Training of physicians for the twenty-first century: role of the basic sciences.
Grande, Joseph P
2009-09-01
Rapid changes in the healthcare environment and public dissatisfaction with the cost and quality of medical care have prompted a critical analysis of how physicians are trained in the United States. Accrediting agencies have catalyzed a transformation from a process based to a competency-based curriculum, both at the undergraduate and the graduate levels. The objective of this overview is to determine how these changes are likely to alter the role of basic science in medical education. Policy statements related to basic science education from the National Board of Medical Examiners (NBME), the Accreditation Council for Graduate Medical Education (ACGME), American Board of Medical Specialties (ABMS), and the Federation of State Medical Boards (FSMB) were reviewed and assessed for common themes. Three primary roles for the basic sciences in medical education are proposed: (1) basic science to support the development of clinical reasoning skills; (2) basic science to support a critical analysis of medical and surgical interventions ("evidence-based medicine"); and (3) basic and translational science to support analysis of processes to improve healthcare ("science of healthcare delivery"). With these roles in mind, several methods to incorporate basic sciences into the curriculum are suggested.
ERIC Educational Resources Information Center
National Science Foundation, Washington, DC. National Science Board.
A survey was conducted by the National Science Board of the basic research supported by executive branch agencies of the federal government. Most of the data came from information solicited by the Board from federal agencies involved in science. Fourteen mission agencies and two agencies not so classified and 20 subunits of these responded.…
[Platforms are needed for innovative basic research in ophthalmology].
Wang, Yi-qiang
2012-07-01
Basic research poses the cornerstone of technical innovation in all lines including medical sciences. Currently, there are shortages of professional scientists as well as technical supporting teams and facilities in the field of basic research of ophthalmology and visual science in China. Evaluation system and personnel policies are not supportive for innovative but high-risk-of-failure research projects. Discussion of reasons and possible solutions are given here to address these problems, aiming at promoting buildup of platforms hosting novel and important basic research in eye science in this country.
Lisk, Kristina; Agur, Anne M R; Woods, Nicole N
2017-12-01
Several studies have shown that cognitive integration of basic and clinical sciences supports diagnostic reasoning in novices; however, there has been limited exploration of the ways in which educators can translate this model of mental activity into sound instructional strategies. The use of self-explanation during learning has the potential to promote and support the development of integrated knowledge by encouraging novices to elaborate on the causal relationship between clinical features and basic science mechanisms. To explore the effect of this strategy, we compared diagnostic efficacy of teaching students (n = 71) the clinical features of four musculoskeletal pathologies using either (1) integrated causal basic science descriptions (BaSci group); (2) integrated causal basic science descriptions combined with self-explanation prompts (SE group); (3) basic science mechanisms segregated from the clinical features (SG group). All participants completed a diagnostic accuracy test immediately after learning and 1-week later. The results showed that the BaSci group performed significantly better compared to the SE (p = 0.019) and SG groups (p = 0.004); however, no difference was observed between the SE and SG groups (p = 0.91). We hypothesize that the structure of the self-explanation task may not have supported the development of a holistic conceptual understanding of each disease. These findings suggest that integration strategies need to be carefully structured and applied in ways that support the holistic story created by integrated basic science instruction in order to foster conceptual coherence and to capitalize on the benefits of cognition integration.
Optometry Basic Science Curricula: Current Status.
ERIC Educational Resources Information Center
Berman, Morris S.
1991-01-01
A national survey of optometry schools (n=10) concerning the status of basic biological science instruction provides insight into manpower, curriculum, learning resources, and budgetary support currently available. Results indicate that major changes must occur and that a national effort will be needed to support them. (Author/MSE)
Opportunities for Computational Discovery in Basic Energy Sciences
NASA Astrophysics Data System (ADS)
Pederson, Mark
2011-03-01
An overview of the broad-ranging support of computational physics and computational science within the Department of Energy Office of Science will be provided. Computation as the third branch of physics is supported by all six offices (Advanced Scientific Computing, Basic Energy, Biological and Environmental, Fusion Energy, High-Energy Physics, and Nuclear Physics). Support focuses on hardware, software and applications. Most opportunities within the fields of~condensed-matter physics, chemical-physics and materials sciences are supported by the Officeof Basic Energy Science (BES) or through partnerships between BES and the Office for Advanced Scientific Computing. Activities include radiation sciences, catalysis, combustion, materials in extreme environments, energy-storage materials, light-harvesting and photovoltaics, solid-state lighting and superconductivity.~ A summary of two recent reports by the computational materials and chemical communities on the role of computation during the next decade will be provided. ~In addition to materials and chemistry challenges specific to energy sciences, issues identified~include a focus on the role of the domain scientist in integrating, expanding and sustaining applications-oriented capabilities on evolving high-performance computing platforms and on the role of computation in accelerating the development of innovative technologies. ~~
Eisenbarth, Sophie; Tilling, Thomas; Lueerss, Eva; Meyer, Jelka; Sehner, Susanne; Guse, Andreas H; Guse Nee Kurré, Jennifer
2016-04-29
Heterogeneous basic science knowledge of medical students is an important challenge for medical education. In this study, the authors aimed at exploring the value and role of integrated supportive science (ISS) courses as a novel approach to address this challenge and to promote learning basic science concepts in medical education. ISS courses were embedded in a reformed medical curriculum. The authors used a mixed methods approach including four focus groups involving ISS course lecturers and students (two each), and five surveys of one student cohort covering the results of regular student evaluations including the ISS courses across one study year. They conducted their study at the University Medical Center Hamburg-Eppendorf between December 2013 and July 2014. Fourteen first-year medical students and thirteen ISS course lecturers participated in the focus groups. The authors identified several themes focused on the temporal integration of ISS courses into the medical curriculum, the integration of ISS course contents into core curriculum contents, the value and role of ISS courses, and the courses' setting and atmosphere. The integrated course concept was positively accepted by both groups, with participants suggesting that it promotes retention of basic science knowledge. Values and roles identified by focus group participants included promotion of basic understanding of science concepts, integration of foundational and applied learning, and maximization of students' engagement and motivation. Building close links between ISS course contents and the core curriculum appeared to be crucial. Survey results confirmed qualitative findings regarding students' satisfaction, with some courses still requiring optimization. Integration of supportive basic science courses, traditionally rather part of premedical education, into the medical curriculum appears to be a feasible strategy to improve medical students' understanding of basic science concepts and to increase their motivation and engagement.
NASA Astrophysics Data System (ADS)
Jackson, Deborah C.; Johnson, Elizabeth D.
2013-09-01
The problem of students entering university lacking basic mathematical skills is a critical issue in the Australian higher-education sector and relevant globally. The Maths Skills programme at La Trobe University has been developed to address under preparation in the first-year science cohort in the absence of an institutional mathematics support centre. The programme was delivered through first-year science and statistics subjects with large enrolments and focused on basic mathematical skills relevant to each science discipline. The programme offered a new approach to the traditional mathematical support centre or class. It was designed through close collaboration between science subject coordinators and the project leader, a mathematician, and includes resources relevant to science and mathematics questions written in context. Evaluation of the programme showed it improved the confidence of the participating students who found it helpful and relevant. The programme was delivered through three learning modes to allow students to select activities most suitable for them, which was appreciated by students. Mathematics skills appeared to increase following completion of the programme and student participation in the programme correlated positively and highly with academic grades in their relevant science subjects. This programme offers an alternative model for mathematics support tailored to science disciplines.
Integration of basic sciences and clinical sciences in oral radiology education for dental students.
Baghdady, Mariam T; Carnahan, Heather; Lam, Ernest W N; Woods, Nicole N
2013-06-01
Educational research suggests that cognitive processing in diagnostic radiology requires a solid foundation in the basic sciences and knowledge of the radiological changes associated with disease. Although it is generally assumed that dental students must acquire both sets of knowledge, little is known about the most effective way to teach them. Currently, the basic and clinical sciences are taught separately. This study was conducted to compare the diagnostic accuracy of students when taught basic sciences segregated or integrated with clinical features. Predoctoral dental students (n=51) were taught four confusable intrabony abnormalities using basic science descriptions integrated with the radiographic features or taught segregated from the radiographic features. The students were tested with diagnostic images, and memory tests were performed immediately after learning and one week later. On immediate and delayed testing, participants in the integrated basic science group outperformed those from the segregated group. A main effect of learning condition was found to be significant (p<0.05). The results of this study support the critical role of integrating biomedical knowledge in diagnostic radiology and shows that teaching basic sciences integrated with clinical features produces higher diagnostic accuracy in novices than teaching basic sciences segregated from clinical features.
ERIC Educational Resources Information Center
Gurbuz, Fatih
2016-01-01
The purpose of this research study is to explore pre-service science teachers' misconceptions on basic astronomy subjects and to examine the effect of micro teaching method supported by educational technologies on correcting misconceptions. This study is an action research. Semi- structured interviews were used in the study as a data collection…
Summaries of FY 1979 research in the chemical sciences
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1980-05-01
The purpose of this report is to help those interested in research supported by the Department of Energy's Division of Chemical Sciences, which is one of six Divisions of the Office of Basic Energy Sciences in the Office of Energy Research. Chemists, physicists, chemical engineers and others who are considering the possibility of proposing research for support by this Division wll find the booklet useful for gauging the scope of the program in basic research, and the relationship of their interests to the overall program. These smmaries are intended to provide a rapid means for becoming acquainted with the Chemicalmore » Sciences program for members of the scientific and technological public, and interested persons in the Legislative and Executive Branches of the Government, in order to indicate the areas of research supported by the Division and energy technologies which may be advanced by use of basic knowledge discovered in this program. Scientific excellence is a major criterion applied in the selection of research supported by Chemical Sciences. Another important consideration is the identifying of chemical, physical and chemical engineering subdisciplines which are advancing in ways which produce new information related to energy, needed data, or new ideas.« less
NASA Astrophysics Data System (ADS)
Gertsch, L. S.; Morris, K. A.
2017-02-01
The sustainable exploration of space requires in situ resource utilization (ISRU). Successful ISRU depends on a solid science foundation; consequently, planetary science must include basic and applied science investigations to support ISRU.
Calls for Canada to support basic research
NASA Astrophysics Data System (ADS)
Gwynne, Peter
2017-08-01
Canada’s decade-long shift of financial support from fundamental studies towards applied research is dismantling the nation’s funding of basic science, according to a report by the Global Young Academy (GYA) - an international society of young scientists.
Basic energy sciences: Summary of accomplishments
NASA Astrophysics Data System (ADS)
1990-05-01
For more than four decades, the Department of Energy, including its predecessor agencies, has supported a program of basic research in nuclear- and energy related sciences, known as Basic Energy Sciences. The purpose of the program is to explore fundamental phenomena, create scientific knowledge, and provide unique user facilities necessary for conducting basic research. Its technical interests span the range of scientific disciplines: physical and biological sciences, geological sciences, engineering, mathematics, and computer sciences. Its products and facilities are essential to technology development in many of the more applied areas of the Department's energy, science, and national defense missions. The accomplishments of Basic Energy Sciences research are numerous and significant. Not only have they contributed to Departmental missions, but have aided significantly the development of technologies which now serve modern society daily in business, industry, science, and medicine. In a series of stories, this report highlights 22 accomplishments, selected because of their particularly noteworthy contributions to modern society. A full accounting of all the accomplishments would be voluminous. Detailed documentation of the research results can be found in many thousands of articles published in peer-reviewed technical literature.
Basic Energy Sciences: Summary of Accomplishments
DOE R&D Accomplishments Database
1990-05-01
For more than four decades, the Department of Energy, including its predecessor agencies, has supported a program of basic research in nuclear- and energy-related sciences, known as Basic Energy Sciences. The purpose of the program is to explore fundamental phenomena, create scientific knowledge, and provide unique user'' facilities necessary for conducting basic research. Its technical interests span the range of scientific disciplines: physical and biological sciences, geological sciences, engineering, mathematics, and computer sciences. Its products and facilities are essential to technology development in many of the more applied areas of the Department's energy, science, and national defense missions. The accomplishments of Basic Energy Sciences research are numerous and significant. Not only have they contributed to Departmental missions, but have aided significantly the development of technologies which now serve modern society daily in business, industry, science, and medicine. In a series of stories, this report highlights 22 accomplishments, selected because of their particularly noteworthy contributions to modern society. A full accounting of all the accomplishments would be voluminous. Detailed documentation of the research results can be found in many thousands of articles published in peer-reviewed technical literature.
ERIC Educational Resources Information Center
US Department of Energy, 2007
2007-01-01
The Department of Energy's (DOE) Office of Science is among the world's premier supporters of basic research. The Office of Science enables the U.S. to maintain its competitive edge by funding science that can transform its energy future, supports its national security and seeks to understand the fundamentals of matter and energy itself. To do…
Basic Science Evidence for the Link Between Erectile Dysfunction and Cardiometabolic Dysfunction
Musicki, Biljana; Bella, Anthony J.; Bivalacqua, Trinity J.; Davies, Kelvin P.; DiSanto, Michael E.; Gonzalez-Cadavid, Nestor F.; Hannan, Johanna L.; Kim, Noel N.; Podlasek, Carol A.; Wingard, Christopher J.; Burnett, Arthur L.
2016-01-01
Introduction Although clinical evidence supports an association between cardiovascular/metabolic diseases (CVMD) and erectile dysfunction (ED), scientific evidence for this link is incompletely elucidated. Aim This study aims to provide scientific evidence for the link between CVMD and ED. Methods In this White Paper, the Basic Science Committee of the Sexual Medicine Society of North America assessed the current literature on basic scientific support for a mechanistic link between ED and CVMD, and deficiencies in this regard with a critical assessment of current preclinical models of disease. Results A link exists between ED and CVMD on several grounds: the endothelium (endothelium-derived nitric oxide and oxidative stress imbalance); smooth muscle (SM) (SM abundance and altered molecular regulation of SM contractility); autonomic innervation (autonomic neuropathy and decreased neuronal-derived nitric oxide); hormones (impaired testosterone release and actions); and metabolics (hyperlipidemia, advanced glycation end product formation). Conclusion Basic science evidence supports the link between ED and CVMD. The Committee also highlighted gaps in knowledge and provided recommendations for guiding further scientific study defining this risk relationship. This endeavor serves to develop novel strategic directions for therapeutic interventions. PMID:26646025
ERIC Educational Resources Information Center
Jackson, Deborah C.; Johnson, Elizabeth D.
2013-01-01
The problem of students entering university lacking basic mathematical skills is a critical issue in the Australian higher-education sector and relevant globally. The Maths Skills programme at La Trobe University has been developed to address under preparation in the first-year science cohort in the absence of an institutional mathematics support…
ERIC Educational Resources Information Center
Lisk, Kristina; Agur, Anne M. R.; Woods, Nicole N.
2017-01-01
Several studies have shown that cognitive integration of basic and clinical sciences supports diagnostic reasoning in novices; however, there has been limited exploration of the ways in which educators can translate this model of mental activity into sound instructional strategies. The use of "self-explanation" during learning has the…
10 CFR Appendix A to Part 605 - The Energy Research Program Office Descriptions
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 4 2013-01-01 2013-01-01 false The Energy Research Program Office Descriptions A Appendix... RESEARCH FINANCIAL ASSISTANCE PROGRAM Pt. 605, App. A Appendix A to Part 605—The Energy Research Program Office Descriptions 1. Basic Energy Sciences This program supports basic science research efforts in a...
10 CFR Appendix A to Part 605 - The Energy Research Program Office Descriptions
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 4 2014-01-01 2014-01-01 false The Energy Research Program Office Descriptions A Appendix... RESEARCH FINANCIAL ASSISTANCE PROGRAM Pt. 605, App. A Appendix A to Part 605—The Energy Research Program Office Descriptions 1. Basic Energy Sciences This program supports basic science research efforts in a...
10 CFR Appendix A to Part 605 - The Energy Research Program Office Descriptions
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 4 2012-01-01 2012-01-01 false The Energy Research Program Office Descriptions A Appendix... RESEARCH FINANCIAL ASSISTANCE PROGRAM Pt. 605, App. A Appendix A to Part 605—The Energy Research Program Office Descriptions 1. Basic Energy Sciences This program supports basic science research efforts in a...
10 CFR Appendix A to Part 605 - The Energy Research Program Office Descriptions
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 4 2011-01-01 2011-01-01 false The Energy Research Program Office Descriptions A Appendix... RESEARCH FINANCIAL ASSISTANCE PROGRAM Pt. 605, App. A Appendix A to Part 605—The Energy Research Program Office Descriptions 1. Basic Energy Sciences This program supports basic science research efforts in a...
A critical narrative review of transfer of basic science knowledge in health professions education.
Castillo, Jean-Marie; Park, Yoon Soo; Harris, Ilene; Cheung, Jeffrey J H; Sood, Lonika; Clark, Maureen D; Kulasegaram, Kulamakan; Brydges, Ryan; Norman, Geoffrey; Woods, Nicole
2018-06-01
'Transfer' is the application of a previously learned concept to solve a new problem in another context. Transfer is essential for basic science education because, to be valuable, basic science knowledge must be transferred to clinical problem solving. Therefore, better understanding of interventions that enhance the transfer of basic science knowledge to clinical reasoning is essential. This review systematically identifies interventions described in the health professions education (HPE) literature that document the transfer of basic science knowledge to clinical reasoning, and considers teaching and assessment strategies. A systematic search of the literature was conducted. Articles related to basic science teaching at the undergraduate level in HPE were analysed using a 'transfer out'/'transfer in' conceptual framework. 'Transfer out' refers to the application of knowledge developed in one learning situation to the solving of a new problem. 'Transfer in' refers to the use of previously acquired knowledge to learn from new problems or learning situations. Of 9803 articles initially identified, 627 studies were retrieved for full text evaluation; 15 were included in the literature review. A total of 93% explored 'transfer out' to clinical reasoning and 7% (one article) explored 'transfer in'. Measures of 'transfer out' fostered by basic science knowledge included diagnostic accuracy over time and in new clinical cases. Basic science knowledge supported learning - 'transfer in' - of new related content and ultimately the 'transfer out' to diagnostic reasoning. Successful teaching strategies included the making of connections between basic and clinical sciences, the use of commonsense analogies, and the study of multiple clinical problems in multiple contexts. Performance on recall tests did not reflect the transfer of basic science knowledge to clinical reasoning. Transfer of basic science knowledge to clinical reasoning is an essential component of HPE that requires further development for implementation and scholarship. © 2018 John Wiley & Sons Ltd and The Association for the Study of Medical Education.
Town Meeting on Plasma Physics at the National Science Foundation
NASA Astrophysics Data System (ADS)
2015-11-01
We invite you to the Town Meeting on the role of the National Science Foundation (NSF) in supporting basic and applied research in Plasma Physics in the U.S. The overarching goal of NSF is to promote the progress of science and to enable training of the next generation of scientists and engineers at US colleges and universities. In this context, the role of the NSF Physics Division in leading the nearly 20 year old NSF/DOE Partnership in Basic Plasma Science and Engineering serves as an example of the long history of NSF support for basic plasma physics research. Yet, the NSF interest in maintaining a healthy university research base in plasma sciences extends across the Foundation. A total of five NSF Divisions are participating in the most recent Partnership solicitation, and a host of other multi-disciplinary and core programs provide opportunities for scientists to perform research on applications of plasma physics to Space & Solar Physics, Astrophysics, Accelerator Science, Material Science, Plasma Medicine, and many sub-disciplines within Engineering. This Town Meeting will provide a chance to discuss the full range of relevant NSF funding opportunities, and to begin a conversation on the present and future role of NSF in stewarding basic plasma science and engineering research at US colleges and universities. We would like to particularly encourage early career scientists and graduate students to participate in this Town Meeting, though everyone is invited to join what we hope to be a lively discussion.
Mathematics and Science Instruction in Southern California.
ERIC Educational Resources Information Center
Myers, Edwin C.; Mineo, R. James
To provide information to support school district considerations of changes in mathematics and science instruction, three issues were considered: (1) the adequacy of the California Basic Education Data System (CBEDS) for supporting an analysis of subject matter instruction; (2) the distribution of teaching effort and student enrollments among…
State & Society: Presidential Candidates Answer Queries on Science Policy
ERIC Educational Resources Information Center
Physics Today, 1976
1976-01-01
Presents views of Gerald Ford and Jimmy Carter on the role of science advisors in the Executive Office of the President, national energy needs and the nuclear power program, and federal support for basic and applied science. (MLH)
Kleinman, Monica E; Goldberger, Zachary D; Rea, Thomas; Swor, Robert A; Bobrow, Bentley J; Brennan, Erin E; Terry, Mark; Hemphill, Robin; Gazmuri, Raúl J; Hazinski, Mary Fran; Travers, Andrew H
2018-01-02
Cardiopulmonary resuscitation is a lifesaving technique for victims of sudden cardiac arrest. Despite advances in resuscitation science, basic life support remains a critical factor in determining outcomes. The American Heart Association recommendations for adult basic life support incorporate the most recently published evidence and serve as the basis for education and training for laypeople and healthcare providers who perform cardiopulmonary resuscitation. © 2017 American Heart Association, Inc.
Trends in Basic Sciences Education in Dental Schools, 1999-2016.
Lantz, Marilyn S; Shuler, Charles F
2017-08-01
The purpose of this study was to examine data published over the past two decades to identify trends in the basic sciences curriculum in dental education, provide an analysis of those trends, and compare them with trends in the basic sciences curriculum in medical education. Data published from the American Dental Association (ADA) Surveys of Dental Education, American Dental Education Association (ADEA) Surveys of Dental School Seniors, and two additional surveys were examined. In large part, survey data collected focused on the structure, content, and instructional strategies used in dental education: what was taught and how. Great variability was noted in the total clock hours of instruction and the clock hours of basic sciences instruction reported by dental schools. Moreover, the participation of medical schools in the basic sciences education of dental students appears to have decreased dramatically over the past decade. Although modest progress has been made in implementing some of the curriculum changes recommended in the 1995 Institute of Medicine report such as integrated basic and clinical sciences curricula, adoption of active learning methods, and closer engagement with medical and other health professions education programs, educational effectiveness studies needed to generate data to support evidence-based approaches to curriculum reform are lacking. Overall, trends in the basic sciences curriculum in medical education were similar to those for dental education. Potential drivers of curriculum change were identified, as was recent work in other fields that should encourage reconsideration of dentistry's approach to basic sciences education. This article was written as part of the project "Advancing Dental Education in the 21st Century."
Integration and timing of basic and clinical sciences education.
Bandiera, Glen; Boucher, Andree; Neville, Alan; Kuper, Ayelet; Hodges, Brian
2013-05-01
Medical education has traditionally been compartmentalized into basic and clinical sciences, with the latter being viewed as the skillful application of the former. Over time, the relevance of basic sciences has become defined by their role in supporting clinical problem solving rather than being, of themselves, a defining knowledge base of physicians. As part of the national Future of Medical Education in Canada (FMEC MD) project, a comprehensive empirical environmental scan identified the timing and integration of basic sciences as a key pressing issue for medical education. Using the literature review, key informant interviews, stakeholder meetings, and subsequent consultation forums from the FMEC project, this paper details the empirical basis for focusing on the role of basic science, the evidentiary foundations for current practices, and the implications for medical education. Despite a dearth of definitive relevant studies, opinions about how best to integrate the sciences remain strong. Resource allocation, political power, educational philosophy, and the shift from a knowledge-based to a problem-solving profession all influence the debate. There was little disagreement that both sciences are important, that many traditional models emphasized deep understanding of limited basic science disciplines at the expense of other relevant content such as social sciences, or that teaching the sciences contemporaneously rather than sequentially has theoretical and practical merit. Innovations in integrated curriculum design have occurred internationally. Less clear are the appropriate balance of the sciences, the best integration model, and solutions to the political and practical challenges of integrated curricula. New curricula tend to emphasize integration, development of more diverse physician competencies, and preparation of physicians to adapt to evolving technology and patients' expectations. Refocusing the basic/clinical dichotomy to a foundational/applied model may yield benefits in training widely competent future physicians.
Gortler, Leon; Weininger, Stephen J
2017-02-01
The Hickrill Chemical Research Foundation, located north of New York City on the estate of its patrons, Sylvan and Ruth Alice Norman Weil, had a short (1948-59) but productive life. Ruth Alice Weil received a Ph.D. in organic chemistry in 1947, directed by William von Eggers Doering of Columbia University. She intended that Hickrill contribute to cancer chemotherapy while providing resources for Doering's more speculative research. Ultimately, Doering's commitment to theoretical organic chemistry set Hickrill's research agenda. Lawrence Knox, an African American with a Harvard Ph.D., supervised the laboratory's daily activities. Hickrill's two dozen postdoctoral fellows produced path-breaking results in Hückel aromatic theory and reactive intermediate chemistry, fostering the postwar emphasis on "basic science." This essay places the Laboratory's successes in the wider context of postwar politics and scientific priorities. Private philanthropic support of basic science arose because it received little pre-World War II government support. In the immediate postwar period, modest organisations like Hickrill still met a need, but the increasing governmental defence- and non-defence-related support for science eventually rendered them unnecessary.
[The basic life support guidance of American Heart Association (AHA)].
Higashioka, Hiroaki; Yonemori, Terutake; Maeda, Daigen
2011-04-01
The American Heart Association (AHA) and other member councils of International Liaison Committee on Resuscitation (ILCOR) complete review of resuscitation science every 5 years. And ILCOR publishes Consensus on Science with Treatment Recommendations(CoSTR). The AHA published "American Heart Association (AHA) Guidelines for Cardiopulmonary Resuscitation(CPR) and Emergency Cardiovascular Care (ECC)" (G2010), that basis on CoSTR 2010 on Oct. 18th, 2010. The switchover to new curriculum based on G2010 on and after Mar. 1st, 2011 is the policy of AHA in their all training courses. The AHA maintains the quality of their training courses by some systems. AHA instructors are trained by some steps of instructor courses and monitoring systems and update their scientific knowledge on resuscitation by e-learning. The authors introduce an outline of basic life support for healthcare providers, the instructor training systems of AHA and summary of basic life support basis on G2010.
Translational research in behavior analysis: historical traditions and imperative for the future.
Mace, F Charles; Critchfield, Thomas S
2010-05-01
"Pure basic" science can become detached from the natural world that it is supposed to explain. "Pure applied" work can become detached from fundamental processes that shape the world it is supposed to improve. Neither demands the intellectual support of a broad scholarly community or the material support of society. Translational research can do better by seeking innovation in theory or practice through the synthesis of basic and applied questions, literatures, and methods. Although translational thinking has always occurred in behavior analysis, progress often has been constrained by a functional separation of basic and applied communities. A review of translational traditions in behavior analysis suggests that innovation is most likely when individuals with basic and applied expertise collaborate. Such innovation may have to accelerate for behavior analysis to be taken seriously as a general-purpose science of behavior. We discuss the need for better coordination between the basic and applied sectors, and argue that such coordination compromises neither while benefiting both.
ERIC Educational Resources Information Center
Tscholl, Michael; Lindgren, Robb
2016-01-01
This research investigates the social learning affordances of a room-sized, immersive, and interactive augmented reality simulation environment designed to support children's understanding of basic physics concepts in a science center. Conversations between 97 parent-child pairs were analyzed in relation to categories of talk through which…
Brookhaven highlights: a two year report, July 1974--June 1976
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1976-01-01
Brief summaries are given of research activities in the areas of high energy physics, basic and applied energy science, and life sciences. Support activities and administrative data are also briefly reviewed.
78 FR 55299 - Agency Information Collection Activities: Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-10
... to address the effects of question design on survey estimates of public science knowledge and the...: Title: Experimentation with Factual Knowledge of Science Survey Items. OMB Approval Number: 3145-NEW.... 1862) authorizes the National Science foundation to ``initiate and support basic scientific research...
Summaries of FY 1982 research in the chemical sciences
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1982-09-01
The purpose of this booklet is to help those interested in research supported by the Department of Energy's Division of Chemical Sciences, which is one of six Divisions of the Office of Basic Energy Sciences in the Office of Energy Research. These summaries are intended to provide a rapid means for becoming acquainted with the Chemical Sciences program to members of the scientific and technological public and interested persons in the Legislative and Executive Branches of the Government. Areas of research supported by the Division are to be seen in the section headings, the index and the summaries themselves. Energymore » technologies which may be advanced by use of the basic knowledge discovered in this program can be seen in the index and again (by reference) in the summaries. The table of contents lists the following: photochemical and radiation sciences; chemical physics; atomic physics; chemical energy; separation and analysis; chemical engineering sciences; offsite contracts; equipment funds; special facilities; topical index; institutional index for offsite contracts; investigator index.« less
Fuhrmann, C. N.; Halme, D. G.; O’Sullivan, P. S.; Lindstaedt, B.
2011-01-01
Today's doctoral programs continue to prepare students for a traditional academic career path despite the inadequate supply of research-focused faculty positions. We advocate for a broader doctoral curriculum that prepares trainees for a wide range of science-related career paths. In support of this argument, we describe data from our survey of doctoral students in the basic biomedical sciences at University of California, San Francisco (UCSF). Midway through graduate training, UCSF students are already considering a broad range of career options, with one-third intending to pursue a non–research career path. To better support this branching career pipeline, we recommend that national standards for training and mentoring include emphasis on career planning and professional skills development to ensure the success of PhD-level scientists as they contribute to a broadly defined global scientific enterprise. PMID:21885820
Fuhrmann, C N; Halme, D G; O'Sullivan, P S; Lindstaedt, B
2011-01-01
Today's doctoral programs continue to prepare students for a traditional academic career path despite the inadequate supply of research-focused faculty positions. We advocate for a broader doctoral curriculum that prepares trainees for a wide range of science-related career paths. In support of this argument, we describe data from our survey of doctoral students in the basic biomedical sciences at University of California, San Francisco (UCSF). Midway through graduate training, UCSF students are already considering a broad range of career options, with one-third intending to pursue a non-research career path. To better support this branching career pipeline, we recommend that national standards for training and mentoring include emphasis on career planning and professional skills development to ensure the success of PhD-level scientists as they contribute to a broadly defined global scientific enterprise.
Research in the chemical sciences. Summaries of FY 1995
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-09-01
This summary book is published annually to provide information on research supported by the Department of Energy`s Division of Chemical Sciences, which is one of four Divisions of the Office of Basic Energy Sciences in the Office of Energy Research. These summaries provide the scientific and technical public, as well as the legislative and executive branches of the Government, information, either generally or in some depth, about the Chemical Sciences program. Scientists interested in proposing research for support will find the publication useful for gauging the scope of the present basic research program and it`s relationship to their interests. Proposalsmore » that expand this scope may also be considered or directed to more appropriate offices. The primary goal of the research summarized here is to add significantly to the knowledge base in which existing and future efficient and safe energy technologies can evolve. As a result, scientific excellence is a major criterion applied in the selection of research supported by the Division of Chemical Sciences, but another important consideration is emphasis on science that is advancing in ways that will produce new information related to energy.« less
minimUML: A Minimalist Approach to UML Diagramming for Early Computer Science Education
ERIC Educational Resources Information Center
Turner, Scott A.; Perez-Quinones, Manuel A.; Edwards, Stephen H.
2005-01-01
In introductory computer science courses, the Unified Modeling Language (UML) is commonly used to teach basic object-oriented design. However, there appears to be a lack of suitable software to support this task. Many of the available programs that support UML focus on developing code and not on enhancing learning. Programs designed for…
NASA Astrophysics Data System (ADS)
Qin, Haiyun; Zhao, Wei; Zhang, Chen; Liu, Yong; Wang, Guiren; Wang, Kaige
2018-03-01
Not Available Project supported by the National Natural Science Foundation of China (Grant Nos. 11672229 and 61378083), International Cooperation Foundation of the National Science and Technology Major Project of the Ministry of Science and Technology of China (Grant No. 2011DFA12220), Major Research Plan of the National Natural Science Foundation of China (Grant No. 91123030), Natural Science Foundation of Shaanxi Province of China (Grant Nos. 2010JS110 and 2013SZS03-Z01), Natural Science Basic Research Program of Shaanxi Province — Major Basic Research Project, China (Grant No. 2016ZDJC-15), Young Scientist Fund of the National Natural Science Foundation of China (Grant No. 11504294), and the Youth Talent Plan of the Natural Science Foundation of Shaanxi Province of China (Grant No. 2016JQ103).
Utilization and acceptance of virtual patients in veterinary basic sciences - the vetVIP-project.
Kleinsorgen, Christin; Kankofer, Marta; Gradzki, Zbigniew; Mandoki, Mira; Bartha, Tibor; von Köckritz-Blickwede, Maren; Naim, Hassan Y; Beyerbach, Martin; Tipold, Andrea; Ehlers, Jan P
2017-01-01
Context: In medical and veterinary medical education the use of problem-based and cased-based learning has steadily increased over time. At veterinary faculties, this development has mainly been evident in the clinical phase of the veterinary education. Therefore, a consortium of teachers of biochemistry and physiology together with technical and didactical experts launched the EU-funded project "vetVIP", to create and implement veterinary virtual patients and problems for basic science instruction. In this study the implementation and utilization of virtual patients occurred at the veterinary faculties in Budapest, Hannover and Lublin. Methods: This report describes the investigation of the utilization and acceptance of students studying veterinary basic sciences using optional online learning material concurrently to regular biochemistry and physiology didactic instruction. The reaction of students towards this offer of clinical case-based learning in basic sciences was analysed using quantitative and qualitative data. Quantitative data were collected automatically within the chosen software-system CASUS as user-log-files. Responses regarding the quality of the virtual patients were obtained using an online questionnaire. Furthermore, subjective evaluation by authors was performed using a focus group discussion and an online questionnaire. Results: Implementation as well as usage and acceptance varied between the three participating locations. High approval was documented in Hannover and Lublin based upon the high proportion of voluntary students (>70%) using optional virtual patients. However, in Budapest the participation rate was below 1%. Due to utilization, students seem to prefer virtual patients and problems created in their native language and developed at their own university. In addition, the statement that assessment drives learning was supported by the observation that peak utilization was just prior to summative examinations. Conclusion: Veterinary virtual patients in basic sciences can be introduced and used for the presentation of integrative clinical case scenarios. Student post-course comments also supported the conclusion that overall the virtual cases increased their motivation for learning veterinary basic sciences.
Research and technology, fiscal year 1983
NASA Technical Reports Server (NTRS)
1983-01-01
The responibilities and programs of the Goddard Space Flight Center are ranged from basic research in the space and Earth sciences through the management of numerous flight projects to operational responsibility for the tracking of and data acquisition from NASA's Earth orbiting satellites, Progress in the areas of spacecraft technology, sensor development and data system development, as well as in the basic and applied to research in the space and Earth sciences that they support is highlighted.
Thickness Effect on (La0.26Bi0.74)2Ti4O11 Thin-Film Composition and Electrical Properties
NASA Astrophysics Data System (ADS)
Guo, Hui-Zhen; Jiang, An-Quan
2018-02-01
Not Available Supported by the Basic Research Project of Shanghai Science and Technology Innovation Action under Grant No 17JC1400300, the National Key Basic Research Program of China under Grant No 2014CB921004, the National Natural Science Foundation of China under Grant No 61674044, and the Program of Shanghai Subject Chief Scientist under Grant No 17XD1400800.
PRP Treatment Efficacy for Tendinopathy: A Review of Basic Science Studies
2016-01-01
Platelet-Rich Plasma (PRP) has been widely used in orthopaedic surgery and sport medicine to treat tendon injuries. However, the efficacy of PRP treatment for tendinopathy is controversial. This paper focuses on reviewing the basic science studies on PRP performed under well-controlled conditions. Both in vitro and in vivo studies describe PRP's anabolic and anti-inflammatory effects on tendons. While some clinical trials support these findings, others refute them. In this review, we discuss the effectiveness of PRP to treat tendon injuries with evidence presented in basic science studies and the potential reasons for the controversial results in clinical trials. Finally, we comment on the approaches that may be required to improve the efficacy of PRP treatment for tendinopathy. PMID:27610386
Bradbury science museum: your window to Los Alamos National Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deck, Linda Theresa
The Bradbury Science Museum is the public's window to Los Alamos National Laboratory and supports the Community Program Office's mission to develop community support to accomplish LANL's national security and science mission. It does this by stimulating interest in and increasing basic knowledge of science and technology in northern New Mexico audiences, and increasing public understanding and appreciation of how LANL science and technology solve our global problems. In performing these prime functions, the Museum also preserves the history of scientific accomplishment at the Lab by collecting and preserving artifacts of scientific and historical importance.
[Basic research in traumatology and its contribution to routine operation].
Hausner, T; Redl, H
2017-02-01
Basic research in traumatology supports the clinical outcome of patients in trauma care and tries to find science-based solutions for clinical problems. Furthermore, institutions for basic research in traumatology usually offer training in different skills, such as how to write a scientific paper, or practice in microsurgery or intubation. Two examples of clinically significant research topics are presented.
NASA Astrophysics Data System (ADS)
Mao, Wei; Wang, Hai-Yong; Wang, Xiao-Fei; Du, Ming; Zhang, Jin-Feng; Zheng, Xue-Feng; Wang, Chong; Ma, Xiao-Hua; Zhang, Jin-Cheng; Hao, Yue
2017-04-01
Not Available Project supported by the National Natural Science Foundation of China (Grant Nos. 61574112, 61334002, 61306017, 61474091, and 61574110) and the Natural Science Basic Research Plan in Shaanxi Province of China (Grant No. 605119425012).
NASA Astrophysics Data System (ADS)
Mao, Wei; Wang, Hai-Yong; Shi, Peng-Hao; Wang, Xiao-Fei; Du, Ming; Zheng, Xue-Feng; Wang, Chong; Ma, Xiao-Hua; Zhang, Jin-Cheng; Hao, Yue
2018-04-01
Not Available Project supported by the National Natural Science Foundation of China (Grant Nos. 61574112, 61334002, 61474091, and 61574110) and the Natural Science Basic Research Plan in Shaanxi Province, China (Grant No. 605119425012).
ERIC Educational Resources Information Center
Fuhrmann, C. N.; Halme, D. G.; O'Sullivan, P. S.; Lindstaedt, B.
2011-01-01
Today's doctoral programs continue to prepare students for a traditional academic career path despite the inadequate supply of research-focused faculty positions. We advocate for a broader doctoral curriculum that prepares trainees for a wide range of science-related career paths. In support of this argument, we describe data from our survey of…
The poverty-related neglected diseases: Why basic research matters.
Hotez, Peter J
2017-11-01
Together, malaria and the neglected tropical diseases (NTDs) kill more than 800,000 people annually, while creating long-term disability in millions more. International support for mass drug administration, bed nets, and other preventive measures has resulted in huge public health gains, while support for translational research is leading to the development of some new neglected disease drugs, diagnostics, and vaccines. However, funding for basic science research has not kept up, such that we are missing opportunities to create a more innovative pipeline of control tools for parasitic and related diseases. There is an urgent need to expand basic science approaches for neglected diseases, especially in the areas of systems biology and immunology; ecology, evolution, and mathematical biology; functional and comparative OMICs; gene editing; expanded use of model organisms; and a new single-cell combinatorial indexing RNA sequencing approach. The world's poor deserve access to innovation for neglected diseases. It should be considered a fundamental human right.
Senior Computational Scientist | Center for Cancer Research
The Basic Science Program (BSP) pursues independent, multidisciplinary research in basic and applied molecular biology, immunology, retrovirology, cancer biology, and human genetics. Research efforts and support are an integral part of the Center for Cancer Research (CCR) at the Frederick National Laboratory for Cancer Research (FNLCR). The Cancer & Inflammation Program (CIP),
Secretary | Center for Cancer Research
The Basic Science Program (BSP) pursues independent, multidisciplinary research programs in basic or applied molecular biology, immunology, retrovirology, cancer biology, or human genetics. Research efforts and support are an integral part of the Center for Cancer Research (CCR) at the Frederick national Laboratory for Cancer Research (FNLCR). The BSP Office provides
ERIC Educational Resources Information Center
Canadian Association of University Teachers, 2017
2017-01-01
Canadian Association of University Teachers (CAUT) welcomes the report of the Advisory Panel on Federal Support for Fundamental Science "the Panel". It is a thoughtful and comprehensive study that correctly diagnoses problems that have plagued basic science for over a decade. The Panel's recommendations, if implemented, will chart a…
ERIC Educational Resources Information Center
Feliciano, Josephine S.; Mandapat, Louie Carl R.; Khan, Concepcion L.
2013-01-01
This paper presents the open learning initiatives of the Science Education Institute of the Department of Science and Technology to overcome certain barriers, such as enabling access, cost of replication, timely feedback, monitoring and continuous improvement of learning modules. Using an open-education model, like MIT's (Massachusetts Institute…
Architectures Toward Reusable Science Data Systems
NASA Technical Reports Server (NTRS)
Moses, John Firor
2014-01-01
Science Data Systems (SDS) comprise an important class of data processing systems that support product generation from remote sensors and in-situ observations. These systems enable research into new science data products, replication of experiments and verification of results. NASA has been building systems for satellite data processing since the first Earth observing satellites launched and is continuing development of systems to support NASA science research and NOAA's Earth observing satellite operations. The basic data processing workflows and scenarios continue to be valid for remote sensor observations research as well as for the complex multi-instrument operational satellite data systems being built today.
High pressure in bioscience and biotechnology: pure science encompassed in pursuit of value.
Hayashi, Rikimaru
2002-03-25
A fundamental factors, pressure (P), is indispensable to develop and support applications in the field of bioscience and biotechnology. This short sentence describes an example how high pressure bioscience and biotechnology, which started from applied science, stimulates challenges of basic science and pure science in the biology-related fields including not only food science, medicine, and pharmacology but also biochemistry, molecular biology, cell biology, physical chemistry, and engineering.
NASA Astrophysics Data System (ADS)
Bennett, Kristin
2004-03-01
As one of the lead agencies for nanotechnology research and development, the Department of Energy (DOE) is revolutionizing the way we understand and manipulate materials at the nanoscale. As the Federal government's single largest supporter of basic research in the physical sciences in the United States, and overseeing the Nation's cross-cutting research programs in high-energy physics, nuclear physics, and fusion energy sciences, the DOE guides the grand challenges in nanomaterials research that will have an impact on everything from medicine, to energy production, to manufacturing. Within the DOE's Office of Science, the Office of Basic Energy Sciences (BES) leads research and development at the nanoscale, which supports the Department's missions of national security, energy, science, and the environment. The cornerstone of the program in nanoscience is the establishment and operation of five new Nanoscale Science Research Centers (NSRCs), which are under development at six DOE Laboratories. Throughout its history, DOE's Office of Science has designed, constructed and operated many of the nation's most advanced, large-scale research and development user facilities, of importance to all areas of science. These state-of-the art facilities are shared with the science community worldwide and contain technologies and instruments that are available nowhere else. Like all DOE national user facilities, the new NSRCs are designed to make novel state-of-the-art research tools available to the world, and to accelerate a broad scale national effort in basic nanoscience and nanotechnology. The NSRCs will be sited adjacent to or near existing DOE/BES major user facilities, and are designed to enable national user access to world-class capabilities for the synthesis, processing, fabrication, and analysis of materials at the nanoscale, and to transform the nation's approach to nanomaterials.
The Local Electronic Structure of Dicarba-closo-dodecaboranes C2B10H12
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fister, Timothy T.; Vila, Fernando D.; Seidler, Gerald T.
2008-01-16
We report nonresonant inelastic x-ray scattering (NRIXS) measurement of core-shell excitations from both B 1s and C 1s initial states in all three isomers of the dicarba-closo-dodecaboranes C2B10H12. First, this data yields an experimental determination of the angular-momentum-projected final local density of states (l-DOS). We find low-energy resonances with distinctive local s- or p-type character, providing a more complete experimental characterization of bond hybridization than is available from dipole-transition limited techniques, such as x-ray absorption spectroscopies. This analysis is supported by independent density functional theory and real-space full multiple scattering calculation of the l-DOS which yield a clear distinction betweenmore » tangential and radial contributions. Second, we investigate the isomer-sensitivity of the NRIXS signal, and compare and contrast these results with prior electron energy loss spectroscopy measurements. This work establishes NRIXS as a valuable tool for borane chemistry, not only for the unique spectroscopic capabilities of the technique, but also through its compatibility with future studies in solution or in high pressure environments. In addition, this work also establishes the real-space full multiple scattering approach as a useful alternative to traditional approaches for the excited states calculations for aromatic polyhedral boranes and related systems. This research was supported by DOE, Basic Energy Science, Office of Science, Contract Nos. DE-FGE03-97ER45628 and W-31-109-ENG-38, ONR Grant No. N00014-05-1-0843, Grant DE-FG03-97ER5623, NIH NCRR BTP Grant RR-01209, the Leonard X. Bosack and Bette M. Kruger Foundation, the Hydrogen Fuel Cell Initiative of DOE Office of Basic Energy Sciences, and the Summer Research Institute Program at the Pacific Northwest National Lab. Battelle operates the Pacific Northwest National Lab for DOE. The operation of Sector 20 PNC-CAT/XOR is supported by DOE Basic Energy Science, Office of Science, Contract No. DE-FG03-97ER45629, the University of Washington, and grants from the Natural Sciences and Engineering Research Council of Canada. Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Basic Energy Sciences, Office of Science, under Contract W-31-109-Eng-38. We thank Mark Lee and Fred Hawthorne for providing some of the samples used in this study. We thank John Rehr, Aleksi Soininen, Adam Hitchcock, and Ed Stern for stimulating discussions.« less
Project Mapping to Build Capacity and Demonstrate Impact in the Earth Sciences
NASA Astrophysics Data System (ADS)
Hemmings, S. N.; Searby, N. D.; Murphy, K. J.; Mataya, C. J.; Crepps, G.; Clayton, A.; Stevens, C. L.
2017-12-01
Diverse organizations are increasingly using project mapping to communicate location-based information about their activities. NASA's Earth Science Division (ESD), through the Earth Science Data Systems and Applied Sciences' Capacity Building Program (CBP), has created a geographic information system of all ESD projects to support internal program management for the agency. The CBP's NASA DEVELOP program has built an interactive mapping tool to support capacity building for the program's varied constituents. This presentation will explore the types of programmatic opportunities provided by a geographic approach to management, communication, and strategic planning. We will also discuss the various external benefits that mapping supports and that build capacity in the Earth sciences. These include activities such as project matching (location-focused synergies), portfolio planning, inter- and intra-organizational collaboration, science diplomacy, and basic impact analysis.
Ultrafast interlayer photocarrier transfer in graphene-MoSe2 van derWaals heterostructure
NASA Astrophysics Data System (ADS)
Zhang, Xin-Wu; He, Da-Wei; He, Jia-Qi; Zhao, Si-Qi; Hao, Sheng-Cai; Wang, Yong-Sheng; Yi, Li-Xin
2017-08-01
Not Available Project supported by the National Natural Science Foundation of China (Grant Nos. 61275058, 61527817, 61335006, and 61378073), the National Science Foundation, China (Grant No. DMR-1505852), the National Basic Research Program of China (Grant Nos. 2016YFA0202300 and 2016YFA0202302), and Beijing Science and Technology Committee, China (Grant No. Z151100003315006).
Proposal for Support of Miami Inner City Marine Summer Intern Program, Dade County.
1987-12-21
employer NUMBER OF POSITIONS ONE MINIMUM AGE 16 SPECIAL REQUIREMENTS * General Science * Basic knowledge of library orncedures, an interest in library ... science in helpful * Minimum Grade Point Average 3.0 DRESS REQUIREMENTS Discuss with employer JOB DESCRIPTION p. * Catalogs and files new sets of
ERIC Educational Resources Information Center
Cobbs, Georgia A.; Cranor-Buck, Edith
2011-01-01
This article describes a particular activity, the Motorized Toy unit, which supports science, technology, engineering, and mathematics (STEM) goals and teaches students the basic concept of ratio. The unit addresses both mathematics and science standards and is part of a team-teaching activity. The unit comes from a curriculum titled A World In…
Superconductivity in Undoped CaFe2As2 Single Crystals
NASA Astrophysics Data System (ADS)
Dong-Yun, Chen; Jia, Yu; Bin-Bin, Ruan; Qi, Guo; Lei, Zhang; Qing-Ge, Mu; Xiao-Chuan, Wang; Bo-Jin, Pan; Gen-Fu, Chen; Zhi-An, Ren
2016-06-01
Not Available Supported by the National Natural Science Foundation of China under Grant No 11474339, the National Basic Research Program of China under Grant Nos 2010CB923000 and 2011CBA00100, and the Strategic Priority Research Program of the Chinese Academy of Sciences under Grant No XDB07020100.
Individualizing In-Service Teacher Preparation for ISCS Teachers.
ERIC Educational Resources Information Center
Snyder, William R.
Described is a program which attempts to prepare teachers in a fashion that approximates the instructional setting which is expected in science classrooms utilizing the Intermediate Science Curriculum Study (ISCS) programs. It is specifically designed to support the in-service preparation of ISCS teachers. It includes two basic categories of…
The Science of Cancer Prevention
The science of cancer prevention is described by Dr. Barnett S. Kramer, M.D., M.P.H., director of the Division of Cancer Prevention, National Cancer Institute (NCI). The Division of Cancer Prevention administers a broad spectrum of research that spans basic pre-clinical, laboratory research, supportive and palliative care research, early detection, and randomized controlled clinical trials. The Division also supports the Cancer Prevention Fellowship Program and is devoted to the balanced communication of scientific results.
[Basic science and applied science].
Pérez-Tamayo, R
2001-01-01
A lecture was presented by the author at the Democratic Opinion Forum on Health Teaching and Research, organized by Mexico's National Health Institutes Coordinating Office, at National Cardiology Institute "Ignacio Chavez", where he presented a critical review of the conventional classification of basic and applied science, as well as his personal view on health science teaching and research. According to the author, "well-conducted science" is that "generating reality-checked knowledge" and "mis-conducted science" is that "unproductive or producing 'just lies' and 'non-fundable'. To support his views, the author reviews utilitarian and pejorative definitions of science, as well as those of committed and pure science, useful and useless science, and practical and esoterical science, as synonyms of applied and basic science. He also asserts that, in Mexico, "this classification has been used in the past to justify federal funding cutbacks to basic science, allegedly because it is not targeted at solving 'national problems' or because it was not relevant to priorities set in a given six-year political administration period". Regarding health education and research, the author asserts that the current academic programs are inefficient and ineffective; his proposal to tackle these problems is to carry out a solid scientific study, conducted by a multidisciplinary team of experts, "to design the scientific researcher curricula from recruitment of intelligent young people to retirement or death". Performance assessment of researchers would not be restricted to publication of papers, since "the quality of scientific work and contribution to the development of science is not reflected by the number of published papers". The English version of this paper is available at: http://www.insp.mx/salud/index.html
A review of second law techniques applicable to basic thermal science research
NASA Astrophysics Data System (ADS)
Drost, M. Kevin; Zamorski, Joseph R.
1988-11-01
This paper reports the results of a review of second law analysis techniques which can contribute to basic research in the thermal sciences. The review demonstrated that second law analysis has a role in basic thermal science research. Unlike traditional techniques, second law analysis accurately identifies the sources and location of thermodynamic losses. This allows the development of innovative solutions to thermal science problems by directing research to the key technical issues. Two classes of second law techniques were identified as being particularly useful. First, system and component investigations can provide information of the source and nature of irreversibilities on a macroscopic scale. This information will help to identify new research topics and will support the evaluation of current research efforts. Second, the differential approach can provide information on the causes and spatial and temporal distribution of local irreversibilities. This information enhances the understanding of fluid mechanics, thermodynamics, and heat and mass transfer, and may suggest innovative methods for reducing irreversibilities.
[RABIN MEDICAL CENTER - A TERTIARY CENTER OF EXCELLENCE IN SERVICE, TEACHING AND RESEARCH].
Niv, Yaron; Halpern, Eyran
2017-04-01
Rabin Medical Center (RMC) belongs to Clalit Health Services and is a tertiary, academic medical center with all the facilities of modern and advanced medicine. Annually in the RMC, 650,000 patients are treated in the outpatient clinics, and 100,000 patients are hospitalized in the hospital departments. All these patients are treated by 4500 devoted staff members, including 1000 physicians and 2000 nurses. RMC is one of the largest, centrally located medical centers for medical and nursing students' education in Israel, taking place in clinical departments, as well as in basic sciences courses. We also have a nursing school attached to the hospital. Our vision supports excellence in research. We have a special Research Department that supports RMC researchers, with research coordinators, and all the relevant facilities to assist in clinical and basic science studies. We also promote collaboration efforts with many academic centers in Israel and abroad. The scope of RMC research is broad, including 700 new studies every year and 1500 active studies currently. This issue of Harefuah is dedicated to the clinical and basic science research conducted at RMC with original papers presenting research performed by our departments and laboratories.
ERIC Educational Resources Information Center
Pierret, Chris; Friedrichsen, Patricia
2009-01-01
The intersection of science and our society has led to legal and ethical issues in which we all play a part. To support development of scientific literacy, college science courses need to engage students in difficult dialogues around ethical issues. We describe a new course, Stem Cells and Society, in which students explore the basic biology of…
ERIC Educational Resources Information Center
Menuhin, Yehudi
1987-01-01
To support the statement that intuitive process is as important as the scientific, two axioms are explored by the violinist: no phenomenon discovered or created by science is possible unless its equivalent has already existed in nature; and the basic revelations of science can be formulated by intuition through meditation. (Author/KM)
United States Air Force Agency Financial Report 2014
2014-01-01
basic sciences and 45 semester hours in humanities and social sciences . This 90 semester hour total comprises 60 percent of the total academic...Test and Evaluation Support $723 F-35 $628 Defense Research Sciences $373 GPS III-Operational Control Segment $373 Long Range Strike Bomber $359...Development, Test & Evaluation Family Housing & Military Construction (Less: Earned Revenue) Net Cost before Losses/ (Gains) from Actuarial Assumption
Resilience Among Students at the Basic Enlisted Submarine School
2016-12-01
reported resilience. The Hayes’ Macro in the Statistical Package for the Social Sciences (SSPS) was used to uncover factors relevant to mediation analysis... Statistical Package for the Social Sciences (SPSS) was used to uncover factors relevant to mediation analysis. Findings suggest that the encouragement of...to Stressful Experiences Scale RTC Recruit Training Command SPSS Statistical Package for the Social Sciences SS Social Support SWB Subjective Well
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cammarota, Ryan C.; Vollmer, Matthew V.; Xie, Jing
Large-scale CO2 hydrogenation could offer a renewable stream of industrially important C1 chemicals while reducing CO2 emissions. Critical to this opportunity is the requirement for inexpensive catalysts based on earth-abundant metals instead of precious metals. We report a nickel-gallium complex featuring a Ni(0)→Ga(III) bond that shows remarkable catalytic activity for hydrogenating CO2 to formate at ambient temperature (3150 turnovers, turnover frequency = 9700 h-1), compared with prior homogeneous Ni-centred catalysts. The Lewis acidic Ga(III) ion plays a pivotal role by stabilizing reactive catalytic intermediates, including a rare anionic d10 Ni hydride. The structure of this reactive intermediate shows a terminalmore » Ni-H, for which the hydride donor strength rivals those of precious metal-hydrides. Collectively, our experimental and computational results demonstrate that modulating a transition metal center via a direct interaction with a Lewis acidic support can be a powerful strategy for promoting new reactivity paradigms in base-metal catalysis. The work was supported as part of the Inorganometallic Catalysis Design Center, an Energy Frontier Research Center funded by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences under Award DE-SC0012702. R.C.C. and M.V.V. were supported by DOE Office of Science Graduate Student Research and National Science Foundation Graduate Research Fellowship programs, respectively. J.C.L., S.A.B., and A.M.A. were supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy.« less
Science Educational Outreach Programs That Benefit Students and Scientists
Enyeart, Peter; Gracia, Brant; Wessel, Aimee; Jarmoskaite, Inga; Polioudakis, Damon; Stuart, Yoel; Gonzalez, Tony; MacKrell, Al; Rodenbusch, Stacia; Stovall, Gwendolyn M.; Beckham, Josh T.; Montgomery, Michael; Tasneem, Tania; Jones, Jack; Simmons, Sarah; Roux, Stanley
2016-01-01
Both scientists and the public would benefit from improved communication of basic scientific research and from integrating scientists into education outreach, but opportunities to support these efforts are limited. We have developed two low-cost programs—"Present Your PhD Thesis to a 12-Year-Old" and "Shadow a Scientist”—that combine training in science communication with outreach to area middle schools. We assessed the outcomes of these programs and found a 2-fold benefit: scientists improve their communication skills by explaining basic science research to a general audience, and students' enthusiasm for science and their scientific knowledge are increased. Here we present details about both programs, along with our assessment of them, and discuss the feasibility of exporting these programs to other universities. PMID:26844991
2002-01-01
behaviors are influenced by social interactions, and to how modern IT sys- tems should be designed to support these group technical activities. The...engineering disciplines to behavior, decision, psychology, organization, and the social sciences. “Conflict manage- ment activity in collaborative...Researchers instead began to search for an entirely new paradigm, starting from a theory in social science, to construct a conceptual framework to describe
NASA Astrophysics Data System (ADS)
Liu, Ji-Hua
2018-03-01
Not Available Project supported by the National Natural Science Foundation of China (Grant Nos. 11472187 and 11602166), the National Basic Research Program of China (Grant No. 2014CB046805), and the Natural Science Foundation of Tianjin, China (Grant No. 16JCYBJC40500).
Derivation of persistent time for anisotropic migration of cells
NASA Astrophysics Data System (ADS)
Liu, Yan-Ping; Zhang, Xiao-Cui; Wu, Yu-Ling; Liu, Wen; Li, Xiang; Liu, Ru-Chuan; Liu, Li-Yu; Shuai, Jian-Wei
2017-12-01
Not Available Project supported by the National Natural Science Foundation of China (Grant Nos. 31370830, 11675134, 11474345, and 11604030), the State Key Development Program for Basic Research of China (Grant No. 2013CB837200), the 111 Project, China (Grant No. B16029), and the China Postdoctoral Science Foundation (Grant No. 2016M602071).
Student Motivation and Learning in Mathematics and Science: A Cluster Analysis
ERIC Educational Resources Information Center
Ng, Betsy L. L.; Liu, W. C.; Wang, John C. K.
2016-01-01
The present study focused on an in-depth understanding of student motivation and self-regulated learning in mathematics and science through cluster analysis. It examined the different learning profiles of motivational beliefs and self-regulatory strategies in relation to perceived teacher autonomy support, basic psychological needs (i.e. autonomy,…
DOE R&D Accomplishments Database
1998-07-01
This publication contains stories that illustrate how the Office of Basic Energy Sciences (BES) research and major user facilities have impacted the medical sciences in the selected topical areas of disease diagnosis, treatment (including drug development, radiation therapy, and surgery), understanding, and prevention.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galan, Brandon R.; Wiedner, Eric S.; Helm, Monte L.
Nickel(II) complexes containing chelating N-heterocyclic carbene-phosphine ligands ([NiL2](BPh4)2, for which L = [MeIm(CH2)2PR2]) have been synthesized for the purpose of studying how this class of ligand effects the electrochemical properties compared to the nickel bis- diphosphine analogues. The nickel complexes were synthesized and characterized by x-ray crystallography and electrochemical methods. Based on the half wave potentials (E1/2), substitution of an NHC for one of the phosphines in a diphoshine ligand results in shifts in potential to 0.6 V to 1.2 V more negative than the corresponding nickel bis-diphosphine complexes. These quantitative results highlight the substantial effect that NHC ligands canmore » have upon the electronic properties of the metal complexes. BRG, JCL, and AMA acknowledge the support by the US Department of Energy Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. MLH acknoledges the support of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.« less
Obama Indicates Strong Support for Science
NASA Astrophysics Data System (ADS)
Showstack, Randy
2009-05-01
In remarks delivered at the U.S. National Academy of Sciences (NAS) annual meeting on 27 April, U.S. President Barack Obama indicated his administration's strong support for science and for pursuing a clean energy economy. He also announced a goal that the United States “will devote more than 3% of our [gross domestic product] to research and development.” “This represents the largest commitment to scientific research and innovation in American history,” Obama said, noting that the American Recovery and Reinvestment Act already is providing the nation with its largest single boost to investment in basic research.
The development of science during this century
NASA Astrophysics Data System (ADS)
Weisskopf, V. F.
1993-12-01
This is a slightly revised version of a talk delivered at the meeting of the American Association for the Advancement of Science, in Boston, on 14 February 1993, and at a CERN Colloquium, on 5 August 1993, entitled 'Science -yesterday, today and tomorrow'. It describes the tremendous growth of scientific knowledge and insights acquired since the beginning of this century. The changes in the character, sociology and support, of science are discussed, including the growing predominance of American science and the recent trend away from basic science towards applied research.
A simulation for teaching the basic and clinical science of fluid therapy.
Rawson, Richard E; Dispensa, Marilyn E; Goldstein, Richard E; Nicholson, Kimberley W; Vidal, Noni Korf
2009-09-01
The course "Management of Fluid and Electrolyte Disorders" is an applied physiology course taught using lectures and paper-based cases. The course approaches fluid therapy from both basic science and clinical perspectives. While paper cases provide a basis for application of basic science concepts, they lack key components of genuine clinical cases that, by nature, are diverse, change over time, and respond in unique ways to therapeutic interventions. We developed a dynamic model using STELLA software that simulates normal and abnormal fluid and electrolyte balance in the dog. Students interact, not with the underlying model, but with a user interface that provides sufficient data (skin turgor, chemistry panel, etc.) for the clinical assessment of patients and an opportunity for treatment. Students administer fluids and supplements, and the model responds in "real time," requiring regular reassessment and, potentially, adaptation of the treatment strategy. The level of success is determined by clinical outcome, including improvement, deterioration, or death. We expected that the simulated cases could be used to teach both the clinical and basic science of fluid therapy. The simulation provides exposure to a realistic clinical environment, and students tend to focus on this aspect of the simulation while, for the most part, ignoring an exploration of the underlying physiological basis for patient responses. We discuss how the instructor's expertise can provide sufficient support, feedback, and scaffolding so that students can extract maximum understanding of the basic science in the context of assessing and treating at the clinical level.
A Novel Multi-Finger Gate Structure of AlGaN/GaN High Electron Mobility Transistor
NASA Astrophysics Data System (ADS)
Cui, Lei; Wang, Quan; Wang, Xiao-Liang; Xiao, Hong-Ling; Wang, Cui-Mei; Jiang, Li-Juan; Feng, Chun; Yin, Hai-Bo; Gong, Jia-Min; Li, Bai-Quan; Wang, Zhan-Guo
2015-05-01
Not Available Supported by the Knowledge Innovation Engineering of the Chinese Academy of Sciences under Grant No YYY-0701-02, the National Nature Science Foundation of China under Grant Nos 61106014, 61204017 and 61334002, the State Key Development Program for Basic Research of China under Grant No 2010CB327503, and the National Science and Technology Major Project of China.
Yang-Baxter deformations of supercoset sigma models with ℤ4m grading
NASA Astrophysics Data System (ADS)
Ke, San-Min; Yang, Wen-Li; Jang, Ke-Xia; Wang, Chun; Shuai, Xue-Min; Wang, Zhan-Yun; Shi, Gang
2017-11-01
We have studied Yang-Baxter deformations of supercoset sigma models with ℤ4m grading. The deformations are specified by a skew-symmetric classical r-matrix satisfying the classical Yang-Baxter equations. The deformed action is constructed and the Lax pair is also presented. When m=1, our results reduce to those of the type IIB Green-Schwarz superstring on AdS 5×S 5 background recently given by Kawaguchi, Matsumoto and Yoshida. Supported by National Natural Science Foundation of China (11375141, 11425522, 11547050), Natural Science Foundation of Shaanxi Province (2013JQ1011, 2017ZDJC-32, 2016JM1027), Special Foundation for Basic Scientific Research of Central Colleges (310812152001, 310812172001, 2013G1121082, CHD2012JC019), Scientific Research Program Funded by Shaanxi Provincial Education Department (2013JK0628), Xi’an Shiyou University Science and Technology Foundation (2010QN018) and partly supported by the Basic Research Foundation of Engineering University of CAPF (WJY-201506)
42 CFR 65a.8 - How long does grant support last?
Code of Federal Regulations, 2011 CFR
2011-10-01
... 42 Public Health 1 2011-10-01 2011-10-01 false How long does grant support last? 65a.8 Section 65a.8 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES FELLOWSHIPS, INTERNSHIPS, TRAINING NATIONAL INSTITUTE OF ENVIRONMENTAL HEALTH SCIENCES HAZARDOUS SUBSTANCES BASIC RESEARCH...
42 CFR 65a.8 - How long does grant support last?
Code of Federal Regulations, 2010 CFR
2010-10-01
... 42 Public Health 1 2010-10-01 2010-10-01 false How long does grant support last? 65a.8 Section 65a.8 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES FELLOWSHIPS, INTERNSHIPS, TRAINING NATIONAL INSTITUTE OF ENVIRONMENTAL HEALTH SCIENCES HAZARDOUS SUBSTANCES BASIC RESEARCH...
42 CFR 65a.8 - How long does grant support last?
Code of Federal Regulations, 2012 CFR
2012-10-01
... 42 Public Health 1 2012-10-01 2012-10-01 false How long does grant support last? 65a.8 Section 65a.8 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES FELLOWSHIPS, INTERNSHIPS, TRAINING NATIONAL INSTITUTE OF ENVIRONMENTAL HEALTH SCIENCES HAZARDOUS SUBSTANCES BASIC RESEARCH...
42 CFR 65a.8 - How long does grant support last?
Code of Federal Regulations, 2014 CFR
2014-10-01
... 42 Public Health 1 2014-10-01 2014-10-01 false How long does grant support last? 65a.8 Section 65a.8 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES FELLOWSHIPS, INTERNSHIPS, TRAINING NATIONAL INSTITUTE OF ENVIRONMENTAL HEALTH SCIENCES HAZARDOUS SUBSTANCES BASIC RESEARCH...
42 CFR 65a.8 - How long does grant support last?
Code of Federal Regulations, 2013 CFR
2013-10-01
... 42 Public Health 1 2013-10-01 2013-10-01 false How long does grant support last? 65a.8 Section 65a.8 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES FELLOWSHIPS, INTERNSHIPS, TRAINING NATIONAL INSTITUTE OF ENVIRONMENTAL HEALTH SCIENCES HAZARDOUS SUBSTANCES BASIC RESEARCH...
Influences on Students' Environmental Self Determination and Implications for Science Curricula
ERIC Educational Resources Information Center
Darner, Rebekka
2014-01-01
According to self-determination theory, social contexts that support students' basic psychological needs of autonomy, competence, and relatedness foster motivation toward behaviors that are valued in that social context. This study investigated the socio-contextual elements of a learning environment that support or undermine students' basic…
NSFC spurs significant basic research progress of respiratory medicine in China.
Sun, Ruijuan; Xu, Feng; Wang, Chen; Dong, Erdan
2017-05-01
Over the years, research in respiratory medicine has progressed rapidly in China. This commentary narrates the role of the National Natural Science Foundation of China (NSFC) in supporting the basic research of respiratory medicine, summarizes the major progress of respiratory medicine in China, and addresses the main future research directions sponsored by the NSFC. © 2015 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
He, Ge; Wei, Zhong-Xu; Brisbois, Jérémy; Jia, Yan-Li; Huang, Yu-Long; Zhou, Hua-Xue; Ni, Shun-Li; Silhanek, Alejandro V.; Shan, Lei; Zhu, Bei-Yi; Yuan, Jie; Dong, Xiao-Li; Zhou, Fang; Zhao, Zhong-Xian; Jin, Kui
2018-04-01
Not Available Project supported by the National Key Basic Research Program of China (Grant Nos. 2015CB921000, 2016YFA0300301, and 2017YFA0302902), the National Natural Science Foundation of China (Grant Nos. 11674374 and 1474338), the Key Research Program of Frontier Sciences, Chinese Academy of Sciences (Grant No. QYZDB-SSW-SLH008), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant Nos. XDB07020100 and XDB07030200), the Beijing Municipal Science and Technology Project (Grant No. Z161100002116011), the Fonds de la Recherche Scientifique–FNRS and the ARC Grant 13/18-08 for Concerted Research Actions, financed by the French Community of Belgium (Wallonia-Brussels Federation). Jérémy Brisbois acknowledges the support from F.R.S.–FNRS (Research Fellowship), The work of Alejandro V Silhanek is partially supported by PDR T.0106.16 of the F.R.S.–FNRS..
NASA Astrophysics Data System (ADS)
Sun, Yao-yao; Lv, Yue-xi; Han, Xi; Guo, Chun-yan; Jiang, Zhi; Hao, Hong-yue; Jiang, Dong-wei; Wang, Guo-wei; Xu, Ying-qiang; Niu, Zhi-chuan
2017-08-01
Not Available Project supported by the National Basic Research Program of China (Grant Nos. 2016YFB0402403 and 2013CB932904), the National Natural Science Foundation of China (Grant Nos. 61290303 and 61306013), and China Postdoctoral Science Foundation (Grant No. 2016M601100).
NASA Astrophysics Data System (ADS)
Gong, Zi-Zhao; Zhang, Wei; He, Wei; Zhang, Xiang-Qun; Liu, Yong; Cheng, Zhao-Hua
2018-05-01
Not Available Project supported by the National Basic Research Program of China (Grant Nos. 2015CB921403 and 2016YFA0300701), the National Natural Science Foundation of China (Grant Nos. 91622126, 51427801, and 51671212), and the Natural Science Foundation of Hebei Province, China (Grant No. A2015203021).
NASA Astrophysics Data System (ADS)
Yin, Hang; Shi, Ying
2018-05-01
Not Available Project supported by the National Basic Research Program of China (Grant No. 2013CB922204), the National Natural Science Foundation of China (Grant Nos. 11574115 and 11704146), and the Natural Science Foundation of Jilin Province, China (Grant No. 20150101063JC).
31P Nuclear Magnetic Resonance of Charge-Density-Wave Transition in a Single Crystal of RuP
NASA Astrophysics Data System (ADS)
Fan, Guo-Zhi; Chen, Rong-Yan; Wang, Nan-Lin; Luo, Jian-Lin
2015-07-01
Not Available Supported by the National Natural Science Foundation of China under Grant No 11025422, the National Basic Research Program of China under Grant Nos 2011CB921700 and 2015CB921300, and the Strategic Priority Research Program of the Chinese Academy of Sciences under Grant No XDB07020200.
Student Support for EIPBN 2015 Conference - Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farrow, Reginald C.
2016-01-19
The 59th International Conference on Electron, Ion and Photon Beam Technology and Nanofabrication, 2015, held at the Manchester Grand Hyatt in San Diego, CA from May 26 to May 29, 2015 was a great success in large part because financial support allowed robust participation from students. The students gave oral and poster presentations of their research and many will publish peer-reviewed articles in a special conference issue of the Journal of Vacuum Science and Technology B. The Department of Energy Office of Basic Energy Sciences supported 10 students from US universities with a $5,000 grant (DE-SC0013773).
Fusion Energy Sciences Network Requirements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dart, Eli; Tierney, Brian
2012-09-26
The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the U.S. Department of Energy Office of Science, the single largest supporter of basic research in the physical sciences in the United States. In support of the Office of Science programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 25 years. In December 2011, ESnet and the Office of Fusion Energy Sciences (FES), of the DOE Officemore » of Science (SC), organized a workshop to characterize the networking requirements of the programs funded by FES. The requirements identified at the workshop are summarized in the Findings section, and are described in more detail in the body of the report.« less
Teaching professionalism in science courses: anatomy to zoology.
Macpherson, Cheryl C
2012-02-01
Medical professionalism is reflected in attitudes, behaviors, character, and standards of practice. It is embodied by physicians who fulfill their duties to patients and uphold societies' trust in medicine. Professionalism requires familiarity with the ethical codes and standards established by international, governmental, institutional, or professional organizations. It also requires becoming aware of and responsive to societal controversies. Scientific uncertainty may be used to teach aspects of professionalism in science courses. Uncertainty about the science behind, and the health impacts of, climate change is one example explored herein that may be used to teach both professionalism and science. Many medical curricula provide students with information about professionalism and create opportunities for students to reflect upon and strengthen their individually evolving levels of professionalism. Faculties in basic sciences are rarely called upon to teach professionalism or deepen medical students understanding of professional standards, competencies, and ethical codes. However they have the knowledge and experience to develop goals, learning objectives, and topics relevant to professionalism within their own disciplines and medical curricula. Their dedication to, and passion for, science will support basic science faculties in designing innovative and effective approaches to teaching professionalism. This paper explores topics and formats that scientists may find useful in teaching professional attitudes, skills, and competencies in their medical curriculum. It highlights goals and learning objectives associated with teaching medical professionalism in the basic sciences. Copyright © 2011. Published by Elsevier B.V.
Tohoku Women's Hurdling Project: Science Angels (abstract)
NASA Astrophysics Data System (ADS)
Mizuki, Kotoe; Watanabe, Mayuko
2009-04-01
Tohoku University was the first National University to admit three women students in Japan in 1913. To support the university's traditional ``open-door'' policy, various projects have been promoted throughout the university since its foundation. A government plan, the Third-Stage Basic Plan for Science and Technology, aims to increase the women scientist ratio up to 25% nationwide. In order to achieve this goal, the Tohoku Women's Hurdling Project, funded by the Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT), was adopted in 2006. This project is threefold: support for child/family, improvement of facilities, and support for the next generation, which includes our Science Angels program. ``Science Angels'' are women PhD students appointed by the university president, with the mission to form a strong support system among each other and to become role-models to inspire younger students who want to become researchers. Currently, 50 women graduate students of the natural sciences are Science Angels and are encouraged to design and deliver lectures in their areas of specialty at their alma maters. Up to now, 12 lectures have been delivered and science events for children in our community have been held-all with great success.
Laryngeal Support Device Enhances the Learning of Laryngeal Anatomy and Voice Physiology
ERIC Educational Resources Information Center
Curcio, Daniella Franco; Behlau, Mara; Barros, Mirna Duarte; Smith, Ricardo Luiz
2012-01-01
Multidisciplinary cooperation in health care requires a solid knowledge in the basic sciences for a common ground of communication. In speech pathology, these fundamentals improve the accuracy of descriptive diagnoses and support the development of new therapeutic techniques and strategies. The aim of this study is to briefly discuss the benefits…
The space shuttle payload planning working groups. Volume 4: Life sciences
NASA Technical Reports Server (NTRS)
1973-01-01
The findings of the Life Sciences working group of the space shuttle payload planning activity are presented. The objectives of the Life Sciences investigations are: (1) to continue the research directed at understanding the origin of life and the search for extraterrestrial evidence of life, (2) biomedical research to understand mechanisms and provide criteria for support of manned flight, (3) technology development for life support, protective systems, and work aids for providing environmental control, and (4) to study basic biological functions at all levels or organization influenced by gravity, radiation, and circadian rhythms. Examples of candidate experimental schedules and the experimental package functional requirements are included.
Very long-term retention of basic science knowledge in doctors after graduation.
Custers, Eugène J F M; Ten Cate, Olle T J
2011-04-01
Despite frequent complaints that biomedical knowledge is quickly forgotten after it has been learned, few investigations of actual long-term retention of basic science knowledge have been conducted in the medical domain. Our aim was to illuminate the long-term retention of basic science knowledge, particularly of unrehearsed knowledge. Using a cross-sectional study design, medical students and doctors in the Netherlands were tested for retention of basic science knowledge. Relationships between retention interval and proportion of correct answers on a knowledge test were investigated. The popular notion that most of basic science knowledge is forgotten shortly after graduation is not supported by our findings. With respect to the full test scores, which reflect a composite of unrehearsed and rehearsed knowledge, performance decreased from approximately 40% correct answers for students still in medical school, to 25-30% correct answers for doctors after many years of practice. When rehearsal during the retention interval is controlled for, it appears that little knowledge is lost for 1.5-2 years after it was last used; from then on, retention is best described by a negatively accelerated (logarithmic) forgetting curve. After ≥ 25 years, retention levels were in the range of 15-20%. Conclusions about the forgetting of unrehearsed knowledge in this study are in line with findings reported in other domains: it proceeds in accordance with the Ebbinghaus curve for meaningful material, except that in our findings the 'downward' part appears to start later than in most other studies. The limitations of the study are discussed and possible ramifications for medical education are proposed. © Blackwell Publishing Ltd 2011.
Brazil opens its first private research institute
NASA Astrophysics Data System (ADS)
Ivanissevich, Alicia
2017-05-01
The Brazilian filmmaker João Moreira Salles - whose family owns one of the largest banks in Brazil - has established a new institute in Rio de Janeiro that will support basic research across all sciences.
78 FR 72873 - Availability of 2014-2018 Draft Strategic Plan and Request for Public Comment
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-04
... energy, environmental, and nuclear security of the United States; promoting scientific and technological innovation in support of that mission; sponsoring basic research in the physical sciences; [[Page 72874
Weakly Nonlinear Rayleigh–Taylor Instability in Cylindrically Convergent Geometry
NASA Astrophysics Data System (ADS)
Guo, Hong-Yu; Wang, Li-Feng; Ye, Wen-Hua; Wu, Jun-Feng; Zhang, Wei-Yan
2018-05-01
Not Available Supported by the National Natural Science Foundation of China under Grant Nos 11275031, 11475034, 11575033 and 11274026, and the National Basic Research Program of China under Grant No 2013CB834100.
Coupling between velocity and interface perturbations in cylindrical Rayleigh–Taylor instability
NASA Astrophysics Data System (ADS)
Guo, Hong-Yu; Wang, Li-Feng; Ye, Wen-Hua; Wu, Jun-Feng; Zhang, Wei-Yan
2018-05-01
Not Available Project supported by the National Natural Science Foundation of China (Grant Nos. 11275031, 11475034, 11575033, and 11274026) and the National Basic Research Program of China (Grant No. 2013CB834100).
Basic Science for a Secure Energy Future
NASA Astrophysics Data System (ADS)
Horton, Linda
2010-03-01
Anticipating a doubling in the world's energy use by the year 2050 coupled with an increasing focus on clean energy technologies, there is a national imperative for new energy technologies and improved energy efficiency. The Department of Energy's Office of Basic Energy Sciences (BES) supports fundamental research that provides the foundations for new energy technologies and supports DOE missions in energy, environment, and national security. The research crosses the full spectrum of materials and chemical sciences, as well as aspects of biosciences and geosciences, with a focus on understanding, predicting, and ultimately controlling matter and energy at electronic, atomic, and molecular levels. In addition, BES is the home for national user facilities for x-ray, neutron, nanoscale sciences, and electron beam characterization that serve over 10,000 users annually. To provide a strategic focus for these programs, BES has held a series of ``Basic Research Needs'' workshops on a number of energy topics over the past 6 years. These workshops have defined a number of research priorities in areas related to renewable, fossil, and nuclear energy -- as well as cross-cutting scientific grand challenges. These directions have helped to define the research for the recently established Energy Frontier Research Centers (EFRCs) and are foundational for the newly announced Energy Innovation Hubs. This overview will review the current BES research portfolio, including the EFRCs and user facilities, will highlight past research that has had an impact on energy technologies, and will discuss future directions as defined through the BES workshops and research opportunities.
Effectiveness of Transcutaneous Electrical Nerve Stimulation for Treatment of Hyperalgesia and Pain
DeSantana, Josimari M.; Walsh, Deirdre M.; Vance, Carol; Rakel, Barbara A.; Sluka, Kathleen A.
2009-01-01
Transcutaneous electrical nerve stimulation (TENS) is a nonpharmacologic treatment for pain relief. TENS has been used to treat a variety of painful conditions. This review updates the basic and clinical science regarding the use of TENS that has been published in the past 3 years (ie, 2005−2008). Basic science studies using animal models of inflammation show changes in the peripheral nervous system, as well as in the spinal cord and descending inhibitory pathways, in response to TENS. Translational studies show mechanisms to prevent analgesic tolerance to repeated application of TENS. This review also highlights data from recent randomized, placebo-controlled trials and current systematic reviews. Clinical trials suggest that adequate dosing, particularly intensity, is critical to obtaining pain relief with TENS. Thus, evidence continues to emerge from both basic science and clinical trials supporting the use of TENS for the treatment of a variety of painful conditions while identifying strategies to increase TENS effectiveness. PMID:19007541
Conducting correlation seminars in basic sciences at KIST Medical College, Nepal
2011-01-01
KIST Medical College is a new medical school in Lalitpur, Nepal. In Nepal, six basic science subjects are taught together in an integrated organ system-based manner with early clinical exposure and community medicine. Correlation seminars are conducted at the end of covering each organ system. The topics are decided by the core academic group (consisting of members from each basic science department, the Department of Community Medicine, the academic director, and the clinical and program coordinators) considering the public health importance of the condition and its ability to include learning objectives from a maximum number of subjects. The learning objectives are decided by individual departments and finalized after the meeting of the core group. There are two student coordinators for each seminar and an evaluation group evaluates each seminar and presenter. Correlation seminars help students revise the organ system covered and understand its clinical importance, promote teamwork and organization, and supports active learning. Correlation seminars should be considered as a learning modality by other medical schools. PMID:22066033
Hydrodynamic Sensing Based on Surface-Modified Flexible Nanocomposite Film
NASA Astrophysics Data System (ADS)
Shu, Yi; Tian, He; Wang, Zhe; Zhao, Hai-Ming; Mi, Wen-Tian; Li, Yu-Xing; Cao, Hui-Wen; Ren, Tian-Ling
2015-11-01
Not Available Supported by the National Natural Science Foundation under Grant No 61434001 and 61574083, the National Basic Research Program of China under Grant No 2015CB352100, the National Key Project of Science and Technology under Grant No 2011ZX02403-002, and the Special Fund for Agroscientic Research in the Public Interest of China under Grant No 201303107.
Improvement of Nickel-Stanogermanide Contact Properties by Platinum Interlayer
NASA Astrophysics Data System (ADS)
Wan, Wei-Jun; Ren, Wei; Meng, Xiao-Ran; Ping, Yun-Xia; Wei, Xing; Xue, Zhong-Ying; Yu, Wen-Jie; Zhang, Miao; Di, Zeng-Feng; Zhang, Bo
2018-05-01
Not Available Supported by the National Natural Science Foundation of China under Grant Nos 51672171 and 61604094, the Natural Science Foundation of Shanghai under Grant No 14ZR1418300, the National Key Basic Research Program of China under Grant No 2015CB921600, the Eastern Scholar Program from the Shanghai Municipal Education Commission, and the Fok Ying Tung Education Foundation.
Magneto optical properties of self-assembled InAs quantum dots for quantum information processing
NASA Astrophysics Data System (ADS)
Tang, Jing; Xu, Xiu-Lai
2018-02-01
Not Available Project supported by the National Basic Research Program of China (Grant No. 2014CB921003), the National Natural Science Foundation of China (Grant Nos. 11721404, 51761145104, and 61675228), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant Nos. XDB07030200 and XDPB0803), and the CAS Interdisciplinary Innovation Team.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weiss, Charles J.; Das, Partha Pratim; Higgins, Deanna LM
Nickel complexes were prepared with diphosphine ligands that contain pendant amines, and these complexes catalytically oxidize primary and secondary alcohols to their respective aldehydes and ketones. Kinetic and mechanistic studies of these prospective electrocatalysts were performed to understand what influences the catalytic activity. For the oxidation of diphenylmethanol, the catalytic rates were determined to be dependent on the concentration of both the catalyst and the alcohol. The catalytic rates were found to be independent of the concentration of base and oxidant. The incorporation of pendant amines to the phosphine ligand results in substantial increases in the rate of alcohol oxidationmore » with more electron-donating substituents on the pendant amine exhibiting the fastest rates. We thank Dr. John C. Linehan, Dr. Elliott B. Hulley, Dr. Jonathan M. Darmon, and Dr. Elizabeth L. Tyson for helpful discussions. Research by CJW, PD, DLM, and AMA was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Research by MLH was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weiss, Charles J.; Wiedner, Eric S.; Roberts, John A.
Nickel phosphine complexes with pendant amines have been found to be electrocatalysts for the oxidation of primary and secondary alcohols, with turnover frequencies as high as 3.3 s-1. These complexes are the first electrocatalysts for alcohol oxidation based on non-precious metals, which will be critical for use in fuel cells. The research by CJW, ESW, and AMA was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. The research by JASR was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center fundedmore » by the U.S. Department of Energy, Office of Science. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.« less
Amniotic therapeutic biomaterials in urology: current and future applications.
Oottamasathien, Siam; Hotaling, James M; Craig, James R; Myers, Jeremy B; Brant, William O
2017-10-01
To examine the rationale and applications of amniotic tissue augmentation in urological surgery. Published literature in English-language was reviewed for basic science and clinical use of amniotic or amnion-chorionic tissue in genitourinary tissues. Basic science and animal studies support the likely benefit of clinical applications of amnion-derived tissues in a variety of urologic interventions. The broad number of properties found in amniotic membrane, coupled with its immunologically privileged status presents a number of future applications in the urological surgical realm. These applications are in their clinical infancy and suggest that further studies are warranted to investigate the use of these products in a systematic fashion.
Dao, Hanh Dung; Kota, Pravina; James, Judith A.; Stoner, Julie A.; Akins, Darrin R.
2015-01-01
Purpose In response to National Institutes of Health initiatives to improve translation of basic science discoveries we surveyed faculty to assess patterns of and barriers to translational research in Oklahoma. Methods An online survey was administered to University of Oklahoma Health Sciences Center, College of Medicine faculty, which included demographic and research questions. Results Responses were received from 126 faculty members (24%). Two-thirds spent ≥20% time on research; among these, 90% conduct clinical and translational research. Identifying funding; recruiting research staff and participants; preparing reports and agreements; and protecting research time were commonly perceived as at least moderate barriers to conducting research. While respondents largely collaborated within their discipline, clinical investigators were more likely than basic science investigators to engage in interdisciplinary research. Conclusion While engagement in translational research is common, specific barriers impact the research process. This could be improved through an expanded interdisciplinary collaboration and research support structure. PMID:26242016
Basic principles of information technology organization in health care institutions.
Mitchell, J A
1997-01-01
This paper focuses on the basic principles of information technology (IT) organization within health sciences centers. The paper considers the placement of the leader of the IT effort within the health sciences administrative structure and the organization of the IT unit. A case study of the University of Missouri-Columbia Health Sciences Center demonstrates how a role-based organizational model for IT support can be effective for determining the boundary between centralized and decentralized organizations. The conclusions are that the IT leader needs to be positioned with other institutional leaders who are making strategic decisions, and that the internal IT structure needs to be a role-based hybrid of centralized and decentralized units. The IT leader needs to understand the mission of the organization and actively use change-management techniques.
Extraordinary Acoustic Transmission in a Helmholtz Resonance Cavity-Constructed Acoustic Grating
NASA Astrophysics Data System (ADS)
Si-Yuan, Yu; Xu, Ni; Ye-Long, Xu; Cheng, He; Priyanka, Nayar; Ming-Hui, Lu; Yan-Feng, Chen
2016-04-01
Not Available Supported by the National Basic Research Program of China under Grant Nos 2012CB921503, 2013CB632904 and 2013CB632702, the National Natural Science Foundation of China under Grant No 1134006, the Natural Science Foundation of Jiangsu Province under Grant No BK20140019, the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education, and the China Postdoctoral Science Foundation under Grant Nos 2012M511249 and 2013T60521.
Effect of Graphene with Nanopores on Metal Clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Hu; Chen, Xianlang; Wang, Lei
Porous graphene, which is a novel type of defective graphene, shows excellent potential as a support material for metal clusters. In this work, the stability and electronic structures of metal clusters (Pd, Ir, Rh) supported on pristine graphene and graphene with different sizes of nanopore were investigated by first-principle density functional theory (DFT) calculations. Thereafter, CO adsorption and oxidation reaction on the Pd-graphene system were chosen to evaluate its catalytic performance. Graphene with nanopore can strongly stabilize the metal clusters and cause a substantial downshift of the d-band center of the metal clusters, thus decreasing CO adsorption. All binding energies,more » d-band centers, and adsorption energies show a linear change with the size of the nanopore: a bigger size of nanopore corresponds to a stronger metal clusters bond to the graphene, lower downshift of the d-band center, and weaker CO adsorption. By using a suitable size nanopore, supported Pd clusters on the graphene will have similar CO and O2 adsorption ability, thus leading to superior CO tolerance. The DFT calculated reaction energy barriers show that graphene with nanopore is a superior catalyst for CO oxidation reaction. These properties can play an important role in instructing graphene-supported metal catalyst preparation to prevent the diffusion or agglomeration of metal clusters and enhance catalytic performance. This work was supported by National Basic Research Program of China (973Program) (2013CB733501), the National Natural Science Foundation of China (NSFC-21176221, 21136001, 21101137, 21306169, and 91334013). D. Mei acknowledges the support from the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle. Computing time was granted by the grand challenge of computational catalysis of the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) and by the National Energy Research Scientific Computing Center (NERSC).« less
Deformation and Spallation of Explosive Welded Steels under Gas Gun Shock Loading
NASA Astrophysics Data System (ADS)
Yu, Ying; Li, Chao; Ma, Hong-Hao; Qi, Mei-Lan; Luo, Sheng-Nian
2018-01-01
Not Available Supported by the National Basic Research Program of China under Grant No 2014CB845904, and the National Natural Science Foundation of China under Grant Nos 11627901, 11372113 and 11672110.
Translational Research in Behavior Analysis: Historical Traditions and Imperative for the Future
ERIC Educational Resources Information Center
Mace, F. Charles; Critchfield, Thomas S.
2010-01-01
"Pure basic" science can become detached from the natural world that it is supposed to explain. "Pure applied" work can become detached from fundamental processes that shape the world it is supposed to improve. Neither demands the intellectual support of a broad scholarly community or the material support of society. Translational research can do…
Beam Steering Analysis in Optically Phased Vertical Cavity Surface Emitting Laser Array
NASA Astrophysics Data System (ADS)
Xun, Meng; Sun, Yun; Xu, Chen; Xie, Yi-Yang; Jin, Zhi; Zhou, Jing-Tao; Liu, Xin-Yu; Wu, De-Xin
2018-03-01
Not Available Supported by the ‘Supporting First Action’ Joint Foundation for Outstanding Postdoctoral Program under Grant Nos Y7YBSH0001 and Y7BSH14001, the National Natural Science Foundation of China under Grant No 61434006, and the National Key Basic Research Program of China under Grant No 2017YFB0102302.
Cor, M Ken
Interpreting results from quantitative research can be difficult when measures of concepts are constructed poorly, something that can limit measurement validity. Social science steps for defining concepts, guidelines for limiting construct-irrelevant variance when writing self-report questions, and techniques for conducting basic item analysis are reviewed to inform the design of instruments to measure social science concepts in pharmacy education research. Based on a review of the literature, four main recommendations emerge: These include: (1) employ a systematic process of conceptualization to derive nominal definitions; (2) write exact and detailed operational definitions for each concept, (3) when creating self-report questionnaires, write statements and select scales to avoid introducing construct-irrelevant variance (CIV); and (4) use basic item analysis results to inform instrument revision. Employing recommendations that emerge from this review will strengthen arguments to support measurement validity which in turn will support the defensibility of study finding interpretations. An example from pharmacy education research is used to contextualize the concepts introduced. Copyright © 2017 Elsevier Inc. All rights reserved.
Website for the Space Science Division
NASA Technical Reports Server (NTRS)
Schilling, James; DeVincenzi, Donald (Technical Monitor)
2002-01-01
The Space Science Division at NASA Ames Research Center is dedicated to research in astrophysics, exobiology, advanced life support technologies, and planetary science. These research programs are structured around Astrobiology (the study of life in the universe and the chemical and physical forces and adaptions that influence life's origin, evolution, and destiny), and address some of the most fundamental questions pursued by science. These questions examine the origin of life and our place in the universe. Ames is recognized as a world leader in Astrobiology. In pursuing our mission in Astrobiology, Space Science Division scientists perform pioneering basic research and technology development.
The New Millennium and an Education That Captures the Basic Spirit of Science.
ERIC Educational Resources Information Center
Bybee, Rodger W.
This document discusses reflections of the old and new millennium on education that capture the basic spirit of science. The explanation includes basic scientific ideas in physical sciences, earth systems, solar system and space; living systems; basic scientific thinking; the basic distinction between science and technology; basic connections…
A facile and efficient dry transfer technique for two-dimensional Van derWaals heterostructure
NASA Astrophysics Data System (ADS)
Xie, Li; Du, Luojun; Lu, Xiaobo; Yang, Rong; Shi, Dongxia; Zhang, Guangyu
2017-08-01
Not Available Project supported by the National Basic Research Program of China (Grant Nos. 2013CB934500 and 2013CBA01602), the National Natural Science Foundation of China (Grant Nos. 61325021, 11574361, and 51572289), the Key Research Program of Frontier Sciences, CAS, (Grant No. QYZDB-SSW-SLH004), and the Strategic Priority Research Program (B), CAS (Grant No. XDB07010100).
Code of Federal Regulations, 2011 CFR
2011-01-01
... resources of the organization to the project. Award means financial assistance that provides support or... equipment, and innovative teaching methodologies. Established and demonstrated capacity means that an..., enabling them to make practical decisions. Food and agricultural sciences means basic, applied, and...
77 FR 5246 - Basic Energy Sciences Advisory Committee
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-02
... DEPARTMENT OF ENERGY Basic Energy Sciences Advisory Committee AGENCY: Office of Science... of the Basic Energy Sciences Advisory Committee (BESAC). The Federal Advisory Committee Act (Pub. L... FURTHER INFORMATION CONTACT: Katie Perine; Office of Basic Energy Sciences; U.S. Department of Energy...
Nutrition and the science of disease prevention: a systems approach to support metabolic health
Bennett, Brian J.; Hall, Kevin D.; Hu, Frank B.; McCartney, Anne L.; Roberto, Christina
2017-01-01
Progress in nutritional science, genetics, computer science, and behavioral economics can be leveraged to address the challenge of noncommunicable disease. This report highlights the connection between nutrition and the complex science of preventing disease and discusses the promotion of optimal metabolic health, building on input from several complementary disciplines. The discussion focuses on (1) the basic science of optimal metabolic health, including data from gene–diet interactions, microbiome, and epidemiological research in nutrition, with the goal of defining better targets and interventions, and (2) how nutrition, from pharma to lifestyle, can build on systems science to address complex issues. PMID:26415028
Applications of SAR Interferometry in Earth and Environmental Science Research
Zhou, Xiaobing; Chang, Ni-Bin; Li, Shusun
2009-01-01
This paper provides a review of the progress in regard to the InSAR remote sensing technique and its applications in earth and environmental sciences, especially in the past decade. Basic principles, factors, limits, InSAR sensors, available software packages for the generation of InSAR interferograms were summarized to support future applications. Emphasis was placed on the applications of InSAR in seismology, volcanology, land subsidence/uplift, landslide, glaciology, hydrology, and forestry sciences. It ends with a discussion of future research directions. PMID:22573992
NASA Astrophysics Data System (ADS)
Zhang, Xin-Qin; Xia, Xiu-Wen; Xu, Jing-Ping; Yang, Ya-Ping
2017-05-01
Not Available Project supported by the National Natural Science Foundation of China (Grant Nos. 11274242, 11474221, and 11574229), the Joint Fund of the National Natural Science Foundation of China and the China Academy of Engineering Physics (Grant No. U1330203), the National Key Basic Research Special Foundation of China (Grant Nos. 2011CB922203 and 2013CB632701), and the Doctor Startup Fund of the Natural Science of Jinggangshan University, China (Grant No. JZB16003).
Applications of SAR Interferometry in Earth and Environmental Science Research.
Zhou, Xiaobing; Chang, Ni-Bin; Li, Shusun
2009-01-01
This paper provides a review of the progress in regard to the InSAR remote sensing technique and its applications in earth and environmental sciences, especially in the past decade. Basic principles, factors, limits, InSAR sensors, available software packages for the generation of InSAR interferograms were summarized to support future applications. Emphasis was placed on the applications of InSAR in seismology, volcanology, land subsidence/uplift, landslide, glaciology, hydrology, and forestry sciences. It ends with a discussion of future research directions.
76 FR 48147 - Basic Energy Sciences Advisory Committee
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-08
... DEPARTMENT OF ENERGY Basic Energy Sciences Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION: Notice of renewal of the Basic Energy Sciences Advisory Committee. SUMMARY... that the Basic Energy Sciences Advisory Committee will be renewed for a two-year period beginning July...
Science Illiteracy: Breaking the Cycle
NASA Astrophysics Data System (ADS)
Lebofsky, L. A.; Lebofsky, N. R.
2003-12-01
At the University of Arizona, as at many state universities and colleges, the introductory science classes for non-science majors may be the only science classes that future K--8 teachers will take. The design of the UA's General Education program requires all future non-science certified teachers to take the General Education science classes. These classes are therefore an ideal venue for the training of the state's future teachers. Many students, often including future teachers, are ill-prepared for college, i.e., they lack basic science content knowledge, basic mathematics skills, and reading and writing skills. They also lack basic critical thinking skills and study skills. It is within this context that our future teachers are trained. How do we break the cycle of science illiteracy? There is no simple solution, and certainly not a one-size-fits-all panacea that complements every professor's style of instruction. However, there are several programs at the University of Arizona, and also principles that I apply in my own classes, that may be adaptable in other classrooms. Assessment of K--12 students' learning supports the use of inquiry-based science instruction. This approach can be incorporated in college classes. Modeling proven and productive teaching methods for the future teachers provides far more than ``just the facts,'' and all students gain from the inquiry approach. Providing authentic research opportunities employs an inquiry-based approach. Reading (outside the textbook) and writing provide feedback to students with poor writing and critical thinking skills. Using peer tutors and an instant messaging hot line gives experience to the tutors and offers "comfortable" assistance to students.
Valgus extension overload syndrome and stress injury of the olecranon.
Ahmad, Christopher S; ElAttrache, Neal S
2004-10-01
Basic science studies have improved our understanding of the pathomechanics for valgus extension overload and olecranon stress fractures. These disorders result from repetitive abutment of the olecranon into the olecranon fossa combined with valgus torques, resulting in impaction and shear along the posteromedial olecranon. The patient history and physical examination are similar for each disorder. Imaging studies including plain radiographs, computed tomography, MRI or bone scan may be necessary for accurate diagnosis. Clinical and basic science support mandatory and careful assessment of the medial collateral ligament when valgus extension overload is identified and limited debridement of the olecranon when surgery is indicated. For stress fractures that fail nonoperative management, treatment with internal fixation provides good results.
[Basic research during residency in Israel: is change needed?].
Fishbain, Dana; Shoenfeld, Yehuda; Ashkenazi, Shai
2013-10-01
A six-month research period is a mandatory part of the residency training program in most basic specialties in Israel and is named: the "basic science period". This is the only period in an Israeli physician's medical career which is dedicated strictly to research, accentuating the importance of medical research to the quality of training and level of medicine in Israel. From another point of view, one may argue that in an era of shortage of physicians on the one hand and the dizzying rate of growth in medical knowledge on the other hand, every moment spent training in residency is precious, therefore, making the decision of whether to dedicate six months for research becomes ever more relevant. This question is currently raised for discussion once again by the Scientific Council of the Israeli Medical Association. The Scientific Council lately issued a call for comments sent to all Israeli physicians, asking their opinion on several key questions regarding basic science research. Learning the public's opinion will serve as a background for discussion. A total of 380 physicians responded to the call and specified their standpoint on the subject, among them heads of departments, units and clinics, senior physicians and residents. The findings pointed to strong support in maintaining the research period as part of residency training due to its importance to medical training and medicine, although half the respondents supported the use of various alternative formats for research together with the existing format. Those alternative format suggestions will be thoroughly reviewed. A smaller group of respondents supported allowing residents a choice between two tracks--with or without a research period, and only a few were in favor of canceling the research requirement altogether. The writers maintain that the "basic science period" of research during residency training is vital and its contribution to the high level of specialists and high level of medicine requires its conservation. Nevertheless, alternative formats which might be suitable for some residents should be considered, and auxiliary tools to help residents fulfill their potential in research and raise the quality of written research papers should be constructed.
Thermoelectric properties of Li-doped Sr0.7Ba0.3Nb2O6-δ ceramics
NASA Astrophysics Data System (ADS)
Zhang, Ya-Cui; Liu, Jian; Li, Yi; Chen, Yu-Fei; Li, Ji-Chao; Su, Wen-Bin; Zhou, Yu-Cheng; Zhai, Jin-Ze; Wang, Teng; Wang, Chun-Lei
2017-09-01
Not Available Project supported by the National Basic Research Program of China (Grant No. 2013CB632506) and the National Natural Science Foundation of China (Grant Nos. 51202132, 51231007, and 11374186).
First-order reversal curve investigated magnetization switching in Pd/Co/Pd wedge film
NASA Astrophysics Data System (ADS)
Li, Yan; He, Wei; Sun, Rui; Gong, Zi-Zhao; Li, Na; Gul, Qeemat; Zhang, Xiang-Qun; Cheng, Zhao-Hua
2018-04-01
Not Available Project supported by the National Basic Research Program of China (Grant Nos. 2015CB921403 and 2016YFA0300701) and the National Natural Science Foundation of China (Grant Nos. 51427801, 11374350, and 51671212).
Dettweiler, Ulrich; Lauterbach, Gabriele; Becker, Christoph; Simon, Perikles
2017-01-01
Research has shown that outdoor educational interventions can lead to students' increased self-regulated motivational behavior. In this study, we searched into the satisfaction of basic psychological needs (BPN), i.e., autonomy support, the learners' experience of competence, and relatedness, both within the peer group and with their teachers, through outdoor learning. From 2014 to 2016, n = 281 students attended “research weeks” at a Student Science Lab in the Alpine National Park Berchtesgaden (Germany). The program is a curriculum-based one-week residential course, centered on a 2-day research expedition. Both before and after the course, students completed a composite questionnaire addressing BPN-satisfaction and overall motivational behavior in relation to the Self-Determination Index (SDI). At the latter time-point, students also reported on their experiences during the intervention. Questionnaire data was analyzed using a set of Bayesian General Linear Models with random effects. Those quantitative measures have been complemented by and contextualized with a set of qualitative survey methods. The results showed that the basic psychological needs influence the motivational behavior in both contexts equally, however on different scale levels. The basic needs satisfaction in the outdoor context is decisively higher than indoors. Moreover, the increment of competence-experience from the school context to the hands-on outdoor program appears to have the biggest impact to students' increased intrinsic motivation during the intervention. Increased autonomy support, student-teacher relations, and student-student relations have much less or no influence on the overall difference of motivational behavior. Gender does not influence the results. The contextualization partly supports those results and provide further explanation for the students' increased self-regulation in the outdoors. They add some explanatory thrust to the argument that outdoor teaching, be it during a residential week, or during occasional but regular sessions as integral part of the “normal” teaching, fosters intrinsic motivational behavior in science with lower secondary students. PMID:29312080
Dettweiler, Ulrich; Lauterbach, Gabriele; Becker, Christoph; Simon, Perikles
2017-01-01
Research has shown that outdoor educational interventions can lead to students' increased self-regulated motivational behavior. In this study, we searched into the satisfaction of basic psychological needs (BPN), i.e., autonomy support, the learners' experience of competence, and relatedness, both within the peer group and with their teachers, through outdoor learning. From 2014 to 2016, n = 281 students attended "research weeks" at a Student Science Lab in the Alpine National Park Berchtesgaden (Germany). The program is a curriculum-based one-week residential course, centered on a 2-day research expedition. Both before and after the course, students completed a composite questionnaire addressing BPN-satisfaction and overall motivational behavior in relation to the Self-Determination Index (SDI). At the latter time-point, students also reported on their experiences during the intervention. Questionnaire data was analyzed using a set of Bayesian General Linear Models with random effects. Those quantitative measures have been complemented by and contextualized with a set of qualitative survey methods. The results showed that the basic psychological needs influence the motivational behavior in both contexts equally, however on different scale levels. The basic needs satisfaction in the outdoor context is decisively higher than indoors. Moreover, the increment of competence-experience from the school context to the hands-on outdoor program appears to have the biggest impact to students' increased intrinsic motivation during the intervention. Increased autonomy support, student-teacher relations, and student-student relations have much less or no influence on the overall difference of motivational behavior. Gender does not influence the results. The contextualization partly supports those results and provide further explanation for the students' increased self-regulation in the outdoors. They add some explanatory thrust to the argument that outdoor teaching, be it during a residential week, or during occasional but regular sessions as integral part of the "normal" teaching, fosters intrinsic motivational behavior in science with lower secondary students.
Yamazaki, Yuka; Uka, Takanori; Shimizu, Haruhiko; Miyahira, Akira; Sakai, Tatsuo; Marui, Eiji
2013-02-01
The number of physicians engaged in basic sciences and teaching is sharply decreasing in Japan. To alleviate this shortage, central government has increased the quota of medical students entering the field. This study investigated medical students' interest in basic sciences in efforts to recruit talent. A questionnaire distributed to 501 medical students in years 2 to 6 of Juntendo University School of Medicine inquired about sex, grade, interest in basic sciences, interest in research, career path as a basic science physician, faculties' efforts to encourage students to conduct research, increases in the number of lectures, and practical training sessions on research. Associations between interest in basic sciences and other variables were examined using χ(2) tests. From among the 269 medical students (171 female) who returned the questionnaire (response rate 53.7%), 24.5% of respondents were interested in basic sciences and half of them considered basic sciences as their future career. Obstacles to this career were their original aim to become a clinician and concerns about salary. Medical students who were likely to be interested in basic sciences were fifth- and sixth-year students, were interested in research, considered basic sciences as their future career, considered faculties were making efforts to encourage medical students to conduct research, and wanted more research-related lectures. Improving physicians' salaries in basic sciences is important for securing talent. Moreover, offering continuous opportunities for medical students to experience research and encouraging advanced-year students during and after bedside learning to engage in basic sciences are important for recruiting talent.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prakash, Arushi; Baer, Marcel D.; Mundy, Christopher J.
Peptoids are peptide-mimetic biopolymers that are easy-to-synthesize and adaptable for use in drugs, chemical scaffolds, and coatings. However, there is insufficient information about their structural preferences and interactions with the environment in various applications. We conducted a study to understand the fundamental differences between peptides and peptoids using molecular dynamics simulations with semi-empirical (PM6) and empirical (AMBER) potentials, in conjunction with metadynamics enhanced sampling. From studies of single molecules in water and on surfaces, we found that sarcosine (model peptoid) is much more flexible than alanine (model peptide) in different environments. However, the sarcosine and alanine interact similarly with amore » hydrophobic or a hydrophilic. Finally, this study highlights the conformational landscape of peptoids and the dominant interactions that drive peptoids towards these conformations. ACKNOWLEDGMENT: MD simulations and manuscript preparation were supported by the MS3 (Materials Synthesis and Simulation Across Scales) Initiative at Pacific Northwest National Laboratory (PNNL), a multi-program national laboratory operated by Battelle for the U.S. Department of Energy. CJM was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences Division of Chemical Sciences, Geosciences, and Biosciences. MDB was supported by the US Department of Energy, Office of Basic Energy Sciences, Biomolecular Materials Program at PNNL. Computing resources were generously allocated by University of Washington's IT department and PNNL's Institutional Computing program. The authors greatly acknowledge conversations with Dr. Kayla Sprenger, Josh Smith, and Dr. Yeneneh Yimer.« less
An Extensible NetLogo Model for Visualizing Message Routing Protocols
2017-08-01
the hard sciences to the social sciences to computer-generated art. NetLogo represents the world as a set of...describe the model is shown here; for the supporting methods , refer to the source code. Approved for public release; distribution is unlimited. 4 iv...if ticks - last-inject > time-to-inject [inject] if run# > #runs [stop] end Next, we present some basic statistics collected for the
Tip-Pressure-Induced Incoherent Energy Gap in CaFe2As2
NASA Astrophysics Data System (ADS)
Jia-Xin, Yin; Ji-Hui, Wang; Zheng, Wu; Ang, Li; Xue-Jin, Liang; Han-Qing, Mao; Gen-Fu, Chen; Bing, Lv; Ching-Wu, Chu; Hong, Ding; Shu-Heng, Pan
2016-06-01
Not Available Supported by the National Natural Science Foundation of China under Grant No 11227903, the National Basic Research Program of China under Grant Nos 2015CB921300 and 2012CB933000, the State of Texas through TcSUH, and the Strategic Priority Research Program B of Chinese Academy of Sciences under Grant Nos XDB07030000, XDB04040300 and Y4VX092X81.
Composition design for (PrNd–La–Ce)2Fe14B melt-spun magnets by machine learning technique
NASA Astrophysics Data System (ADS)
Li, Rui; Liu, Yao; Zuo, Shu-Lan; Zhao, Tong-Yun; Hu, Feng-Xia; Sun, Ji-Rong; Shen, Bao-Gen
2018-04-01
Not Available Project supported by the National Basic Research Program of China (Grant No. 2014CB643702), the National Natural Science Foundation of China (Grant No. 51590880), the Knowledge Innovation Project of the Chinese Academy of Sciences (Grant No. KJZD-EW-M05), and the National Key Research and Development Program of China (Grant No. 2016YFB0700903).
4.3 THz quantum-well photodetectors with high detection sensitivity
NASA Astrophysics Data System (ADS)
Zhang, Zhenzhen; Fu, Zhanglong; Guo, Xuguang; Cao, Juncheng
2018-03-01
Not Available Project supported by the National Key R&D Program of China (Grant No. 2017YFF0106302), the National Basic Research Program of of China (Grant No. 2014CB339803), the National Natural Science Foundation of China (Grant Nos. 61404150, 61405233, and 61604161), and the Shanghai Municipal Commission of Science and Technology, China (Grant Nos. 15JC1403800, 17ZR1448300, and 17YF1429900).
The founding of ISOTT: the Shamattawa of engineering science and medical science.
Bruley, Duane F
2014-01-01
The founding of ISOTT was based upon the blending of Medical and Engineering sciences. This occurrence is portrayed by the Shamattawa, the joining of the Chippewa and Flambeau rivers. Beginning with Carl Scheele's discovery of oxygen, the medical sciences advanced the knowledge of its importance to physiological phenomena. Meanwhile, engineering science was evolving as a mathematical discipline used to define systems quantitatively from basic principles. In particular, Adolf Fick's employment of a gradient led to the formalization of transport phenomena. These two rivers of knowledge were blended to found ISOTT at Clemson/Charleston, South Carolina, USA, in 1973.The establishment of our society with a mission to support the collaborative work of medical scientists, clinicians and all disciplines of engineering was a supporting step in the evolution of bioengineering. Traditional engineers typically worked in areas not requiring knowledge of biology or the life sciences. By encouraging collaboration between medical science and traditional engineering, our society became one of the forerunners in establishing bioengineering as the fifth traditional discipline of engineering.
Hoff, P
1988-01-01
This study discusses three important papers by Emil Kraepelin, published between 1918 and 1920. Kraepelin supports--in accordance with his teacher Wilhelm Wundt--the view of psychophysical parallelism as a basic principle of dealing with the questions of mental illness. Kraepelin is often called a nosologist; but one must not forget that Kraepelins nosology was not a static one, nor did he vote in favor of any kind of dogmatism. Only when Kraepelin's basic positions are reflected in a differentiated way, his enormous influence on very different parts of psychiatry as science can be understood.
Interfacial nanobubbles produced by long-time preserved cold water
NASA Astrophysics Data System (ADS)
Zhou, Li-Min; Wang, Shuo; Qiu, Jie; Wang, Lei; Wang, Xing-Ya; Li, Bin; Zhang, Li-Juan; Hu, Jun
2017-09-01
Not Available Project supported by the Key Laboratory of Interfacial Physics and Technology, Chinese Academy of Sciences, the Open Research Project of the Large Scientific Facility of the Chinese Academy of Sciences, the National Natural Science Foundation of China (Grant Nos. 11079050, 11290165, 11305252, 11575281, and U1532260), the National Key Basic Research Program of China (Grant Nos. 2012CB825705 and 2013CB932801), the National Natural Science Foundation for Outstanding Young Scientists, China (Grant No. 11225527), the Shanghai Academic Leadership Program, China (Grant No. 13XD1404400), and the Program of the Chinese Academy of Sciences (Grant Nos. KJCX2-EW-W09 and QYZDJ-SSW-SLH019)
Yamazaki, Yuka; Uka, Takanori; Shimizu, Haruhiko; Miyahira, Akira; Sakai, Tatsuo; Marui, Eiji
2012-09-01
The number of physicians engaged in basic science and teaching is sharply decreasing in Japan. To alleviate this shortage, central government has increased the quota of medical students entering the field. This study aimed to determine the characteristics of physicians who are engaged in basic science in efforts to recruit talent. A questionnaire was distributed to all 30 physicians in the basic science departments of Juntendo University School of Medicine. Question items inquired about sex, years since graduation, years between graduation and time entering basic science, clinical experience, recommending the career to medical students, expected obstacles to students entering basic science, efforts to inspire students in research, increased number of lectures and practical training sessions on research, and career choice satisfaction. Correlations between the variables were examined using χ(2) tests. Overall, 26 physicians, including 7 female physicians, returned the questionnaire (response rate 86.7%). Most physicians were satisfied with their career choice. Medical students were deemed not to choose basic science as their future career, because they aimed to become clinicians and because they were concerned about salary. Women physicians in basic science departments were younger than men. Women physicians also considered themselves to make more efforts in inspiring medical students to be interested in research. Moreover, physicians who became basic scientists earlier in their career wanted more research-related lectures in medical education. Improving physicians' salaries in basic science is important to securing talent. In addition, basic science may be a good career path for women physicians to follow.
Experimental Observation of the Ground-State Geometric Phase of Three-Spin XY Model
NASA Astrophysics Data System (ADS)
Hui, Zhou; Zhao-Kai, Li; Heng-Yan, Wang; Hong-Wei, Chen; Xin-Hua, Peng; Jiang-Feng, Du
2016-06-01
Not Available Supported by the National Key Basic Research Program under Grant Nos 2013CB921800 and 2014CB848700, the National Science Fund for Distinguished Young Scholars under Grant No 11425523, the National Natural Science Foundation of China under Grant Nos 11375167, 11227901, 91021005 and 11575173, the Strategic Priority Research Program (B) of the Chinese Academy of Sciences under Grant No XDB01030400, the Research Fund for the Doctoral Program of Higher Education of China under Grant No 20113402110044, the China Postdoctoral Science Foundation, and the Fundamental Research Funds for the Central Universities.
NASA Astrophysics Data System (ADS)
Shen, Zhan-Wei; Zhang, Feng; Dimitrijev, Sima; Han, Ji-Sheng; Yan, Guo-Guo; Wen, Zheng-Xin; Zhao, Wan-Shun; Wang, Lei; Liu, Xing-Fang; Sun, Guo-Sheng; Zeng, Yi-Ping
2017-09-01
Not Available Project supported by the National Basic Research Program of China (Grant No. 2015CB759600), the National Natural Science Foundation of China (Grant Nos. 61474113 and 61574140), the Beijing NOVA Program, China (Grant No. Z1611000049161132016071), China Academy of Engineering Physics (CAEP) Microsystem and THz Science and Technology Foundation, China (Grant No. CAEPMT201502), the Beijing Municipal Science and Technology Commission Project, China (Grant Nos. Z161100002116018 and D16110300430000), and the Youth Innovation Promotion Association of Chinese Academy of Sciences (Grant No. 2012098)
Dahle, L O; Brynhildsen, J; Behrbohm Fallsberg, M; Rundquist, I; Hammar, M
2002-05-01
Problem-based learning (PBL), combined with early patient contact, multiprofessional education and emphasis on development of communications skills, has become the basis for the medical curriculum at the Faculty of Health Sciences in Linköping (FHS), Sweden, which was started in 1986. Important elements in the curriculum are vertical integration, i.e. integration between the clinical and basic science parts of the curriculum and horizontal integration between different subject areas. This article discusses the importance of vertical integration in an undergraduate medical curriculum, according to experiences from the Faculty of Health Sciences in Linköping, and also give examples on how it has been implemented during the latest 15 years. Results and views put forward in published articles concerning vertical integration within undergraduate medical education are discussed in relation to the experiences in Linköping. Vertical integration between basic sciences and clinical medicine in a PBL setting has been found to stimulate profound rather than superficial learning, and thereby stimulates better understanding of important biomedical principles. Integration probably leads to better retention of knowledge and the ability to apply basic science principles in the appropriate clinical context. Integration throughout the whole curriculum entails a lot of time and work in respect of planning, organization and execution. The teachers have to be deeply involved and enthusiastic and have to cooperate over departmental borders, which may produce positive spin-off effects in teaching and research but also conflicts that have to be resolved. The authors believe vertical integration supports PBL and stimulates deep and lifelong learning.
Cavity optomechanics: Manipulating photons and phonons towards the single-photon strong coupling
NASA Astrophysics Data System (ADS)
Liu, Yu-long; Wang, Chong; Zhang, Jing; Liu, Yu-xi
2018-02-01
Not Available Project supported by the National Basic Research Program of China (Grant No. 2014CB921401), the Tsinghua University Initiative Scientific Research Program, and the Tsinghua National Laboratory for Information Science and Technology (TNList) Cross-discipline Foundation.
Quantitative and sensitive detection of prohibited fish drugs by surface-enhanced Raman scattering
NASA Astrophysics Data System (ADS)
Lin, Shi-Chao; Zhang, Xin; Zhao, Wei-Chen; Chen, Zhao-Yang; Du, Pan; Zhao, Yong-Mei; Wu, Zheng-Long; Xu, Hai-Jun
2018-02-01
Not Available Project supported by the National Basic Research Program of China (Grant No. 2014CB745100), the National Natural Science Foundation of China (Grant Nos. 21390202 and 21676015), and the Beijing Higher Education Young Elite Teacher Project.
Diode-Pumped Passively Mode-Locked 1079 nm Nd:CaGdAlO4 Laser
NASA Astrophysics Data System (ADS)
He, Kun-Na; Liu, Jia-Xing; Wei, Long; Xu, Xiao-Dong; Wang, Zhao-Hua; Tian, Wen-Long; Zhang, Zhi-Guo; Xu, Jun; Di, Ju-Qing; Xia, Chang-Tai; Wei, Zhi-Yi
2016-01-01
Not Available Supported by the National Key Basic Research Program of China under Grant No 2013CB922402, and the International Joint Research Program of the National Natural Science Foundation of China under Grant No 61210017.
Rare isotope accelerator project in Korea and its application to high energy density sciences
NASA Astrophysics Data System (ADS)
Chung, M.; Chung, Y. S.; Kim, S. K.; Lee, B. J.; Hoffmann, D. H. H.
2014-01-01
As a national science project, the Korean government has recently established the Institute for Basic Science (IBS) with the goal of conducting world-class research in basic sciences. One of the core facilities for the IBS will be the rare isotope accelerator which can produce high-intensity rare isotope beams to investigate the fundamental properties of nature, and also to support a broad research program in material sciences, medical and biosciences, and future nuclear energy technologies. The construction of the accelerator is scheduled to be completed by approximately 2017. The design of the accelerator complex is optimized to deliver high average beam current on targets, and to maximize the production of rare isotope beams through the simultaneous use of Isotope Separation On-Line (ISOL) and In-Flight Fragmentation (IFF) methods. The proposed accelerator is, however, not optimal for high energy density science, which usually requires very high peak currents on the target. In this study, we present possible beam-plasma experiments that can be done within the scope of the current accelerator design, and we also investigate possible future extension paths that may enable high energy density science with intense pulsed heavy ion beams.
Basic science conferences in residency training: a national survey.
Cruz, P D; Charley, M R; Bergstresser, P R
1987-02-01
Basic science teaching is an important component of dermatology residency training, and the basic science conference is the major tool utilized by departments of dermatology for its implementation. To characterize the role of basic science conferences in dermatology training, a national survey of chief residents was conducted. Although the survey confirmed that a high value is placed on basic science conferences, a surprising finding was a significant level of dissatisfaction among chief residents, particularly those from university-based programs. Results of the survey have been used to redefine our own objectives in basic science teaching and to propose elements of methodology and curriculum.
Implementing Elementary School Next Generation Science Standards
NASA Astrophysics Data System (ADS)
Kennedy, Katheryn B.
Implementation of the Next Generation Science Standards requires developing elementary teacher content and pedagogical content knowledge of science and engineering concepts. Teacher preparation for this undertaking appears inadequate with little known about how in-service Mid-Atlantic urban elementary science teachers approach this task. The purpose of this basic qualitative interview study was to explore the research questions related to perceived learning needs of 8 elementary science teachers and 5 of their administrators serving as instructional leaders. Strategies needed for professional growth to support learning and barriers that hamper it at both building and district levels were included. These questions were considered through the lens of Schon's reflective learning and Weick's sensemaking theories. Analysis with provisional and open coding strategies identified informal and formal supports and barriers to teachers' learning. Results indicated that informal supports, primarily internet usage, emerged as most valuable to the teachers' learning. Formal structures, including professional learning communities and grade level meetings, arose as both supportive and restrictive at the building and district levels. Existing formal supports emerged as the least useful because of the dominance of other priorities competing for time and resources. Addressing weaknesses within formal supports through more effective planning in professional development can promote positive change. Improvement to professional development approaches using the internet and increased hands on activities can be integrated into formal supports. Explicit attention to these strategies can strengthen teacher effectiveness bringing positive social change.
A Pharmacology-Based Enrichment Program for Undergraduates Promotes Interest in Science
Godin, Elizabeth A.; Wormington, Stephanie V.; Perez, Tony; Barger, Michael M.; Snyder, Kate E.; Richman, Laura Smart; Schwartz-Bloom, Rochelle; Linnenbrink-Garcia, Lisa
2015-01-01
There is a strong need to increase the number of undergraduate students who pursue careers in science to provide the “fuel” that will power a science and technology–driven U.S. economy. Prior research suggests that both evidence-based teaching methods and early undergraduate research experiences may help to increase retention rates in the sciences. In this study, we examined the effect of a program that included 1) a Summer enrichment 2-wk minicourse and 2) an authentic Fall research course, both of which were designed specifically to support students' science motivation. Undergraduates who participated in the pharmacology-based enrichment program significantly improved their knowledge of basic biology and chemistry concepts; reported high levels of science motivation; and were likely to major in a biological, chemical, or biomedical field. Additionally, program participants who decided to major in biology or chemistry were significantly more likely to choose a pharmacology concentration than those majoring in biology or chemistry who did not participate in the enrichment program. Thus, by supporting students' science motivation, we can increase the number of students who are interested in science and science careers. PMID:26538389
NCI Core Open House Shines Spotlight on Supportive Science and Basic Research | Poster
The lobby of Building 549 at NCI at Frederick bustled with activity for two hours on Tuesday, May 1, as several dozen scientists and staff gathered for the NCI Core Open House. The event aimed to encourage discussion and educate visitors about the capabilities of the cores, laboratories, and facilities that offer support to NCI’s Center for Cancer Research.
The UK Ecosystem for Fostering Innovation in the Earth & Space Sciences
NASA Astrophysics Data System (ADS)
Lee, V. E.
2015-12-01
The UK national government supports an ecosystem of government-funded organisations that carry a specific remit for innovation. By specifically cultivating the commercialisation of research where appropriate, the UK demonstrates a forward-thinking and coordinated approach to deriving economic and societal impact from scientific research activities. This presentation provides an overview of innovation activities at government-backed organisations that support the Earth and space science communities. At the broadest and highest levels, the UK has a whole-of-government approach to fostering innovation. The government also has a designated innovation agency - Innovate UK - which works with people, companies, and partner organisations to find and drive the science & technology innovations that will grow the UK economy. A primary source of scientific funding to UK-based researchers comes from the Research Councils UK (RCUK), which has seven constituent Research Councils. Along with funding activities that support basic research, innovation is supported through a variety of activities. The National Environmental Research Council (NERC), the UK's leading public funder for Earth & environmental science, has brought to market a wide variety of ideas and innovations, including by helping to register patents, negotiating licensing deals, and setting up spin-out companies or joint ventures with commercial organisations. Case studies of NERC commercialization successes will be given, as well as an overview of mechanisms by which NERC supports innovation. These include 'Pathfinder' awards that help enable researchers to develop a greater understanding of the commercial aspects and possibilities of their research. Complementary 'Follow-on Fund' awards provide proof-of-concept funding to support the commercialisation of ideas arising from NERC-funded research. Early-career researchers are also eligible for NERC's Environment Young Entrepreneurs Scheme. Innovation activity, like basic research, can be enhanced through international collaboration and engagement. Approaches taken by UK organisations such as RCUK seek to bring together the correct teams, regardless of nationality, to develop innovations needed to address common challenges.
ERIC Educational Resources Information Center
Nielsen, Dorte Guldbrand; Gotzsche, Ole; Sonne, Ole; Eika, Berit
2012-01-01
Two major views on the relationship between basic science knowledge and clinical knowledge stand out; the Two-world view seeing basic science and clinical science as two separate knowledge bases and the encapsulated knowledge view stating that basic science knowledge plays an overt role being encapsulated in the clinical knowledge. However, resent…
NASA Astrophysics Data System (ADS)
Zhu, Yanchun; Spincemaille, Pascal; Liu, Jing; Li, Shuo; Nguyen, Thanh D.; Prince, Martin R.; Xie, Yaoqin; Wang, Yi
2017-01-01
Not Available Project supported by the National Natural Science Foundation of China (Grant Nos. 81501463, 61671026, 81571669, and 81671853), the Natural Science Foundation of Guangdong Province, China (Grant No. 2014A030310360), Guangdong Innovative Research Team Program of China (Grant No. 2011S013), the Basic Research Project of Shenzhen City, China (Grant Nos. JCYJ20140417113430639 and JCYJ20160429172357751), the High-level Oversea Talent Program of Shenzhen City, China (Grant No. KQJSCX20160301144248), and Beijing Center for Mathematics and Information Interdisciplinary Sciences of China.
Educational process in modern climatology within the web-GIS platform "Climate"
NASA Astrophysics Data System (ADS)
Gordova, Yulia; Gorbatenko, Valentina; Gordov, Evgeny; Martynova, Yulia; Okladnikov, Igor; Titov, Alexander; Shulgina, Tamara
2013-04-01
These days, common to all scientific fields the problem of training of scientists in the environmental sciences is exacerbated by the need to develop new computational and information technology skills in distributed multi-disciplinary teams. To address this and other pressing problems of Earth system sciences, software infrastructure for information support of integrated research in the geosciences was created based on modern information and computational technologies and a software and hardware platform "Climate» (http://climate.scert.ru/) was developed. In addition to the direct analysis of geophysical data archives, the platform is aimed at teaching the basics of the study of changes in regional climate. The educational component of the platform includes a series of lectures on climate, environmental and meteorological modeling and laboratory work cycles on the basics of analysis of current and potential future regional climate change using Siberia territory as an example. The educational process within the Platform is implemented using the distance learning system Moodle (www.moodle.org). This work is partially supported by the Ministry of education and science of the Russian Federation (contract #8345), SB RAS project VIII.80.2.1, RFBR grant #11-05-01190a, and integrated project SB RAS #131.
An Online Prediction Platform to Support the Environmental Sciences (American Chemical Society)
Historical QSAR models are currently utilized across a broad range of applications within the U.S. Environmental Protection Agency (EPA). These models predict basic physicochemical properties (e.g., logP, aqueous solubility, vapor pressure), which are then incorporated into expo...
The Impact of Computing in Education in Korea.
ERIC Educational Resources Information Center
Huh, Unna
1993-01-01
Discusses educational computing in Korea to be used for improving the teaching-learning process, improving science education, and preparing for an information society. Highlights include government, higher education, and private company support; basic objectives and long-term planning for educational computing; software applications; and future…
Controllable Fabrication of GeSi Nanowires in Diameter of About 10 nm Using the Top-Down Approach
NASA Astrophysics Data System (ADS)
Zeng, Cheng; Li, Yi; Xia, Jin-Song
2017-11-01
Not Available Supported by the State Key Program of the National Natural Science Foundation of China under Grant No 61335002, the National High Technology Research and Development Program of China under Grant No 2015AA016904, the National Natural Science Foundation of China under Grant No 11574102, and the National Basic Research Program of China under Grant Nos 2013CB933303 and 2013CB632104.
Identification and Support of Outstanding Astronomy Students
NASA Astrophysics Data System (ADS)
Stoev, A. D.; Bozhurova, E. S.
2006-08-01
The aims, organizational plan and syllabus of a specialized Astronomy School with a subject of training students for participation in the International Astronomy Olympiad, are presented. Thematic frame includes basic educational activities during the preparation and self-preparation of the students and their participation in astronomical Olympiads. A model of identification and selection of outstanding students for astronomical Olympiads has been developed. Examples of didactic systems of problems for development of mathematical, physical and astronomical skills are shown. The programme ends with individual training for solving problems on astronomy and astrophysics. Possibilities, which the characteristic, non-standard astronomical problems give for stimulating the creative and original thinking, are specified. Basic psychological condition for development of the students' creative potential - transformation of the cognitive content in emotional one - is demonstrated. The programme of identification and support of outstanding students on astronomy is realized in collaboration with The Ministry of Education and Science, Public Astronomical Observatories and Planetaria, Institute of Astronomy - Bulgarian Academy of Sciences, and The Union of Astronomers in Bulgaria.
Division of energy biosciences: Annual report and summaries of FY 1995 activities
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-04-01
The mission of the Division of Energy Biosciences is to support research that advances the fundamental knowledge necessary for the future development of biotechnologies related to the Department of Energy`s mission. The departmental civilian objectives include effective and efficient energy production, energy conservation, environmental restoration, and waste management. The Energy Biosciences program emphasizes research in the microbiological and plant sciences, as these understudied areas offer numerous scientific opportunities to dramatically influence environmentally sensible energy production and conservation. The research supported is focused on the basic mechanisms affecting plant productivity, conversion of biomass and other organic materials into fuels and chemicalsmore » by microbial systems, and the ability of biological systems to replace energy-intensive or pollutant-producing processes. The Division also addresses the increasing number of new opportunities arising at the interface of biology with other basic energy-related sciences such as biosynthesis of novel materials and the influence of soil organisms on geological processes.« less
The melting temperature of liquid water with the effective fragment potential
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brorsen, Kurt R.; Willow, Soohaeng Y.; Xantheas, Sotiris S.
2015-09-17
Direct simulation of the solid-liquid water interface with the effective fragment potential (EFP) via the constant enthalpy and pressure (NPH) ensemble was used to estimate the melting temperature (Tm) of ice-Ih. Initial configurations and velocities, taken from equilibrated constant pressure and temperature (NPT) simulations at T = 300 K, 350 K and 400 K, respectively, yielded corresponding Tm values of 378±16 K, 382±14 K and 384±15 K. These estimates are consistently higher than experiment, albeit to the same degree with previously reported estimates using density functional theory (DFT)-based Born-Oppenheimer simulations with the Becke-Lee-Yang-Parr functional plus dispersion corrections (BLYP-D). KRB wasmore » supported by a Computational Science Graduate Fellowship from the Department of Energy. MSG was supported by a U.S. National Science Foundation Software Infrastructure (SI2) grant (ACI – 1047772). SSX acknowledges support from the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle.« less
Low-temperature structure transition in hexagonal LuFeO3
NASA Astrophysics Data System (ADS)
Xu, Xiaoshan; Wang, Wenbin; Wang, Xiao; Zhu, Leyi; Kim, Jong-Woo; Ryan, Phillip; Keavney, David; Ward, Thomas; Shen, Jian; Cheng, Xuemei
2014-03-01
The structural change of h-LuFeO3 films at low temperature has been studied using x-ray diffraction and x-ray absorption experiments. The results are analyzed using the displacements of three phonon modes that are related to the P63/mmc to P63cm structural transition. The data indicate that the in-plane motion of the Fe and apex oxygen are responsible for the observed anomaly in both x-ray absorption and diffraction experiments. This subtle structural transition may be an origin of the low temperature magnetic phase transition at TR=130 K. Research supported by US DOE, Office of Basic Energy Sciences, Materials Science and Engineering Division. Work at BMC is supported by NSF Career award (DMR 1053854). Work at ANL is supported by US-DOE, Office of Science, BES (No. DE-AC02-06CH11357).
75 FR 65363 - Basic Behavioral and Social Science Opportunity Network (OppNet)
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-22
... public meeting to promote and publicize the Basic Behavioral and Social Science Opportunity Network (Opp... . Background: The Basic Behavioral and Social Science Opportunity Network (OppNet) is a trans-NIH initiative to expand the agency's funding of basic behavioral and social sciences research (b-BSSR). OppNet prioritizes...
78 FR 6088 - Basic Energy Sciences Advisory Committee
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-29
... DEPARTMENT OF ENERGY Basic Energy Sciences Advisory Committee AGENCY: Office of Science... Energy Sciences Advisory Committee (BESAC). The Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat... INFORMATION CONTACT: Katie Perine, Office of Basic Energy Sciences, U.S. Department of Energy; SC-22...
Containment and Support: Core and Complexity in Spatial Language Learning.
Landau, Barbara; Johannes, Kristen; Skordos, Dimitrios; Papafragou, Anna
2017-04-01
Containment and support have traditionally been assumed to represent universal conceptual foundations for spatial terms. This assumption can be challenged, however: English in and on are applied across a surprisingly broad range of exemplars, and comparable terms in other languages show significant variation in their application. We propose that the broad domains of both containment and support have internal structure that reflects different subtypes, that this structure is reflected in basic spatial term usage across languages, and that it constrains children's spatial term learning. Using a newly developed battery, we asked how adults and 4-year-old children speaking English or Greek distribute basic spatial terms across subtypes of containment and support. We found that containment showed similar distributions of basic terms across subtypes among all groups while support showed such similarity only among adults, with striking differences between children learning English versus Greek. We conclude that the two domains differ considerably in the learning problems they present, and that learning in and on is remarkably complex. Together, our results point to the need for a more nuanced view of spatial term learning. Copyright © 2016 Cognitive Science Society, Inc.
From Research to Practice: Lessons Learned
ERIC Educational Resources Information Center
Toth, Sheree L.; Manly, Jody Todd; Nilsen, Wendy J.
2008-01-01
Research has informed practice since the origins of developmental psychology, but only recently has basic science and practice begun to be consistently integrated with one another. In addition, considerable research documents the utility of empirically-supported interventions, yet it has been difficult to implement such interventions outside of…
Conductivity and band alignment of LaCrO3/SrTiO3 (111) heterostructure
NASA Astrophysics Data System (ADS)
Hong, Yan-Peng; Wang, Xin-Xin; Qu, Guo-Liang; Li, Cheng-Jian; Xue, Hong-Xia; Liu, Ke-Jian; Li, Yong-Chun; Xiong, Chang-Min; Dou, Rui-Fen; He, Lin; Nie, Jia-Cai
2018-04-01
Not Available Project supported by the National Natural Science Foundation of China (Grant Nos. 11674031, 11474022 11474024, 11422430, and 11374035) and the National Basic Research Program of China (Grant Nos. 2014CB920903, 2013CB921701, and 2013CBA01603).
NASA Astrophysics Data System (ADS)
Xue, Zhan-Qiang; Shang, Li-Ping; Deng, Hu; Zhang, Qian-Cheng; Liu, Quan-Cheng; Qu, Wei-Wei; Li, Zhan-Feng; Wang, Shun-Li
2018-05-01
Not Available Project supported by the National Defense Basic Scientific Research Program of China (Grant No. Z202013T001) and Postgraduate Innovation Fund Project by Southwest University of Science and Technology, China (Grant No. 16ycx104).
The relevance of basic sciences in undergraduate medical education.
Lynch, C; Grant, T; McLoughlin, P; Last, J
2016-02-01
Evolving and changing undergraduate medical curricula raise concerns that there will no longer be a place for basic sciences. National and international trends show that 5-year programmes with a pre-requisite for school chemistry are growing more prevalent. National reports in Ireland show a decline in the availability of school chemistry and physics. This observational cohort study considers if the basic sciences of physics, chemistry and biology should be a prerequisite to entering medical school, be part of the core medical curriculum or if they have a place in the practice of medicine. Comparisons of means, correlation and linear regression analysis assessed the degree of association between predictors (school and university basic sciences) and outcomes (year and degree GPA) for entrants to a 6-year Irish medical programme between 2006 and 2009 (n = 352). We found no statistically significant difference in medical programme performance between students with/without prior basic science knowledge. The Irish school exit exam and its components were mainly weak predictors of performance (-0.043 ≥ r ≤ 0.396). Success in year one of medicine, which includes a basic science curriculum, was indicative of later success (0.194 ≥ r (2) ≤ 0.534). University basic sciences were found to be more predictive than school sciences in undergraduate medical performance in our institution. The increasing emphasis of basic sciences in medical practice and the declining availability of school sciences should mandate medical schools in Ireland to consider how removing basic sciences from the curriculum might impact on future applicants.
Exploring cognitive integration of basic science and its effect on diagnostic reasoning in novices.
Lisk, Kristina; Agur, Anne M R; Woods, Nicole N
2016-06-01
Integration of basic and clinical science knowledge is increasingly being recognized as important for practice in the health professions. The concept of 'cognitive integration' places emphasis on the value of basic science in providing critical connections to clinical signs and symptoms while accounting for the fact that clinicians may not spontaneously articulate their use of basic science knowledge in clinical reasoning. In this study we used a diagnostic justification test to explore the impact of integrated basic science instruction on novices' diagnostic reasoning process. Participants were allocated to an integrated basic science or clinical science training group. The integrated basic science group was taught the clinical features along with the underlying causal mechanisms of four musculoskeletal pathologies while the clinical science group was taught only the clinical features. Participants completed a diagnostic accuracy test immediately after initial learning, and one week later a diagnostic accuracy and justification test. The results showed that novices who learned the integrated causal mechanisms had superior diagnostic accuracy and better understanding of the relative importance of key clinical features. These findings further our understanding of cognitive integration by providing evidence of the specific changes in clinical reasoning when basic and clinical sciences are integrated during learning.
Basic science right, not basic science lite: medical education at a crossroad.
Fincher, Ruth-Marie E; Wallach, Paul M; Richardson, W Scott
2009-11-01
This perspective is a counterpoint to Dr. Brass' article, Basic biomedical sciences and the future of medical education: implications for internal medicine. The authors review development of the US medical education system as an introduction to a discussion of Dr. Brass' perspectives. The authors agree that sound scientific foundations and skill in critical thinking are important and that effective educational strategies to improve foundational science education should be implemented. Unfortunately, many students do not perceive the relevance of basic science education to clinical practice.The authors cite areas of disagreement. They believe it is unlikely that the importance of basic sciences will be diminished by contemporary directions in medical education and planned modifications of USMLE. Graduates' diminished interest in internal medicine is unlikely from changes in basic science education.Thoughtful changes in education provide the opportunity to improve understanding of fundamental sciences, the process of scientific inquiry, and translation of that knowledge to clinical practice.
Band Structure and Optical Gain of InGaAs/GaAsBi Type-II Quantum Wells Modeled by the k · p Model
NASA Astrophysics Data System (ADS)
Wang, Chang; Pan, Wenwu; Kolokolov, Konstantin; Wang, Shumin
2018-05-01
Not Available Supported by the National Basic Research Program of China under Grant No 2014CB643902, the Key Program of Natural Science Foundation of China under Grant No 61334004, the National Natural Science Foundation of China under Grant No 61404152, and the Strategic Priority Research Program of the Chinese Academy of Sciences under Grant No XDA5-1, the Foundation of National Laboratory for Infrared Physics, the Key Research Program of the Chinese Academy of Sciences under Grant No KGZD-EW-804, and the Creative Research Group Project of Natural Science Foundation of China under Grant No 61321492.
Big Science and the Large Hadron Collider
NASA Astrophysics Data System (ADS)
Giudice, Gian Francesco
2012-03-01
The Large Hadron Collider (LHC), the particle accelerator operating at CERN, is probably the most complex and ambitious scientific project ever accomplished by humanity. The sheer size of the enterprise, in terms of financial and human resources, naturally raises the question whether society should support such costly basic-research programs. I address this question by first reviewing the process that led to the emergence of Big Science and the role of large projects in the development of science and technology. I then compare the methodologies of Small and Big Science, emphasizing their mutual linkage. Finally, after examining the cost of Big Science projects, I highlight several general aspects of their beneficial implications for society.
Basic Science Living Skills for Today's World. Teacher's Edition.
ERIC Educational Resources Information Center
Zellers (Robert W.) Educational Services, Johnstown, PA.
This document is a teacher's edition of a basic skills curriculum in science for adult basic education (ABE) students. The course consists of 25 lessons on basic science concepts, designed to give students a good understanding of the biological and physical sciences. Suggested activities and experiments that the student can do are also included.…
NASA Astrophysics Data System (ADS)
Mitchell, R.; Hilton, E.; Rosenfield, P.
2011-12-01
Communicating the results and significance of basic research to the general public is of critical importance. Federal funding and university budgets are under substantial pressure, and taxpayer support of basic research is critical. Public outreach by ecologists is an important vehicle for increasing support and understanding of science in an era of anthropogenic global change. At present, very few programs or courses exist to allow young scientists the opportunity to hone and practice their public outreach skills. Although the need for science outreach and communication is recognized, graduate programs often fail to provide any training in making science accessible. Engage: The Science Speaker Series represents a unique, graduate student-led effort to improve public outreach skills. Founded in 2009, Engage was created by three science graduate students at the University of Washington. The students developed a novel, interdisciplinary curriculum to investigate why science outreach often fails, to improve graduate student communication skills, and to help students create a dynamic, public-friendly talk. The course incorporates elements of story-telling, improvisational arts, and development of analogy, all with a focus on clarity, brevity and accessibility. This course was offered to graduate students and post-doctoral researchers from a wide variety of sciences in the autumn of 2010. Students who participated in the Engage course were then given the opportunity to participate in Engage: The Science Speaker Series. This free, public-friendly speaker series is hosted on the University of Washington campus and has had substantial public attendance and participation. The growing success of Engage illustrates the need for such programs throughout graduate level science curricula. We present the impetus for the development of the program, elements of the curriculum covered in the Engage course, the importance of an interdisciplinary approach, and discuss strategies for implementing similar programs at research institutions nationally.
NASA Astrophysics Data System (ADS)
Mitchell, R.; Hilton, E.; Rosenfield, P.
2012-12-01
Communicating the results and significance of basic research to the general public is of critical importance. Federal funding and university budgets are under substantial pressure, and taxpayer support of basic research is critical. Public outreach by ecologists is an important vehicle for increasing support and understanding of science in an era of anthropogenic global change. At present, very few programs or courses exist to allow young scientists the opportunity to hone and practice their public outreach skills. Although the need for science outreach and communication is recognized, graduate programs often fail to provide any training in making science accessible. Engage: The Science Speaker Series represents a unique, graduate student-led effort to improve public outreach skills. Founded in 2009, Engage was created by three science graduate students at the University of Washington. The students developed a novel, interdisciplinary curriculum to investigate why science outreach often fails, to improve graduate student communication skills, and to help students create a dynamic, public-friendly talk. The course incorporates elements of story-telling, improvisational arts, and development of analogy, all with a focus on clarity, brevity and accessibility. This course was offered to graduate students and post-doctoral researchers from a wide variety of sciences in the autumn of 2010 and 2011, and will be retaught in 2012. Students who participated in the Engage course were then given the opportunity to participate in Engage: The Science Speaker Series. This free, public-friendly speaker series has been hosted at the University of Washington campus and Seattle Town Hall, and has had substantial public attendance and participation. The growing success of Engage illustrates the need for such programs throughout graduate level science curricula. We present the impetus for the development of the program, elements of the curriculum covered in the Engage course, the importance of an interdisciplinary approach, and discuss strategies for implementing similar programs at research institutions nationally.
Spittel, Michael L; Riley, William T; Kaplan, Robert M
2015-02-01
The NIH Office of Behavioral and Social Sciences Research (OBSSR) furthers the mission of the NIH by stimulating behavioral and social sciences research throughout NIH and integrating these areas of research more fully into the NIH health research enterprise, thereby improving our understanding, treatment, and prevention of disease. OBSSR accomplishes this mission through several strategic priorities: (1) supporting the next generation of basic behavioral and social sciences research, (2) facilitating interdisciplinary research, (3) promoting a multi-level systems perspective of health and behavior, and (4) encouraging a problem-focused perspective on population health. Published by Elsevier Ltd.
Implications of Modern Decision Science for Military Decision-Support Systems
2005-01-01
B. Another major challenge is learning how to exploit the technology of modern recreational games , including massively parallel online activities... online .7 In preparing this monograph, we also concluded that the most valuable aspects of game theory for high-level decision support are the basic...Philosophy, online at http://plato.stanford.edu/ entries/ game -theory. 8 In one example that still rankles, some Cold War game theorists (and military
Space Station life sciences guidelines for nonhuman experiment accommodation
NASA Technical Reports Server (NTRS)
Arno, R.; Hilchey, J.
1985-01-01
Life scientists will utilize one of four habitable modules which constitute the initial Space Station configuration. This module will be initially employed for studies related to nonhuman and human life sciences. At a later date, a new module, devoted entirely to nonhuman life sciences will be launched. This report presents a description of the characteristics of a Space Station laboratory facility from the standpoint of nonhuman research requirements. Attention is given to the science rationale for experiments which support applied medical research and basic gravitational biology, mission profiles and typical equipment and subsystem descriptions, issues associated with the accommodation of nonhuman life sciences on the Space Station, and conceptual designs for the initial operational capability configuration and later Space Station life-sciences research facilities.
Plasma Physics at the National Science Foundation
NASA Astrophysics Data System (ADS)
Lukin, Vyacheslav
2017-10-01
The Town Meeting on Plasma Physics at the National Science Foundation will provide an opportunity for Q&A about the variety of NSF programs and solicitations relevant to a broad cross-section of the academic plasma science community, from graduating college seniors to senior leaders in the field, and from plasma astrophysics to basic physics to plasma engineering communities. We will discuss recent NSF-hosted events, research awards, and multi-agency partnerships aimed at enabling the progress of science in plasma science and engineering. Future outlook for plasma physics and broader plasma science support at NSF, with an emphasis on how you can help NSF to help the community, will be speculated upon within the uncertainty of the federal budgeting process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bacon, Charles; Bell, Greg; Canon, Shane
The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the U.S. Department of Energy (DOE) Office of Science (SC), the single largest supporter of basic research in the physical sciences in the United States. In support of SC programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 25 years. In October 2012, ESnet and the Office of Advanced Scientific Computing Research (ASCR) of the DOE SCmore » organized a review to characterize the networking requirements of the programs funded by the ASCR program office. The requirements identified at the review are summarized in the Findings section, and are described in more detail in the body of the report.« less
Quantum Hall ferroelectrics and nematics in multivalley systems
NASA Astrophysics Data System (ADS)
Sodemann, I.; Zhu, Zheng; Fu, Liang
We study broken symmetry states in multivalley quantum Hall systems whose low energy dispersions are anisotropic. Interactions tend to select states that are maximally valley polarized and have nematic character. Interestingly, in certain systems like the recently studied Bismuth (111) surfaces, the formation of these nematic states can be accompanied by appearance of an spontaneous dipole moment, leading to formation of a quantum Hall ferroelectric state. We study these states combining mean field calculations with state of the art DMRG numerical approach, and demonstrate that skyrmion-type charged excitations are extremely robust to the presence of nematic anisotropy. Supported by DOE Office of Basic Energy Sciences, Division of Materials Sciences and Engineering Award DE-SC0010526. IS. supported by Pappalardo Fellowship. We used Extreme Science and Engineering Discovery Environment (XSEDE) under NSF Grant ACI-1053575.
Science and Technology to Support Fresh Water Availability in the United States
2004-11-01
expand research and monitoring efforts to better understand the water cycle , its variability and relation to global climate change, and to provide basic...hydrologi- cal processes on the distribution, structure, and function of ecosys- tems, and on the effects of biotic processes on elements of the water ... cycle .”22 The science has evolved from one that simply indicated what minimum flows might be needed to maintain a particular spe- cies in a river, to
Properties of immobile hydrogen confined in microporous carbon
Bahadur, Jitendra; Bhabha Atomic Research Centre; Contescu, Cristian I.; ...
2017-03-06
The mobility of H2 confined in microporous carbon was studied as a function of temperature and pressure using inelastic neutron scattering, and the translational and rotational motion of H2 molecules has been probed. At low loading, rotation of H2 molecules adsorbed in the smallest carbon pores (~6 ) is severely hindered, suggesting that the interaction between H2 and the host matrix is anisotropic. At higher loading, H2 molecules behave as nearly free rotor, implying lower anisotropic interactions with adsorption sites. At supercritical temperatures where bulk H2 is a gas, the inelastic spectrum of confined H2 provides evidence of a significantmore » fraction of immobile, solid-like hydrogen. The onset temperature for molecular mobility depends strongly on the loaded amount. The fraction of immobile molecules increases with pressure and attains a plateau at high pressures. Surprisingly, immobile H2 is present even at temperatures as high as ~110 K. This research at ORNL s Spallation Neutron Source was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U. S. Department of Energy. This research was supported in part by the ORNL Postdoctoral Research Associates Program, administered jointly by the ORNL and the Oak Ridge Institute for Science and Education. CIC and NCG acknowledge support from the Materials Science and Engineering Division, Office of Basic Energy Sciences, U.S. Department of Energy.« less
Scientific Research and Corporate Influence: Smoking, Mental Illness, and the Tobacco Industry
Hirshbein, Laura
2012-01-01
Mentally ill individuals have always smoked at high rates and continue to do so, despite public health efforts to encourage smoking cessation. In the last half century, the tobacco industry became interested in this connection, and conducted and supported psychiatric and basic science research on the mental health implications of smoking, long before most mental health professionals outside the industry investigated this issue. Initially, representatives of tobacco industry research organizations supported genetics and psychosomatic research to try to disprove findings that smoking causes lung cancer. Tobacco industry research leaders engaged with investigators because of shared priorities and interests in the brain effects of nicotine. By the 1980s, collaborative funding programs and individual company research and development teams engaged in intramural and extramural basic science studies on the neuropharmacology of nicotine. When mental health researchers outside the industry became interested in the issue of the mentally ill and smoking in the mid-1990s, they increasingly explained it in terms of a disease of nicotine addiction. Both the idea that smoking/nicotine does something positive for the mentally ill and the conclusion that it is the result of nicotine dependence have the potential to support corporate agendas (tobacco or pharmaceutical). PMID:21596723
Scientific research and corporate influence: smoking, mental illness, and the tobacco industry.
Hirshbein, Laura
2012-07-01
Mentally ill individuals have always smoked at high rates and continue to do so, despite public health efforts to encourage smoking cessation. In the last half century, the tobacco industry became interested in this connection, and conducted and supported psychiatric and basic science research on the mental health implications of smoking, long before most mental health professionals outside the industry investigated this issue. Initially, representatives of tobacco industry research organizations supported genetics and psychosomatic research to try to disprove findings that smoking causes lung cancer. Tobacco industry research leaders engaged with investigators because of shared priorities and interests in the brain effects of nicotine. By the 1980s, collaborative funding programs and individual company research and development teams engaged in intramural and extramural basic science studies on the neuropharmacology of nicotine. When mental health researchers outside the industry became interested in the issue of the mentally ill and smoking in the mid-1990s, they increasingly explained it in terms of a disease of nicotine addiction. Both the idea that smoking/nicotine does something positive for the mentally ill and the conclusion that it is the result of nicotine dependence have the potential to support corporate agendas (tobacco or pharmaceutical).
Spencer, Abby L; Brosenitsch, Teresa; Levine, Arthur S; Kanter, Steven L
2008-07-01
Abraham Flexner persuaded the medical establishment of his time that teaching the sciences, from basic to clinical, should be a critical component of the medical student curriculum, thus giving rise to the "preclinical curriculum." However, students' retention of basic science material after the preclinical years is generally poor. The authors believe that revisiting the basic sciences in the fourth year can enhance understanding of clinical medicine and further students' understanding of how the two fields integrate. With this in mind, a return to the basic sciences during the fourth year of medical school may be highly beneficial. The purpose of this article is to (1) discuss efforts to integrate basic science into the clinical years of medical student education throughout the United States and Canada, and (2) describe the highly developed fourth-year basic science integration program at the University of Pittsburgh School of Medicine. In their critical review of medical school curricula of 126 U.S. and 17 Canadian medical schools, the authors found that only 19% of U.S. medical schools and 24% of Canadian medical schools require basic science courses or experiences during the clinical years, a minor increase compared with 1985. Curricular methods ranged from simple lectures to integrated case studies with hands-on laboratory experience. The authors hope to advance the national discussion about the need to more fully integrate basic science teaching throughout all four years of the medical student curriculum by placing a curricular innovation in the context of similar efforts by other U.S. and Canadian medical schools.
Darquenne, Chantal; Fleming, John S; Katz, Ira; Martin, Andrew R; Schroeter, Jeffry; Usmani, Omar S; Venegas, Jose; Schmid, Otmar
2016-04-01
Development of a new drug for the treatment of lung disease is a complex and time consuming process involving numerous disciplines of basic and applied sciences. During the 2015 Congress of the International Society for Aerosols in Medicine, a group of experts including aerosol scientists, physiologists, modelers, imagers, and clinicians participated in a workshop aiming at bridging the gap between basic research and clinical efficacy of inhaled drugs. This publication summarizes the current consensus on the topic. It begins with a short description of basic concepts of aerosol transport and a discussion on targeting strategies of inhaled aerosols to the lungs. It is followed by a description of both computational and biological lung models, and the use of imaging techniques to determine aerosol deposition distribution (ADD) in the lung. Finally, the importance of ADD to clinical efficacy is discussed. Several gaps were identified between basic science and clinical efficacy. One gap between scientific research aimed at predicting, controlling, and measuring ADD and the clinical use of inhaled aerosols is the considerable challenge of obtaining, in a single study, accurate information describing the optimal lung regions to be targeted, the effectiveness of targeting determined from ADD, and some measure of the drug's effectiveness. Other identified gaps were the language and methodology barriers that exist among disciplines, along with the significant regulatory hurdles that need to be overcome for novel drugs and/or therapies to reach the marketplace and benefit the patient. Despite these gaps, much progress has been made in recent years to improve clinical efficacy of inhaled drugs. Also, the recent efforts by many funding agencies and industry to support multidisciplinary networks including basic science researchers, R&D scientists, and clinicians will go a long way to further reduce the gap between science and clinical efficacy.
Fleming, John S.; Katz, Ira; Martin, Andrew R.; Schroeter, Jeffry; Usmani, Omar S.; Venegas, Jose
2016-01-01
Abstract Development of a new drug for the treatment of lung disease is a complex and time consuming process involving numerous disciplines of basic and applied sciences. During the 2015 Congress of the International Society for Aerosols in Medicine, a group of experts including aerosol scientists, physiologists, modelers, imagers, and clinicians participated in a workshop aiming at bridging the gap between basic research and clinical efficacy of inhaled drugs. This publication summarizes the current consensus on the topic. It begins with a short description of basic concepts of aerosol transport and a discussion on targeting strategies of inhaled aerosols to the lungs. It is followed by a description of both computational and biological lung models, and the use of imaging techniques to determine aerosol deposition distribution (ADD) in the lung. Finally, the importance of ADD to clinical efficacy is discussed. Several gaps were identified between basic science and clinical efficacy. One gap between scientific research aimed at predicting, controlling, and measuring ADD and the clinical use of inhaled aerosols is the considerable challenge of obtaining, in a single study, accurate information describing the optimal lung regions to be targeted, the effectiveness of targeting determined from ADD, and some measure of the drug's effectiveness. Other identified gaps were the language and methodology barriers that exist among disciplines, along with the significant regulatory hurdles that need to be overcome for novel drugs and/or therapies to reach the marketplace and benefit the patient. Despite these gaps, much progress has been made in recent years to improve clinical efficacy of inhaled drugs. Also, the recent efforts by many funding agencies and industry to support multidisciplinary networks including basic science researchers, R&D scientists, and clinicians will go a long way to further reduce the gap between science and clinical efficacy. PMID:26829187
Basic life support: knowledge and attitude of medical/paramedical professionals.
Roshana, Shrestha; Kh, Batajoo; Rm, Piryani; Mw, Sharma
2012-01-01
Basic life support (BLS), a key component of the chain of survival decreases the arrest - cardiopulmonary resuscitation interval and increases the rate of hospital discharge. The study aimed to explore the knowledge of and attitude towards basic life support (BLS) among medical/paramedical professionals. An observational study was conducted by assessing response to self prepared questionnaire consisting of the demographic information of the medical/paramedical staff, their personnel experience/attitude and knowledge of BLS based on the 2005 BLS Guidelines of European Resuscitation Council. After excluding incomplete questionnaires, the data from 121 responders (27 clinical faculty members, 21 dental and basic sciences faculty members, 29 house officers and 44 nurses and health assistants) were analyzed. Only 9 (7.4%) of the 121 responders answered ≥11, 53 (43%) answered 7-10, and 58 (48%) answered <7 of 15 questions correctly. The clinical faculty members, house officers and nurses/HA had a mean score of 7.4±3.15, 7.37±2.02 and 6.63±2.16 respectively, while dental/basic sciences faculty members attained a least mean score of 4.52 ±2.13 (P<0.001). Those who had received cardiopulmonary resuscitation (CPR) training within 5 years obtained a highest mean score of 8.62±2.49, whereas those who had the training more than 5 years back or no training obtained a mean score of 5.54±2.38 and 6.1±2.29 respectively (P=0.001). Those who were involved in resuscitation frequently had a higher median score of 8 in comparison to those who were seldom involved or not involved at all (P<0.001). The average health personnel in our hospital lack adequate knowledge in CPR/BLS. Training and experience can enhance knowledge of CPR of these personnel. Thus standard of CPR/BLS training and assessment are recommended at our hospital.
ERIC Educational Resources Information Center
DiLullo, Camille; Morris, Harry J.; Kriebel, Richard M.
2009-01-01
Understanding the relevance of basic science knowledge in the determination of patient assessment, diagnosis, and treatment is critical to good medical practice. One method often used to direct students in the fundamental process of integrating basic science and clinical information is problem-based learning (PBL). The faculty facilitated small…
National Geospatial-Intelligence Agency Academic Research Program
NASA Astrophysics Data System (ADS)
Loomer, S. A.
2004-12-01
"Know the Earth.Show the Way." In fulfillment of its vision, the National Geospatial-Intelligence Agency (NGA) provides geospatial intelligence in all its forms and from whatever source-imagery, imagery intelligence, and geospatial data and information-to ensure the knowledge foundation for planning, decision, and action. To achieve this, NGA conducts a multi-disciplinary program of basic research in geospatial intelligence topics through grants and fellowships to the leading investigators, research universities, and colleges of the nation. This research provides the fundamental science support to NGA's applied and advanced research programs. The major components of the NGA Academic Research Program (NARP) are: - NGA University Research Initiatives (NURI): Three-year basic research grants awarded competitively to the best investigators across the US academic community. Topics are selected to provide the scientific basis for advanced and applied research in NGA core disciplines. - Historically Black College and University - Minority Institution Research Initiatives (HBCU-MI): Two-year basic research grants awarded competitively to the best investigators at Historically Black Colleges and Universities, and Minority Institutions across the US academic community. - Director of Central Intelligence Post-Doctoral Research Fellowships: Fellowships providing access to advanced research in science and technology applicable to the intelligence community's mission. The program provides a pool of researchers to support future intelligence community needs and develops long-term relationships with researchers as they move into career positions. This paper provides information about the NGA Academic Research Program, the projects it supports and how other researchers and institutions can apply for grants under the program.
Williams, Austin D; Mann, Barry D
2017-02-01
As they enter the clinical years, medical students face large adjustments in the acquisition of medical knowledge. We hypothesized that basic science review related to the topic of journal club papers would increase the educational benefit for third-year medical students. Students were randomized either to participation in a review session about basic science related to the journal club paper, or to no review. After one day, and after three months, students were given a 10-question quiz encompassing the basic science and the clinical implications of the paper. Twenty-six of 50 students were randomized to basic science review. These students scored better on both sections of the quiz one day after journal club, but only on basic science questions after three months. Students who participated in basic science review had better knowledge gain and retention. Educational activities building upon foundational knowledge improves learning on clinical rotations. Copyright © 2016 Elsevier Inc. All rights reserved.
The use of simulation in teaching the basic sciences.
Eason, Martin P
2013-12-01
To assess the current use of simulation in medical education, specifically, the teaching of the basic sciences to accomplish the goal of improved integration. Simulation is increasingly being used by the institutions to teach the basic sciences. Preliminary data suggest that it is an effective tool with increased retention and learner satisfaction. Medical education is undergoing tremendous change. One of the directions of that change is increasing integration of the basic and clinical sciences to improve the efficiency and quality of medical education, and ultimately to improve the patient care. Integration is thought to improve the understanding of basic science conceptual knowledge and to better prepare the learners for clinical practice. Simulation because of its unique effects on learning is currently being successfully used by many institutions as a means to produce that integration through its use in the teaching of the basic sciences. Preliminary data indicate that simulation is an effective tool for basic science education and garners high learner satisfaction.
Smith, Joseph M.; Mather, Martha E.
2013-01-01
In summary, within a stream network, beaver dams maintained fish biodiversity by altering in-stream habitat and increasing habitat heterogeneity. Understanding the relationship between habitat heterogeneity and biodiversity can advance basic freshwater ecology and provide science-based support for applied aquatic conservation
Nonvolatile Resistive Switching and Physical Mechanism in LaCrO3 Thin Films
NASA Astrophysics Data System (ADS)
Hu, Wan-Jing; Hu, Ling; Wei, Ren-Huai; Tang, Xian-Wu; Song, Wen-Hai; Dai, Jian-Ming; Zhu, Xue-Bin; Sun, Yu-Ping
2018-04-01
Not Available Supported by the Joint Funds of the National Natural Science Foundation of China and the Chinese Academy of Sciences’ Large-Scale Scientific Facility under Grant No U1532149, and the National Basic Research Program of China under Grant No 2014CB931704.
A structural equation modeling analysis of students' understanding in basic mathematics
NASA Astrophysics Data System (ADS)
Oktavia, Rini; Arif, Salmawaty; Ferdhiana, Ridha; Yuni, Syarifah Meurah; Ihsan, Mahyus
2017-11-01
This research, in general, aims to identify incoming students' understanding and misconceptions of several basic concepts in mathematics. The participants of this study are the 2015 incoming students of Faculty of Mathematics and Natural Science of Syiah Kuala University, Indonesia. Using an instrument that were developed based on some anecdotal and empirical evidences on students' misconceptions, a survey involving 325 participants was administered and several quantitative and qualitative analysis of the survey data were conducted. In this article, we discuss the confirmatory factor analysis using Structural Equation Modeling (SEM) on factors that determine the new students' overall understanding of basic mathematics. The results showed that students' understanding on algebra, arithmetic, and geometry were significant predictors for their overall understanding of basic mathematics. This result supported that arithmetic and algebra are not the only predictors of students' understanding of basic mathematics.
The progress test as a diagnostic tool for a new PBL curriculum.
Al Alwan, I; Al-Moamary, M; Al-Attas, N; Al Kushi, A; AlBanyan, E; Zamakhshary, M; Al Kadri, H M F; Tamim, H; Magzoub, M; Hajeer, A; Schmidt, H
2011-12-01
The College of Medicine at King Saud bin Abdulaziz University for Health Sciences (KSAU-HS) is running a PBL-based curriculum. A progress test was used to evaluate components of the basic medical and clinical sciences curriculum. To evaluate the performance of students at different levels of the college of medicine curriculum through USMLE-based test that focused on basic medical and clinical sciences topics. The USMLE-based basic medical and clinical sciences progress test has been conducted since 2007. It covers nine topics, including: anatomy; physiology; histology; epidemiology; biochemistry; behavioral sciences, pathology, pharmacology and immunology/microbiology. Here we analyzed results of three consecutive years of all students in years 1-4. There was a good correlation between progress test results and students' GPA. Progress test results in the clinical topics were better than basic medical sciences. In basic medical sciences, results of pharmacology, biochemistry, behavioral sciences and histology gave lower results than the other disciplines. Results of our progress test proved to be a useful indicator for both basic medical sciences and clinical sciences curriculum. Results are being utilized to help in modifying our curriculum.
75 FR 6369 - Basic Energy Sciences Advisory Committee
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-09
... DEPARTMENT OF ENERGY Basic Energy Sciences Advisory Committee AGENCY: Department of Energy, Office... Energy Sciences Advisory Committee (BESAC). Federal Advisory Committee Act (Pub. L. 92- 463, 86 Stat. 770...: Katie Perine; Office of Basic Energy Sciences; U.S. Department of Energy; Germantown Building...
Matching in an undisturbed natural human environment.
McDowell, J J; Caron, Marcia L
2010-05-01
Data from the Oregon Youth Study, consisting of the verbal behavior of 210 adolescent boys determined to be at risk for delinquency (targets) and 210 of their friends (peers), were analyzed for their conformance to the complete family of matching theory equations in light of recent findings from the basic science, and using recently developed analytic techniques. Equations of the classic and modern theories of matching were fitted as ensembles to rates and time allocations of the boys' rule-break and normative talk obtained from conversations between pairs of boys. The verbal behavior of each boy in a conversation was presumed to be reinforced by positive social responses from the other boy. Consistent with recent findings from the basic science, the boys' verbal behavior was accurately described by the modern but not the classic theory of matching. These findings also add support to the assertion that basic principles and processes that are known to govern behavior in laboratory experiments also govern human social behavior in undisturbed natural environments.
Studying Students' Science Literacy: Non-Scientific Beliefs and Science Literacy Measures
NASA Astrophysics Data System (ADS)
Impey, C.; Buxner, S.
2015-11-01
We have been conducting a study of university students' science literacy for the past 24 years. Based on the work of the National Science Board's ongoing national survey of the US public, we have administered the same survey to undergraduate science students at the University of Arizona almost every year since 1989. Results have shown relatively little change in students' overall science literacy, descriptions of science, and knowledge of basic science topics for almost a quarter of a century despite an increase in education interventions, the rise of the internet, and increased access to knowledge. Several trends do exist in students' science literacy and descriptions of science. Students who exhibit beliefs in non-scientific phenomenon (e.g., lucky numbers, creationism) consistently have lower science literacy scores and less correct descriptions of scientific phenomenon. Although not surprising, our results support ongoing efforts to help students generate evidence based thinking.
Antiferromagnetism in Bulk Rutile RuO2
NASA Astrophysics Data System (ADS)
Berlijn, T.; Snijders, P. C.; Kent, P. R. C.; Maier, T. A.; Zhou, H.-D.; Cao, H.-B.; Delaire, O.; Wang, Y.; Koehler, M.; Weitering, H. H.
While bulk rutile RuO2 has long been considered to be a Pauli paramagnet, we conclude it to host antiferromagnetism based on our combined theoretical and experimental study. This constitutes an important finding given the large amount of applications of RuO2 in the electrochemical and electronics industry. Furthermore the high onset temperature of the antiferromagnetism around 1000K together with the high electrical conductivity makes RuO2 unique among the ruthenates and among oxide materials in general. This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division.
Strategies for optimizing the thermoelectricity of PbTe alloys
NASA Astrophysics Data System (ADS)
Zhai, Jinze; Wang, Teng; Wang, Hongchao; Su, Wenbin; Wang, Xue; Chen, Tingting; Wang, Chunlei
2018-04-01
Not Available Project supported by the National Basic Research Program of China (Grant No. 2013CB632506), the National Natural Science Foundation of China (Grant Nos. 51501105, 51672159, and 51611540342), the Young Scholars Program of Shandong University (Grant No. 2015WLJH21), the China Postdoctoral Science Foundation (Grant Nos. 2015M580588 and 2016T90631), the Postdoctoral Innovation Foundation of Shandong Province, China (Grant No. 201603027), the Fundamental Research Funds of Shandong University (Grant No. 2015TB019), and the Foundation of the State Key Laboratory of Metastable Materials Science and Technology (Grant No. 201703).
Coexistence of Polaronic States and Superconductivity in Iron-Pnictide Compound Ba2Ti2Fe2As4O
NASA Astrophysics Data System (ADS)
Rong, Li-Yuan; Shi, Xun; Richard, Pierre; Sun, Yun-Lei; Cao, Guang-Han; Zhang, Xiang-Zhi; Ma, Jun-Zhang; Shi, Ming; Huang, Yao-Bo; Qian, Tian; Ding, Hong; Tai, Ren-Zhong
2018-05-01
Not Available Supported by the National Basic Research Program of China under Grant Nos 2013CB921700, 2015CB921300 and 2015CB921301, the National Natural Science Foundation of China under Grant Nos 11234014, 11622435, 11274362, 11674371 and 11474340, the National Key Research and Development Program of China under Grant Nos 2016YFA0300300, 2016YFA0300600, 2016YFA0401000 and 2016YFA0400902, the Open Large Infrastructure Research of Chinese Academy of Sciences, and the Pioneer Hundred Talents Program (Type C) of Chinese Academy of Sciences.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Franz, James A.; O'Hagan, Molly J.; Ho, Ming-Hsun
2013-12-09
The [Ni(PR2NR’2)2]2+ catalysts, (where PR2NR´2 is 1,5-R´-3,7-R-1,5-diaza-3,7-diphosphacyclooctane), are some of the fastest reported for hydrogen production and oxidation, however, chair/boat isomerization and the presence of a fifth solvent ligand have the potential to slow catalysis by incorrectly positioning the pendant amines or blocking the addition of hydrogen. Here, we report the structural dynamics of a series of [Ni(PR2NR’2)2]n+ complexes, characterized by NMR spectroscopy and theoretical modeling. A fast exchange process was observed for the [Ni(CH3CN)(PR2NR’2)2]2+ complexes which depends on the ligand. This exchange process was identified to occur through a three step mechanism including dissociation of the acetonitrile, boat/chair isomerizationmore » of each of the four rings identified by the phosphine ligands (including nitrogen inversion), and reassociation of acetonitrile on the opposite side of the complex. The rate of the chair/boat inversion can be influenced by varying the substituent on the nitrogen atom, but the rate of the overall exchange process is at least an order of magnitude faster than the catalytic rate in acetonitrile demonstrating that the structural dynamics of the [Ni(PR2NR´2)2]2+ complexes does not hinder catalysis. This material is based upon work supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under FWP56073. Research by J.A.F., M.O., M-H. H., M.L.H, D.L.D. A.M.A., S. R. and R.M.B. was carried out in the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science. W.J.S. and S.L. were funded by the DOE Office of Science Early Career Research Program through the Office of Basic Energy Sciences. T.L. was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle. Computational resources were provided at W. R. Wiley Environmental Molecular Science Laboratory (EMSL), a national scientific user facility sponsored by the Department of Energy’s Office of Biological and Environmental Research located at Pacific Northwest National Laboratory; the National Energy Research Scientific Computing Center (NERSC) at Lawrence Berkeley National Laboratory; and the Jaguar supercomputer at Oak Ridge National Laboratory (INCITE 2008-2011 award supported by the Office of Science of the U.S. DOE under Contract No. DE-AC0500OR22725).« less
78 FR 38696 - Basic Energy Sciences Advisory Committee
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-27
... DEPARTMENT OF ENERGY Basic Energy Sciences Advisory Committee AGENCY: Department of Energy, Office... Energy Sciences Advisory Committee (BESAC). The Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat... INFORMATION CONTACT: Katie Perine; Office of Basic Energy Sciences; U.S. Department of Energy; Germantown...
76 FR 41234 - Basic Energy Sciences Advisory Committee
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-13
... DEPARTMENT OF ENERGY Basic Energy Sciences Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Basic Energy Sciences Advisory Committee (BESAC). Federal Advisory Committee Act (Pub. L. 92- 463, 86 Stat. 770...
77 FR 41395 - Basic Energy Sciences Advisory Committee
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-13
... DEPARTMENT OF ENERGY Basic Energy Sciences Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Basic Energy Sciences Advisory Committee (BESAC). Federal Advisory Committee Act (Pub. L. 92- 463, 86 Stat. 770...
75 FR 41838 - Basic Energy Sciences Advisory Committee
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-19
... DEPARTMENT OF ENERGY Basic Energy Sciences Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION: Notice of Open Meeting. SUMMARY: This notice announces a meeting of the Basic Energy Sciences Advisory Committee (BESAC). The Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat...
76 FR 8358 - Basic Energy Sciences Advisory Committee
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-14
... DEPARTMENT OF ENERGY Basic Energy Sciences Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Basic Energy Sciences Advisory Committee (BESAC). Federal Advisory Committee Act (Pub. L. 92- 463, 86 Stat. 770...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bayram, Ercan; Linehan, John C.; Fulton, John L.
Determining the kinetically dominant catalyst in a given catalytic system is a forefront topic in catalysis. The [RhCp*Cl₂]₂ (Cp* =[η⁵-C₅(CH₃)₅]) system pioneered by Maitlis and co-workers is a classic precatalyst system from which homogeneous mononuclear Rh₁, subnanometer Rh₄ cluster, and heterogeneous polymetallic Rh(0) n nanoparticle have all arisen as viable candidates for the true hydrogenation catalyst, depending on the precise substrate, H₂ pressure, temperature, and catalyst concentration conditions. Addressed herein is the question of whether the prior assignment of homogeneous, mononuclear Rh₁Cp*-based catalysis is correct, or are trace Rh₄ subnanometer clusters or possibly Rh(0) n nanoparticles the dominant, actualmore » cyclohexene hydrogenation catalyst at 22 °C and 2.7 atm initial H₂ pressure? The observation herein of Rh₄ species by in operando-X-ray absorption fine structure (XAFS) spectroscopy, at the only slightly more vigorous conditions of 26 °C and 8.3 atm H₂ pressure, and the confirmation of Rh₄ clusters by ex situ mass spectroscopy raises the question of the dominant, room temperature, and mild pressure cyclohexene hydrogenation catalyst derived from the classic [RhCp*Cl₂]₂ precatalyst pioneered by Maitlis and co-workers. Ten lines of evidence are provided herein to address the nature of the true room temperature and mild pressure cyclohexene hydrogenation catalyst derived from [RhCp*Cl₂]₂. Especially significant among those experiments are quantitative catalyst poisoning experiments, in the present case using 1,10-phenanthroline. Those poisoning studies allow one to distinguish mononuclear Rh₁, subnanometer Rh₄ cluster, and Rh(0) n nanoparticle catalysis hypotheses. The evidence obtained provides a compelling case for a mononuclear, Rh₁Cp*-based cyclohexene hydrogenation catalyst at 22 °C and 2.7 atm H₂ pressure. The resultant methodology, especially the quantitative catalyst poisoning experiments in combination with in operando spectroscopy, is expected to be more broadly applicable to the study of other systems and the “what is the true catalyst?” question. The authors would like to thank Finke Group members and Prof. Saim Ö zkar for their valuable input as this work was proceeding. This work was supported at Colorado State University by the U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences, vial DOE Grant SE-FG402-03ER15453. The work at PNNL was also supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geo-sciences & Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for the DOE by Battelle. XSD/PNC facilities at the Advanced Photon Source and research at these facilities are supported by the U.S. Department of Energy, Basic Energy Sciences; a Major Resources Support Grant from NSERC; the University of Washington; the Canadian Light Source; and the Advanced Photon Source. Use of the Advanced Photon Source, an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory was supported by the U.S. DOE under Contract No. DE-AC02- 06CH11357.« less
NASA Technical Reports Server (NTRS)
1998-01-01
This report highlights the challenging work accomplished during fiscal year 1997 by Ames research scientists and engineers. The work is divided into accomplishments that support the goals of NASA s four Strategic Enterprises: Aeronautics and Space Transportation Technology, Space Science, Human Exploration and Development of Space (HEDS), and Earth Science. NASA Ames Research Center s research effort in the Space, Earth, and HEDS Enterprises is focused i n large part to support Ames lead role for Astrobiology, which broadly defined is the scientific study of the origin, distribution, and future of life in the universe. This NASA initiative in Astrobiology is a broad science effort embracing basic research, technology development, and flight missions. Ames contributions to the Space Science Enterprise are focused in the areas of exobiology, planetary systems, astrophysics, and space technology. Ames supports the Earth Science Enterprise by conducting research and by developing technology with the objective of expanding our knowledge of the Earth s atmosphere and ecosystems. Finallv, Ames supports the HEDS Enterprise by conducting research, managing spaceflight projects, and developing technologies. A key objective is to understand the phenomena surrounding the effects of gravity on living things. Ames has also heen designated the Agency s Center of Evcellence for Information Technnlogv. The three cornerstones of Information Technology research at Ames are automated reasoning, human-centered computing, and high performance computing and networking.
Anisotropic formation mechanism and nanomechanics for the self-assembly process of cross-β peptides
NASA Astrophysics Data System (ADS)
Deng, Li; Zhao, Yurong; Zhou, Peng; Xu, Hai; Wang, Yanting
2017-12-01
Not Available Project supported by the National Basic Research Program of China (Grant No. 2013CB932804), the National Natural Science Foundation of China (Grant Nos. 11421063, 11647601, 11504431, and 21503275), the Scientific Research Foundation of China University of Petroleum (East China) for Young Scholar (Grant Y1304073). YantingWang also thanks the financial support through the CAS Biophysics Interdisciplinary Innovation Team Project (Grant No. 2060299).
Horizontal integration of the basic sciences in the chiropractic curriculum.
Ward, Kevin P
2010-01-01
Basic science curricula at most chiropractic colleges consist of courses (eg, general anatomy, physiology, biochemistry, etc) that are taught as stand-alone content domains. The lack of integration between basic science disciplines causes difficulties for students who need to understand how the parts function together as an integrated whole and apply this understanding to solving clinical problems. More horizontally integrated basic science curricula could be achieved by several means: integrated Part I National Board of Chiropractic Examiners questions, a broader education for future professors, an increased emphasis on integration within the current model, linked courses, and an integrated, thematic basic science curriculum. Horizontally integrating basic science curricula would require significant efforts from administrators, curriculum committees, and instructional faculty. Once in place this curriculum would promote more clinically relevant learning, improved learning outcomes, and superior vertical integration.
Horizontal Integration of the Basic Sciences in the Chiropractic Curriculum
Ward, Kevin P.
2010-01-01
Basic science curricula at most chiropractic colleges consist of courses (eg, general anatomy, physiology, biochemistry, etc) that are taught as stand-alone content domains. The lack of integration between basic science disciplines causes difficulties for students who need to understand how the parts function together as an integrated whole and apply this understanding to solving clinical problems. More horizontally integrated basic science curricula could be achieved by several means: integrated Part I National Board of Chiropractic Examiners questions, a broader education for future professors, an increased emphasis on integration within the current model, linked courses, and an integrated, thematic basic science curriculum. Horizontally integrating basic science curricula would require significant efforts from administrators, curriculum committees, and instructional faculty. Once in place this curriculum would promote more clinically relevant learning, improved learning outcomes, and superior vertical integration. PMID:21048882
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roy, Santanu; Dang, Liem X.
In this paper, we present the first computer simulation of methanol exchange dynamics between the first and second solvation shells around different cations and anions. After water, methanol is the most frequently used solvent for ions. Methanol has different structural and dynamical properties than water, so its ion solvation process is different. To this end, we performed molecular dynamics simulations using polarizable potential models to describe methanol-methanol and ion-methanol interactions. In particular, we computed methanol exchange rates by employing the transition state theory, the Impey-Madden-McDonald method, the reactive flux approach, and the Grote-Hynes theory. We observed that methanol exchange occursmore » at a nanosecond time scale for Na+ and at a picosecond time scale for other ions. We also observed a trend in which, for like charges, the exchange rate is slower for smaller ions because they are more strongly bound to methanol. This work was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. The calculations were carried out using computer resources provided by the Office of Basic Energy Sciences.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dang, Liem X.; Vo, Quynh N.; Nilsson, Mikael
We report one of the first simulations using a classical rate theory approach to predict the mechanism of the exchange process between water and aqueous uranyl ions. Using our water and ion-water polarizable force fields and molecular dynamics techniques, we computed the potentials of mean force for the uranyl ion-water pair as the function of pressures at ambient temperature. Subsequently, these simulated potentials of mean force were used to calculate rate constants using the transition rate theory; the time dependent transmission coefficients were also examined using the reactive flux method and Grote-Hynes treatments of the dynamic response of the solvent.more » The computed activation volumes using transition rate theory and the corrected rate constants are positive, thus the mechanism of this particular water-exchange is a dissociative process. We discuss our rate theory results and compare them with previously studies in which non-polarizable force fields were used. This work was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. The calculations were carried out using computer resources provided by the Office of Basic Energy Sciences.« less
78 FR 47677 - Basic Energy Sciences Advisory Committee
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-06
... DEPARTMENT OF ENERGY Basic Energy Sciences Advisory Committee AGENCY: Office of Science, Department of Energy. ACTION: Notice of renewal. SUMMARY: Pursuant to Section 14(a)(2)(A) of the Federal... hereby given that the Basic Energy Sciences Advisory Committee's (BESAC) charter will be renewed for a...
Student Support for EIPBN 2016 Conference - Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farrow, Reginald C.
The 60th International Conference on Electron, Ion, and Photon Beam Technology and Nanofabrication (EIPBN) was held in Pittsburgh, PA, from May 31st to June 3rd, 2016. The conference received technical co-sponsorship from the American Vacuum Society (AVS) in cooperation with the Optical Society of America (OSA), and the American Physical Society (APS). The conference was a great success in large part because financial support allowed robust participation from students. The students gave oral and poster presentations of their research and many published peer-reviewed articles in a special conference issue of the Journal of Vacuum Science and Technology B. The Departmentmore » of Energy Office of Basic Energy Sciences supported 10 students from US universities with a $5,000 grant (DE-SC0015555).« less
NASA Astrophysics Data System (ADS)
Wang, Jun; Hu, Hai-Yang; He, Yun-Rui; Deng, Can; Wang, Qi; Duan, Xiao-Feng; Huang, Yong-Qing; Ren, Xiao-Min
2015-08-01
Not Available Supported by the Fund of State Key Laboratory of Information Photonics and Optical Communications of Beijing University of Posts and Telecommunications, the National Basic Research Program of China under Grant No 2010CB327601, the Natural Science Foundational Science and Technology Cooperation Projects under Grant No 2011RR000100, the 111 Project of China under Grant No B07005, and the Doctoral Program of Higher Specialized Research Fund under Grant No 20130005130001.
Hennrikus, Eileen F; Skolka, Michael P; Hennrikus, Nicholas
2018-01-01
Medical school curriculum continues to search for methods to develop a conceptual educational framework that promotes the storage, retrieval, transfer, and application of basic science to the human experience. To achieve this goal, we propose a metacognitive approach that integrates basic science with the humanistic and health system aspects of medical education. During the week, via problem-based learning and lectures, first-year medical students were taught the basic science underlying a disease. Each Friday, a patient with the disease spoke to the class. Students then wrote illness scripts, which required them to metacognitively reflect not only on disease pathophysiology, complications, and treatments but also on the humanistic and health system issues revealed during the patient encounter. Evaluation of the intervention was conducted by measuring results on course exams and national board exams and analyzing free responses on the illness scripts and student course feedback. The course exams and National Board of Medical Examiners questions were divided into 3 categories: content covered in lecture, problem-based learning, or patient + illness script. Comparisons were made using Student t -test. Free responses were inductively analyzed using grounded theory methodology. This curricular intervention was implemented during the first 13-week basic science course of medical school. The main objective of the course, Scientific Principles of Medicine, is to lay the scientific foundation for subsequent organ system courses. A total of 150 students were enrolled each year. We evaluated this intervention over 2 years, totaling 300 students. Students scored significantly higher on illness script content compared to lecture content on the course exams (mean difference = 11.1, P = .006) and national board exams given in December (mean difference = 21.8, P = .0002) and June (mean difference = 12.7, P = .016). Themes extracted from students' free responses included the following: relevance of basic science, humanistic themes of empathy, resilience, and the doctor-patient relationship, and systems themes of cost, barriers to care, and support systems. A metacognitive approach to learning through the use of patient encounters and illness script reflections creates stronger conceptual frameworks for students to integrate, store, retain, and retrieve knowledge.
Proposal for a United Nations Basic Space Technology Initiative
NASA Astrophysics Data System (ADS)
Balogh, Werner
Putting space technology and its applications to work for sustainable economic and social development is the primary objective of the United Nations Programme on Space Applications, launched in 1971. A specific goal for achieving this objective is to establish a sustainable national space capacity. The traditional line of thinking has supported a logical progression from building capacity in basic space science, to using space applications and finally - possibly - to establishing indigenous space technology capabilities. The experience in some countries suggests that such a strict line of progression does not necessarily hold true and that priority given to the establishment of early indigenous space technology capabilities may contribute to promoting the operational use of space applications in support of sustainable economic and social development. Based on these findings and on the experiences with the United Nations Basic Space Science Initiative (UNBSSI) as well as on a series of United Nations/International Academy of Astronautics Workshops on Small Satellites in the Service of Developing Countries, the United Nations Office for Outer Space Affairs (UNOOSA) is considering the launch of a dedicated United Nations Basic Space Technology Initiative (UNBSTI). The initiative would aim to contribute to capacity building in basic space technology and could include, among other relevant fields, activities related to the space and ground segments of small satellites and their applications. It would also provide an international framework for enhancing cooperation between all interested actors, facilitate the exchange of information on best practices, and contribute to standardization efforts. It is expected that these activities would advance the operational use of space technology and its applications in an increasing number of space-using countries and emerging space nations. The paper reports on these initial considerations and on the potential value-adding role the United Nations could play with such an initiative.
NASA Astrophysics Data System (ADS)
Smylie, M. P.; Claus, H.; Welp, U.; Kwok, W.-K.; Qiu, Y.; Hor, Y. S.; Snezhko, A.
The low-temperature variation of the London penetration depth λ(T) in the candidate topological superconductor NbxBi2Se3 (x =0.25) is reported for several crystals. The measurements were carried out by means of a tunnel-diode oscillator technique in both field orientations (Hrf // c and Hrf // ab planes). All samples exhibited quadratic temperature dependence at low temperatures clearly indicating the presence of point nodes in the superconducting order parameter. The results presented here are not consistent with a complete superconducting gap. We interpret our data on NbxBi2Se3 in terms of a nematic odd-parity spin-triplet pairing state with Eu symmetry. This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division, Contract No. DE-AC02-06CH11357. MPS thanks ND Energy for supporting his research and professional development through the ND Energy Postdoctoral Fellowship Program. YSH acknowledges support from National Science Foundation Grant Number DMR-1255607.
Alternative Methods by Which Basic Science Pharmacy Faculty Can Relate to Clinical Practice.
ERIC Educational Resources Information Center
Kabat, Hugh F.; And Others
1982-01-01
A panel of pharmacy faculty ranked a broad inventory of basic pharmaceutical science topics in terms of their applicability to clinical pharmacy practice. The panel concluded that basic pharmaceutical sciences are essentially applications of foundation areas in biological, physical, and social sciences. (Author/MLW)
Examining Curricular Integration Strategies To Optimize Learning Of The Anatomical Sciences
NASA Astrophysics Data System (ADS)
Lisk, Kristina Adriana Ayako
Background: Integration of basic and clinical science knowledge is essential to clinical practice. Although the importance of these two knowledge domains is well-recognized, successfully supporting the development of learners' integrated basic and clinical science knowledge, remains an educational challenge. In this dissertation, I examine curricular integration strategies to optimize learning of the anatomical sciences. Objectives: The studies were designed to achieve the following research aims: 1) to objectively identify clinically relevant content for an integrated musculoskeletal anatomy curriculum; 2) to examine the value of integrated anatomy and clinical science instruction compared to clinical science instruction alone on novices' diagnostic accuracy and diagnostic reasoning process; 3) to compare the effect of integrating and segregating anatomy and clinical science instruction along with a learning strategy (self-explanation) on novices' diagnostic accuracy. Methods: A modified Delphi was used to objectively select clinically relevant content for an integrated musculoskeletal anatomy curriculum. Two experimental studies were created to compare different instructional strategies to optimize learning of the curricular content. In both of these studies, novice learners were taught the clinical features of musculoskeletal pathologies using different learning approaches. Diagnostic performance was measured immediately after instruction and one-week later. Results: The results show that the Delphi method is an effective strategy to select clinically relevant content for integrated anatomy curricula. The findings also demonstrate that novices who were explicitly taught the clinical features of musculoskeletal diseases using causal basic science descriptions had superior diagnostic accuracy and a better understanding of the relative importance of key clinical features for disease categories. Conclusions: This research demonstrates how integration strategies can be applied at multiple levels of the curriculum. Further, this work shows the value of cognitive integration of anatomy and clinical science and it emphasizes the importance of purposefully linking the anatomical and clinical sciences in day-to-day teaching.
Mechanical properties of materials with nanometer scale dimensions and microstructures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nix, William D.
2015-08-05
The three-year grant for which this final report is required extends from 2011 to 2015, including a one-year, no-cost extension. But this is just the latest in a long series of grants from the Division of Materials Sciences of DOE and its predecessor offices and agencies. These include contracts or grants from: the Metallurgy Branch of the U.S. Atomic Energy Commission (from the late 1960s to the mid-1970s), the Materials Science Program of the U.S. Energy Research and Development Administration (from the mid- to late- 1970s), and the Division of Materials Science of the Office of Basic Energy Sciences ofmore » the U.S. Department of Energy (from the early 1980s to the present time). Taken all together, these offices have provided nearly continuous support for our research for nearly 50 years. As we have said on many occasions, this research support has been the best we have ever had, by far. As we look back on the nearly five decades of support from the Division of Materials Sciences and the predecessor offices, we find that the continuity of support that we have enjoyed has allowed us to be most productive and terms of papers published, doctoral students graduated and influence on the field of materials science. This report will, of course, cover the three-year period of the present grant, in summary form, but will also make reference to the output that resulted from support of previous grants from the Division of Materials Sciences and its predecessor offices.« less
Physician perceptions of the role and value of basic science knowledge in daily clinical practice.
Fischer, Jennifer A; Muller-Weeks, Susan
2012-01-01
The role of basic science education in a clinical setting remains unclear. Research to understand how academic clinicians perceive and use this part of their education can aid curricular development. To assess physician's attitudes toward the value of science knowledge in their clinical practice. Academic physicians from three medical schools completed a questionnaire about the utility of basic science education in core clinical tasks and in practice-based learning and improvement. A total of 109 clinical faculty returned the survey. Overall, 89% of the respondents indicated that basic science education is valuable to their clinical practice. When asked about the utility of basic science information in relation to direct patient care, greater than 50% of the doctors felt they use this when diagnosing and communicating with patients. This rose to greater than 60% when asked about choosing treatment options for their patients. Individuals also responded that basic science knowledge is valuable when developing evidence-based best practices. Specifically, 89% felt that they draw upon this information when training students/residents and 84% use this information when reading journal articles. This study shows that basic science education is perceived by responding academic physicians to be important to their clinical work.
Department of Energy - Office of Science Early Career Research Program
NASA Astrophysics Data System (ADS)
Horwitz, James
The Department of Energy (DOE) Office of Science Early Career Program began in FY 2010. The program objectives are to support the development of individual research programs of outstanding scientists early in their careers and to stimulate research careers in the disciplines supported by the DOE Office of Science. Both university and DOE national laboratory early career scientists are eligible. Applicants must be within 10 years of receiving their PhD. For universities, the PI must be an untenured Assistant Professor or Associate Professor on the tenure track. DOE laboratory applicants must be full time, non-postdoctoral employee. University awards are at least 150,000 per year for 5 years for summer salary and expenses. DOE laboratory awards are at least 500,000 per year for 5 years for full annual salary and expenses. The Program is managed by the Office of the Deputy Director for Science Programs and supports research in the following Offices: Advanced Scientific and Computing Research, Biological and Environmental Research, Basic Energy Sciences, Fusion Energy Sciences, High Energy Physics, and Nuclear Physics. A new Funding Opportunity Announcement is issued each year with detailed description on the topical areas encouraged for early career proposals. Preproposals are required. This talk will introduce the DOE Office of Science Early Career Research program and describe opportunities for research relevant to the condensed matter physics community. http://science.energy.gov/early-career/
Fang, Ferric C.
2016-01-01
ABSTRACT On rare occasions in the history of science, remarkable discoveries transform human society and forever alter mankind’s view of the world. Examples of such discoveries include the heliocentric theory, Newtonian physics, the germ theory of disease, quantum theory, plate tectonics and the discovery that DNA carries genetic information. The science philosopher Thomas Kuhn famously described science as long periods of normality punctuated by times of crisis, when anomalous observations culminate in revolutionary changes that replace one paradigm with another. This essay examines several transformative discoveries in the light of Kuhn’s formulation. We find that each scientific revolution is unique, with disparate origins that may include puzzle solving, serendipity, inspiration, or a convergence of disparate observations. The causes of revolutionary science are varied and lack an obvious common structure. Moreover, it can be difficult to draw a clear distinction between so-called normal and revolutionary science. Revolutionary discoveries often emerge from basic science and are critically dependent on nonrevolutionary research. Revolutionary discoveries may be conceptual or technological in nature, lead to the creation of new fields, and have a lasting impact on many fields in addition to the field from which they emerge. In contrast to political revolutions, scientific revolutions do not necessarily require the destruction of the previous order. For humanity to continue to benefit from revolutionary discoveries, a broad palette of scientific inquiry with a particular emphasis on basic science should be supported. PMID:26933052
Casadevall, Arturo; Fang, Ferric C
2016-03-01
On rare occasions in the history of science, remarkable discoveries transform human society and forever alter mankind's view of the world. Examples of such discoveries include the heliocentric theory, Newtonian physics, the germ theory of disease, quantum theory, plate tectonics and the discovery that DNA carries genetic information. The science philosopher Thomas Kuhn famously described science as long periods of normality punctuated by times of crisis, when anomalous observations culminate in revolutionary changes that replace one paradigm with another. This essay examines several transformative discoveries in the light of Kuhn's formulation. We find that each scientific revolution is unique, with disparate origins that may include puzzle solving, serendipity, inspiration, or a convergence of disparate observations. The causes of revolutionary science are varied and lack an obvious common structure. Moreover, it can be difficult to draw a clear distinction between so-called normal and revolutionary science. Revolutionary discoveries often emerge from basic science and are critically dependent on nonrevolutionary research. Revolutionary discoveries may be conceptual or technological in nature, lead to the creation of new fields, and have a lasting impact on many fields in addition to the field from which they emerge. In contrast to political revolutions, scientific revolutions do not necessarily require the destruction of the previous order. For humanity to continue to benefit from revolutionary discoveries, a broad palette of scientific inquiry with a particular emphasis on basic science should be supported. Copyright © 2016 Casadevall and Fang.
Life sciences and environmental sciences
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-02-01
The DOE laboratories play a unique role in bringing multidisciplinary talents -- in biology, physics, chemistry, computer sciences, and engineering -- to bear on major problems in the life and environmental sciences. Specifically, the laboratories utilize these talents to fulfill OHER's mission of exploring and mitigating the health and environmental effects of energy use, and of developing health and medical applications of nuclear energy-related phenomena. At Lawrence Berkeley Laboratory (LBL) support of this mission is evident across the spectrum of OHER-sponsored research, especially in the broad areas of genomics, structural biology, basic cell and molecular biology, carcinogenesis, energy and environment,more » applications to biotechnology, and molecular, nuclear and radiation medicine. These research areas are briefly described.« less
Geospatial Education: Working with the NASA Airborne Science Program
NASA Astrophysics Data System (ADS)
Lockwood, C. M.; Handley, L.; Handley, N.
2010-12-01
WETMAAP (Wetland Education Through Maps and Aerial Photography) , a program of CNL World, supports the NASA Strategic Goals and Objectives for Education by providing classroom teachers and formal and informal educators with professional development. WETMAAP promotes science by inquiry through the use of a building-block process, comparative analysis, and analytical observations. Through the WETMAAP workshops and website, educators receive the concepts necessary to provide students with a basic understanding of maps, aerial photography, and satellite and airborne imagery that focus on the study of wetlands and wetland change. The program targets educators, Grades 5 - 12, in earth science, environmental science, biology, geography, and mathematics, and emphasizes a comprehensive curriculum approach.
NASA Astrophysics Data System (ADS)
Nelson, Philip
2015-03-01
I'll describe an intermediate-level course on ``Physical Models of Living Systems.'' The only prerequisite is first-year university physics and calculus. The course is a response to rapidly growing interest among undergraduates in a broad range of science and engineering majors. Students acquire several research skills that are often not addressed in traditional courses:
... 2019 Basic and Clinical Science Course, Section 02: Fundamentals and Principles of Ophthalmology 2018-2019 Basic and ... 2019 Basic and Clinical Science Course, Section 02: Fundamentals and Principles of Ophthalmology Print 2018-2019 Basic ...
Facilitative effect of graphene quantum dots in MoS2 growth process by chemical vapor deposition
NASA Astrophysics Data System (ADS)
Zhang, Lu; Wang, Yongsheng; Dong, Yanfang; Zhao, Xuan; Fu, Chen; He, Dawei
2018-01-01
Not Available Project supported by the National Basic Research Program of China (Grant Nos. 2016YFA0202300 and 2016YFA0202302), the National Natural Science Foundation of China (Grant Nos. 61527817, 61335006, and 61378073), and the Overseas Expertise Introduction Center for Discipline Innovation, 111 Center, China.
Physics Teacher SOS: Supporting New Teachers without Pushing an Agenda
ERIC Educational Resources Information Center
Baird, Dean
2013-01-01
Few workshops for teachers focus primarily on instruction methods for basic high school physics. In Northern California, Physics Teacher SOS (PTSOS) has gained popularity doing just that. PTSOS workshops are directed toward early-career science teachers, though veterans are welcome too. The program is not influenced by scientific supply companies,…
Driving Discovery | Division of Cancer Prevention
Progress against cancer depends on many types of research—including basic, translational, and clinical—across different research areas, from the biology of cancer cells to studies of large populations. Regardless of the research type or area, supporting the best science and the best scientists is of paramount importance to NCI. Learn more about driving progress against cancer.
NASA Astrophysics Data System (ADS)
Xu, Zheng; Li, Xiang; Guo, Pan; Wu, Jia-Min
2018-05-01
Not Available Project supported by the National Natural Science Foundation of China (Grant Nos. 51677008, 51377182, 51707028, and 11647098), the Fundamental Research Funds of the Central Universities, China (Grant No. 106112017CDJQJ158834), and the State Key Development Program for Basic Research of China (Grant No. 2014CB541602).
NASA Astrophysics Data System (ADS)
Shao, Dandan; Gao, Kaifu
2018-01-01
Not Available Project supported by the National Natural Science Foundation of China (Grant Nos. 11175068 and 11474117) and the Self-determined Research Funds of CCNU from the Colleges Basic Research and Operation of MOE, China (Grant No. 230-20205170054).
The Impacts of Domain-General vs. Domain-Specific Diagramming Tools on Writing
ERIC Educational Resources Information Center
Barstow, Brendan; Fazio, Lisa; Lippman, Jordan; Falakmasir, Mohammad; Schunn, Christian D.; Ashley, Kevin D.
2017-01-01
Argument diagramming is the process of spatially representing an argument by its component parts and their relationships. A growing body of evidence supports the use of argument diagramming to aid student learning and writing within disciplines including science education. However, most of these studies have focused on basic contrasts between…
Secretary | Center for Cancer Research
We are looking for a pleasant, organized, dependable person to serve as a full-time secretary in the Basic Science Program (BSP) at the Frederick National Laboratory for Cancer Research (FNCLR). The BSP provides procurement and logistical support to the laboratories of the Center for Cancer Research. Tasks include high volume procurement (blanket orders, purchase requests,
Quantum oscillations and nontrivial transport in (Bi0.92In0.08)2Se3
NASA Astrophysics Data System (ADS)
Zhang, Minhao; Li, Yan; Song, Fengqi; Wang, Xuefeng; Zhang, Rong
2017-12-01
Not Available Project supported by the National Key Basic Research Program of China (Grant Nos. 2014CB921103 and 2017YFA0206304), the National Natural Science Foundation of China (Grant Nos. U1732159 and 11274003), and Collaborative Innovation Center of Solid-State Lighting and Energy-Saving Electronics, China.
Improvement of sensitivity of graphene photodetector by creating bandgap structure
NASA Astrophysics Data System (ADS)
Zhang, Ni-Zhen; He, Meng-Ke; Yu, Peng; Zhou, Da-Hua
2017-10-01
Not Available Project supported by the National Natural Science Foundation of China (Grant No. 51271210), the Chongqing Municipal Research Program of Basic Research and Frontier Technology, China (Grant No. cstc2015jcyjBX0039), and the Foundation for the Creative Research Groups of Higher Education of Chongqing Municipality, China (Grant No. CXTDX201601016).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai, Qiuxia; Wang, Jianguo; Wang, Yang-Gang
The effects of structure and size on the selectivity of catalytic furfural conversion over supported Pt catalysts in the presence of hydrogen have been studied using first principles density functional theory (DFT) calculations and microkinetic modeling. Four Pt model systems, i.e., periodic Pt(111), Pt(211) surfaces, as well as small nanoclusters (Pt13 and Pt55) are chosen to represent the terrace, step, and corner sites of Pt nanoparticles. Our DFT results show that the reaction routes for furfural hydrogenation and decarbonylation are strongly dependent on the type of reactive sites, which lead to the different selectivity. On the basis of the size-dependentmore » site distribution rule, we correlate the site distributions as a function of the Pt particle size. Our microkinetic results indicate the critical particle size that controls the furfural selectivity is about 1.0 nm, which is in good agreement with the reported experimental value under reaction conditions. This work was supported by National Basic Research Program of China (973 Program) (2013CB733501) and the National Natural Science Foundation of China (NSFC-21306169, 21176221, 21136001, 21101137 and 91334103). This work was also partially supported by the US Department of Energy (DOE), the Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle. Computing time was granted by the grand challenge of computational catalysis of the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL). EMSL is a national scientific user facility located at Pacific Northwest National Laboratory (PNNL) and sponsored by DOE’s Office of Biological and Environmental Research.« less
Basic Energy Sciences Program Update
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
2016-01-04
The U.S. Department of Energy’s (DOE) Office of Basic Energy Sciences (BES) supports fundamental research to understand, predict, and ultimately control matter and energy at the electronic, atomic, and molecular levels to provide the foundations for new energy technologies and to support DOE missions in energy, environment, and national security. The research disciplines covered by BES—condensed matter and materials physics, chemistry, geosciences, and aspects of physical biosciences— are those that discover new materials and design new chemical processes. These disciplines touch virtually every aspect of energy resources, production, conversion, transmission, storage, efficiency, and waste mitigation. BES also plans, constructs, andmore » operates world-class scientific user facilities that provide outstanding capabilities for imaging and spectroscopy, characterizing materials of all kinds ranging from hard metals to fragile biological samples, and studying the chemical transformation of matter. These facilities are used to correlate the microscopic structure of materials with their macroscopic properties and to study chemical processes. Such experiments provide critical insights to electronic, atomic, and molecular configurations, often at ultrasmall length and ultrafast time scales.« less
Mitomycin C and endoscopic sinus surgery: where are we?
Tabaee, Abtin; Brown, Seth M; Anand, Vijay K
2007-02-01
Mitomycin C has been used successfully in various ophthalmologic and, more recently, otolaryngologic procedures. Its modulation of fibroblast activity allows for decreased scarring and fibrosis. Several recent trials have examined the efficacy of mitomycin C in reducing synechia and stenosis following endoscopic sinus surgery. Basic science studies using fibroblast cell lines have demonstrated a dose-dependent suppression of activity with the use of mitomycin C. This is further supported by animal studies that have shown lower rates of maxillary ostial restenosis following application of mitomycin C. No human trial, however, has demonstrated a statistically significant impact of mitomycin C on the incidence of postoperative synechia or stenosis following sinus surgery. The limitations of the literature are discussed. The antiproliferative properties of mitomycin C may theoretically decrease the incidence of synechia and stenosis following endoscopic sinus surgery. Although this is supported by basic science studies and its successful use in other fields, the clinical evidence to date has not shown the application of mitomycin C to be effective in preventing stenosis after endoscopic sinus surgery. Future prospective studies are required before definitive conclusions can be made.
Integration of Basic and Clinical Sciences: Faculty Perspectives at a U.S. Dental School.
van der Hoeven, Dharini; van der Hoeven, Ransome; Zhu, Liang; Busaidy, Kamal; Quock, Ryan L
2018-04-01
Although dental education has traditionally been organized into basic sciences education (first and second years) and clinical education (third and fourth years), there has been growing interest in ways to better integrate the two to more effectively educate students and prepare them for practice. Since 2012, The University of Texas School of Dentistry at Houston (UTSD) has made it a priority to improve integration of basic and clinical sciences, with a focus to this point on integrating the basic sciences. The aim of this study was to determine the perspectives of basic and clinical science faculty members regarding basic and clinical sciences integration and the degree of integration currently occurring. In October 2016, all 227 faculty members (15 basic scientists and 212 clinicians) were invited to participate in an online survey. Of the 212 clinicians, 84 completed the clinician educator survey (response rate 40%). All 15 basic scientists completed the basic science educator survey (response rate 100%). The majority of basic and clinical respondents affirmed the value of integration (93.3%, 97.6%, respectively) and reported regular integration in their teaching (80%, 86.9%). There were no significant differences between basic scientists and clinicians on perceived importance (p=0.457) and comfort with integration (p=0.240), but the basic scientists were more likely to integrate (p=0.039) and collaborate (p=0.021) than the clinicians. There were no significant differences between generalist and specialist clinicians on importance (p=0.474) and degree (p=0.972) of integration in teaching and intent to collaborate (p=0.864), but the specialists reported feeling more comfortable presenting basic science information (p=0.033). Protected faculty time for collaborative efforts and a repository of integrated basic science and clinical examples for use in teaching and faculty development were recommended to improve integration. Although questions might be raised about the respondents' definition of "integration," this study provides a baseline assessment of perceptions at a dental school that is placing a priority on integration.
Undergraduate basic science preparation for dental school.
Humphrey, Sue P; Mathews, Robert E; Kaplan, Alan L; Beeman, Cynthia S
2002-11-01
In the Institute of Medicines report Dental Education at the Crossroads, it was suggested that dental schools across the country move toward integrated basic science education for dental and medical students in their curricula. To do so, dental school admission requirements and recommendations must be closely reviewed to ensure that students are adequately prepared for this coursework. The purpose of our study was twofold: 1) to identify student dentists' perceptions of their predental preparation as it relates to course content, and 2) to track student dentists' undergraduate basic science course preparation and relate that to DAT performance, basic science course performance in dental school, and Part I and Part II National Board performance. In the first part of the research, a total of ninety student dentists (forty-five from each class) from the entering classes of 1996 and 1997 were asked to respond to a survey. The survey instrument was distributed to each class of students after each completed the largest basic science class given in their second-year curriculum. The survey investigated the area of undergraduate major, a checklist of courses completed in their undergraduate preparation, the relevance of the undergraduate classes to the block basic science courses, and the strength of requiring or recommending the listed undergraduate courses as a part of admission to dental school. Results of the survey, using frequency analysis, indicate that students felt that the following classes should be required, not recommended, for admission to dental school: Microbiology 70 percent, Biochemistry 54.4 percent, Immunology 57.78 percent, Anatomy 50 percent, Physiology 58.89 percent, and Cell Biology 50 percent. The second part of the research involved anonymously tracking undergraduate basic science preparation of the same students with DAT scores, the grade received in a representative large basic science course, and Part I and Part II National Board performance. Using T-test analysis correlations, results indicate that having completed multiple undergraduate basic science courses (as reported by AADSAS BCP hours) did not significantly (p < .05) enhance student performance in any of these parameters. Based on these results, we conclude that student dentists with undergraduate preparation in science and nonscience majors can successfully negotiate the dental school curriculum, even though the students themselves would increase admission requirements to include more basic science courses than commonly required. Basically, the students' recommendations for required undergraduate basic science courses would replicate the standard basic science coursework found in most dental schools: anatomy, histology, biochemistry, microbiology, physiology, and immunology plus the universal foundation course of biology.
Basic Sciences Fertilizing Clinical Microbiology and Infection Management
2017-01-01
Abstract Basic sciences constitute the most abundant sources of creativity and innovation, as they are based on the passion of knowing. Basic knowledge, in close and fertile contact with medical and public health needs, produces distinct advancements in applied sciences. Basic sciences play the role of stem cells, providing material and semantics to construct differentiated tissues and organisms and enabling specialized functions and applications. However, eventually processes of “practice deconstruction” might reveal basic questions, as in de-differentiation of tissue cells. Basic sciences, microbiology, infectious diseases, and public health constitute an epistemological gradient that should also be an investigational continuum. The coexistence of all these interests and their cross-fertilization should be favored by interdisciplinary, integrative research organizations working simultaneously in the analytical and synthetic dimensions of scientific knowledge. PMID:28859345
The Reorganization of Basic Science Departments in U.S. Medical Schools, 1980-1999.
ERIC Educational Resources Information Center
Mallon, William T.; Biebuyck, Julien F.; Jones, Robert F.
2003-01-01
Constructed a longitudinal database to examine how basic science departments have been reorganized at U.S. medical schools. Found that there were fewer basic science departments in the traditional disciplines of anatomy, biochemistry, microbiology, pharmacology, and physiology in 1999 than in 1980. But as biomedical science has developed in an…
Design concepts for the Centrifuge Facility Life Sciences Glovebox
NASA Technical Reports Server (NTRS)
Sun, Sidney C.; Horkachuck, Michael J.; Mckeown, Kellie A.
1989-01-01
The Life Sciences Glovebox will provide the bioisolated environment to support on-orbit operations involving non-human live specimens and samples for human life sceinces experiments. It will be part of the Centrifuge Facility, in which animal and plant specimens are housed in bioisolated Habitat modules and transported to the Glovebox as part of the experiment protocols supported by the crew. At the Glovebox, up to two crew members and two habitat modules must be accommodated to provide flexibility and support optimal operations. This paper will present several innovative design concepts that attempt to satisfy the basic Glovebox requirements. These concepts were evaluated for ergonomics and ease of operations using computer modeling and full-scale mockups. The more promising ideas were presented to scientists and astronauts for their evaluation. Their comments, and the results from other evaluations are presented. Based on the evaluations, the authors recommend designs and features that will help optimize crew performance and facilitate science accommodations, and specify problem areas that require further study.
Student Support for EIPBN 2012 Conference
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farrow, Reginald C
2013-01-29
The 56th International Conference on Electron, Ion and Photon Beam Technology and Nanofabrication (EIPBN), 2012, was held at the Hilton Waikoloa Resort in Waikoloa, Hawaii, May 29 - June 2, 2012. The EIPBN Conference is recognized as the foremost international meeting dedicated to lithographic science and technology and its application to micro and nanofabrication techniques. The conference brought together 483 engineers and scientists from industries and universities from all over the world to discuss recent progress and future trends. Among the emerging technologies that are within the scope of EIPBN is Nanofabrication for Energy Sources along with nanofabrication for themore » realization of low power integrated circuits. Every year, EIPBN provides financial support for students to attend the conference. The students gave oral and poster presentations of their research and many published peer reviewed articles in a special conference issue of the Journal of Vacuum Science and Technology B. The Department of Energy Office of Basic Energy Sciences partially supported 41 students from US universities with a $5,000.« less
Yamazaki, Yuka; Uka, Takanori; Marui, Eiji
2017-09-15
In Japan, the field of Basic Sciences encompasses clinical, academic, and translational research, as well as the teaching of medical sciences, with both an MD and PhD typically required. In this study, it was hypothesized that the characteristics of a Basic Sciences career path could offer the professional advancement and personal fulfillment that many female medical doctors would find advantageous. Moreover, encouraging interest in Basic Sciences could help stem shortages that Japan is experiencing in medical fields, as noted in the three principal contributing factors: premature resignation of female clinicians, an imbalance of female physicians engaged in research, and a shortage of medical doctors in the Basic Sciences. This study examines the professional and personal fulfillment expressed by Japanese female medical doctors who hold positions in Basic Sciences. Topics include career advancement, interest in medical research, and greater flexibility for parenting. A cross-sectional questionnaire survey was distributed at all 80 medical schools in Japan, directed to 228 female medical doctors whose academic rank was assistant professor or higher in departments of Basic Sciences in 2012. Chi-square tests and the binary logistic regression model were used to investigate the impact of parenthood on career satisfaction, academic rank, salary, etc. The survey response rate of female physicians in Basic Sciences was 54.0%. Regardless of parental status, one in three respondents cited research interest as their rationale for entering Basic Sciences, well over twice other motivations. A majority had clinical experience, with clinical duties maintained part-time by about half of respondents and particularly parents. Only one third expressed afterthoughts about relinquishing full-time clinical practice, with physicians who were parents expressing stronger regrets. Parental status had little effect on academic rank and income within the Basic Sciences, CONCLUSION: Scientific curiosity and a desire to improve community health are hallmarks of those choosing a challenging career in medicine. Therefore, it is unsurprising that interest in research is the primary motivation for a female medical doctor to choose a career in Basic Sciences. Additionally, as with many young professionals with families, female doctors seek balance in professional and private lives. Although many expressed afterthoughts relinquishing a full-time clinical practice, mothers generally benefited from greater job flexibility, with little significant effect on career development and income as Basic Scientists.
Analysis of the basic science section of the orthopaedic in-training examination.
Sheibani-Rad, Shahin; Arnoczky, Steven Paul; Walter, Norman E
2012-08-01
Since 1963, the Orthopaedic In-Training Examination (OITE) has been administered to orthopedic residents to assess residents' knowledge and measure the quality of teaching within individual programs. The OITE currently consists of 275 questions divided among 12 domains. This study analyzed all OITE basic science questions between 2006 and 2010. The following data were recorded: number of questions, question taxonomy, category of question, type of imaging modality, and recommended journal and book references. Between 2006 and 2010, the basic science section constituted 12.2% of the OITE. The assessment of taxonomy classification showed that recall-type questions were the most common, at 81.4%. Imaging modalities typically involved questions on radiographs and constituted 6.2% of the OITE basic science section. The majority of questions were basic science questions (eg, genetics, cell replication, and bone metabolism), with an average of 26.4 questions per year. The Journal of Bone & Joint Surgery (American Volume) and the American Academy of Orthopaedic Surgeons' Orthopaedic Basic Science were the most commonly and consistently cited journal and review book, respectively. This study provides the first review of the question content and recommended references of the OITE basic science section. This information will provide orthopedic trainees, orthopedic residency programs, and the American Academy of Orthopaedic Surgeons Evaluation Committee valuable information related to improving residents' knowledge and performance and optimizing basic science educational curricula. Copyright 2012, SLACK Incorporated.
John, T A
2011-06-01
Basic science departments in academic medical centres are influenced by changes that are commonly directed at medical education and financial gain. Some of such changes may have been detrimental to or may have enhanced basic science education. They may have determined basic science research focus or basic science research methods. However, there is lack of research on the educational process in the basic sciences including training of PhD's while there is ample research on medical education pertaining to training of medical doctors. The author here identifies, from university websites and available literature, some forces that have driven teaching and research focus and methods in state-of-the-arts academic medical centres in recent times with a view of seeing through their possible influences on basic science education and research, using the United States of America as an example. The "forces" are: Changes in medical schools; Medical educational philosophies: problem based learning, evidence based medicine, cyberlearning and self-directed learning; Shifting impressions of the value of basic sciences in medical schools; Research trends in Basic Sciences: role of antivivisectionists, alternative experimentations, explosion of molecular and cell biology; Technological advancements; Commercialization of research; and Funding agencies. The author encourages African leaders in academia to pay attention to such forces as the leadership seeks to raise African Universities as centres of knowledge that have a major role in acquiring, preserving, imparting, and utilizing knowledge.
Plant Growth Module (PGM) conceptual design
NASA Technical Reports Server (NTRS)
Schwartzkopf, Steven H.; Rasmussen, Daryl
1987-01-01
The Plant Growth Module for the Controlled Ecological Life Support System (CELSS), designed to answer basic science questions related to growing plants in closed systems, is described functionally with artist's conception drawings. Subsystems are also described, including enclosure and access; data acquisition and control; gas monitor and control; heating, ventilation, and air conditioning; air delivery; nutrient monitor and control; microbial monitoring and control; plant support and nutrient delivery; illumination; and internal operations. The hardware development plan is outlined.
Connecting Science and Society: Basic Research in the Service of Social Objectives
NASA Astrophysics Data System (ADS)
Sonnert, Gerhard
2007-03-01
A flawed dichotomy of basic versus applied science (or of ``curiosity-driven'' vs. ``mission-oriented'' science) pervades today's thinking about science policy. This talk argues for the addition of a third mode of scientific research, called Jeffersonian science. Whereas basic science, as traditionally understood, is a quest for the unknown regardless of societal needs, and applied science is known science applied to known needs, Jeffersonian science is the quest for the unknown in the service of a known social need. It is research in an identified area of basic scientific ignorance that lies at the heart of a social problem. The talk discusses the conceptual foundations and then provides some case examples of Jeffersonian-type science initiatives, such as the Lewis and Clark Expedition, initiated by Thomas Jefferson (which led us to call this mode of research Jeffersonian), research conducted under the auspices of the National Institutes of Health, and a science policy project by President Jimmy Carter and his Science Adviser, Frank Press, in the late 1970s. Because the concept of Jeffersonian science explicitly ties basic research to the social good, one of the potential benefits of adding a Jeffersonian dimension to our thinking about science is that it might make science careers more attractive to women and underrepresented minorities.
Riley, William T
2017-01-01
The National Institutes of Health Office of Behavioral and Social Sciences Research (OBSSR) recently released its strategic plan for 2017-2021. This plan focuses on three equally important strategic priorities: 1) improve the synergy of basic and applied behavioral and social sciences research, 2) enhance and promote the research infrastructure, methods, and measures needed to support a more cumulative and integrated approach to behavioral and social sciences research, and 3) facilitate the adoption of behavioral and social sciences research findings in health research and in practice. This commentary focuses on scientific priority two and future directions in measurement science, technology, data infrastructure, behavioral ontologies, and big data methods and analytics that have the potential to transform the behavioral and social sciences into more cumulative, data rich sciences that more efficiently build on prior research. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Contributions of Basic Sciences to Science of Education. Studies in Educational Administration.
ERIC Educational Resources Information Center
Lall, Bernard M.
The science of education has been influenced by the basic sciences to the extent that educational research now has been able to modernize its approach by accepting and using the basic scientific methodology and experimental techniques. Using primarily the same steps of scientific investigations, education today holds a place of much greater esteem…
The Effect of Home Related Science Activities on Students' Performance in Basic Science
ERIC Educational Resources Information Center
Obomanu, B. J.; Akporehwe, J. N.
2012-01-01
Our study investigated the effect of utilizing home related science activities on student's performance in some basic science concepts. The concepts considered were heart energy, ecology and mixtures. The sample consisted of two hundred and forty (240) basic junior secondary two (BJSS11) students drawn from a population of five thousand and…
Enabling Wide-Scale Computer Science Education through Improved Automated Assessment Tools
NASA Astrophysics Data System (ADS)
Boe, Bryce A.
There is a proliferating demand for newly trained computer scientists as the number of computer science related jobs continues to increase. University programs will only be able to train enough new computer scientists to meet this demand when two things happen: when there are more primary and secondary school students interested in computer science, and when university departments have the resources to handle the resulting increase in enrollment. To meet these goals, significant effort is being made to both incorporate computational thinking into existing primary school education, and to support larger university computer science class sizes. We contribute to this effort through the creation and use of improved automated assessment tools. To enable wide-scale computer science education we do two things. First, we create a framework called Hairball to support the static analysis of Scratch programs targeted for fourth, fifth, and sixth grade students. Scratch is a popular building-block language utilized to pique interest in and teach the basics of computer science. We observe that Hairball allows for rapid curriculum alterations and thus contributes to wide-scale deployment of computer science curriculum. Second, we create a real-time feedback and assessment system utilized in university computer science classes to provide better feedback to students while reducing assessment time. Insights from our analysis of student submission data show that modifications to the system configuration support the way students learn and progress through course material, making it possible for instructors to tailor assignments to optimize learning in growing computer science classes.
De Leng, Bas; Gijlers, Hannie
2015-05-01
To examine how collaborative diagramming affects discussion and knowledge construction when learning complex basic science topics in medical education, including its effectiveness in the reformulation phase of problem-based learning. Opinions and perceptions of students (n = 70) and tutors (n = 4) who used collaborative diagramming in tutorial groups were collected with a questionnaire and focus group discussions. A framework derived from the analysis of discourse in computer-supported collaborative leaning was used to construct the questionnaire. Video observations were used during the focus group discussions. Both students and tutors felt that collaborative diagramming positively affected discussion and knowledge construction. Students particularly appreciated that diagrams helped them to structure knowledge, to develop an overview of topics, and stimulated them to find relationships between topics. Tutors emphasized that diagramming increased interaction and enhanced the focus and detail of the discussion. Favourable conditions were the following: working with a shared whiteboard, using a diagram format that facilitated distribution, and applying half filled-in diagrams for non-content expert tutors and\\or for heterogeneous groups with low achieving students. The empirical findings in this study support the findings of earlier more descriptive studies that diagramming in a collaborative setting is valuable for learning complex knowledge in medicine.
FY 1984 Science Budget overview
NASA Astrophysics Data System (ADS)
Astronomy, engineering, and the physical sciences as a whole were among the best funded programs in the fiscal 1984 budget that President Ronald Reagan sent to Congress last week. In addition, science education got a shot in the arm: The Reagan proposal includes plans for the nation's universities to upgrade scientific instrumentation and to attract and support high caliber scientists and engineers.Reagan proposes that federal funding for research and development, including R&D facilities, total $47 billion in fiscal 1984, up 17% from the fiscal 1983 level. Defense research and development programs would be increased 29%; nondefense R&D would be increased 0.4%. Total basic research would be boosted 10%.
A Radar-like Iron based Nanohybrid as an Efficient and Stable Electrocatalyst for Oxygen Reduction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhong, X. Y.; Liu, Lin; Wang, Xinde
2014-05-21
The present study shows a design concept for fabricating Fe-PyNG hybrid via strong coupling between FePc and pyridine-N. The prominent features of the Fe-PyNG hybrid include high electrocatalytic activity, superior durability, and better performance than Pt/C toward ORR in alkaline media. These features potentially make Fe-PyNG an outstanding nonprecious metal cathode catalyst for fuel cells. The incorporation of Fe ion and pyridine-N afforded effective bonding and synergetic coupling effects, which lead to significant electrocatalytic performance. DFT calculations indicate that N-modified Fe is a superior site for OOH adsorption and ORR reaction. Meanwhile, the strong chemical bonding between FePc and pyridynemore » in PyNG leads to its superior stability. We believe that our present synthetic strategy can be further extended to develop other metal complexes/N-doped carbon materials for broad applications in the field of catalysts, batteries, and supercapacitors. This work was supported by National Basic Research Program of China (973 Program) (2013CB733501), the National Natural Science Foundation of China (NSFC-21306169, 21176221, 21136001 and 21101137), Zhejiang Provincial Natural Science Foundation of China (ZJNSF-R4110345) and the New Century Excellent Talents in University Program (NCET-10-0979). We thank Prof. Youqun Zhu for Instruments support. D. Mei is supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle. Computing time was granted by the grand challenge of computational catalysis of the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL). EMSL is a national scientific user facility located at Pacific Northwest National Laboratory (PNNL) and sponsored by DOE’s Office of Biological and Environmental Research.« less
Stevenson, Frazier T; Bowe, Connie M; Gandour-Edwards, Regina; Kumari, Vijaya G
2005-02-01
Many studies have evaluated the desirability of expert versus non-expert facilitators in problem-based learning (PBL), but performance differences between basic science and clinical facilitators has been less studied. In a PBL course at our university, pairs of faculty facilitators (1 clinician, 1 basic scientist) were assigned to student groups to maximise integration of basic science with clinical science. This study set out to establish whether students evaluate basic science and clinical faculty members differently when they teach side by side. Online questionnaires were used to survey 188 students about their faculty facilitators immediately after they completed each of 3 serial PBL cases. Overall satisfaction was measured using a scale of 1-7 and yes/no responses were gathered from closed questions describing faculty performance. results: Year 1 students rated basic science and clinical facilitators the same, but Year 2 students rated the clinicians higher overall. Year 1 students rated basic scientists higher in their ability to understand the limits of their own knowledge. Year 2 students rated the clinicians higher in several content expertise-linked areas: preparedness, promotion of in-depth understanding, and ability to focus the group, and down-rated the basic scientists for demonstrating overspecialised knowledge. Students' overall ratings of individual faculty best correlated with the qualities of stimulation, focus and preparedness, but not with overspecialisation, excessive interjection of the faculty member's own opinions, and encouragement of psychosocial issue discussion. When taught by paired basic science and clinical PBL facilitators, students in Year 1 rated basic science and clinical PBL faculty equally, while Year 2 students rated clinicians more highly overall. The Year 2 difference may be explained by perceived differences in content expertise.
[The latest in paediatric resuscitation recommendations].
López-Herce, Jesús; Rodríguez, Antonio; Carrillo, Angel; de Lucas, Nieves; Calvo, Custodio; Civantos, Eva; Suárez, Eva; Pons, Sara; Manrique, Ignacio
2017-04-01
Cardiac arrest has a high mortality in children. To improve the performance of cardiopulmonary resuscitation, it is essential to disseminate the international recommendations and the training of health professionals and the general population in resuscitation. This article summarises the 2015 European Paediatric Cardiopulmonary Resuscitation recommendations, which are based on a review of the advances in cardiopulmonary resuscitation and consensus in the science and treatment by the International Council on Resuscitation. The Spanish Paediatric Cardiopulmonary Resuscitation recommendations, developed by the Spanish Group of Paediatric and Neonatal Resuscitation, are an adaptation of the European recommendations, and will be used for training health professionals and the general population in resuscitation. This article highlights the main changes from the previous 2010 recommendations on prevention of cardiac arrest, the diagnosis of cardiac arrest, basic life support, advanced life support and post-resuscitation care, as well as reviewing the algorithms of treatment of basic life support, obstruction of the airway and advanced life support. Copyright © 2016. Publicado por Elsevier España, S.L.U.
Creative Turbulence: Experiments in Art and Physics
NASA Astrophysics Data System (ADS)
Fonda, Enrico; Dubois, R. Luke; Camnasio, Sara; Porfiri, Maurizio; Sreenivasan, Katepalli R.; Lathrop, Daniel P.; Serrano, Daniel; Ranjan, Devesh
2016-11-01
Effective communication of basic research to non-experts is necessary to inspire the public and to justify support for science by the taxpayers. The creative power of art is particularly important to engage an adult audience, who otherwise might not be receptive to standard didactic material. Interdisciplinarity defines new trends in research, and works at the intersection of art and science are growing in popularity, even though they are often isolated experiments. We present a public-facing collaboration between physicists/engineers performing research in fluid dynamics, and audiovisual artists working in cutting-edge media installation and performance. The result of this collaboration is a curated exhibition, with supporting public programming. We present the artworks, the lesson learned from the interactions between artists and scientists, the potential outreach impact and future developments. This project is supported by the APS Public Outreach Mini Grant.
The concept verification testing of materials science payloads
NASA Technical Reports Server (NTRS)
Griner, C. S.; Johnston, M. H.; Whitaker, A.
1976-01-01
The concept Verification Testing (CVT) project at the Marshall Space Flight Center, Alabama, is a developmental activity that supports Shuttle Payload Projects such as Spacelab. It provides an operational 1-g environment for testing NASA and other agency experiment and support systems concepts that may be used in shuttle. A dedicated Materials Science Payload was tested in the General Purpose Laboratory to assess the requirements of a space processing payload on a Spacelab type facility. Physical and functional integration of the experiments into the facility was studied, and the impact of the experiments on the facility (and vice versa) was evaluated. A follow-up test designated CVT Test IVA was also held. The purpose of this test was to repeat Test IV experiments with a crew composed of selected and trained scientists. These personnel were not required to have prior knowledge of the materials science disciplines, but were required to have a basic knowledge of science and the scientific method.
Dentistry in the future--on the role and goal of basic research in oral biology.
Mäkinen, K K
1993-01-01
Examination of the state of affairs of oral biology cannot be endeavoured without considering the mutual interactions and interdependencies of sciences, and without considering the impact human acts will exert on these developments. Oral biology deals with the biochemical, chemical, molecular biologic, general biologic and physical aspects of all processes that take place in the oral cavity, in the masticatory organ, and in tissues and body fluids that are associated with the above processes. Oral biology also reaps the harvest sown by (other) basic sciences. From the methodological point of view, oral biology is indistinguishable from basic sciences; it is the anatomical object that makes it specific. Oral biology cannot be regarded as "big science" (i.e. compared with the human genome project, space research, AIDS research etc.). This fact may preserve the attractiveness of oral biology. Important science--this concerns oral biology as well--still emerges in smaller settings, although there are omens that large research cartels will swallow larger and larger portions of research appropriations. A key to staying competitive is to use new science sources and--in some cases--to join bigger groups. Once upon a time oral biologists--or scientists in general--assumed that a record of solid accomplishments was sufficient to maintain research support. Today, in several countries, politics and public visibility unfortunately determine the funding privileges. Provided that human operations on earth will render future development of sciences possible, the future of oral biology will depend 1) on concomitant development in the above basic fields, and 2) on innovations in the individual psyches. This combination will unravel the structure of genes involved in the development and metabolism of oral processes, clone important salivary and connective tissue proteins, and control most important oral diseases. To achieve these goals, oral biology must attract young talent and funding must be made available. There is no shortcut, however. Individual efforts and persistent labouring at the laboratory bench will still remain prerequisites. Although successful prevention of certain oral diseases, such as dental caries, may be possible in certain regions of the Earth, the prospects are much gloomier globally.
Do Racial and Gender Disparities Exist in Newer Glaucoma Treatments?
... 2019 Basic and Clinical Science Course, Section 02: Fundamentals and Principles of Ophthalmology 2018-2019 Basic and ... 2019 Basic and Clinical Science Course, Section 02: Fundamentals and Principles of Ophthalmology Print 2018-2019 Basic ...
Steinberg, Benjamin E; Goldenberg, Neil M; Fairn, Gregory D; Kuebler, Wolfgang M; Slutsky, Arthur S; Lee, Warren L
2016-02-01
Explosive growth in our understanding of genomics and molecular biology have fueled calls for the pursuit of personalized medicine, the notion of harnessing biologic variability to provide patient-specific care. This vision will necessitate a deep understanding of the underlying pathophysiology in each patient. Medical journals play a pivotal role in the education of trainees and clinicians, yet we suspected that the amount of basic science in the top medical journals has been in decline. We conducted an automated search strategy in PubMed to identify basic science articles and calculated the proportion of articles dealing with basic science in the highest impact journals for 8 different medical specialties from 1994 to 2013. We observed a steep decline (40-60%) in such articles over time in almost all of the journals examined. This rapid decline in basic science from medical journals is likely to affect practitioners' understanding of and interest in the basic mechanisms of disease and therapy. In this Life Sciences Forum, we discuss why this decline may be occurring and what it means for the future of science and medicine. © FASEB.
Progress in the Utilization of High-Fidelity Simulation in Basic Science Education
ERIC Educational Resources Information Center
Helyer, Richard; Dickens, Peter
2016-01-01
High-fidelity patient simulators are mainly used to teach clinical skills and remain underutilized in teaching basic sciences. This article summarizes our current views on the use of simulation in basic science education and identifies pitfalls and opportunities for progress.
Editorial Commentary: A Model for Shoulder Rotator Cuff Repair and for Basic Science Investigations.
Brand, Jefferson C
2018-04-01
"Breaking the fourth wall" is a theater convention where the narrator or character speaks directly to the audience. As an Assistant Editor-in-Chief, as I comment on a recent basic science study investigating rotator cuff repair, I break the fourth wall and articulate areas of basic science research excellence that align with the vision that we hold for our journal. Inclusion of a powerful video strengthens the submission. We prefer to publish clinical videos in our companion journal, Arthroscopy Techniques, and encourage basic science video submissions to Arthroscopy. Basic science research requires step-by-tedious-step analogous to climbing a mountain. Establishment of a murine rotator cuff repair model was rigorous and research intensive, biomechanically, radiographically, histologically, and genetically documented, a huge step toward the bone-to-tendon healing research summit. This research results in a model for both rotator cuff repair and the pinnacle of quality, basic science research. Copyright © 2018 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.
Large Scale GW Calculations on the Cori System
NASA Astrophysics Data System (ADS)
Deslippe, Jack; Del Ben, Mauro; da Jornada, Felipe; Canning, Andrew; Louie, Steven
The NERSC Cori system, powered by 9000+ Intel Xeon-Phi processors, represents one of the largest HPC systems for open-science in the United States and the world. We discuss the optimization of the GW methodology for this system, including both node level and system-scale optimizations. We highlight multiple large scale (thousands of atoms) case studies and discuss both absolute application performance and comparison to calculations on more traditional HPC architectures. We find that the GW method is particularly well suited for many-core architectures due to the ability to exploit a large amount of parallelism across many layers of the system. This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division, as part of the Computational Materials Sciences Program.
Kelly, Thomas H; Mattacola, Carl G
2010-11-01
The National Institutes of Health's Clinical and Translational Science Award initiative is designed to establish and promote academic centers of clinical and translational science (CTS) that are empowered to train and advance multi- and interdisciplinary investigators and research teams to apply new scientific knowledge and techniques to enhance patient care. Among the key components of a full-service center for CTS is an educational platform to support research training in CTS. Educational objectives and resources available to support the career development of the clinical and translational scientists, including clinical research education, mentored research training, and career development support, are described. The purpose of the article is to provide an overview of the CTS educational model so that rehabilitation specialists can become more aware of potential resources that are available and become more involved in the delivery and initiation of the CTS model in their own workplace. Rehabilitation clinicians and scientists are well positioned to play important leadership roles in advancing the academic mission of CTS. Rigorous academic training in rehabilitation science serves as an effective foundation for supporting the translation of basic scientific discovery into improved health care. Rehabilitation professionals are immersed in patient care, familiar with interdisciplinary health care delivery, and skilled at working with multiple health care professionals. The NIH Clinical and Translational Science Award initiative is an excellent opportunity to advance the academic development of rehabilitation scientists.
BROOKHAVEN NATIONAL LABORATORY INSTITUTIONAL PLAN FY2003-2007.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
This document presents the vision for Brookhaven National Laboratory (BNL) for the next five years, and a roadmap for implementing that vision. Brookhaven is a multidisciplinary science-based laboratory operated for the U.S. Department of Energy (DOE), supported primarily by programs sponsored by the DOE's Office of Science. As the third-largest funding agency for science in the U.S., one of the DOE's goals is ''to advance basic research and the instruments of science that are the foundations for DOE's applied missions, a base for U.S. technology innovation, and a source of remarkable insights into our physical and biological world, and themore » nature of matter and energy'' (DOE Office of Science Strategic Plan, 2000 http://www.osti.gov/portfolio/science.htm). BNL shapes its vision according to this plan.« less
NASA Astrophysics Data System (ADS)
Goldston, M. Jenice; Nichols, Sharon
2009-04-01
This study situated in a Southern resegregated Black middle school involved four Black teachers and two White science educators’ use of photonarratives to envision culturally relevant science pedagogy. Two questions guided the study: (1) What community referents are important for conceptualizing culturally relevant practices in Black science classrooms? and (2) How do teachers’ photonarratives serve to open conversations and notions of culturally relevant science practices? The research methodologically drew upon memory-work, Black feminism, critical theory, visual methodology, and narrative inquiry as “portraiture.” Issues of positionality and identity proved to be central to this work, as three luminaries portray Black teachers’ insights about supports and barriers to teaching and learning science. The community referents identified were associated with church and its oral traditions, inequities of the market place in meeting their basic human needs, and community spaces.
Cause and Effect: Testing a Mechanism and Method for the Cognitive Integration of Basic Science.
Kulasegaram, Kulamakan; Manzone, Julian C; Ku, Cheryl; Skye, Aimee; Wadey, Veronica; Woods, Nicole N
2015-11-01
Methods of integrating basic science with clinical knowledge are still debated in medical training. One possibility is increasing the spatial and temporal proximity of clinical content to basic science. An alternative model argues that teaching must purposefully expose relationships between the domains. The authors compared different methods of integrating basic science: causal explanations linking basic science to clinical features, presenting both domains separately but in proximity, and simply presenting clinical features First-year undergraduate health professions students were randomized to four conditions: (1) science-causal explanations (SC), (2) basic science before clinical concepts (BC), (3) clinical concepts before basic science (CB), and (4) clinical features list only (FL). Based on assigned conditions, participants were given explanations for four disorders in neurology or rheumatology followed by a memory quiz and diagnostic test consisting of 12 cases which were repeated after one week. Ninety-four participants completed the study. No difference was found on memory test performance, but on the diagnostic test, a condition by time interaction was found (F[3,88] = 3.05, P < .03, ηp = 0.10). Although all groups had similar immediate performance, the SC group had a minimal decrease in performance on delayed testing; the CB and FL groups had the greatest decreases. These results suggest that creating proximity between basic science and clinical concepts may not guarantee cognitive integration. Although cause-and-effect explanations may not be possible for all domains, making explicit and specific connections between domains will likely facilitate the benefits of integration for learners.
Curricular Design for Intelligent Systems in Geosciences Using Urban Groundwater Studies.
NASA Astrophysics Data System (ADS)
Cabral-Cano, E.; Pierce, S. A.; Fuentes-Pineda, G.; Arora, R.
2016-12-01
Geosciences research frequently focuses on process-centered phenomena, studying combinations of physical, geological, chemical, biological, ecological, and anthropogenic factors. These interconnected Earth systems can be best understood through the use of digital tools that should be documented as workflows. To develop intelligent systems, it is important that geoscientists and computing and information sciences experts collaborate to: (1) develop a basic understanding of the geosciences and computing and information sciences disciplines so that the problem and solution approach are clear to all stakeholders, and (2) implement the desired intelligent system with a short turnaround time. However, these interactions and techniques are seldom covered in traditional Earth Sciences curricula. We have developed an exchange course on Intelligent Systems for Geosciences to support workforce development and build capacity to facilitate skill-development at the undergraduate student-level. The first version of this course was offered jointly by the University of Texas at Austin and the Universidad Nacional Autónoma de México as an intensive, study-abroad summer course. Content included: basic Linux introduction, shell scripting and high performance computing, data management, experts systems, field data collection exercises and basics of machine learning. Additionally, student teams were tasked to develop a term projects that centered on applications of Intelligent Systems applied to urban and karst groundwater systems. Projects included expert system and reusable workflow development for subsidence hazard analysis in Celaya, Mexico, a classification model to analyze land use change over a 30 Year Period in Austin, Texas, big data processing and decision support for central Texas groundwater case studies and 3D mapping with point cloud processing at three Texas field sites. We will share experiences and pedagogical insights to improve future versions of this course.
NASA Technical Reports Server (NTRS)
Lawson, Charles L.; Krogh, Fred; Van Snyder, W.; Oken, Carol A.; Mccreary, Faith A.; Lieske, Jay H.; Perrine, Jack; Coffin, Ralph S.; Wayne, Warren J.
1994-01-01
MATH77 is high-quality library of ANSI FORTRAN 77 subprograms implementing contemporary algorithms for basic computational processes of science and engineering. Release 4.0 of MATH77 contains 454 user-callable and 136 lower-level subprograms. MATH77 release 4.0 subroutine library designed to be usable on any computer system supporting full ANSI standard FORTRAN 77 language.
Experiences in Digital Circuit Design Courses: A Self-Study Platform for Learning Support
ERIC Educational Resources Information Center
Bañeres, David; Clarisó, Robert; Jorba, Josep; Serra, Montse
2014-01-01
The synthesis of digital circuits is a basic skill in all the bachelor programmes around the ICT area of knowledge, such as Computer Science, Telecommunication Engineering or Electrical Engineering. An important hindrance in the learning process of this skill is that the existing educational tools for the design of circuits do not allow the…
The Mind Research Network - Mental Illness Neuroscience Discovery Grant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roberts, J.; Calhoun, V.
The scientific and technological programs of the Mind Research Network (MRN), reflect DOE missions in basic science and associated instrumentation, computational modeling, and experimental techniques. MRN's technical goals over the course of this project have been to develop and apply integrated, multi-modality functional imaging techniques derived from a decade of DOE-support research and technology development.
Technology for America's Economic Growth, a New Direction To Build Economic Strength.
ERIC Educational Resources Information Center
Clinton, William J.; Gore, Albert, Jr.
Investing in technology is investing in America's future. U.S. technology must move in a new direction to build economic strength and spur economic growth. The traditional roles of support of basic science and mission-oriented technological research must be expanded, so that the federal government plays a key role in helping private firms develop…
Multi-Electron Effects in Attosecond Transient Absorption of CO Molecules
NASA Astrophysics Data System (ADS)
Zhang, Bin; Zhao, Jian; Zhao, Zeng-Xiu
2018-04-01
Not Available Supported by the National Basic Research Program of China under Grant No 2013CB922203, the National Natural Science Foundation of China under Grant No 11374366, the Innovation Foundation of National University of Defense Technology under Grant No B110204, and the Hunan Provincial Innovation Foundation for Postgraduate under Grant No CX2011B010.
ERIC Educational Resources Information Center
Ionas, Ioan Gelu; Cernusca, Dan; Collier, Harvest L.
2012-01-01
This exploratory study presents the outcomes of using self-explanation to improve learners' performance in solving basic chemistry problems. The results of the randomized experiment show the existence of a moderation effect between prior knowledge and the level of support self-explanation provides to learners, suggestive of a synergistic effect…
Arts in Education: Where Are We? Where Should We Be? Who Is Involved?
ERIC Educational Resources Information Center
Martin, Kathryn A.
1990-01-01
Responds to Charles Fowler's article, "Arts Education and the NEA: Does the National Science Foundation Point the Way?" Suggests that arts education is in crisis because of lack of audience support. Recommends that the National Endowment for the Arts (NEA) emphasize the importance of arts education as a part of basic education. (KM)
Coal Combustion Science quarterly progress report, April--June 1992
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hardesty, D.R.; Hurt, R.H.; Baxter, L.L.
1992-09-01
The objective of this work is to support the Office of Fossil Energy in executing research on coal combustion science. This project consists of basic research on coal combustion that supports both the Pittsburgh Energy Technology Center (PETC) Direct Utilization Advanced Research and Technology Development Program, and the International Energy Agency (IEA) Coal Combustion Science Project. Specific tasks include: The characterization of the physical and chemical processes that constitute the early devolatilization phase of coal combustion: Characterization of the combustion behavior of selected coals under conditions relevant to industria pulverized coal-fired furnaces; and to establish a quantitative understanding of themore » mechanisms and rates of transformation, fragmentation, and deposition of mineral matter in coal combustion environments as a function of coal type, particle size and temperature, the initial forms and distributions of mineral species in the unreacted coal, and the local gas temperature and composition.« less
Near-degeneracy in Excited Vibrational States of 207PbF
NASA Astrophysics Data System (ADS)
Mawhorter, Richard; Nguyen, Alexander; Kim, Yongrak; Biekert, Andreas; Sears, Trevor; Grabow, Jens-Uwe; Kudashov, A. D.; Skripnikov, L. V.; Titov, A. V.; Petrov, A. N.
2017-04-01
High-resolution Fourier transform microwave (FTMW) spectroscopy studies of 207PbF have demonstrated the near-degeneracy of two levels of opposite parity. These have attracted attention for the study of parity violation effects and the variation of fundamental constants using 207PbF. Further theoretical work has improved our detailed understanding of both 207PbF and 208PbF, and furthermore recently indicated that the finely split +/- parity levels grow monotonically closer for higher vibrational states. Our experimental results for v = 0-3 confirm this, and are in excellent agreement with our extended theoretical calculations up to v = 4; both will be presented. TJS acknowledges support from Contract No. DE-SC0012704 with the U.S. Department of Energy, Office of Science, supported by its Division of Chemical Sciences, Geosciences and Biosciences within the Office of Basic Energy Sciences., as do RM, AB, YK, & AN from Pomona College & J-UG from the Deutsche Forschungsgemeinschaft (DFG).
Basic Sciences Fertilizing Clinical Microbiology and Infection Management.
Baquero, Fernando
2017-08-15
Basic sciences constitute the most abundant sources of creativity and innovation, as they are based on the passion of knowing. Basic knowledge, in close and fertile contact with medical and public health needs, produces distinct advancements in applied sciences. Basic sciences play the role of stem cells, providing material and semantics to construct differentiated tissues and organisms and enabling specialized functions and applications. However, eventually processes of "practice deconstruction" might reveal basic questions, as in de-differentiation of tissue cells. Basic sciences, microbiology, infectious diseases, and public health constitute an epistemological gradient that should also be an investigational continuum. The coexistence of all these interests and their cross-fertilization should be favored by interdisciplinary, integrative research organizations working simultaneously in the analytical and synthetic dimensions of scientific knowledge. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America.
ERIC Educational Resources Information Center
Fassett, William E.; Campbell, William H.
1984-01-01
A comparison of Basic Pharmaceutical Sciences Examination (BPSE) results with student performance evaluations in core clerkships, institutional and community externships, didactic and clinical courses, and related basic science coursework revealed the BPSE does not predict student performance during clinical instruction. (MSE)
Incorporation of Scientific Ballooning into Science Education
NASA Astrophysics Data System (ADS)
Chanover, N.; Stochaj, S.; Petty, C.
1999-12-01
We are augmenting the science curriculum of the Roswell Independent School District in Roswell, NM, to take advantage of the proximity of a NASA scientific balloon base. The basic science related to balloon experimentation is being incorporated into the K-12 science curriculum via the discussion of topics such as atmospheric properties, weather, phases of matter, plotting skills, and communications in the context of a high-altitude balloon flight. These efforts will culminate in the construction of balloon-borne instruments by high school students, which will be launched during the spring of 2000. A demonstration flight, launched in the spring of 1999, was used to build student enthusiasm and community support for this program, which is funded by the NASA/IDEAS program.
Teaching the science of learning.
Weinstein, Yana; Madan, Christopher R; Sumeracki, Megan A
2018-01-01
The science of learning has made a considerable contribution to our understanding of effective teaching and learning strategies. However, few instructors outside of the field are privy to this research. In this tutorial review, we focus on six specific cognitive strategies that have received robust support from decades of research: spaced practice, interleaving, retrieval practice, elaboration, concrete examples, and dual coding. We describe the basic research behind each strategy and relevant applied research, present examples of existing and suggested implementation, and make recommendations for further research that would broaden the reach of these strategies.
Obama signals new course for NASA
NASA Astrophysics Data System (ADS)
Gwynne, Peter
2010-03-01
US President Barack Obama has signalled his strong support for basic science in his administration's first budget request. If approved by Congress, the request would see the civilian research and development (R & D) budget rise by 5.9% to 66bn. The National Science Foundation would get an extra 9.4% (5.57bn in total) for R & D, while the Department of Energy is set to gain 11.219bn, a rise of 4.9%, although funds for the ITER fusion project are set to fall by 50m to just 80m.
The Critical Role of Organic Chemistry in Drug Discovery.
Rotella, David P
2016-10-19
Small molecules remain the backbone for modern drug discovery. They are conceived and synthesized by medicinal chemists, many of whom were originally trained as organic chemists. Support from government and industry to provide training and personnel for continued development of this critical skill set has been declining for many years. This Viewpoint highlights the value of organic chemistry and organic medicinal chemists in the complex journey of drug discovery as a reminder that basic science support must be restored.
Hot Strange Hadronic Matter in an Effective Model
NASA Astrophysics Data System (ADS)
Qian, Wei-Liang; Su, Ru-Keng; Song, Hong-Qiu
2003-10-01
An effective model used to describe the strange hadronic matter with nucleons, Λ-hyperons, and Ξ-hyperons is extended to finite temperature. The extended model is used to study the density, temperature, and strangeness fraction dependence of the effective masses of baryons in the matter. The thermodynamical quantities, such as free energy and pressure, as well as the equation of state of the matter, are given. The project supported in part by National Natural Science Foundation of China under Grant Nos. 10075071, 10047005, 19947001, 19975010, and 10235030, and the CAS Knowledge Innovation Project No. KJCX2-N11. Also supported by the State Key Basic Research Development Program under Grant No. G200077400 and the Exploration Project of Knowledge Innovation Program of the Chinese Academy of Sciences
Riley, William T; Blizinsky, Katherine D
2017-06-01
The 21st Century Cures Act provides funding for key initiatives relevant to the behavioral and social sciences and includes administrative provisions that facilitate health research and increase the privacy protections of research participants. At about the same time as the passage of the Act, the National Institutes of Health Office of Behavioral and Social Sciences Research released its Strategic Plan 2017-2021, which addresses three scientific priorities: (a) improve the synergy of basic and applied behavioral and social sciences research; (b) enhance and promote the research infrastructure, methods, and measures needed to support a more cumulative and integrated approach to behavioral and social sciences; and (c) facilitate the adoption of behavioral and social sciences research findings in health research and in practice. This commentary describes the implications of the Cures Act on these scientific priorities and on the behavioral and social sciences more broadly.
Designing virtual science labs for the Islamic Academy of Delaware
NASA Astrophysics Data System (ADS)
AlZahrani, Nada Saeed
Science education is a basic part of the curriculum in modern day classrooms. Instructional approaches to science education can take many forms but hands-on application of theory via science laboratory activities for the learner is common. Not all schools have the resources to provide the laboratory environment necessary for hands-on application of science theory. Some settings rely on technology to provide a virtual laboratory experience instead. The Islamic Academy of Delaware (IAD), a typical community-based organization, was formed to support and meet the essential needs of the Muslim community of Delaware. IAD provides science education as part of the overall curriculum, but cannot provide laboratory activities as part of the science program. Virtual science labs may be a successful model for students at IAD. This study was conducted to investigate the potential of implementing virtual science labs at IAD and to develop an implementation plan for integrating the virtual labs. The literature has shown us that the lab experience is a valuable part of the science curriculum (NBPTS, 2013, Wolf, 2010, National Research Council, 1997 & 2012). The National Research Council (2012) stressed the inclusion of laboratory investigations in the science curriculum. The literature also supports the use of virtual labs as an effective substitute for classroom labs (Babateen, 2011; National Science Teachers Association, 2008). Pyatt and Simms (2011) found evidence that virtual labs were as good, if not better than physical lab experiences in some respects. Although not identical in experience to a live lab, the virtual lab has been shown to provide the student with an effective laboratory experience in situations where the live lab is not possible. The results of the IAD teacher interviews indicate that the teachers are well-prepared for, and supportive of, the implementation of virtual labs to improve the science education curriculum. The investigator believes that with the support of the literature and the readiness of the IAD administration and teachers, a recommendation to implement virtual labs into the curriculum can be made.
The Museum of Science and Industry Basic List of Children's Science Books, 1986.
ERIC Educational Resources Information Center
Richter, Bernice, Comp.; Wenzel, Duane, Comp.
This first supplement to the Museum of Science and Industry Basic List of Children's Science Books contains books received for the museum's 13th annual children's science book fair. Children's science books are listed under these headings: animals; astronomy; aviation and space; biography; careers; earth sciences; environment/conservation;…
NASA Astrophysics Data System (ADS)
Walker, R. J.; Beebe, R. F.
2017-12-01
One of the basic problems the NASA Science Mission Directorate (SMD) faces when dealing with preservation of scientific data is the variety of the data. This stems from the fact that NASA's involvement in the sciences spans a broad range of disciplines across the Science Mission Directorate: Astrophysics, Earth Sciences, Heliophysics and Planetary Science. As the ability of some missions to produce large data volumes has accelerated, the range of problems associated with providing adequate access to the data has demanded diverse approaches for data access. Although mission types, complexity and duration vary across the disciplines, the data can be characterized by four characteristics: velocity, veracity, volume, and variety. The rate of arrival of the data (velocity) must be addressed at the individual mission level, validation and documentation of the data (veracity), data volume and the wide variety of data products present huge challenges as the science disciplines strive to provide transparent access to their available data. Astrophysics, supports an integrated system of data archives based on frequencies covered (UV, visible, IR, etc.) or subject areas (extrasolar planets, extra galactic, etc.) and is accessed through the Astrophysics Data Center (https://science.nasa.gov/astrophysics/astrophysics-data-centers/). Earth Science supports the Earth Observing System (https://earthdata.nasa.gov/) that manages the earth science satellite data. The discipline supports 12 Distributed Active Archive Centers. Heliophysics provides the Space Physics Data Facility (https://spdf.gsfc.nasa.gov/) that supports the heliophysics community and Solar Data Analysis Center (https://umbra.nascom.nasa.gov/index.html) that allows access to the solar data. The Planetary Data System (https://pds.nasa.gov) is the main archive for planetary science data. It consists of science discipline nodes (Atmospheres, Geosciences, Cartography and Imaging Sciences, Planetary Plasma Interactions, Ring-Moon Systems, and Small Bodies) and supporting nodes (Engineering and the Navigation and Ancillary Information Facility). This presentation will address current efforts by the disciplines to face the demands of providing user access in the era of Big Data.
Deckelbaum, Richard J; Ntambi, James M; Wolgemuth, Debra J
2011-09-01
This article provides evidence that basic science research and education should be key priorities for global health training, capacity building, and practice. Currently, there are tremendous gaps between strong science education and research in developed countries (the North) as compared to developing countries (the South). In addition, science research and education appear as low priorities in many developing countries. The need to stress basic science research beyond the typical investment of infectious disease basic service and research laboratories in developing areas is significant in terms of the benefits, not only to education, but also for economic strengthening and development of human resources. There are some indications that appreciation of basic science research education and training is increasing, but this still needs to be applied more rigorously and strengthened systematically in developing countries. Copyright © 2011 Elsevier Inc. All rights reserved.
Kearse, Matthew; Moir, Richard; Wilson, Amy; Stones-Havas, Steven; Cheung, Matthew; Sturrock, Shane; Buxton, Simon; Cooper, Alex; Markowitz, Sidney; Duran, Chris; Thierer, Tobias; Ashton, Bruce; Meintjes, Peter; Drummond, Alexei
2012-01-01
Summary: The two main functions of bioinformatics are the organization and analysis of biological data using computational resources. Geneious Basic has been designed to be an easy-to-use and flexible desktop software application framework for the organization and analysis of biological data, with a focus on molecular sequences and related data types. It integrates numerous industry-standard discovery analysis tools, with interactive visualizations to generate publication-ready images. One key contribution to researchers in the life sciences is the Geneious public application programming interface (API) that affords the ability to leverage the existing framework of the Geneious Basic software platform for virtually unlimited extension and customization. The result is an increase in the speed and quality of development of computation tools for the life sciences, due to the functionality and graphical user interface available to the developer through the public API. Geneious Basic represents an ideal platform for the bioinformatics community to leverage existing components and to integrate their own specific requirements for the discovery, analysis and visualization of biological data. Availability and implementation: Binaries and public API freely available for download at http://www.geneious.com/basic, implemented in Java and supported on Linux, Apple OSX and MS Windows. The software is also available from the Bio-Linux package repository at http://nebc.nerc.ac.uk/news/geneiousonbl. Contact: peter@biomatters.com PMID:22543367
Kearse, Matthew; Moir, Richard; Wilson, Amy; Stones-Havas, Steven; Cheung, Matthew; Sturrock, Shane; Buxton, Simon; Cooper, Alex; Markowitz, Sidney; Duran, Chris; Thierer, Tobias; Ashton, Bruce; Meintjes, Peter; Drummond, Alexei
2012-06-15
The two main functions of bioinformatics are the organization and analysis of biological data using computational resources. Geneious Basic has been designed to be an easy-to-use and flexible desktop software application framework for the organization and analysis of biological data, with a focus on molecular sequences and related data types. It integrates numerous industry-standard discovery analysis tools, with interactive visualizations to generate publication-ready images. One key contribution to researchers in the life sciences is the Geneious public application programming interface (API) that affords the ability to leverage the existing framework of the Geneious Basic software platform for virtually unlimited extension and customization. The result is an increase in the speed and quality of development of computation tools for the life sciences, due to the functionality and graphical user interface available to the developer through the public API. Geneious Basic represents an ideal platform for the bioinformatics community to leverage existing components and to integrate their own specific requirements for the discovery, analysis and visualization of biological data. Binaries and public API freely available for download at http://www.geneious.com/basic, implemented in Java and supported on Linux, Apple OSX and MS Windows. The software is also available from the Bio-Linux package repository at http://nebc.nerc.ac.uk/news/geneiousonbl.
Basic Science Training Program.
ERIC Educational Resources Information Center
Brummel, Clete
These six learning modules were developed for Lake Michigan College's Basic Science Training Program, a workshop to develop good study skills while reviewing basic science. The first module, which was designed to provide students with the necessary skills to study efficiently, covers the following topics: time management; an overview of a study…
Amaral, Margarida D; Boj, Sylvia F; Shaw, James; Leipziger, Jens; Beekman, Jeffrey M
2018-06-01
The European Cystic Fibrosis Society (ECFS) Basic Science Working Group (BSWG) organized a session on the topic "Cystic Fibrosis: Beyond the Airways", within the 15th ECFS Basic Science Conference which gathered around 200 researchers working in the basic science of CF. The session was organized and chaired by Margarida Amaral (BioISI, University of Lisboa, Portugal) and Jeffrey Beekman (University Medical Centre Utrecht, Netherlands) as Chair and Vice-Chair of the BSWG and its purpose was to bring attention of participants of the ECFS Basic Science Conference to "more forgotten" organs in CF disease. In this report we attempt to review and integrate the ideas that emerged at the session. Copyright © 2018 European Cystic Fibrosis Society. All rights reserved.
Stott, Martyn Charles; Gooseman, Michael Richard; Briffa, Norman Paul
2016-01-01
Despite the concerted effort of modern undergraduate curriculum designers, the ability to integrate basic sciences in clinical rotations is an ongoing problem in medical education. Students and newly qualified doctors themselves report worry about the effect this has on their clinical performance. There are examples in the literature to support development of attempts at integrating such aspects, but this "vertical integration" has proven to be difficult. We designed an expert-led integrated program using dissection of porcine hearts to improve the use of cardiac basic sciences in clinical medical students' decision-making processes. To our knowledge, this is the first time in the United Kingdom that an animal model has been used to teach undergraduate clinical anatomy to medical students to direct wider application of knowledge. Action research methodology was used to evaluate the local curriculum and assess learners needs, and the agreed teaching outcomes, methods, and delivery outline were established. A total of 18 students in the clinical years of their degree program attended, completing precourse and postcourse multichoice questions examinations and questionnaires to assess learners' development. Student's knowledge scores improved by 17.5% (p = 0.01; students t-test). Students also felt more confident at applying underlying knowledge to decision-making and diagnosis in clinical medicine. An expert teacher (consultant surgeon) was seen as beneficial to students' understanding and appreciation. This study outlines how the development of a teaching intervention using porcine-based methods successfully improved both student's knowledge and application of cardiac basic sciences. We recommend that clinicians fully engage with integrating previously learnt underlying sciences to aid students in developing decision-making and diagnostic skills as well as a deeper approach to learning. Copyright © 2016 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dang, Liem X.; Schenter, Gregory K.
To enhance our understanding of the solvent exchange mechanism in liquid methanol, we report a systematic study of this process using molecular dynamics simulations. We use transition state theory, the Impey-Madden-McDonald method, the reactive flux method, and Grote-Hynes theory to compute the rate constants for this process. Solvent coupling was found to dominate, resulting in a significantly small transmission coefficient. We predict a positive activation volume for the methanol exchange process. The essential features of the dynamics of the system as well as the pressure dependence are recovered from a Generalized Langevin Equation description of the dynamics. We find thatmore » the dynamics and response to anharmonicity can be decomposed into two time regimes, one corresponding to short time response (< 0.1 ps) and long time response (> 5 ps). An effective characterization of the process results from launching dynamics from the planar hypersurface corresponding to Grote-Hynes theory. This results in improved numerical convergence of correlation functions. This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. The calculations were carried out using computer resources provided by the Office of Basic Energy Sciences.« less
Rate Theory of Ion Pairing at the Water Liquid–Vapor Interface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dang, Liem X.; Schenter, Gregory K.; Wick, Collin D.
There is overwhelming evidence that certain ions are present near the vapor–liquid interface of aqueous salt solutions. Despite their importance in many chemical reactive phenomena, how ion–ion interactions are affected by interfaces and their influence on kinetic processes is not well understood. Molecular simulations were carried out to exam the thermodynamics and kinetics of small alkali halide ions in the bulk and near the water vapor–liquid interface. We calculated dissociation rates using classical transition state theory, and corrected them with transmission coefficients determined by the reactive flux method and Grote-Hynes theory. Our results show that, in addition to affecting themore » free energy of ions in solution, the interfacial environments significantly influence the kinetics of ion pairing. The results obtained from the reactive flux method and Grote-Hynes theory on the relaxation time present an unequivocal picture of the interface suppressing ion dissociation. This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. The calculations were carried out using computer resources provided by the Office of Basic Energy Sciences.« less
Wauchope, R Don; Ahuja, Lajpat R; Arnold, Jeffrey G; Bingner, Ron; Lowrance, Richard; van Genuchten, Martinus T; Adams, Larry D
2003-01-01
We present an overview of USDA Agricultural Research Service (ARS) computer models and databases related to pest-management science, emphasizing current developments in environmental risk assessment and management simulation models. The ARS has a unique national interdisciplinary team of researchers in surface and sub-surface hydrology, soil and plant science, systems analysis and pesticide science, who have networked to develop empirical and mechanistic computer models describing the behavior of pests, pest responses to controls and the environmental impact of pest-control methods. Historically, much of this work has been in support of production agriculture and in support of the conservation programs of our 'action agency' sister, the Natural Resources Conservation Service (formerly the Soil Conservation Service). Because we are a public agency, our software/database products are generally offered without cost, unless they are developed in cooperation with a private-sector cooperator. Because ARS is a basic and applied research organization, with development of new science as our highest priority, these products tend to be offered on an 'as-is' basis with limited user support except for cooperating R&D relationship with other scientists. However, rapid changes in the technology for information analysis and communication continually challenge our way of doing business.
Understanding the Relationship Between Kinetics and Thermodynamics in CO 2 Hydrogenation Catalysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeletic, Matthew S.; Hulley, Elliott B.; Helm, Monte L.
Linear free-energy relationships have been identified that link the kinetic activity for catalytic hydrogenation of CO2 to formate with the thermodynamic driving force for the rate-limiting steps of catalysis. Cobalt and rhodium bis(diphosphine) complexes with different hydricities (G°H-), acidities (pKa), and free energies for H2 addition (G°H2) were examined. Catalytic CO2 hydrogenation was studied under 1.8 and 20 atm of pressure (1:1 CO2:H2) at room temperature in tetrahydrofuran with a spread of turnover frequencies (TOF) ranging from 0 to 74,000 h-1. The catalysis was followed by 1H and 31P NMR in real time under all conditions to yield information aboutmore » the rate determining step. Catalysts exhibiting the highest activities were found to have hydride transfer and hydrogen addition steps that were each downhill by approximately 6 to 7 kcal/mol, and the deprotonation step was thermoneutral. The research by M.S.J., A.M.A., E.S.W., and J.C.L. was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. The research by E.B.H., M.L.H., and M.T.M. (X-ray crystallography, synthesis) was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. The authors thank Dr. Samantha A. Burgess for assistance in collecting cyclic voltammetry data. Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhong, Xing; Wang, Lei; Zhou, Hu
A novel PtCo alloy in situ etched and embedded in graphene nanopores (PtCo/NPG) as a high-performance catalyst for ORR was reported. Graphene nanopores were fabricated in situ while forming PtCo nanoparticles that were uniformly embedded in the graphene nanopores. Given the synergistic effect between PtCo alloy and nanopores, PtCo/NPG exhibited 11.5 times higher mass activity than that of the commercial Pt/C cathode electrocatalyst. DFT calculations indicated that the nanopores in NPG cannot only stabilize PtCo nanoparticles but can also definitely change the electronic structures, thereby change its adsorption abilities. This enhancement can lead to a favorable reaction pathway on PtCo/NPGmore » for ORR. This study showed that PtCo/NPG is a potential candidate for the next generation of Pt-based catalysts in fuel cells. This study also offered a promising alternative strategy and enabled the fabrication of various kinds of metal/graphene nanopore nanohybrids with potential applications in catalysts and potential use for other technological devices. The authors acknowledge the financial support from the National Basic Research Program (973 program, No. 2013CB733501), Zhejiang Provincial Education Department Research Program (Y201326554) and the National Natural Science Foundation of China (No. 21306169, 21101137, 21136001, 21176221 and 91334013). D. Mei acknowledges the support from the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle. Computing time was granted by the grand challenge of computational catalysis of the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) and by the National Energy Research Scientific Computing Center (NERSC).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhong, Xing; Liu, Lin; Jiang, Yu
The need for inexpensive and high-activity oxygen reduction reaction (ORR) electrocatalysts has attracted considerable research interest over the past years. Here we report a novel hybrid that contains cobalt nitride/nitrogen-rich hollow carbon spheres (CoxN/NHCS) as a high-performance catalyst for ORR. The CoxN nanoparticles were uniformly dispersed and confined in the hollow NHCS shell. The performance of the resulting CoxN/NHCS hybrid was comparable with that of a commercial Pt/C at the same catalyst loading toward ORR, but the mass activity of the former was 5.7 times better than that of the latter. The nitrogen in both CoxN and NHCS, especially CoxN,more » could weaken the adsorption of reaction intermediates (O and OOH), which follows the favourable reaction pathway on CoxN/NHCS according to the DFT-calculated Gibbs free energy diagrams. Our results demonstrated a new strategy for designing and developing inexpensive, non-precious metal electrocatalysts for next-generation fuels. The authors acknowledge the financial support from the National Basic Research Program (973 program, No. 2013CB733501) and the National Natural Science Foundation of China (No. 21306169, 21101137, 21136001, 21176221 and 91334013). Dr. D. Mei is supported by the US Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle. Computing time was granted by the grand challenge of computational catalysis of the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL). EMSL is a national scientific user facility located at Pacific Northwest National Laboratory (PNNL) and sponsored by DOE’s Office of Biological and Environmental Research.« less
NASA space life sciences research and education support program
NASA Technical Reports Server (NTRS)
Jones, Terri K.
1995-01-01
USRA's Division of Space Life Sciences (DSLS) was established in 1983 as the Division of Space Biomedicine to facilitate participation of the university community in biomedical research programs at the NASA Johnson Space Center (JSC). The DSLS is currently housed in the Center for Advanced Space Studies (CASS), sharing quarters with the Division of Educational Programs and the Lunar and Planetary Institute. The DSLS provides visiting scientists for the Johnson Space Center; organizes conferences, workshops, meetings, and seminars; and, through subcontracts with outside institutions, supports NASA-related research at more than 25 such entities. The DSLS has considerable experience providing visiting scientists, experts, and consultants to work in concert with NASA Life Sciences researchers to define research missions and goals and to perform a wide variety of research administration and program management tasks. The basic objectives of this contract have been to stimulate, encourage, and assist research and education in the NASA life sciences. Scientists and experts from a number of academic and research institutions in this country and abroad have been recruited to support NASA's need to find a solution to human physiological problems associated with living and working in space and on extraterrestrial bodies in the solar system.
Clinical Correlations as a Tool in Basic Science Medical Education
Klement, Brenda J.; Paulsen, Douglas F.; Wineski, Lawrence E.
2016-01-01
Clinical correlations are tools to assist students in associating basic science concepts with a medical application or disease. There are many forms of clinical correlations and many ways to use them in the classroom. Five types of clinical correlations that may be embedded within basic science courses have been identified and described. (1) Correlated examples consist of superficial clinical information or stories accompanying basic science concepts to make the information more interesting and relevant. (2) Interactive learning and demonstrations provide hands-on experiences or the demonstration of a clinical topic. (3) Specialized workshops have an application-based focus, are more specialized than typical laboratory sessions, and range in complexity from basic to advanced. (4) Small-group activities require groups of students, guided by faculty, to solve simple problems that relate basic science information to clinical topics. (5) Course-centered problem solving is a more advanced correlation activity than the others and focuses on recognition and treatment of clinical problems to promote clinical reasoning skills. Diverse teaching activities are used in basic science medical education, and those that include clinical relevance promote interest, communication, and collaboration, enhance knowledge retention, and help develop clinical reasoning skills. PMID:29349328
Binstock, Judith; Junsanto-Bahri, Tipsuda
2014-04-01
The relevance of current standard medical school science prerequisites is being reexamined. (1) To identify which science prerequisites are perceived to best prepare osteopathic medical students for their basic science and osteopathic manipulative medicine (OMM) coursework and (2) to determine whether science prerequisites for osteopathic medical school should be modified. Preclinical osteopathic medical students and their basic science and OMM faculty from 3 colleges of osteopathic medicine were surveyed about the importance of specific science concepts, laboratories, and research techniques to medical school coursework. Participants chose responses on a 5-point scale, with 1 indicating "strongly disagree" or "not important" and 5 indicating "strongly agree" or "extremely important." Participants were also surveryed on possible prerequisite modifications. Student responses (N=264) to the general statement regarding prerequisites were "neutral" for basic science coursework and "disagree" for OMM coursework, with mean (standard deviation [SD]) scores of 3.37 (1.1) and 2.68 (1.2), respectively. Faculty responses (N=49) were similar, with mean (SD) scores of 3.18 (1.1) for basic science coursework and 2.67 (1.2) for OMM coursework. Student mean (SD) scores were highest for general biology for basic science coursework (3.93 [1.1]) and physics for OMM coursework (2.5 [1.1]). Student mean (SD) scores were lowest for physics for basic science coursework (1.79 [1.2]) and organic chemistry for OMM coursework (1.2 [0.7]). Both basic science and OMM faculty rated general biology highest in importance (mean [SD] scores, 3.73 [0.9] and 4.22 [1.0], respectively). Students and faculty rated biochemistry high in importance for basic science coursework (mean [SD] scores of 3.66 [1.2] and 3.32 [1.2], respectively). For basic science coursework, students and faculty rated most laboratories as "important," with the highest mean (SD) ratings for general anatomy (students, 3.66 [1.5]; faculty, 3.72 [1.1]) and physiology (students, 3.56 [1.7]; faculty, 3.61 [1.1]). For their OMM coursework, students rated only general anatomy and physiology laboratories as "important" (mean [SD] scores, 3.22 [1.8] and 2.61 [1.6], respectively), whereas OMM faculty rated all laboratories as "important" (mean scores, >3). Both student and faculty respondents rated research techniques higher in importance for basic science coursework than for OMM coursework. For prerequisite modifications, all respondents indicated "no change" for biology and "reduce content" for organic chemistry and physics. All respondents favored adding physiology and biochemistry as prerequisites. General biology and laboratory were the only standard prerequisites rated as "important." Research techniques were rated as "important" for basic science coursework only. Physiology and biochemistry were identified as possible additions to prerequisites. It may be necessary for colleges of osteopathic medicine to modify science prerequisites to reflect information that is pertinent to their curricula.
10 Tips to Reduce Your Chance of Losing Vision from the Most Common Cause of Blindness
... 2019 Basic and Clinical Science Course, Section 02: Fundamentals and Principles of Ophthalmology 2018-2019 Basic and ... 2019 Basic and Clinical Science Course, Section 02: Fundamentals and Principles of Ophthalmology Print 2018-2019 Basic ...
Online Learning Tools as Supplements for Basic and Clinical Science Education.
Ellman, Matthew S; Schwartz, Michael L
2016-01-01
Undergraduate medical educators are increasingly incorporating online learning tools into basic and clinical science curricula. In this paper, we explore the diversity of online learning tools and consider the range of applications for these tools in classroom and bedside learning. Particular advantages of these tools are highlighted, such as delivering foundational knowledge as part of the "flipped classroom" pedagogy and for depicting unusual physical examination findings and advanced clinical communication skills. With accelerated use of online learning, educators and administrators need to consider pedagogic and practical challenges posed by integrating online learning into individual learning activities, courses, and curricula as a whole. We discuss strategies for faculty development and the role of school-wide resources for supporting and using online learning. Finally, we consider the role of online learning in interprofessional, integrated, and competency-based applications among other contemporary trends in medical education are considered.
Thermodynamics and Diffusion Coupling in Alloys—Application-Driven Science
NASA Astrophysics Data System (ADS)
Ågren, John
2012-10-01
As emphasized by Stokes (1997), the common assumption of a linear progression from basic research (science), via applied research, to technological innovations (engineering) should be questioned. In fact, society would gain much by supporting long-term research that stems from practical problems and has usefulness as a key word. Such research may be fundamental, and often, it cannot be distinguished from "basic" research if it were not for its different motivation. The development of the Calphad method and the more recent development of accompanying kinetic approaches for diffusion serve as excellent examples and are the themes of this symposium. The drivers are, e.g., the development of new materials, processes, and lifetime predictions. Many challenges of the utmost practical importance require long-term fundamental research. This presentation will address some of them, e.g., the effect of various ordering phenomena on activation barriers, and the strength and practical importance of correlation effects.
An undergraduate course, and new textbook, on ``Physical Models of Living Systems''
NASA Astrophysics Data System (ADS)
Nelson, Philip
2015-03-01
I'll describe an intermediate-level course on ``Physical Models of Living Systems.'' The only prerequisite is first-year university physics and calculus. The course is a response to rapidly growing interest among undergraduates in several science and engineering departments. Students acquire several research skills that are often not addressed in traditional courses, including: basic modeling skills, probabilistic modeling skills, data analysis methods, computer programming using a general-purpose platform like MATLAB or Python, dynamical systems, particularly feedback control. These basic skills, which are relevant to nearly any field of science or engineering, are presented in the context of case studies from living systems, including: virus dynamics; bacterial genetics and evolution of drug resistance; statistical inference; superresolution microscopy; synthetic biology; naturally evolved cellular circuits. Publication of a new textbook by WH Freeman and Co. is scheduled for December 2014. Supported in part by EF-0928048 and DMR-0832802.
Online Learning Tools as Supplements for Basic and Clinical Science Education
Ellman, Matthew S.; Schwartz, Michael L.
2016-01-01
Undergraduate medical educators are increasingly incorporating online learning tools into basic and clinical science curricula. In this paper, we explore the diversity of online learning tools and consider the range of applications for these tools in classroom and bedside learning. Particular advantages of these tools are highlighted, such as delivering foundational knowledge as part of the “flipped classroom” pedagogy and for depicting unusual physical examination findings and advanced clinical communication skills. With accelerated use of online learning, educators and administrators need to consider pedagogic and practical challenges posed by integrating online learning into individual learning activities, courses, and curricula as a whole. We discuss strategies for faculty development and the role of school-wide resources for supporting and using online learning. Finally, we consider the role of online learning in interprofessional, integrated, and competency-based applications among other contemporary trends in medical education are considered. PMID:29349323
Vink, Sylvia; van Tartwijk, Jan; Verloop, Nico; Gosselink, Manon; Driessen, Erik; Bolk, Jan
2016-08-01
To determine the content of integrated curricula, clinical concepts and the underlying basic science concepts need to be made explicit. Preconstructed concept maps are recommended for this purpose. They are mainly constructed by experts. However, concept maps constructed by residents are hypothesized to be less complex, to reveal more tacit basic science concepts and these basic science concepts are expected to be used for the organization of the maps. These hypotheses are derived from studies about knowledge development of individuals. However, integrated curricula require a high degree of cooperation between clinicians and basic scientists. This study examined whether there are consistent variations regarding the articulation of integration when groups of experienced clinicians and basic scientists and groups of residents and basic scientists-in-training construct concept maps. Seven groups of three clinicians and basic scientists on experienced level and seven such groups on resident level constructed concept maps illuminating clinical problems. They were guided by instructions that focused them on articulation of integration. The concept maps were analysed by features that described integration. Descriptive statistics showed consistent variations between the two expertise levels. The concept maps of the resident groups exceeded those of the experienced groups in articulated integration. First, they used significantly more links between clinical and basic science concepts. Second, these links connected basic science concepts with a greater variety of clinical concepts than the experienced groups. Third, although residents did not use significantly more basic science concepts, they used them significantly more frequent to organize the clinical concepts. The conclusion was drawn that not all hypotheses could be confirmed and that the resident concept maps were more elaborate than expected. This article discusses the implications for the role that residents and basic scientists-in-training might play in the construction of preconstructed concept maps and the development of integrated curricula.
NASA Astrophysics Data System (ADS)
Adams, Elizabeth L.; Carrier, Sarah J.; Minogue, James; Porter, Stephen R.; McEachin, Andrew; Walkowiak, Temple A.; Zulli, Rebecca A.
2017-02-01
The Instructional Practices Log in Science (IPL-S) is a daily teacher log developed for K-5 teachers to self-report their science instruction. The items on the IPL-S are grouped into scales measuring five dimensions of science instruction: Low-level Sense-making, High-level Sense-making, Communication, Integrated Practices, and Basic Practices. As part of the current validation study, 206 elementary teachers completed 4137 daily log entries. The purpose of this paper is to provide evidence of validity for the IPL-S's scales, including (a) support for the theoretical framework; (b) cognitive interviews with logging teachers; (c) item descriptive statistics; (d) comparisons of 28 pairs of teacher and rater logs; and (e) an examination of the internal structure of the IPL-S. We present evidence to describe the extent to which the items and the scales are completed accurately by teachers and differentiate various types of science instructional strategies employed by teachers. Finally, we point to several practical implications of our work and potential uses for the IPL-S. Overall, results provide neutral to positive support for the validity of the groupings of items or scales.
A Simulation for Teaching the Basic and Clinical Science of Fluid Therapy
ERIC Educational Resources Information Center
Rawson, Richard E.; Dispensa, Marilyn E.; Goldstein, Richard E.; Nicholson, Kimberley W.; Vidal, Noni Korf
2009-01-01
The course "Management of Fluid and Electrolyte Disorders" is an applied physiology course taught using lectures and paper-based cases. The course approaches fluid therapy from both basic science and clinical perspectives. While paper cases provide a basis for application of basic science concepts, they lack key components of genuine clinical…
NASA Astrophysics Data System (ADS)
Selkin, P. A.; Cline, E. T.; Beaufort, A.
2008-12-01
In the University of Washington, Tacoma's Environmental Science program, we are implementing a curriculum-wide, scaffolded strategy to teach scientific writing. Writing in an introductory science course is a powerful means to make students feel part of the scientific community, an important goal in our environmental science curriculum. Writing is already an important component of the UW Tacoma environmental science program at the upper levels: our approach is designed to prepare students for the writing-intensive junior- and senior-level seminars. The approach is currently being tested in introductory biology and physics before it is incorporated in the rest of the introductory environmental science curriculum. The centerpiece of our approach is a set of research and writing assignments woven throughout the biology and physics course sequences. The assignments progress in their degree of complexity and freedom through the sequence of introductory science courses. Each assignment is supported by a number of worksheets and short written exercises designed to teach writing and critical thought skills. The worksheets are focused on skills identified both by research in science writing and the instructors' experience with student writing. Students see the assignments as a way to personalize their understanding of basic science concepts, and to think critically about ideas that interest them. We find that these assignments provide a good way to assess student comprehension of some of the more difficult ideas in the basic sciences, as well as a means to engage students with the challenging concepts of introductory science courses. Our experience designing these courses can inform efforts to integrate writing throughout a geoscience or environmental science curriculum, as opposed to on a course-by-course basis.
NASA Astrophysics Data System (ADS)
Johnson, Angela C.
Women of color drop out of science at higher rates than other students. This study is an ethnographic examination of why this occurs and how women of color can be supported in studying science. Through participant observation in science classes, labs, and a program supporting high-achieving students of color, as well as interviews with minority women science students, the student identities celebrated by science departments, as well as those embraced by my informants, were uncovered. Cultural norms of science classes often differed from those of the women in the study. Only one identity---apprentice research scientist---was celebrated in science settings, although others were tolerated. The women tended to either embrace the apprentice research scientist identity, form an alternative science-oriented identity, or never form a satisfying science student identity. Women who were more racially marked were more likely to fall into the second and third groups. This study uncovered difficulties which women students of color faced more than other science students. In addition, it uncovered several seemingly neutral institutional features of science lectures and labs which actually served to discourage or marginalize women students of color. It revealed values held in common by the women in the study and how those characteristics (especially altruism and pride and pleasure in academic challenge) led them to study science. It also revealed strategies used by the most successful women science students, as well as by professors and programs most successful at supporting women of color in the study of science. Based on this study, increasing the participation of women of color in science holds the possibility of altering the basic values of science; however, institutional features and personal interactions within science departments tend to resist those changes, primarily by encouraging women of color to abandon their study of science.
Integrated Medical Curriculum: Advantages and Disadvantages
Quintero, Gustavo A.; Vergel, John; Arredondo, Martha; Ariza, María-Cristina; Gómez, Paula; Pinzon-Barrios, Ana-Maria
2016-01-01
Most curricula for medical education have been integrated horizontally and vertically–-vertically between basic and clinical sciences. The Flexnerian curriculum has disappeared to permit integration between basic sciences and clinical sciences, which are taught throughout the curriculum. We have proposed a different form of integration where the horizontal axis represents the defined learning outcomes and the vertical axis represents the teaching of the sciences throughout the courses. We believe that a mere integration of basic and clinical sciences is not enough because it is necessary to emphasize the importance of humanism as well as health population sciences in medicine. It is necessary to integrate basic and clinical sciences, humanism, and health population in the vertical axis, not only in the early years but also throughout the curriculum, presupposing the use of active teaching methods based on problems or cases in small groups. PMID:29349303
The Museum of Science and Industry Basic List of Children's Science Books, 1987.
ERIC Educational Resources Information Center
Richter, Bernice, Comp.; Wenzel, Duane, Comp.
Presented is the second annual supplement to the Museum of Science and Industry Basic List of Children's Science Books 1973-1984. In this supplement, children's science books are listed under the headings of animals, astronomy, aviation and space, biography, earth sciences, encyclopedias and reference books, environment and conservation, fiction,…
Rodent Research on the International Space Station - A Look Forward
NASA Technical Reports Server (NTRS)
Kapusta, A. B.; Smithwick, M.; Wigley, C. L.
2014-01-01
Rodent Research on the International Space Station (ISS) is one of the highest priority science activities being supported by NASA and is planned for up to two flights per year. The first Rodent Research flight, Rodent Research-1 (RR-1) validates the hardware and basic science operations (dissections and tissue preservation). Subsequent flights will add new capabilities to support rodent research on the ISS. RR-1 will validate the following capabilities: animal husbandry for up to 30 days, video downlink to support animal health checks and scientific analysis, on-orbit dissections, sample preservation in RNA. Later and formalin, sample transfer from formalin to ethanol (hindlimbs), rapid cool-down and subsequent freezing at -80 of tissues and carcasses, sample return and recovery. RR-2, scheduled for SpX-6 (Winter 20142015) will add the following capabilities: animal husbandry for up to 60 days, RFID chip reader for individual animal identification, water refill and food replenishment, anesthesia and recovery, bone densitometry, blood collection (via cardiac puncture), blood separation via centrifugation, soft tissue fixation in formalin with transfer to ethanol, and delivery of injectable drugs that require frozen storage prior to use. Additional capabilities are also planned for future flights and these include but are not limited to male mice, live animal return, and the development of experiment unique equipment to support science requirements for principal investigators that are selected for flight. In addition to the hardware capabilities to support rodent research the Crew Office has implemented a training program in generic rodent skills for all USOS crew members during their pre-assignment training rotation. This class includes training in general animal handling, euthanasia, injections, and dissections. The dissection portion of this training focuses on the dissection of the spleen, liver, kidney with adrenals, brain, eyes, and hindlimbs. By achieving and maintaining proficiency in these basic skills as part of the nominal astronaut training curriculum this allows the rodent research program to focus the mission specific crew training on scientific requirements of research and operations flow.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Fei; Divan, Ralu; Parkinson, Bruce A.
2015-06-29
Carbon interdigitated array (IDA) electrodes have been applied to study the homogeneous hydrogen evolution electrocatalyst [Ni(PPh2NBn2)2]2+ (where PPh2NBn2 is 1,5-dibenzyl-3,7-diphenyl-1,5-diaza-3,7-diphosphacyclooctane). The existence of reaction intermediates in the catalytic cycle is inferred from the electrochemical behavior of a glassy carbon disk electrodes and carbon IDA electrodes. The currents on IDA electrodes for an EC’ (electron transfer reaction followed by a catalytic reaction) mechanism are derived from the number of redox cycles and the contribution of non-catalytic currents. The catalytic reaction rate constant was then extracted from the IDA current equations. Applying the IDA current and kinetic equations to the electrochemical responsemore » of the [Ni(PPh2NBn2)2]2+ catalyst yielded a rate constant of 0.10 s-1 for the hydrogen evolution reaction that agrees with the literature value. The quantitative analysis of IDA cyclic voltammetry can be used as a simple and straightforward method for determining rate constants in other catalytic systems. This work was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the Department of Energy, Office of Science, Office of Basic Energy Sciences. Pacific Northwest National Laboratory is operated by Battelle for DOE. Use of the Center for Nanoscale Materials was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.« less
Oxygen regulates molecular mechanisms of cancer progression and metastasis.
Gupta, Kartik; Madan, Esha; Sayyid, Muzzammil; Arias-Pulido, Hugo; Moreno, Eduardo; Kuppusamy, Periannan; Gogna, Rajan
2014-03-01
Oxygen is the basic molecule which supports life and it truly is "god's gift to life." Despite its immense importance, research on "oxygen biology" has never received the light of the day and has been limited to physiological and biochemical studies. It seems that in modern day biology, oxygen research is summarized in one word "hypoxia." Scientists have focused on hypoxia-induced transcriptomics and molecular-cellular alterations exclusively in disease models. Interestingly, the potential of oxygen to control the basic principles of biology like homeostatic maintenance, transcription, replication, and protein folding among many others, at the molecular level, has been completely ignored. Here, we present a perspective on the crucial role played by oxygen in regulation of basic biological phenomena. Our conclusion highlights the importance of establishing novel research areas like oxygen biology, as there is great potential in this field for basic science discoveries and clinical benefits to the society.
Nielsen, Dorte Guldbrand; Gotzsche, Ole; Sonne, Ole; Eika, Berit
2012-10-01
Two major views on the relationship between basic science knowledge and clinical knowledge stand out; the Two-world view seeing basic science and clinical science as two separate knowledge bases and the encapsulated knowledge view stating that basic science knowledge plays an overt role being encapsulated in the clinical knowledge. However, resent research has implied that a more complex relationship between the two knowledge bases exists. In this study, we explore the relationship between immediate relevant basic science (physiology) and clinical knowledge within a specific domain of medicine (echocardiography). Twenty eight medical students in their 3rd year and 45 physicians (15 interns, 15 cardiology residents and 15 cardiology consultants) took a multiple-choice test of physiology knowledge. The physicians also viewed images of a transthoracic echocardiography (TTE) examination and completed a checklist of possible pathologies found. A total score for each participant was calculated for the physiology test, and for all physicians also for the TTE checklist. Consultants scored significantly higher on the physiology test than did medical students and interns. A significant correlation between physiology test scores and TTE checklist scores was found for the cardiology residents only. Basic science knowledge of immediate relevance for daily clinical work expands with increased work experience within a specific domain. Consultants showed no relationship between physiology knowledge and TTE interpretation indicating that experts do not use basic science knowledge in routine daily practice, but knowledge of immediate relevance remains ready for use.
Clinical investigations for SUS, the Brazilian public health system.
Paula, Ana Patrícia de; Giozza, Silvana Pereira; Pereira, Michelle Zanon; Boaventura, Patrícia Souza; Santos, Leonor Maria Pacheco; Sachetti, Camile Giaretta; Tamayo, César Omar Carranza; Kowalski, Clarissa Campos Guaragna; Elias, Flavia Tavares Silva; Serruya, Suzanne Jacob; Guimarães, Reinaldo
2012-01-01
Scientific and technological development is crucial for advancing the Brazilian health system and for promoting quality of life. The way in which the Brazilian Ministry of Health has supported clinical research to provide autonomy, self-sufficiency, competitiveness and innovation for the healthcare industrial production complex, in accordance with the National Policy on Science, Technology and Innovation in Healthcare, was analyzed. Descriptive investigation, based on secondary data, conducted at the Department of Science and Technology, Ministry of Health. The Ministry of Health's research management database, PesquisaSaúde, was analyzed from 2002 to 2009, using the key word "clinical research" in the fields "primary sub-agenda" or "secondary sub-agenda". The 368 projects retrieved were sorted into six categories: basic biomedical research, preclinical studies, expanded clinical research, clinical trials, infrastructure support and health technology assessment. From a structured review on "clinical research funding", results from selected countries are presented and discussed. The amount invested was R$ 140 million. The largest number of projects supported "basic biomedical research", while the highest amounts invested were in "clinical trials" and "infrastructure support". The southeastern region had the greatest proportion of projects and financial resources. In some respects, Brazil is ahead of other BRICS countries (Russia, India, China and South Africa), especially with regard to establishing a National Clinical Research Network. The Ministry of Health ensured investments to encourage clinical research in Brazil and contributed towards promoting cohesion between investigators, health policies and the healthcare industrial production complex.
NASA Astrophysics Data System (ADS)
Welp, Ulrich; Leroux, M.; Kihlstrom, K. J.; Kwok, W.-K.; Koshelev, A. E.; Miller, D. J.; Rupich, M. W.; Fleshler, S.; Malozemoff, A. P.; Kayani, A.
2015-03-01
We report on magnetization and transport measurements of the critical current density, Jc, of commercial 2G YBCO coated conductors before and after proton irradiation. The samples were irradiated along the c-axis with 4 MeV protons. Proton irradiation produces a mixed pinning landscape composed of pre-existing rare earth particles and a uniform distribution of irradiation induced nm-sized defects. This pinning landscape strongly reduces the suppression of Jc in magnetic fields resulting in a doubling of Jc in a field of ~ 4T. The irradiation dose-dependence of Jc is characterized by a temperature and field dependent sweat spot that at 5 K and 6 T occurs around 20x1016 p/cm2. Large-scale time dependent Ginzburg-Landau simulations yield a good description of our results. This work supported by the Center for Emergent Superconductivity, an Energy Frontier Research Center funded by the U.S. D.O.E., Office of Science, Office of Basic Energy Sciences (KK, ML, AEK) and by the D.O.E, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357 (UW, WKK).
NASA Astrophysics Data System (ADS)
Zhang, Xin; Liu, Jian; Li, Yi; Su, Wen-Bin; Li, Ji-Chao; Zhu, Yuan-Hu; Li, Mao-Kui; Wang, Chun-Ming; Wang, Chun-Lei
2015-03-01
Not Available Supported by the National Basic Research Program of China under Grant No 2013CB632506, the National Natural Science Foundation of China under Grant Nos 51202132, 51002087 and 11374186, and the Independent Innovation Foundation of Shandong University under Grant No IIFSDU 2012TS028.
NASA Astrophysics Data System (ADS)
Ke-Xue, Sun; Shu-Yi, Zhang; Kiyotaka, Wasa; Xiu-Ji, Shui
2016-06-01
Not Available Supported by the National Natural Science Foundation of China under Grant Nos 11174142 and 11304160, the National Basic Research Program of China under Grant No 2012CB921504, and the Special Fund for Public Interest of China under Grant No 201510068.
CSBB: synthetic biology research at Newcastle University.
Goñi-Moreno, Angel; Wipat, Anil; Krasnogor, Natalio
2017-06-15
The Centre for Synthetic Biology and the Bioeconomy (CSBB) brings together a far-reaching multidisciplinary community across all Newcastle University's faculties - Medical Sciences, Science, Agriculture and Engineering, and Humanities, Arts and Social Sciences. The CSBB focuses on many different areas of Synthetic Biology, including bioprocessing, computational design and in vivo computation, as well as improving understanding of basic molecular machinery. Such breadth is supported by major national and international research funding, a range of industrial partners in the North East of England and beyond, as well as a large number of doctoral and post-doctoral researchers. The CSBB trains the next generation of scientists through a 1-year MSc in Synthetic Biology. © 2017 The Author(s).
Darnton’s Cats, Bacon’s Rifle, and History of Science 101.
Küçük, Harun
2016-12-01
Many of us who teach History of Science 101 courses face a situation where we must tell our story without relying on students’ prior knowledge of, say, the significance of ancient Greece and China, premodern and modern colonialism, or Marx. This leaves us needing a clear and punchy basic message, supported by a solid, well-structured, and inclusive story line that also doubles as world history. This response takes a look at the prospects and problems of longue durée histories of science from the perspective of cultural history. It voices sympathy toward Frans van Lunteren’s project and presents a small sample of potential difficulties involved in matching machines with historical periods.
Academic research opportunities at the National Geospatial-Intelligence Agency(NGA)
NASA Astrophysics Data System (ADS)
Loomer, Scott A.
2006-05-01
The vision of the National Geospatial-Intelligence Agency (NGA) is to "Know the Earth...Show the Way." To achieve this vision, the NGA provides geospatial intelligence in all its forms and from whatever source-imagery, imagery intelligence, and geospatial data and information-to ensure the knowledge foundation for planning, decision, and action. Academia plays a key role in the NGA research and development program through the NGA Academic Research Program. This multi-disciplinary program of basic research in geospatial intelligence topics provides grants and fellowships to the leading investigators, research universities, and colleges of the nation. This research provides the fundamental science support to NGA's applied and advanced research programs. The major components of the NGA Academic Research Program are: *NGA University Research Initiatives (NURI): Three-year basic research grants awarded competitively to the best investigators across the US academic community. Topics are selected to provide the scientific basis for advanced and applied research in NGA core disciplines. *Historically Black College and University - Minority Institution Research Initiatives (HBCU-MI): Two-year basic research grants awarded competitively to the best investigators at Historically Black Colleges and Universities, and Minority Institutions across the US academic community. *Intelligence Community Post-Doctoral Research Fellowships: Fellowships providing access to advanced research in science and technology applicable to the intelligence community's mission. The program provides a pool of researchers to support future intelligence community needs and develops long-term relationships with researchers as they move into career positions. This paper provides information about the NGA Academic Research Program, the projects it supports and how researchers and institutions can apply for grants under the program. In addition, other opportunities for academia to engage with NGA through training programs and recruitment are discussed.
Ganau, Mario; Paris, Marco; Syrmos, Nikolaos; Ganau, Laura; Ligarotti, Gianfranco K I; Moghaddamjou, Ali; Prisco, Lara; Ambu, Rossano; Chibbaro, Salvatore
2018-02-26
The field of neuro-oncology is rapidly progressing and internalizing many of the recent discoveries coming from research conducted in basic science laboratories worldwide. This systematic review aims to summarize the impact of nanotechnology and biomedical engineering in defining clinically meaningful predictive biomarkers with a potential application in the management of patients with brain tumors. Data were collected through a review of the existing English literature performed on Scopus, MEDLINE, MEDLINE in Process, EMBASE, and/or Cochrane Central Register of Controlled Trials: all available basic science and clinical papers relevant to address the above-stated research question were included and analyzed in this study. Based on the results of this systematic review we can conclude that: (1) the advances in nanotechnology and bioengineering are supporting tremendous efforts in optimizing the methods for genomic, epigenomic and proteomic profiling; (2) a successful translational approach is attempting to identify a growing number of biomarkers, some of which appear to be promising candidates in many areas of neuro-oncology; (3) the designing of Randomized Controlled Trials will be warranted to better define the prognostic value of those biomarkers and biosignatures.
NASA Astrophysics Data System (ADS)
Munyeme, G.
The economic and social impact of science based technologies has become increasingly dominant in modern world The benefits are a result of combined leading-edge science and technology skills which offers opportunities for new innovations Knowledge in basic sciences has become the cornerstone of sustainable economic growth and national prosperity Unfortunately in many developing countries research and education in basic sciences are inadequate to enable science play its full role in national development For this reason most developing countries have not fully benefited from the opportunities provided by modern technologies The lack of human and financial resources is the main reason for slow transfer of scientific knowledge and technologies to developing countries Developing countries therefore need to develop viable research capabilities and knowledge in basic sciences The advert of the International Heliophysical Year IHY may provide opportunities for strengthening capacity in basic science research in developing countries Among the science goals of the IHY is the fostering of international scientific cooperation in the study of heliophysical phenomena This paper will address and provide an in depth discussion on how basic science research can be enhanced in a developing country using the framework of science goals and objectives of IHY It will further highlight the hurdles and experiences of creating in-country training capacity and research capabilities in space science It will be shown that some of these hurdles can be
Educational Outreach at CASPER
NASA Astrophysics Data System (ADS)
Hyde, Truell; Smith, Bernard; Carmona-Reyes, Jorge
2007-11-01
The CASPER Educational Outreach program with support from the Department of Education, the Department of Labor and the National Science Foundation advances physics education through a variety of avenues including CASPER's REU / RET program, High School Scholars Program, spiral curriculum development program and the CASPER Physics Circus. These programs impact K-12 teachers and students providing teachers with curriculum, supporting hands-on material and support for introducing plasma and basic physical science into the classroom. The most visible of the CASPER outreach programs is the Physics Circus, created during the 1999-2000 school year and funded since that time through two large grants from the Department of Education. The Physics Circus is part of GEAR UP Waco (Gaining Early Awareness and Readiness for Undergraduate Programs) and was originally one of 185 grants awarded nationwide by the U. S. Department of Education in 1999 to help 200,000 disadvantaged children prepare for and gain a pathway to undergraduate programs. The CASPER Physics Circus is composed of intense science explorations, physics demonstrations, hands-on interactive displays, theatrical performances, and excellent teaching experiences. Examples and efficacy data from the above will be discussed.
Student Support for EIPBN 2010 Conference
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reginald C. Farrow
2011-03-11
The 54th International Conference on Electron, Ion and Photon Beam Technology and Nanofabrication, 2010, held at the Egan Convention Center and Hilton in Anchorage, Alaska, June 1 to 4, 2010 was a great success in large part because financial support allowed robust participation from students. The conference brought together 444 engineers and scientists from industries and universities from all over the world to discuss recent progress and future trends. Among the emerging technologies that are within the scope of EIPBN is Nanofabrication for Energy Sources along with nanofabrication for the realization of low power integrated circuits. Every year, EIPBN providesmore » financial support for students to attend the conference.The students gave oral and poster presentations of their research and many published peer reviewed articles in a special conference issue of the Journal of Vacuum Science and Technology B. The Department of Energy Office of Basic Energy Sciences supported 20 students from US universities with a $15,000.« less
Student Support for EIPBN 2014 Conference - Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farrow, Reginald C.
The 58th International Conference on Electron, Ion and Photon Beam Technology and Nanofabrication (EIPBN), 2014, was held at the Omni Shoreham Hotel in Washington, DC, May 27 to 30, 2014. The EIPBN Conference is recognized as the foremost international meeting dedicated to lithographic science and technology and its application to micro and nanofabrication techniques. The conference brought together 386 engineers and scientists from industries and universities from all over the world to discuss recent progress and future trends. Among the emerging technologies that are within the scope of EIPBN is Nanofabrication for Energy Sources along with nanofabrication for the realizationmore » of low power integrated circuits. Every year, EIPBN provides financial support for students to attend the conference. Travel support for 43 students came from a mixture of government agencies and corporate donors. The Department of Energy Office of Basic Energy Sciences provided $5,000 to support student travel from US universities to participate at EIPBN 2014 through grant DE-SC0011789.« less
State of Supported Nickel Nanoparticles during Catalysis in Aqueous Media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chase, Zizwe; Kasakov, Stanislav; Shi, Hui
2015-11-09
The state of Ni supported on HZSM-5 zeolite, silica, and sulfonated carbon was determined during aqueous phase catalysis of phenol hydrodeoxygenation using in situ extended X-ray absorption fine structure spectroscopy (EXAFS). On sulfonated carbon and HZSM-5 supports, the NiO and Ni(OH)2 were readily reduced to Ni(0) under reaction conditions (~35 bar H2 in aqueous phenol solutions containing up to 0.5 wt. % phosphoric acid at 473 K). On the silica support, less than 70% of the Ni was converted to Ni(0) under reaction conditions, which is attributed to the formation of Ni phyllosilicates. Over a broad range of reaction conditionsmore » there was no leaching of Ni from the supports. In contrast, rapid leaching of the Ni(II) from HZSM-5 was observed, when 15 wt. % aqueous acetic acid was substituted for the aqueous phenol solution. Once the metallic state of Ni was established there was no leaching in 15 wt. % acetic acid at 473 K and 35 bar H2. This work was supported by the U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences (BES), Division of Chemical Sciences, Geosciences & Biosciences. The STEM was supported under the Laboratory Directed Research and Development Program: Chemical Imaging Initiative at Pacific Northwest National Laboratory (PNNL), a multi-program national laboratory operated for DOE by Battelle under Contract DE-AC05-76RL01830. STEM was performed at EMSL, a DOE Office of Science user facility sponsored by the Office of Biological and Environmental Research and located at PNNL.« less
Nanocrystalline Anatase Titania Supported Vanadia Catalysts: Facet-dependent Structure of Vanadia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Wei-Zhen; Gao, Feng; Li, Yan
2015-07-09
Titania supported vanadia, a classic heterogeneous catalyst for redox reactions, typically has nonhomogeneous vanadia species on various titania facets, making it challenging not only to determine and quantify each species but also to decouple their catalytic contributions. We prepared truncated tetragonal bipyramidal (TiO2-TTB) and rod-like (TiO2-Rod) anatase titania with only {101} and {001} facets at ratios of about 80:20 and 93:7, respectively, and used them as supports of sub-monolayer vanadia. The structure and redox properties of supported vanadia were determined by XRD, TEM, XPS, EPR, Raman, FTIR and TPR, etc. It was found that vanadia preferentially occupy TiO2 {001} facetsmore » and form isolated O=V4+(O-Ti)2 species, and with further increase in vanadia surface coverage, isolated O=V5+(O-Ti)3 and oligomerized O=V5+(O-M)3 (M = Ti or V) species form on TiO2 {101} facets. The discovery on support facet-dependent structure of vanadia on anatase titania is expected to enable the elucidation of structure-function correlations on high surface area TiO2 supported vanadia catalysts. This work was supported by U. S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Biosciences and Geosciences. The research was performed in the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the DOE Office of Biological and Environmental Research, and located at Pacific Northwest National Laboratory (PNNL). PNNL is operated for DOE by Battelle.« less
Senior Computational Scientist | Center for Cancer Research
The Basic Science Program (BSP) pursues independent, multidisciplinary research in basic and applied molecular biology, immunology, retrovirology, cancer biology, and human genetics. Research efforts and support are an integral part of the Center for Cancer Research (CCR) at the Frederick National Laboratory for Cancer Research (FNLCR). The Cancer & Inflammation Program (CIP), Basic Science Program, HLA Immunogenetics Section, under the leadership of Dr. Mary Carrington, studies the influence of human leukocyte antigens (HLA) and specific KIR/HLA genotypes on risk of and outcomes to infection, cancer, autoimmune disease, and maternal-fetal disease. Recent studies have focused on the impact of HLA gene expression in disease, the molecular mechanism regulating expression levels, and the functional basis for the effect of differential expression on disease outcome. The lab’s further focus is on the genetic basis for resistance/susceptibility to disease conferred by immunogenetic variation. KEY ROLES/RESPONSIBILITIES The Senior Computational Scientist will provide research support to the CIP-BSP-HLA Immunogenetics Section performing bio-statistical design, analysis and reporting of research projects conducted in the lab. This individual will be involved in the implementation of statistical models and data preparation. Successful candidate should have 5 or more years of competent, innovative biostatistics/bioinformatics research experience, beyond doctoral training Considerable experience with statistical software, such as SAS, R and S-Plus Sound knowledge, and demonstrated experience of theoretical and applied statistics Write program code to analyze data using statistical analysis software Contribute to the interpretation and publication of research results
What is Basic Research? Insights from Historical Semantics.
Schauz, Désirée
2014-01-01
For some years now, the concept of basic research has been under attack. Yet although the significance of the concept is in doubt, basic research continues to be used as an analytical category in science studies. But what exactly is basic research? What is the difference between basic and applied research? This article seeks to answer these questions by applying historical semantics. I argue that the concept of basic research did not arise out of the tradition of pure science. On the contrary, this new concept emerged in the late 19th and early 20th centuries, a time when scientists were being confronted with rising expectations regarding the societal utility of science. Scientists used the concept in order to try to bridge the gap between the promise of utility and the uncertainty of scientific endeavour. Only after 1945, when United States science policy shaped the notion of basic research, did the concept revert to the older ideals of pure science. This revival of the purity discourse was caused by the specific historical situation in the US at that time: the need to reform federal research policy after the Second World War, the new dimension of ethical dilemmas in science and technology during the atomic era, and the tense political climate during the Cold War.
Fukui, Tsuguya; Takahashi, Osamu; Rahman, Mahbubur
2013-11-01
During 1991-2000, Japan contribution to the top general medicine journals was very small although the contribution to the top basic science journals was sizeable. However, it has not been examined whether the contribution to the top general medicine and basic science journals has changed during the last decade (2001-2010). The objective of this study was to compare Japan representation in high-impact general medicine and basic science journals between the years 1991-2000 and 2001-2010. We used PubMed database to examine the frequency of articles originated from Japan and published in 7 high-impact general medicine and 6 high-impact basic science journals. Several Boolean operators were used to connect name of the journal, year of publication and corresponding authors' affiliation in Japan. Compared to the 1991-2000 decade, Japan contribution to the top general medicine journals did not increase over the 2001-2010 period (0.66% vs. 0.74%, P = 0.255). However, compared to the same period, its contribution to the top basic science journals increased during 2001-2010 (2.51% vs. 3.60%, P < 0.001). Japan representation in basic science journals showed an upward trend over the 1991-2000 period (P < 0.001) but remained flat during 2001-2010 (P = 0.177). In contrast, the trend of Japan representation in general medicine journals remained flat both during 1991-2000 (P = 0.273) and 2001-2010 (P = 0.073). Overall, Japan contribution to the top general medicine journals has remained small and unchanged over the last two decades. However, top basic science journals had higher Japan representation during 2001-2010 compared to 1991-2000.
D'Silva, Evan R; Woolfolk, Marilyn W; Duff, Renee E; Inglehart, Marita R
2018-04-01
Admitting students from non-traditional or disadvantaged backgrounds can increase the diversity of dental school classes. The aims of this study were to analyze how interested non-traditional incoming dental students were at the beginning of an academic pre-orientation program in learning about basic science, dentistry-related topics, and academic skills; how confident they were in doing well in basic science and dentistry-related courses; and how they evaluated the program at the end. The relationships between personal (interest/confidence) and structural factors (program year, number of participants) and program evaluations were also explored. All 360 students in this program at the University of Michigan from 1998 to 2016 were invited to participate in surveys at the beginning and end of the educational intervention. A total of 353 students responded at the beginning (response rate 98%), and 338 responded at the end (response rate 94%). At the beginning, students were more interested in learning about basic science and dentistry-related topics than about academic skills, and they were more confident in their dentistry- related than basic science-related abilities. At the end, students valued basic science and dentistry-related education more positively than academic skills training. Confidence in doing well and interest in basic science and dentistry-related topics were correlated. The more recent the program was, the less confident the students were in their basic science abilities and the more worthwhile they considered the program to be. The more participants the program had, the more confident the students were, and the better they evaluated their basic science and dentistry-related education. Overall, this academic pre-orientation program was positively evaluated by the participants.
Integration of Basic and Clinical Science in the Psychiatry Clerkship.
Wilkins, Kirsten M; Moore, David; Rohrbaugh, Robert M; Briscoe, Gregory W
2017-06-01
Integration of basic and clinical science is a key component of medical education reform, yet best practices have not been identified. The authors compared two methods of basic and clinical science integration in the psychiatry clerkship. Two interventions aimed at integrating basic and clinical science were implemented and compared in a dementia conference: flipped curriculum and coteaching by clinician and physician-scientist. The authors surveyed students following each intervention. Likert-scale responses were compared. Participants in both groups responded favorably to the integration format and would recommend integration be implemented elsewhere in the curriculum. Survey response rates differed significantly between the groups and student engagement with the flipped curriculum video was limited. Flipped curriculum and co-teaching by clinician and physician-scientist are two methods of integrating basic and clinical science in the psychiatry clerkship. Student learning preferences may influence engagement with a particular teaching format.
Complex Topographic Feature Ontology Patterns
Varanka, Dalia E.; Jerris, Thomas J.
2015-01-01
Semantic ontologies are examined as effective data models for the representation of complex topographic feature types. Complex feature types are viewed as integrated relations between basic features for a basic purpose. In the context of topographic science, such component assemblages are supported by resource systems and found on the local landscape. Ontologies are organized within six thematic modules of a domain ontology called Topography that includes within its sphere basic feature types, resource systems, and landscape types. Context is constructed not only as a spatial and temporal setting, but a setting also based on environmental processes. Types of spatial relations that exist between components include location, generative processes, and description. An example is offered in a complex feature type ‘mine.’ The identification and extraction of complex feature types are an area for future research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yan; Wei, Zhehao; Gao, Feng
2015-05-01
In this work, CeO2 nanocubes with controlled particle size and dominating (100) facets are synthesized as supports for VOx catalysts. Combined TEM, SEM, XRD, and Raman study reveals that the oxygen vacancy density of CeO2 supports can be tuned by tailoring the particle sizes without altering the dominating facets, where smaller particle sizes result in larger oxygen vacancy densities. At the same vanadium coverage, the VOx catalysts supported on small-sized CeO2 supports with higher oxygen defect densities exhibit promoted redox property and lower activation energy for methoxyl group decomposition, as evidenced by H2-TPR and methanol TPD study. These results furthermore » confirm that the presence of oxygen vacancies plays an important role in promoting the activity of VOx species in methanol oxidation. We gratefully acknowledge financial support from the U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. Part of this work was conducted in the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by DOE’s Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL is a multiprogram national laboratory operated for the DOE by Battelle.« less
Brown, Bethanne; Skau, Kenneth; Wall, Andrea
2009-04-07
To facilitate the student's ability to make the connection of the core foundational basic science courses to the practice of pharmacy. In 2000, 10 faculty members from basic science and practice courses created and implemented an integrated Patient Care Project for which students chose a volunteer patient and completed 15 different assignments Evidence of student learning, such as grades and reflective comments along with collected evaluative data, indicated an enhancement in students' perceived understanding of the connection between basic science and patient care. The Patient Care Project provided students an opportunity to use knowledge gained in their first-year foundational courses to the care of a patient, solidifying their understanding of the connection between basic science and patient care.
Yazici, Hasan; Gogus, Feride; Esen, Fehim; Yazici, Yusuf
2014-06-01
There is concern that self-critique with authors acknowledging limitations of their work is not given due importance in scientific articles. We had the impression that this was more true for articles in basic compared with clinical science. We thus surveyed for the presence of self-critique in the discussion sections of the original articles in three rheumatology journals with attention to differences between the basic and the clinical science articles. The discussion sections of the original articles in January, May, and September 2012 issues of Annals of the Rheumatic Diseases, Arthritis and Rheumatism, and Rheumatology (Oxford) were surveyed (n = 223) after classifying each article as mainly related to clinical or basic science. The discussion sections were electronically scanned by two observers for the presence of the root word "limit" or its derivatives who also read each discussion section for the presence of any limitations otherwise voiced. A limitation discussion in any form was present in only 19 (20.2%) or 29 (30.1%) of 94 basic science vs. 95 (73.6%) or 107 (82.3%) of 129 clinical science articles (P < 0.0001 for either observer). Self-critique, especially lacking in basic science articles, should be given due attention. Copyright © 2014 Elsevier Inc. All rights reserved.
Role of Suzanne Mubarak Science Exploration Center in Motivating Physics Learning (abstract)
NASA Astrophysics Data System (ADS)
Mohsen, Mona
2009-04-01
The role of Science Exploration centers to promote learning ``beyond school walls'' is demonstrated. The Suzane Mubarak Science Exploration Center (www.smsec.com) at Hadaek El Kobba, Cairo, was inaugurated in 1998 with the assistance of Zusane Mubarak, the first lady of Egypt and the minister of education. It was the first interactive science and technology center in Egypt. After 10 years, the number of centers has increased to 33 nationwide. Since its inauguration the center has received over 3 million visitors. Through different facilities, such as the internet, science cities, multimedia, and virtual reality programs, basic principles of science are simplified and their technological applications in our daily lives are explored. These facilities are fully equipped with new media such as video conferencing, videotapes, overhead projectors, data shows, and libraries, as well as demonstration tools for basic science. The main objectives of the science exploration centers are discussed such as: (1) curricula development for on-line learning; (2) integration of e-learning programs into basic science (physics, mathematics, chemistry, and biology) and (3) workshops and organizations for students, teachers, and communities dealing with basic science programs.
Small watershed-scale research and the challenges ahead
NASA Astrophysics Data System (ADS)
Larsen, M. C.; Glynn, P. D.
2008-12-01
For the past century, Federal mission science agencies (eg. USFS, NRCS, ARS, USGS) have had the long- term agency goals, infrastructure, and research staff to conduct research and data collection in small watersheds as well as support these activities for non-Federal partners. The National Science Foundation has been a strong partner with the Federal mission science agencies, through the LTER network, which is dependent on Federally supported research sites, and more recently with the emerging CUAHSI, WATERS, CZEN, and NEON initiatives. Much of the NSF-supported research builds on the foundations provided by their Federally supported partners, who sustain the long-term, extensive monitoring activity and research sites, including making long-term data available to all users via public interfaces. The future of these programs, and their enhancement/expansion to face the intensifying concurrent challenges of population growth, land-use change, and climate change, is dependent on a well-funded national commitment to basic science. Such a commitment will allow the scientific community to advance our understanding of these scientific challenges and to synthesize our understanding among research sites and at the national scale. Small watersheds serve as essential platforms where hypotheses can be tested, as sentinels for climate change, and as a basis for comparing and scaling up local information and syntheses to regional and continental scales. The science guides resource management and mitigation decisions and is fundamental to the development of predictive models. Furthermore, small-watershed research and monitoring programs are generally undervalued because many research questions that can be addressed now or in the future were not anticipated when the sites were initiated. Some examples include: 1) the quantification, characterization, and understanding of how emerging contaminants, personal care products, and endocrine disruptors affect organisms - substances that could not be detected until the recent increased sensitivity of modern techniques; 2) the recognition of changing climate and its effects on already-stressed water resources and ecosystems; 3) more integrated monitoring and modeling of ecosystem processes and quantification of ecosystem services. Historical hydrological and biogeochemical information available at USGS and other watershed-research and -monitoring sites can now be used in conjunction with active monitoring of biota and biological processes (especially those involving plants, invertebrates and microbes). The results will help provide a more nationally consistent framework for evaluating ecosystem health, and assessing ecosystem services, in the face of changing climate and land-use. These, and related science questions and societal issues are complex and require strong collaborations across disciplinary and organizational boundaries. Along with a well-funded national commitment to basic watershed research, the USGS continually seeks to strengthen its small-watershed and ecosystem-science programs through partnerships with NSF, State, and Federal agencies. Given the growing U.S. population, continual development in water-scarce regions, and general water- and soil-resource stress under competing national interests and priorities, the role of basic watershed-scale research and monitoring is essential because of its unique niche in the development of the improved environmental understanding and predictive models needed by resource managers.
ERIC Educational Resources Information Center
Nwafor, C. E.; Umoke, C. C.
2016-01-01
This study was designed to evaluate the content adequacy and readability of approved basic science and technology textbooks in use in junior secondary schools in Nigeria. Eight research questions guided the study. The sample of the study consisted of six (6) approved basic science and technology textbooks, 30 Junior Secondary Schools randomly…
Goldenberg, Neil M; Steinberg, Benjamin E; Rutka, James T; Chen, Robert; Cabral, Val; Rosenblum, Norman D; Kapus, Andras; Lee, Warren L
2016-01-01
Physicians have traditionally been at the forefront of medical research, bringing clinical questions to the laboratory and returning with ideas for treatment. However, we have anecdotally observed a decline in the popularity of basic science research among trainees. We hypothesized that fewer resident physicians have been pursuing basic science research training over time. We examined records from residents in the Surgeon-Scientist and Clinician-Investigator programs at the University of Toronto (1987-2016). Research by residents was categorized independently by 2 raters as basic science, clinical epidemiology or education-related based on the title of the project, the name of the supervisor and Pubmed searches. The study population was divided into quintiles of time, and the proportion pursuing basic science training in each quintile was calculated. Agreement between the raters was 100%; the categorization of the research topic remained unclear in 9 cases. The proportion of trainees pursuing basic science training dropped by 60% from 1987 to 2016 ( p = 0.005). Significantly fewer residents in the Surgeon-Scientist and Clinician-Investigator Programs at the University of Toronto are pursuing training in the basic sciences as compared with previous years.
Accessing Earth science data from the EOS data and information system
NASA Technical Reports Server (NTRS)
Mcdonald, Kenneth R.; Calvo, Sherri
1993-01-01
An overview of the Earth Observing System Data and Information System (EOSDIS) is presented, concentrating on the users' interactions with the system and highlighting those features that are driven by the unique requirements of the Global Change Research Program and the supported science community. However, a basic premise of the EOSDIS is that the system must evolve to meet changes in user needs and to incorporate advances in data system technology. Therefore, the development process which is being used to accommodate these changes and some of the potential areas of change are also addressed.
NASA Astrophysics Data System (ADS)
Lou, Yong-Le; Zhang, Yu-Ming; Guo, Hui; Xu, Da-Qing; Zhang, Yi-Men
2016-11-01
Not Available Supported by the National Defense Advance Research Foundation under Grant No 9140A08XXXXXX0DZ106, the Basic Research Program of Ministry of Education of China under Grant No JY10000925005, the Scientific Research Program Funded by Shaanxi Provincial Education Department under Grant No 11JK0912, the Scientific Research Foundation of Xi'an University of Science and Technology under Grant No 2010011, and the Doctoral Research Startup Fund of Xi'an University of Science and Technology under Grant No 2010QDJ029.
NASA Astrophysics Data System (ADS)
Richman, Barbara T.
Support for science generally is strong in President Ronald Reagan's fiscal 1983 budget proposal, released last week; agency budgets for the National Oceanic and Atmospheric Administration (NOAA) and the U.S. Geological Survey (USGS), however, did not beat inflation.Total federal funding for research and development and related facilities rose 9.6% to $44.3 billion, beating the 7.3% inflation rate estimated for 1982 by the Office of Management and Budget. Obligations for basic research by various departments and agencies also topped inflation. The President proposes federal funding of $5.82 billion in fiscal 1983, compared with $5.35 billion in 1982.
Secretary | Center for Cancer Research
The Basic Science Program (BSP) pursues independent, multidisciplinary research programs in basic or applied molecular biology, immunology, retrovirology, cancer biology, or human genetics. Research efforts and support are an integral part of the Center for Cancer Research (CCR) at the Frederick national Laboratory for Cancer Research (FNLCR). The BSP Office provides procurement and logistical assistance in support of the research activities of the Center for Cancer Research.KEY ROLES/RESPONSIBILITIES The Secretary III will: Provide heavy-volume procurement support to a large customer base of laboratory staff, both Leidos Biomed and CCR (gov’t), using blanket orders, purchase requisitions, credit card, and online warehouse system Data entry into appropriate financial system component (CostPoint, Cor360), status checks on orders, maintenance of orders log, reconciliation of credit card transactions, maintenance of electronic filing systems Providing logistical support for the facilitation of travel packages (both pre-travel and post travel) for Leidos Biomed employees, as well as the coordination of seminar speakers and subsequent reimbursements Composing and answering emails/correspondence Communicating with all levels of personnel, both verbally and in writing, to gather and clearly convey information
ERIC Educational Resources Information Center
Kennedy, Kevin
It has been acknowledged that the federal government has a responsibility to provide significant support for the nation's basic research whereas the role for support of technology is less understood. This report concerns a study on the determination of the appropriate role of the federal government in technology development. Currently the federal…
Plasmons in quasi-two-dimensional metals
NASA Astrophysics Data System (ADS)
da Jornada, Felipe H.; Xian, Lede; Sen, H. Sener; Rubio, Angel; Louie, Steven G.
We employ ab initio density-functional theory (DFT) and GW calculations to understand and predict the plasmon dispersion in quasi-two-dimensional (quasi-2D) metals. We show that, unlike what is found in idealized 2D electron gases, plasmons are virtually dispersionless in real quasi-2D metals for a wide range of excitation wave vectors that are experimentally accessible. We further develop a simpler model that captures this plasmon dispersion in quasi-2D metals and which depends on a single parameter: the characteristic screening length due to interband transitions. Our ab initio calculations further predict that monolayer metallic transition metal dichalcogenides are excellent candidates to explore these dispersionless (flat) plasmons: having large excitation energy that is away from the Landau damping regions makes them ideal systems to support long-lived, spatially-localized 2D plasmons which are highly tunable with substrate. This work is supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division; the National Science Foundation; the European Research Council project (ERC-2015-AdG-694097), and the AFOSR Grant No. FA2386-15-1-0006 AOARD 144088.
How Collecting and Freely Sharing Geophysical Data Broadly Benefits Society
NASA Astrophysics Data System (ADS)
Frassetto, A.; Woodward, R.; Detrick, R. S.
2017-12-01
Valuable but often unintended observations of environmental and human-related processes have resulted from open sharing of multidisciplinary geophysical observations collected over the past 33 years. These data, intended to fuel fundamental academic research, are part of the Incorporated Research Institutions for Seismology (IRIS), which is sponsored by the National Science Foundation and has provided a community science facility supporting earthquake science and related disciplines since 1984. These community facilities have included arrays of geophysical instruments operated for EarthScope, an NSF-sponsored science initiative designed to understand the architecture and evolution of the North American continent, as well as the Global Seismographic Network, Greenland Ice Sheet Monitoring Network, a repository of data collected around the world, and other community assets. All data resulting from this facility have been made openly available to support researchers across any field of study and this has expanded the impact of these data beyond disciplinary boundaries. This presentation highlights vivid examples of how basic research activities using open data, collected as part of a community facility, can inform our understanding of manmade earthquakes, geomagnetic hazards, climate change, and illicit testing of nuclear weapons.
Surface acoustic wave devices for sensor applications
NASA Astrophysics Data System (ADS)
Bo, Liu; Xiao, Chen; Hualin, Cai; Mohammad, Mohammad Ali; Xiangguang, Tian; Luqi, Tao; Yi, Yang; Tianling, Ren
2016-02-01
Surface acoustic wave (SAW) devices have been widely used in different fields and will continue to be of great importance in the foreseeable future. These devices are compact, cost efficient, easy to fabricate, and have a high performance, among other advantages. SAW devices can work as filters, signal processing units, sensors and actuators. They can even work without batteries and operate under harsh environments. In this review, the operating principles of SAW sensors, including temperature sensors, pressure sensors, humidity sensors and biosensors, will be discussed. Several examples and related issues will be presented. Technological trends and future developments will also be discussed. Project supported by the National Natural Science Foundation of China (Nos. 60936002, 61025021, 61434001, 61574083), the State Key Development Program for Basic Research of China (No. 2015CB352100), the National Key Project of Science and Technology (No. 2011ZX02403-002) and the Special Fund for Agroscientific Research in the Public Interest of China (No. 201303107). M.A.M is additionally supported by the Postdoctoral Fellowship (PDF) program of the Natural Sciences and Engineering Research Council (NSERC) of Canada and the China Postdoctoral Science Foundation (CPSF).
NASA Astrophysics Data System (ADS)
Qi, Bin; Guo, Linli; Zhang, Zhixian
2016-07-01
Space life science and life support engineering are prominent problems in manned deep space exploration mission. Some typical problems are discussed in this paper, including long-term life support problem, physiological effect and defense of varying extraterrestrial environment. The causes of these problems are developed for these problems. To solve these problems, research on space life science and space medical-engineering should be conducted. In the aspect of space life science, the study of space gravity biology should focus on character of physiological effect in long term zero gravity, co-regulation of physiological systems, impact on stem cells in space, etc. The study of space radiation biology should focus on target effect and non-target effect of radiation, carcinogenicity of radiation, spread of radiation damage in life system, etc. The study of basic biology of space life support system should focus on theoretical basis and simulating mode of constructing the life support system, filtration and combination of species, regulation and optimization method of life support system, etc. In the aspect of space medical-engineering, the study of bio-regenerative life support technology should focus on plants cultivation technology, animal-protein production technology, waste treatment technology, etc. The study of varying gravity defense technology should focus on biological and medical measures to defend varying gravity effect, generation and evaluation of artificial gravity, etc. The study of extraterrestrial environment defense technology should focus on risk evaluation of radiation, monitoring and defending of radiation, compound prevention and removal technology of dust, etc. At last, a case of manned lunar base is analyzed, in which the effective schemes of life support system, defense of varying gravity, defense of extraterrestrial environment are advanced respectively. The points in this paper can be used as references for intensive study on key technologies.
Annual program analysis of the NASA Space Life Sciences Research and Education Support Program
NASA Technical Reports Server (NTRS)
1994-01-01
The basic objectives of this contract are to stimulate, encourage, and assist research and education in NASA life sciences. Scientists and experts from a number of academic and research institutions in this country and abroad are recruited to support NASA's need to find a solution to human physiological problems associated with living and working in space and on extraterrestrial bodies in the solar system. To fulfill the contract objectives, a cadre of staff and visiting scientists, consultants, experts, and subcontractors has been assembled into a unique organization dedicated to the space life sciences. This organization, USRA's Division of Space Life Sciences, provides an academic atmosphere, provides an organizational focal point for science and educational activities, and serves as a forum for the participation of eminent scientists in the biomedical programs of NASA. The purpose of this report is to demonstrate adherence to the requirement of Contract NAS9-18440 for a written review and analysis of the productivity and success of the program. In addition, this report makes recommendations for future activities and conditions to further enhance the objectives of the program and provides a self-assessment of the cost performance of the contract.
JPRS Report, Science & Technology. Europe: Economic Competitiveness
1991-08-09
cost . Under the current funding scheme, support is only available through a system of reimbursable interest-free loans. With the currently proposed... system , basic indus- trial research will henceforth be financed by subsidies (of up to 50 percent of gross costs ). Small- and medium- sized...extremely cost -effective installations. • To market the MD110 as a foundation for office automation facilities. • To target very large system
Ab initio molecular dynamics study on the local structures in Ce70Al30 and La70Al30 metallic glasses
NASA Astrophysics Data System (ADS)
Li, FX; Kong, JB; Li, MZ
2018-05-01
Not Available Project supported by the National Natural Science Foundation of China (Grant Nos. 51631003 and 51271197), the National Basic Program of China (Grant No. 2015CB856800), the Fundamental Research Funds for the Central Universities, China, and the Research Funds of Renmin University of China (Grant No. 16XNLQ01).
NASA Astrophysics Data System (ADS)
Song, Zhen-Zhen; Liu, Zheng-Jun; Zhou, Ke-Ya; Sun, Qiong-Ge; Liu, Shu-Tian
2017-02-01
Not Available Project supported by the National Basic Research Program of China (Grant No. 2013CBA01702), the National Natural Science Foundation of China (Grant Nos. 61377016, 11104049, 10974039, 61575055, and 61575053), the Fundamental Research Funds for the Central Universities, China (Grant No. HIT.BRETIII.201406), and the Program for New Century Excellent Talents in University, China (Grant No. NCET-12-0148).
Seventh BES (Basic Energy Sciences) catalysis and surface chemistry research conference
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1990-03-01
Research programs on catalysis and surface chemistry are presented. A total of fifty-seven topics are included. Areas of research include heterogeneous catalysis; catalysis in hydrogenation, desulfurization, gasification, and redox reactions; studies of surface properties and surface active sites; catalyst supports; chemical activation, deactivation; selectivity, chemical preparation; molecular structure studies; sorption and dissociation. Individual projects are processed separately for the data bases. (CBS)
NASA Astrophysics Data System (ADS)
Chen, Yizhen; Wang, Xiangxian; Wang, Ru; Yang, Hua; Qi, Yunping
2017-05-01
Not Available Project supported by the National Natural Science Foundation of China (Grant No. 61505074), the National Basic Research Program of China (Grant No. 2013CBA01703), the HongLiu Young Teachers Training Program Funded Projects of Lanzhou University of Technology, China (Grant No. Q201509), and the National Undergraduate Innovation Training Program of China (Grant No. 201610731030).
Leveraging Data Analysis for Domain Experts: An Embeddable Framework for Basic Data Science Tasks
ERIC Educational Resources Information Center
Lohrer, Johannes-Y.; Kaltenthaler, Daniel; Kröger, Peer
2016-01-01
In this paper, we describe a framework for data analysis that can be embedded into a base application. Since it is important to analyze the data directly inside the application where the data is entered, a tool that allows the scientists to easily work with their data, supports and motivates the execution of further analysis of their data, which…
NASA Astrophysics Data System (ADS)
Li, Xue; He, Da-Wei; Wang, Yong-Sheng; Hu, Yin; Zhao, Xuan; Fu, Chen; Wu, Jing-Yan
2018-05-01
Not Available Project supported by the National Key R&D Program of China (Grant No. 2016YFA0202302), the National Natural Science Foundation of China (Grant Nos. 61335006, 61527817, and 61378073), the Overseas Expertise Introduction Center for Discipline Innovation, 111 Center, China, and the National Basic Research Program of China (Grant No. KSJB17030536).
FWP executive summaries: basic energy sciences materials sciences and engineering program (SNL/NM).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samara, George A.; Simmons, Jerry A.
2006-07-01
This report presents an Executive Summary of the various elements of the Materials Sciences and Engineering Program which is funded by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy at Sandia National Laboratories, New Mexico. A general programmatic overview is also presented.
NASA Astrophysics Data System (ADS)
Feng, Guo-Sheng; Wu, Ji-Zhou; Wang, Xiao-Feng; Zheng, Ning-Xuan; Li, Yu-Qing; Ma, Jie; Xiao, Lian-Tuan; Jia, Suo-Tang
2015-10-01
We report a robust method of directly stabilizing a grating feedback diode laser to an arbitrary frequency in a large range. The error signal, induced from the difference between the frequency measured by a wavelength meter and the preset target frequency, is fed back to the piezoelectric transducer module of the diode laser via a sound card in the computer. A visual Labview procedure is developed to realize a feedback system. In our experiment the frequency drift of the diode laser is reduced to 8 MHz within 25 min. The robust scheme can be adapted to realize the arbitrary frequency stabilization for many other kinds of lasers. Project supported by the National Basic Research Program of China (Grant No. 2012CB921603), the Program for Changjiang Scholars and Innovative Research Team in University of Ministry of Education of China (Grant No. IRT13076), the Major Research Plan of the National Natural Science Foundation of China (Grant No. 91436108), the National Natural Science Foundation of China (Grant Nos. 61378014, 61308023, 61378015, and 11434007), the Fund for Fostering Talents in Basic Science of the National Natural Science Foundation of China (Grant No. J1103210), the New Teacher Fund of the Ministry of Education of China (Grant No. 20131401120012), and the Natural Science Foundation for Young Scientists of Shanxi Province, China (Grant No. 2013021005-1).
NASA Technical Reports Server (NTRS)
1986-01-01
The Space Station, projected for construction in the early 1990s, will be an orbiting, low-gravity, permanently manned facility providing unprecedented opportunities for scientific research. Facilities for Life Sciences research will include a pressurized research laboratory, attached payloads, and platforms which will allow investigators to perform experiments in the crucial areas of Space Medicine, Space Biology, Exobiology, Biospherics and Controlled Ecological Life Support System (CELSS). These studies are designed to determine the consequences of long-term exposure to space conditions, with particular emphasis on assuring the permanent presence of humans in space. The applied and basic research to be performed, using humans, animals, and plants, will increase our understanding of the effects of the space environment on basic life processes. Facilities being planned for remote observations from platforms and attached payloads of biologically important elements and compounds in space and on other planets (Exobiology) will permit exploration of the relationship between the evolution of life and the universe. Space-based, global scale observations of terrestrial biology (Biospherics) will provide data critical for understanding and ultimately managing changes in the Earth's ecosystem. The life sciences community is encouraged to participate in the research potential the Space Station facilities will make possible. This document provides the range and scope of typical life sciences experiments which could be performed within a pressurized laboratory module on Space Station.
ERIC Educational Resources Information Center
Kabat, Hugh F.; And Others
The areas of basic science pharmacy instruction and clinical pharmacy practice and their interrelationships were identified in order to help develop didactic and clinical experience alternatives. A 10-member advisory committee ranked basic pharmaceutical science topical areas in terms of their applicability to clinical practice utilizing a Delphi…
Pokhrel, Subhash; Reidpath, Daniel; Allotey, Pascale
2011-01-06
The level of funding provides a good proxy for the level of commitment or prioritisation given to a particular issue. While the need for research relevant to social, economic, cultural and behavioural aspects of neglected tropical diseases (NTD) control has been acknowledged, there is limited data on the level of funding that supports NTD social science research. A case study was carried out in which the spending of a major independent funder, the Bill and Melinda Gates Foundation (BMGF) - was analysed. A total of 67 projects funded between October 1998 and November 2008 were identified from the BMGF database. With the help of keywords within the titles of 67 grantees, they were categorised as social science or non-social science research based on available definition of social science. A descriptive analysis was conducted. Of 67 projects analysed, 26 projects (39%) were social science related while 41 projects (61%) were basic science or other translational research including drug development. A total of US$ 697 million was spent to fund the projects, of which 35% ((US$ 241 million) went to social science research. Although the level of funding for social science research has generally been lower than that for non-social science research over 10 year period, social science research attracted more funding in 2004 and 2008. The evidence presented in this case study indicates that funding on NTD social science research compared to basic and translational research is not as low as it is perceived to be. However, as there is the acute need for improved delivery and utilisation of current NTD drugs/technologies, informed by research from social science approaches, funding priorities need to reflect the need to invest significantly more in NTD social science research.
2011-01-01
Background The level of funding provides a good proxy for the level of commitment or prioritisation given to a particular issue. While the need for research relevant to social, economic, cultural and behavioural aspects of neglected tropical diseases (NTD) control has been acknowledged, there is limited data on the level of funding that supports NTD social science research. Method A case study was carried out in which the spending of a major independent funder, the Bill and Melinda Gates Foundation (BMGF) - was analysed. A total of 67 projects funded between October 1998 and November 2008 were identified from the BMGF database. With the help of keywords within the titles of 67 grantees, they were categorised as social science or non-social science research based on available definition of social science. A descriptive analysis was conducted. Results Of 67 projects analysed, 26 projects (39%) were social science related while 41 projects (61%) were basic science or other translational research including drug development. A total of US$ 697 million was spent to fund the projects, of which 35% ((US$ 241 million) went to social science research. Although the level of funding for social science research has generally been lower than that for non-social science research over 10 year period, social science research attracted more funding in 2004 and 2008. Conclusion The evidence presented in this case study indicates that funding on NTD social science research compared to basic and translational research is not as low as it is perceived to be. However, as there is the acute need for improved delivery and utilisation of current NTD drugs/technologies, informed by research from social science approaches, funding priorities need to reflect the need to invest significantly more in NTD social science research. PMID:21210999
Teaching the nature of physics through art: a new art of teaching
NASA Astrophysics Data System (ADS)
Colletti, Leonardo
2018-01-01
Science and art are traditionally represented as two disciplines with completely divergent goals, methods, and public. It has been claimed that, if rightly addressed, science and art education could mutually support each other. In this paper I propose the recurrent reference to certain famous paintings during the ordinary progress of physics courses in secondary schools, in order to convey, in a memorable way, some basic features of physics methodology. For an understanding of the overall characteristics of science should be regarded as one of the crucial goals of physics education. As a part of a general education, the forgetting of physics concepts may be acceptable, but failing to grasp the very nature of science is not. Images may help in conveying the nature of science, especially for humanities-oriented students. Moreover, famous paintings, with their familiarity and availability, are a valid tool in facilitating this.
The ideology of science during the Nixon years: 1970-1976
NASA Technical Reports Server (NTRS)
Fries, Sylvia Doughty
1984-01-01
This paper examines the expert testimony given before the U.S. Congress during the legislative history of the National Science and Technology Policy Organization and Priorities Act of 1976, examining in particular the scientific witnesses' appeals for enlarged government funding for basic research and greater influence in the making of federal science policy. The author finds that in the process of arguing for increased support and influence, spokesmen for the nation's science establishment articulated an ideology of science which not only proclaimed the authority of scientific values over other forms of cognition but sought to advance the authority of scientists over the identification and resolution of societal and political issues. In so doing they challenged the viability of political values essential to the Anglo-American democratic-republican heritage. The paper thus documents not only cultural 'elitism,' which is not necessarily incompatible with democratic politics, but an antidemocratic ideology as well.
NASA Astrophysics Data System (ADS)
Puligheddu, Marcello; Gygi, Francois; Galli, Giulia
The prediction of the thermal properties of solids and liquids is central to numerous problems in condensed matter physics and materials science, including the study of thermal management of opto-electronic and energy conversion devices. We present a method to compute the thermal conductivity of solids by performing ab initio molecular dynamics at non equilibrium conditions. Our formulation is based on a generalization of the approach to equilibrium technique, using sinusoidal temperature gradients, and it only requires calculations of first principles trajectories and atomic forces. We discuss results and computational requirements for a representative, simple oxide, MgO, and compare with experiments and data obtained with classical potentials. This work was supported by MICCoM as part of the Computational Materials Science Program funded by the U.S. Department of Energy (DOE), Office of Science , Basic Energy Sciences (BES), Materials Sciences and Engineering Division under Grant DOE/BES 5J-30.
Basic Research in the United States.
ERIC Educational Resources Information Center
Handler, Philip
1979-01-01
Presents a discussion of the development of basic research in the U.S. since World War II. Topics include the creation of the federal agencies, physics and astronomy, chemistry, earth science, life science, the environment, and social science. (BB)
26 CFR 1.41-5A - Basic research for taxable years beginning before January 1, 1987.
Code of Federal Regulations, 2010 CFR
2010-04-01
... was for basic research performed in the United States). (2) Research in the social sciences or humanities. Basic research does not include research in the social sciences or humanities, within the meaning...
26 CFR 1.41-5A - Basic research for taxable years beginning before January 1, 1987.
Code of Federal Regulations, 2011 CFR
2011-04-01
... was for basic research performed in the United States). (2) Research in the social sciences or humanities. Basic research does not include research in the social sciences or humanities, within the meaning...
26 CFR 1.41-5A - Basic research for taxable years beginning before January 1, 1987.
Code of Federal Regulations, 2014 CFR
2014-04-01
... was for basic research performed in the United States). (2) Research in the social sciences or humanities. Basic research does not include research in the social sciences or humanities, within the meaning...
26 CFR 1.41-5A - Basic research for taxable years beginning before January 1, 1987.
Code of Federal Regulations, 2013 CFR
2013-04-01
... was for basic research performed in the United States). (2) Research in the social sciences or humanities. Basic research does not include research in the social sciences or humanities, within the meaning...
26 CFR 1.41-5A - Basic research for taxable years beginning before January 1, 1987.
Code of Federal Regulations, 2012 CFR
2012-04-01
... was for basic research performed in the United States). (2) Research in the social sciences or humanities. Basic research does not include research in the social sciences or humanities, within the meaning...
Technology base for microgravity horticulture
NASA Technical Reports Server (NTRS)
Sauer, R. L.; Magnuson, J. W.; Scruby, R. R.; Scheld, H. W.
1987-01-01
Advanced microgravity plant biology research and life support system development for the spacecraft environment are critically hampered by the lack of a technology base. This inadequacy stems primarily from the fact that microgravity results in a lack of convective currents and phase separation as compared to the one gravity environment. A program plan is being initiated to develop this technology base. This program will provide an iterative flight development effort that will be closely integrated with both basic science investigations and advanced life support system development efforts incorporating biological processes. The critical considerations include optimum illumination methods, root aeration, root and shoot support, and heat rejection and gas exchange in the plant canopy.
A guide to understanding social science research for natural scientists.
Moon, Katie; Blackman, Deborah
2014-10-01
Natural scientists are increasingly interested in social research because they recognize that conservation problems are commonly social problems. Interpreting social research, however, requires at least a basic understanding of the philosophical principles and theoretical assumptions of the discipline, which are embedded in the design of social research. Natural scientists who engage in social science but are unfamiliar with these principles and assumptions can misinterpret their results. We developed a guide to assist natural scientists in understanding the philosophical basis of social science to support the meaningful interpretation of social research outcomes. The 3 fundamental elements of research are ontology, what exists in the human world that researchers can acquire knowledge about; epistemology, how knowledge is created; and philosophical perspective, the philosophical orientation of the researcher that guides her or his action. Many elements of the guide also apply to the natural sciences. Natural scientists can use the guide to assist them in interpreting social science research to determine how the ontological position of the researcher can influence the nature of the research; how the epistemological position can be used to support the legitimacy of different types of knowledge; and how philosophical perspective can shape the researcher's choice of methods and affect interpretation, communication, and application of results. The use of this guide can also support and promote the effective integration of the natural and social sciences to generate more insightful and relevant conservation research outcomes. © 2014 Society for Conservation Biology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Tsun-Mei; Dang, Liem X.
Using our polarizable force-field models and employing classical rate theories of chemical reactions, we examine the ethylene carbonate (EC) exchange process between the first and second solvation shells around Li+ and the dissociation kinetics of ion pairs Li+-[BF4] and Li+-[PF6] in this solvent. We calculate the exchange rates using transition state theory and correct them with transmission coefficients computed by the reactive flux; Impey, Madden, and McDonald approaches; and Grote-Hynes theory. We found the residence times of EC around Li+ ions varied from 70 to 450 ps, depending on the correction method used. We found the relaxation times changed significantlymore » from Li+-[BF4] to Li+-[PF6] ion pairs in EC. Our results also show that, in addition to affecting the free energy of dissociation in EC, the anion type also significantly influence the dissociation kinetics of ion pairing. This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. The calculations were carried out using computer resources provided by the Office of Basic Energy Sciences.« less
Can Basic Research on Children and Families Be Useful for the Policy Process?
ERIC Educational Resources Information Center
Moore, Kristin A.
Based on the assumption that basic science is the crucial building block for technological and biomedical progress, this paper examines the relevance for public policy of basic demographic and behavioral sciences research on children and families. The characteristics of basic research as they apply to policy making are explored. First, basic…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hardesty, D.R.; Hurt, R.H.; Baxter, L.L.
1992-09-01
The objective of this work is to support the Office of Fossil Energy in executing research on coal combustion science. This project consists of basic research on coal combustion that supports both the Pittsburgh Energy Technology Center (PETC) Direct Utilization Advanced Research and Technology Development Program, and the International Energy Agency (IEA) Coal Combustion Science Project. Specific tasks include: The characterization of the physical and chemical processes that constitute the early devolatilization phase of coal combustion: Characterization of the combustion behavior of selected coals under conditions relevant to industria pulverized coal-fired furnaces; and to establish a quantitative understanding of themore » mechanisms and rates of transformation, fragmentation, and deposition of mineral matter in coal combustion environments as a function of coal type, particle size and temperature, the initial forms and distributions of mineral species in the unreacted coal, and the local gas temperature and composition.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
van der Eide, Edwin F.; Yang, Ping; Walter, Eric D.
Unlike the very labile, unobservable radical cations [{l_brace}CpM(CO){sub 3}{r_brace}{sub 2}]{sup {sm_bullet}+} (M = W, Mo), derivatives [{l_brace}CpM(CO){sub 2}(PMe{sub 3}){r_brace}{sub 2}]{sup {sm_bullet}+} are stable enough to be isolated and characterized. Experimental and theoretical studies show that the shortened M-M bonds are of order 1 1/2, and that they are not supported by bridging ligands. The unpaired electron is fully delocalized, with a spin density of ca. 45% on each metal atom. We thank the U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Biosciences and Geosciences for support of this work. Pacific Northwestmore » National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle. The EPR and computational studies were performed using EMSL, a national scientific user facility sponsored by the DOE's Office of Biological and Environmental Research and located at PNNL. We thank Dr. Charles Windisch for access to his UV-Vis-NIR spectrometer.« less
The ONIOM molecular dynamics method for biochemical applications: cytidine deaminase
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsubara, Toshiaki; Dupuis, Michel; Aida, Misako
2007-03-22
Abstract We derived and implemented the ONIOM-molecular dynamics (MD) method for biochemical applications. The implementation allows the characterization of the functions of the real enzymes taking account of their thermal motion. In this method, the direct MD is performed by calculating the ONIOM energy and gradients of the system on the fly. We describe the first application of this ONOM-MD method to cytidine deaminase. The environmental effects on the substrate in the active site are examined. The ONIOM-MD simulations show that the product uridine is strongly perturbed by the thermal motion of the environment and dissociates easily from the activemore » site. TM and MA were supported in part by grants from the Ministry of Education, Culture, Sports, Science and Technology of Japan. MD was supported by the Division of Chemical Sciences, Office of Basic Energy Sciences, and by the Office of Biological and Environmental Research of the U.S. Department of Energy DOE. Battelle operates Pacific Northwest National Laboratory for DOE.« less
Nickel Complexes of a Binucleating Ligand Derived from an SCS Pincer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peterson, Sonja M.; Helm, Monte L.; Appel, Aaron M.
2015-01-01
A binucleating ligand has been prepared that contains an SCS pincer and three oxygen donor ligands in a partial crown ether loop. To enable metalation with Ni0, a bromoarene precursor was used and resulted in the formation of a nickel-bromide complex in the SCS pincer. Reaction of the nickel complex with a lithium salt yielded a heterobimetallic complex with bromide bridging the two metal centers. The solid-state structures were determined for this heterobimetallic complex and the nickel-bromide precursor, and the two complexes were characterized electrochemically to determine the influence of coordinating the second metal. This research was supported by themore » US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. MLH was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle.« less
Characterization of contaminant removal by an optical strip material
NASA Astrophysics Data System (ADS)
Hamilton, James P.; Frigo, S. P.; Caroll, Brenden J.; Assoufidyen, L.; Lewis, Matthew S.; Cook, Russell E.; de Carlo, F.
2001-03-01
Department of Chemistry and Engineering Physics, University of Wisconsin-Platteville, Platteville, WI 53818 Advanced Photon Source, X-Ray Facilities Division, Argonne National Laboratory, Advanced Photon Source, User Program Division, Argonne National Laboratory, *Electron Microscopy Center, Materials Science Division, Argonne National Laboratory, Argonne National Laboratory, 9700 S. Cass Ave., Argonne IL 60439-4856 USA A novel optical strip coating material, Opticlean, has been shown to safely remove fingerprints, particles and contamination from a variety of optical surfaces including coated glass, Si and first surface mirrors. Contaminant removal was monitored by Nomarski, Atomic Force and Scanning Electron Microscopy. Sub-micron features on diffraction gratings and silicon wafers were also cleaned without leaving light scattering particles on the surface. **This work was supported in part by the U.S. Department of Energy, Basic Energy Sciences-Materials Sciences, under contract no. W-31-109-ENG-38. The authors acknowledge the support and facilities provided by the Advanced Photon Source and the Electron Microscopy Center at Argonne National Laboratory.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stinson, Jake L.; Kathmann, Shawn M.; Ford, Ian J.
2014-01-14
The nucleation of particles from trace gases in the atmosphere is an important source of cloud condensation nuclei (CCN), and these are vital for the formation of clouds in view of the high supersaturations required for homogeneous water droplet nucleation. The methods of quantum chemistry have increasingly been employed to model nucleation due to their high accuracy and efficiency in calculating configurational energies; and nucleation rates can be obtained from the associated free energies of particle formation. However, even in such advanced approaches, it is typically assumed that the nuclei have a classical nature, which is questionable for some systems.more » The importance of zero-point motion (also known as quantum nuclear dynamics) in modelling small clusters of sulphuric acid and water is tested here using the path integral molecular dynamics (PIMD) method at the density functional theory (DFT) level of theory. We observe a small zero-point effect on the the equilibrium structures of certain clusters. One configuration is found to display a bimodal behaviour at 300 K in contrast to the stable ionised state suggested from a zero temperature classical geometry optimisation. The general effect of zero-point motion is to promote the extent of proton transfer with respect to classical behaviour. We thank Prof. Angelos Michaelides and his group in University College London (UCL) for practical advice and helpful discussions. This work benefited from interactions with the Thomas Young Centre through seminar and discussions involving the PIMD method. SMK was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. JLS and IJF were supported by the IMPACT scheme at UCL and by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. We are grateful for use of the UCL Legion High Performance Computing Facility and the resources of the National Energy Research Scientific Computing Center (NERSC), which is supported by the U.S. Department of Energy, Office of Science of the under Contract No. DE-AC02-05CH11231.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daily, Michael D.; Baer, Marcel D.; Mundy, Christopher J.
2016-03-10
The description of peptides and the use of molecular dynamics simulations to refine structures and investigate the dynamics on an atomistic scale are well developed. Through a consensus in this community over multiple decades, parameters were developed for molecular interactions that only require the sequence of amino-acids and an initial guess for the three-dimensional structure. The recent discovery of peptoids will require a retooling of the currently available interaction potentials in order to have the same level of confidence in the predicted structures and pathways as there is presently in the peptide counterparts. Here we present modeling of peptoids usingmore » a combination of ab initio molecular dynamics (AIMD) and atomistic resolution classical forcefield (FF) to span the relevant time and length scales. To properly account for the dominant forces that stabilize ordered structures of peptoids, namely steric-, electrostatic, and hydrophobic interactions mediated through sidechain-sidechain interactions in the FF model, those have to be first mapped out using high fidelity atomistic representations. A key feature here is not only to use gas phase quantum chemistry tools, but also account for solvation effects in the condensed phase through AIMD. One major challenge is to elucidate ion binding to charged or polar regions of the peptoid and its concomitant role in the creation of local order. Here, similar to proteins, a specific ion effect is observed suggesting that both the net charge and the precise chemical nature of the ion will need to be described. MDD was supported by MS3 (Materials Synthesis and Simulation Across Scales) Initiative at Pacific Northwest National Laboratory. Research was funded by the Laboratory Directed Research and Development program at Pacific Northwest National Laboratory. MDB acknowledges support from US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Material & Engineering. CJM acknowledges support from US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. PNNL is a multiprogram national laboratory operated by Battelle for the U.S. Department of Energy.« less
Pakistan Journal of Medical Sciences: A bibliometric assessment 2001-2010.
Baladi, Zameer Hussain; Umedani, Loung V
2017-01-01
The aim of this study was to measure the growth of scientific research, authors' productivity, affiliation with the institute and geographic locations published in the Pakistan Journal of Medical Sciences during the period of 2001 - 2010. This numerical analysis was conducted during mid-August 2016 to mid-October, 2016. The data for the study was downloaded from websites of e-journal of Pakistan Journal of Medical Sciences (PJMS) and Pak Medi-Net Com. A total number of 1199 articled were covered by PJMS in 10 volumes and 40 issues with contribution of 3798 (3%) authors during 2001 - 2010. The average number of papers per issue is 30%. A gender wise contribution of males was higher 3050 (80%) than the females 748 (20%). A majority of articles were multi-authored 1052 (87%) as opposed to single author contribution 147 (13%). All 1199 articles were covered under four major disciplines i.e Basic medical sciences, medicine & allied, surgery & allied and radiological sciences and 39 sub-specialties according to medical subject headings (MeSH). It observed that 467 (39%) articles were published in Pakistan and 732 (61%) articles produced by other 32 countries. The Karachi city of Pakistan has produced 199 (16%) articles as highest as its national level and followed by Tehran (Iran) 77 (6%) as followed internationally. This study reveals that the participation of 32 countries in the PJMS publications proves it to be an internationally circulated journal to support research with the constant approach of publishing articles to each volume in basic medical sciences, biomedical, clinical and public health sciences. Abbreviations: DOAJ: Directory of Open Access Journals IMEMR: Index Medicus Eastern Mediterranean Region HEC: Higher Education Commission (Pakistan) PJMS: Pakistan Journal of Medical Sciences MeSH: Medical Subject Headings PMDC: Pakistan Medical & Dental Council SCIE: Science Citation Index Expanded.
Elementary GLOBE: Inquiring About the Earth System Through Elementary Student Investigations
NASA Astrophysics Data System (ADS)
Henderson, S.; Hatheway, B.; Gardiner, L.; Gallagher, S.
2006-12-01
Elementary GLOBE was designed to introduce K-4 students to the study of Earth System Science (ESS). Elementary GLOBE forms an instructional unit comprised of five modules that address ESS and interrelated subjects including weather, hydrology, seasons, and soils. Each Elementary GLOBE module contains a science based storybook, classroom learning activities that complement the science content covered in each book, and teacher's notes. The storybooks explore a component of the Earth system and the associated classroom learning activities provide students with a meaningful introduction to technology, a basic understanding of the methods of inquiry, and connection to math and literacy skills. The science content in the books and activities serves as a springboard to GLOBE's scientific protocols. All Elementary GLOBE materials are freely downloadable (www.globe.gov/elementaryglobe) The use of science storybooks with elementary students has proven to be an effective practice in exposing students to science content while providing opportunities for students to improve their reading, writing, and oral communication skills. The Elementary GLOBE storybooks portray kids asking questions about the natural world, doing science investigations, and exploring the world around them. Through the storybook characters, scientific inquiry is modeled for young learners. The associated learning activities provide opportunities for students to practice science inquiry and investigation skills, including observation, recording, measuring, etc. Students also gain exposure and increase their comfort with different tools that scientists use. The learning activities give students experiences with asking questions, conducting scientific investigations, and scientific journaling. Elementary GLOBE fills an important niche in K-4 instruction. The international GLOBE Program brings together students, teachers, and scientists with the basic goals of increasing scientific understanding of the Earth, supporting improved student achievement in science and math, and enhancing environmental awareness. NASA provides the primary source of funding for GLOBE.
Separated isotopes: Vital tools for science and medicine
NASA Astrophysics Data System (ADS)
Deliberations and conclusions of a workshop on stable isotopes and derived radioisotopes organized by the Subcommittee on Nuclear and Radiochemistry of the National Research Council's Committee on Chemical Sciences at the request of the Department of Energy (DOE) are summarized. The workshop was jointly supported by the National Institutes of Health and DOE's Office of Basic Energy Sciences. An overview with three recommendations resulting from the workshop is followed by reports of the four workshop panels. Background papers were prepared by individuals on the Steering Committee and made available to all participants prior to the Workshop. They are reproduced as Appendixes 3 to 8. Short reports on alternate separation techniques were presented at the Workshop and are reproduced in Appendixes 9 to 11.
Introduction to the scientific application system of DAMPE (On behalf of DAMPE collaboration)
NASA Astrophysics Data System (ADS)
Zang, Jingjing
2016-07-01
The Dark Matter Particle Explorer (DAMPE) is a high energy particle physics experiment satellite, launched on 17 Dec 2015. The science data processing and payload operation maintenance for DAMPE will be provided by the DAMPE Scientific Application System (SAS) at the Purple Mountain Observatory (PMO) of Chinese Academy of Sciences. SAS is consisted of three subsystems - scientific operation subsystem, science data and user management subsystem and science data processing subsystem. In cooperation with the Ground Support System (Beijing), the scientific operation subsystem is responsible for proposing observation plans, monitoring the health of satellite, generating payload control commands and participating in all activities related to payload operation. Several databases developed by the science data and user management subsystem of DAMPE methodically manage all collected and reconstructed science data, down linked housekeeping data, payload configuration and calibration data. Under the leadership of DAMPE Scientific Committee, this subsystem is also responsible for publication of high level science data and supporting all science activities of the DAMPE collaboration. The science data processing subsystem of DAMPE has already developed a series of physics analysis software to reconstruct basic information about detected cosmic ray particle. This subsystem also maintains the high performance computing system of SAS to processing all down linked science data and automatically monitors the qualities of all produced data. In this talk, we will describe all functionalities of whole DAMPE SAS system and show you main performances of data processing ability.
Riley, William T
2017-06-01
The National Institutes of Health's Office of Behavioral and Social Sciences Research (OBSSR) recently released its Strategic Plan for 2017 to 2021. This plan highlights three scientific priorities: (1) improve the synergy of basic and applied behavioral and social sciences research, (2) enhance and promote the research infrastructure, methods, and measures needed to support a more cumulative and integrated approach to behavioral and social sciences research, and (3) facilitate the adoption of behavioral and social sciences research findings in health research and in practice. This commentary focuses on the challenges and opportunities to facilitate the adoption of research findings in health research and in practice. In addition to the ongoing NIH support for dissemination and implementation (D&I) research, we must address transformative challenges and opportunities such as better disseminating and implementing D&I research, merging research and practice, adopting more rigorous and diverse methods and measures for both D&I and clinical trials research, evaluating technological-based delivery of interventions, and transitioning from minimally adaptable intervention packages to planned adaptations rooted in behavior change principles. Beyond translation into practice and policy, the OBSSR Strategic Plan also highlights the need for translation of behavioral and social science findings into the broader biomedical research enterprise.
Johnson, R C; Mason, F O; Sims, R H
1997-01-01
A basic list of 133 book and journal titles in dentistry is presented. The list is intended as a bibliographic selection tool for those libraries and health institutions that support clinical dentistry programs and services in the nondental school environment in the United States and Canada. The book and journal titles were selected by the membership of the Dental Section of the Medical Library Association (MLA). The Dental Section membership represents dental and other health sciences libraries and dental research institutions from the United States and Canada, as well as from other countries. The list was compiled and edited by the Ad Hoc Publications Committee of the Dental Section of MLA. The final list was reviewed and subsequently was approved for publication and distribution by the Dental Section of MLA during the section's 1996 annual meeting in Kansas City, Missouri. PMID:9285122
Chung, Sung Phil; Sakamoto, Tetsuya; Lim, Swee Han; Ma, Mathew Huei-Ming; Wang, Tzong-Luen; Lavapie, Francis; Krisanarungson, Sopon; Nonogi, Hiroshi; Hwang, Sung Oh
2016-08-01
This paper introduces adult basic life support (BLS) guidelines for lay rescuers of the resuscitation council of Asia (RCA) developed for the first time. The RCA BLS guidelines for lay rescuers have been established by expert consensus among BLS Guidelines Taskforce of the RCA on the basis of the 2015 International Consensus on Cardiopulmonary Resuscitation (CPR) and Emergency Cardiovascular Care Science with Treatment Recommendations. The RCA recommends compression-only CPR for lay rescuers and emphasizes high-quality CPR with chest compression depth of approximately 5cm and chest compression rate of 100-120min(-1). Role of emergency medical dispatchers in helping lay rescuers recognize cardiac arrest and perform CPR is also emphasized. The RCA guidelines will contribute to help Asian countries establish and implement their own CPR guidelines in the context of their domestic circumstances. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
International Space Weather Initiative (ISWI)
NASA Technical Reports Server (NTRS)
Davila, Joseph M.; Gopalswamy, Nat; Thompson, Barbara
2009-01-01
The International Heliophysical Year (IHY), an international program of scientific collaboration to understand the external drivers of planetary environments, has come to an end. The IHY was a major international event of great interest to the member States, which involved the deployment of new instrumentation, new observations from the ground and in space, and an education component. We propose to continue the highly successful collaboration between the heliophysics science community and the United Nations Basic Space Science (UNBSS) program. One of the major thrust of the IHY was to deploy arrays of small instruments such as magnetometers, radio antennas, GPS receivers, all-sky cameras, particle detectors, etc. around the world to provide global measurements of heliospheric phenomena. The United Nations Basic Space Science Initiative (UNBSSI) played a major role in this effort. Scientific teams were organized through UNBSS, which consisted of a lead scientist who provided the instruments or fabrication plans for instruments in the array. As a result of the this program, scientists from UNBSS member states now participate in the instrument operation, data collection, analysis, and publication of scientific results, working at the forefront of science research. As part of this project, support for local scientists, facilities and data acquisition is provided by the host nation. In addition, support at the Government level is provided for local scientists to participate. Building on momentum of the IHY, we propose to continue the highly successful collaboration with the UNBSS program to continue the study of universal processes in the solar system that affect the interplanetary and terrestrial environments, and to continue to coordinate the deployment and operation of new and existing instrument arrays aimed at understanding the impacts of Space Weather on Earth and the near-Earth environment. Toward this end, we propose a new program, the International Space Weather Initiative (ISWI).
International Space Weather Initiative (ISWI)
NASA Technical Reports Server (NTRS)
Davila, Joseph; Gopalswamy, Nathanial; Thompson, Barbara
2010-01-01
The International Heliophysical Year (IHY), an international program of scientific collaboration to understand the external drivers of planetary environments, has come to an end. The IHY was a major international event of great interest to the member States, which involved the deployment of new instrumentation, new observations from the ground and in space, and an education component. We propose to continue the highly successful collaboration between the heliophysics science community and the United Nations Basic Space Science (UNBSS) program. One of the major thrust of the IHY was to deploy arrays of small instruments such as magnetometers, radio antennas, GPS receivers, all-sky cameras, particle detectors, etc. around the world to provide global measurements of heliospheric phenomena. The United Nations Basic Space Science Initiative (UNBSSI) played a major role in this effort. Scientific teams were organized through UNBSS, which consisted of a lead scientist who provided the instruments or fabrication plans for instruments in the array. As a result of the this program, scientists from UNBSS member states now participate in the instrument operation, data collection, analysis, and publication of scientific results, working at the forefront of science research. As part of this project, support for local scientists, facilities and data acquisition is provided by the host nation. In addition, support at the Government level is provided for local scientists to participate. Building on momentum of the IHY, we propose to continue the highly successful collaboration with the UNBSS program to continue the study of universal processes in the solar system that affect the interplanetary and terrestrial environments, and to continue to coordinate the deployment and operation of new and existing instrument arrays aimed at understanding the impacts of Space Weather on Earth and the near-Earth environment. Toward this end, we propose a new program, the International Space Weather Initiative (ISWI).
NASA Astrophysics Data System (ADS)
Ferreira, Louise Brandes Moura
This study was an application of Philosophy for Children pedagogy to science education. It was designed to answer the question, What roles do a science story (Harry Discovers Science), multi-sensorial activities designed to accompany the story, and classroom dialogue associated with the story---all modeled on the Philosophy for Children curriculum---play in the learning processes of a class of fifth graders with regard to the basic science process skills of classification, observation, and inference? To answer the question, I collected qualitative data as I carried out a participatory study in which I taught science to fifth graders at an international, bilingual private religious school in Brasilia, Brazil for a period of one semester. Twenty-one (n = 21) children participated in the study, 10 females and 11 males, who came from a predominantly middle and upper class social background. Data were collected through student interviews, student class reflection sheets, written learning assessments, audiotapes of all class sessions, including whole-class and small-class group discussions, and a videotape of one class session. Some of the key findings were that the story, activities and dialogue facilitated the children's learning in a number of ways. The story modeled the performance of classification, observation and inference skills for the children as well as reflection on the meaning of inference. The majority of the students identified with the fictional characters, particularly regarding traits such as cleverness and inquisitiveness, and with the learning context of the story. The multi-sensorial activities helped children learn observation and inference skills as well as dialogue. Dialogue also helped children self-correct and build upon each other's ideas. Some students developed theories about how ideal dialogue should work. In spite of the inherent limitations of qualitative and teacher research studies, as well as the limitations of this particular study, and despite the fact that there is a need for further research to confirm the transferability of findings, this study both supports and expands to the domain of basic science process skills the claim that Philosophy for Children helps students develop thinking skills.
Facilities available for biomedical science research in the public universities in Lagos, Nigeria.
John, T A
2010-03-01
Across the world, basic medical scientists and physician scientists work on common platforms in state-of-the-arts laboratories doing translational research that occasionally results in bedside application. Biotechnology industries capitalise on useful findings for colossal profit.1 In Nigeria and the rest of Africa, biomedical science has not thrived and the contribution of publications to global high impact journals is low.2 This work investigated facilities available for modern biomedical research in Lagos public universities to extract culprit factors. The two public universities in Lagos, Nigeria were investigated by a cross sectional questionnaire survey of the technical staff manning biomedical science departments. They were asked about availability of 47 modern biomedical science research laboratory components such as cold room and microscopes and six research administration components such as director of research and grants administration. For convenient basic laboratory components such as autoclaves and balances, 50% responses indicated "well maintained and always functional" whereas for less convenient complex, high maintenance, state-of-the-arts equipment 19% responses indicated "well maintained and always functional." Respondents indicated that components of modern biomedical science research administration were 44% of expectation. The survey reveal a deficit in state-of the-arts research equipment and also a deficit in high maintenance, expensive equipment indicating that biomedical science in the investigated environment lacks the momentum of global trends and also lacks buoyant funding. In addition, administration supporting biomedical science is below expectation and may also account for the low contributions of research articles to global high impact journals.
Exploring Attractiveness of the Basic Sciences for Female Physicians.
Yamazaki, Yuka; Fukushima, Shinji; Kozono, Yuki; Uka, Takanori; Marui, Eiji
2018-01-01
In Japan, traditional gender roles of women, especially the role of motherhood, may cause early career resignations in female physicians and a shortage of female researchers. Besides this gender issue, a general physician shortage is affecting basic science fields. Our previous study suggested that female physicians could be good candidates for the basic sciences because such work offers good work-life balance. However, the attractiveness for female physicians of working in the basic sciences, including work-life balance, is not known. In a 2012 nationwide cross-sectional questionnaire survey, female physicians holding tenured positions in the basic sciences at Japan's medical schools were asked an open-ended question about positive aspects of basic sciences that clinical medicine lacks, and we analyzed 58 respondents' comments. Qualitative analysis using the Kawakita Jiro method revealed four positive aspects: research attractiveness, priority on research productivity, a healthy work-life balance, and exemption from clinical duties. The most consistent positive aspect was research attractiveness, which was heightened by medical knowledge and clinical experience. The other aspects were double-edged swords; for example, while the priority on research productivity resulted in less gender segregation, it sometimes created tough competition, and while exemption from clinical duties contributed to a healthy work-life balance, it sometimes lowered motivation as a physician and provided unstable income. Overall, if female physicians lack an intrinsic interest in research and seek good work-life balance, they may drop out of research fields. Respecting and cultivating students' research interest is critical to alleviating the physician shortage in the basic sciences.
Gender, Science, & the Undergraduate Curriculum. Building Two-Way Streets.
ERIC Educational Resources Information Center
Musil, Caryn McTighe, Ed.
In the essays in this book interdisciplinary groups of scholars and teachers explore ways to integrate the feminist science studies scholarship into the teaching of basic science and how to insert more basic science into the teaching of women's studies. The essays of part 1, New Courses and New Intellectual Frameworks: Transforming Courses in…
ERIC Educational Resources Information Center
Demaray, Bryan
Five packets comprise the marine science component of an enrichment program for gifted elementary students. Considered in the introductory section are identification (pre/post measure) procedures. Remaining packets address the following topics (subtopics in parentheses): basic marine science laboratory techniques (microscope techniques and metric…
Ginzburg, Samara B; Brenner, Judith; Cassara, Michael; Kwiatkowski, Thomas; Willey, Joanne M
2017-01-01
There has been a call for increased integration of basic and clinical sciences during preclinical years of undergraduate medical education. Despite the recognition that clinical simulation is an effective pedagogical tool, little has been reported on its use to demonstrate the relevance of basic science principles to the practice of clinical medicine. We hypothesized that simulation with an integrated science and clinical debrief used with early learners would illustrate the importance of basic science principles in clinical diagnosis and management of patients. Small groups of first- and second-year medical students were engaged in a high-fidelity simulation followed by a comprehensive debrief facilitated by a basic scientist and clinician. Surveys including anchored and open-ended questions were distributed at the conclusion of each experience. The majority of the students agreed that simulation followed by an integrated debrief illustrated the clinical relevance of basic sciences (mean ± standard deviation: 93.8% ± 2.9% of first-year medical students; 96.7% ± 3.5% of second-year medical students) and its importance in patient care (92.8% of first-year medical students; 90.4% of second-year medical students). In a thematic analysis of open-ended responses, students felt that these experiences provided opportunities for direct application of scientific knowledge to diagnosis and treatment, improving student knowledge, simulating real-world experience, and developing clinical reasoning, all of which specifically helped them understand the clinical relevance of basic sciences. Small-group simulation followed by a debrief that integrates basic and clinical sciences is an effective means of demonstrating the relationship between scientific fundamentals and patient care for early learners. As more medical schools embrace integrated curricula and seek opportunities for integration, our model is a novel approach that can be utilized.
Current evidence on healthy eating.
Willett, Walter C; Stampfer, Meir J
2013-01-01
Large nutritional epidemiology studies, with long-term follow-up to assess major clinical end points, coupled with advances in basic science and clinical trials, have led to important improvements in our understanding of nutrition in primary prevention of chronic disease. Although much work remains, sufficient evidence has accrued to provide solid advice on healthy eating. Good data now support the benefits of diets that are rich in plant sources of fats and protein, fish, nuts, whole grains, and fruits and vegetables; that avoid partially hydrogenated fats; and that limit red meat and refined carbohydrates. The simplistic advice to reduce all fat, or all carbohydrates, has not stood the test of science; strong evidence supports the need to consider fat and carbohydrate quality and different protein sources. This article briefly summarizes major findings from recent years bearing on these issues.
The role of government in supporting technological advance
NASA Astrophysics Data System (ADS)
Tucker, Christopher K.
A broad and poorly focused debate has, for quite some time, raged across the range of social science disciplines and policy related professions. This debate has dealt, in different ways, with the question of the proper role of the government in a mixed economy. Current debates over the appropriate role of government in a mixed economy are largely constrained by a basic set of 'market failure' concepts developed in economics. This dissertation interrogates the histories of the automobile, electrical and aircraft industries in the six decades spanning the turn of the 20th century with a theoretical framework that draws on recent theorizing on the co-evolution of technologies, industrial structure, and supporting institutions. In highlighting institutional and technological aspects of industrial development, this dissertation informs a basis for science and technology policy making that moves beyond 'market failure' analysis.
An Educator's Resource Guide to Earthquakes and Seismology
NASA Astrophysics Data System (ADS)
Johnson, J.; Lahr, J. C.; Butler, R.
2007-12-01
When a major seismic event occurs, millions of people around the world want to understand what happened. This presents a challenge to many classroom science teachers not well versed in Earth science. In response to this challenge, teachers may try surfing the Internet to ferret out the basics. Following popular links can be time consuming and frustrating, so that the best use is not made of this "teachable moment." For isolated rural teachers with limited Internet access, surfing for information may not be a viable option. A partnership between EarthScope/USArray, High Lava Plains Project (Carnegie Institution/Arizona State University, Portland State University, and isolated K-12 schools in rural SE Oregon generated requests for a basic "Teachers Guide to Earthquakes." To bridge the inequalities in information access and varied science background, EarthScope/USArray sponsored the development of a CD that would be a noncommercial repository of Earth and earthquake-related science resources. A subsequent partnership between the University of Portland, IRIS, the USGS, and Portland-area school teachers defined the needs and provided the focus to organize sample video lectures, PowerPoint presentations, new Earth-process animations, and activities on a such a large range of topics that soon the capacity of a DVD was required. Information was culled from oft-referenced sources, always seeking clear descriptions of processes, basic classroom-tested instructional activities, and effective Web sites. Our format uses a master interactive PDF "book" that covers the basics, from the interior of the Earth and plate tectonics to seismic waves, with links to reference folders containing activities, new animations, and video demos. This work-in-progress DVD was initially aimed at middle school Earth-science curriculum, but has application throughout K-16. Strong support has come from university professors wanting an organized collection of seismology resources. The DVD shows how the study of seismology advances our understanding of the Earth and how students and teachers can access seismic data from USArray stations to promote discussion about earthquakes worldwide. Instructions on how to view USArray data, as well as activities using data from EarthScope's vast array of monitoring equipment, are being generated and incorporated as they prove effective.
Karl, Herman A.; Turner, Christine
2002-01-01
The role of science in society is evolving as we enter the 21st century. The report, Science — The Endless Frontier (Bush 1990[1945]), outlined a model of national scientific research that served the country for 50 years. The contract between science and society established in that report stipulated that science is essential and that basic research meets national needs (Pielke and Byerly 1998). This stipulation and the abundant — seemingly unlimited and unquestioned — funding for research during the Cold War caused many scientists to come to believe that funding for science was an entitlement independent of societal needs. Implicit in this belief is that science alone can solve society’s problems. We now are learning that many policy issues that involve science involve diverse economic, political, social, and aesthetic values as well, and rarely, if ever, is scientific information alone the basis of public policy (e.g., see Sarewitz 1996a, 1996b; Frodeman 1997). Moreover, resources are increasingly more limited and many in society are questioning the value of public-supported science.
ERIC Educational Resources Information Center
Maherally, Uzma Nooreen
2014-01-01
The purpose of this study was to develop and validate a science assessment tool termed the Life Sciences Assessment (LSA) in order to assess preschool children's conceptions of basic life sciences. The hypothesis was that the four sub-constructs, each of which can be measured through a series of questions on the LSA, will make a significant…
Rosenthal, Joshua; Jessup, Christine; Felknor, Sarah; Humble, Michael; Bader, Farah; Bridbord, Kenneth
2012-12-01
For the past 16 years, the International Training and Research in Environmental and Occupational Health program (ITREOH) has supported projects that link U.S. academic scientists with scientists from low- and middle-income countries in diverse research and research training activities. Twenty-two projects of varied duration have conducted training to enhance the research capabilities of scientists at 75 institutions in 43 countries in Asia, Africa, Eastern Europe, and Latin America, and have built productive research relationships between these scientists and their U.S. partners. ITREOH investigators and their trainees have produced publications that have advanced basic sciences, developed methods, informed policy outcomes, and built institutional capacity. Today, the changing nature of the health sciences calls for a more strategic approach. Data-rich team science requires greater capacity for information technology and knowledge synthesis at the local institution. More robust systems for ethical review and administrative support are necessary to advance population-based research. Sustainability of institutional research capability depends on linkages to multiple national and international partners. In this context, the Fogarty International Center, the National Institute of Environmental Sciences and the National Institute for Occupational Safety and Health, have reengineered the ITREOH program to support and catalyze a multi-national network of regional hubs for Global Environmental and Occupational Health Sciences (GEOHealth). We anticipate that these networked science hubs will build upon previous investments by the ITREOH program and will serve to advance locally and internationally important health science, train and attract first-class scientists, and provide critical evidence to guide policy discussions. Published in 2012. This article is a U.S. Government work and is in the public domain in the USA.
Information-seeking behavior of basic science researchers: implications for library services.
Haines, Laura L; Light, Jeanene; O'Malley, Donna; Delwiche, Frances A
2010-01-01
This study examined the information-seeking behaviors of basic science researchers to inform the development of customized library services. A qualitative study using semi-structured interviews was conducted on a sample of basic science researchers employed at a university medical school. The basic science researchers used a variety of information resources ranging from popular Internet search engines to highly technical databases. They generally relied on basic keyword searching, using the simplest interface of a database or search engine. They were highly collegial, interacting primarily with coworkers in their laboratories and colleagues employed at other institutions. They made little use of traditional library services and instead performed many traditional library functions internally. Although the basic science researchers expressed a positive attitude toward the library, they did not view its resources or services as integral to their work. To maximize their use by researchers, library resources must be accessible via departmental websites. Use of library services may be increased by cultivating relationships with key departmental administrative personnel. Despite their self-sufficiency, subjects expressed a desire for centralized information about ongoing research on campus and shared resources, suggesting a role for the library in creating and managing an institutional repository.
Information-seeking behavior of basic science researchers: implications for library services
Haines, Laura L.; Light, Jeanene; O'Malley, Donna; Delwiche, Frances A.
2010-01-01
Objectives: This study examined the information-seeking behaviors of basic science researchers to inform the development of customized library services. Methods: A qualitative study using semi-structured interviews was conducted on a sample of basic science researchers employed at a university medical school. Results: The basic science researchers used a variety of information resources ranging from popular Internet search engines to highly technical databases. They generally relied on basic keyword searching, using the simplest interface of a database or search engine. They were highly collegial, interacting primarily with coworkers in their laboratories and colleagues employed at other institutions. They made little use of traditional library services and instead performed many traditional library functions internally. Conclusions: Although the basic science researchers expressed a positive attitude toward the library, they did not view its resources or services as integral to their work. To maximize their use by researchers, library resources must be accessible via departmental websites. Use of library services may be increased by cultivating relationships with key departmental administrative personnel. Despite their self-sufficiency, subjects expressed a desire for centralized information about ongoing research on campus and shared resources, suggesting a role for the library in creating and managing an institutional repository. PMID:20098658
Speaking of food: connecting basic and applied plant science.
Gross, Briana L; Kellogg, Elizabeth A; Miller, Allison J
2014-10-01
The Food and Agriculture Organization (FAO) predicts that food production must rise 70% over the next 40 years to meet the demands of a growing population that is expected to reach nine billion by the year 2050. Many facets of basic plant science promoted by the Botanical Society of America are important for agriculture; however, more explicit connections are needed to bridge the gap between basic and applied plant research. This special issue, Speaking of Food: Connecting Basic and Applied Plant Science, was conceived to showcase productive overlaps of basic and applied research to address the challenges posed by feeding billions of people and to stimulate more research, fresh connections, and new paradigms. Contributions to this special issue thus illustrate some interactive areas of study in plant science-historical and modern plant-human interaction, crop and weed origins and evolution, and the effects of natural and artificial selection on crops and their wild relatives. These papers provide examples of how research integrating the basic and applied aspects of plant science benefits the pursuit of knowledge and the translation of that knowledge into actions toward sustainable production of crops and conservation of diversity in a changing climate. © 2014 Botanical Society of America, Inc.
In defense of basic science funding: today's scientific discovery is tomorrow's medical advance.
Tessier-Lavigne, Marc
2013-06-01
In this address, I will discuss the importance of basic science in tackling our health problems. I will also describe how the funding cuts are damaging our economic competitiveness and turning our young people away from science.
NASA Astrophysics Data System (ADS)
Pattison, Bryan; Borisov, Alexander
2017-06-01
The 19th International Symposium on Very High Energy Cosmic Ray Interactions (ISVHECRI 2016), held at the P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow (LPI RAS) from 22 to 28 August 2016, attracted more than 120 participants. The Symposium was carried out under the auspices of the International Union of Pure and Applied Physics (IUPAP) with financial support from the Federal Agency for Scientific Organizations and the Russian Foundation for Basic Research.
Secretary | Center for Cancer Research
We are looking for a pleasant, organized, dependable person to serve as a full-time secretary in the Basic Science Program (BSP) at the Frederick National Laboratory for Cancer Research (FNCLR). The BSP provides procurement and logistical support to the laboratories of the Center for Cancer Research. Tasks include high volume procurement (blanket orders, purchase requests, credit card), sorting and distributing mail, travel coordination, and spending/budget monitoring.
Basic science in a predoctoral family practice curriculum.
Davies, T C; Barnett, B L
1978-02-01
A course in applied basic science was designed with topic material organized according to anatomic body regions. Details of the diagnostic method were explained early in the course, and clinical procedures for data gathering and problem analyzing were followed while the significance of basic science knowledge in dealing with clinical situations was described. A collection of 35mm slides constituted the focal point of the course. The authors conducted the course together and an atmosphere of intellectual honesty was developed through open discussion between faculty and students. Student curiosity was respected and rewarded. Summaries of the discussions were prepared retrospectively by the faculty instructors for review gy the students. This experience proved that family physicians can demonstrate effectively the relevance of basic science to clinical medicine.
Materials Science and Technology Teachers Handbook
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wieda, Karen J.; Schweiger, Michael J.; Bliss, Mary
The Materials Science and Technology (MST) Handbook was developed by Pacific Northwest National Laboratory, in Richland, Washington, under support from the U.S. Department of Energy. Many individuals have been involved in writing and reviewing materials for this project since it began at Richland High School in 1986, including contributions from educators at the Northwest Regional Education Laboratory, Central Washington University, the University of Washington, teachers from Northwest Schools, and science and education personnel at Pacific Northwest National Laboratory. Support for its development was also provided by the U.S. Department of Education. This introductory course combines the academic disciplines of chemistry,more » physics, and engineering to create a materials science and technology curriculum. The course covers the fundamentals of ceramics, glass, metals, polymers and composites. Designed to appeal to a broad range of students, the course combines hands-on activities, demonstrations and long term student project descriptions. The basic philosophy of the course is for students to observe, experiment, record, question, seek additional information, and, through creative and insightful thinking, solve problems related to materials science and technology. The MST Teacher Handbook contains a course description, philosophy, student learning objectives, and instructional approach and processes. Science and technology teachers can collaborate to build the course from their own interests, strengths, and experience while incorporating existing school and community resources. The course is intended to meet local educational requirements for technology, vocational and science education.« less
Barrier Busting: Leapfrogging Zombie Science Arguments to Get to Solutions
NASA Astrophysics Data System (ADS)
Hassol, S. J.
2015-12-01
Climate literacy certainly requires a basic understanding of the causes and impacts of climate change, and this has motivated our community to focus on ever better ways to communicate this knowledge. This has been very worthwhile. But continuing to dwell on refuting climate myths that seem impossible to put to rest has often kept us mired in the framing of those who reject the science and seek to stall action. Moving past misconceptions and barriers may require added emphasis on responses to climate change. Research focused on the American public has revealed a broader acceptance of the reality of climate change than many people think. In particular, there is broad support for solutions, such as clean energy, even among those who say they do not accept that human activity is the primary driver of climate change. This presents an opportunity to open a side door to understanding that avoids unproductive confrontation with ideological barriers. Research is also revealing effective models for behavioral change that tap into social norms. Leapfrogging basic science arguments and going straight to solutions that most agree on can help us clear some of the barriers to understanding and the hurdles to action.
Elementary Steps of Faujasite Formation Followed by in Situ Spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prodinger, Sebastian; Vjunov, Aleksei; Hu, Jian Zhi
Ex situ and in situ spectroscopy was used to identify the kinetics of processes during the formation of the faujasite (FAU) zeolite lattice from a hydrous gel. Using solid-state 27Al MAS NMR, the autocatalytic transformation from the amorphous gel into the crystalline material was monitored. Al-XANES shows that most Al already adopts a tetrahedral coordination in the X-ray-amorphous aluminosilicate at the beginning of the induction period, which hardly changes throughout the rest of the synthesis. Using 23Na NMR spectroscopy, environments in the growing zeolite crystal were identified and used to define the processes in the stepwise formation of the zeolitemore » lattice. The end of the induction period was accompanied by a narrowing of the 27Al and 23Na MAS NMR peak widths, indicating the increased long-range order. The experiments show conclusively that the formation of faujasite occurs via the continuous formation and subsequent condensation of intermediary sodalite-like units that constitute the key building block of the zeolite. Acknowledgement The authors thank T. Huthwelker for assistance with XAFS experiment setup at the Swiss Light Source (PSI, Switzerland). Further, we would like to acknowledge V. Shutthanandan and B.W. Arey for performing Helium ion microscopy as well as Z. Zhao, N.R. Jaeger, M. Weng, C. Wan and M. Hu for aiding in the NMR experimental procedure. T. Varga is acknowledged for his help with the capillary XRD. A.V., D.M.C., J.H., J.L.F and J.A.L. were supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences. S.P. and M.A.D. acknowledge support by the Materials Synthesis and Simulation Across Scales (MS3 Initiative) conducted under Laboratory Directed Research & Development Program at PNNL. The in situ NMR experiments were supported by the U. S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Biosciences and Geosciences. Part of the research described in this paper was performed in the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the DOE’s Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL is operated for the US DOE by Battelle.« less
John, Theresa Adebola
2014-12-29
In the biomedical sciences, there is need to generate solutions for Africa's health and economic problems through the impact of university research. To guide organizational transformation, the author here presents some aspects of the state-of-the-arts of biomedical science research in advanced countries using a perspective derived from the FASEB journal publications. The author examines the thirty three peer reviewed scientific research articles in a centennial (April 2012) issue of the FASEB Journal [Volume 26(4)] using the following parameters: number of authors contributing to the paper; number of academic departments contributing to the paper; number of academic institutions contributing to the paper; funding of the research reported in the article. The articles were written by 7.97±0.61 authors from 3.46±0.3 departments of 2.79±0.29 institutions. The contributors were classified into four categories: basic sciences, clinical sciences, institutions and centers, and programs and labs. Amongst the publications, 21.2% were single disciplinary. Two tier collaboration amongst any two of the four categories were observed in 16/33 (48.5%) of the articles. Three tier and four tier collaborations were observed amongst 7/33 (21.2%) and 3/33 (9%) of the articles respectively. Therefore 26/33 (78.7%) of the articles were multidisciplinary. Collaborative efforts between basic science and clinical science departments were observed in 9/33 (27.3%) articles. Public funding through government agencies provided 85 out of a total of 143 (59.5%) grants. The collaborative and multidisciplinary nature and government support are characteristic of biomedical science in the US where research tends to result in solutions to problems and economic benefits.
NASA Astrophysics Data System (ADS)
Malakar, Y.; Kaderiya, B.; Pearson, W. L.; Ziaee, F.; Kanaka Raju, P.; Zohrabi, M.; Jensen, K.; Rajput, J.; Ben-Itzhak, I.; Rolles, D.; Rudenko, A.
2016-05-01
Halomethanes have recently attracted considerable attention since they often serve as prototype systems for laser-controlled chemistry (e.g., selective bond breaking or concerted elimination reactions), and are important molecules in atmospheric chemistry. Here we combine a femtosecond laser pump-probe setup with coincident 3D ion momentum imaging apparatus to study strong-field induced nuclear dynamics in methane and several of its halogenated derivatives (CH3 I, CH2 I2, CH2 ICl). We apply a time-resolved Coulomb explosion imaging technique to map the nuclear motion on both, bound and continuum potential surfaces, disentangle different fragmentation pathways and, for halogenated molecules, observe clear signatures of vibrational wave packets in neutral or ionized states. Channel-selective and kinetic-energy resolved Fourier analysis of these data allows for unique identification of different electronic states and vibrational modes responsible for a particular structure. Supported by the Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U. S. DOE. K. R. P. and W. L. P. supported by NSF Award No. IIA-143049. K.J. supported by the NSF-REU Grant No. PHYS-1461251.
Basic Energy Sciences FY 2011 Research Summaries
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
This report provides a collection of research abstracts for more than 1,300 research projects funded by the Office of Basic Energy Sciences (BES) in Fiscal Year 2011 at some 180 institutions across the U.S. This volume is organized along the three BES divisions: Materials Sciences and Engineering; Chemical Sciences, Geosciences, and Biosciences; and Scientific User Facilities.
ERIC Educational Resources Information Center
Maza, Paul; Miller, Allison; Carson, Brian; Hermanson, John
2018-01-01
Learning and retaining science content may be increased by applying the basic science material to real-world situations. Discussing cases with students during lectures and having them participate in laboratory exercises where they apply the science content to practical situations increases students' interest and enthusiasm. A summer course in…
Basic Energy Sciences FY 2012 Research Summaries
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
This report provides a collection of research abstracts and highlights for more than 1,400 research projects funded by the Office of Basic Energy Sciences (BES) in Fiscal Year 2012 at some 180 institutions across the U.S. This volume is organized along the three BES Divisions: Materials Sciences and Engineering; Chemical Sciences, Geosciences, and Biosciences; and Scientific User Facilities.
Basic Energy Sciences FY 2014 Research Summaries
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
This report provides a collection of research abstracts and highlights for more than 1,200 research projects funded by the Office of Basic Energy Sciences (BES) in Fiscal Year 2014 at some 200 institutions across the U.S. This volume is organized along the three BES Divisions: Materials Sciences and Engineering; Chemical Sciences, Geosciences, and Biosciences; and Scientific User Facilities.
The Impact of Hands-On-Approach on Student Academic Performance in Basic Science and Mathematics
ERIC Educational Resources Information Center
Ekwueme, Cecilia O.; Ekon, Esther E.; Ezenwa-Nebife, Dorothy C.
2015-01-01
Children can learn mathematics and sciences effectively even before being exposed to formal school curriculum if basic Mathematics and Sciences concepts are communicated to them early using activity oriented (Hands-on) method of teaching. Mathematics and Science are practical and activity oriented and can best be learnt through inquiry (Okebukola…
Translational Environmental Research: Improving the Usefulness and Usability of Research Results
NASA Astrophysics Data System (ADS)
Garfin, G.
2008-12-01
In recent years, requests for proposals more frequently emphasize outreach to stakeholder communities, decision support, and science that serves societal needs. Reports from the National Academy of Sciences and Western States Water Council emphasize the need for science translation and outreach, in order to address societal concerns with climate extremes, such as drought, the use of climate predictions, and the growing challenges of climate change. In the 1990s, the NOAA Climate Program Office developed its Regional Integrated Sciences and Asssessments program to help bridge the gap between climate science (notably, seasonal predictions) and society, to improve the flow of information to stakeholders, and to increase the relevance of climate science to inform decisions. During the same time period, the National Science Foundation initiated multi-year Science and Technology Centers and Decision Making Under Uncertainty Centers, with similar goals, but different metrics of success. Moreover, the combination of population growth, climate change, and environmental degradation has prompted numerous research initiatives on linking knowledge and action for sustainable development. This presentation reviews various models and methodologies for translating science results from field, lab, or modeling work to use by society. Lessons and approaches from cooperative extension, boundary organizations, co-production of science and policy, and medical translational research are examined. In particular, multi-step translation as practiced within the health care community is examined. For example, so- called "T1" (translation 1) research moves insights from basic science to clinical research; T2 research evaluates the effectiveness of clinical practice, who benefits from promising care regimens, and develops tools for clinicians, patients, and policy makers. T3 activities test the implementation, delivery, and spread of research results and clinical practices in order to foster policy changes and improve general health. Parallels in environmental sciences might be TER1 (translational environmental research 1), basic insights regarding environmental processes and relationships between environmental changes and their causes. TER2, applied environmental research, development of best practices, and development of decision support tools. TER3, might include usability and impact evaluation, effective outreach and implementation of best practices, and application of research insights to public policy and institutional change. According to the medical literature, and in anecdotal evidence from end-to-end environmental science, decision-maker and public involvement in these various forms of engaged research decreases the lag between scientific discovery and implementation of discoveries in operational practices, information tools, and organizational and public policies.
Scientific innovation's two Valleys of Death: how blood and tissue banks can help to bridge the gap.
Thompson, Sean D A
2014-12-01
Most biomedical basic research in the United States takes place at universities and research institutes and is funded by federal grants. Basic research is awarded billions of federal dollars every year, enabling new discoveries and greater understanding of the fundamental science that makes new innovations and therapies possible. However, when basic research yields an invention of practical use and the research evolves from basic to applied, the playing field changes. Pre-technology licensing federal dollars all but disappear, and innovations rely predominantly on private funding to support the full path from bench to bedside. It is along this path that the scientific advance faces two Valleys of Death. These sometimes insurmountable development stages are the product of the innovation's inherent financial, business and investment risks. Well-planned and executed in vivo studies using quality biological materials demonstrating proof-of-concept is often the key to bridging these gaps, and blood and tissue banks offer unique services and resources to enable this process.
The Lake Tahoe Basin Land Use Simulation Model
Forney, William M.; Oldham, I. Benson
2011-01-01
This U.S. Geological Survey Open-File Report describes the final modeling product for the Tahoe Decision Support System project for the Lake Tahoe Basin funded by the Southern Nevada Public Land Management Act and the U.S. Geological Survey's Geographic Analysis and Monitoring Program. This research was conducted by the U.S. Geological Survey Western Geographic Science Center. The purpose of this report is to describe the basic elements of the novel Lake Tahoe Basin Land Use Simulation Model, publish samples of the data inputs, basic outputs of the model, and the details of the Python code. The results of this report include a basic description of the Land Use Simulation Model, descriptions and summary statistics of model inputs, two figures showing the graphical user interface from the web-based tool, samples of the two input files, seven tables of basic output results from the web-based tool and descriptions of their parameters, and the fully functional Python code.
Scientific Innovation's Two Valleys of Death: How Blood and Tissue Banks Can Help to Bridge the Gap
Thompson, Sean D.A.
2014-01-01
Abstract Most biomedical basic research in the United States takes place at universities and research institutes and is funded by federal grants. Basic research is awarded billions of federal dollars every year, enabling new discoveries and greater understanding of the fundamental science that makes new innovations and therapies possible. However, when basic research yields an invention of practical use and the research evolves from basic to applied, the playing field changes. Pre-technology licensing federal dollars all but disappear, and innovations rely predominantly on private funding to support the full path from bench to bedside. It is along this path that the scientific advance faces two Valleys of Death. These sometimes insurmountable development stages are the product of the innovation’s inherent financial, business and investment risks. Well-planned and executed in vivo studies using quality biological materials demonstrating proof-of-concept is often the key to bridging these gaps, and blood and tissue banks offer unique services and resources to enable this process. PMID:25457967
Organism support for life sciences spacelab experiments
NASA Technical Reports Server (NTRS)
Drake, G. L.; Heppner, D. B.
1976-01-01
This paper presents an overview of the U.S. life sciences laboratory concepts envisioned for the Shuttle/Spacelab era. The basic development approach is to provide a general laboratory facility supplemented by specific experiment hardware as required. The laboratory concepts range from small carry-on laboratories to fully dedicated laboratories in the Spacelab pressurized module. The laboratories will encompass a broad spectrum of research in biology and biomedicine requiring a variety of research organisms. The environmental control and life support of these organisms is a very important aspect of the success of the space research missions. Engineering prototype organism habitats have been designed and fabricated to be compatible with the Spacelab environment and the experiment requirements. These first-generation habitat designs and their subsystems have supported plants, cells/tissues, invertebrates, and small vertebrates in limited evaluation tests. Special handling and transport equipment required for the ground movement of the experiment organisms at the launch/landing site have been built and tested using these initial habitat prototypes.
Basic Principles of Animal Science. Reprinted.
ERIC Educational Resources Information Center
Florida State Dept. of Education, Tallahassee.
The reference book is designed to fulfill the need for organized subject matter dealing with basic principles of animal science to be incorporated into the high school agriculture curriculum. The material presented is scientific knowledge basic to livestock production. Five units contain specific information on the following topics: anatomy and…
Radiological Dispersion Devices and Basic Radiation Science
ERIC Educational Resources Information Center
Bevelacqua, Joseph John
2010-01-01
Introductory physics courses present the basic concepts of radioactivity and an overview of nuclear physics that emphasizes the basic decay relationship and the various types of emitted radiation. Although this presentation provides insight into radiological science, it often fails to interest students to explore these concepts in a more rigorous…
Spinal cord injury: promising interventions and realistic goals.
McDonald, John W; Becker, Daniel
2003-10-01
Long regarded as impossible, spinal cord repair is approaching the realm of reality as efforts to bridge the gap between bench and bedside point to novel approaches to treatment. It is important to recognize that the research playing field is rapidly changing and that new mechanisms of resource development are required to effectively make the transition from basic science discoveries to effective clinical treatments. This article reviews recent laboratory studies and phase 1 clinical trials in neural and nonneural cell transplantation, stressing that the transition from basic science to clinical applications requires a parallel rather than serial approach, with continuous, two-way feedback to most efficiently translate basic science findings, through evaluation and optimization, to clinical treatments. An example of mobilizing endogenous stem cells for repair is reviewed, with emphasis on the rapid application of basic science to clinical therapy. Successful and efficient transition from basic science to clinical applications requires (1) a parallel rather than a serial approach; (2) development of centers that integrate three spheres of science, translational, transitional, and clinical trials; and (3) development of novel resources to fund the most critically limited step of transitional to clinical trials.
Ferrer, Rebecca A.; McDonald, Paige Green; Barrett, Lisa Feldman
2015-01-01
Cancer control research involves the conduct of basic and applied behavioral and social sciences to reduce cancer incidence, morbidity, and mortality, and improve quality of life. Given the importance of behavior in cancer control, fundamental research is necessary to identify psychological mechanisms underlying cancer risk, prevention, and management behaviors. Cancer prevention, diagnosis, and treatment are often emotionally-laden. As such, affective science research to elucidate questions related to basic phenomenological nature of emotion, stress, and mood is necessary to understand how cancer control can be hindered or facilitated by emotional experiences. To date, the intersection of basic affective science research and cancer control remains largely unexplored. The goal of this paper is to outline key questions in the cancer control research domain that provide an ecologically valid context for new affective science discoveries. We also provide examples of ways in which basic affective discoveries could inform future cancer prevention and control research. These examples are not meant to be exhaustive or prescriptive, but instead are offered to generate creative thought about the promise of a cancer research context for answering basic affective science questions. Together, these examples provide a compelling argument for fostering collaborations between affective and cancer control scientists. PMID:25987511
75 FR 27547 - Notice of Reestablishment of the Secretary of Energy Advisory Board
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-17
... management, basic science, research, development and technology activities; energy and national security... basis of their broad competence in areas relating to quality management, basic science, renewable energy, energy policy, environmental science, economics, and broad public policy interests. Membership of the...
Preserved Entropy, quantum criticality and fragile magnetism
NASA Astrophysics Data System (ADS)
Canfield, Paul
A large swath of strongly correlated electron systems can be associated with the phenomenon of preserved entropy and fragile magnetism. In this talk I will present our thoughts and plans for the discovery and development of lanthanide and transition metal based, strongly correlated systems that are revealed by suppressed, fragile magnetism or grow out of preserved entropy. This talk is based on work published in This work was supported by the U.S. Dept. of Energy, Basic Energy Science, Division of Materials Sciences and Engineering under Contract No. DE-AC02-07CH11358 as well as by the Gordon and Betty Moore Foundations EPiQS Initiative through Grant GBMF4411.
Hoffman, Steve G
2015-04-01
Some scholars dismiss the distinction between basic and applied science as passé, yet substantive assumptions about this boundary remain obdurate in research policy, popular rhetoric, the sociology and philosophy of science, and, indeed, at the level of bench practice. In this article, I draw on a multiple ontology framework to provide a more stable affirmation of a constructivist position in science and technology studies that cannot be reduced to a matter of competing perspectives on a single reality. The analysis is grounded in ethnographic research in the border zone of Artificial Intelligence science. I translate in-situ moments in which members of neighboring but differently situated labs engage in three distinct repertoires that render the reality of basic and applied science: partitioning, flipping, and collapsing. While the essences of scientific objects are nowhere to be found, the boundary between basic and applied is neither illusion nor mere propaganda. Instead, distinctions among scientific knowledge are made real as a matter of course.
Dennis, Matthew J
2010-05-01
It is the premise of this paper that the need for medical and basic science instruction in dentistry will increase over time. However, student and faculty appreciation of the relevance and significance of medicine and basic science to clinical dentistry has been elusive, largely due to difficulties linking biomedical science instruction and clinical dental instruction. The scope of traditional procedure based oral surgery instruction can be expanded in an attempt to bridge the medical science-clinical gap. Topics such as health status evaluation, medical risk assessment, and a variety of other biomedical issues can be presented to students in a way which imparts specific dental meaning to basic medical science in real-life clinical situations. Using didactic and chair side instruction in an oral surgery clinical environment, students are confronted with the need to understand these issues and how they relate to the patients they encounter who present for dental care.
Activities for the Promotion of Gender Equality in Japan—Physical Society of Japan
NASA Astrophysics Data System (ADS)
Agui, Akane; Tanida, Kiyoshi; Torikai, Eiko
2005-10-01
The Gender Equality Promotion Committee of the Physical Society of Japan (JPS) was established as a result of the First International IUPAP Conference on Women in Physics (Paris, 2002). It is a gender-balanced team of 12 full members and a group of net-commentators. The former chairperson of the committee, Masako Bando, was selected to be the president of JPS between September 2006 and August 2007. Based on the survey on the present status of the gender equality and the research environment of the JPS members in 2001, JPS advanced two recommendations to the governmental authorities, academic institutes, and organizations: for flexible childcare supports and for improved research granting systems for post-doctoral fellows and part-time researchers in August 2003. Now these activities have become nationwide with the establishment in October 2002 of the Japan Inter-Society Liaison Association Committee for Promoting Equal Participation of Men and Women in Science and Engineering (EPMEWSE). It has 44 member societies, including 19 observers, from various academic fields. An extended survey was carried out by EPMEWSE in November 2003; 20,000 respondents revealed diverse visions of scientists and engineers. These activities effectively help foster public understanding and awareness of the state of women in physics, especially among policy-making authorities. In 2005 the Cabinet is drawing up two Basic Plans for 2006-2010: the Science and Technology Basic Plan for the third term and the Basic Plan for the Gender-Equal Society for the second term. To attract girls into science and engineering, JPS is organizing the Girls Science Summer School to be held in August 2005 in collaboration with the National Women Education Center and EPMEWSE.
ERIC Educational Resources Information Center
Fernandes, Ruben; Correia, Rossana; Fonte, Rosalia; Prudencio, Cristina
2006-01-01
Health science education is presently in discussion throughout Europe due to the Bologna Declaration. Teaching basic sciences such as biochemistry in a health sciences context, namely in allied heath education, can be a challenging task since the students of preclinical health sciences are not often convinced that basic sciences are clinically…
NASA Astrophysics Data System (ADS)
Buxner, Sanlyn; Impey, Chris David; Follette, Katherine B.; Dokter, Erin F.; McCarthy, Don; Vezino, Beau; Formanek, Martin; Romine, James M.; Brock, Laci; Neiberding, Megan; Prather, Edward E.
2017-01-01
Introductory astronomy courses often serve as terminal science courses for non-science majors and present an opportunity to assess non future scientists’ attitudes towards science as well as basic scientific knowledge and scientific analysis skills that may remain unchanged after college. Through a series of studies, we have been able to evaluate students’ basic science knowledge, attitudes towards science, quantitative literacy, and informational literacy. In the Fall of 2015, we conducted a case study of a single class administering all relevant surveys to an undergraduate class of 20 students. We will present our analysis of trends of each of these studies as well as the comparison case study. In general we have found that students basic scientific knowledge has remained stable over the past quarter century. In all of our studies, there is a strong relationship between student attitudes and their science and quantitative knowledge and skills. Additionally, students’ information literacy is strongly connected to their attitudes and basic scientific knowledge. We are currently expanding these studies to include new audiences and will discuss the implications of our findings for instructors.
Wada, Keiji; Yoshimura, Teruki
2015-01-01
To deal with declining levels of academic ability and motivation among students (a situation attributable to fewer high school graduates, a greater number of universities, and the diversification of entrance examination methods), one must comprehend the conditions of faculties collectively, and take appropriate measures. Using the results of examinations carried out in each grade as indices, we examined levels of academic ability and established various support programs based on the results. Basic chemistry, biology, and physics courses were designed to help first-year students acquire essential academic skills. For second, third, and fourth-year students, two types of support programs were implemented: supplementary instruction to help students improve their understanding of basic topics in pharmaceutical sciences, and an e-learning system to promote self-study, requiring minimal assistance from teachers. Although educational benefits were observed in many students, the number of learners whose understanding failed to improve as a result of the support programs continued to increase. Consequently, The Support Section for Pharmaceutical Education opened in October 2011 to address these concerns. The support section functions mainly to provide individual assistance to students who lack strong academic abilities, and provides teachers with information useful for educational reform. Here, we describe the educational support provided by our faculty and its effectiveness.
DaRosa, D A; Shuck, J M; Biester, T W; Folse, R
1993-01-01
This research sought to identify the strengths and weakness in residents' basic science knowledge and, second, to determine whether they progressively improve in their abilities to recall basic science information and clinical management facts, to analyze cause-effect relationships, and to solve clinical problems. Basic science knowledge was assessed by means of the results of the January 1990 American Board of Surgery's In-Training/Surgical Basic Science Exam (IT/SBSE). Postgraduate year (PGY) 1 residents' scores were compared with those of PGY5 residents. Content related to a question was considered "known" if 67% or more of the residents in each of the two groups answered it correctly. Findings showed 44% of the content tested by the basic science questions were unknown by new and graduating residents. The second research question required the 250 IT/SBSE questions to be classified into one of three levels of thinking abilities: recall, analysis, and inferential thinking. Profile analysis (split-plot analysis of variance) for each pair of resident levels indicated significant (P < 0.001) differences in performance on questions requiring factual recall, analysis, and inference between all levels except for PGY3s and PGY4s. The results of this research enable program directors to evaluate strengths and weaknesses in residency training curricula and the cognitive development of residents.
Space human factors publications: 1980-1990
NASA Technical Reports Server (NTRS)
Dickson, Katherine J.
1991-01-01
A 10 year cummulative bibliography of publications resulting from research supported by the NASA Space Human Factors Program of the Life Science Division is provided. The goal of this program is to understand the basic mechanisms underlying behavioral adaptation to space and to develop and validate system design requirements, protocols, and countermeasures to ensure the psychological well-being, safety, and productivity of crewmembers. Subjects encompassed by this bibliography include selection and training, group dynamics, psychophysiological interactions, habitability issues, human-machine interactions, psychological support measures, and anthropometric data. Principal Investigators whose research tasks resulted in publication are identified by asterisk.
NASA Technical Reports Server (NTRS)
Hopcroft, J.
1987-01-01
The potential benefits of automation in space are significant. The science base needed to support this automation not only will help control costs and reduce lead-time in the earth-based design and construction of space stations, but also will advance the nation's capability for computer design, simulation, testing, and debugging of sophisticated objects electronically. Progress in automation will require the ability to electronically represent, reason about, and manipulate objects. Discussed here is the development of representations, languages, editors, and model-driven simulation systems to support electronic prototyping. In particular, it identifies areas where basic research is needed before further progress can be made.
Kitayama, Tomoya; Kagota, Satomi; Yoshikawa, Noriko; Kawai, Nobuyuki; Nishimura, Kanae; Miura, Takeshi; Yasui, Naomi; Shinozuka, Kazumasa; Nakabayashi, Toshikatsu
2016-01-01
The Pharmaceutical Education Support Center was established in the Department of Pharmacy at the School of Pharmacy and Pharmaceutical Science of Mukogawa Women's University in 2014. We started teaching first and second years students according to proficiency from the 2014 academic year. Students were divided into two classes: the regular class (high proficiency class) and the basic class (low proficiency class), based on achievement in several basic subjects related to the study of pharmacy. The staffs in the Pharmaceutical Education Support Center reinforce what is taught to students in the basic class. In this reinforcement method of education, the class size is small, consisting of about 15 students, a quiz to review the previous lesson is given at the beginning of each lecture, and an additional five lectures are conducted, compared to the high proficiency class, which receives 15 lectures. In this study, we evaluated the effects of the reinforcement method of physiology education on achievement in pharmacology that was not conducted in the proficiency-dependent teaching method. The students in the basic class in physiology education were chosen based on achievement levels in anatomy. Achievement levels of pharmacology students in the basic class of physiology improved compared with those of students who had the same achievement levels in physiology but were not taught according to proficiency-dependent teaching in the 2013 academic year. These results suggest that the reinforcement method for education in basic subjects in pharmacy, such as physiology, can improve achievement in more advanced subjects, such as pharmacology.
Borlawsky, Tara B.; Dhaval, Rakesh; Hastings, Shannon L.; Payne, Philip R. O.
2009-01-01
In October 2006, the National Institutes of Health launched a new national consortium, funded through Clinical and Translational Science Awards (CTSA), with the primary objective of improving the conduct and efficiency of the inherently multi-disciplinary field of translational research. To help meet this goal, the Ohio State University Center for Clinical and Translational Science has launched a knowledge management initiative that is focused on facilitating widespread semantic interoperability among administrative, basic science, clinical and research computing systems, both internally and among the translational research community at-large, through the integration of domain-specific standard terminologies and ontologies with local annotations. This manuscript describes an agile framework that builds upon prevailing knowledge engineering and semantic interoperability methods, and will be implemented as part this initiative. PMID:21347164
Borlawsky, Tara B; Dhaval, Rakesh; Hastings, Shannon L; Payne, Philip R O
2009-03-01
In October 2006, the National Institutes of Health launched a new national consortium, funded through Clinical and Translational Science Awards (CTSA), with the primary objective of improving the conduct and efficiency of the inherently multi-disciplinary field of translational research. To help meet this goal, the Ohio State University Center for Clinical and Translational Science has launched a knowledge management initiative that is focused on facilitating widespread semantic interoperability among administrative, basic science, clinical and research computing systems, both internally and among the translational research community at-large, through the integration of domain-specific standard terminologies and ontologies with local annotations. This manuscript describes an agile framework that builds upon prevailing knowledge engineering and semantic interoperability methods, and will be implemented as part this initiative.
Separated isotopes: vital tools for science and medicine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1982-01-01
Deliberations and conclusions of a Workshop on Stable Isotopes and Derived Radioisotopes organized by the Subcommittee on Nuclear and Radiochemistry of the National Research Council's Committee on Chemical Sciences at the request of the Department of Energy (DOE) are summarized. The workshop was jointly supported by the National Institutes of Health and DOE's Office of Basic Energy Sciences. An overview with three recommendations resulting from the Workshop is followed by reports of the four Workshop panels. Background papers were prepared by individuals on the Steering Committee and made available to all participants prior to the Workshop. They are reproduced asmore » Appendixes 3 to 8. Short reports on alternate separation techniques were presented at the Workshop and are reproduced in Appendixes 9 to 11.« less
Evolution and convergence of the patterns of international scientific collaboration.
Coccia, Mario; Wang, Lili
2016-02-23
International research collaboration plays an important role in the social construction and evolution of science. Studies of science increasingly analyze international collaboration across multiple organizations for its impetus in improving research quality, advancing efficiency of the scientific production, and fostering breakthroughs in a shorter time. However, long-run patterns of international research collaboration across scientific fields and their structural changes over time are hardly known. Here we show the convergence of international scientific collaboration across research fields over time. Our study uses a dataset by the National Science Foundation and computes the fraction of papers that have international institutional coauthorships for various fields of science. We compare our results with pioneering studies carried out in the 1970s and 1990s by applying a standardization method that transforms all fractions of internationally coauthored papers into a comparable framework. We find, over 1973-2012, that the evolution of collaboration patterns across scientific disciplines seems to generate a convergence between applied and basic sciences. We also show that the general architecture of international scientific collaboration, based on the ranking of fractions of international coauthorships for different scientific fields per year, has tended to be unchanged over time, at least until now. Overall, this study shows, to our knowledge for the first time, the evolution of the patterns of international scientific collaboration starting from initial results described by literature in the 1970s and 1990s. We find a convergence of these long-run collaboration patterns between the applied and basic sciences. This convergence might be one of contributing factors that supports the evolution of modern scientific fields.
Web portal on environmental sciences "ATMOS''
NASA Astrophysics Data System (ADS)
Gordov, E. P.; Lykosov, V. N.; Fazliev, A. Z.
2006-06-01
The developed under INTAS grant web portal ATMOS (http://atmos.iao.ru and http://atmos.scert.ru) makes available to the international research community, environmental managers, and the interested public, a bilingual information source for the domain of Atmospheric Physics and Chemistry, and the related application domain of air quality assessment and management. It offers access to integrated thematic information, experimental data, analytical tools and models, case studies, and related information and educational resources compiled, structured, and edited by the partners into a coherent and consistent thematic information resource. While offering the usual components of a thematic site such as link collections, user group registration, discussion forum, news section etc., the site is distinguished by its scientific information services and tools: on-line models and analytical tools, and data collections and case studies together with tutorial material. The portal is organized as a set of interrelated scientific sites, which addressed basic branches of Atmospheric Sciences and Climate Modeling as well as the applied domains of Air Quality Assessment and Management, Modeling, and Environmental Impact Assessment. Each scientific site is open for external access information-computational system realized by means of Internet technologies. The main basic science topics are devoted to Atmospheric Chemistry, Atmospheric Spectroscopy and Radiation, Atmospheric Aerosols, Atmospheric Dynamics and Atmospheric Models, including climate models. The portal ATMOS reflects current tendency of Environmental Sciences transformation into exact (quantitative) sciences and is quite effective example of modern Information Technologies and Environmental Sciences integration. It makes the portal both an auxiliary instrument to support interdisciplinary projects of regional environment and extensive educational resource in this important domain.
The Development of Clinical Reasoning Skills: A Major Objective of the Anatomy Course
ERIC Educational Resources Information Center
Elizondo-Omana, Rodrigo E.; Lopez, Santos Guzman
2008-01-01
Traditional medical school curricula have made a clear demarcation between the basic biomedical sciences and the clinical years. It is our view that a comprehensive medical education necessarily involves an increased correlation between basic science knowledge and its clinical applications. A basic anatomy course should have two main objectives:…
Teaching Basic Probability in Undergraduate Statistics or Management Science Courses
ERIC Educational Resources Information Center
Naidu, Jaideep T.; Sanford, John F.
2017-01-01
Standard textbooks in core Statistics and Management Science classes present various examples to introduce basic probability concepts to undergraduate business students. These include tossing of a coin, throwing a die, and examples of that nature. While these are good examples to introduce basic probability, we use improvised versions of Russian…
NASA Astrophysics Data System (ADS)
Terrazas-Ramos, Raúl
2012-07-01
The San Luis Gonzaga National University of Ica has built a solar station, in collaboration with the Geophysical Institute of Peru, the National Astronomical Observatory of Japan and the Hida Observatory. The Solar Station has the following equipment: a digital Spectrograph Solar Refractor Telescope Takahashi 15 cm aperture, 60 cm reflector telescope aperture, a magnetometer-MAGDAS/CPNM and a Burst Monitor Telescope Solar-FMT (Project CHAIN). These teams support the development of astronomical science and Ica in Peru, likewise contributing to science worldwide. The development of basic science will be guaranteed when university students, professors and researchers work together. The Solar Station will be useful for studying the different levels of university education and also for the general public. The Solar Station will be a good way to spread science in the region through public disclosure.
Science as a Model for Rational, Legitimate Government
NASA Astrophysics Data System (ADS)
Branscomb, Lewis
2009-05-01
Before WWII science was largely dependent on support through teaching, and a few foundations. In the last half century, thanks to the contribution of applied science to winning the second world war, government became a deep-pockets source of support for science. While many academic scientists were deeply suspicious of government as a sponsor, the research universities saw an opportunity to build their institutions around government support. Government saw science as a means for sustaining its military primacy. Thus a marriage was consummated by partners -- science and politics -- who needed each other, but for quite different and to some degree conflicting motives. In the U.S. democracy, the relationship between science and politics has never been easy. The search for truth in science and for legitimacy in politics both require systems for generating public trust, but these systems are not the same, and indeed they are often incompatible. The most profound area of mismatch between science and politics is found not in conflicts over what kinds of research are deserving of public funding, but rather in conflicts over the advice government receives from scientific and technical experts. It is no accident that democratic America fostered progress in science and technology. Both American democracy and modern science are products of the Enlightenment, with its emphasis on reason and openness rather than on prejudice and traditional authority. American democracy has always benefited from a pragmatic willingness to learn from experience, very much as science relies on experiment. Progress in science is based transparency and accountability; these are also basic principles of democratic government. If science is corrupted by government, government itself is in danger of becoming corrupt. In recent years we seemed to be going down that path. It is no accident that President Obama and media commentators speak often of the ``new pragmatism,'' or that he appointed exceptionally well-qualified scientists to top posts in his government. Both democracy and science stand to benefit enormously when our political leaders understand that the ethos of science and ethics of democracy have common roots.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miliordos, Evangelos; Xantheas, Sotiris S.
2016-01-18
The electronic structure of the simplest Criegee intermediate (H₂COO) is practically that of a closed shell. On the biradical scale (β) from 0 (pure closed shell) to 1 (pure biradical) it registers a mere β=0.10, suggesting that a Lewis structure of a H₂C=O δ+-O δ- zwitterion best describes its ground electronic state. However, this picture of a nearly inert closed shell contradicts its rich atmospheric reactivity. It is the mixing of its ground with the first triplet excited state, which is a pure biradical state of the type H₂C•-O-O•, that is responsible for the formation of strongly bound products duringmore » reactions inducing atmospheric particle growth. This work was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle. This research also used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.« less
First-Principles Study of Superconductivity in Ultra- thin Pb Films
NASA Astrophysics Data System (ADS)
Noffsinger, Jesse; Cohen, Marvin L.
2010-03-01
Recently, superconductivity in ultrathin layered Pb has been confirmed in samples with as few as two atomic layers [S. Qin, J. Kim, Q. Niu, and C.-K. Shih, Science 2009]. Interestingly, the prototypical strong-coupling superconductor exhibits different Tc's for differing surface reconstructions in samples with only two monolayers. Additionally, Tc is seen to oscillate as the number of atomic layers is increased. Using first principles techniques based on Wannier functions, we analyze the electronic structure, lattice dynamics and electron-phonon coupling for varying thicknesses and surface reconstructions of layered Pb. We discuss results as they relate to superconductivity in the bulk, for which accurate calculations of superconducting properties can be compared to experiment [W. L. McMillan and J.M. Rowell, PRL 1965]. This work was supported by National Science Foundation Grant No. DMR07-05941, the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Computational resources have been provided by the Lawrencium computational cluster resource provided by the IT Division at the Lawrence Berkeley National Laboratory (Supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231)
Basic Curriculum Guide--Science. Grades K-6.
ERIC Educational Resources Information Center
Starr, John W., 3rd., Ed.
GRADES OR AGES: K-6. SUBJECT MATTER: Science. ORGANIZATION AND PHYSICAL APPEARANCE: The guide is in two parts--the background, philosophy, and instructional principles of science teaching, including a resource unit model, and the development by grade level of the various basic scientific concepts. The guide also includes information of…
Inventory of Data Sources in Science and Technology. A Preliminary Survey.
ERIC Educational Resources Information Center
International Council of Scientific Unions, Paris (France).
Provided in this inventory are sources of numerical or factual data in selected fields of basic science and applied science/technology. The objective of the inventory is to provide organizations and individuals (scientists, engineers, and information specialists), particularly those in developing countries, with basic data sources relevant to…
Motivating first-year university students by interdisciplinary study projects
NASA Astrophysics Data System (ADS)
Koch, Franziska D.; Dirsch-Weigand, Andrea; Awolin, Malte; Pinkelman, Rebecca J.; Hampe, Manfred J.
2017-01-01
In order to increase student commitment from the beginning of students' university careers, the Technische Universität Darmstadt has introduced interdisciplinary study projects involving first-year students from the engineering, natural, social and history, economics and/or human sciences departments. The didactic concept includes sophisticated task design, individual responsibility and a differentiated support system. Using a self-determination theory framework, this study examined the effects of the projects based on survey findings from two projects with more than 1000 students. The results showed that the projects were successful in fulfilling students' basic psychological needs and in promoting students' academic engagement. Basic psychological needs were found to be significant predictors of academic engagement. These findings suggest that interdisciplinary study projects can potentially contribute to improving higher education as they fulfil students' basic psychological needs for competence, relatedness and autonomy and enhance students' academic engagement.
Advanced user support programme—TEMPUS IML-2
NASA Astrophysics Data System (ADS)
Diefenbach, A.; Kratz, M.; Uffelmann, D.; Willnecker, R.
1995-05-01
The DLR Microgravity User Support Centre (MUSC) in Cologne has supported microgravity experiments in the field of materials and life sciences since 1979. In the beginning of user support activities, MUSC tasks comprised the basic ground and mission support, whereas present programmes are expanded on, for example, powerful telescience and advanced real time data acquisition capabilities for efficient experiment operation and monitoring. In view of the Space Station era, user support functions will increase further. Additional tasks and growing responsibilities must be covered, e.g. extended science support as well as experiment and facility operations. The user support for TEMPUS IML-2, under contract of the German Space Agency DARA, represents a further step towards the required new-generation of future ground programme. TEMPUS is a new highly sophisticated Spacelab multi-user facility for containerless processing of metallic samples. Electromagnetic levitation technique is applied and various experiment diagnosis tools are offered. Experiments from eight U.S. and German investigator groups have been selected for flight on the second International Microgravity Laboratory Mission IML-2 in 1994. Based on the experience gained in the research programme of the DLR Institute for Space Simulation since 1984, MUSC is performing a comprehensive experiment preparation programme in close collaboration with the investigator teams. Complex laboratory equipment has been built up for technology and experiment preparation development. New experiment techniques have been developed for experiment verification tests. The MUSC programme includes thorough analysis and testing of scientific requirements of every proposed experiment with respect to the facility hard- and software capabilities. In addition, studies on the experiment-specific operation requirements have been performed and suitable telescience scenarios were analysed. The present paper will give a survey of the TEMPUS user support tasks emphasizing the advanced science support activities, which are considered significant for future ground programmes.
NASA Astrophysics Data System (ADS)
Chen, Hsinchun; Roco, Mihail C.; Son, Jaebong; Jiang, Shan; Larson, Catherine A.; Gao, Qiang
2013-09-01
In a relatively short interval for an emerging technology, nanotechnology has made a significant economic impact in numerous sectors including semiconductor manufacturing, catalysts, medicine, agriculture, and energy production. A part of the United States (US) government investment in basic research has been realized in the last two decades through the National Science Foundation (NSF), beginning with the nanoparticle research initiative in 1991 and continuing with support from the National Nanotechnology Initiative after fiscal year 2001. This paper has two main goals: (a) present a longitudinal analysis of the global nanotechnology development as reflected in the United States Patent and Trade Office (USPTO) patents and Web of Science (WoS) publications in nanoscale science and engineering (NSE) for the interval 1991-2012; and (b) identify the effect of basic research funded by NSF on both indicators. The interval has been separated into three parts for comparison purposes: 1991-2000, 2001-2010, and 2011-2012. The global trends of patents and scientific publications are presented. Bibliometric analysis, topic analysis, and citation network analysis methods are used to rank countries, institutions, technology subfields, and inventors contributing to nanotechnology development. We then, examined how these entities were affected by NSF funding and how they evolved over the past two decades. Results show that dedicated NSF funding used to support nanotechnology R&D was followed by an increased number of relevant patents and scientific publications, a greater diversity of technology topics, and a significant increase of citations. The NSF played important roles in the inventor community and served as a major contributor to numerous nanotechnology subfields.
Awareness of basic life support among staff and students in a dental school.
Reddy, Sahithi; Doshi, Dolar; Reddy, Padma; Kulkarni, Suhas; Reddy, Srikanth
2013-05-01
To assess and compare the knowledge of basic life support (BLS) among third, fourth and fifth (III, IV and V) year Bachelor of Dental Surgery (BDS) clinical students, dental interns, postgraduate students and Bachelor of Dental Surgery (BDS) and Master of Dental Surgery (MDS) faculty of Panineeya Institute of Dental Sciences and Hospital, Hyderabad, India. A BLS questionnaire consisting of 22 questions was used to assess the levels of III, IV and V years BDS clinical students, dental interns, postgraduate students and BDS and MDS faculty of Panineeya Institute of Dental Sciences and Hospital, Hyderabad, India. Statistical Package for Social Sciences software (SPSS version 12.0) was used to analyze the statistical data. The p<0.05 was considered statistically significant. A total of 338 respondents took part in the study. When gender comparison was done with correct knowledge responses, statistically significant differences were noted for Q6, Q9, Q12, Q13, Q15 and Q17. For age groups and educational qualifications, significant difference was observed for all questions. It was noted that III, IV and V year undergraduate clinical students and half of interns had adequate knowledge when compared to postgraduate students (6.9%), BDS tutors (0.00%) and MDS staff (10.7%). The study concludes that there is a significant lack of knowledge among postgraduates students BDS and MDS faculty, regarding BLS when compared to III, IV and V year's clinical BDS students and dental interns. This study emphasizes the need for all health care professionals to regularly update the knowledge and skills regarding BLS.
Pulsed laser vaporization synthesis of boron loaded few layered graphene (Conference Presentation)
NASA Astrophysics Data System (ADS)
Tennyson, Wesley D.; Tian, Mengkun; More, Karren L.; Geohegan, David B.; Puretzky, Alexander A.; Papandrew, Alexander B.; Rouleau, Christopher M.; Yoon, Mina
2017-02-01
The bulk production of loose graphene flakes and its doped variants are important for energy applications including batteries, fuel cells, and supercapacitors as well as optoelectronic and thermal applications. While laser-based methods have been reported for large-scale synthesis of single-wall carbon nanohorns (SWNHs), similar large-scale production of graphene has not been reported. Here we explored the synthesis of doped few layered graphene by pulsed laser vaporization (PLV) with the goal of producing an oxidation resistant electrode support for solid acid fuel cells. PLV of graphite with various amounts of boron was carried out in mixtures in either Ar or Ar/H2 at 0.1 MPa at elevated temperatures under conditions typically used for synthesis of SWNHs. Both the addition of hydrogen to the background argon, or the addition of boron to the carbon target, was found to shift the formation of carbon nanohorns to two-dimensional flakes of a new form of few-layer graphene material, with sizes up to microns in dimension as confirmed by XRD and TEM. However, the materials made with boron exhibited superior resistance to carbon corrosion in the solid acid fuel cell and thermal oxidation resistance in air compared to similar product made without boron. Mechanisms for the synthesis and oxidation resistance of these materials will be discussed based upon detailed characterization and modeling. •Synthesis science was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences (BES), Materials Sciences and Engineering Division. Material processing and characterization science supported by ARPA-E under Cooperative Agreement Number DE-AR0000499 and as a user project at the Center for Nanophase Materials Sciences, a Department of Energy Office of Science User Facility.
InP Transferred Electron Cathodes: Basic to Manufacturing Methods
2007-08-29
Source: Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films ; January/February 2003; v.21, no.1, p.219-225 Optimization and...Vacuum, Surfaces and Films ; Sept/Oct 2007 V. 25, No. 5 List of papers submitted or published that acknowledge ARO support during this reporting period...technologies. Night vision devices gather existing ambient light (starlight, moonlight or infra-red light) through a front lens. This light goes into a
NASA Astrophysics Data System (ADS)
Deng, Li; Zhao, Yurong; Zhou, Peng; Xu, Hai; Wang, Yanting
2016-12-01
Not Available Project supported by the National Basic Research Program of China (Grant No. 2013CB932804), the National Natural Science Foundation of China (Grant Nos. 91227115, 11421063, 11504431, and 21503275), the Fundamental Research Funds for Central Universities of China (Grant No. 15CX02025A), and the Application Research Foundation for Post-doctoral Scientists of Qingdao City, China (Grant No. T1404096).
Moslehi, Mohsen; Samouei, Rahele; Tayebani, Tayebeh; Kolahduz, Sima
2015-01-01
Considering the increasing importance of emotional intelligence (EI) in different aspects of life, such as academic achievement, the present survey is aimed to predict academic performance of medical students in the comprehensive examination of the basic sciences, according to the indices of emotional intelligence and educational status. The present survey is a descriptive, analytical, and cross-sectional study performed on the medical students of Isfahan, Tehran, and Mashhad Universities of Medical Sciences. Sampling the universities was performed randomly after which selecting the students was done, taking into consideration the limitation in their numbers. Based on the inclusion criteria, all the medical students, entrance of 2005, who had attended the comprehensive basic sciences examination in 2008, entered the study. The data collection tools included an Emotional Intelligence Questionnaire (standardized in Isfahan), the average score of the first to fifth semesters, total average of each of the five semesters, and the grade of the comprehensive basic sciences examination. The data were analyzed through stepwise regression coefficient by SPSS software version 15. The results indicated that the indicators of independence from an emotional intelligence test and average scores of the first and third academic semesters were significant in predicting the students' academic performance in the comprehensive basic sciences examination. According to the obtained results, the average scores of students, especially in the earlier semesters, as well as the indicators of independence and the self-esteem rate of students can influence their success in the comprehensive basic sciences examination.
Basic life support knowledge of first-year university students from Brazil.
Santos, S V; Margarido, M R R A; Caires, I S; Santos, R A N; Souza, S G; Souza, J M A; Martimiano, R R; Dutra, C S K; Palha, P; Zanetti, A C G; Pazin-Filho, A
2015-12-01
We aimed to evaluate knowledge of first aid among new undergraduates and whether it is affected by their chosen course. A questionnaire was developed to assess knowledge of how to activate the Mobile Emergency Attendance Service - MEAS (Serviço de Atendimento Móvel de Urgência; SAMU), recognize a pre-hospital emergency situation and the first aid required for cardiac arrest. The students were also asked about enrolling in a first aid course. Responses were received from 1038 of 1365 (76.04%) new undergraduates. The questionnaires were completed in a 2-week period 1 month after the beginning of classes. Of the 1038 respondents (59.5% studying biological sciences, 11.6% physical sciences, and 28.6% humanities), 58.5% knew how to activate the MEAS/SAMU (54.3% non-biological vs 61.4% biological, P=0.02), with an odds ratio (OR)=1.39 (95%CI=1.07-1.81) regardless of age, sex, origin, having a previous degree or having a relative with cardiac disease. The majority could distinguish emergency from non-emergency situations. When faced with a possible cardiac arrest, 17.7% of the students would perform chest compressions (15.5% non-biological vs 19.1% biological first-year university students, P=0.16) and 65.2% would enroll in a first aid course (51.1% non-biological vs 74.7% biological, P<0.01), with an OR=2.61 (95%CI=1.98-3.44) adjusted for the same confounders. Even though a high percentage of the students recognized emergency situations, a significant proportion did not know the MEAS/SAMU number and only a minority had sufficient basic life support skills to help with cardiac arrest. A significant proportion would not enroll in a first aid course. Biological first-year university students were more prone to enroll in a basic life support course.
Magnetoresistance in Permalloy Connected Brickwork Artificial Spin Ice
NASA Astrophysics Data System (ADS)
Park, Jungsik; Le, Brian; Chern, Gia-Wei; Watts, Justin; Leighton, Chris; Schiffer, Peter
Artificial spin ice refers to a two-dimensional array of elongated ferromagnetic elements in which frustrated lattice geometry induces novel magnetic behavior. Here we examine room-temperature magnetoresistance properties of connected permalloy (Ni81Fe19) brickwork artificial spin ice. Both the longitudinal and transverse magnetoresistance of the nanostructure demonstrate an angular sensitivity that has not been previously observed. The observed magnetoresistance behavior can be explained from micromagnetic modelling using an anisotropic magnetoresistance model (AMR). As part of this study, we find that the ground state of the connected brickwork artificial spin ice can be reproducibly created by a simple field sweep in a narrow range of angles, and manifests in the magnetotransport with a distinct signal. Supported by the US Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division under Grant Number DE-SC0010778. Work at the University of Minnesota was supported by the NSF MRSEC under award DMR-1420013, and DMR-1507048.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aijaz, Arshad; Karkamkar, Abhijeet J.; Choi, Young Joon
2012-08-29
Ultrafine Pt nanoparticles were successfully immobilized inside the pores of a metal-organic framework MIL-101 without deposition of Pt nanoparticles on the external surfaces of framework by using a 'double solvents' method. The resulting Pt@MIL-101 composites with different Pt loadings represent the first highly active MOF-immobilized metal nanocatalysts for catalytic reactions in all three phases: liquid-phase ammonia borane hydrolysis; solid-phase ammonia borane thermal dehy-drogenation and gas-phase CO oxidation. The observed excellent catalytic performances are at-tributed to the small Pt nanoparticles within the pores of MIL-101. 'We are thankful to AIST and METI for financial support. TA & AK are thankful formore » support from the US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. PNNL is operated by Battelle.'« less
NASA Astrophysics Data System (ADS)
Ren, Y.; Ye, F.; Huang, Q.; Fernandez-Baca, J. A.; Dai, Pengcheng; Lynn, J. W.; Kimura, T.
2006-03-01
We use high resolution synchrotron X-ray and neutron diffraction to study the geometrically frustrated triangular lattice antiferromagnet (TLA) CuFeO2. We show that the occurrence of the two magnetic transitions, at 14 K and 11 K, respectively is accompanied simultaneously by a second-and first- order structural phase transitions from a hexagonal structure to a monoclinic form. This is the first observation of two successive spin-driven structural transitions directly coupled with incommensurate and commensurate magnetic orderings in frustrated TLA systems. This work is supported by the U. S. NSF DMR-0453804 and DOE Nos. DE-FG02-05ER46202 and DE-AC05-00OR22725 with UT/Battelle LLC. Use of the Advanced Photon Source was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. W-31-109-Eng-38.
Awareness of basic life support among dental practitioners.
Baduni, Neha; Prakash, Prem; Srivastava, Dhirendra; Sanwal, Manoj Kumar; Singh, Bijender Pal
2014-01-01
It is important that every member of our community should be trained in effective BLS technique to save lives. At least doctors including dental practitioners, and medical and paramedical staff should be trained in high quality CPR, as it is a basic medical skill which can save many lives if implemented timely. Our aim was to study the awareness of Basic Life Support (BLS) among dental students and practitioners in New Delhi. This cross sectional study was conducted by assessing responses to 20 selected questions pertaining to BLS among dental students, resident doctors/tutors, faculty members and private practitioners in New Delhi. All participants were given a printed questionnaire where they had to mention their qualifications and clinical experience, apart from answering 20 questions. Data was collected and evaluated using commercially available statistical package for social sciences (SPSS version 12). One hundred and four responders were included. Sadly, none of our responders had complete knowledge about BLS. The maximum mean score (9.19 ± 1.23) was obtained by dentists with clinical experience between 1-5 years. To ensure better and safer healthcare, it is essential for all dental practitioners to be well versed with BLS.
NASA Astrophysics Data System (ADS)
Ziegler, L. B.; van Dusen, D.; Benedict, R.; Chojnacki, P. R.; Peach, C. L.; Staudigel, H.; Constable, C.; Laske, G.
2010-12-01
The Scripps Classroom Connection, funded through the NSF GK-12 program, pairs local high school teachers with Scripps Institution of Oceanography (SIO) graduate students in the earth and ocean sciences for their mutual professional development. An integral goal of the program is the collaborative production of quality earth science educational modules that are tested in the classroom and subsequently made freely available online for use by other educators. We present a brief overview of the program structure in place to support this goal and illustrate a module that we have developed on the Solid Earth & Plate Tectonics for a 9th grade Earth Science classroom. The unit includes 1) an exercise in constructing a geomagnetic polarity timescale which exposes students to authentic scientific data; 2) activities, labs, lectures and worksheets that support the scientific content; and 3) use of online resources such as Google Earth and interactive animations that help students better understand the concepts. The educational unit is being implemented in two separate local area high schools for Fall 2010 and we will report on our experiences. The co-operative efforts of teachers and scientists lead to educational materials which expose students to the scientific process and current science research, while teaching basic concepts using an engaging inquiry-based approach. In turn, graduate students involved gain experience communicating their science to non-science audiences.