-RBF-SVM- and GA-RBF-SVM-based models. The agreement of this model (PSO-RBF-SVM) with experiment data confirms its good performance.
Gagnon, Marie-Pierre; Légaré, France; Fortin, Jean-Paul; Lamothe, Lise; Labrecque, Michel; Duplantie, Julie
2008-01-01
Background E-health is increasingly valued for supporting: 1) access to quality health care services for all citizens; 2) information flow and exchange; 3) integrated health care services and 4) interprofessional collaboration. Nevertheless, several questions remain on the factors allowing an optimal integration of e-health in health care policies, organisations and practices. An evidence-based integrated strategy would maximise the efficacy and efficiency of e-health implementation. However, decisions regarding e-health applications are usually not evidence-based, which can lead to a sub-optimal use of these technologies. This study aims at understanding factors influencing the application of scientific knowledge for an optimal implementation of e-health in the health care system. Methods A three-year multi-method study is being conducted in the Province of Quebec (Canada). Decision-making at each decisional level (political, organisational and clinical) are analysed based on specific approaches. At the political level, critical incidents analysis is being used. This method will identify how decisions regarding the implementation of e-health could be influenced or not by scientific knowledge. Then, interviews with key-decision-makers will look at how knowledge was actually used to support their decisions, and what factors influenced its use. At the organisational level, e-health projects are being analysed as case studies in order to explore the use of scientific knowledge to support decision-making during the implementation of the technology. Interviews with promoters, managers and clinicians will be carried out in order to identify factors influencing the production and application of scientific knowledge. At the clinical level, questionnaires are being distributed to clinicians involved in e-health projects in order to analyse factors influencing knowledge application in their decision-making. Finally, a triangulation of the results will be done using mixed methodologies to allow a transversal analysis of the results at each of the decisional levels. Results This study will identify factors influencing the use of scientific evidence and other types of knowledge by decision-makers involved in planning, financing, implementing and evaluating e-health projects. Conclusion These results will be highly relevant to inform decision-makers who wish to optimise the implementation of e-health in the Quebec health care system. This study is extremely relevant given the context of major transformations in the health care system where e-health becomes a must. PMID:18435853
Optimal Timing of Heart Transplant After HeartMate II Left Ventricular Assist Device Implantation.
Steffen, Robert J; Blackstone, Eugene H; Smedira, Nicholas G; Soltesz, Edward G; Hoercher, Katherine J; Thuita, Lucy; Starling, Randall C; Mountis, Maria; Moazami, Nader
2017-11-01
Optimal timing of heart transplantation in patients supported with second-generation left ventricular assist devices (LVADs) is unknown. Despite this, patients with LVADs continue to receive priority on the heart transplant waiting list. Our objective was to determine the optimal timing of transplantation for patients bridged with continuous-flow LVADs. A total of 301 HeartMate II LVADs (Thoratec Corp, Pleasanton, CA) were implanted in 285 patients from October 2004 to June 2013, and 86 patients underwent transplantation through the end of follow-up. Optimal transplantation timing was the product of surviving on LVAD support and surviving transplant. Three-year survival after both HeartMate II implantation and heart transplantation was unchanged when transplantation occurred within 9 months of implantation. Survival decreased as the duration of support exceeded this. Preoperative risk factors for death on HeartMate II support were prior valve operation, prior coronary artery bypass grafting, low albumin, low glomerular filtration rate, higher mean arterial pressure, hypertension, and earlier date of implant. Survival for patients without these risk factors was lowest when transplant was performed within 3 months but was relatively constant with increased duration of support. Longer duration of support was associated with poorer survival for patients with many of these risk factors. Device reimplantation, intracranial hemorrhage, and postimplant dialysis during HeartMate II support were associated with decreased survival. Survival of patients supported by the HeartMate II is affected by preoperative comorbidities and postoperative complications. Transplantation before complications is imperative in optimizing survival. Copyright © 2017 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.
Water quality monitoring strategies - A review and future perspectives.
Behmel, S; Damour, M; Ludwig, R; Rodriguez, M J
2016-11-15
The reliable assessment of water quality through water quality monitoring programs (WQMPs) is crucial in order for decision-makers to understand, interpret and use this information in support of their management activities aiming at protecting the resource. The challenge of water quality monitoring has been widely addressed in the literature since the 1940s. However, there is still no generally accepted, holistic and practical strategy to support all phases of WQMPs. The purpose of this paper is to report on the use cases a watershed manager has to address to plan or optimize a WQMP from the challenge of identifying monitoring objectives; selecting sampling sites and water quality parameters; identifying sampling frequencies; considering logistics and resources to the implementation of actions based on information acquired through the WQMP. An inventory and critique of the information, approaches and tools placed at the disposal of watershed managers was proposed to evaluate how the existing information could be integrated in a holistic, user-friendly and evolvable solution. Given the differences in regulatory requirements, water quality standards, geographical and geological differences, land-use variations, and other site specificities, a one-in-all solution is not possible. However, we advance that an intelligent decision support system (IDSS) based on expert knowledge that integrates existing approaches and past research can guide a watershed manager through the process according to his/her site-specific requirements. It is also necessary to tap into local knowledge and to identify the knowledge needs of all the stakeholders through participative approaches based on geographical information systems and adaptive survey-based questionnaires. We believe that future research should focus on developing such participative approaches and further investigate the benefits of IDSS's that can be updated quickly and make it possible for a watershed manager to obtain a timely, holistic view and support for every aspect of planning and optimizing a WQMP. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Wanguang, Sun; Chengzhen, Li; Baoshan, Fan
2018-06-01
Rivers are drying up most frequently in West Liaohe River plain and the bare river beds present fine sand belts on land. These sand belts, which yield a dust heavily in windy days, stress the local environment deeply as the riverbeds are eroded by wind. The optimal operation of water resources, thus, is one of the most important methods for preventing the wind erosion of riverbeds. In this paper, optimal operation model for water resources based on riverbed wind erosion control has been established, which contains objective function, constraints, and solution method. The objective function considers factors which include water volume diverted into reservoirs, river length and lower threshold of flow rate, etc. On the basis of ensuring the water requirement of each reservoir, the destruction of the vegetation in the riverbed by the frequent river flow is avoided. The multi core parallel solving method for optimal water resources operation in the West Liaohe River Plain is proposed, which the optimal solution is found by DPSA method under the POA framework and the parallel computing program is designed in Fork/Join mode. Based on the optimal operation results, the basic rules of water resources operation in the West Liaohe River Plain are summarized. Calculation results show that, on the basis of meeting the requirement of water volume of every reservoir, the frequency of reach river flow which from Taihekou to Talagan Water Diversion Project in the Xinkai River is reduced effectively. The speedup and parallel efficiency of parallel algorithm are 1.51 and 0.76 respectively, and the computing time is significantly decreased. The research results show in this paper can provide technical support for the prevention and control of riverbed wind erosion in the West Liaohe River plain.
About Distributed Simulation-based Optimization of Forming Processes using a Grid Architecture
NASA Astrophysics Data System (ADS)
Grauer, Manfred; Barth, Thomas
2004-06-01
Permanently increasing complexity of products and their manufacturing processes combined with a shorter "time-to-market" leads to more and more use of simulation and optimization software systems for product design. Finding a "good" design of a product implies the solution of computationally expensive optimization problems based on the results of simulation. Due to the computational load caused by the solution of these problems, the requirements on the Information&Telecommunication (IT) infrastructure of an enterprise or research facility are shifting from stand-alone resources towards the integration of software and hardware resources in a distributed environment for high-performance computing. Resources can either comprise software systems, hardware systems, or communication networks. An appropriate IT-infrastructure must provide the means to integrate all these resources and enable their use even across a network to cope with requirements from geographically distributed scenarios, e.g. in computational engineering and/or collaborative engineering. Integrating expert's knowledge into the optimization process is inevitable in order to reduce the complexity caused by the number of design variables and the high dimensionality of the design space. Hence, utilization of knowledge-based systems must be supported by providing data management facilities as a basis for knowledge extraction from product data. In this paper, the focus is put on a distributed problem solving environment (PSE) capable of providing access to a variety of necessary resources and services. A distributed approach integrating simulation and optimization on a network of workstations and cluster systems is presented. For geometry generation the CAD-system CATIA is used which is coupled with the FEM-simulation system INDEED for simulation of sheet-metal forming processes and the problem solving environment OpTiX for distributed optimization.
Dynamic motion planning of 3D human locomotion using gradient-based optimization.
Kim, Hyung Joo; Wang, Qian; Rahmatalla, Salam; Swan, Colby C; Arora, Jasbir S; Abdel-Malek, Karim; Assouline, Jose G
2008-06-01
Since humans can walk with an infinite variety of postures and limb movements, there is no unique solution to the modeling problem to predict human gait motions. Accordingly, we test herein the hypothesis that the redundancy of human walking mechanisms makes solving for human joint profiles and force time histories an indeterminate problem best solved by inverse dynamics and optimization methods. A new optimization-based human-modeling framework is thus described for predicting three-dimensional human gait motions on level and inclined planes. The basic unknowns in the framework are the joint motion time histories of a 25-degree-of-freedom human model and its six global degrees of freedom. The joint motion histories are calculated by minimizing an objective function such as deviation of the trunk from upright posture that relates to the human model's performance. A variety of important constraints are imposed on the optimization problem, including (1) satisfaction of dynamic equilibrium equations by requiring the model's zero moment point (ZMP) to lie within the instantaneous geometrical base of support, (2) foot collision avoidance, (3) limits on ground-foot friction, and (4) vanishing yawing moment. Analytical forms of objective and constraint functions are presented and discussed for the proposed human-modeling framework in which the resulting optimization problems are solved using gradient-based mathematical programming techniques. When the framework is applied to the modeling of bipedal locomotion on level and inclined planes, acyclic human walking motions that are smooth and realistic as opposed to less natural robotic motions are obtained. The aspects of the modeling framework requiring further investigation and refinement, as well as potential applications of the framework in biomechanics, are discussed.
Celano, Christopher M; Albanese, Ariana M; Millstein, Rachel A; Mastromauro, Carol A; Chung, Wei-Jean; Campbell, Kirsti A; Legler, Sean R; Park, Elyse R; Healy, Brian C; Collins, Linda M; Januzzi, James L; Huffman, Jeff C
2018-04-05
Despite the clear benefits of physical activity and related behaviors on prognosis, most patients suffering an acute coronary syndrome (ACS) remain nonadherent to these behaviors. Deficits in positive psychological constructs (e.g., optimism) are linked to reduced participation in health behaviors, supporting the potential utility of a positive psychology (PP)-based intervention in post-ACS patients. Accordingly, we aimed to identify optimal components of a PP-based intervention to promote post-ACS physical activity. As part of a multiphase optimization strategy, we completed a randomized factorial trial with eight conditions in 128 post-ACS patients to efficiently identify best-performing intervention components. All participants received a PP-based intervention, with conditions varying in duration (presence/absence of booster sessions), intensity (weekly/daily PP exercises), and content (PP alone or combined with motivational interviewing [MI]), allowing three concurrent comparisons within the trial. Study aims included assessments of the overall feasibility, acceptability, and impact of the intervention, along with the primary aim of determining which components were associated with objectively-measured physical activity and self-reported health behavior adherence at 16 weeks, assessed using longitudinal models. The intervention was well-accepted and associated with substantial improvements in behavioral and psychological outcomes. Booster sessions were associated with greater activity to a nearly significant degree (β=8.58, 95% confidence interval= -0.49-17.65, effect size difference=.43; p=.064), MI was associated with overall adherence (β=0.95, 95% confidence interval=0.02-1.87, effect size difference=.39; p=.044), and weekly exercise completion was generally superior to daily. These findings will enable optimization of the PP-based intervention in preparation for a well-powered controlled trial. ClinicalTrials.gov identifier: NCT02754895.
Morales-Pérez, Ariadna A; Maravilla, Pablo; Solís-López, Myriam; Schouwenaars, Rafael; Durán-Moreno, Alfonso; Ramírez-Zamora, Rosa-María
2016-01-01
An experimental design methodology was used to optimize the synthesis of an iron-supported nanocatalyst as well as the inactivation process of Ascaris eggs (Ae) using this material. A factor screening design was used for identifying the significant experimental factors for nanocatalyst support (supported %Fe, (w/w), temperature and time of calcination) and for the inactivation process called the heterogeneous Fenton-like reaction (H2O2 dose, mass ratio Fe/H2O2, pH and reaction time). The optimization of the significant factors was carried out using a face-centered central composite design. The optimal operating conditions for both processes were estimated with a statistical model and implemented experimentally with five replicates. The predicted value of the Ae inactivation rate was close to the laboratory results. At the optimal operating conditions of the nanocatalyst production and Ae inactivation process, the Ascaris ova showed genomic damage to the point that no cell reparation was possible showing that this advanced oxidation process was highly efficient for inactivating this pathogen.
Byabene, A K; Fortes-Déguénonvo, L; Niang, K; Manga, M N; Bulabula, A N H; Nachega, J B; Seydi, M
2017-06-01
To determine the prevalence and factors associated with optimal antiretroviral therapy (ART) adherence and virological failure (VLF) among HIV-infected adults enrolled in the national ART programme at the teaching hospital of Fann, Dakar, Senegal. Cross-sectional study from 1 September 2013 to 30 January 2014. (1) optimal ART adherence by the Center for Adherence Support Evaluation (CASE) Index Score (>10) and (2) VLF (HIV RNA > 1000 copies/ml). Diagnostic accuracy of CASE Index Score assessed using sensitivity (Se), specificity (Sp), positive predictive value (PPV), negative predictive value (NPV) and corresponding 95% confidence intervals (CIs). Multivariate logistic regression analysis was performed to identify independent factors associated with optimal adherence and VLF. Of 98 HIV-infected patients on ART, 68% were female. The median (IQR) age was 42 (20-50) years. A total of 57 of 98 (60%) were on ART more than 3 years, and majority (88%) were on NNRTI-based first-line ART regimen. A total of 79 of 98 (80%) patients reported optimal ART adherence, and only five of 84 (5.9%) had documented VLF. Patients with VLF were significantly more likely to have suboptimal ART adherence (17.7% vs. 2.9%; P = 0.02). CASE Index Score showed the best trade-off in Se (78.9%, 95% CI: 54.4-93.9%), Sp (20.0%, 95% CI: 11.1-31.7), PPV (22.4, 95% CI: 13.1-34.2%) and NPV (76.5%, 95% CI: 50.1-93.2), when used VLF threshold of HIV RNA >50 copies/ml. Factors independently associated with VLF were CASE Index Score <10 ([aOR] = 13.0, 95% CI: 1.1-147.9; P = 0.04) and being a boosted PI-based ART regimen ([aOR] = 27.0, 95% CI: 2.4-309.4; P = 0.008). Optimal ART adherence is achievable in a high proportion of HIV-infected adults in this study population. CASE Index Score was independently associated with virological outcomes, supporting usefulness of this low-cost ART adherence monitoring tool in this setting. © 2017 John Wiley & Sons Ltd.
Design Optimization of Hybrid FRP/RC Bridge
NASA Astrophysics Data System (ADS)
Papapetrou, Vasileios S.; Tamijani, Ali Y.; Brown, Jeff; Kim, Daewon
2018-04-01
The hybrid bridge consists of a Reinforced Concrete (RC) slab supported by U-shaped Fiber Reinforced Polymer (FRP) girders. Previous studies on similar hybrid bridges constructed in the United States and Europe seem to substantiate these hybrid designs for lightweight, high strength, and durable highway bridge construction. In the current study, computational and optimization analyses were carried out to investigate six composite material systems consisting of E-glass and carbon fibers. Optimization constraints are determined by stress, deflection and manufacturing requirements. Finite Element Analysis (FEA) and optimization software were utilized, and a framework was developed to run the complete analyses in an automated fashion. Prior to that, FEA validation of previous studies on similar U-shaped FRP girders that were constructed in Poland and Texas is presented. A finer optimization analysis is performed for the case of the Texas hybrid bridge. The optimization outcome of the hybrid FRP/RC bridge shows the appropriate composite material selection and cross-section geometry that satisfies all the applicable Limit States (LS) and, at the same time, results in the lightest design. Critical limit states show that shear stress criteria determine the optimum design for bridge spans less than 15.24 m and deflection criteria controls for longer spans. Increased side wall thickness can reduce maximum observed shear stresses, but leads to a high weight penalty. A taller cross-section and a thicker girder base can efficiently lower the observed deflections and normal stresses. Finally, substantial weight savings can be achieved by the optimization framework if base and side-wall thickness are treated as independent variables.
Improvements in Space Surveillance Processing for Wide Field of View Optical Sensors
NASA Astrophysics Data System (ADS)
Sydney, P.; Wetterer, C.
2014-09-01
For more than a decade, an autonomous satellite tracking system at the Air Force Maui Optical and Supercomputing (AMOS) observatory has been generating routine astrometric measurements of Earth-orbiting Resident Space Objects (RSOs) using small commercial telescopes and sensors. Recent work has focused on developing an improved processing system, enhancing measurement performance and response while supporting other sensor systems and missions. This paper will outline improved techniques in scheduling, detection, astrometric and photometric measurements, and catalog maintenance. The processing system now integrates with Special Perturbation (SP) based astrodynamics algorithms, allowing covariance-based scheduling and more precise orbital estimates and object identification. A merit-based scheduling algorithm provides a global optimization framework to support diverse collection tasks and missions. The detection algorithms support a range of target tracking and camera acquisition rates. New comprehensive star catalogs allow for more precise astrometric and photometric calibrations including differential photometry for monitoring environmental changes. This paper will also examine measurement performance with varying tracking rates and acquisition parameters.