Measure and Evaluate Progress Toward a Carbon-Neutral Campus | Climate
Measure and Evaluate Progress Toward a Carbon-Neutral Campus Successful implementation of a climate action University Climate Action Planning: Among its other recommendations, AASHE recommends holding a yearly climate to build support for the climate action plan. The Educational Facilities Professional's Practical
DOE Office of Scientific and Technical Information (OSTI.GOV)
de Bremond, Ariane; Engle, Nathan L.
2014-01-30
Climate change is rapidly undermining terrestrial ecosystem resilience and capacity to continue providing their services to the benefit of humanity and nature. Because of the importance of terrestrial ecosystems to human well-being and supporting services, decision makers throughout the world are busy creating policy responses that secure multiple development and conservation objectives- including that of supporting terrestrial ecosystem resilience in the context of climate change. This article aims to advance analyses on climate policy evaluation and planning in the area of terrestrial ecosystem resilience by discussing adaptation policy options within the ecology-economy-social nexus. The paper evaluates these decisions in themore » realm of terrestrial ecosystem resilience and evaluates the utility of a set of criteria, indicators, and assessment methods, proposed by a new conceptual multi-criteria framework for pro-development climate policy and planning developed by the United Nations Environment Programme. Potential applications of a multicriteria approach to climate policy vis-A -vis terrestrial ecosystems are then explored through two hypothetical case study examples. The paper closes with a brief discussion of the utility of the multi-criteria approach in the context of other climate policy evaluation approaches, considers lessons learned as a result efforts to evaluate climate policy in the realm of terrestrial ecosystems, and reiterates the role of ecosystem resilience in creating sound policies and actions that support the integration of climate change and development goals.« less
Interactive training improves workplace climate, knowledge, and support towards domestic violence.
Glass, Nancy; Hanson, Ginger C; Laharnar, Naima; Anger, W Kent; Perrin, Nancy
2016-07-01
As Intimate Partner Violence (IPV) affects the workplace, a supportive workplace climate is important. The study evaluated the effectiveness of an "IPV and the Workplace" training on workplace climate towards IPV. IPV training was provided to 14 intervention counties and 13 control counties (receiving training 6 months delayed). Measures included workplace climate surveys, IPV knowledge test, and workplace observations. (i) Training significantly improved supervisor knowledge on IPV and received positive evaluations, (ii) training improved workplace climate towards IPV significantly which was maintained over time, and (iii) after the training, supervisors provided more IPV information to employees and more IPV postings were available in the workplace. The study provides evidence to support on-site interactive, computer based training as a means for improved workplace safety. IPV and the Workplace training effectively increased knowledge and positively changed workplace climate. Am. J. Ind. Med. 59:538-548, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Tejedor Garavito, Natalia; Newton, Adrian C; Golicher, Duncan; Oldfield, Sara
2015-01-01
There are widespread concerns that anthropogenic climate change will become a major cause of global biodiversity loss. However, the potential impact of climate change on the extinction risk of species remains poorly understood, particularly in comparison to other current threats. The objective of this research was to examine the relative impact of climate change on extinction risk of upper montane tree species in the tropical Andes, an area of high biodiversity value that is particularly vulnerable to climate change impacts. The extinction risk of 129 tree species endemic to the region was evaluated according to the IUCN Red List criteria, both with and without the potential impacts of climate change. Evaluations were supported by development of species distribution models, using three methods (generalized additive models, recursive partitioning, and support vector machines), all of which produced similarly high AUC values when averaged across all species evaluated (0.82, 0.86, and 0.88, respectively). Inclusion of climate change increased the risk of extinction of 18-20% of the tree species evaluated, depending on the climate scenario. The relative impact of climate change was further illustrated by calculating the Red List Index, an indicator that shows changes in the overall extinction risk of sets of species over time. A 15% decline in the Red List Index was obtained when climate change was included in this evaluation. While these results suggest that climate change represents a significant threat to tree species in the tropical Andes, they contradict previous suggestions that climate change will become the most important cause of biodiversity loss in coming decades. Conservation strategies should therefore focus on addressing the multiple threatening processes currently affecting biodiversity, rather than focusing primarily on potential climate change impacts.
Tejedor Garavito, Natalia; Newton, Adrian C.; Golicher, Duncan; Oldfield, Sara
2015-01-01
There are widespread concerns that anthropogenic climate change will become a major cause of global biodiversity loss. However, the potential impact of climate change on the extinction risk of species remains poorly understood, particularly in comparison to other current threats. The objective of this research was to examine the relative impact of climate change on extinction risk of upper montane tree species in the tropical Andes, an area of high biodiversity value that is particularly vulnerable to climate change impacts. The extinction risk of 129 tree species endemic to the region was evaluated according to the IUCN Red List criteria, both with and without the potential impacts of climate change. Evaluations were supported by development of species distribution models, using three methods (generalized additive models, recursive partitioning, and support vector machines), all of which produced similarly high AUC values when averaged across all species evaluated (0.82, 0.86, and 0.88, respectively). Inclusion of climate change increased the risk of extinction of 18–20% of the tree species evaluated, depending on the climate scenario. The relative impact of climate change was further illustrated by calculating the Red List Index, an indicator that shows changes in the overall extinction risk of sets of species over time. A 15% decline in the Red List Index was obtained when climate change was included in this evaluation. While these results suggest that climate change represents a significant threat to tree species in the tropical Andes, they contradict previous suggestions that climate change will become the most important cause of biodiversity loss in coming decades. Conservation strategies should therefore focus on addressing the multiple threatening processes currently affecting biodiversity, rather than focusing primarily on potential climate change impacts. PMID:26177097
Evaluation of safety climate and employee injury rates in healthcare.
Cook, Jacqueline M; Slade, Martin D; Cantley, Linda F; Sakr, Carine J
2016-09-01
Safety climates that support safety-related behaviour are associated with fewer work-related injuries, and prior research in industry suggests that safety knowledge and motivation are strongly related to safety performance behaviours; this relationship is not well studied in healthcare settings. We performed analyses of survey results from a Veterans Health Administration (VHA) Safety Barometer employee perception survey, conducted among VHA employees in 2012. The employee perception survey assessed 6 safety programme categories, including management participation, supervisor participation, employee participation, safety support activities, safety support climate and organisational climate. We examined the relationship between safety climate from the survey results on VHA employee injury and illness rates. Among VHA facilities in the VA New England Healthcare System, work-related injury rate was significantly and inversely related to overall employee perception of safety climate, and all 6 safety programme categories, including employee perception of employee participation, management participation, organisational climate, supervisor participation, safety support activities and safety support climate. Positive employee perceptions of safety climate in VHA facilities are associated with lower work-related injury and illness rates. Employee perception of employee participation, management participation, organisational climate, supervisor participation, safety support activities and safety support climate were all associated with lower work-related injury rates. Future implications include fostering a robust safety climate for patients and healthcare workers to reduce healthcare worker injuries. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
VIIRS Product Evaluation at the Ocean PEATE
NASA Technical Reports Server (NTRS)
Patt, Frederick S.; Feldman, Gene C.
2010-01-01
The National Polar-orbiting Operational Environmental Satellite System (NPOESS) Preparatory Project (NPP) mission will support the continuation of climate records generated from NASA missions. The NASA Science Data Segment (SDS) relies upon discipline-specific centers of expertise to evaluate the NPP data products for suitability as climate data records, The Ocean Product Evaluation and Analysis Tool Element (PEATE) will build upon Well established NASA capabilities within the Ocean Color program in order to evaluate the NPP Visible and Infrared Imager/Radiometer Suite (VIIRS) Ocean Color and Chlorophyll data products. The specific evaluation methods will support not only the evaluation of product quality but also the sources of differences with existing data records.
Linking climate change and fish conservation efforts using spatially explicit decision support tools
Douglas P. Peterson; Seth J. Wenger; Bruce E. Rieman; Daniel J. Isaak
2013-01-01
Fisheries professionals are increasingly tasked with incorporating climate change projections into their decisions. Here we demonstrate how a structured decision framework, coupled with analytical tools and spatial data sets, can help integrate climate and biological information to evaluate management alternatives. We present examples that link downscaled climate...
Real options analysis for photovoltaic project under climate uncertainty
NASA Astrophysics Data System (ADS)
Kim, Kyeongseok; Kim, Sejong; Kim, Hyoungkwan
2016-08-01
The decision on photovoltaic project depends on the level of climate environments. Changes in temperature and insolation affect photovoltaic output. It is important for investors to consider future climate conditions for determining investments on photovoltaic projects. We propose a real options-based framework to assess economic feasibility of photovoltaic project under climate change. The framework supports investors to evaluate climate change impact on photovoltaic projects under future climate uncertainty.
Use of Climatic Information In Regional Water Resources Assessment
NASA Astrophysics Data System (ADS)
Claps, P.
Relations between climatic parameters and hydrological variables at the basin scale are investigated, with the aim of evaluating in a parsimonious way physical parameters useful both for a climatic classification of an area and for supporting statistical models of water resources assessment. With reference to the first point, literature methods for distributed evaluation of parameters such as temperature, global and net solar radiation, precipitation, have been considered at the annual scale with the aim of considering the viewpoint of the robust evaluation of parameters based on few basic physical variables of simple determination. Elevation, latitude and average annual number of sunny days have demonstrated to be the essential parameters with respect to the evaluation of climatic indices related to the soil water deficit and to the radiative balance. The latter term was evaluated at the monthly scale and validated (in the `global' term) with measured data. in questo caso riferite al bilancio idrico a scala annuale. Budyko, Thornthwaite and Emberger climatic indices were evaluated on the 10,000 km2 territory of the Basilicata region (southern Italy) based on a 1.1. km grid. They were compared in terms of spatial variability and sensitivity to the variation of the basic variables in humid and semi-arid areas. The use of the climatic index data with respect to statistical parameters of the runoff series in some gauging stations of the region demonstrated the possibility to support regionalisation of the annual runoff using climatic information, with clear distinction of the variability of the coefficient of variation in terms of the humidity-aridity of the basin.
Climate Model Diagnostic Analyzer Web Service System
NASA Astrophysics Data System (ADS)
Lee, S.; Pan, L.; Zhai, C.; Tang, B.; Kubar, T. L.; Li, J.; Zhang, J.; Wang, W.
2015-12-01
Both the National Research Council Decadal Survey and the latest Intergovernmental Panel on Climate Change Assessment Report stressed the need for the comprehensive and innovative evaluation of climate models with the synergistic use of global satellite observations in order to improve our weather and climate simulation and prediction capabilities. The abundance of satellite observations for fundamental climate parameters and the availability of coordinated model outputs from CMIP5 for the same parameters offer a great opportunity to understand and diagnose model biases in climate models. In addition, the Obs4MIPs efforts have created several key global observational datasets that are readily usable for model evaluations. However, a model diagnostic evaluation process requires physics-based multi-variable comparisons that typically involve large-volume and heterogeneous datasets, making them both computationally- and data-intensive. In response, we have developed a novel methodology to diagnose model biases in contemporary climate models and implementing the methodology as a web-service based, cloud-enabled, provenance-supported climate-model evaluation system. The evaluation system is named Climate Model Diagnostic Analyzer (CMDA), which is the product of the research and technology development investments of several current and past NASA ROSES programs. The current technologies and infrastructure of CMDA are designed and selected to address several technical challenges that the Earth science modeling and model analysis community faces in evaluating and diagnosing climate models. In particular, we have three key technology components: (1) diagnostic analysis methodology; (2) web-service based, cloud-enabled technology; (3) provenance-supported technology. The diagnostic analysis methodology includes random forest feature importance ranking, conditional probability distribution function, conditional sampling, and time-lagged correlation map. We have implemented the new methodology as web services and incorporated the system into the Cloud. We have also developed a provenance management system for CMDA where CMDA service semantics modeling, service search and recommendation, and service execution history management are designed and implemented.
DOT National Transportation Integrated Search
2015-05-01
Improvements in the Long-Term Pavement Performance (LTPP) Programs climate data are needed to support current and future research into climate effects on pavement materials, design, and performance. The calibration and enhancement of the Mechanist...
Climate change may restrict dryland forest regeneration in the 21st century
Petrie, M.D.; Bradford, John B.; Hubbard, R.M.; Lauenroth, W.K.; Andrews, Caitlin; Schlaepfer, D.R.
2017-01-01
The persistence and geographic expansion of dryland forests in the 21st century will be influenced by how climate change supports the demographic processes associated with tree regeneration. Yet, the way that climate change may alter regeneration is unclear. We developed a quantitative framework that estimates forest regeneration potential (RP) as a function of key environmental conditions for ponderosa pine, a key dryland forest species. We integrated meteorological data and climate projections for 47 ponderosa pine forest sites across the western United States, and evaluated RP using an ecosystem water balance model. Our primary goal was to contrast conditions supporting regeneration among historical, mid-21st century and late-21st century time frames. Future climatic conditions supported 50% higher RP in 2020–2059 relative to 1910–2014. As temperatures increased more substantially in 2060–2099, seedling survival decreased, RP declined by 50%, and the frequency of years with very low RP increased from 25% to 58%. Thus, climate change may initially support higher RP and increase the likelihood of successful regeneration events, yet will ultimately reduce average RP and the frequency of years with moderate climate support of regeneration. Our results suggest that climate change alone may begin to restrict the persistence and expansion of dryland forests by limiting seedling survival in the late 21st century.
Climate change may restrict dryland forest regeneration in the 21st century.
Petrie, M D; Bradford, J B; Hubbard, R M; Lauenroth, W K; Andrews, C M; Schlaepfer, D R
2017-06-01
The persistence and geographic expansion of dryland forests in the 21st century will be influenced by how climate change supports the demographic processes associated with tree regeneration. Yet, the way that climate change may alter regeneration is unclear. We developed a quantitative framework that estimates forest regeneration potential (RP) as a function of key environmental conditions for ponderosa pine, a key dryland forest species. We integrated meteorological data and climate projections for 47 ponderosa pine forest sites across the western United States, and evaluated RP using an ecosystem water balance model. Our primary goal was to contrast conditions supporting regeneration among historical, mid-21st century and late-21st century time frames. Future climatic conditions supported 50% higher RP in 2020-2059 relative to 1910-2014. As temperatures increased more substantially in 2060-2099, seedling survival decreased, RP declined by 50%, and the frequency of years with very low RP increased from 25% to 58%. Thus, climate change may initially support higher RP and increase the likelihood of successful regeneration events, yet will ultimately reduce average RP and the frequency of years with moderate climate support of regeneration. Our results suggest that climate change alone may begin to restrict the persistence and expansion of dryland forests by limiting seedling survival in the late 21st century. © 2017 by the Ecological Society of America.
Australians' views on carbon pricing before and after the 2013 federal election
NASA Astrophysics Data System (ADS)
Dreyer, Stacia J.; Walker, Iain; McCoy, Shannon K.; Teisl, Mario F.
2015-12-01
As climate policies change through the legislative process, public attitudes towards them may change as well. Therefore, it is important to assess how people accept and support controversial climate policies as the policies change over time. Policy acceptance is a positive evaluation of, or attitude towards, an existing policy; policy support adds an active behavioural component. Acceptance does not necessarily lead to support. We conducted a national survey of Australian residents to investigate acceptance of, and support for, the Australian carbon pricing policy before and after the 2013 federal election, and how perceptions of the policy, economic ideology, and voting behaviour affect acceptance and support. We found acceptance and support were stable across the election period, which was surprising given that climate policy was highly contentious during the election. Policy acceptance was higher than policy support at both times and acceptance was a necessary but insufficient condition of support. We conclude that acceptance is an important process through which perceptions of the policy and economic ideology influence support. Therefore, future climate policy research needs to distinguish between acceptance and support to better understand this process, and to better measure these concepts.
ERIC Educational Resources Information Center
Elfrink, Teuntje R.; Goldberg, Jochem M.; Schreurs, Karlein M. G.; Bohlmeijer, Ernst T.; Clarke, Aleisha M.
2017-01-01
Purpose: The purpose of this paper is to report on a process and impact evaluation of the Positief Educatief Programma (Positive Education Programme (PEP)), a whole school approach to supporting children's well-being and creating a positive school climate in primary schools in the Netherlands. PEP adopts a competence skill enhancement approach…
Vaughan, Catherine; Dessai, Suraje
2014-01-01
Climate services involve the generation, provision, and contextualization of information and knowledge derived from climate research for decision making at all levels of society. These services are mainly targeted at informing adaptation to climate variability and change, widely recognized as an important challenge for sustainable development. This paper reviews the development of climate services, beginning with a historical overview, a short summary of improvements in climate information, and a description of the recent surge of interest in climate service development including, for example, the Global Framework for Climate Services, implemented by the World Meteorological Organization in October 2012. It also reviews institutional arrangements of selected emerging climate services across local, national, regional, and international scales. By synthesizing existing literature, the paper proposes four design elements of a climate services evaluation framework. These design elements include: problem identification and the decision-making context; the characteristics, tailoring, and dissemination of the climate information; the governance and structure of the service, including the process by which it is developed; and the socioeconomic value of the service. The design elements are intended to serve as a guide to organize future work regarding the evaluation of when and whether climate services are more or less successful. The paper concludes by identifying future research questions regarding the institutional arrangements that support climate services and nascent efforts to evaluate them. PMID:25798197
Vaughan, Catherine; Dessai, Suraje
2014-09-01
Climate services involve the generation, provision, and contextualization of information and knowledge derived from climate research for decision making at all levels of society. These services are mainly targeted at informing adaptation to climate variability and change, widely recognized as an important challenge for sustainable development. This paper reviews the development of climate services, beginning with a historical overview, a short summary of improvements in climate information, and a description of the recent surge of interest in climate service development including, for example, the Global Framework for Climate Services, implemented by the World Meteorological Organization in October 2012. It also reviews institutional arrangements of selected emerging climate services across local, national, regional, and international scales. By synthesizing existing literature, the paper proposes four design elements of a climate services evaluation framework. These design elements include: problem identification and the decision-making context; the characteristics, tailoring, and dissemination of the climate information; the governance and structure of the service, including the process by which it is developed; and the socioeconomic value of the service. The design elements are intended to serve as a guide to organize future work regarding the evaluation of when and whether climate services are more or less successful. The paper concludes by identifying future research questions regarding the institutional arrangements that support climate services and nascent efforts to evaluate them.
A quantitative evaluation of the public response to climate engineering
NASA Astrophysics Data System (ADS)
Wright, Malcolm J.; Teagle, Damon A. H.; Feetham, Pamela M.
2014-02-01
Atmospheric greenhouse gas concentrations continue to increase, with CO2 passing 400 parts per million in May 2013. To avoid severe climate change and the attendant economic and social dislocation, existing energy efficiency and emissions control initiatives may need support from some form of climate engineering. As climate engineering will be controversial, there is a pressing need to inform the public and understand their concerns before policy decisions are taken. So far, engagement has been exploratory, small-scale or technique-specific. We depart from past research to draw on the associative methods used by corporations to evaluate brands. A systematic, quantitative and comparative approach for evaluating public reaction to climate engineering is developed. Its application reveals that the overall public evaluation of climate engineering is negative. Where there are positive associations they favour carbon dioxide removal (CDR) over solar radiation management (SRM) techniques. Therefore, as SRM techniques become more widely known they are more likely to elicit negative reactions. Two climate engineering techniques, enhanced weathering and cloud brightening, have indistinct concept images and so are less likely to draw public attention than other CDR or SRM techniques.
NASA Astrophysics Data System (ADS)
Ray, A. J.; Ojima, D. S.; Morisette, J. T.
2012-12-01
The DOI North Central Climate Science Center (NC CSC) and the NOAA/NCAR National Climate Predictions and Projections (NCPP) Platform and have initiated a joint pilot study to collaboratively explore the "best available climate information" to support key land management questions and how to provide this information. NCPP's mission is to support state of the art approaches to develop and deliver comprehensive regional climate information and facilitate its use in decision making and adaptation planning. This presentation will describe the evolving joint pilot as a tangible, real-world demonstration of linkages between climate science, ecosystem science and resource management. Our joint pilot is developing a deliberate, ongoing interaction to prototype how NCPP will work with CSCs to develop and deliver needed climate information products, including translational information to support climate data understanding and use. This pilot also will build capacity in the North Central CSC by working with NCPP to use climate information used as input to ecological modeling. We will discuss lessons to date on developing and delivering needed climate information products based on this strategic partnership. Four projects have been funded to collaborate to incorporate climate information as part of an ecological modeling project, which in turn will address key DOI stakeholder priorities in the region: Riparian Corridors: Projecting climate change effects on cottonwood and willow seed dispersal phenology, flood timing, and seedling recruitment in western riparian forests. Sage Grouse & Habitats: Integrating climate and biological data into land management decision models to assess species and habitat vulnerability Grasslands & Forests: Projecting future effects of land management, natural disturbance, and CO2 on woody encroachment in the Northern Great Plains The value of climate information: Supporting management decisions in the Plains and Prairie Potholes LCC. NCCSC's role in these projects is to provide the connections between climate data and running ecological models, and prototype these for future work. NCPP will develop capacities to provide enhanced climate information at relevant spatial and temporal scales, both for historical climate and projections of future climate, and will work to link expert guidance and understanding of modeling processes and evaluation of modeling with the use of numerical climate data. Translational information thus is a suite of information that aids in translation of numerical climate information into usable knowledge for applications, e.g. ecological response models, hydrologic risk studies. This information includes technical and scientific aspects including, but not limited to: 1) results of objective, quantitative evaluation of climate models & downscaling techniques, 2) guidance on appropriate uses and interpretation, i.e., understanding the advantages and limitations of various downscaling techniques for specific user applications, 3) characterizing and interpreting uncertainty, 4) Descriptions meaningful to applications, e.g. narratives. NCPP believes that translational information is best co-developed between climate scientists and applications scientists, such as the NC-CSC pilot.
NASA Astrophysics Data System (ADS)
Lee, J.; Waliser, D. E.; Lee, H.; Loikith, P. C.; Kunkel, K.
2017-12-01
Monitoring temporal changes in key climate variables, such as surface air temperature and precipitation, is an integral part of the ongoing efforts of the United States National Climate Assessment (NCA). Climate models participating in CMIP5 provide future trends for four different emissions scenarios. In order to have confidence in the future projections of surface air temperature and precipitation, it is crucial to evaluate the ability of CMIP5 models to reproduce observed trends for three different time periods (1895-1939, 1940-1979, and 1980-2005). Towards this goal, trends in surface air temperature and precipitation obtained from the NOAA nClimGrid 5 km gridded station observation-based product are compared during all three time periods to the 206 CMIP5 historical simulations from 48 unique GCMs and their multi-model ensemble (MME) for NCA-defined climate regions during summer (JJA) and winter (DJF). This evaluation quantitatively examines the biases of simulated trends of the spatially averaged temperature and precipitation in the NCA climate regions. The CMIP5 MME reproduces historical surface air temperature trends for JJA for all time period and all regions, except the Northern Great Plains from 1895-1939 and Southeast during 1980-2005. Likewise, for DJF, the MME reproduces historical surface air temperature trends across all time periods over all regions except the Southeast from 1895-1939 and the Midwest during 1940-1979. The Regional Climate Model Evaluation System (RCMES), an analysis tool which supports the NCA by providing access to data and tools for regional climate model validation, facilitates the comparisons between the models and observation. The RCMES Toolkit is designed to assist in the analysis of climate variables and the procedure of the evaluation of climate projection models to support the decision-making processes. This tool is used in conjunction with the above analysis and results will be presented to demonstrate its capability to access observation and model datasets, calculate evaluation metrics, and visualize the results. Several other examples of the RCMES capabilities can be found at https://rcmes.jpl.nasa.gov.
ERIC Educational Resources Information Center
Kearney, W. Sean; Smith, Page A.; Maika, Sean
2016-01-01
There is currently a lack of research into classroom climate as perceived by the students themselves. This article presents a new classroom climate evaluation instrument which is designed to gauge student perceptions of their own level of engagement in academic activities, their relationships with peers, and the level of support they feel from…
NASA Astrophysics Data System (ADS)
Kenney, M. A.
2014-12-01
The U.S. Global Change Research Program is currently considering establishing a National Climate Indicators System, which would be a set of physical, ecological, and societal indicators that would communicate key aspects of climate changes, impacts, vulnerabilities, and preparedness to inform mitigation and adaptation decisions. Thus, over the past several years 150+ scientists and practitioners representing a range of expertise from the climate system to natural systems to human sectors have developed a set of indicator recommendations that could be used as a first step to establishing such an indicator system. These recommendations have been implemented into a pilot system, with the goal of working with stakeholder communities to evaluate the understandability of individual indicators and learn how users are combining indicators for their own understanding or decision needs through this multiple Federal agency decision support platform. This prototype system provides the perfect test bed for evaluating the translation of scientific data - observations, remote sensing, and citizen science data -- and data products, such as indicators, for decision-making audiences. Often translation of scientific information into decision support products is developed and improved given intuition and feedback. Though this can be useful in many cases, more rigorous testing using social science methodologies would provide greater assurance that the data products are useful for the intended audiences. I will present some initial research using surveys to assess the understandability of indicators and whether that understanding is influenced by one's attitude toward climate change. Such information is critical to assess whether products developed for scientists by scientists have been appropriately translated for non-scientists, thus assuring that the data will have some value for the intended audience. Such survey information will provide a data driven approach to further develop and improve the National Climate Indicators System and could be applied to improve other decision support systems.
Physical, Ecological, and Societal Indicators for the National Climate Assessment
NASA Technical Reports Server (NTRS)
Kenney, Melissa A.; Chen, Robert; Baptista, Sandra R.; Quattrochi, Dale; O'Brien, Sheila
2011-01-01
The National Climate Assessment (NCA) is being conducted under the auspices of the U.S. Global Change Research Program (USGCRP), pursuant to the Global Change Research Act of 1990, Section 106, which requires a report to Congress every 4 years. The current NCA (http://globalchange.gov/what-we-do/assessment/) differs in multiple ways from previous U.S. climate assessment efforts, being: (1) more focused on supporting the Nation s activities in adaptation and mitigation and on evaluating the current state of scientific knowledge relative to climate impacts and trends; (2) a long-term, consistent process for evaluation of climate risks and opportunities and providing information to support decision-making processes within regions and sectors; and (3) establishing a permanent assessment capacity both inside and outside of the federal government. As a part of ongoing, long-term assessment activities, the NCA intends to develop an integrated strategic framework and deploy climate-relevant physical, ecological, and societal indicators. The NCA indicators framework is underdevelopment by the NCA Development and Advisory Committee Indicators Working Group and are envisioned as a relatively small number of policy-relevant integrated indicators designed to provide a consistent, objective, and transparent overview of major variations in climate impacts, vulnerabilities, adaptation, and mitigation activities across sectors, regions, and timeframes. The potential questions that could be addressed by these indicators include: How do we know that there is a changing climate and how is it expected to change in the future? Are important climate impacts and opportunities occurring or predicted to occur in the future? Are we adapting successfully? What are the vulnerabilities and resiliencies given a changing climate? Are we preparing adequately for extreme events? It is not expected that the NCA societal indicators would be linked directly to a single decision or portfolio of decisions, but subsets of indicators, or the data supporting the indicator, might be used to inform decision-making processes such as the development and implementation of climate adaptation strategies in a particular sector or region.
Physical, Ecological, and Societal Indicators for the National Climate Assessment
NASA Astrophysics Data System (ADS)
O'Brien, S.; Kenney, M.; Chen, R. S.; Baptista, S. R.; Quattrochi, D. A.
2011-12-01
The National Climate Assessment (NCA) is being conducted under the auspices of the U.S. Global Change Research Program (USGCRP), pursuant to the Global Change Research Act of 1990, Section 106, which requires a report to Congress every 4 years. The current NCA (http://globalchange.gov/what-we-do/assessment/) differs in multiple ways from previous U.S. climate assessment efforts, being: (1) more focused on supporting the Nation's activities in adaptation and mitigation and on evaluating the current state of scientific knowledge relative to climate impacts and trends; (2) a long-term, consistent process for evaluation of climate risks and opportunities and providing information to support decision-making processes within regions and sectors; and (3) establishing a permanent assessment capacity both inside and outside of the federal government. As a part of ongoing, long-term assessment activities, the NCA intends to develop an integrated strategic framework and deploy climate-relevant physical, ecological, and societal indicators. The NCA indicators framework is underdevelopment by the NCA Development and Advisory Committee Indicators Working Group and are envisioned as a relatively small number of policy-relevant integrated indicators designed to provide a consistent, objective, and transparent overview of major variations in climate impacts, vulnerabilities, adaptation, and mitigation activities across sectors, regions, and timeframes. The potential questions that could be addressed by these indicators include: -How do we know that there is a changing climate and how is it expected to change in the future? -Are important climate impacts and opportunities occurring or predicted to occur in the future? -Are we adapting successfully? -What are the vulnerabilities and resiliencies given a changing climate? -Are we preparing adequately for extreme events? It is not expected that the NCA indicators would be linked directly to a single decision or portfolio of decisions, but subsets of indicators, or the data supporting the indicator, might be used to inform decision-making processes such as the development and implementation of climate adaptation strategies in a particular sector or region.
Silkens, Milou E W M; Arah, Onyebuchi A; Wagner, Cordula; Scherpbier, Albert J J A; Heineman, Maas Jan; Lombarts, Kiki M J M H
2018-05-15
Improving residents' patient safety behavior should be a priority in graduate medical education to ensure the safety of current and future patients. Supportive learning and patient safety climates may foster this behavior. This study examined the extent to which residents' self-reported patient safety behavior can be explained by the learning climate and patient safety climate of their clinical departments. The authors collected learning climate data from clinical departments in the Netherlands that used the web-based Dutch Residency Educational Climate Test between September 2015 and October 2016. They also gathered data on those departments' patient safety climate and on residents' self-reported patient safety behavior. They used generalized linear mixed models and multivariate general linear models to test for associations in the data. In total, 1,006 residents evaluated 143 departments in 31 teaching hospitals. Departments' patient safety climate was associated with residents' overall self-reported patient safety behavior (regression coefficient (b) = 0.33; 95% confidence interval (CI) = 0.14 - 0.52). Departments' learning climate was not associated with residents' patient safety behavior (b = 0.01; 95% CI = -0.17 - 0.19), although it was with their patient safety climate (b = 0.73; 95% CI = 0.69 - 0.77). Departments should focus on establishing a supportive patient safety climate to improve residents' patient safety behavior. Building a supportive learning climate might help to improve the patient safety climate and, in turn, residents' patient safety behavior.
Lee, Jin; Huang, Yueng-hsiang; Robertson, Michelle M; Murphy, Lauren A; Garabet, Angela; Chang, Wen-Ruey
2014-02-01
The goal of this study was to examine the external validity of a 12-item generic safety climate scale for lone workers in order to evaluate the appropriateness of generalized use of the scale in the measurement of safety climate across various lone work settings. External validity evidence was established by investigating the measurement equivalence (ME) across different industries and companies. Confirmatory factor analysis (CFA)-based and item response theory (IRT)-based perspectives were adopted to examine the ME of the generic safety climate scale for lone workers across 11 companies from the trucking, electrical utility, and cable television industries. Fairly strong evidence of ME was observed for both organization- and group-level generic safety climate sub-scales. Although significant invariance was observed in the item intercepts across the different lone work settings, absolute model fit indices remained satisfactory in the most robust step of CFA-based ME testing. IRT-based ME testing identified only one differentially functioning item from the organization-level generic safety climate sub-scale, but its impact was minimal and strong ME was supported. The generic safety climate scale for lone workers reported good external validity and supported the presence of a common feature of safety climate among lone workers. The scale can be used as an effective safety evaluation tool in various lone work situations. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Brekke, L. D.; Scott, J.; Ferguson, I. M.; Arnold, J.; Raff, D. A.; Webb, R. S.
2012-12-01
Water managers need to understand the applicability of climate projection information available for decision-support at the scale of their applications. Applicability depends on information reliability and relevance. This need to understand applicability stems from expectations that entities rationalize adaptation investments or decisions to delay investment. It is also occurring at a time when new global climate projections are being released through the World Climate Research Programme Coupled Model Intercomparison Project phase 5 (CMIP5), which introduces new information opportunities and interpretation challenges. This project involves an interagency collaboration to evaluate the applicability of CMIP5 projections for use in water and environmental resources planning. The overarching goal is to develop and demonstrate a framework that involves dual evaluations of relevance and reliability informing an ultimate discussion and judgment of applicability, which is expected to vary with decision-making context. The framework is being developed and demonstrated within the context of reservoir systems management in California's Sacramento and San Joaquin River basins. The relevance evaluation focuses on identifying the climate variables and statistical measures relevant to long-term management questions, which may depend on satisfying multiple objectives. Past studies' results are being considered in this evaluation, along with new results from system sensitivity analyses conducted through this effort. The reliability evaluation focuses on the CMIP5 climate models' ability to simulate past conditions relative to observed references. The evaluation is being conducted across the global domain using a large menu of climate variables and statistical measures, leveraging lessons learned from similar evaluations of CMIP3 climate models. The global focus addresses a broader project goal of producing a web resource that can serve reliability information to applicability discussions around the world, with evaluation results being served through a web-portal similar to that developed by NOAA/CIRES to serve CMIP3 information on future climate extremes (http://www.esrl.noaa.gov/psd/ipcc/extremes/). The framework concludes with an applicability discussion informed by relevance and reliability results. The goal is to observe the discussion process and identify features, choice points, and challenges that might be summarized and shared with other resource management groups facing applicability questions. This presentation will discuss the project framework and preliminary results. In addition to considering CMIP5 21st century projection information, the framework is being developed to support evaluation of CMIP5 decadal predictability experiment simulations and reconcile those simulations with 21st century projections. The presentation will also discuss implications of considering the applicability of bias-corrected and downscaled information within this framework.
ERIC Educational Resources Information Center
Crooks, Claire V.; Jaffe, Peter G.; Rodriguez, Arely
2017-01-01
Teachers play an important role in promoting a positive school climate, which in turns supports academic achievement and positive mental health among students. This study evaluated the impact of a pre-service teacher education course addressing a range of contributors to school climate. Participants included a cohort of 212 pre-service teachers…
Climate Literacy: Supporting Teacher Professional Development
NASA Astrophysics Data System (ADS)
Haddad, N.; Ledley, T. S.; Dunlap, C.; Bardar, E.; Youngman, B.; Ellins, K. K.; McNeal, K. S.; Libarkin, J.
2012-12-01
Confronting the Challenges of Climate Literacy (CCCL) is an NSF-funded (DRK-12) project that includes curriculum development, teacher professional development, teacher leadership development, and research on student learning, all directed at high school teachers and students. The project's evaluation efforts inform and guide all major components of the project. The research effort addresses the question of what interventions are most effective in helping high school students grasp the complexities of the Earth system and climate processes, which occur over a range of spatial and temporal scales. The curriculum unit includes three distinct but related modules: Climate and the Cryosphere; Climate, Weather, and the Biosphere; and Climate and the Carbon Cycle. Climate-related themes that cut across all three modules include the Earth system, with the complexities of its positive and negative feedback loops; the range of temporal and spatial scales at which climate, weather, and other Earth system processes occur; and the recurring question, "How do we know what we know about Earth's past and present climate?" which addresses proxy data and scientific instrumentation. The professional development component of the project includes online science resources to support the teaching of the curriculum modules, summer workshops for high school teachers, and a support system for developing the teacher leaders who plan and implement those summer workshops. When completed, the project will provide a model high school curriculum with online support for implementing teachers and a cadre of leaders who can continue to introduce new teachers to the resource. This presentation will introduce the curriculum and the university partnerships that are key to the project's success, and describe how the project addresses the challenge of helping teachers develop their understanding of climate science and their ability to convey climate-related concepts articulated in the Next Generation Science Standards to their students. We will also describe the professional development and support system to develop teacher leaders and explain some of the challenges that accompany this approach of developing teacher leaders in the area of climate literacy.
NASA Astrophysics Data System (ADS)
Lynds, S. E.; Buhr, S. M.
2011-12-01
The Climate Literacy and Energy Awareness Network (CLEAN) Pathway, is a National Science Digital Library (NSDL) Pathways project that was begun in 2010. The main goal of CLEAN is to generate a reviewed collection of educational resources that are aligned with the Essential Principles of Climate Science (EPCS). Another goal of the project is to support a community that will assist students, teachers, and citizens in climate literacy. A complementary program begun in 2010 is the ICEE (Inspiring Climate Education Excellence) program, which is developing online modules and courses designed around the climate literacy principles for use by teachers and other interested citizens. In these projects, we learn about teacher needs through a variety of evaluation mechanisms. The programs use evaluation to assist in the process of providing easy access to high quality climate and energy learning resources that meet classroom requirements. The internal evaluation of the CLEAN program is multidimensional. At the CLEAN resource review camps, teachers and scientists work together in small groups to assess the value of online resources for use in the classroom. The review camps are evaluated using observation and feedback surveys; the resulting evaluation reports provide information to managers to fine-tune future camps. In this way, a model for effective climate resource development meetings has been refined. Evaluation methods used in ICEE and CLEAN include teacher needs assessment surveys, teacher feedback at professional development opportunities, scientist feedback at resource review workshops, and regular analysis of online usage of resources, forums, and education modules. This paper will review the most successful strategies for evaluating the effectiveness of online climate and energy education resources and their use by educators and the general public.
Evaluating Urban Resilience to Climate Change: A Multi-Sector Approach (Final Report)
EPA is announcing the availability of this final report prepared by the Air, Climate, and Energy (ACE) Research Program, located within the Office of Research and Development, with support from Cadmus. One of the goals of the ACE research program is to provide scientific informat...
NASA Astrophysics Data System (ADS)
Lombardi, D.; Sinatra, G. M.
2013-12-01
Critical evaluation and plausibility reappraisal of scientific explanations have been underemphasized in many science classrooms (NRC, 2012). Deep science learning demands that students increase their ability to critically evaluate the quality of scientific knowledge, weigh alternative explanations, and explicitly reappraise their plausibility judgments. Therefore, this lack of instruction about critical evaluation and plausibility reappraisal has, in part, contributed to diminished understanding about complex and controversial topics, such as global climate change. The Model-Evidence Link (MEL) diagram (originally developed by researchers at Rutgers University under an NSF-supported project; Chinn & Buckland, 2012) is an instructional scaffold that promotes students to critically evaluate alternative explanations. We recently developed a climate change MEL and found that the students who used the MEL experienced a significant shift in their plausibility judgments toward the scientifically accepted model of human-induced climate change. Using the MEL for instruction also resulted in conceptual change about the causes of global warming that reflected greater understanding of fundamental scientific principles. Furthermore, students sustained this conceptual change six months after MEL instruction (Lombardi, Sinatra, & Nussbaum, 2013). This presentation will discuss recent educational research that supports use of the MEL to promote critical evaluation, plausibility reappraisal, and conceptual change, and also, how the MEL may be particularly effective for learning about global climate change and other socio-scientific topics. Such instruction to develop these fundamental thinking skills (e.g., critical evaluation and plausibility reappraisal) is demanded by both the Next Generation Science Standards (Achieve, 2013) and the Common Core State Standards for English Language Arts and Mathematics (CCSS Initiative-ELA, 2010; CCSS Initiative-Math, 2010), as well as a society that is equipped to deal with challenges in a way that is beneficial to our national and global community.
A Decision Analysis Tool for Climate Impacts, Adaptations, and Vulnerabilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Omitaomu, Olufemi A; Parish, Esther S; Nugent, Philip J
Climate change related extreme events (such as flooding, storms, and drought) are already impacting millions of people globally at a cost of billions of dollars annually. Hence, there are urgent needs for urban areas to develop adaptation strategies that will alleviate the impacts of these extreme events. However, lack of appropriate decision support tools that match local applications is limiting local planning efforts. In this paper, we present a quantitative analysis and optimization system with customized decision support modules built on geographic information system (GIS) platform to bridge this gap. This platform is called Urban Climate Adaptation Tool (Urban-CAT). Formore » all Urban-CAT models, we divide a city into a grid with tens of thousands of cells; then compute a list of metrics for each cell from the GIS data. These metrics are used as independent variables to predict climate impacts, compute vulnerability score, and evaluate adaptation options. Overall, the Urban-CAT system has three layers: data layer (that contains spatial data, socio-economic and environmental data, and analytic data), middle layer (that handles data processing, model management, and GIS operation), and application layer (that provides climate impacts forecast, adaptation optimization, and site evaluation). The Urban-CAT platform can guide city and county governments in identifying and planning for effective climate change adaptation strategies.« less
NASA Astrophysics Data System (ADS)
Diaconescu, Emilia Paula; Mailhot, Alain; Brown, Ross; Chaumont, Diane
2018-03-01
This study focuses on the evaluation of daily precipitation and temperature climate indices and extremes simulated by an ensemble of 12 Regional Climate Model (RCM) simulations from the ARCTIC-CORDEX experiment with surface observations in the Canadian Arctic from the Adjusted Historical Canadian Climate Dataset. Five global reanalyses products (ERA-Interim, JRA55, MERRA, CFSR and GMFD) are also included in the evaluation to assess their potential for RCM evaluation in data sparse regions. The study evaluated the means and annual anomaly distributions of indices over the 1980-2004 dataset overlap period. The results showed that RCM and reanalysis performance varied with the climate variables being evaluated. Most RCMs and reanalyses were able to simulate well climate indices related to mean air temperature and hot extremes over most of the Canadian Arctic, with the exception of the Yukon region where models displayed the largest biases related to topographic effects. Overall performance was generally poor for indices related to cold extremes. Likewise, only a few RCM simulations and reanalyses were able to provide realistic simulations of precipitation extreme indicators. The multi-reanalysis ensemble provided superior results to individual datasets for climate indicators related to mean air temperature and hot extremes, but not for other indicators. These results support the use of reanalyses as reference datasets for the evaluation of RCM mean air temperature and hot extremes over northern Canada, but not for cold extremes and precipitation indices.
Quantitative Decision Support Requires Quantitative User Guidance
NASA Astrophysics Data System (ADS)
Smith, L. A.
2009-12-01
Is it conceivable that models run on 2007 computer hardware could provide robust and credible probabilistic information for decision support and user guidance at the ZIP code level for sub-daily meteorological events in 2060? In 2090? Retrospectively, how informative would output from today’s models have proven in 2003? or the 1930’s? Consultancies in the United Kingdom, including the Met Office, are offering services to “future-proof” their customers from climate change. How is a US or European based user or policy maker to determine the extent to which exciting new Bayesian methods are relevant here? or when a commercial supplier is vastly overselling the insights of today’s climate science? How are policy makers and academic economists to make the closely related decisions facing them? How can we communicate deep uncertainty in the future at small length-scales without undermining the firm foundation established by climate science regarding global trends? Three distinct aspects of the communication of the uses of climate model output targeting users and policy makers, as well as other specialist adaptation scientists, are discussed. First, a brief scientific evaluation of the length and time scales at which climate model output is likely to become uninformative is provided, including a note on the applicability the latest Bayesian methodology to current state-of-the-art general circulation models output. Second, a critical evaluation of the language often employed in communication of climate model output, a language which accurately states that models are “better”, have “improved” and now “include” and “simulate” relevant meteorological processed, without clearly identifying where the current information is thought to be uninformative and misleads, both for the current climate and as a function of the state of the (each) climate simulation. And thirdly, a general approach for evaluating the relevance of quantitative climate model output for a given problem is presented. Based on climate science, meteorology, and the details of the question in hand, this approach identifies necessary (never sufficient) conditions required for the rational use of climate model output in quantitative decision support tools. Inasmuch as climate forecasting is a problem of extrapolation, there will always be harsh limits on our ability to establish where a model is fit for purpose, this does not, however, limit us from identifying model noise as such, and thereby avoiding some cases of the misapplication and over interpretation of model output. It is suggested that failure to clearly communicate the limits of today’s climate model in providing quantitative decision relevant climate information to today’s users of climate information, would risk the credibility of tomorrow’s climate science and science based policy more generally.
Land Cover Applications, Landscape Dynamics, and Global Change
Tieszen, Larry L.
2007-01-01
The Land Cover Applications, Landscape Dynamics, and Global Change project at U.S. Geological Survey (USGS) Center for Earth Resources Observation and Science (EROS) seeks to integrate remote sensing and simulation models to better understand and seek solutions to national and global issues. Modeling processes related to population impacts, natural resource management, climate change, invasive species, land use changes, energy development, and climate mitigation all pose significant scientific opportunities. The project activities use remotely sensed data to support spatial monitoring, provide sensitivity analyses across landscapes and large regions, and make the data and results available on the Internet with data access and distribution, decision support systems, and on-line modeling. Applications support sustainable natural resource use, carbon cycle science, biodiversity conservation, climate change mitigation, and robust simulation modeling approaches that evaluate ecosystem and landscape dynamics.
Community Post-Tornado Support Groups: Intervention and Evaluation.
ERIC Educational Resources Information Center
McCammon, Susan; And Others
Post-tornado support groups were organized by the Greene County, North Carolina disaster coordinators and the Pitt County outreach workers from the Community Mental Health Center sponsored tornado follow-up project. The most significant intervention used was the emphasis on creating a climate of group support by establishing a forum for…
Evaluating the utility of dynamical downscaling in agricultural impacts projections
Glotter, Michael; Elliott, Joshua; McInerney, David; Best, Neil; Foster, Ian; Moyer, Elisabeth J.
2014-01-01
Interest in estimating the potential socioeconomic costs of climate change has led to the increasing use of dynamical downscaling—nested modeling in which regional climate models (RCMs) are driven with general circulation model (GCM) output—to produce fine-spatial-scale climate projections for impacts assessments. We evaluate here whether this computationally intensive approach significantly alters projections of agricultural yield, one of the greatest concerns under climate change. Our results suggest that it does not. We simulate US maize yields under current and future CO2 concentrations with the widely used Decision Support System for Agrotechnology Transfer crop model, driven by a variety of climate inputs including two GCMs, each in turn downscaled by two RCMs. We find that no climate model output can reproduce yields driven by observed climate unless a bias correction is first applied. Once a bias correction is applied, GCM- and RCM-driven US maize yields are essentially indistinguishable in all scenarios (<10% discrepancy, equivalent to error from observations). Although RCMs correct some GCM biases related to fine-scale geographic features, errors in yield are dominated by broad-scale (100s of kilometers) GCM systematic errors that RCMs cannot compensate for. These results support previous suggestions that the benefits for impacts assessments of dynamically downscaling raw GCM output may not be sufficient to justify its computational demands. Progress on fidelity of yield projections may benefit more from continuing efforts to understand and minimize systematic error in underlying climate projections. PMID:24872455
Interagency Collaboration in Support of Climate Change Education
NASA Astrophysics Data System (ADS)
Schoedinger, S. E.; Chambers, L. H.; Karsten, J. L.; McDougall, C.; Campbell, D.
2011-12-01
NASA, NOAA and NSF support climate change education (CCE) through their grant programs. As the agencies' investment in CCE has grown, coordination among the agencies has become increasingly important. Although the political landscape and budgets continue to change, the agencies are committed to continued coordination and collaboration. To date, this has taken the form of jointly hosted principal investigator (PI) meetings, the largest of which was held last February (see Eos Vol. 92, No. 24, 14 June 2011). The joint goals are: (1) increased collaboration among grantees and across programs; (2) building capacity among grantees in areas of mutual interest; (3) identification of gaps in investments to date; and (4) identification of opportunities for coordination of evaluation efforts. NOAA's primary funding opportunity for CCE projects is its Environmental Literacy Grant (ELG) Program. Although not exclusively focused on climate, there has been increased emphasis on this area since 2009. Through ELG, NOAA encourages the use of NOAA assets (data, facilities, educational resources, and people) in grantees' work. Thirty awards with a primary focus on CCE have been awarded to institutions of higher education, informal science education, and non-profit organizations involved in K-12 and informal/non-formal education. We anticipate this funding opportunity will continue to support the improvement of climate literacy among various audiences of learners in the future. NASA supported efforts in CCE in an ad hoc way for years. It became a focus area in 2008 with the launch of the NASA Global Climate Change Education (GCCE) Project. This project funded 57 awards in 2008-2010, the vast majority of them in teacher professional development, or use of data, models, or simulations. Beginning in FY11, NASA moved the project into the Minority University Research and Education Program. Fourteen awards were made to minority higher education institutions, non-profit organizations, and community colleges. These efforts are expected to continue in FY12 and beyond under NASA Innovations in Climate Education (NICE). A solicitation for the NICE project is currently anticipated in Summer 2012. Through its core programs, NSF supports a variety of efforts designed to improve teaching and learning about CCE in formal and informal settings, often through leveraging NSF-supported climate research. In 2009, dedicated CCE funding supported 10 new awards aimed at focusing NSF investments in key areas: preparing innovators for the workforce; strategies for scaling up and disseminating effective curricula and instructional resources; assessment of student learning of complex climate issues; and, increasing access to CCE and professional development for learners, educators, and policymakers. Phase I of the Climate Change Education Partnership (CCEP) program, launched in 2010, supports strategic planning activities within 15 regional and thematic partnerships that bring together climate scientists, learning scientists, and education practitioners. A solicitation for CCEP Phase II implementation is anticipated in Fall 2011. We will discuss agency funding opportunities, examples of collaborations, and common metrics/sharing tools for evaluation of CCE projects.
Approaches to Climate Literacy at the American Museum of Natural History
NASA Astrophysics Data System (ADS)
Steiner, R. V.
2015-12-01
The American Museum of Natural History (AMNH) offers a suite of courses, workshops and special events in climate change education for audiences ranging from young children to adults and utilizing both online and in-person formats. These offerings are supported by rich digital resources including video, animations and data visualizations. These efforts have the potential to raise awareness of climate change, deepen understandings and improve public discourse and decision-making on this critical issue. For adult audiences, Our Earth's Future offers participants a five-week course at AMNH that focuses on climate change science, impacts and communication, taking advantage of both AMNH expertise and exhibitry. Online versions of this course include both a ten-week course as well as three different three-week thematic courses. (The longer course is now available as a MOOC in Coursera.) These activities have been supported by a grant from IMLS. The results of independent evaluation provide insight into participant needs and how they might be addressed. For K-12 educators, the Museum's Seminars on Science program of online teacher professional development offers, in collaboration with its higher education partners, a graduate course in climate change that is authored by both an AMNH curator and leading NASA scientists. Developed with support from both NASA and NSF, the course provides a semester-equivalent introduction to climate change science for educators, including digital resources, assignments and discussions for classroom use. The results of independent evaluation will be presented. For younger audiences, the presentation will highlight resources from the AMNH Ology site; television programming conducted in partnership with HBO; Science Bulletinsvideos that include current climate change research; resources related to the GRACE mission for tracking water from space; and special event programming at the Museum on climate change. This presentation will address the opportunities and challenges of climate change education in an informal science institution as well as enduring questions of institutional capacity, scale and sustainability.
Addressing Climate Change in Long-Term Water Planning Using Robust Decisionmaking
NASA Astrophysics Data System (ADS)
Groves, D. G.; Lempert, R.
2008-12-01
Addressing climate change in long-term natural resource planning is difficult because future management conditions are deeply uncertain and the range of possible adaptation options are so extensive. These conditions pose challenges to standard optimization decision-support techniques. This talk will describe a methodology called Robust Decisionmaking (RDM) that can complement more traditional analytic approaches by utilizing screening-level water management models to evaluate large numbers of strategies against a wide range of plausible future scenarios. The presentation will describe a recent application of the methodology to evaluate climate adaptation strategies for the Inland Empire Utilities Agency in Southern California. This project found that RDM can provide a useful way for addressing climate change uncertainty and identify robust adaptation strategies.
Climate Model Diagnostic Analyzer
NASA Technical Reports Server (NTRS)
Lee, Seungwon; Pan, Lei; Zhai, Chengxing; Tang, Benyang; Kubar, Terry; Zhang, Zia; Wang, Wei
2015-01-01
The comprehensive and innovative evaluation of climate models with newly available global observations is critically needed for the improvement of climate model current-state representation and future-state predictability. A climate model diagnostic evaluation process requires physics-based multi-variable analyses that typically involve large-volume and heterogeneous datasets, making them both computation- and data-intensive. With an exploratory nature of climate data analyses and an explosive growth of datasets and service tools, scientists are struggling to keep track of their datasets, tools, and execution/study history, let alone sharing them with others. In response, we have developed a cloud-enabled, provenance-supported, web-service system called Climate Model Diagnostic Analyzer (CMDA). CMDA enables the physics-based, multivariable model performance evaluations and diagnoses through the comprehensive and synergistic use of multiple observational data, reanalysis data, and model outputs. At the same time, CMDA provides a crowd-sourcing space where scientists can organize their work efficiently and share their work with others. CMDA is empowered by many current state-of-the-art software packages in web service, provenance, and semantic search.
NCEA/ORD has developed an evaluative framework that may be used to categorize the relative vulnerability of species to climate change. This framework is intended to provide information to ecosystem and resource managers to support their decision making about management actions th...
Gillen, Marion; Baltz, Davis; Gassel, Margy; Kirsch, Luz; Vaccaro, Diane
2002-01-01
This study evaluated injured construction workers' perceptions of workplace safety climate, psychological job demands, decision latitude, and coworker support, and the relationship of these variables to the injury severity sustained by the workers. Injury severity was assessed using the Health Assessment Questionnaire (HAQ), which evaluates functional limitations. Worker perceptions of workplace variables were determined by two instruments: (a) the Safety Climate Measure for Construction Sites and (b) the Job Content Questionnaire (JCQ). The overall model explained 23% of the variance in injury severity, with unique contributions provided by union status, the Safety Climate Score, and Psychological Job Demands. A positive significant correlation was found between injury severity and the Safety Climate Scores (r = .183, P = .003), and between the Safety Climate Scores and union status (r = .225, P < .001). There were statistically significant differences between union and nonunion workers' responses regarding perceived safety climate on 5 of the 10 safety climate items. Union workers were more likely than nonunion workers to: (a) perceive their supervisors as caring about their safety; (b) be made aware of dangerous work practices; (c) have received safety instructions when hired; (d) have regular job safety meetings; and (e) perceive that taking risks was not a part of their job. However, with regard to the 49-item JCQ, which includes Coworker Support, the responses between union and nonunion workers were very similar, indicating an overall high degree of job satisfaction. However, workers who experienced their workplace as more safe also perceived the level of management (r = -.55, P < .001) and coworker (r = -.31, P < .001) support as being higher. The findings of this study underscore the critical need for construction managers to alert workers to dangerous work practices and conditions more frequently, and express concern and praise workers for safe work in a manner that is culturally acceptable in this industry. Workplace interventions that decrease the incidence and severity of injuries, but that are flexible enough to meet a variety of potentially competing imperatives, such as production deadlines and client demands, need to be identified.
NASA Astrophysics Data System (ADS)
Morrow, C. A.; Monsaas, J.; Katzenberger, J.; Afolabi, C. Y.
2013-12-01
The Concept Inventory on Climate Change (CICC) is a new research-based, multiple-choice 'test' that provides a powerful new assessment tool for undergraduate instructors, teacher educators, education researchers, and project evaluators. This presentation will describe the features and the development process of the (CICC). This includes insights about how the development team (co-authors) integrated and augmented their multi-disciplinary expertise. The CICC has been developed in the context of a popular introductory undergraduate weather and climate course at a southeastern research university (N~400-500 per semester). The CICC is not a test for a grade, but is intended to be a useful measure of how well a given teaching and learning experience has succeeded in improving understanding about climate change and related climate concepts. The science content addressed by the CICC is rooted in the national consensus document, 'Climate Literacy: The Essential Principles of Climate Science'. The CICC has been designed to support undergraduate instruction, and may be valuable in comparable contexts that teach about climate change. CICC results can help to inform decisions about the effectiveness of teaching strategies by 1) flagging conceptual issues (PRE-instruction); and 2) detecting conceptual change (POST-instruction). Specific CICC items and their answer choices are informed by the research literature on common misunderstandings about climate and climate change. Each CICC item is rated on a 3-tier scale of the cognitive sophistication the item is calling for, and there is a balance among all three tiers across the full instrument. The CICC development process has involved data-driven changes to successive versions. Data sources have included item statistics from the administration of progressively evolved versions of the CICC in the weather and climate course, group interviews with students, and expert review by climate scientists, educators, and project evaluators based primarily in the US and Canada. The development team provided an exceptionally well integrated, multi-disciplinary expertise in climate science, climate education, education research, and psychometrics. The valuable integration of the team's expertise was driven by: 1) the prior interdisciplinary inclinations of key team members, which made it natural to openly inquire and learn across boundaries of expertise; and 2) the willingness of key team members to become respectful teachers of essential knowledge to other team members. These qualities, in combination with reviewer contributions, have brought the leading edges of natural and social science research together to produce the CICC. This work has been partially supported by a NASA award to the Georgia State University Research Foundation (NNX09AL69G).
Effect of climate-related mass extinctions on escalation in molluscs
NASA Astrophysics Data System (ADS)
Hansen, Thor A.; Kelley, Patricia H.; Melland, Vicky D.; Graham, Scott E.
1999-12-01
We test the hypothesis that escalated species (e.g., those with antipredatory adaptations such as heavy armor) are more vulnerable to extinctions caused by changes in climate. If this hypothesis is valid, recovery faunas after climate-related extinctions should include significantly fewer species with escalated shell characteristics, and escalated species should undergo greater rates of extinction than nonescalated species. This hypothesis is tested for the Cretaceous-Paleocene, Eocene-Oligocene, middle Miocene, and Pliocene-Pleistocene mass extinctions. Gastropod and bivalve molluscs from the U.S. coastal plain were evaluated for 10 shell characters that confer resistance to predators. Of 40 tests, one supported the hypothesis; highly ornamented gastropods underwent greater levels of Pliocene-Pleistocene extinction than did nonescalated species. All remaining tests were nonsignificant. The hypothesis that escalated species are more vulnerable to climate-related mass extinctions is not supported.
Community-level climate change vulnerability research: trends, progress, and future directions
NASA Astrophysics Data System (ADS)
McDowell, Graham; Ford, James; Jones, Julie
2016-03-01
This study systematically identifies, characterizes, and critically evaluates community-level climate change vulnerability assessments published over the last 25 years (n = 274). We find that while the field has advanced considerably in terms of conceptual framing and methodological approaches, key shortcomings remain in how vulnerability is being studied at the community-level. We argue that vulnerability research needs to more critically engage with the following: methods for evaluating future vulnerability, the relevance of vulnerability research for decision-making, interdependencies between social and ecological systems, attention to researcher / subject power dynamics, critical interpretation of key terms, and consideration of the potentially positive opportunities presented by a changing climate. Addressing these research needs is necessary for generating knowledge that supports climate-affected communities in navigating the challenges and opportunities ahead.
Climate Modeling and Analysis with Decision Makers in Mind
NASA Astrophysics Data System (ADS)
Jones, A. D.; Jagannathan, K.; Calvin, K. V.; Lamarque, J. F.; Ullrich, P. A.
2016-12-01
There is a growing need for information about future climate conditions to support adaptation planning across a wide range of sectors and stakeholder communities. However, our principal tools for understanding future climate - global Earth system models - were not developed with these user needs in mind, nor have we developed transparent methods for evaluating and communicating the credibility of various climate information products with respect to the climate characteristics that matter most to decision-makers. Several recent community engagements have identified a need for "co-production" of knowledge among stakeholders and scientists. Here we highlight some of the barriers to communication and collaboration that must be overcome to improve the dialogue among researchers and climate adaptation practitioners in a meaningful way. Solutions to this challenge are two-fold: 1) new institutional arrangements and collaborative mechanisms designed to improve coordination and understanding among communities, and 2) a research agenda that explicitly incorporates stakeholder needs into model evaluation, development, and experimental design. We contrast the information content in global-scale model evaluation exercises with that required for in specific decision contexts, such as long-term agricultural management decisions. Finally, we present a vision for advancing the science of model evaluation in the context of predicting decision-relevant hydroclimate regime shifts in North America.
Pogorzelska-Maziarz, Monika; Nembhard, Ingrid M; Schnall, Rebecca; Nelson, Shanelle; Stone, Patricia W
2016-09-01
In recent years, there has been increased interest in measuring the climate for infection prevention; however, reliable and valid instruments are lacking. This study tested the psychometric properties of the Leading a Culture of Quality for Infection Prevention (LCQ-IP) instrument measuring the infection prevention climate in a sample of 972 infection preventionists from acute care hospitals. An exploratory principal component analysis showed that the instrument had structural validity and captured 4 factors related to the climate for infection prevention: Psychological Safety, Prioritization of Quality, Supportive Work Environment, and Improvement Orientation. LCQ-IP exhibited excellent internal consistency, with a Cronbach α of .926. Criterion validity was supported with overall LCQ-IP scores, increasing with the number of evidence-based prevention policies in place (P = .047). This psychometrically sound instrument may be helpful to researchers and providers in assessing climate for quality related to infection prevention. © The Author(s) 2015.
Evaluation of the Earth System CoG Infrastructure in Supporting a Model Intercomparison Project
NASA Astrophysics Data System (ADS)
Wallis, J. C.; Rood, R. B.; Murphy, S.; Cinquini, L.; DeLuca, C.
2013-12-01
Earth System CoG is a web-based collaboration environment that combines data services with metadata and project management services. The environment is particularly suited to support software development and model intercomparison projects. CoG was recently used to support the National Climate Predictions and Projections Platform (NCPP) Quantitative Evaluation of Downscaling (QED-2013) workshop. QED-2013 was a workshop with a community approach for the objective, quantitative evaluation of techniques to downscale climate model predictions and projections. This paper will present a brief introduction to CoG, QED-2013, and findings from an ethnographic evaluation of how CoG supported QED-2013. The QED-2013 workshop focused on real-world application problems drawn from several sectors, and contributed to the informed use of downscaled data. This workshop is a part of a larger effort by NCPP and partner organizations to develop a standardized evaluation framework for local and regional climate information. The main goals of QED-2013 were to a) coordinate efforts for quantitative evaluation, b) develop software infrastructure, c) develop a repository of information, d) develop translational and guidance information, e) identify and engage key user communities, and f) promote collaboration and interoperability. CoG was a key player in QED-2013 support. NCPP was an early adopter of the CoG platform, providing valuable recommendations for overall development plus specific workshop-related requirements. New CoG features developed for QED-2013 included: the ability to publish images and associated metadata contained within XML files to its associated data node combine both artifacts into an integrated display. The ability to modify data search facets into scientifically relevant groups and display dynamic lists of workshop participants and their interests was also added to the interface. During the workshop, the QED-2013 project page on CoG provided meeting logistics, meeting materials, shared spaces and resources, and data services. The evaluation of CoG tools was focused on the usability of products rather than metrics, such as number of independent hits to a web site. We wanted to know how well CoG tools supported the workshop participants and their tasks. For instance, what workshop tasks could be performed within the CoG environment? Were these tasks performed there or with alternative tools? And do participants plan to use the tools after the workshop for other projects? Ultimately, we wanted to know if CoG contributed to NCPP's need for a flexible and extensible evaluation platform, and did it support the integration of dispersed resources, quantitative evaluation of climate projections, and the generation and management of interpretive information. Evaluation of the workshop and activity occurred during, at the end of, and after the workshop. During the workshop, an ethnographer observed and participated in the workshop, and collected short, semi-structured interviews with a subset of the participants. At the end of the workshop, an exit survey was administered to all the participants. After the workshop, a variety of methods were used to capture the impact of the workshop.
A Columnar Storage Strategy with Spatiotemporal Index for Big Climate Data
NASA Astrophysics Data System (ADS)
Hu, F.; Bowen, M. K.; Li, Z.; Schnase, J. L.; Duffy, D.; Lee, T. J.; Yang, C. P.
2015-12-01
Large collections of observational, reanalysis, and climate model output data may grow to as large as a 100 PB in the coming years, so climate dataset is in the Big Data domain, and various distributed computing frameworks have been utilized to address the challenges by big climate data analysis. However, due to the binary data format (NetCDF, HDF) with high spatial and temporal dimensions, the computing frameworks in Apache Hadoop ecosystem are not originally suited for big climate data. In order to make the computing frameworks in Hadoop ecosystem directly support big climate data, we propose a columnar storage format with spatiotemporal index to store climate data, which will support any project in the Apache Hadoop ecosystem (e.g. MapReduce, Spark, Hive, Impala). With this approach, the climate data will be transferred into binary Parquet data format, a columnar storage format, and spatial and temporal index will be built and attached into the end of Parquet files to enable real-time data query. Then such climate data in Parquet data format could be available to any computing frameworks in Hadoop ecosystem. The proposed approach is evaluated using the NASA Modern-Era Retrospective Analysis for Research and Applications (MERRA) climate reanalysis dataset. Experimental results show that this approach could efficiently overcome the gap between the big climate data and the distributed computing frameworks, and the spatiotemporal index could significantly accelerate data querying and processing.
Integrating Climate Information and Decision Processes for Regional Climate Resilience
NASA Astrophysics Data System (ADS)
Buizer, James; Goddard, Lisa; Guido, Zackry
2015-04-01
An integrated multi-disciplinary team of researchers from the University of Arizona and the International Research Institute for Climate and Society at Columbia University have joined forces with communities and institutions in the Caribbean, South Asia and West Africa to develop relevant, usable climate information and connect it to real decisions and development challenges. The overall objective of the "Integrating Climate Information and Decision Processes for Regional Climate Resilience" program is to build community resilience to negative impacts of climate variability and change. We produce and provide science-based climate tools and information to vulnerable peoples and the public, private, and civil society organizations that serve them. We face significant institutional challenges because of the geographical and cultural distance between the locale of climate tool-makers and the locale of climate tool-users and because of the complicated, often-inefficient networks that link them. To use an accepted metaphor, there is great institutional difficulty in coordinating the supply of and the demand for useful climate products that can be put to the task of building local resilience and reducing climate vulnerability. Our program is designed to reduce the information constraint and to initiate a linkage that is more demand driven, and which provides a set of priorities for further climate tool generation. A demand-driven approach to the co-production of appropriate and relevant climate tools seeks to meet the direct needs of vulnerable peoples as these needs have been canvassed empirically and as the benefits of application have been adequately evaluated. We first investigate how climate variability and climate change affect the livelihoods of vulnerable peoples. In so doing we assess the complex institutional web within which these peoples live -- the public agencies that serve them, their forms of access to necessary information, the structural constraints under which they make their decisions, and the non-public institutions of support that are available to them. We then interpret this complex reality in terms of the demand for science-based climate products and analyze the channels through which such climate support must pass, thus linking demand assessment with the scientific capacity to create appropriate decision support tools. In summary, the approach we employ is: 1) Demand-driven, beginning with a knowledge of the impacts of climate variability and change upon targeted populations, 2) Focused on vulnerability and resilience, which requires an understanding of broader networks of institutional actors who contribute to the adaptive capacity of vulnerable peoples, 3) Needs-based in that the climate needs matrix set priorities for the assessment of relevant climate products, 4) Dynamic in that the producers of climate products are involved at the point of demand assessment and can respond directly to stated needs, 5) Reflective in that the impacts of climate product interventions are subject to monitoring and evaluation throughout the process. Methods, approaches and preliminary results of our work in the Caribbean will be presented.
Schwatka, Natalie V; Rosecrance, John C
2016-06-16
There is growing empirical evidence that as safety climate improves work site safety practice improve. Safety climate is often measured by asking workers about their perceptions of management commitment to safety. However, it is less common to include perceptions of their co-workers commitment to safety. While the involvement of management in safety is essential, working with co-workers who value and prioritize safety may be just as important. To evaluate a concept of safety climate that focuses on top management, supervisors and co-workers commitment to safety, which is relatively new and untested in the United States construction industry. Survey data was collected from a cohort of 300 unionized construction workers in the United States. The significance of direct and indirect (mediation) effects among safety climate and safety behavior factors were evaluated via structural equation modeling. Results indicated that safety climate was associated with safety behaviors on the job. More specifically, perceptions of co-workers commitment to safety was a mediator between both management commitment to safety climate factors and safety behaviors. These results support workplace health and safety interventions that build and sustain safety climate and a commitment to safety amongst work teams.
ERIC Educational Resources Information Center
Perry, Jonathan; Firth, Caroline; Puppa, Michael; Wilson, Rick; Felce, David
2012-01-01
Background: Increased provision of out-of-family residential support is required because of demographic changes within the intellectual disabilities population. Residential support now has to be provided in a climate requiring both financial constraint and high quality service outcomes. The aim was to evaluate the quality of life consequences of…
NASA Astrophysics Data System (ADS)
Joyce, M.; Ramirez, P.; Boustani, M.; Mattmann, C. A.; Khudikyan, S.; McGibbney, L. J.; Whitehall, K. D.
2014-12-01
Apache Open Climate Workbench (OCW; https://climate.apache.org/) is a Top-Level Project at the Apache Software Foundation that aims to provide a suite of tools for performing climate science evaluations using model outputs from a multitude of different sources (ESGF, CORDEX, U.S. NCA, NARCCAP) with remote sensing data from NASA, NOAA, and other agencies. Apache OCW is the second NASA project to become a Top-Level Project at the Apache Software Foundation. It grew out of the Jet Propulsion Laboratory's (JPL) Regional Climate Model Evaluation System (RCMES) project, a collaboration between JPL and the University of California, Los Angeles' Joint Institute for Regional Earth System Science and Engineering (JIFRESSE). Apache OCW provides scientists and developers with tools for data manipulation, metrics for dataset comparisons, and a visualization suite. In addition to a powerful low-level API, Apache OCW also supports a web application for quick, browser-controlled evaluations, a command line application for local evaluations, and a virtual machine for isolated experimentation with minimal setup. This talk will look at the difficulties and successes of moving a closed community research project out into the wild world of open source. We'll explore the growing pains Apache OCW went through to become a Top-Level Project at the Apache Software Foundation as well as the benefits gained by opening up development to the broader climate and computer science communities.
Gross, John E.; Tercek, Michael; Guay, Kevin; Chang, Tony; Talbert, Marian; Rodman, Ann; Thoma, David; Jantz, Patrick; Morisette, Jeffrey T.
2016-01-01
Most of the western United States is experiencing the effects of rapid and directional climate change (Garfin et al. 2013). These effects, along with forecasts of profound changes in the future, provide strong motivation for resource managers to learn about and prepare for future changes. Climate adaptation plans are based on an understanding of historic climate variation and their effects on ecosystems and on forecasts of future climate trends. Frameworks for climate adaptation thus universally identify the importance of a summary of historical, current, and projected climates (Glick, Stein, and Edelson 2011; Cross et al. 2013; Stein et al. 2014). Trends in physical climate variables are usually the basis for evaluating the exposure component in vulnerability assessments. Thus, this chapter focuses on step 2 of the Climate-Smart Conservation framework (chap. 2): vulnerability assessment. We present analyses of historical and current observations of temperature, precipitation, and other key climate measurements to provide context and a baseline for interpreting the ecological impacts of projected climate changes.
Transportation Deployment Support | Transportation Research | NREL
initiative complements the NPS Climate Friendly Parks program. Commercial Fleets Through the National Clean clearinghouse of medium- and heavy-duty commercial fleet vehicle operating data for optimizing vehicle improvement. Commercial Vehicle Technology Evaluations NREL conducts real-world evaluations of commercial
Madjar, N; Ben Shabat, S; Elia, R; Fellner, N; Rehavi, M; Rubin, S E; Segal, N; Shoval, G
2017-03-01
Recent studies regarding non-suicidal self-injury (NSSI) among adolescents have focused primarily on individual characteristics (e.g., depressive symptoms) and background factors (e.g., parental relationship), whereas less emphasis has been given to the role of school-related factors in NSSI. Therefore, the purpose of the current study was to explore the relationships between teachers' support, peer climate, and NSSI within the school context. The sample consisted of 594 high school students nested within 27 regular classes (54.4% boys; mean age 14.96, SD=1.33 years). The students were evaluated for NSSI behaviors, perception of teacher support, peer climate, relationships with mothers, and depressive symptoms using validated scales. The primary analysis used hierarchical linear modeling (HLM), controlling for gender and age. The main findings indicated that teacher support was positively associated with NSSI at the classroom-level (OR=6.15, 95% CI=2.05-18.5) but negatively associated at the student-level (OR=0.66, 95% CI=0.49-0.89). There was a trend toward an association between positive peer climate and NSSI at the classroom-level (OR=0.43, 95% CI=0.18-1.05), while negative peer climate was associated with NSSI at the student-level (OR=1.37, 95% CI=1.00-1.87). School-related factors are associated with NSSI behaviors among students. Teachers and educators should focus on both individual-level and classroom-level perceptions of school context. Students who feel supported by their teachers and who are exposed to a positive peer climate are less likely to engage in NSSI. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Forest climate change Vulnerability and Adaptation Assessment in Himalayas
NASA Astrophysics Data System (ADS)
Chitale, V. S.; Shrestha, H. L.; Agarwal, N. K.; Choudhurya, D.; Gilani, H.; Dhonju, H. K.; Murthy, M. S. R.
2014-11-01
Forests offer an important basis for creating and safeguarding more climate-resilient communities over Hindu Kush Himalayan region. The forest ecosystem vulnerability assessment to climate change and developing knowledge base to identify and support relevant adaptation strategies is realized as an urgent need. The multi scale adaptation strategies portray increasing complexity with the increasing levels in terms of data requirements, vulnerability understanding and decision making to choose a particular adaptation strategy. We present here how such complexities could be addressed and adaptation decisions could be either directly supported by open source remote sensing based forestry products or geospatial analysis and modelled products. The forest vulnerability assessment under climate change scenario coupled with increasing forest social dependence was studied using IPCC Landscape scale Vulnerability framework in Chitwan-Annapurna Landscape (CHAL) situated in Nepal. Around twenty layers of geospatial information on climate, forest biophysical and forest social dependence data was used to assess forest vulnerability and associated adaptation needs using self-learning decision tree based approaches. The increase in forest fires, evapotranspiration and reduction in productivity over changing climate scenario was observed. The adaptation measures on enhancing productivity, improving resilience, reducing or avoiding pressure with spatial specificity are identified to support suitable decision making. The study provides spatial analytical framework to evaluate multitude of parameters to understand vulnerabilities and assess scope for alternative adaptation strategies with spatial explicitness.
Process-oriented Observational Metrics for CMIP6 Climate Model Assessments
NASA Astrophysics Data System (ADS)
Jiang, J. H.; Su, H.
2016-12-01
Observational metrics based on satellite observations have been developed and effectively applied during post-CMIP5 model evaluation and improvement projects. As new physics and parameterizations continue to be included in models for the upcoming CMIP6, it is important to continue objective comparisons between observations and model results. This talk will summarize the process-oriented observational metrics and methodologies for constraining climate models with A-Train satellite observations and support CMIP6 model assessments. We target parameters and processes related to atmospheric clouds and water vapor, which are critically important for Earth's radiative budget, climate feedbacks, and water and energy cycles, and thus reduce uncertainties in climate models.
CSUB CREST Research on Climate Change and the San Joaquin Valley, CA
NASA Astrophysics Data System (ADS)
Krugh, W. C.; Negrini, R. M.; Baron, D.; Gillespie, J.; Horton, R. A.; Montoya, E.; Cruz-Boone, C.; Andrews, G. D.; Guo, J.
2015-12-01
As part of the NSF-supported Centers for Excellence in Science and Technology (CREST), student and faculty researchers at California State University, Bakersfield (CSUB) have been investigating the regional impacts of climate change as well as evaluating the potential of local contributions to its abatement. Highlights of this research include; 1) the development of a high-resolution climate record from Tulare Lake sediments that spans the past 20,000 years, 2) the quantitative analysis and prediction of climate change impacts on Sierra Nevada snowpack, 3) the detailed subsurface characterization of San Joaquin Valley oilfields targeted for CO2 sequestration, and 4) the evaluation of proposed host rock suitability under simulated CO2 injection conditions. To date, CSUB CREST supported research has resulted in 26 contributions to peer-reviewed journals (currently published or in-review). A primary goal of CSUB CREST is to improve the recruitment, retention, and success of students from the local community, the majority of whom are from backgrounds under-represented in STEM disciplines. More than 28 students have been directly involved in the basic and applied research projects supported by this program. The majority of these students have received, or are on track to receive, an M.S. degree and have ultimately gained employment in a STEM field or been accepted into a Ph.D. program. This presentation, and others in this session, will focus on the accomplishments, challenges, and strategies for success gleaned from CSUB CREST Phase 1.
Is the area of the orbital opening in humans related to climate?
Tomaszewska, Agnieszka; Kwiatkowska, Barbara; Jankauskas, Rimantas
2015-01-01
The aim of this study was to evaluate whether climatic conditions impact the size of the anterior orbital opening in humans. The previous research has shown that morphology of the human orbit, a trait strongly related to the shape of the cranium, varies significantly among populations. However, the mechanisms of this variation are still debatable. Besides such evolutionary forces as genetic drift, climatic conditions may be involved. Thermoregulatory processes affect skull shape, and thus may also influence orbital morphology. A total of 846 dry skulls of male and female adults from three climatic areas (i.e., warm, temperate, and cold) of Europe were evaluated. The areas of the left and right orbital openings were measured using the three-dimensional contact scanner MicroScribe G2L, and analyzed with regard to climate. The results reveal a statistically significant association with climatic conditions on the area of orbital opening in accordance with Bergmann's rule. The anterior orbital opening area was smaller in male individuals from the cold climate, and larger in individuals from the warm climate areas. These data may support the hypothesized association between size of the orbital opening and adaptation to different climatic conditions, but only in males. © 2015 Wiley Periodicals, Inc.
[Short Spanish version of Team Climate Inventory (TCI-14): development and psychometric properties].
Boada-Grau, Joan; de Diego-Vallejo, Raúl; de Llanos-Serra, Emma; Vigil-Colet, Andreu
2011-04-01
The aim of the present paper was to develop a Spanish adaptation of the reduced, 14-item version of the Team Climate Inventory (TCI-14), a questionnaire developed to evaluate team climate. To this end the English version was adapted and applied to a sample of 360 employees from Castilla-León and Catalonia (44.4% men and 55.6% women). The results indicated that the TCI-14 has the same structure as the original version, and confirmatory factor analysis was used to verify the existence of the factors Vision, Participative Safety, Task Orientation and Support for Innovation. The TCI-14 also presented good reliability coefficients considering the low number of items on each scale (alphas ranged between .75 and .82). The TCI-14 is a potentially useful instrument for evaluating the climate of work teams. It could be used by future research as a screening tool in conjunction with other instruments.
Ahghar, Ghodsy
2008-01-01
This paper aims at studying the influence of the organizational climate of a school on the occupational stress of the teachers. The study population were all secondary schools teachers in Tehran in 2007. Using a multi-stage random sampling method, a sample volume of 220 people was determined using the Cochran formula. Two main instruments were used to measure the study variables: a 27-item questionnaire on organizational climate (four scales: open, engaged, disengaged and closed organizational climate, and a 53-item occupational stress questionnaire by Vingerhoets, employing 11 scales: Skill Discretion, Decision Authority, Task Control, Work and Time Pressure, Role Ambiguity, Physical Exertion, Hazardous Exposure, Job Insecurity, Lack of Meaningfulness, Social Support from Supervisor and Social Support from Coworkers. The frequency, percentage, and mean values were calculated and a stepwise regression analysis was performed to evaluate the statistical significance of the findings. The study results revealed that: (a) 40.02% of secondary school teachers experience occupational stress at a moderate or higher level; (b) the rate of occupational stress among teachers can be predicted. using the scores on the school organizational climate; this predictability is highest for the open climate and gradually decreases through the engaged, and disengaged to the closed climate; (c) among the teachers working in the disengaged and closed climate, the rate of occupational stress significantly exceeds that recorded among the teachers working in the open climate.
Speaking of climate change: From what we know to how we know it (Invited)
NASA Astrophysics Data System (ADS)
Holthuis, N.
2013-12-01
Researchers have found that a deficit model of knowledge doesn't fully explain why some people continue to deny that climate change is happening or that human activity is to blame. Recent work in science education has focused our attention on the need to go beyond simply communicating what we know about climate change to how we know it. That is, allowing and encouraging students to grapple with the processes that scientists have gone through to make their claims builds deeper understanding of why the consensus around climate change is strong, where uncertainties remain, and how to think about implications for society and themselves. This suggests that teachers need to provide scaffolding that builds not only students' understanding of how climate systems work or the causes and effects of climate change but also their capacity to evaluate the scientific evidence behind these claims. What is the evidence for anthropogenic climate change? What data are missing or currently being collected? How sure are scientists about their claims? What claim can be made from a particular set of data? And conversely, what claim cannot be made given these data? Climate change education provides not only an excellent opportunity to integrate science content with such scientific practices, but also an imperative to do so. In this study, we explore how students and teachers may engage collectively in this process of argumentation in order to arrive at a conclusion or claim supported by evidence. We take the position that learning to construct and evaluate arguments involves growth in scientific practices and meta-procedural (epistemic) knowledge This work was conducted over the course of three years through the NASA-funded Stanford Global Climate Change project. Scientists and educators provided teacher professional development on the science of global climate change, pedagogical strategies, and curriculum materials that emphasize both what we know about climate change and we how know it. We conducted an in-depth study of the classrooms of the participating teachers, focusing on the following research questions: 1) What did students learn about climate change and to what extent have their opinions shifted after experiencing this climate change curriculum? 2) How do teachers and students talk about how we know about climate change? 3) What classroom conditions support such talk? Our results show statistically significantly gains from pre to post in students' content knowledge and a shift in their opinions. These gains are positively related to the percentage of students engaged and interacting with one another or with the teacher. Through classroom observations and video recordings, we identify how teachers and students talk about how we know about climate change and we discuss how that talk can be supported by classroom implementation, the curriculum, and professional development.
Enabling Research Tools for Sustained Climate Assessment
NASA Technical Reports Server (NTRS)
Leidner, Allison K.; Bosilovich, Michael G.; Jasinski, Michael F.; Nemani, Ramakrishna R.; Waliser, Duane Edward; Lee, Tsengdar J.
2016-01-01
The U.S. Global Change Research Program Sustained Assessment process benefits from long-term investments in Earth science research that enable the scientific community to conduct assessment-relevant science. To this end, NASA initiated several research programs over the past five years to support the Earth observation community in developing indicators, datasets, research products, and tools to support ongoing and future National Climate Assessments. These activities complement NASA's ongoing Earth science research programs. One aspect of the assessment portfolio funds four "enabling tools" projects at NASA research centers. Each tool leverages existing capacity within the center, but has developed tailored applications and products for National Climate Assessments. The four projects build on the capabilities of a global atmospheric reanalysis (MERRA-2), a continental U.S. land surface reanalysis (NCA-LDAS), the NASA Earth Exchange (NEX), and a Regional Climate Model Evaluation System (RCMES). Here, we provide a brief overview of each enabling tool, highlighting the ways in which it has advanced assessment science to date. We also discuss how the assessment community can access and utilize these tools for National Climate Assessments and other sustained assessment activities.
NASA Astrophysics Data System (ADS)
Walton, P.; Lamb, R.
2010-09-01
The UK Climate Impacts Programme (UKCIP) was established by government in 1997 to support the UK's engagement with becoming better adapted to a changing climate. As the lead organisation in the UK on climate change adaptation, UKCIP oversaw the development of the UK Climate Projections (UKCP09) which were launched in June 2009 providing, for the first time, probabilistic climate projections for the UK. As with previous generations of UKCIP climate scenarios, they were freely accessible and intended for a whole spectrum of users, from technical experts to a lay audience. . Prior to the launch of UKCP09 it was acknowledged that users would need support in understanding key concepts, such as the uncertainty inherent in the projections, to be able to use them appropriately. The user support strategy was therefore developed. It is founded on robust pedagogical principles and draws on the latest thinking on public understanding of science (PUS) that places the user at the centre of the communication process. The adopted approach first identifies profiles of the key users of the climate projections and the ways in which they would use and access the data. Based on these profiles it is possible to identify a range of mechanisms that allow the user to engage with understanding the projections in different ways and situations including lectures, workshops and online learning. Within this blended strategy an exercise was developed specifically to support users' understanding of the concept of uncertainty within the probabilistic climate projections. The ‘Crossing the River' exercise encourages the participants to actively consider the nature of information they are using, and how it could be applied in a specific decision. Reflection and discussion are key elements in supporting the users' understanding of the concept and allowing them to apply the principles in the exercise to their own context. Their reflection is facilitated through a range of mechanisms that provide social and personal spaces and is guided by the communicator. The exercise has been used successfully with a broad range of users (from government officers to environmental managers) in groups ranging from small community events to large corporate conferences. Feedback has shown that the majority of people who completed the exercise had a better understanding of the concept of uncertainty within the probabilistic climate projections as a result. We are now working to create an online version that can be freely accessed by users along with other resources that develop understanding of other key concepts associated with UKCP09 and the broader climate change adaptation agenda. This paper evaluates the development and application of the user support strategy and provides a practical illustration of how it can be used within a face-to-face group setting and also as an online resource.
Community College Dual Enrollment Faculty Orientation: A Utilization-Focused Approach
ERIC Educational Resources Information Center
Charlier, Hara D.; Duggan, Molly H.
2010-01-01
The current climate of accountability demands that institutions engage in data-driven program evaluation. In order to promote quality dual enrollment (DE) programs, institutions must support the adjunct faculty teaching college courses in high schools. This study uses Patton's utilization-focused model (1997) to conduct a formative evaluation of a…
Emanuel, Federica; Colombo, Lara; Cortese, Claudio G; Ghislieri, Chiara
2017-12-01
This study examined the role of the "safety climate", or the organization's attention to health and safety of workers, and of job demand and resources in relation with job satisfaction. Wellbeing at work is a topic of growing interest, in line with the legislation and the programs on health and safety of workers and management and the evaluation of psychosocial risks. Several studies show that organizational actions concerning health and safety can be an indicator of the attention to employees' wellbeing, even if studies about the relationship between safety climate and some psychosocial outcomes are scant. The study analysed the relationship between job demand, job resources, safety climate and job satisfaction in three different occupational contexts (public authority, N = 224; social care organization, N = 115; pharmaceutical company, N = 127); workers were divided into groups based on the risk level appeared in the objective assessment of work-related stress, in order to identify differences. The self-report questionnaire gathered information about: job satisfaction, work efforts, supervisors' support, colleagues support, safety climate (α between .72 and .93). Data analysis provided: Cronbach α, analysis of variance, correlations, stepwise multiple regressions. The results showed that job satisfaction (R2 between .23 and .88) had a negative relationship with efforts and a positive relationship with job resources and safety climate. It emerges the importance of safety climate: to support and promote wellbeing at work, organizations could endorse training and information programs on health and safety for all workers and management, not only for professional groups with high-risk level. Future studies could explore the relation between safety climate and other outcomes, such as emotional exhaustion or objective indicators of organizational health (e.g. absenteeism, accidents, etc.). Copyright© by Aracne Editrice, Roma, Italy.
Working with South Florida County Planners to Understand and Mitigate Uncertain Climate Risks
NASA Astrophysics Data System (ADS)
Knopman, D.; Groves, D. G.; Berg, N.
2017-12-01
This talk describes a novel approach for evaluating climate change vulnerabilities and adaptations in Southeast Florida to support long-term resilience planning. The work is unique in that it combines state-of-the-art hydrologic modeling with the region's long-term land use and transportation plans to better assess the future climate vulnerability and adaptations for the region. Addressing uncertainty in future projections is handled through the use of decisionmaking under deep uncertainty methods. Study findings, including analysis of key tradeoffs, were conveyed to the region's stakeholders through an innovative web-based decision support tool. This project leverages existing groundwater models spanning Miami-Dade and Broward Counties developed by the USGS, along with projections of land use and asset valuations for Miami-Dade and Broward County planning agencies. Model simulations are executed on virtual cloud-based servers for a highly scalable and parallelized platform. Groundwater elevations and the saltwater-freshwater interface and intrusion zones from the integrated modeling framework are analyzed under a wide range of long-term climate futures, including projected sea level rise and precipitation changes. The hydrologic hazards are then combined with current and future land use and asset valuation projections to estimate assets at risk across the range of futures. Lastly, an interactive decision support tool highlights the areas with critical climate vulnerabilities; distinguishes between vulnerability due to new development, increased climate hazards, or both; and provides guidance for adaptive management and development practices and decisionmaking in Southeast Florida.
Bunn, Christian; Läderach, Peter; Pérez Jimenez, Juan Guillermo; Montagnon, Christophe; Schilling, Timothy
2015-01-01
Cultivation of Coffea arabica is highly sensitive to and has been shown to be negatively impacted by progressive climatic changes. Previous research contributed little to support forward-looking adaptation. Agro-ecological zoning is a common tool to identify homologous environments and prioritize research. We demonstrate here a pragmatic approach to describe spatial changes in agro-climatic zones suitable for coffee under current and future climates. We defined agro-ecological zones suitable to produce arabica coffee by clustering geo-referenced coffee occurrence locations based on bio-climatic variables. We used random forest classification of climate data layers to model the spatial distribution of these agro-ecological zones. We used these zones to identify spatially explicit impact scenarios and to choose locations for the long-term evaluation of adaptation measures as climate changes. We found that in zones currently classified as hot and dry, climate change will impact arabica more than those that are better suited to it. Research in these zones should therefore focus on expanding arabica's environmental limits. Zones that currently have climates better suited for arabica will migrate upwards by about 500m in elevation. In these zones the up-slope migration will be gradual, but will likely have negative ecosystem impacts. Additionally, we identified locations that with high probability will not change their climatic characteristics and are suitable to evaluate C. arabica germplasm in the face of climate change. These locations should be used to investigate long term adaptation strategies to production systems.
Modelling Bambara Groundnut Yield in Southern Africa: Towards a Climate-Resilient Future
NASA Technical Reports Server (NTRS)
Karunaratne, A. S.; Walker, S.; Ruane, A. C.
2015-01-01
Current agriculture depends on a few major species grown as monocultures that are supported by global research underpinning current productivity. However, many hundreds of alternative crops have the potential to meet real world challenges by sustaining humanity, diversifying agricultural systems for food and nutritional security, and especially responding to climate change through their resilience to certain climate conditions. Bambara groundnut (Vigna subterranea (L.) Verdc.), an underutilised African legume, is an exemplar crop for climate resilience. Predicted yield performances of Bambara groundnut by AquaCrop (a crop-water productivity model) were evaluated for baseline (1980-2009) and mid-century climates (2040-2069) under 20 downscaled Global Climate Models (CMIP5-RCP8.5), as well as for climate sensitivities (AgMIPC3MP) across 3 locations in Southern Africa (Botswana, South Africa, Namibia). Different land - races of Bambara groundnut originating from various semi-arid African locations showed diverse yield performances with diverse sensitivities to climate. S19 originating from hot-dry conditions in Namibia has greater future yield potential compared to the Swaziland landrace Uniswa Red-UN across study sites. South Africa has the lowest yield under the current climate, indicating positive future yield trends. Namibia reported the highest baseline yield at optimum current temperatures, indicating less yield potential in future climates. Bambara groundnut shows positive yield potential at temperatures of up to 31degC, with further warming pushing yields down. Thus, many regions in Southern Africa can utilize Bambara groundnut successfully in the coming decades. This modelling exercise supports decisions on genotypic suitability for present and future climates at specific locations.
NASA Astrophysics Data System (ADS)
Vicari, Rosa; Gires, Auguste; Tchiguirinskaia, Ioulia; Schertzer, Daniel
2014-05-01
The combined effects of climate change and increasing urbanisation call for new solutions to achieve urban resiliency to extreme weather. The research projects carried out by the HM&Co team (LEESU & Chair 'Hydrology for Resilient Cities' sponsored by Veolia) need to be supported by communication activities aimed to support community capacity building and cooperation between scientists and their partners and stakeholders. While outreach activities are becoming an integral part of many research projects on climate adaptation, their evaluation is scarce, rather optional, very limited. This work aims to develop quantitative and qualitative evaluation of science communication and to design corresponding assessment tools. It will be examined how evaluation can eventually improve the quality, efficiency and impact of communication activities in enhancing collaboration between scientists, professionals (e.g. water managers, urban planners) and beneficiaries (e.g. concerned citizens, policy makers). The research takes hold on several case studies on projects and programs aiming to increase the resiliency of cities to extreme weather: French projects and programmes such as RadX@IdF and Chair "Hydrology for a resilient city", European projects such as Climate KIC Blue Green Dream and Interreg NWE IVB RainGain and worldwide collaborations (e.g. TOMACS). The evaluation techniques and tools developed in the framework of this work are intended to become a useful support for engineers and researchers involved in projects on urban hydrology where resilience to extreme weather events relies also on effective communication processes between the above mentioned social actors. In particular, one of the purposes of this work is to highlight how auto-evaluation can improve on-going communication activities and create a virtuous circle of planning/implementation/evaluation. This research has links with those on the development of exploration techniques of the unstructured social big data, with a particular focus on digital communications.
Indigenous Health and Climate Change
2012-01-01
Indigenous populations have been identified as vulnerable to climate change. This framing, however, is detached from the diverse geographies of how people experience, understand, and respond to climate-related health outcomes, and overlooks nonclimatic determinants. I reviewed research on indigenous health and climate change to capture place-based dimensions of vulnerability and broader determining factors. Studies focused primarily on Australia and the Arctic, and indicated significant adaptive capacity, with active responses to climate-related health risks. However, nonclimatic stresses including poverty, land dispossession, globalization, and associated sociocultural transitions challenge this adaptability. Addressing geographic gaps in existing studies alongside greater focus on indigenous conceptualizations on and approaches to health, examination of global–local interactions shaping local vulnerability, enhanced surveillance, and an evaluation of policy support opportunities are key foci for future research. PMID:22594718
Madrigal-González, Jaime; Andivia, Enrique; Zavala, Miguel A; Stoffel, Markus; Calatayud, Joaquín; Sánchez-Salguero, Raúl; Ballesteros-Cánovas, Juan
2018-06-14
Climate change can impair ecosystem functions and services in extensive dry forests worldwide. However, attribution of climate change impacts on tree growth and forest productivity is challenging due to multiple inter-annual patterns of climatic variability associated with atmospheric and oceanic circulations. Moreover, growth responses to rising atmospheric CO 2 , namely carbon fertilization, as well as size ontogenetic changes can obscure the climate change signature as well. Here we apply Structural Equation Models (SEM) to investigate the relative role of climate change on tree growth in an extreme Mediterranean environment (i.e., extreme in terms of the combination of sandy-unconsolidated soils and climatic aridity). Specifically, we analyzed potential direct and indirect pathways by which different sources of climatic variability (i.e. warming and precipitation trends, the North Atlantic Oscillation, [NAO]; the Mediterranean Oscillation, [MOI]; the Atlantic Mediterranean Oscillation, [AMO]) affect aridity through their control on local climate (in terms of mean annual temperature and total annual precipitation), and subsequently tree productivity, in terms of basal area increments (BAI). Our results support the predominant role of Diameter at Breast Height (DHB) as the main growth driver. In terms of climate, NAO and AMO are the most important drivers of tree growth through their control of aridity (via effects of precipitation and temperature, respectively). Furthermore and contrary to current expectations, our findings also support a net positive role of climate warming on growth over the last 50 years and suggest that impacts of climate warming should be evaluated considering multi-annual and multi-decadal periods of local climate defined by atmospheric and oceanic circulation in the North Atlantic. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Eggert, Sabina; Nitsch, Anne; Boone, William J.; Nückles, Matthias; Bögeholz, Susanne
2017-02-01
Climate change is one of the most challenging problems facing today's global society (e.g., IPCC 2013). While climate change is a widely covered topic in the media, and abundant information is made available through the internet, the causes and consequences of climate change in its full complexity are difficult for individuals, especially non-scientists, to grasp. Science education is a field which can play a crucial role in fostering meaningful education of students to become climate literate citizens (e.g., NOAA 2009; Schreiner et al., 41, 3-50, 2005). If students are, at some point, to participate in societal discussions about the sustainable development of our planet, their learning with respect to such issues needs to be supported. This includes the ability to think critically, to cope with complex scientific evidence, which is often subject to ongoing inquiry, and to reach informed decisions on the basis of factual information as well as values-based considerations. The study presented in this paper focused on efforts to advance students in (1) their conceptual understanding about climate change and (2) their socioscientific reasoning and decision making regarding socioscientific issues in general. Although there is evidence that "knowledge" does not guarantee pro-environmental behavior (e.g. Schreiner et al., 41, 3-50, 2005; Skamp et al., 97(2), 191-217, 2013), conceptual, interdisciplinary understanding of climate change is an important prerequisite to change individuals' attitudes towards climate change and thus to eventually foster climate literate citizens (e.g., Clark et al. 2013). In order to foster conceptual understanding and socioscientific reasoning, a computer-based learning environment with an embedded concept mapping tool was utilized to support senior high school students' learning about climate change and possible solution strategies. The evaluation of the effect of different concept mapping scaffolds focused on the quality of student-generated concept maps, as well as on students' test performance with respect to conceptual knowledge as well as socioscientific reasoning and socioscientific decision making.
Evaluation of biotechnologies for flexible pavement applications : final report.
DOT National Transportation Integrated Search
2016-12-01
With solid data from environmental scientists supporting climate change there has been a strong push in the industry to look for alternative green or environmentally friendly methods to keep building and maintaining our infrastructure. This col...
Hansen, James W
2005-01-01
Interest in integrating crop simulation models with dynamic seasonal climate forecast models is expanding in response to a perceived opportunity to add value to seasonal climate forecasts for agriculture. Integrated modelling may help to address some obstacles to effective agricultural use of climate information. First, modelling can address the mismatch between farmers' needs and available operational forecasts. Probabilistic crop yield forecasts are directly relevant to farmers' livelihood decisions and, at a different scale, to early warning and market applications. Second, credible ex ante evidence of livelihood benefits, using integrated climate–crop–economic modelling in a value-of-information framework, may assist in the challenge of obtaining institutional, financial and political support; and inform targeting for greatest benefit. Third, integrated modelling can reduce the risk and learning time associated with adaptation and adoption, and related uncertainty on the part of advisors and advocates. It can provide insights to advisors, and enhance site-specific interpretation of recommendations when driven by spatial data. Model-based ‘discussion support systems’ contribute to learning and farmer–researcher dialogue. Integrated climate–crop modelling may play a genuine, but limited role in efforts to support climate risk management in agriculture, but only if they are used appropriately, with understanding of their capabilities and limitations, and with cautious evaluation of model predictions and of the insights that arises from model-based decision analysis. PMID:16433092
Fürst, Christine; Volk, Martin; Pietzsch, Katrin; Makeschin, Franz
2010-12-01
The article presents the platform "Pimp your landscape" (PYL), which aims firstly at the support of planners by simulating alternative land-use scenarios and by an evaluation of benefits or risks for regionally important ecosystem services. Second, PYL supports an integration of information on environmental and landscape conditions into impact assessment. Third, PYL supports the integration of impacts of planning measures on ecosystem services. PYL is a modified 2-D cellular automaton with GIS features. The cells have the major attribute "land-use type" and can be supplemented with additional information, such as specifics regarding geology, topography and climate. The GIS features support the delineation of non-cellular infrastructural elements, such as roads or water bodies. An evaluation matrix represents the core element of the system. In this matrix, values in a relative scale from 0 (lowest value) to 100 (highest value) are assigned to the land-use types and infrastructural elements depending on their effect on ecosystem services. The option to configure rules for describing the impact of environmental attributes and proximity effects on cell values and land-use transition probabilities is of particular importance. User interface and usage of the platform are demonstrated by an application case. Constraints and limits of the recent version are discussed, including the need to consider in the evaluation, landscape-structure aspects such as patch size, fragmentation and spatial connectivity. Regarding the further development, it is planned to include the impact of land management practices to support climate change adaptation and mitigation strategies in regional planning.
NASA Astrophysics Data System (ADS)
Walton, P.; Yarker, M. B.; Mesquita, M. D. S.; Otto, F. E. L.
2014-12-01
There is a clear role for climate science in supporting decision making at a range of scales and in a range of contexts: from Global to local, from Policy to Industry. However, clear a role climate science can play, there is also a clear discrepancy in the understanding of how to use the science and associated tools (such as climate models). Despite there being a large body of literature on the science there is clearly a need to provide greater support in how to apply appropriately. However, access to high quality professional development courses can be problematic, due to geographic, financial and time constraints. In attempt to address this gap we independently developed two online professional courses that focused on helping participants use and apply two regional climate models, WRF and PRECIS. Both courses were designed to support participants' learning through tutor led programs that covered the basic climate scientific principles of regional climate modeling and how to apply model outputs. The fundamental differences between the two courses are: 1) the WRF modeling course expected participants to design their own research question that was then run on a version of the model, whereas 2) the PRECIS course concentrated on the principles of regional modeling and how the climate science informed the modeling process. The two courses were developed to utilise the cost and time management benefits associated with eLearning, with the recognition that this mode of teaching can also be accessed internationally, providing professional development courses in countries that may not be able to provide their own. The development teams saw it as critical that the courses reflected sound educational theory, to ensure that participants had the maximum opportunity to learn successfully. In particular, the role of reflection is central to both course structures to help participants make sense of the science in relation to their own situation. This paper details the different structures of both courses, evaluating the advantages and disadvantages of each, along with the educational approaches used. We conclude by proposing a framework for the develop of educationally robust online professional development programs that actively supports decision makers in understanding, developing and applying regional climate models.
Ehrhart, Mark G; Aarons, Gregory A; Farahnak, Lauren R
2014-10-23
Although the importance of the organizational environment for implementing evidence-based practices (EBP) has been widely recognized, there are limited options for measuring implementation climate in public sector health settings. The goal of this research was to develop and test a measure of EBP implementation climate that would both capture a broad range of issues important for effective EBP implementation and be of practical use to researchers and managers seeking to understand and improve the implementation of EBPs. Participants were 630 clinicians working in 128 work groups in 32 US-based mental health agencies. Items to measure climate for EBP implementation were developed based on past literature on implementation climate and other strategic climates and in consultation with experts on the implementation of EBPs in mental health settings. The sample was randomly split at the work group level of analysis; half of the sample was used for exploratory factor analysis (EFA), and the other half was used for confirmatory factor analysis (CFA). The entire sample was utilized for additional analyses assessing the reliability, support for level of aggregation, and construct-based evidence of validity. The EFA resulted in a final factor structure of six dimensions for the Implementation Climate Scale (ICS): 1) focus on EBP, 2) educational support for EBP, 3) recognition for EBP, 4) rewards for EBP, 5) selection for EBP, and 6) selection for openness. This structure was supported in the other half of the sample using CFA. Additional analyses supported the reliability and construct-based evidence of validity for the ICS, as well as the aggregation of the measure to the work group level. The ICS is a very brief (18 item) and pragmatic measure of a strategic climate for EBP implementation. It captures six dimensions of the organizational context that indicate to employees the extent to which their organization prioritizes and values the successful implementation of EBPs. The ICS can be used by researchers to better understand the role of the organizational context on implementation outcomes and by organizations to evaluate their current climate as they consider how to improve the likelihood of implementation success.
NASA Earth Exchange (NEX) Supporting Analyses for National Climate Assessments
NASA Astrophysics Data System (ADS)
Nemani, R. R.; Thrasher, B. L.; Wang, W.; Lee, T. J.; Melton, F. S.; Dungan, J. L.; Michaelis, A.
2015-12-01
The NASA Earth Exchange (NEX) is a collaborative computing platform that has been developed with the objective of bringing scientists together with the software tools, massive global datasets, and supercomputing resources necessary to accelerate research in Earth systems science and global change. NEX supports several research projects that are closely related with the National Climate Assessment including the generation of high-resolution climate projections, identification of trends and extremes in climate variables and the evaluation of their impacts on regional carbon/water cycles and biodiversity, the development of land-use management and adaptation strategies for climate-change scenarios, and even the exploration of climate mitigation through geo-engineering. Scientists also use the large collection of satellite data on NEX to conduct research on quantifying spatial and temporal changes in land surface processes in response to climate and land-cover-land-use changes. Researchers, leveraging NEX's massive compute/storage resources, have used statistical techniques to downscale the coarse-resolution CMIP5 projections to fulfill the demands of the community for a wide range of climate change impact analyses. The DCP-30 (Downscaled Climate Projections at 30 arcsecond) for the conterminous US at monthly, ~1km resolution and the GDDP (Global Daily Downscaled Projections) for the entire world at daily, 25km resolution are now widely used in climate research and applications, as well as for communicating climate change. In order to serve a broader community, the NEX team in collaboration with Amazon, Inc, created the OpenNEX platform. OpenNEX provides ready access to NEX data holdings, including the NEX-DCP30 and GDDP datasets along with a number of pertinent analysis tools and workflows on the AWS infrastructure in the form of publicly available, self contained, fully functional Amazon Machine Images (AMI's) for anyone interested in global climate change.
Cheaib, Alissar; Badeau, Vincent; Boe, Julien; Chuine, Isabelle; Delire, Christine; Dufrêne, Eric; François, Christophe; Gritti, Emmanuel S; Legay, Myriam; Pagé, Christian; Thuiller, Wilfried; Viovy, Nicolas; Leadley, Paul
2012-06-01
Model-based projections of shifts in tree species range due to climate change are becoming an important decision support tool for forest management. However, poorly evaluated sources of uncertainty require more scrutiny before relying heavily on models for decision-making. We evaluated uncertainty arising from differences in model formulations of tree response to climate change based on a rigorous intercomparison of projections of tree distributions in France. We compared eight models ranging from niche-based to process-based models. On average, models project large range contractions of temperate tree species in lowlands due to climate change. There was substantial disagreement between models for temperate broadleaf deciduous tree species, but differences in the capacity of models to account for rising CO(2) impacts explained much of the disagreement. There was good quantitative agreement among models concerning the range contractions for Scots pine. For the dominant Mediterranean tree species, Holm oak, all models foresee substantial range expansion. © 2012 Blackwell Publishing Ltd/CNRS.
Sautier, Marion; Piquet, Mathilde; Duru, Michel; Martin-Clouaire, Roger
2017-05-15
Research is expected to produce knowledge, methods and tools to enhance stakeholders' adaptive capacity by helping them to anticipate and cope with the effects of climate change at their own level. Farmers face substantial challenges from climate change, from changes in the average temperatures and the precipitation regime to an increased variability of weather conditions and the frequency of extreme events. Such changes can have dramatic consequences for many types of agricultural production systems such as grassland-based livestock systems for which climate change influences the seasonality and productivity of fodder production. We present a participatory design method called FARMORE (FARM-Oriented REdesign) that allows farmers to design and evaluate adaptations of livestock systems to future climatic conditions. It explicitly considers three climate features in the design and evaluation processes: climate change, climate variability and the limited predictability of weather. FARMORE consists of a sequence of three workshops for which a pre-existing game-like platform was adapted. Various year-round forage production and animal feeding requirements must be assembled by participants with a computerized support system. In workshop 1, farmers aim to produce a configuration that satisfies an average future weather scenario. They refine or revise the previous configuration by considering a sample of the between-year variability of weather in workshop 2. In workshop 3, they explicitly take the limited predictability of weather into account. We present the practical aspects of the method based on four case studies involving twelve farmers from Aveyron (France), and illustrate it through an in-depth description of one of these case studies with three dairy farmers. The case studies shows and discusses how workshop sequencing (1) supports a design process that progressively accommodates complexity of real management contexts by enlarging considerations of climate change to climate variability and low weather predictability, and (2) increases the credibility and salience of the design method. Further enhancements of the method are outlined, especially the selection of pertinent weather scenarios. Copyright © 2017 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Feierabend, Timo; Stuckey, Marc; Nienaber, Sarah; Eilks, Ingo
2012-01-01
Up until now, very few models conceptualizing students' competence in evaluation, argumentation and discourse in the context of science education have been proposed. Most suggestions for analyzing this particular competence in students are normative and the empirical support for them remains weak. The problem becomes even more severe when such…
Prediction of enjoyment in school physical education.
Gråstén, Arto; Jaakkola, Timo; Liukkonen, Jarmo; Watt, Anthony; Yli-Piipari, Sami
2012-01-01
The specific aim of this study was to examine whether motivational climate, perceived physical competence, and exercise motivation predict enjoyment in school physical education within the same sample of adolescents across three years of secondary school. A sample of 639 students (girls = 296, boys = 343) aged between 13- to 15-years at the commencement of the study completed the Intrinsic Motivation Climate in Physical Education Questionnaire, Physical Self-Perception Profile, Physical Education Motivation Scale, and Physical Education Enjoyment Scale. Results derived from path analyses indicated that task-involving motivational climate predicted enjoyment in physical education via perceived physical competence and intrinsic motivation in both girls and boys. In particular, these results supported previous findings of Vallerand et. al (1997) with the self-determination theory and the achievement goal theory. Ego-involving climate was not a significant predictor either in girls or boys. The current results provide continuing support for the investigation of Vallerand's model in the physical education setting, and highlight that motivational climate is an area that requires further evaluation as a contributing factor in the improvement of physical education teaching. A better understanding of the role of motivational climate may assist efforts to promote children's and adolescents' perceived physical competence, intrinsic motivation, and enjoyment in the school physical education setting. Key pointsThe findings of the current study support existing suggestions of Vallerand's (1997) model in which social factors mediated by a psychological mediator, and exercise motivation are related to positive consequences in the PE context.Task-involving motivational climate predicted PE enjoyment via perceived physical competence and intrinsic motivation with both girls and boys. Task-involving motivational climate in PE lessons at Grade 7 had a strong association with PE enjoyment via perceived physical competence and intrinsic motivation at Grade 9 for both girls and boys.Ego-involving climate did not fit either the data for the girls or boys, as PE lessons based on ego-involving motivational climate did not significantly influence on the level of PE enjoyment.The results of the current study and previous practical findings support task-involving teaching methods to promote adolescent's PE enjoyment through secondary school years. School PE could be most effective if based on task-involving motivational climate, in which the main objective is increasing students' perceived physical competence, intrinsic motivation, and enjoyment.
NASA Astrophysics Data System (ADS)
Brekke, L. D.; Pruitt, T.; Maurer, E. P.; Duffy, P. B.
2007-12-01
Incorporating climate change information into long-term evaluations of water and energy resources requires analysts to have access to climate projection data that have been spatially downscaled to "basin-relevant" resolution. This is necessary in order to develop system-specific hydrology and demand scenarios consistent with projected climate scenarios. Analysts currently have access to "climate model" resolution data (e.g., at LLNL PCMDI), but not spatially downscaled translations of these datasets. Motivated by a common interest in supporting regional and local assessments, the U.S. Bureau of Reclamation and LLNL (through support from the DOE National Energy Technology Laboratory) have teamed to develop an archive of downscaled climate projections (temperature and precipitation) with geographic coverage consistent with the North American Land Data Assimilation System domain, encompassing the contiguous United States. A web-based information service, hosted at LLNL Green Data Oasis, has been developed to provide Reclamation, LLNL, and other interested analysts free access to archive content. A contemporary statistical method was used to bias-correct and spatially disaggregate projection datasets, and was applied to 112 projections included in the WCRP CMIP3 multi-model dataset hosted by LLNL PCMDI (i.e. 16 GCMs and their multiple simulations of SRES A2, A1b, and B1 emissions pathways).
Kershner, Jessi; Woodward, Andrea; Torregrosa, Alicia
2016-01-01
The rugged landscapes of northern Idaho and western Montana support biodiverse ecosystems, and provide a variety of natural resources and services for human communities. However, the benefits provided by these ecosystems may be at risk as changing climate magnifies existing stressors and allows new stressors to emerge. Preparation for and response to these potential changes can be most effectively addressed through multi-stakeholder partnerships, evaluating vulnerability of important resources to climate change, and developing response and preparation strategies for managing key natural resources in a changing world. This project will support climate-smart conservation and management across forests of northern Idaho and western Montana through three main components: (1) fostering partnerships among scientists, land managers, regional landowners, conservation practitioners, and the public; (2) assessing the vulnerability of a suite of regionally important resources to climate change and other stressors; and (3) creating a portfolio of adaptation strategies and actions to help resource managers prepare for and respond to the likely impacts of climate change. The results of this project will be used to inform the upcoming land management plan revisions for national forests, helping ensure that the most effective and robust conservation and management strategies are implemented to preserve our natural resources.
A Climate Information Platform for Copernicus (CLIPC): managing the data flood
NASA Astrophysics Data System (ADS)
Juckes, Martin; Swart, Rob; Bärring, Lars; Groot, Annemarie; Thysse, Peter; Som de Cerff, Wim; Costa, Luis; Lückenkötter, Johannes; Callaghan, Sarah; Bennett, Victoria
2016-04-01
The FP7 project "Climate Information Platform for Copernicus" (CLIPC) is developing a demonstration portal for the Copernicus Climate Change Service (C3S). The project confronts many problems associated with the huge diversity of underlying data, complex multi-layered uncertainties and extremely complex and evolving user requirements. The infrastructure is founded on a comprehensive approach to managing data and documentation, using global domain independent standards where possible. An extensive thesaurus of terms provides both a robust and flexible foundation for data discovery services and accessible definitions to support users. It is, of course, essential to provide information to users through an interface which reflects their expectations rather than the intricacies of abstract data models. CLIPC has reviewed user engagement activities from other collaborative European projects, conducted user polls, interviews and meetings and is now entering an evaluation phase in which users discuss new features and options in the portal design. The CLIPC portal will provide access to raw climate science data and climate impact indicators derived from that data. The portal needs the flexibility to support access to extremely large datasets as well as providing means to manipulate data and explore complex products interactively.
Projected 2050 Model Simulations for the Chesapeake Bay ...
The Chesapeake Bay Program as has been tasked with assessing how changes in climate systems are expected to alter key variables and processes within the Watershed in concurrence with land use changes. EPA’s Office of Research and Development will be conducting historic and future, 2050, Weather Research and Forecast (WRF) metrological and Community Multiscale Air Quality (CMAQ) chemical transport model simulations to provide meteorological and nutrient deposition estimates for inclusion of the Chesapeake Bay Program’s assessment of how climate and land use change may impact water quality and ecosystem health. This presentation will present the timeline and research updates. The National Exposure Research Laboratory (NERL) Computational Exposure Division (CED) develops and evaluates data, decision-support tools, and models to be applied to media-specific or receptor-specific problem areas. CED uses modeling-based approaches to characterize exposures, evaluate fate and transport, and support environmental diagnostics/forensics with input from multiple data sources. It also develops media- and receptor-specific models, process models, and decision support tools for use both within and outside of EPA.
Group climate in the voice therapy of patients with Parkinson's Disease.
Diaféria, Giovana; Madazio, Glaucya; Pacheco, Claudia; Takaki, Patricia Barbarini; Behlau, Mara
2017-09-04
To verify the impact that group dynamics and coaching strategies have on the PD patients voice, speech and communication, as well as the group climate. 16 individuals with mild to moderate dysarthria due to the PD were divided into two groups: the CG (8 patients), submitted to traditional therapy with 12 regular therapy sessions plus 4 additional support sessions; and the EG (8 patients), submitted to traditional therapy with 12 regular therapy sessions plus 4 sessions with group dynamics and coaching strategies. The Living with Dysarthria questionnaire (LwD), the self-evaluation of voice, speech and communication, and the perceptual-auditory analysis of the vocal quality were assess in 3 moments: pre-traditional therapy (pre); post-traditional therapy (post 1); and post support sessions/coaching strategies (post 2); in post 1 and post 2 moments, the Group Climate Questionnaire (GCQ) was also applied. CG and EG showed an improvement in the LwD from pre to post 1 and post 2 moments. Voice self-evaluation was better for the EG - when pre was compared with post 2 and when post 1 was compared with post 2 - ranging from regular to very good; both groups presented improvement in the communication self-evaluation. The perceptual-auditory evaluation of the vocal quality was better for the EG in the post 1 moment. No difference was found for the GCQ; however, the EG presented lower avoidance scores in post 2. All patients showed improvement in the voice, speech and communication self-evaluation; EG showed lower avoidance scores, creating a more collaborative and propitious environment for speech therapy.
NASA Astrophysics Data System (ADS)
Mizoguchi, M.; Matsumoto, J.; Takahashi, H. G.; Tanaka, K.; Kuwagata, T.
2015-12-01
It is important to predict climate change correctly in regional scale and to build adaptation measures and mitigation measures in the Asian monsoon region where more than 60 % of the world's population are living. The reliability of climate change prediction model is evaluated by the reproducibility of past climate in general. However, because there are many developing countries in the Asian monsoon region, adequate documentations of past climate which are needed to evaluate the climate reproducibility have not been prepared. In addition, at present it is difficult to get information on wide-area agricultural meteorological data which affect the growth of agricultural crops when considering the impact on agriculture of climate. Therefore, we have started a research project entitled "Climatic changes and evaluation of their effects on agriculture in Asian monsoon region (CAAM)" under the research framework of the Green Network of Excellence (GRENE) for the Japanese fiscal years from 2011 to 2015 supported by the Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT). This project aims to improve the reliability of future climate prediction and to develop the information platform which will be useful to design adaptation and mitigation strategies in agriculture against the predicted climatic changes in Asian monsoon regions. What is GRENE?Based on the new growth strategy which was approved by the Cabinet of Japan in June 2010, Green Network of Excellence program (GRENE) has started under MEXT from FY 2011. The objectives of this program are that the domestic leading universities work together strategically and promote a comprehensive human resource development and research of the highest level in the world while sharing research resources and research goals. In the field of environmental information, it is required that universities and research institutions, which are working on issues such as adaptation to climate change, cooperate to promote the utilization of environmental information and to develop human resources while using DIAS (Data Integration and Analysis System) which has been built by MEXT.
Climate Literacy: Climate.gov Follow-Up Evaluation—A Study of the Four NOAA Audiences
NASA Astrophysics Data System (ADS)
Niepold, F., III; Sullivan, S. B.; Gold, A. U.; Lynds, S. E.; Kirk, K.
2014-12-01
NOAA Climate.gov provides science and information for a climate-smart nation. Americans' health, security, and economic well-being are closely linked to climate and weather. NOAA Climate.gov's goals are to promote public understanding of climate science and climate-related events, to make our data products and services easy to access and use, to support educators in improving the nations climate literacy, and to serve people making climate-related decisions with tools and resources that help them answer specific questions.The Climate.Gov Follow-Up Study of the four NOAA Audiences (climate interested public, educators, scientists, policy-makers) built upon the previous literature review and evaluation study conducted by Mooney and Phillips in 2010 and 2012, http://tinyurl.com/ma8vo83. The CIRES Education and Outreach team at the Cooperative Institute for Research in Environmental Sciences at University of Colorado at Boulder and the NOAA Climate.gov team will present results of the new study that used the Quality of Relationship index (awareness, trust, satisfaction, usability, and control mutuality). This index was developed in the previous study and places a new emphasis on the experience of individual users from the four audiences in their regular work or home setting. This new evaluation project used mixed methods, including an online survey, usability studies, phone interviews, and web statistics, providing multiple lines of evidence from which to draw conclusion and recommendations.In the session, we will explore how the NOAA Climate.gov teams used the literature review and new CIRES research to address underlying challenges to achieving the portal's goals. The research in these studies finds that people seek information in ways that are complex and that they do so by consulting a vast array of technologies. Improved and different modes of access to information have, throughout history, been led by technological innovation, but human behavior tends to be constant. The NOAA Climate.gov portal improved its design informed by the first literature review and evaluation. We will discuss how the follow-up study will inform continual audience-focused design and innovation for maximizing the effectiveness of the multiple audience portal.
Climate Change in Colorado: Findings and Scientific Challenges
NASA Astrophysics Data System (ADS)
Barsugli, J.; Ray, A.; Averyt, K.; Wolter, K.; Hoerling, M. P.
2008-12-01
In response to the risks associated with anthropogenic climate change, Governor Ritter issued the Colorado Climate Action Plan (CCAP) in 2007. In support of the adaptation component of the CCAP, the Colorado Water Conservation Board commissioned the Western Water Assessment at the University of Colorado to prepare the report "Climate Change in Colorado: A Synthesis to Support Water Resources Management and Adaptation." The objective of "Climate Change in Colorado" is to communicate the state of the science regarding the physical aspects of climate change that are important for evaluating impacts on Colorado's water resources. Accordingly, the document focuses on observed trends, modeling, attribution, and projections of hydroclimatic variables that are important for Colorado's water supply. Although many published datasets include information about Colorado, there are few climate studies that focus on the state. Consequently, many important analyses for Colorado are lacking. The report summarizes Colorado-specific findings from peer-reviewed regional studies, and presents new analyses derived from existing datasets. Here we will summarize the findings of the report, discuss the extent to which conclusions from West-wide studies hold in Colorado, and highlight the many scientific challenges that were faced in the preparation of the report. These challenges include interpreting observed and projected precipitation and temperature variability and trends, dealing with attribution and uncertainty at the state level, and justifying the relevance of climate model projections in a topographically complex state. A second presentation (Ray et al.) discusses the process of developing the report.
Multilevel multi-informant structure of the authoritative school climate survey.
Konold, Timothy; Cornell, Dewey; Huang, Francis; Meyer, Patrick; Lacey, Anna; Nekvasil, Erin; Heilbrun, Anna; Shukla, Kathan
2014-09-01
The Authoritative School Climate Survey was designed to provide schools with a brief assessment of 2 key characteristics of school climate--disciplinary structure and student support--that are hypothesized to influence 2 important school climate outcomes--student engagement and prevalence of teasing and bullying in school. The factor structure of these 4 constructs was examined with exploratory and confirmatory factor analyses in a statewide sample of 39,364 students (Grades 7 and 8) attending 423 schools. Notably, the analyses used a multilevel structural approach to model the nesting of students in schools for purposes of evaluating factor structure, demonstrating convergent and concurrent validity and gauging the structural invariance of concurrent validity coefficients across gender. These findings provide schools with a core group of school climate measures guided by authoritative discipline theory. PsycINFO Database Record (c) 2014 APA, all rights reserved.
Lynch, Abigail J.; Taylor, William W.; McCright, Aaron M.
2016-01-01
Decision support tools can aid decision making by systematically incorporating information, accounting for uncertainties, and facilitating evaluation between alternatives. Without user buy-in, however, decision support tools can fail to influence decision-making processes. We surveyed fishery researchers, managers, and fishers affiliated with the Lake Whitefish Coregonus clupeaformis fishery in the 1836 Treaty Waters of Lakes Huron, Michigan, and Superior to assess opinions of current and future management needs to identify barriers to, and opportunities for, developing a decision support tool based on Lake Whitefish recruitment projections with climate change. Approximately 64% of 39 respondents were satisfied with current management, and nearly 85% agreed that science was well integrated into management programs. Though decision support tools can facilitate science integration into management, respondents suggest that they face significant implementation barriers, including lack of political will to change management and perceived uncertainty in decision support outputs. Recommendations from this survey can inform development of decision support tools for fishery management in the Great Lakes and other regions.
Bunn, Christian; Läderach, Peter; Pérez Jimenez, Juan Guillermo; Montagnon, Christophe; Schilling, Timothy
2015-01-01
Cultivation of Coffea arabica is highly sensitive to and has been shown to be negatively impacted by progressive climatic changes. Previous research contributed little to support forward-looking adaptation. Agro-ecological zoning is a common tool to identify homologous environments and prioritize research. We demonstrate here a pragmatic approach to describe spatial changes in agro-climatic zones suitable for coffee under current and future climates. We defined agro-ecological zones suitable to produce arabica coffee by clustering geo-referenced coffee occurrence locations based on bio-climatic variables. We used random forest classification of climate data layers to model the spatial distribution of these agro-ecological zones. We used these zones to identify spatially explicit impact scenarios and to choose locations for the long-term evaluation of adaptation measures as climate changes. We found that in zones currently classified as hot and dry, climate change will impact arabica more than those that are better suited to it. Research in these zones should therefore focus on expanding arabica's environmental limits. Zones that currently have climates better suited for arabica will migrate upwards by about 500m in elevation. In these zones the up-slope migration will be gradual, but will likely have negative ecosystem impacts. Additionally, we identified locations that with high probability will not change their climatic characteristics and are suitable to evaluate C. arabica germplasm in the face of climate change. These locations should be used to investigate long term adaptation strategies to production systems. PMID:26505637
Adaptation to Climate change Impacts on the Mediterranean islands' Agriculture (ADAPT2CLIMA)
NASA Astrophysics Data System (ADS)
Giannakopoulos, Christos; Karali, Anna; Lemesios, Giannis; Loizidou, Maria; Papadaskalopoulou, Christina; Moustakas, Konstantinos; Papadopoulou, Maria; Moriondo, Marco; Markou, Marinos; Hatziyanni, Eleni; Pasotti, Luigi
2016-04-01
Agriculture is one of the economic sectors that will likely be hit hardest by climate change, since it directly depends on climatic factors such as temperature, sunlight, and precipitation. The EU LIFE ADAPT2CLIMA (http://adapt2clima.eu/en/) project aims to facilitate the development of adaptation strategies for agriculture by deploying and demonstrating an innovative decision support tool. The ADAPT2CLIMA tool will make it possible to simulate the impacts of climate change on crop production and the effectiveness of selected adaptation options in decreasing vulnerability to climate change in three Mediterranean islands, namely Crete (Greece), Sicily (Italy), and Cyprus. The islands were selected for two reasons: firstly, they figure among the most important cultivation areas at national level. Secondly, they exhibit similarities in terms of location (climate), size, climate change threats faced (coastal agriculture, own water resources), agricultural practices, and policy relevance. In particular, the tool will provide: i) climate change projections; ii) hydrological conditions related to agriculture: iii) a vulnerability assessment of selected crops; iv) an evaluation of the adaptation options identified. The project is expected to contribute significantly to increasing climate resilience of agriculture areas in Sicily, Cyprus and Crete as well as at EU and international level by: • Developing, implementing and demonstrating an innovative and interactive decision support tool (ADAPT2CLIMA tool) for adaptation planning in agriculture that estimates future climate change impacts on local water resources, as well as the climate change vulnerability of the agricultural crop production in the project areas; • Evaluating the technical and economic viability of the implementation of the ADAPT2CLIMA tool; • Developing climate change adaptation strategies for agriculture (including a monitoring plan) for the three project areas and presenting them to the competent authorities for adoption; • Simulating the effectiveness of the implementation of certain adaptation measures to address climate change impacts on agriculture; • Developing a stakeholder engagement strategy; • Increasing the knowledge of the impacts of climate change on the agricultural areas covered by the project, thus enabling well informed decision-making and enhancing readiness for early action in order to address the potential damages and minimize threats posed by climate change; • Developing a framework for mainstreaming agricultural adaptation measures into relevant national and regional policies; • Promoting the replication of the proposed methodology in order to ensure proper coordination of national and regional policies and between authorities.
Tzeng, Wann-Nian; Tseng, Yu-Heng; Han, Yu-San; Hsu, Chih-Chieh; Chang, Chih-Wei; Di Lorenzo, Emanuele; Hsieh, Chih-hao
2012-01-01
Long-term (1967–2008) glass eel catches were used to investigate climatic effects on the annual recruitment of Japanese eel to Taiwan. Specifically, three prevailing hypotheses that potentially explain the annual recruitment were evaluated. Hypothesis 1: high precipitation shifts the salinity front northward, resulting in favorable spawning locations. Hypothesis 2: a southward shift of the position of the North Equatorial Current (NEC) bifurcation provides a favorable larval transport route. Hypothesis 3: ocean conditions (eddy activities and productivity) along the larval migration route influence larval survival. Results of time series regression and wavelet analyses suggest that Hypothesis 1 is not supported, as the glass eel catches exhibited a negative relationship with precipitation. Hypothesis 2 is plausible. However, the catches are correlated with the NEC bifurcation with a one-year lag. Considering the time needed for larval transport (only four to six months), the one-year lag correlation does not support the direct transport hypothesis. Hypothesis 3 is supported indirectly by the results. Significant correlations were found between catches and climate indices that affect ocean productivity and eddy activities, such as the Quasi Biennial Oscillation (QBO), North Pacific Gyre Oscillation (NPGO), Pacific Decadal Oscillation (PDO), and Western Pacific Oscillation (WPO). Wavelet analysis reveals three periodicities of eel catches: 2.7, 5.4, and 10.3 years. The interannual coherence with QBO and the Niño 3.4 region suggests that the shorter-term climate variability is modulated zonally by equatorial dynamics. The low-frequency coherence with WPO, PDO, and NPGO demonstrates the decadal modulation of meridional teleconnection via ocean–atmosphere interactions. Furthermore, WPO and QBO are linked to solar activities. These results imply that the Japanese eel recruitment may be influenced by multi-timescale climate variability. Our findings call for investigation of extra-tropical ocean dynamics that affect survival of eels during transport, in addition to the existing efforts to study the equatorial system. PMID:22383976
Tzeng, Wann-Nian; Tseng, Yu-Heng; Han, Yu-San; Hsu, Chih-Chieh; Chang, Chih-Wei; Di Lorenzo, Emanuele; Hsieh, Chih-Hao
2012-01-01
Long-term (1967-2008) glass eel catches were used to investigate climatic effects on the annual recruitment of Japanese eel to Taiwan. Specifically, three prevailing hypotheses that potentially explain the annual recruitment were evaluated. Hypothesis 1: high precipitation shifts the salinity front northward, resulting in favorable spawning locations. Hypothesis 2: a southward shift of the position of the North Equatorial Current (NEC) bifurcation provides a favorable larval transport route. Hypothesis 3: ocean conditions (eddy activities and productivity) along the larval migration route influence larval survival. Results of time series regression and wavelet analyses suggest that Hypothesis 1 is not supported, as the glass eel catches exhibited a negative relationship with precipitation. Hypothesis 2 is plausible. However, the catches are correlated with the NEC bifurcation with a one-year lag. Considering the time needed for larval transport (only four to six months), the one-year lag correlation does not support the direct transport hypothesis. Hypothesis 3 is supported indirectly by the results. Significant correlations were found between catches and climate indices that affect ocean productivity and eddy activities, such as the Quasi Biennial Oscillation (QBO), North Pacific Gyre Oscillation (NPGO), Pacific Decadal Oscillation (PDO), and Western Pacific Oscillation (WPO). Wavelet analysis reveals three periodicities of eel catches: 2.7, 5.4, and 10.3 years. The interannual coherence with QBO and the Niño 3.4 region suggests that the shorter-term climate variability is modulated zonally by equatorial dynamics. The low-frequency coherence with WPO, PDO, and NPGO demonstrates the decadal modulation of meridional teleconnection via ocean-atmosphere interactions. Furthermore, WPO and QBO are linked to solar activities. These results imply that the Japanese eel recruitment may be influenced by multi-timescale climate variability. Our findings call for investigation of extra-tropical ocean dynamics that affect survival of eels during transport, in addition to the existing efforts to study the equatorial system.
Collaboration pathway(s) using new tools for optimizing operational climate monitoring from space
NASA Astrophysics Data System (ADS)
Helmuth, Douglas B.; Selva, Daniel; Dwyer, Morgan M.
2014-10-01
Consistently collecting the earth's climate signatures remains a priority for world governments and international scientific organizations. Architecting a solution requires transforming scientific missions into an optimized robust `operational' constellation that addresses the needs of decision makers, scientific investigators and global users for trusted data. The application of new tools offers pathways for global architecture collaboration. Recent (2014) rulebased decision engine modeling runs that targeted optimizing the intended NPOESS architecture, becomes a surrogate for global operational climate monitoring architecture(s). This rule-based systems tools provide valuable insight for Global climate architectures, through the comparison and evaluation of alternatives considered and the exhaustive range of trade space explored. A representative optimization of Global ECV's (essential climate variables) climate monitoring architecture(s) is explored and described in some detail with thoughts on appropriate rule-based valuations. The optimization tools(s) suggest and support global collaboration pathways and hopefully elicit responses from the audience and climate science shareholders.
NASA Astrophysics Data System (ADS)
Kadow, C.; Illing, S.; Kunst, O.; Cubasch, U.
2014-12-01
The project 'Integrated Data and Evaluation System for Decadal Scale Prediction' (INTEGRATION) as part of the German decadal prediction project MiKlip develops a central evaluation system. The fully operational hybrid features a HPC shell access and an user friendly web-interface. It employs one common system with a variety of verification tools and validation data from different projects in- and outside of MiKlip. The evaluation system is located at the German Climate Computing Centre (DKRZ) and has direct access to the bulk of its ESGF node including millions of climate model data sets, e.g. from CMIP5 and CORDEX. The database is organized by the international CMOR standard using the meta information of the self-describing model, reanalysis and observational data sets. Apache Solr is used for indexing the different data projects into one common search environment. This implemented meta data system with its advanced but easy to handle search tool supports users, developers and their tools to retrieve the required information. A generic application programming interface (API) allows scientific developers to connect their analysis tools with the evaluation system independently of the programming language used. Users of the evaluation techniques benefit from the common interface of the evaluation system without any need to understand the different scripting languages. Facilitating the provision and usage of tools and climate data increases automatically the number of scientists working with the data sets and identify discrepancies. Additionally, the history and configuration sub-system stores every analysis performed with the evaluation system in a MySQL database. Configurations and results of the tools can be shared among scientists via shell or web-system. Therefore, plugged-in tools gain automatically from transparency and reproducibility. Furthermore, when configurations match while starting a evaluation tool, the system suggests to use results already produced by other users-saving CPU time, I/O and disk space. This study presents the different techniques and advantages of such a hybrid evaluation system making use of a Big Data HPC in climate science. website: www-miklip.dkrz.de visitor-login: guest password: miklip
NASA Astrophysics Data System (ADS)
Kadow, Christopher; Illing, Sebastian; Kunst, Oliver; Ulbrich, Uwe; Cubasch, Ulrich
2015-04-01
The project 'Integrated Data and Evaluation System for Decadal Scale Prediction' (INTEGRATION) as part of the German decadal prediction project MiKlip develops a central evaluation system. The fully operational hybrid features a HPC shell access and an user friendly web-interface. It employs one common system with a variety of verification tools and validation data from different projects in- and outside of MiKlip. The evaluation system is located at the German Climate Computing Centre (DKRZ) and has direct access to the bulk of its ESGF node including millions of climate model data sets, e.g. from CMIP5 and CORDEX. The database is organized by the international CMOR standard using the meta information of the self-describing model, reanalysis and observational data sets. Apache Solr is used for indexing the different data projects into one common search environment. This implemented meta data system with its advanced but easy to handle search tool supports users, developers and their tools to retrieve the required information. A generic application programming interface (API) allows scientific developers to connect their analysis tools with the evaluation system independently of the programming language used. Users of the evaluation techniques benefit from the common interface of the evaluation system without any need to understand the different scripting languages. Facilitating the provision and usage of tools and climate data increases automatically the number of scientists working with the data sets and identify discrepancies. Additionally, the history and configuration sub-system stores every analysis performed with the evaluation system in a MySQL database. Configurations and results of the tools can be shared among scientists via shell or web-system. Therefore, plugged-in tools gain automatically from transparency and reproducibility. Furthermore, when configurations match while starting a evaluation tool, the system suggests to use results already produced by other users-saving CPU time, I/O and disk space. This study presents the different techniques and advantages of such a hybrid evaluation system making use of a Big Data HPC in climate science. website: www-miklip.dkrz.de visitor-login: click on "Guest"
NASA Astrophysics Data System (ADS)
Matyas, Cs.; Berki, I.; Drüszler, A.; Eredics, A.; Galos, B.; Moricz, N.; Rasztovits, E.
2012-04-01
In whole Central Europe agricultural production is highly vulnerable and sensitive to impacts of projected climatic changes. The low-elevation regions of the Carpathian Basin (most of the territory of Hungary), where precipitation is the minimum factor of production, are especially exposed to climatic extremes, especially to droughts. Rainfed agriculture, animal husbandry on nature-close pastures and nature-close forestry are the most sensitive sectors due to limited possibilities to counterbalance moisture supply constraints. These sectors have to be best prepared to frequency increase of extreme events, disasters and economic losses. So far, there is a lack of information about the middle and long term consequences on regional and local level. Therefore the importance of complex, long term management planning and of land use optimation is increasing. The aim of the initiative is to set up a fine-scale, GIS-based, complex, integrated system for the definition of the most important regional and local challenges and tasks of climate change adaptation and mitigation in agriculture, forestry, animal husbandry and also nature protection. The Service Center for Climate Change Adaptation in Agriculture is planned to provide the following services: § Complex, GIS-supported database, which integrates the basic information about present and projected climates, extremes, hydrology and soil conditions; § Evaluation of existing satellite-based and earth-based monitoring systems; § GIS-supported information about the future trends of climate change impacts on the agroecological potential and sensitivity status on regional and local level (e.g. land cover/use and expectable changes, production, water and carbon cycle, biodiversity and other ecosystem services, potential pests and diseases, tolerance limits etc.) in fine-scale horizontal resolution, based first of all on natural produce, including also social and economic consequences; § Complex decision supporting system on regional and local scale for middle- and long term adaptation and mitigation strategies, providing information on optimum technologies and energy balances. Cooperation with already existing Climate Service Centres and national and international collaboration in monitoring and research are important elements of the activity of the Centre. In the future, the Centre is planned to form part of a national information system on climate change adaptation and mitigation, supported by the Ministry of Development. Keywords: climate change impacts, forestry, rainfed agriculture, animal husbandry
From WHAT We Know to HOW We Know It: Students Talk about Climate Change
NASA Astrophysics Data System (ADS)
Holthuis, N.; Lotan, R.; Saltzman, J.; Mastrandrea, M. D.
2012-12-01
The climate change community has begun to look carefully at how the public understands, or fails to understand, climate change data and the scientific claims made based on these data. Researchers (Bowen et al, 2008) have found that a deficit model of knowledge doesn't fully explain why people continue to disagree about climate change or are unwilling to change their behaviors. "Deniers" do not become "acceptors" simply by filling up their cognitive data banks with more information. This suggests that teachers need to provide scaffolding that supports not only students' understanding of how climate systems work or the causes and effects of climate change but includes how we know what we know. That is, instruction shifts from an exclusive focus on content knowledge to one that aims to develop critical analytic skills and scientific habits of mind. For example, students need to not only understand the effects of human activity on climate change, but also learn to identify and analyze the evidence for anthropogenic climate change and how that evidence has built over time. They can then evaluate the evidence as well as whether the claims made are justified given the data. Climate literacy then includes content knowledge as well as understanding of the scientific practices that lead to building that knowledge. In this study, we report on the research and evaluation of the NASA-funded Stanford Global Climate Change: Professional Development for K-12 Teachers. We focus on data from the last year of a three-year project in which climate scientists and science educators collaborated to develop curriculum and provide professional development for secondary school teachers on the science and the pedagogy of global climate change. As teachers implemented the curriculum in their classrooms, we collected pre- and post-tests, classroom observations, video recordings, and post-implementation interviews with the teachers. Our analyses serve to document: 1) how students talk about HOW we know about climate change, 2) in what ways the curriculum and the teaching practices support this type of student talk, 3) how the quantity and quality of student talk leads to a greater understanding of both WHAT we know about climate change and HOW we know it. Through systematic classroom observations, we documented student engagement and interactions. In-depth analysis of video recordings revealed more about the nature of these interactions and how students talk with each other and the teacher about how we know. From pre- and post-tests of 756 middle school and high school students in 30 classrooms, we found statistically significant differences (t=-19.78, p<0.001) between total scores on the pre-test (68.1 % correct) and post-test (79.1% correct). At the classroom level, these data served to create portraits of classrooms where "how do we know talk" was prevalent and where teaching practices supported such talk. In these classrooms, students showed significant gains in both content knowledge and analytic skills. We argue that these students became climate literate and thus better equipped to critically distinguish between climate science and non-science they might encounter via the internet, the media, or other sources.
Earth Observations in Support of Offshore Wind Energy Management in the Euro-Atlantic Region
NASA Astrophysics Data System (ADS)
Liberato, M. L. R.
2017-12-01
Climate change is one of the most important challenges in the 21st century and the energy sector is a major contributor to GHG emissions. Therefore greater attention has been given to the evaluation of offshore wind energy potentials along coastal areas, as it is expected offshore wind energy to be more efficient and cost-effective in the near future. Europe is developing offshore sites for over two decades and has been growing at gigawatt levels in annual capacity. Portugal is among these countries, with the development of a 25MW WindFloat Atlantic wind farm project. The international scientific community has developed robust ability on the research of the climate system components and their interactions. Climate scientists have gained expertise in the observation and analysis of the climate system as well as on the improvement of model and predictive capabilities. Developments on climate science allow advancing our understanding and prediction of the variability and change of Earth's climate on all space and time scales, while improving skilful climate assessments and tools for dealing with future challenges of a warming planet. However the availability of greater datasets amplifies the complexity on manipulation, representation and consequent analysis and interpretation of such datasets. Today the challenge is to translate scientific understanding of the climate system into climate information for society and decision makers. Here we discuss the development of an integration tool for multidisciplinary research, which allows access, management, tailored pre-processing and visualization of datasets, crucial to foster research as a service to society. One application is the assessment and monitoring of renewable energy variability, such as wind or solar energy, at several time and space scales. We demonstrate the ability of the e-science platform for planning, monitoring and management of renewable energy, particularly offshore wind energy in the Euro-Atlantic region. Further we explore the automatization of processes using different domains and datasets, which facilitate further research in evaluating and understanding renewable energy variability. AcknowledgementsThis work is supported by Foundation for Science and Technology (FCT), Portugal, project UID/GEO/50019/2013 - Instituto Dom Luiz.
NASA Astrophysics Data System (ADS)
Bourqui, M.; Charriere, M. K. M.; Bolduc, C.
2016-12-01
This talk presents a case of a learning-by-doing approach used by the Climanosco organisation to produce research-based information written in a language accessible to a large public. In this model, engagement (the "doing") of members of the general public, alongside climate scientists, is fostered at various levels of this production of knowledge. In particular, this engagement plays a key role in our extended peer-review process as non-scientific referees are requested to review the accessibility of manuscripts for a large public. Members of the general public also participate to the scientific inquiry by inviting scientists to write on a particular topic or by co-authoring articles. Importantly, their participation, side-by-side with climate scientists, allows them to naturally raise their climate literacy (the "learning"). This model was tested in the context of a scientific challenge organised for the launch of Climanosco where climate scientists were invited to re-frame their research for the general public. This competition started in the fall 2015 and is due to end in September 2016. It led to 11 published articles and engaged the participation of 24 members of the general public. Six non-scientists participated to the jury alongside six climate scientists and evaluated the 11 articles. Their perceived increase in climate knowledge, as evaluated though a survey, will be presented in this talk. One important challenge now is to evaluate the potential of this model to support the teaching of climate sciences at schools. For that purpose, we are starting a dialog with various teachers in several countries. Progresses on this side will also be discussed in this talk.
Beets, Michael W; Flay, Brian R; Vuchinich, Samuel; Acock, Alan C; Li, Kin-Kit; Allred, Carol
2008-12-01
Teacher- and school-level factors influence the fidelity of implementation of school-based prevention and social character and development (SACD) programs. Using a diffusion of innovations framework, the relationships among teacher beliefs and attitudes towards a prevention/SACD program and the influence of a school's administrative support and perceptions of school connectedness, characteristics of a school's climate, were specified in two cross-sectional mediation models of program implementation. Implementation was defined as the amount of the programs' curriculum delivered (e.g., lessons taught), and use of program-specific materials in the classroom (e.g., ICU boxes and notes) and in relation to school-wide activities (e.g., participation in assemblies). Teachers from 10 elementary schools completed year-end process evaluation reports for year 2 (N = 171) and 3 (N = 191) of a multi-year trial. Classroom and school-wide material usage were each favorably associated with the amount of the curriculum delivered, which were associated with teachers' attitudes toward the program which, in turn, were related to teachers' beliefs about SACD. These, in turn, were associated with teachers' perceptions of school climate. Perceptions of school climate were indirectly related to classroom material usage and both indirectly and directly related to the use of school-wide activities. Program developers need to consider the importance of a supportive environment on program implementation and attempt to incorporate models of successful school leadership and collaboration among teachers that foster a climate promoting cohesiveness, shared visions, and support.
Characterizing and Addressing the Need for Statistical Adjustment of Global Climate Model Data
NASA Astrophysics Data System (ADS)
White, K. D.; Baker, B.; Mueller, C.; Villarini, G.; Foley, P.; Friedman, D.
2017-12-01
As part of its mission to research and measure the effects of the changing climate, the U. S. Army Corps of Engineers (USACE) regularly uses the World Climate Research Programme's Coupled Model Intercomparison Project Phase 5 (CMIP5) multi-model dataset. However, these data are generated at a global level and are not fine-tuned for specific watersheds. This often causes CMIP5 output to vary from locally observed patterns in the climate. Several downscaling methods have been developed to increase the resolution of the CMIP5 data and decrease systemic differences to support decision-makers as they evaluate results at the watershed scale. Evaluating preliminary comparisons of observed and projected flow frequency curves over the US revealed a simple framework for water resources decision makers to plan and design water resources management measures under changing conditions using standard tools. Using this framework as a basis, USACE has begun to explore to use of statistical adjustment to alter global climate model data to better match the locally observed patterns while preserving the general structure and behavior of the model data. When paired with careful measurement and hypothesis testing, statistical adjustment can be particularly effective at navigating the compromise between the locally observed patterns and the global climate model structures for decision makers.
Accounting for health in climate change policies: a case study of Fiji.
Morrow, Georgina; Bowen, Kathryn
2014-01-01
Climate change is expected to affect the health of most populations in the coming decades, having the greatest impact on the poorest and most disadvantaged people in the world. The Pacific islands, including Fiji, are particularly vulnerable to the effects of climate change. The three major health impacts of climate change in Fiji explored in this study were dengue fever, diarrhoeal disease, and malnutrition, as they each pose a significant threat to human health. The aim of this study was to investigate to what extent the Fiji National Climate Change Policy, and a selection of relevant sectoral policies, account for these human health effects of climate change. The study employed a three-pronged policy analysis to evaluate: 1) the content of the Fijian National Climate Change Policy and to what extent health was incorporated within this; 2) the context within which the policy was developed; 3) the relevant processes; and 4) the actors involved. A selection of relevant sectoral policies were also analysed to assess the extent to which these included climate change and health considerations. The policy analysis showed that these three health impacts of climate change were only considered to a minor extent, and often indirectly, in both the Fiji National Climate Change Policy and the corresponding National Climate Change Adaptation Strategy, as well as the Public Health Act. Furthermore, supporting documents in relevant sectors including water and agriculture made no mention of climate change and health impacts. The projected health impacts of climate change should be considered as part of reviewing the Fiji National Climate Change Policy and National Climate Change Adaptation Strategy, and the Public Health Act. In the interest of public health, this should include strategies for combating dengue fever, malnutrition, and water-borne disease. Related sectoral policies in water and agriculture should also be revised to consider climate change and its impact on human health. Approaches to include health aspects of climate change within sectoral and climate change specific policies should be encouraged, via a number of mechanisms, such as the Health in All Policies approach. Future research could support the Fiji health sector in developing climate change and health programmes.
A Meta-Analysis of Urban Climate Change Adaptation ...
The concentration of people, infrastructure, and ecosystem services in urban areas make them prime sites for climate change adaptation. While advances have been made in developing frameworks for adaptation planning and identifying both real and potential barriers to action, empirical work evaluating urban adaptation planning processes has been relatively piecemeal. Existing assessments of current experience with urban adaptation provide necessarily broad generalizations based on the available peer-reviewed literature. This paper uses a meta-analysis of U.S. cities’ current experience with urban adaptation planning drawing from 54 sources that include peer-reviewed literature, government reports, white papers, and reports published by non-governmental organizations. The analysis specifically evaluates the institutional support structures being developed for urban climate change adaptation. The results demonstrate that adaptation planning is driven by a desire to reduce vulnerability and often catalyzes new collaborations and coordination mechanisms in urban governance. As a result, building capacity for urban climate change adaptation planning requires a focus not only on city governments themselves but also on the complex horizontal and vertical networks that have arisen around such efforts. Existing adaptation planning often lacks attention to equity issues, social vulnerability, and the influence of non-climatic factors on vulnerability. Engaging city govern
Climate Control Load Reduction Strategies for Electric Drive Vehicles in Warm Weather
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeffers, M. A.; Chaney, L.; Rugh, J. P.
Passenger compartment climate control is one of the largest auxiliary loads on a vehicle. Like conventional vehicles, electric vehicles (EVs) require climate control to maintain occupant comfort and safety, but cabin heating and air conditioning have a negative impact on driving range for all electric vehicles. Range reduction caused by climate control and other factors is a barrier to widespread adoption of EVs. Reducing the thermal loads on the climate control system will extend driving range, thereby reducing consumer range anxiety and increasing the market penetration of EVs. Researchers at the National Renewable Energy Laboratory have investigated strategies for vehiclemore » climate control load reduction, with special attention toward EVs. Outdoor vehicle thermal testing was conducted on two 2012 Ford Focus Electric vehicles to evaluate thermal management strategies for warm weather, including solar load reduction and cabin pre-ventilation. An advanced thermal test manikin was used to assess a zonal approach to climate control. In addition, vehicle thermal analysis was used to support testing by exploring thermal load reduction strategies, evaluating occupant thermal comfort, and calculating EV range impacts. Through stationary cooling tests and vehicle simulations, a zonal cooling configuration demonstrated range improvement of 6%-15%, depending on the drive cycle. A combined cooling configuration that incorporated thermal load reduction and zonal cooling strategies showed up to 33% improvement in EV range.« less
Mass support for global climate agreements depends on institutional design.
Bechtel, Michael M; Scheve, Kenneth F
2013-08-20
Effective climate mitigation requires international cooperation, and these global efforts need broad public support to be sustainable over the long run. We provide estimates of public support for different types of climate agreements in France, Germany, the United Kingdom, and the United States. Using data from a large-scale experimental survey, we explore how three key dimensions of global climate cooperation--costs and distribution, participation, and enforcement--affect individuals' willingness to support these international efforts. We find that design features have significant effects on public support. Specifically, our results indicate that support is higher for global climate agreements that involve lower costs, distribute costs according to prominent fairness principles, encompass more countries, and include a small sanction if a country fails to meet its emissions reduction targets. In contrast to well-documented baseline differences in public support for climate mitigation efforts, opinion responds similarly to changes in climate policy design in all four countries. We also find that the effects of institutional design features can bring about decisive changes in the level of public support for a global climate agreement. Moreover, the results appear consistent with the view that the sensitivity of public support to design features reflects underlying norms of reciprocity and individuals' beliefs about the potential effectiveness of specific agreements.
NASA Astrophysics Data System (ADS)
Swart, R. J.; Pagé, C.
2010-12-01
Until recently, the policy applications of Earth System Models in general and climate models in particular were focusing mainly on the potential future changes in the global and regional climate and attribution of observed changes to anthropogenic activities. Is climate change real? And if so, why do we have to worry about it? Following the broad acceptance of the reality of the risks by the majority of governments, particularly after the publication of IPCC’s 4th Assessment Report and the increasing number of observations of changes in ecological and socio-economic systems that are consistent with the observed climatic changes, governments, companies and other societal groups have started to evaluate their own vulnerability in more detail and to develop adaptation and mitigation strategies. After an early focus on the most vulnerable developing countries, recently, an increasing number of industrialized countries have embarked on the design of adaptation and mitigation plans, or on studies to evaluate the level of climate resilience of their development plans and projects. Which climate data are actually required to effectively support these activities? This paper reports on the efforts of the IS-ENES project, the infrastructure project of the European Network for Earth System Modeling, to address this question. How do we define user needs and can the existing gap between the climate modeling and impact research communities be bridged in support of the ENES long-term strategy? In contrast from the climate modeling community, which has a relatively long history of collaboration facilitated by a relatively uniform subject matter, commonly agreed definitions of key terminology and some level of harmonization of methods, the climate change impacts research community is very diverse and fragmented, using a wide variety of data sources, methods and tools. An additional complicating factor is that researchers working on adaptation usually closely collaborate with non-scientific stakeholders in government, civil society and the private sector, in a context which is different in many European countries. In the IS-ENES effort, a dialogue is set up between the communities in Europe, building on various existing research networks in the area of climate change impacts, vulnerability and adaptation. Generally, the data needs have not been well articulated. If asked, people working on impacts and adaptation routinely seem to ask for data with the highest possible resolution. However, in reality for many impact and adaptation applications this is not needed, and the large resulting data sets may exceed the analytical capacity of the impact researchers. For impact analysis often various types of climate indices, derived from primary climate model output variables, are required, including indices for extremes and in probabilistic format. Rather than making output from climate modeling generically available, e.g. through a climate service e-portal, context-specific tailoring of information for specific applications is important for effective use. This may require some level of interaction between the users and the data providers, dependent on the specific questions to be addressed.
NASA Astrophysics Data System (ADS)
Hestness, Emily; Randy McGinnis, J.; Riedinger, Kelly; Marbach-Ad, Gili
2011-06-01
We investigated the inclusion of a curricular module on global climate change in an Elementary Science Methods course. Using complementary research methods, we analyzed findings from 63 teacher candidates' drawings, questionnaires, and journal entries collected throughout their participation in the module. We highlighted three focal cases to illustrate the diversity of participants' experiences. Findings suggest potential positive impacts on teacher candidates' content understanding related to global climate change, confidence to teach, and awareness of resources to support their future science instruction. Recommendations for science teacher education underscore the importance of providing opportunities for teacher candidates to increase their relevant content understanding, helping teacher candidates become familiar with appropriate curricular resources, and engaging in ongoing conversation and evaluation of developing views and understandings related to global climate change.
A Case Study: Climate Change Decision Support for the Apalachicola, Chattahoochee, Flint Basins
NASA Astrophysics Data System (ADS)
Day, G. N.; McMahon, G.; Friesen, N.; Carney, S.
2011-12-01
Riverside Technology, inc. has developed a Climate Change Decision Support System (DSS) to provide water managers with a tool to explore a range of current Global Climate Model (GCM) projections to evaluate their potential impacts on streamflow and the reliability of future water supplies. The system was developed as part of a National Oceanic and Atmospheric Administration (NOAA) Small Business Innovation Research (SBIR) project. The DSS uses downscaled GCM data as input to small-scale watershed models to produce time series of projected undepleted streamflow for various emission scenarios and GCM simulations. Until recently, water managers relied on historical streamflow data for water resources planning. In many parts of the country, great effort has been put into estimating long-term historical undepleted streamflow accounting for regulation, diversions, and return flows to support planning and water rights administration. In some cases, longer flow records have been constructed using paleohydrologic data in an attempt to capture climate variability beyond what is evident during the observed historical record. Now, many water managers are recognizing that historical data may not be representative of an uncertain climate future, and they have begun to explore the use of climate projections in their water resources planning. The Climate Change DSS was developed to support water managers in planning by accounting for both climate variability and potential climate change. In order to use the information for impact analysis, the projected streamflow time series can be exported and substituted for the historical streamflow data traditionally applied in their system operations models for water supply planning. This paper presents a case study in which climate-adjusted flows are coupled with the U.S. Army Corps of Engineers (USACE) ResSim model for the Apalachicola, Chattahoochee, and Flint (ACF) River basins. The study demonstrates how climate scenarios can be used with existing or proposed operating rules to explore the range of potential climate impacts on lake levels, drought trigger frequency, hydropower generation, and low-flow statistics. Initial system implementation of the Climate Change DSS was focused in the State of Colorado working with water supply agencies in the Front Range to assess local water supply vulnerability to climate change. To facilitate national implementation, the system capitalizes on National Weather Service (NWS) watershed models currently used for operational river forecasting. These models are well calibrated and available for the entire country. The system has been extended to include the ACF and the Sacramento River basins because of the importance of the water resources in these basins. Plans are now being made to expand coverage to include the Baltimore-Washington, D.C. water supply area. The DSS is operational and publicly available (www.climatechangedss.com).
NASA Astrophysics Data System (ADS)
Baek, J.
2012-12-01
Federal science mission agencies are under increased pressure to ensure that their STEM education investments accomplish several objectives, including the identification and use of evidence-based approaches. Climate change education and climate literacy programs fall under these broader STEM initiatives. This paper is designed as a primer for climate change education evaluators and researchers to understand the policy context on the use of evidence. Recent initiatives, that include the National Science Foundation (NSF), the National Aeronautics and Space Administration (NASA), the National Oceanic and Atmospheric Administration (NOAA), point to a need for shared goals and measurements amongst the climate change education community. The Tri-agency Climate Change Education (CCE) collaboration, which includes NSF, NASA, and NOAA, developed the Tri-Agency Climate Change Education Common Evaluation Framework Initiative Stakeholder Statement (2012). An excerpt: From the perspective of the tri-agency collaboration, and its individual agency members, the goal of the common framework is not to build a required evaluation scheme or a set of new requirements for our funded climate change education initiatives. Rather, the collaboration would be strengthened by the development of a framework that includes tools, instruments, and/or documentation to: ● Help the agencies see and articulate the relationships between the individual pieces of the tri-agency CCE portfolio; ● Guide the agencies in reporting on the progress, lessons learned, and impacts of the collaboration between the three agencies in developing a coordinated portfolio of climate education initiatives; and ● Help the individual projects, as part of this broader portfolio, understand where they fit into a larger picture. The accomplishments of this initiative to date have been based on the collaborative nature of evaluators the climate change education community within the tri-agency portfolio. While this effort has provided some shared understanding and general guidance, there is still a lack of guidance to make decisions at any level of the community. A recent memorandum from the Office of Management and Budget provides more specific guidance around the generation and utilization of evidence. For example, the amount of funding awarded through grants should be weighted by the level of the evidence supporting a proposed project. As the field of climate change education establishes an evidence base, study designs should address a greater number of internal validity threats through comparison groups and reliable common measures. In addition, OMB invites agencies to develop systematic measurement of costs and costs per outcome. A growing evidence base, one that includes data that includes costs and even monetizes benefits, can inform decisions based on the strongest returns on investments within a portfolio. This paper will provide examples from NOAA's Monitoring and Evaluation Framework Implementation project that illustrate how NOAA is facing these challenges. This is intended to inform climate change educators, evaluators, and researchers in ways to integrate evaluation into the management of their programs while providing insight across the portfolio.
NASA Astrophysics Data System (ADS)
Groves, David G.; Yates, David; Tebaldi, Claudia
2008-12-01
Climate change may impact water resources management conditions in difficult-to-predict ways. A key challenge for water managers is how to incorporate highly uncertain information about potential climate change from global models into local- and regional-scale water management models and tools to support local planning. This paper presents a new method for developing large ensembles of local daily weather that reflect a wide range of plausible future climate change scenarios while preserving many statistical properties of local historical weather patterns. This method is demonstrated by evaluating the possible impact of climate change on the Inland Empire Utilities Agency service area in southern California. The analysis shows that climate change could impact the region, increasing outdoor water demand by up to 10% by 2040, decreasing local water supply by up to 40% by 2040, and decreasing sustainable groundwater yields by up to 15% by 2040. The range of plausible climate projections suggests the need for the region to augment its long-range water management plans to reduce its vulnerability to climate change.
Ecosystem vulnerability to climate change in the southeastern United States
Cartwright, Jennifer M.; Costanza, Jennifer
2016-08-11
Two recent investigations of climate-change vulnerability for 19 terrestrial, aquatic, riparian, and coastal ecosystems of the southeastern United States have identified a number of important considerations, including potential for changes in hydrology, disturbance regimes, and interspecies interactions. Complementary approaches using geospatial analysis and literature synthesis integrated information on ecosystem biogeography and biodiversity, climate projections, vegetation dynamics, soil and water characteristics, anthropogenic threats, conservation status, sea-level rise, and coastal flooding impacts. Across a diverse set of ecosystems—ranging in size from dozens of square meters to thousands of square kilometers—quantitative and qualitative assessments identified types of climate-change exposure, evaluated sensitivity, and explored potential adaptive capacity. These analyses highlighted key gaps in scientific understanding and suggested priorities for future research. Together, these studies help create a foundation for ecosystem-level analysis of climate-change vulnerability to support effective biodiversity conservation in the southeastern United States.
NASA Astrophysics Data System (ADS)
Delbari, Masoomeh; Sharifazari, Salman; Mohammadi, Ehsan
2018-02-01
The knowledge of soil temperature at different depths is important for agricultural industry and for understanding climate change. The aim of this study is to evaluate the performance of a support vector regression (SVR)-based model in estimating daily soil temperature at 10, 30 and 100 cm depth at different climate conditions over Iran. The obtained results were compared to those obtained from a more classical multiple linear regression (MLR) model. The correlation sensitivity for the input combinations and periodicity effect were also investigated. Climatic data used as inputs to the models were minimum and maximum air temperature, solar radiation, relative humidity, dew point, and the atmospheric pressure (reduced to see level), collected from five synoptic stations Kerman, Ahvaz, Tabriz, Saghez, and Rasht located respectively in the hyper-arid, arid, semi-arid, Mediterranean, and hyper-humid climate conditions. According to the results, the performance of both MLR and SVR models was quite well at surface layer, i.e., 10-cm depth. However, SVR performed better than MLR in estimating soil temperature at deeper layers especially 100 cm depth. Moreover, both models performed better in humid climate condition than arid and hyper-arid areas. Further, adding a periodicity component into the modeling process considerably improved the models' performance especially in the case of SVR.
Riding the Wave: Reconciling the Roles of Disease and Climate Change in Amphibian Declines
Lips, Karen R; Diffendorfer, Jay; Mendelson, Joseph R; Sears, Michael W
2008-01-01
We review the evidence for the role of climate change in triggering disease outbreaks of chytridiomycosis, an emerging infectious disease of amphibians. Both climatic anomalies and disease-related extirpations are recent phenomena, and effects of both are especially noticeable at high elevations in tropical areas, making it difficult to determine whether they are operating separately or synergistically. We compiled reports of amphibian declines from Lower Central America and Andean South America to create maps and statistical models to test our hypothesis of spatiotemporal spread of the pathogen Batrachochytrium dendrobatidis (Bd), and to update the elevational patterns of decline in frogs belonging to the genus Atelopus. We evaluated claims of climate change influencing the spread of Bd by including error into estimates of the relationship between air temperature and last year observed. Available data support the hypothesis of multiple introductions of this invasive pathogen into South America and subsequent spread along the primary Andean cordilleras. Additional analyses found no evidence to support the hypothesis that climate change has been driving outbreaks of amphibian chytridiomycosis, as has been posited in the climate-linked epidemic hypothesis. Future studies should increase retrospective surveys of museum specimens from throughout the Andes and should study the landscape genetics of Bd to map fine-scale patterns of geographic spread to identify transmission routes and processes. PMID:18366257
Riding the wave: reconciling the roles of disease and climate change in amphibian declines.
Lips, Karen R; Diffendorfer, Jay; Mendelson, Joseph R; Sears, Michael W
2008-03-25
We review the evidence for the role of climate change in triggering disease outbreaks of chytridiomycosis, an emerging infectious disease of amphibians. Both climatic anomalies and disease-related extirpations are recent phenomena, and effects of both are especially noticeable at high elevations in tropical areas, making it difficult to determine whether they are operating separately or synergistically. We compiled reports of amphibian declines from Lower Central America and Andean South America to create maps and statistical models to test our hypothesis of spatiotemporal spread of the pathogen Batrachochytrium dendrobatidis (Bd), and to update the elevational patterns of decline in frogs belonging to the genus Atelopus. We evaluated claims of climate change influencing the spread of Bd by including error into estimates of the relationship between air temperature and last year observed. Available data support the hypothesis of multiple introductions of this invasive pathogen into South America and subsequent spread along the primary Andean cordilleras. Additional analyses found no evidence to support the hypothesis that climate change has been driving outbreaks of amphibian chytridiomycosis, as has been posited in the climate-linked epidemic hypothesis. Future studies should increase retrospective surveys of museum specimens from throughout the Andes and should study the landscape genetics of Bd to map fine-scale patterns of geographic spread to identify transmission routes and processes.
Climate Change Impact Assessment of Food- and Waterborne Diseases.
Semenza, Jan C; Herbst, Susanne; Rechenburg, Andrea; Suk, Jonathan E; Höser, Christoph; Schreiber, Christiane; Kistemann, Thomas
2012-04-01
The PubMed and ScienceDirect bibliographic databases were searched for the period of 1998-2009 to evaluate the impact of climatic and environmental determinants on food- and waterborne diseases. The authors assessed 1,642 short and concise sentences (key facts), which were extracted from 722 relevant articles and stored in a climate change knowledge base. Key facts pertaining to temperature, precipitation, water, and food for 6 selected pathogens were scrutinized, evaluated, and compiled according to exposure pathways. These key facts (corresponding to approximately 50,000 words) were mapped to 275 terminology terms identified in the literature, which generated 6,341 connections. These relationships were plotted on semantic network maps to examine the interconnections between variables. The risk of campylobacteriosis is associated with mean weekly temperatures, although this link is shown more strongly in the literature relating to salmonellosis. Irregular and severe rain events are associated with Cryptosporidium sp. outbreaks, while noncholera Vibrio sp. displays increased growth rates in coastal waters during hot summers. In contrast, for Norovirus and Listeria sp. the association with climatic variables was relatively weak, but much stronger for food determinants. Electronic data mining to assess the impact of climate change on food- and waterborne diseases assured a methodical appraisal of the field. This climate change knowledge base can support national climate change vulnerability, impact, and adaptation assessments and facilitate the management of future threats from infectious diseases. In the light of diminishing resources for public health this approach can help balance different climate change adaptation options.
Climate Change Impact Assessment of Food- and Waterborne Diseases
Semenza, Jan C.; Herbst, Susanne; Rechenburg, Andrea; Suk, Jonathan E.; Höser, Christoph; Schreiber, Christiane; Kistemann, Thomas
2011-01-01
The PubMed and ScienceDirect bibliographic databases were searched for the period of 1998–2009 to evaluate the impact of climatic and environmental determinants on food- and waterborne diseases. The authors assessed 1,642 short and concise sentences (key facts), which were extracted from 722 relevant articles and stored in a climate change knowledge base. Key facts pertaining to temperature, precipitation, water, and food for 6 selected pathogens were scrutinized, evaluated, and compiled according to exposure pathways. These key facts (corresponding to approximately 50,000 words) were mapped to 275 terminology terms identified in the literature, which generated 6,341 connections. These relationships were plotted on semantic network maps to examine the interconnections between variables. The risk of campylobacteriosis is associated with mean weekly temperatures, although this link is shown more strongly in the literature relating to salmonellosis. Irregular and severe rain events are associated with Cryptosporidium sp. outbreaks, while noncholera Vibrio sp. displays increased growth rates in coastal waters during hot summers. In contrast, for Norovirus and Listeria sp. the association with climatic variables was relatively weak, but much stronger for food determinants. Electronic data mining to assess the impact of climate change on food- and waterborne diseases assured a methodical appraisal of the field. This climate change knowledge base can support national climate change vulnerability, impact, and adaptation assessments and facilitate the management of future threats from infectious diseases. In the light of diminishing resources for public health this approach can help balance different climate change adaptation options. PMID:24808720
NASA Technical Reports Server (NTRS)
Glotter, Michael J.; Ruane, Alex C.; Moyer, Elisabeth J.; Elliott, Joshua W.
2015-01-01
Projections of future food production necessarily rely on models, which must themselves be validated through historical assessments comparing modeled and observed yields. Reliable historical validation requires both accurate agricultural models and accurate climate inputs. Problems with either may compromise the validation exercise. Previous studies have compared the effects of different climate inputs on agricultural projections but either incompletely or without a ground truth of observed yields that would allow distinguishing errors due to climate inputs from those intrinsic to the crop model. This study is a systematic evaluation of the reliability of a widely used crop model for simulating U.S. maize yields when driven by multiple observational data products. The parallelized Decision Support System for Agrotechnology Transfer (pDSSAT) is driven with climate inputs from multiple sources reanalysis, reanalysis that is bias corrected with observed climate, and a control dataset and compared with observed historical yields. The simulations show that model output is more accurate when driven by any observation-based precipitation product than when driven by non-bias-corrected reanalysis. The simulations also suggest, in contrast to previous studies, that biased precipitation distribution is significant for yields only in arid regions. Some issues persist for all choices of climate inputs: crop yields appear to be oversensitive to precipitation fluctuations but under sensitive to floods and heat waves. These results suggest that the most important issue for agricultural projections may be not climate inputs but structural limitations in the crop models themselves.
Evaluating the sensitivity of agricultural model performance to different climate inputs
Glotter, Michael J.; Moyer, Elisabeth J.; Ruane, Alex C.; Elliott, Joshua W.
2017-01-01
Projections of future food production necessarily rely on models, which must themselves be validated through historical assessments comparing modeled to observed yields. Reliable historical validation requires both accurate agricultural models and accurate climate inputs. Problems with either may compromise the validation exercise. Previous studies have compared the effects of different climate inputs on agricultural projections, but either incompletely or without a ground truth of observed yields that would allow distinguishing errors due to climate inputs from those intrinsic to the crop model. This study is a systematic evaluation of the reliability of a widely-used crop model for simulating U.S. maize yields when driven by multiple observational data products. The parallelized Decision Support System for Agrotechnology Transfer (pDSSAT) is driven with climate inputs from multiple sources – reanalysis, reanalysis bias-corrected with observed climate, and a control dataset – and compared to observed historical yields. The simulations show that model output is more accurate when driven by any observation-based precipitation product than when driven by un-bias-corrected reanalysis. The simulations also suggest, in contrast to previous studies, that biased precipitation distribution is significant for yields only in arid regions. However, some issues persist for all choices of climate inputs: crop yields appear oversensitive to precipitation fluctuations but undersensitive to floods and heat waves. These results suggest that the most important issue for agricultural projections may be not climate inputs but structural limitations in the crop models themselves. PMID:29097985
Climate Literacy in the Classroom: Supporting Teachers in the Transition to NGSS
NASA Astrophysics Data System (ADS)
Rogers, M. J. B.; Merrill, J.; Harcourt, P.; Petrone, C.; Shea, N.; Mead, H.
2014-12-01
Meeting the challenge of climate change will clearly require 'deep learning' - learning that motivates a search for underlying meaning, a willingness to exert the sustained effort needed to understand complex problems, and innovative problem-solving. This type of learning is dependent on the level of the learner's engagement with the material, their intrinsic motivation to learn, intention to understand, and relevance of the material to the learner. Here, we present evidence for deep learning about climate change through a simulation-based role-playing exercise, World Climate. The exercise puts participants into the roles of delegates to the United Nations climate negotiations and asks them to create an international climate deal. They find out the implications of their decisions, according to the best available science, through the same decision-support computer simulation used to provide feedback for the real-world negotiations, C-ROADS. World Climate provides an opportunity for participants have an immersive, social experience in which they learn first-hand about both the social dynamics of climate change decision-making, through role-play, and the dynamics of the climate system, through an interactive computer simulation. Evaluation results so far have shown that the exercise is highly engaging and memorable and that it motivates large majorities of participants (>70%) to take action on climate change. In addition, we have found that it leads to substantial gains in understanding key systems thinking concepts (e.g., the stock-flow behavior of atmospheric CO2), as well as improvements in understanding of climate change causes and impacts. While research is still needed to better understand the impacts of simulation-based role-playing exercises like World Climate on behavior change, long-term understanding, transfer of systems thinking skills across topics, and the importance of social learning during the exercise, our results to date indicate that it is a powerful, active learning tool that has strong potential to foster deep learning about climate change.
National K-12 Educator Conference; "Earth Then, Earth Now: Our Changing Climate" (July 23-24, 2008)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flammer, Karen; O'Shaughnessy, Tam
With the support of the Department of Energy, the National Science Teachers Association and the National Oceanic and Atmospheric Administration, Imaginary Lines Inc. (dba Sally Ride Science) delivered a highly successful 2-day conference to 165 K-12 educators on climate change. The event took place on July 23rd and 24th, 2008 at the NOAA facility in Silver Spring, MD. The conference celebrated the 25th anniversary of Dr. Sally Ride’s first flight into space in 1983 and examined how our understanding of Earth has changed in those 25 years. One the first day of the conference, participants heard a keynote talk deliveredmore » by Dr. Sally Ride, followed by presentations by well-known climate change scientists: Dr. Richard Somerville, Dr. Inez Fung and Dr. Susan Solomon. These sessions were concurrently webcast and made available to educators who were unable to attend the conference. On the second day of the conference, participants attended breakout sessions where they performed climate change activities (e.g. “Neato Albedo!”, “Greenhouse in a Bottle”, “Shell-Shocked”) that they could take back to their classrooms. Additional break-out sessions on using remote sensing images to illustrate climate change effects on Earth’s surface and how to address the climate change debate, were also offered. During lunch, participants attended an Educator Street Fair and had the opportunity to interact with representatives from NOAA, NASA, the EPA, NEEF and the JASON project. A follow-up evaluation survey was administered to all conference attendees immediately following the conference to evaluate its effectiveness. The results of this survey were overwhelmingly positive. The conference materials: presentation Power Points, workshop handouts and activities were available for teachers to download after the conference from the Sally Ride Science website. In summary, the approximately $55K support for the Department of Energy was used to help plan, deliver and evaluate the “Earth Then, Earth Now: Our Changing Climate”, conference which took place on July 23rd and 24th, 2008 at the NOAA facility in Silver Spring, MD.« less
An evidence-based public health approach to climate change adaptation.
Hess, Jeremy J; Eidson, Millicent; Tlumak, Jennifer E; Raab, Kristin K; Luber, George
2014-11-01
Public health is committed to evidence-based practice, yet there has been minimal discussion of how to apply an evidence-based practice framework to climate change adaptation. Our goal was to review the literature on evidence-based public health (EBPH), to determine whether it can be applied to climate change adaptation, and to consider how emphasizing evidence-based practice may influence research and practice decisions related to public health adaptation to climate change. We conducted a substantive review of EBPH, identified a consensus EBPH framework, and modified it to support an EBPH approach to climate change adaptation. We applied the framework to an example and considered implications for stakeholders. A modified EBPH framework can accommodate the wide range of exposures, outcomes, and modes of inquiry associated with climate change adaptation and the variety of settings in which adaptation activities will be pursued. Several factors currently limit application of the framework, including a lack of higher-level evidence of intervention efficacy and a lack of guidelines for reporting climate change health impact projections. To enhance the evidence base, there must be increased attention to designing, evaluating, and reporting adaptation interventions; standardized health impact projection reporting; and increased attention to knowledge translation. This approach has implications for funders, researchers, journal editors, practitioners, and policy makers. The current approach to EBPH can, with modifications, support climate change adaptation activities, but there is little evidence regarding interventions and knowledge translation, and guidelines for projecting health impacts are lacking. Realizing the goal of an evidence-based approach will require systematic, coordinated efforts among various stakeholders.
Real-time decision support systems: the famine early warning system network
Funk, Christopher C.; Verdin, James P.
2010-01-01
A multi-institutional partnership, the US Agency for International Development’s Famine Early Warning System Network (FEWS NET) provides routine monitoring of climatic, agricultural, market, and socioeconomic conditions in over 20 countries. FEWS NET supports and informs disaster relief decisions that impact millions of people and involve billions of dollars. In this chapter, we focus on some of FEWS NET’s hydrologic monitoring tools, with a specific emphasis on combining “low frequency” and “high frequency” assessment tools. Low frequency assessment tools, tied to water and food balance estimates, enable us to evaluate and map long-term tendencies in food security. High frequency assessments are supported by agrohydrologic models driven by satellite rainfall estimates, such as the Water Requirement Satisfaction Index (WRSI). Focusing on eastern Africa, we suggest that both these high and low frequency approaches are necessary to capture the interaction of slow variations in vulnerability and the relatively rapid onset of climatic shocks.
NASA Astrophysics Data System (ADS)
Valentin, M. M.; Hay, L.; Van Beusekom, A. E.; Viger, R. J.; Hogue, T. S.
2016-12-01
Forecasting the hydrologic response to climate change in Alaska's glaciated watersheds remains daunting for hydrologists due to sparse field data and few modeling tools, which frustrates efforts to manage and protect critical aquatic habitat. Approximately 20% of the 64,000 square kilometer Copper River watershed is glaciated, and its glacier-fed tributaries support renowned salmon fisheries that are economically, culturally, and nutritionally invaluable to the local communities. This study adapts a simple, yet powerful, conceptual hydrologic model to simulate changes in the timing and volume of streamflow in the Copper River, Alaska as glaciers change under plausible future climate scenarios. The USGS monthly water balance model (MWBM), a hydrologic tool used for two decades to evaluate a broad range of hydrologic questions in the contiguous U.S., was enhanced to include glacier melt simulations and remotely sensed data. In this presentation we summarize the technical details behind our MWBM adaptation and demonstrate its use in the Copper River Basin to evaluate glacier and streamflow responses to climate change.
Havermans, Bo M; Boot, Cécile R L; Houtman, Irene L D; Brouwers, Evelien P M; Anema, Johannes R; van der Beek, Allard J
2017-06-08
Health care workers are exposed to psychosocial work factors. Autonomy and social support are psychosocial work factors that are related to stress, and are argued to largely result from the psychosocial safety climate within organisations. This study aimed to assess to what extent the relation between psychosocial safety climate and stress in health care workers can be explained by autonomy and social support. In a cross-sectional study, psychosocial safety climate, stress, autonomy, co-worker support, and supervisor support were assessed using questionnaires, in a sample of health care workers (N = 277). Linear mixed models analyses were performed to assess to what extent social support and autonomy explained the relation between psychosocial safety climate and stress. A lower psychosocial safety climate score was associated with significantly higher stress (B = -0.21, 95% CI = -0.27 - -0.14). Neither co-worker support, supervisor support, nor autonomy explained the relation between psychosocial safety climate and stress. Taken together, autonomy and both social support measures diminished the relation between psychosocial safety climate and stress by 12% (full model: B = -0.18, 95% CI = -0.25 - -0.11). Autonomy and social support together seemed to bring about a small decrease in the relation between psychosocial safety climate and stress in health care workers. Future research should discern whether other psychosocial work factors explain a larger portion of this relation. This study was registered in the Netherlands National Trial Register, trial code: NTR5527 .
NASA Astrophysics Data System (ADS)
Bhave, Ajay; Dessai, Suraje; Conway, Declan; Stainforth, David
2016-04-01
Deep uncertainty in future climate change and socio-economic conditions necessitates the use of assess-risk-of-policy approaches over predict-then-act approaches for adaptation decision making. Robust Decision Making (RDM) approaches embody this principle and help evaluate the ability of adaptation options to satisfy stakeholder preferences under wide-ranging future conditions. This study involves the simultaneous application of two RDM approaches; qualitative and quantitative, in the Cauvery River Basin in Karnataka (population ~23 million), India. The study aims to (a) determine robust water resources adaptation options for the 2030s and 2050s and (b) compare the usefulness of a qualitative stakeholder-driven approach with a quantitative modelling approach. For developing a large set of future scenarios a combination of climate narratives and socio-economic narratives was used. Using structured expert elicitation with a group of climate experts in the Indian Summer Monsoon, climatic narratives were developed. Socio-economic narratives were developed to reflect potential future urban and agricultural water demand. In the qualitative RDM approach, a stakeholder workshop helped elicit key vulnerabilities, water resources adaptation options and performance criteria for evaluating options. During a second workshop, stakeholders discussed and evaluated adaptation options against the performance criteria for a large number of scenarios of climatic and socio-economic change in the basin. In the quantitative RDM approach, a Water Evaluation And Planning (WEAP) model was forced by precipitation and evapotranspiration data, coherent with the climatic narratives, together with water demand data based on socio-economic narratives. We find that compared to business-as-usual conditions options addressing urban water demand satisfy performance criteria across scenarios and provide co-benefits like energy savings and reduction in groundwater depletion, while options reducing agricultural water demand significantly affect downstream water availability. Water demand options demonstrate potential to improve environmental flow conditions and satisfy legal water supply requirements for downstream riparian states. On the other hand, currently planned large scale infrastructural projects demonstrate reduced value in certain scenarios, illustrating the impacts of lock-in effects of large scale infrastructure. From a methodological perspective, we find that while the stakeholder-driven approach revealed robust options in a resource-light manner and helped initiate much needed interaction amongst stakeholders, the modelling approach provides complementary quantitative information. The study reveals robust adaptation options for this important basin and provides a strong methodological basis for carrying out future studies that support adaptation decision making.
NASA Astrophysics Data System (ADS)
Tian, B.
2017-12-01
The Coupled Model Intercomparison Project (CMIP) has become a central element of national and international assessments of climate change. The CMIP Phase 6 (CMIP6) model experiments will be the foundation for the Intergovernmental Panel on Climate Change (IPCC) Sixth Assessment Report (AR6), scheduled for publication around 2021. To increase the fidelity of the IPCC AR6, the CMIP6 model experiments need rigorous evaluation. The "Observations for Model Intercomparison Projects" (Obs4MIPs) collects, organizes and publishes various well-established satellite data sets for CMIP model evaluation. The Atmospheric Infrared Sounder (AIRS) and Advanced Microwave Sounding Unit (AMSU), the NASA's temperature and humidity sounding system on the Aqua satellite, has provided over a decade-long high-quality tropospheric temperature and moisture sounding data. Under the current support of the NASA Data for Operation and Assessment (NDOA) program, we are generating and publishing the AIRS Obs4MIPs V2 data set including the monthly mean tropospheric air temperature, specific humidity, and relative humidity profiles from September 2002 to September 2016. This will provide the latest AIRS data in Obs4MIPs and assist the climate modeling community to better use the AIRS data for CMIP (including CMIP3, CMIP5, and CMIP6) model evaluation. In this presentation, we will discuss the AIRS Obs4MIPs V2 data set and their possible use for CMIP6 climate model evaluation.
NASA Astrophysics Data System (ADS)
Lombardi, D.
2011-12-01
Plausibility judgments-although well represented in conceptual change theories (see, for example, Chi, 2005; diSessa, 1993; Dole & Sinatra, 1998; Posner et al., 1982)-have received little empirical attention until our recent work investigating teachers' and students' understanding of and perceptions about human-induced climate change (Lombardi & Sinatra, 2010, 2011). In our first study with undergraduate students, we found that greater plausibility perceptions of human-induced climate accounted for significantly greater understanding of weather and climate distinctions after instruction, even after accounting for students' prior knowledge (Lombardi & Sinatra, 2010). In a follow-up study with inservice science and preservice elementary teachers, we showed that anger about the topic of climate change and teaching about climate change was significantly related to implausible perceptions about human-induced climate change (Lombardi & Sinatra, 2011). Results from our recent studies helped to inform our development of a model of the role of plausibility judgments in conceptual change situations. The model applies to situations involving cognitive dissonance, where background knowledge conflicts with an incoming message. In such situations, we define plausibility as a judgment on the relative potential truthfulness of incoming information compared to one's existing mental representations (Rescher, 1976). Students may not consciously think when making plausibility judgments, expending only minimal mental effort in what is referred to as an automatic cognitive process (Stanovich, 2009). However, well-designed instruction could facilitate students' reappraisal of plausibility judgments in more effortful and conscious cognitive processing. Critical evaluation specifically may be one effective method to promote plausibility reappraisal in a classroom setting (Lombardi & Sinatra, in progress). In science education, critical evaluation involves the analysis of how evidentiary data support a hypothesis and its alternatives. The presentation will focus on how instruction promoting critical evaluation can encourage individuals to reappraise their plausibility judgments and initiate knowledge reconstruction. In a recent pilot study, teachers experienced an instructional scaffold promoting critical evaluation of two competing climate change theories (i.e., human-induced and increasing solar irradiance) and significantly changed both their plausibility judgments and perceptions of correctness toward the scientifically-accepted model of human-induced climate change. A comparison group of teachers who did not experience the critical evaluation activity showed no significant change. The implications of these studies for future research and instruction will be discussed in the presentation, including effective ways to increase students' and teachers' ability to be critically evaluative and reappraise their plausibility judgments. With controversial science issues, such as climate change, such abilities may be necessary to facilitate conceptual change.
"It Takes a Network": Building National Capacity for Climate Change Interpretation
NASA Astrophysics Data System (ADS)
Spitzer, W.
2014-12-01
Since 2007, the New England Aquarium has led a national effort to increase the capacity of informal science venues to effectively communicate about climate change. We are now leading the NSF-funded National Network for Ocean and Climate Change Interpretation (NNOCCI), partnering with the Association of Zoos and Aquariums, FrameWorks Institute, Woods Hole Oceanographic Institution, Monterey Bay Aquarium, and National Aquarium, with evaluation conducted by the New Knowledge Organization, Pennsylvania State University, and Ohio State University. More than 1,500 informal science venues (science centers, museums, aquariums, zoos, nature centers, national parks) are visited annually by 61% of the U.S. population. These visitors expect reliable information about environmental issues and solutions. NNOCCI enables teams of informal science interpreters across the country to serve as "communication strategists" - beyond merely conveying information they can influence public perceptions, given their high level of commitment, knowledge, public trust, social networks, and visitor contact. Beyond providing in-depth training, we have found that our "alumni network" is assuming an increasingly important role in achieving our goals: 1. Ongoing learning - Training must be ongoing given continuous advances in climate and social science research. 2. Implementation support - Social support is critical as interpreters move from learning to practice, given complex and potentially contentious subject matter. 3. Leadership development - We rely on a national cadre of interpretive leaders to conduct workshops, facilitate study circle trainings, and support alumni. 4. Coalition building - A peer network helps to build and maintain connections with colleagues, and supports further dissemination through the informal science community. We are experimenting with a variety of online and face to face strategies to support the growing alumni network. Our goals are to achieve a systemic national impact, embed our work within multiple ongoing regional and national climate change education networks, and leave an enduring legacy.
NASA Astrophysics Data System (ADS)
Portlock, J.; Laird, H.
2015-12-01
Communitopia, a 501(c)3 organization, uses humor, new media, and the short video format to engage and empower audiences and improve climate literacy. Our main project, the Don't Just Sit There - Do Something! video series (http://djst.tv), takes the complex subject of climate science, breaks it down into digestible nuggets of short, funny video, and couples it with easy actions viewers can take to make a difference. The series has 25 episodes so far, and more than 80,000 views on YouTube. We are reaching our target audience of high-school-age and adult viewers in the United States (94% of viewers are known to fit this demographic). Don't Just Sit There - Do Something! uses a strategic model for breaking through the fear and dread around climate change in the general population. It uses humor, positivity and brevity to frame the issue, and gives the audience simple actions designed to empower in each self-contained episode. We approach each piece of the climate puzzle with scientific rigor, and cite all our sources. Our approach is light-hearted and fun, because it is a more productive way to have a conversation about tough issues than scolding and guilt. The series is ongoing, and we are always focused on climate change. To determine the efficacy of our approach and efforts, we measure video views and other metrics through our YouTube channel, compile feedback and comments through YouTube and other social media outlets, and track actions taken through web metrics (click-through rates). We are also currently working with the Behavioral and Community Health Sciences Department at the University of Pittsburgh Graduate School of Public Health to evaluate the videos' impact. From August-October 2015, we are using an online survey to evaluate the Don't Just Sit There - Do Something! series. We will assess viewers' climate change education and awareness, commitment to support action steps that alleviate climate change, and inclination to support policy action before and after watching. Where possible, we have aligned survey questions with those of other groups, such as the Yale Project on Climate Change Communication, to better assess our survey population vs. the general population. We will share data about the benefits of using this novel approach for climate change communication.
Manser, Tanja; Brösterhaus, Mareen; Hammer, Antje
2016-01-01
Safety climate measurement is a key input into safety culture development. The aim of this review is to provide an overview of the safety climate measures that have been evaluated for their psychometric properties in a German-speaking country and to make recommendations on how to use them in quality and patient safety improvement. A systematic search strategy was implemented to obtain relevant articles. PubMed and Web of Science databases were searched, and 128 abstracts were identified. After application of limits, 33 full texts were retrieved for subsequent evaluation. Studies were included on the basis of predetermined inclusion criteria and independent assessment by two reviewers. Publications were reviewed concerning healthcare setting, target group, safety culture dimensions covered and results of their psychometric evaluation. This review identified 11 instruments for safety climate assessment in different healthcare settings (i. e. hospitals, nursing homes, primary care, dental care and community pharmacy) for which acceptable to good internal consistency was reported. We observed wide variability concerning the number of dimensions (1 to 14; in some cases including outcome dimensions) and items (9 to 128) that the instruments were comprised of. Nevertheless, consistency with regard to the thematic areas covered was rather high. While there is clear evidence that we can assess safety climate in healthcare, the application of safety climate measures by quality and patient safety practitioners has so far been rather limited. This review bridges this gap between research and improvement practice by highlighting the central role of safety climate assessment in a mixed methods approach to inform safety culture development. Copyright © 2016. Published by Elsevier GmbH.
NASA Astrophysics Data System (ADS)
Dixon, K. W.; Balaji, V.; Lanzante, J.; Radhakrishnan, A.; Hayhoe, K.; Stoner, A. K.; Gaitan, C. F.
2013-12-01
Statistical downscaling (SD) methods may be viewed as generating a value-added product - a refinement of global climate model (GCM) output designed to add finer scale detail and to address GCM shortcomings via a process that gleans information from a combination of observations and GCM-simulated climate change responses. Making use of observational data sets and GCM simulations representing the same historical period, cross-validation techniques allow one to assess how well an SD method meets this goal. However, lacking observations of future, the extent to which a particular SD method's skill might degrade when applied to future climate projections cannot be assessed in the same manner. Here we illustrate and describe extensions to a 'perfect model' experimental design that seeks to quantify aspects of SD method performance both for a historical period (1979-2008) and for late 21st century climate projections. Examples highlighting cases in which downscaling performance deteriorates in future climate projections will be discussed. Also, results will be presented showing how synthetic datasets having known statistical properties may be used to further isolate factors responsible for degradations in SD method skill under changing climatic conditions. We will describe a set of input files used to conduct these analyses that are being made available to researchers who wish to utilize this experimental framework to evaluate SD methods they have developed. The gridded data sets cover a region centered on the contiguous 48 United States with a grid spacing of approximately 25km, have daily time resolution (e.g., maximum and minimum near-surface temperature and precipitation), and represent a total of 120 years of model simulations. This effort is consistent with the 2013 National Climate Predictions and Projections Platform Quantitative Evaluation of Downscaling Workshop goal of supporting a community approach to promote the informed use of downscaled climate projections.
The Five Attributes of a Supportive Midwifery Practice Climate: A Review of the Literature.
Thumm, E Brie; Flynn, Linda
2018-01-01
A supportive work climate is associated with decreased burnout and attrition, and increased job satisfaction and employee health. A review of the literature was conducted in order to determine the unique attributes of a supportive practice climate for midwives. The midwifery literature was reviewed and synthesized using concept analysis technique guided by literature from related professions. The search was conducted primarily in PubMed, CINAHL, Web of Science, and Google Scholar. Articles were included if they were conducted between 2006 and 2016 and addressed perceptions of the midwifery practice climate as it related to patient, provider, and organizational outcomes. The literature identified 5 attributes consistent with a supportive midwifery practice climate: effective leadership, adequate resources, collaboration, control of one's work, and support of the midwifery model of care. Effective leadership styles include situational and transformational, and 9 traits of effective leaders are specified. Resources consist of time, personnel, supplies, and equipment. Collaboration encompasses relationships with all members of the health care team, including midwives inside and outside of one's practice. Additionally, the patients are considered collaborating members of the team. Characteristics of effective collaboration include a shared vision, role clarity, and respectful communication. Support for the midwifery model of care includes value congruence, developing relationships with women, and providing high-quality care. The attributes of a supportive midwifery practice climate are generally consistent with theoretical models of supportive practice climates of advanced practice nurses and physicians, with the exception of a more inclusive definition of collaboration and support of the midwifery model of care. The proposed Midwifery Practice Climate Model can guide instrument development, determining relationships between the attributes of the practice climate and outcomes, and creating interventions to improve the practice climate, workforce stability, and patient outcomes. © 2018 by the American College of Nurse-Midwives.
NASA Astrophysics Data System (ADS)
Bonfante, A.; Alfieri, M. S.; Basile, A.; De Lorenzi, F.; Fiorentino, N.; Menenti, M.
2012-04-01
The effect of climate change on irrigated agricultural systems will be different from area to area depending on some factors as: (i) water availability, (ii) crop water demand (iii) soil hydrological behavior and (iv) irrigation management strategy. The adaptation of irrigated crop systems to future climate change can be supported by physically based model which simulate the water and heat fluxes in the soil-vegetation-atmosphere system. The aim of this work is to evaluate the effects of climate change on the heat and water balance of a maize-fennel rotation. This was applied to a on-demand irrigation district of Southern Italy ("Destra Sele", Campania Region, 22.645 ha). Two climate scenarios were considered, current climate (1961-1990) and future climate (2021-2050), the latter constructed by applying statistical downscaling to GCMs scenarios. For each climate scenario the soil moisture regime of the selected study area was calculated by means of a simulation model of the soil-water-atmosphere system (SWAP). Synthetic indicators of the soil water regimes (e.g., crop water stress index - CWSI, available water content) have been calculated and impacts evaluated taking into account the yield response functions to water availability of different cultivars. Different irrigation delivering strategies were also simulated. The hydrological model SWAP was applied to the representative soils of the whole area (20 soil units) for which the soil hydraulic properties were derived by means of pedo-transfer function (HYPRES) tested and validated on the typical soils in the study area. Upper boundary conditions were derived from two climate scenarios, i.e. current and future. Unit gradient in soil water potential was set as lower boundary condition. Crop-specific input data and model parameters were derived from field experiments, in the same area, where the SWAP model was calibrated and validated. The results obtained have shown a significant increase of CWSI in the future climate scenario, and some spatial patterns strongly influenced by the soils characteristics. Adaptability of different maize cultivars has been evaluated. The work was carried out within the Italian national project AGROSCENARI funded by the Ministry for Agricultural, Food and Forest Policies (MIPAAF, D.M. 8608/7303/2008) Keywords: Plant Adaptative capacity, SWAP, Climate changes, Maize, Fennel
Threshold effects in the vegetation response to Holocene climate changes in central Asia
NASA Astrophysics Data System (ADS)
Zhao, Y.
2015-12-01
Understanding the response of ecosystems to past climate is critical for evaluating the impacts of future climate changes. A relatively abrupt vegetation shift in response to the late Holocene gradual climate changes has been well documented for the Sahara-Sahel ecosystem. However, whether such threshold shift is of universal significance remains to be further addressed. Here, we examine the vegetation-climate relationships in central Asia based on four newly recovered Holocene pollen records and a synthesis on previously published pollen data. The results show that the orbital-induced gradual climate trend during the Holocene led to two major abrupt vegetation shifts, and that the timings of these shifts are highly dependent of the local rainfall conditions. Instead, the mid-Holocene vegetation remained rather stable despite of the changing climate. These new findings demonstrate generally significant threshold and truncation effects of climate changes on vegetation, as are strongly supported by surface pollen data and LPJ-GUESS modeling. The results also imply that using pollen data to reconstruct past climate changes is not always straightforward. Our findings have important implication for understanding the potential effects of global warming on dryland ecosystem change.
NASA Astrophysics Data System (ADS)
Bank, M. S.
2017-12-01
The Minamata Convention on Mercury was recently ratified and will go into effect on August 16, 2017. As noted in the convention text, fish are an important source of nutrition to consumers worldwide and several marine and freshwater species represent important links in the global source-receptor dynamics of methylmercury. However, despite its importance, a coordinated global program for marine and freshwater fish species using accredited laboratories, reproducible data and reliable models is still lacking. In recent years fish mercury science has evolved significantly with its use of advanced technologies and computational models to address this complex and ubiquitous environmental and public health issue. These advances in the field have made it essential that transparency be enhanced to ensure that fish mercury studies used in support of the convention are truly reproducible and scientifically sound. One primary goal of this presentation is to evaluate fish bioinformatics and methods, results and inferential reproducibility as it relates to aggregated uncertainty in mercury fish research models, science, and biomonitoring. I use models, environmental intelligence networks and simulations of the effects of a changing climate on methylmercury in marine and freshwater fish to examine how climate change and the convention itself may create further uncertainties for policymakers to consider. Lastly, I will also present an environmental intelligence framework for fish mercury bioaccumulation models and biomonitoring in support of the evaluation of the effectiveness of the Minamata Convention on Mercury.
Levy, Karen; Woster, Andrew P; Goldstein, Rebecca S; Carlton, Elizabeth J
2016-05-17
Global climate change is expected to affect waterborne enteric diseases, yet to date there has been no comprehensive, systematic review of the epidemiological literature examining the relationship between meteorological conditions and diarrheal diseases. We searched PubMed, Embase, Web of Science, and the Cochrane Collection for studies describing the relationship between diarrheal diseases and four meteorological conditions that are expected to increase with climate change: ambient temperature, heavy rainfall, drought, and flooding. We synthesized key areas of agreement and evaluated the biological plausibility of these findings, drawing from a diverse, multidisciplinary evidence base. We identified 141 articles that met our inclusion criteria. Key areas of agreement include a positive association between ambient temperature and diarrheal diseases, with the exception of viral diarrhea and an increase in diarrheal disease following heavy rainfall and flooding events. Insufficient evidence was available to evaluate the effects of drought on diarrhea. There is evidence to support the biological plausibility of these associations, but publication bias is an ongoing concern. Future research evaluating whether interventions, such as improved water and sanitation access, modify risk would further our understanding of the potential impacts of climate change on diarrheal diseases and aid in the prioritization of adaptation measures.
NASA Astrophysics Data System (ADS)
Jennings, L. N.; Treasure, E.; Moore Myers, J.; McNulty, S.
2012-12-01
There is an ever-increasing volume of useful scientific knowledge about climate change effects and management options for natural ecosystems. Agencies such as the USDA Forest Service have been charged with the need to evaluate this body of knowledge and if necessary adapt to the impacts of climate change in their forest planning and management. However, the combined volume of existing information and rate of development of new information, lack of climate change specialists, and limited technology transfer mechanisms make efficient access and use difficult. The Template for Assessing Climate Change Impacts and Management Options (TACCIMO) addresses this difficulty through its publically accessible web-based tool that puts current and concise climate change science at the fingertips of forest planners and managers. A collaborative product of the USDA Forest Service Research Stations and the National Forest System, TACCIMO integrates peer-reviewed research with management and planning options through search and reporting tools that connect land managers with information they can trust. TACCIMO highlights elements from the wealth of climate change science with attention to what natural resource planners and managers need through a searchable repository of over 4,000 effects of climate change and close to 1,000 adaptive management options, all excerpted from a growing body of peer-reviewed scientific literature. A geospatial mapping application provides downscaled climate data for the nation and other spatially explicit models relevant to evaluating climate change impacts on forests. Report generators assist users in capturing outputs specific to a given location and resource area in a consistent and organized manner. For USDA Forest Service users, science findings can be readily linked with management conditions and capabilities from national forest management plans. The development of TACCIMO was guided by interactions with natural resource professionals, resulting in a flexible framework that allows new information to be added routinely and existing information to be reorganized as new science emerges and management needs change. TACCIMO is currently being used to support climate change science assessments for national forest land and management plan revisions in El Yunque National Forest in Puerto Rico, the Southern Sierra national forests in California, and Francis Marion National Forest in South Carolina. The tool is also being actively used by state, extension, and private natural resource professionals for climate change education and outreach. For all users, TACCIMO provides a fast, concise, and creditable starting point to guide critical thinking, additional analysis, and expert consultation to support all aspects of natural resource management decision making.
Doram, Keith; Chadwick, Whitney; Bokovoy, Joni; Profit, Jochen; Sexton, Janel D; Sexton, J Bryan
2017-02-11
Organizations that encourage the respectful expression of diverse spiritual views have higher productivity and performance, and support employees with greater organizational commitment and job satisfaction. Within healthcare, there is a paucity of studies which define or intervene on the spiritual needs of healthcare workers, or examine the effects of a pro-spirituality environment on teamwork and patient safety. Our objective was to describe a novel survey scale for evaluating spiritual climate in healthcare workers, evaluate its psychometric properties, provide benchmarking data from a large faith-based healthcare system, and investigate relationships between spiritual climate and other predictors of patient safety and job satisfaction. Cross-sectional survey study of US healthcare workers within a large, faith-based health system. Seven thousand nine hundred twenty three of 9199 eligible healthcare workers across 325 clinical areas within 16 hospitals completed our survey in 2009 (86% response rate). The spiritual climate scale exhibited good psychometric properties (internal consistency: Cronbach α = .863). On average 68% (SD 17.7) of respondents of a given clinical area expressed good spiritual climate, although assessments varied widely (14 to 100%). Spiritual climate correlated positively with teamwork climate (r = .434, p < .001) and safety climate (r = .489, p < .001). Healthcare workers reporting good spiritual climate were less likely to have intentions to leave, to be burned out, or to experience disruptive behaviors in their unit and more likely to have participated in executive rounding (p < .001 for each variable). The spiritual climate scale exhibits good psychometric properties, elicits results that vary widely by clinical area, and aligns well with other culture constructs that have been found to correlate with clinical and organizational outcomes.
Predicting the Impacts of Climate Change on Central American Agriculture
NASA Astrophysics Data System (ADS)
Winter, J. M.; Ruane, A. C.; Rosenzweig, C.
2011-12-01
Agriculture is a vital component of Central America's economy. Poor crop yields and harvest reliability can produce food insecurity, malnutrition, and conflict. Regional climate models (RCMs) and agricultural models have the potential to greatly enhance the efficiency of Central American agriculture and water resources management under both current and future climates. A series of numerical experiments was conducted using Regional Climate Model Version 3 (RegCM3) and the Weather Research and Forecasting Model (WRF) to evaluate the ability of RCMs to reproduce the current climate of Central America and assess changes in temperature and precipitation under multiple future climate scenarios. Control simulations were thoroughly compared to a variety of observational datasets, including local weather station data, gridded meteorological data, and high-resolution satellite-based precipitation products. Future climate simulations were analyzed for both mean shifts in climate and changes in climate variability, including extreme events (droughts, heat waves, floods). To explore the impacts of changing climate on maize, bean, and rice yields in Central America, RCM output was used to force the Decision Support System for Agrotechnology Transfer Model (DSSAT). These results were synthesized to create climate change impacts predictions for Central American agriculture that explicitly account for evolving distributions of precipitation and temperature extremes.
McCoy, Dana Charles; Roy, Amanda L; Sirkman, Gabriel M
2013-09-01
Past research has found negative relationships between neighborhood structural disadvantage and students' academic outcomes. Comparatively little work has evaluated the associations between characteristics of neighborhoods and schools themselves. This study explored the longitudinal, reciprocal relationships between neighborhood crime and school-level academic achievement within 500 urban schools. Results revealed that higher neighborhood crime (and particularly violent crime) predicted decreases in school academic achievement across time. School climate emerged as one possible mechanism within this relationship, with higher neighborhood crime predicting decreases in socioemotional learning and safety, but not academic rigor. All three dimensions of school climate were predictive of changes in academic achievement. Although this research supports a primarily unidirectional hypothesis of neighborhoods' impacts on embedded settings, additional work is needed to understand these relationships using additional conceptualizations of neighborhood climate.
Climate change's impact on key ecosystem services and the human well-being they support in the US
Nelson, Erik J.; Kareiva, Peter; Ruckelshaus, Mary; Arkema, Katie; Geller, Gary; Girvetz, Evan; Goodrich, Dave; Matzek, Virginia; Pinsky, Malin; Reid, Walt; Saunders, Martin; Semmens, Darius J.; Tallis, Heather
2013-01-01
Climate change alters the functions of ecological systems. As a result, the provision of ecosystem services and the well-being of people that rely on these services are being modified. Climate models portend continued warming and more frequent extreme weather events across the US. Such weather-related disturbances will place a premium on the ecosystem services that people rely on. We discuss some of the observed and anticipated impacts of climate change on ecosystem service provision and livelihoods in the US. We also highlight promising adaptive measures. The challenge will be choosing which adaptive strategies to implement, given limited resources and time. We suggest using dynamic balance sheets or accounts of natural capital and natural assets to prioritize and evaluate national and regional adaptation strategies that involve ecosystem services.
Quevauviller, Philippe; Barceló, Damia; Beniston, Martin; Djordjevic, Slobodan; Harding, Richard J; Iglesias, Ana; Ludwig, Ralf; Navarra, Antonio; Navarro Ortega, Alícia; Mark, Ole; Roson, Roberto; Sempere, Daniel; Stoffel, Markus; van Lanen, Henny A J; Werner, Micha
2012-12-01
The integration of scientific knowledge about possible climate change impacts on water resources has a direct implication on the way water policies are being implemented and evolving. This is particularly true regarding various technical steps embedded into the EU Water Framework Directive river basin management planning, such as risk characterisation, monitoring, design and implementation of action programmes and evaluation of the "good status" objective achievements (in 2015). The need to incorporate climate change considerations into the implementation of EU water policy is currently discussed with a wide range of experts and stakeholders at EU level. Research trends are also on-going, striving to support policy developments and examining how scientific findings and recommendations could be best taken on board by policy-makers and water managers within the forthcoming years. This paper provides a snapshot of policy discussions about climate change in the context of the WFD river basin management planning and specific advancements of related EU-funded research projects. Perspectives for strengthening links among the scientific and policy-making communities in this area are also highlighted. Copyright © 2012 Elsevier B.V. All rights reserved.
Meier, E.S.; Edwards, T.C.; Kienast, Felix; Dobbertin, M.; Zimmermann, N.E.
2011-01-01
Aim During recent and future climate change, shifts in large-scale species ranges are expected due to the hypothesized major role of climatic factors in regulating species distributions. The stress-gradient hypothesis suggests that biotic interactions may act as major constraints on species distributions under more favourable growing conditions, while climatic constraints may dominate under unfavourable conditions. We tested this hypothesis for one focal tree species having three major competitors using broad-scale environmental data. We evaluated the variation of species co-occurrence patterns in climate space and estimated the influence of these patterns on the distribution of the focal species for current and projected future climates.Location Europe.Methods We used ICP Forest Level 1 data as well as climatic, topographic and edaphic variables. First, correlations between the relative abundance of European beech (Fagus sylvatica) and three major competitor species (Picea abies, Pinus sylvestris and Quercus robur) were analysed in environmental space, and then projected to geographic space. Second, a sensitivity analysis was performed using generalized additive models (GAM) to evaluate where and how much the predicted F. sylvatica distribution varied under current and future climates if potential competitor species were included or excluded. We evaluated if these areas coincide with current species co-occurrence patterns.Results Correlation analyses supported the stress-gradient hypothesis: towards favourable growing conditions of F. sylvatica, its abundance was strongly linked to the abundance of its competitors, while this link weakened towards unfavourable growing conditions, with stronger correlations in the south and at low elevations than in the north and at high elevations. The sensitivity analysis showed a potential spatial segregation of species with changing climate and a pronounced shift of zones where co-occurrence patterns may play a major role.Main conclusions Our results demonstrate the importance of species co-occurrence patterns for calibrating improved species distribution models for use in projections of climate effects. The correlation approach is able to localize European areas where inclusion of biotic predictors is effective. The climate-induced spatial segregation of the major tree species could have ecological and economic consequences. ?? 2010 Blackwell Publishing Ltd.
Threshold concepts as barriers to understanding climate science
NASA Astrophysics Data System (ADS)
Walton, P.
2013-12-01
Whilst the scientific case for current climate change is compelling, the consequences of climate change have largely failed to permeate through to individuals. This lack of public awareness of the science and the potential impacts could be considered a key obstacle to action. The possible reasons for such limited success centre on the issue that climate change is a complex subject, and that a wide ranging academic, political and social research literature on the science and wider implications of climate change has failed to communicate the key issues in an accessible way. These failures to adequately communicate both the science and the social science of climate change at a number of levels results in ';communication gaps' that act as fundamental barriers to both understanding and engagement with the issue. Meyer and Land (2003) suggest that learners can find certain ideas and concepts within a discipline difficult to understand and these act as a barrier to deeper understanding of a subject. To move beyond these threshold concepts, they suggest that the expert needs to support the learner through a range of learning experiences that allows the development of learning strategies particular to the individual. Meyer and Land's research into these threshold concepts has been situated within Economics, but has been suggested to be more widely applicable though there has been no attempt to either define or evaluate threshold concepts to climate change science. By identifying whether common threshold concepts exist specifically in climate science for cohorts of either formal or informal learners, scientists will be better able to support the public in understanding these concepts by changing how the knowledge is communicated to help overcome these barriers to learning. This paper reports on the findings of a study that examined the role of threshold concepts as barriers to understanding climate science in a UK University and considers its implications for wider scientific engagement with the public to develop climate literacy. The analysis of 3 successive cohorts of students' journals who followed the same degree module identified that threshold concepts do exist within the field, such as those related to: role of ocean circulation, use of proxy indicators, forcing factors and feedback mechanisms. Once identified, the study looked at possible strategies to overcome these barriers to support student climate literacy. It concluded that the use of threshold concepts could be problematic when trying to improve climate literacy, as each individual has their own concepts they find ';troublesome' that do not necessarily relate to others. For scientists this presents the difficulty of how to develop a strategy that supports the individual that is cost and time effective. However, the study identifies that eLearning can be used effectively to help people understand troublesome knowledge.
NASA Astrophysics Data System (ADS)
Zeng, Zhenzhong; Chen, Anping; Piao, Shilong; Rabin, Sam; Shen, Zehao
2014-07-01
The distributions of tropical ecosystems are rapidly being altered by climate change and anthropogenic activities. One possible trend—the loss of tropical forests and replacement by savannas—could result in significant shifts in ecosystem services and biodiversity loss. However, the influence and the relative importance of environmental factors in regulating the distribution of tropical forest and savanna biomes are still poorly understood, which makes it difficult to predict future tropical forest and savanna distributions in the context of climate change. Here we use boosted regression trees to quantitatively evaluate the importance of environmental predictors—mainly climatic, edaphic, and fire factors—for the tropical forest-savanna distribution at a mesoscale across the tropics (between 15°N and 35°S). Our results demonstrate that climate alone can explain most of the distribution of tropical forest and savanna at the scale considered; dry season average precipitation is the single most important determinant across tropical Asia-Australia, Africa, and South America. Given the strong tendency of increased seasonality and decreased dry season precipitation predicted by global climate models, we estimate that about 28% of what is now tropical forest would likely be lost to savanna by the late 21st century under the future scenario considered. This study highlights the importance of climate seasonality and interannual variability in predicting the distribution of tropical forest and savanna, supporting the climate as the primary driver in the savanna biogeography.
NASA Astrophysics Data System (ADS)
Okladnikov, Igor; Gordov, Evgeny; Titov, Alexander; Fazliev, Alexander
2017-04-01
Description and the first results of the Russian Science Foundation project "Virtual computational information environment for analysis, evaluation and prediction of the impacts of global climate change on the environment and climate of a selected region" is presented. The project is aimed at development of an Internet-accessible computation and information environment providing unskilled in numerical modelling and software design specialists, decision-makers and stakeholders with reliable and easy-used tools for in-depth statistical analysis of climatic characteristics, and instruments for detailed analysis, assessment and prediction of impacts of global climate change on the environment and climate of the targeted region. In the framework of the project, approaches of "cloud" processing and analysis of large geospatial datasets will be developed on the technical platform of the Russian leading institution involved in research of climate change and its consequences. Anticipated results will create a pathway for development and deployment of thematic international virtual research laboratory focused on interdisciplinary environmental studies. VRE under development will comprise best features and functionality of earlier developed information and computing system CLIMATE (http://climate.scert.ru/), which is widely used in Northern Eurasia environment studies. The Project includes several major directions of research listed below. 1. Preparation of geo-referenced data sets, describing the dynamics of the current and possible future climate and environmental changes in detail. 2. Improvement of methods of analysis of climate change. 3. Enhancing the functionality of the VRE prototype in order to create a convenient and reliable tool for the study of regional social, economic and political consequences of climate change. 4. Using the output of the first three tasks, compilation of the VRE prototype, its validation, preparation of applicable detailed description of climate change in Western Siberia, and dissemination of the Project results. Results of the first stage of the Project implementation are presented. This work is supported by the Russian Science Foundation grant No16-19-10257.
Norman, Laura; Tallent-Halsell, Nita; Labiosa, William; Weber, Matt; McCoy, Amy; Hirschboeck, Katie; Callegary, James; van Riper, Charles; Gray, Floyd
2010-01-01
Using respective strengths of the biological, physical, and social sciences, we are developing an online decision support tool, the Santa Cruz Watershed Ecosystem Portfolio Model (SCWEPM), to help promote the use of information relevant to water allocation and land management in a binational watershed along the U.S.-Mexico border. The SCWEPM will include an ES valuation system within a suite of linked regional driver-response models and will use a multicriteria scenario-evaluation framework that builds on GIS analysis and spatially-explicit models that characterize important ecological, economic, and societal endpoints and consequences that are sensitive to climate patterns, regional water budgets, and regional LULC change in the SCW.
USDA-ARS?s Scientific Manuscript database
The development of climate-sensitive decision support for agriculture or water resource management requires long time series of monthly precipitation for specific locations. Archived station data for many locations is available, but time continuity, quality, and spatial coverage of station data rem...
Emerging University Student Experiences of Learning Technologies across the Asia Pacific
ERIC Educational Resources Information Center
Barrett, B. F. D.; Higa, C.; Ellis, R. A.
2012-01-01
Three hundred students across eight countries and eleven higher education institutions in the Asia Pacific Region participated in two courses on climate change and disaster management that were supported by learning technologies: a satellite-enabled video-conferencing system and a learning management system. Evaluation of the student experience…
In coastal communities, stresses derived from landuse changes, climate change, and serial over-exploitation can have major effects on coral reefs, which support multibillion dollar fishing and tourism industries vital to regional economies. A key challenge in evaluating coastal a...
Creating a Learning Community for Solutions to Climate Change
NASA Astrophysics Data System (ADS)
Bloom, A. J.; Benedict, B. A.; Blockstein, D. E.; Hassenzahl, D. M.; Hunter, A.; Jorgensen, A. D.; Pfirman, S. L.
2011-12-01
The rapidly evolving and interdisciplinary nature of climate change presents a challenge to colleges and universities as they seek to educate undergraduate students. To address this challenge, the National Council for Science and the Environment (NCSE) with NSF funding is creating a nationwide cyber-enabled learning community called CAMEL (Climate, Adaptation, and Mitigation e-Learning). CAMEL engages experts in science, policy and decision-making, education, and assessment in the production of a virtual toolbox of curricular resources designed for teaching climate change causes, consequences, and solutions. CAMEL is: ? Developing cyberinfrastructure that supports and promotes the creation of materials and community; ? Generating materials for the Encyclopedia of Earth, a site averaging 50,000 views per day; ? Ensuring that materials developed and shared are founded on the best available scientific information and follow the most appropriate educational practices; ? Assisting faculty at institutions of higher education across the United States as they create, improve, test, and share resources for teaching students not only how to diagnose climate change problems, but also to identify and effect solutions; ? Evaluating the determinants of successful community building using cybermedia. The community and resultant content range from general education to upper division courses for students in a variety of majors. At the center of the community are the 160 colleges and universities represented in NCSE's Council of Environmental Deans and Directors. Members of this group represent recognized expertise in virtually all areas of this project. A team with substantial experience with evaluating innovative initiatives in STEM education is administering the evaluation component.
Range-wide parallel climate-associated genomic clines in Atlantic salmon
Stanley, Ryan R. E.; Wringe, Brendan F.; Guijarro-Sabaniel, Javier; Bourret, Vincent; Bernatchez, Louis; Bentzen, Paul; Beiko, Robert G.; Gilbey, John; Clément, Marie; Bradbury, Ian R.
2017-01-01
Clinal variation across replicated environmental gradients can reveal evidence of local adaptation, providing insight into the demographic and evolutionary processes that shape intraspecific diversity. Using 1773 genome-wide single nucleotide polymorphisms we evaluated latitudinal variation in allele frequency for 134 populations of North American and European Atlantic salmon (Salmo salar). We detected 84 (4.74%) and 195 (11%) loci showing clinal patterns in North America and Europe, respectively, with 12 clinal loci in common between continents. Clinal single nucleotide polymorphisms were evenly distributed across the salmon genome and logistic regression revealed significant associations with latitude and seasonal temperatures, particularly average spring temperature in both continents. Loci displaying parallel clines were associated with several metabolic and immune functions, suggesting a potential basis for climate-associated adaptive differentiation. These climate-based clines collectively suggest evidence of large-scale environmental associated differences on either side of the North Atlantic. Our results support patterns of parallel evolution on both sides of the North Atlantic, with evidence of both similar and divergent underlying genetic architecture. The identification of climate-associated genomic clines illuminates the role of selection and demographic processes on intraspecific diversity in this species and provides a context in which to evaluate the impacts of climate change. PMID:29291123
Towards the Goal of Modular Climate Data Services: An Overview of NCPP Applications and Software
NASA Astrophysics Data System (ADS)
Koziol, B. W.; Cinquini, L.; Treshansky, A.; Murphy, S.; DeLuca, C.
2013-12-01
In August 2013, the National Climate Predictions and Projections Platform (NCPP) organized a workshop focusing on the quantitative evaluation of downscaled climate data products (QED-2013). The QED-2013 workshop focused on real-world application problems drawn from several sectors (e.g. hydrology, ecology, environmental health, agriculture), and required that downscaled downscaled data products be dynamically accessed, generated, manipulated, annotated, and evaluated. The cyberinfrastructure elements that were integrated to support the workshop included (1) a wiki-based project hosting environment (Earth System CoG) with an interface to data services provided by an Earth System Grid Federation (ESGF) data node; (2) metadata tools provided by the Earth System Documentation (ES-DOC) collaboration; and (3) a Python-based library OpenClimateGIS (OCGIS) for subsetting and converting NetCDF-based climate data to GIS and tabular formats. Collectively, this toolset represents a first deployment of a 'ClimateTranslator' that enables users to access, interpret, and apply climate information at local and regional scales. This presentation will provide an overview of these components above, how they were used in the workshop, and discussion of current and potential integration. The long-term strategy for this software stack is to offer the suite of services described on a customizable, per-project basis. Additional detail on the three components is below. (1) Earth System CoG is a web-based collaboration environment that integrates data discovery and access services with tools for supporting governance and the organization of information. QED-2013 utilized these capabilities to share with workshop participants a suite of downscaled datasets, associated images derived from those datasets, and metadata files describing the downscaling techniques involved. The collaboration side of CoG was used for workshop organization, discussion, and results. (2) The ES-DOC Questionnaire, Viewer, and Comparator are web-based tools for the creation and use of model and experiment documentation. Workshop participants used the Questionnaire to generate metadata on regional downscaling models and statistical downscaling methods, and the Viewer to display the results. A prototype Comparator was available to compare properties across dynamically downscaled models. (3) OCGIS is a Python (v2.7) package designed for geospatial manipulation, subsetting, computation, and translation of Climate and Forecasting (CF)-compliant climate datasets - either stored in local NetCDF files, or files served through THREDDS data servers.
Climate and water resource change impacts and adaptation potential for US power supply
Miara, Ariel; Macknick, Jordan E.; Vorosmarty, Charles J.; ...
2017-10-30
Power plants that require cooling currently (2015) provide 85% of electricity generation in the United States. These facilities need large volumes of water and sufficiently cool temperatures for optimal operations, and projected climate conditions may lower their potential power output and affect reliability. We evaluate the performance of 1,080 thermoelectric plants across the contiguous US under future climates (2035-2064) and their collective performance at 19 North American Electric Reliability Corporation (NERC) sub-regions. Joint consideration of engineering interactions with climate, hydrology and environmental regulations reveals the region-specific performance of energy systems and the need for regional energy security and climate-water adaptationmore » strategies. Despite climate-water constraints on individual plants, the current power supply infrastructure shows potential for adaptation to future climates by capitalizing on the size of regional power systems, grid configuration and improvements in thermal efficiencies. Without placing climate-water impacts on individual plants in a broader power systems context, vulnerability assessments that aim to support adaptation and resilience strategies misgauge the extent to which regional energy systems are vulnerable. As a result, climate-water impacts can lower thermoelectric reserve margins, a measure of systems-level reliability, highlighting the need to integrate climate-water constraints on thermoelectric power supply into energy planning, risk assessments, and system reliability management.« less
An approach to designing a national climate service
Miles, E. L.; Snover, A. K.; Whitely Binder, L. C.; Sarachik, E. S.; Mote, P. W.; Mantua, N.
2006-01-01
Climate variability and change are considerably important for a wide range of human activities and natural ecosystems. Climate science has made major advances during the last two decades, yet climate information is neither routinely useful for nor used in planning. What is needed is a mechanism, a national climate service (NCS), to connect climate science to decision-relevant questions and support building capacity to anticipate, plan for, and adapt to climate fluctuations. This article contributes to the national debate for an NCS by describing the rationale for building an NCS, the functions and services it would provide, and how it should be designed and evaluated. The NCS is most effectively achieved as a federal interagency partnership with critically important participation by regional climate centers, state climatologists, the emerging National Integrated Drought Information System, and the National Oceanic and Atmospheric Administration (NOAA) Regional Integrated Sciences Assessment (RISA) teams in a sustained relationship with a wide variety of stakeholders. Because the NCS is a service, and because evidence indicates that the regional spatial scale is most important for delivering climate services, given subnational geographical/geophysical complexity, attention is focused on lessons learned from the University of Washington Climate Impacts Group's 10 years of experience, the first of the NOAA RISA teams. PMID:17158218
Climate and water resource change impacts and adaptation potential for US power supply
NASA Astrophysics Data System (ADS)
Miara, Ariel; Macknick, Jordan E.; Vörösmarty, Charles J.; Tidwell, Vincent C.; Newmark, Robin; Fekete, Balazs
2017-11-01
Power plants that require cooling currently (2015) provide 85% of electricity generation in the United States. These facilities need large volumes of water and sufficiently cool temperatures for optimal operations, and projected climate conditions may lower their potential power output and affect reliability. We evaluate the performance of 1,080 thermoelectric plants across the contiguous US under future climates (2035-2064) and their collective performance at 19 North American Electric Reliability Corporation (NERC) sub-regions. Joint consideration of engineering interactions with climate, hydrology and environmental regulations reveals the region-specific performance of energy systems and the need for regional energy security and climate-water adaptation strategies. Despite climate-water constraints on individual plants, the current power supply infrastructure shows potential for adaptation to future climates by capitalizing on the size of regional power systems, grid configuration and improvements in thermal efficiencies. Without placing climate-water impacts on individual plants in a broader power systems context, vulnerability assessments that aim to support adaptation and resilience strategies misgauge the extent to which regional energy systems are vulnerable. Climate-water impacts can lower thermoelectric reserve margins, a measure of systems-level reliability, highlighting the need to integrate climate-water constraints on thermoelectric power supply into energy planning, risk assessments, and system reliability management.
Climate and water resource change impacts and adaptation potential for US power supply
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miara, Ariel; Macknick, Jordan E.; Vorosmarty, Charles J.
Power plants that require cooling currently (2015) provide 85% of electricity generation in the United States. These facilities need large volumes of water and sufficiently cool temperatures for optimal operations, and projected climate conditions may lower their potential power output and affect reliability. We evaluate the performance of 1,080 thermoelectric plants across the contiguous US under future climates (2035-2064) and their collective performance at 19 North American Electric Reliability Corporation (NERC) sub-regions. Joint consideration of engineering interactions with climate, hydrology and environmental regulations reveals the region-specific performance of energy systems and the need for regional energy security and climate-water adaptationmore » strategies. Despite climate-water constraints on individual plants, the current power supply infrastructure shows potential for adaptation to future climates by capitalizing on the size of regional power systems, grid configuration and improvements in thermal efficiencies. Without placing climate-water impacts on individual plants in a broader power systems context, vulnerability assessments that aim to support adaptation and resilience strategies misgauge the extent to which regional energy systems are vulnerable. As a result, climate-water impacts can lower thermoelectric reserve margins, a measure of systems-level reliability, highlighting the need to integrate climate-water constraints on thermoelectric power supply into energy planning, risk assessments, and system reliability management.« less
An approach to designing a national climate service.
Miles, E L; Snover, A K; Whitely Binder, L C; Sarachik, E S; Mote, P W; Mantua, N
2006-12-26
Climate variability and change are considerably important for a wide range of human activities and natural ecosystems. Climate science has made major advances during the last two decades, yet climate information is neither routinely useful for nor used in planning. What is needed is a mechanism, a national climate service (NCS), to connect climate science to decision-relevant questions and support building capacity to anticipate, plan for, and adapt to climate fluctuations. This article contributes to the national debate for an NCS by describing the rationale for building an NCS, the functions and services it would provide, and how it should be designed and evaluated. The NCS is most effectively achieved as a federal interagency partnership with critically important participation by regional climate centers, state climatologists, the emerging National Integrated Drought Information System, and the National Oceanic and Atmospheric Administration (NOAA) Regional Integrated Sciences Assessment (RISA) teams in a sustained relationship with a wide variety of stakeholders. Because the NCS is a service, and because evidence indicates that the regional spatial scale is most important for delivering climate services, given subnational geographical/geophysical complexity, attention is focused on lessons learned from the University of Washington Climate Impacts Group's 10 years of experience, the first of the NOAA RISA teams.
Accounting for health in climate change policies: a case study of Fiji
Morrow, Georgina; Bowen, Kathryn
2014-01-01
Background Climate change is expected to affect the health of most populations in the coming decades, having the greatest impact on the poorest and most disadvantaged people in the world. The Pacific islands, including Fiji, are particularly vulnerable to the effects of climate change. Objective The three major health impacts of climate change in Fiji explored in this study were dengue fever, diarrhoeal disease, and malnutrition, as they each pose a significant threat to human health. The aim of this study was to investigate to what extent the Fiji National Climate Change Policy, and a selection of relevant sectoral policies, account for these human health effects of climate change. Design The study employed a three-pronged policy analysis to evaluate: 1) the content of the Fijian National Climate Change Policy and to what extent health was incorporated within this; 2) the context within which the policy was developed; 3) the relevant processes; and 4) the actors involved. A selection of relevant sectoral policies were also analysed to assess the extent to which these included climate change and health considerations. Results The policy analysis showed that these three health impacts of climate change were only considered to a minor extent, and often indirectly, in both the Fiji National Climate Change Policy and the corresponding National Climate Change Adaptation Strategy, as well as the Public Health Act. Furthermore, supporting documents in relevant sectors including water and agriculture made no mention of climate change and health impacts. Conclusions The projected health impacts of climate change should be considered as part of reviewing the Fiji National Climate Change Policy and National Climate Change Adaptation Strategy, and the Public Health Act. In the interest of public health, this should include strategies for combating dengue fever, malnutrition, and water-borne disease. Related sectoral policies in water and agriculture should also be revised to consider climate change and its impact on human health. Approaches to include health aspects of climate change within sectoral and climate change specific policies should be encouraged, via a number of mechanisms, such as the Health in All Policies approach. Future research could support the Fiji health sector in developing climate change and health programmes. PMID:24836442
Climate Change Impacts on Hydrology and Water Management of the San Juan Basin
NASA Astrophysics Data System (ADS)
Rich, P. M.; Weintraub, L. H.; Chen, L.; Herr, J.
2005-12-01
Recent climatic events, including regional drought and increased storm severity, have accentuated concerns that climatic extremes may be increasing in frequency and intensity due to global climate change. As part of the ZeroNet Water-Energy Initiative, the San Juan Decision Support System includes a basin-scale modeling tool to evaluate effects of climate change on water budgets under different climate and management scenarios. The existing Watershed Analysis Risk Management Framework (WARMF) was enhanced with iterative modeling capabilities to enable construction of climate scenarios based on historical and projected data. We applied WARMF to 42,000 km2 (16,000 mi2) of the San Juan Basin (CO, NM) to assess impacts of extended drought and increased temperature on surface water balance. Simulations showed that drought and increased temperature impact water availability for all sectors (agriculture, energy, municipal, industry), and lead to increased frequency of critical shortages. Implementation of potential management alternatives such as "shortage sharing" or degraded water usage during critical years helps improve available water supply. In the face of growing concern over climate change, limited water resources, and competing demands, integrative modeling tools can enable better understanding of complex interconnected systems, and enable better decisions.
USGCRP's Sustained Assessment Process: Progress to date and future plans
NASA Astrophysics Data System (ADS)
DeAngelo, B. J.; Reidmiller, D.; Lipschultz, F.; Cloyd, E. T.
2016-12-01
One of the four main objectives of the U.S. Global Change Research Program's (USGCRP's) Strategic Plan is to "Conduct Sustained Assessments", which seeks to build a process that synthesizes and advances the state of scientific knowledge on global change, develops future scenarios and potential impacts, and evaluates how effectively science is being and can be used to inform and support the Nation's response to climate change. To do so, USGCRP strives to establish a standing capacity to conduct national climate assessments with sectoral and regional information to evaluate climate risks and opportunities, and to inform decision-making, especially with regard to resiliency planning and adaptation measures. Building on the success of the 3rd National Climate Assessment (NCA) (2014), we discuss the range of USGCRP activities that embody the sustained assessment concept. Special reports, such as the recent Climate and Human Health Assessment and upcoming Climate Science Special Report, fill gaps in our understanding and provide crucial building blocks for next NCA report (NCA4). To facilitate the use of consistent assumptions across NCA4, new scenario products for climate, population, and land use will be made available through initiatives such as NOAA's Climate Resilience Toolkit. NCA4 will be informed by user engagement to advance the customization of knowledge. The report will strive to advance our ability to quantify various risks, monetize certain impacts, and communicate the benefits (i.e., avoided impacts) of various mitigation pathways. NCAnet (a national network of climate-interested stakeholders) continues to grow and foster collaborations across levels of governance and within civil society. Finally, USGCRP continues to actively engage with other assessment processes, at international, state, city, and tribal levels, to exchange ideas and to facilitate the potential for "linked" assessments across spatial scales.
Velez, Brandon L; Moradi, Bonnie
2012-07-01
The present study explored the links of 2 workplace contextual variables--perceptions of workplace heterosexist discrimination and lesbian, gay, and bisexual (LGB)-supportive climates--with job satisfaction and turnover intentions in a sample of LGB employees. An extension of the theory of work adjustment (TWA) was used as the conceptual framework for the study; as such, perceived person-organization (P-O) fit was tested as a mediator of the relations between the workplace contextual variables and job outcomes. Data were analyzed from 326 LGB employees. Zero-order correlations indicated that perceptions of workplace heterosexist discrimination and LGB-supportive climates were correlated in expected directions with P-O fit, job satisfaction, and turnover intentions. Structural equation modeling (SEM) was used to compare multiple alternative measurement models evaluating the discriminant validity of the 2 workplace contextual variables relative to one another, and the 3 TWA job variables relative to one another; SEM was also used to test the hypothesized mediation model. Comparisons of multiple alternative measurement models supported the construct distinctiveness of the variables of interest. The test of the hypothesized structural model revealed that only LGB-supportive climates (and not workplace heterosexist discrimination) had a unique direct positive link with P-O fit and, through the mediating role of P-O fit, had significant indirect positive and negative relations with job satisfaction and turnover intentions, respectively. Moreover, P-O fit had a significant indirect negative link with turnover intentions through job satisfaction.
Educational and Scientific Applications of Climate Model Diagnostic Analyzer
NASA Astrophysics Data System (ADS)
Lee, S.; Pan, L.; Zhai, C.; Tang, B.; Kubar, T. L.; Zhang, J.; Bao, Q.
2016-12-01
Climate Model Diagnostic Analyzer (CMDA) is a web-based information system designed for the climate modeling and model analysis community to analyze climate data from models and observations. CMDA provides tools to diagnostically analyze climate data for model validation and improvement, and to systematically manage analysis provenance for sharing results with other investigators. CMDA utilizes cloud computing resources, multi-threading computing, machine-learning algorithms, web service technologies, and provenance-supporting technologies to address technical challenges that the Earth science modeling and model analysis community faces in evaluating and diagnosing climate models. As CMDA infrastructure and technology have matured, we have developed the educational and scientific applications of CMDA. Educationally, CMDA supported the summer school of the JPL Center for Climate Sciences for three years since 2014. In the summer school, the students work on group research projects where CMDA provide datasets and analysis tools. Each student is assigned to a virtual machine with CMDA installed in Amazon Web Services. A provenance management system for CMDA is developed to keep track of students' usages of CMDA, and to recommend datasets and analysis tools for their research topic. The provenance system also allows students to revisit their analysis results and share them with their group. Scientifically, we have developed several science use cases of CMDA covering various topics, datasets, and analysis types. Each use case developed is described and listed in terms of a scientific goal, datasets used, the analysis tools used, scientific results discovered from the use case, an analysis result such as output plots and data files, and a link to the exact analysis service call with all the input arguments filled. For example, one science use case is the evaluation of NCAR CAM5 model with MODIS total cloud fraction. The analysis service used is Difference Plot Service of Two Variables, and the datasets used are NCAR CAM total cloud fraction and MODIS total cloud fraction. The scientific highlight of the use case is that the CAM5 model overall does a fairly decent job at simulating total cloud cover, though simulates too few clouds especially near and offshore of the eastern ocean basins where low clouds are dominant.
Liang, Hong-Yan; Feng, Zhi-Pei; Pei, Bing; Li, Yong; Yang, Xi-Tian
2018-01-08
The geological events and climatic fluctuations during the Pleistocene played important roles in shaping patterns of species distribution. However, few studies have evaluated the patterns of species distribution that were influenced by the Yellow River. The present work analyzed the demography of two endemic tree species that are widely distributed along the Yellow River, Tamarix austromongolica and Tamarix chinensis, to understand the role of the Yellow River and Pleistocene climate in shaping their distribution patterns. The most common chlorotype, chlorotype 1, was found in all populations, and its divergence time could be dated back to 0.19 million years ago (Ma). This dating coincides well with the formation of the modern Yellow River and the timing of Marine Isotope Stages 5e-6 (MIS 5e-6). Bayesian reconstructions along with models of paleodistribution revealed that these two species experienced a demographic expansion in population size during the Quaternary period. Approximate Bayesian computation analyses supported a scenario of expansion approximately from the upper to lower reaches of the Yellow River. Our results provide support for the roles of the Yellow River and the Pleistocene climate in driving demographic expansion of the populations of T. austromongolica and T. chinensis. These findings are useful for understanding the effects of geological events and past climatic fluctuations on species distribution patterns.
NASA Astrophysics Data System (ADS)
Budde, M. E.; Rowland, J.; Anthony, M.; Palka, S.; Martinez, J.; Hussain, R.
2017-12-01
The U.S. Geological Survey (USGS) supports the use of Earth observation data for food security monitoring through its role as an implementing partner of the Famine Early Warning Systems Network (FEWS NET). The USGS Earth Resources Observation and Science (EROS) Center has developed tools designed to aid food security analysts in developing assumptions of agro-climatological outcomes. There are four primary steps to developing agro-climatology assumptions; including: 1) understanding the climatology, 2) evaluating current climate modes, 3) interpretation of forecast information, and 4) incorporation of monitoring data. Analysts routinely forecast outcomes well in advance of the growing season, which relies on knowledge of climatology. A few months prior to the growing season, analysts can assess large-scale climate modes that might influence seasonal outcomes. Within two months of the growing season, analysts can evaluate seasonal forecast information as indicators. Once the growing season begins, monitoring data, based on remote sensing and field information, can characterize the start of season and remain integral monitoring tools throughout the duration of the season. Each subsequent step in the process can lead to modifications of the original climatology assumption. To support such analyses, we have created an agro-climatology analysis tool that characterizes each step in the assumption building process. Satellite-based rainfall and normalized difference vegetation index (NDVI)-based products support both the climatology and monitoring steps, sea-surface temperature data and knowledge of the global climate system inform the climate modes, and precipitation forecasts at multiple scales support the interpretation of forecast information. Organizing these data for a user-specified area provides a valuable tool for food security analysts to better formulate agro-climatology assumptions that feed into food security assessments. We have also developed a knowledge base for over 80 countries that provide rainfall and NDVI-based products, including annual and seasonal summaries, historical anomalies, coefficient of variation, and number of years below 70% of annual or seasonal averages. These products provide a quick look for analysts to assess the agro-climatology of a country.
NASA Astrophysics Data System (ADS)
Weeks, S. M.; Pope, A.
2011-12-01
Whilst the scientific case for current climate change is compelling, the consequences of climate change have largely failed to permeate through to individuals. This lack of public awareness of the science and the potential impacts could be considered a key obstacle to action. The possible reasons for such limited success centre on the issue that climate change is a complex subject, and that a wide ranging academic, political and social research literature on the science and wider implications of climate change has failed to communicate the key issues in an accessible way. These failures to adequately communicate both the science and the social science of climate change at a number of levels results in ';communication gaps' that act as fundamental barriers to both understanding and engagement with the issue. Meyer and Land (2003) suggest that learners can find certain ideas and concepts within a discipline difficult to understand and these act as a barrier to deeper understanding of a subject. To move beyond these threshold concepts, they suggest that the expert needs to support the learner through a range of learning experiences that allows the development of learning strategies particular to the individual. Meyer and Land's research into these threshold concepts has been situated within Economics, but has been suggested to be more widely applicable though there has been no attempt to either define or evaluate threshold concepts to climate change science. By identifying whether common threshold concepts exist specifically in climate science for cohorts of either formal or informal learners, scientists will be better able to support the public in understanding these concepts by changing how the knowledge is communicated to help overcome these barriers to learning. This paper reports on the findings of a study that examined the role of threshold concepts as barriers to understanding climate science in a UK University and considers its implications for wider scientific engagement with the public to develop climate literacy. The analysis of 3 successive cohorts of students' journals who followed the same degree module identified that threshold concepts do exist within the field, such as those related to: role of ocean circulation, use of proxy indicators, forcing factors and feedback mechanisms. Once identified, the study looked at possible strategies to overcome these barriers to support student climate literacy. It concluded that the use of threshold concepts could be problematic when trying to improve climate literacy, as each individual has their own concepts they find ';troublesome' that do not necessarily relate to others. For scientists this presents the difficulty of how to develop a strategy that supports the individual that is cost and time effective. However, the study identifies that eLearning can be used effectively to help people understand troublesome knowledge.
A decision support system for drinking water production integrating health risks assessment.
Delpla, Ianis; Monteith, Donald T; Freeman, Chris; Haftka, Joris; Hermens, Joop; Jones, Timothy G; Baurès, Estelle; Jung, Aude-Valérie; Thomas, Olivier
2014-07-18
The issue of drinking water quality compliance in small and medium scale water services is of paramount importance in relation to the 98/83/CE European Drinking Water Directive (DWD). Additionally, concerns are being expressed over the implementation of the DWD with respect to possible impacts on water quality from forecast changes in European climate with global warming and further anticipated reductions in north European acid emissions. Consequently, we have developed a decision support system (DSS) named ARTEM-WQ (AwaReness Tool for the Evaluation and Mitigation of drinking Water Quality issues resulting from environmental changes) to support decision making by small and medium plant operators and other water stakeholders. ARTEM-WQ is based on a sequential risk analysis approach that includes consideration of catchment characteristics, climatic conditions and treatment operations. It provides a holistic evaluation of the water system, while also assessing human health risks of organic contaminants potentially present in treated waters (steroids, pharmaceuticals, pesticides, bisphenol-a, polychlorobiphenyls, polycyclic aromatic hydrocarbons, petrochemical hydrocarbons and disinfection by-products; n = 109). Moreover, the system provides recommendations for improvement while supporting decision making in its widest context. The tool has been tested on various European catchments and shows a promising potential to inform water managers of risks and appropriate mitigative actions. Further improvements should include toxicological knowledge advancement, environmental background pollutant concentrations and the assessment of the impact of distribution systems on water quality variation.
Demonstrating the climate4impact portal: bridging the CMIP5 data infrastructure to impact users
NASA Astrophysics Data System (ADS)
Plieger, Maarten; Som de Cerff, Wim; Page, Christian; Hutjes, Ronald; de Jong, Fokke; Bärring, Lars; Sjökvist, Elin
2013-04-01
Together with seven other partners (CERFACS, CNRS-IPSL, SMHI, INHGA, CMCC, WUR, MF-CNRM), KNMI is involved in the FP7 project IS-ENES (http://is.enes.org), which supports the European climate modeling infrastructure, in the work package 'Bridging Climate Research Data and the Needs of the Impact Community'. The aim of this work package is to enhance the use of climate model data and to enhance the interaction with climate effect/impact communities. The portal is based on 17 impact use cases from 5 different European countries, and is evaluated by a user panel consisting of use case owners. As the climate impact community is very broad, the focus is mainly on the scientific impact community. This work has resulted in a prototype portal, the ENES portal interface for climate impact communities, that can be visited at www.climate4impact.eu. The portal is connected to all Earth System Grid Federation (ESGF) nodes containing global climate model data (GCM data) from the fifth phase of the Coupled Model Intercomparison Project (CMIP5) and later from the Coordinated Regional Climate Downscaling Experiment (CORDEX). This global network of all major climate model data centers offers services for data description, discovery and download. The climate4impact portal connects to these services and offers a user interface for searching, visualizing and downloading global climate model data and more. During the project, the content management system Drupal was used to enable partners to contribute on the documentation section. The following topics will be demonstrated: - Security: Login using OpenID for access to the ESG data nodes. The ESG works in conjunction with several external websites and systems. The climate4impact portal uses X509 based short lived credentials, generated on behalf of the user with a MyProxy service. Single Sign-on (SSO) is used to make these websites and systems work together. - Discovery: Facetted search based on e.g. variable name, model and institute using the ESG search services. A catalog browser allows for browsing through CMIP5 and other climate model data catalogues (e.g. ESSENCE, EOBS, UNIDATA). - Download: Directly from ESG nodes and other THREDDS catalogs - Visualization: Visualize any data directly using ADAGUC dynamic Web Map Services. - Transformation: Transform your data into other formats, perform basic calculations and extractions using OCG Web Processing Services The current portal is a Prototype. It is built to explore state-of-art technologies to provide improved access to climate model data. The prototype will be evaluated and is the basis for development of an operational service. The portal and services provided will be sustained and supported during the development of these operational services (2013-2016) in the second phase of the FP7 IS-ENES project, ISENES2.
Grizzle, Jerry W; Zablah, Alex R; Brown, Tom J; Mowen, John C; Lee, James M
2009-09-01
This empirical study evaluated the moderating effects of unit customer orientation (CO) climate and climate strength on the relationship between service workers' level of CO and their performance of customer-oriented behaviors (COBs). In addition, the study examined whether aggregate COB performance influences unit profitability. Building on multisource, multilevel data, the study's results suggest that the influence of employee CO on employee COB performance is positive when the unit's CO climate is relatively high and that the constructs are unrelated when unit CO climate is relatively low. In addition, the data reveal that unit COB performance influences unit profitability by enhancing revenues without a concomitant increase in costs. The study's results underscore the theoretical importance of considering cross-level influencers of employee-level relationships and suggest that managers should focus on creating a climate that is supportive of COBs if their units are to profit from the recruitment, hiring, and retention of customer-oriented employees.
NASA Astrophysics Data System (ADS)
Moore, K.; Pierson, D.; Pettersson, K.; Naden, P.; Allott, N.; Jennings, E.; Tamm, T.; Järvet, A.; Nickus, U.; Thies, H.; Arvola, L.; Järvinen, M.; Schneiderman, E.; Zion, M.; Lounsbury, D.
2004-05-01
We are applying an existing watershed model in the EU CLIME (Climate and Lake Impacts in Europe) project to evaluate the effects of weather on seasonal and annual delivery of N, P, and DOC to lakes. Model calibration is based on long-term records of weather and water quality data collected from sites in different climatic regions spread across Europe and in New York State. The overall aim of the CLIME project is to develop methods and models to support lake and catchment management under current climate conditions and make predictions under future climate scenarios. Scientists from 10 partner countries are collaborating on developing a consistent approach to defining model parameters for the Generalized Watershed Loading Functions (GWLF) model, one of a larger suite of models used in the project. An example of the approach for the hydrological portion of the GWLF model will be presented, with consideration of the balance between model simplicity, ease of use, data requirements, and realistic predictions.
Incorporating climate science in applications of the US endangered species act for aquatic species.
McClure, Michelle M; Alexander, Michael; Borggaard, Diane; Boughton, David; Crozier, Lisa; Griffis, Roger; Jorgensen, Jeffrey C; Lindley, Steven T; Nye, Janet; Rowland, Melanie J; Seney, Erin E; Snover, Amy; Toole, Christopher; VAN Houtan, Kyle
2013-12-01
Aquatic species are threatened by climate change but have received comparatively less attention than terrestrial species. We gleaned key strategies for scientists and managers seeking to address climate change in aquatic conservation planning from the literature and existing knowledge. We address 3 categories of conservation effort that rely on scientific analysis and have particular application under the U.S. Endangered Species Act (ESA): assessment of overall risk to a species; long-term recovery planning; and evaluation of effects of specific actions or perturbations. Fewer data are available for aquatic species to support these analyses, and climate effects on aquatic systems are poorly characterized. Thus, we recommend scientists conducting analyses supporting ESA decisions develop a conceptual model that links climate, habitat, ecosystem, and species response to changing conditions and use this model to organize analyses and future research. We recommend that current climate conditions are not appropriate for projections used in ESA analyses and that long-term projections of climate-change effects provide temporal context as a species-wide assessment provides spatial context. In these projections, climate change should not be discounted solely because the magnitude of projected change at a particular time is uncertain when directionality of climate change is clear. Identifying likely future habitat at the species scale will indicate key refuges and potential range shifts. However, the risks and benefits associated with errors in modeling future habitat are not equivalent. The ESA offers mechanisms for increasing the overall resilience and resistance of species to climate changes, including establishing recovery goals requiring increased genetic and phenotypic diversity, specifying critical habitat in areas not currently occupied but likely to become important, and using adaptive management. Incorporación de las Ciencias Climáticas en las Aplicaciones del Acta Estadunidense de Especies en Peligro para Especies Acuáticas. © 2013 Society for Conservation Biology No claim to original US government works.
Feldman, Lauren; Hart, P Sol
2018-03-01
Using a national sample, this study experimentally tests the effects of news visuals and texts that emphasize either the causes and impacts of climate change or actions that can be taken to address climate change. We test the effects of variations in text and imagery on discrete emotions (i.e., hope, fear, and anger) and, indirectly, on support for climate mitigation policies. Political ideology is examined as a moderator. The findings indicate that news images and texts that focus on climate-oriented actions can increase hope and, in the case of texts, decrease fear and anger, and these effects generally hold across the ideological spectrum. In turn, the influence of emotions on policy support depends on ideology: Hope and fear increase support for climate policies for all ideological groups but particularly conservatives, whereas anger polarizes the opinions of liberals and conservatives. Implications for climate change communication that appeals to emotions are discussed. © 2017 Society for Risk Analysis.
Is Lifecycle Analysis Unconstitutional? New Frontiers in the Legal Battle Over Climate Science
NASA Astrophysics Data System (ADS)
Cullenward, D.; Weiskopf, D.
2012-12-01
Recent federal court decisions have established that judges should not second-guess government agency findings related to basic climate change science [1,2]. Nevertheless, the legal battle over climate science is far from over. In the absence of federal legislation, climate policy opponents are developing new arguments to challenge the authority of states to regulate greenhouse gas emissions. This presentation describes a recent challenge to California's climate policy and provides an example of a strategic scientific response. In December 2011, a federal district court ruled that California's Low Carbon Fuel Standard ("LCFS") is unconstitutional [3]. The LCFS regulations employ lifecycle analysis to set a limit on the carbon intensity of fuels sold in California. According to the court, however, the policy's use of lifecycle analysis "facially discriminates" against interstate commerce. Because the court found that nondiscriminatory alternatives were available, it held the policy unconstitutional. If upheld, this reasoning would severely limit the ability of states to address climate change. On appeal to the Ninth Circuit, the Stanford Environmental Law Clinic represented climate scientists [4] and lifecycle analysis scientists [5] in support of upholding the LCFS. These briefs addressed the necessity of lifecycle analysis in the context of transportation fuels, and also presented evidence from the climate impacts literature that supports the state's interest in pursuing climate policy. Although written for the court and targeted at specific legal questions, both briefs were developed in the style of scientific assessments, based on published literature [6,7] and feedback from reviewers. Because courts lack the expertise to evaluate arguments about scientific issues, there is an ongoing need for climate scientists to participate in litigation. Perhaps most importantly, an effective response requires interdisciplinary collaboration between lawyers and scientists. Briefs must be framed to persuade judges and address specific legal questions, but must also accurately reflect the state of scientific evidence, including an accurate depiction of scientific uncertainty. Using the Clinic's experience in the LCFS case as an example, we reflect on opportunities for the scientific and legal communities to strategically collaborate in the future. References [1] Massachusetts v. EPA, 549 U.S. 497, 533 (2007). [2] Coalition for Responsible Regulation v. EPA, No. 09-1322, at *26 (D.C. Cir. June 26, 2012). [3] Rocky Mountain Farmers Union v. Goldstene, 843 F.Supp. 2d 1071, at *14 (E.D. Cal. 2011). [4] Brief for Ken Caldeira, Ph.D., et al. as Amici Curiae supporting Defendant-Appellants, Rocky Mountain Farmers Union v. Goldstene, No. 12-15131 (9th Cir. June 15, 2012). [5] Brief for Michael Wang, Ph.D., et al. as Amici Curiae supporting Defendant-Appellants, Rocky Mountain Farmers Union v. Goldstene, No. 12-15131 (9th Cir. June 15, 2012). [6] National Research Council (2011). America's Climate Choices. [7] D.R. Cayan et al. (eds.) (2011). California Second Assessment: New Climate Impact Studies and Implications for Adaptation. Climatic Change 109 (Supp. 1).
An Evaluation of the Arctic - Will it Become an Area of Cooperation or Conflict?
2011-03-01
attention focused on the truly important things in life . Thank you for the sacrifices you made, and for your unfailing love and support for which I will...operations in a challenging arctic climate where seconds count and can be the difference between life and death.”218 Norway’s building of Arctic...NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS Approved for public release; distribution is unlimited AN EVALUATION OF THE
Unleashing Expert Judgment in the IPCC's Fifth Assessment Report
NASA Astrophysics Data System (ADS)
Freeman, P. T.; Mach, K. J.; Mastrandrea, M.; Field, C. B.
2016-12-01
IPCC assessments are critical vehicles for evaluating and synthesizing existing knowledge about climate change, its impacts, and potential options for adaptation and mitigation. In these assessments, rigorous expert judgment is essential for characterizing current scientific understanding including persistent and complex uncertainties related to climate change. Over its history the IPCC has iteratively developed frameworks for evaluating and communicating what is known and what is not known about climate change science. In this presentation, we explore advances and challenges in approaches to evaluating and communicating expert judgment in the Intergovernmental Panel on Climate Change's Fifth Assessment Report (IPCC AR5). We present an analysis of the frequency of the use of calibrated degree-of-certainty terms in the policymaker summaries from the IPCC's AR5 and Fourth Assessment Report (AR4). We find that revised guidance for IPCC author teams in the AR5 improved the development of balanced judgments on scientific evidence across disciplines. Overall, degree-of-certainty terms are more abundant in the AR5 policymaker summaries compared to those of the AR4, demonstrating an increased commitment to extensively and transparently characterizing expert judgments underpinning report conclusions. This analysis also shows that while working groups still favor different degree-of-certainty scales in the AR5, authors employed a wider array of degree-of-certainty scales to communicate expert judgment supporting report findings compared to the policymaker summaries of the AR4. Finally, our analysis reveals greater inclusion of lower-certainty findings in the AR5 as compared to the AR4, critical for communicating a fuller range of possible climate change impacts and response options. Building on our findings we propose a simpler, more transparent, and more rigorous framework for developing and communicating expert judgments in future climate and environmental assessments.
Tsushima, Yoko; Brient, Florent; Klein, Stephen A.; ...
2017-11-27
The CFMIP Diagnostic Codes Catalogue assembles cloud metrics, diagnostics and methodologies, together with programs to diagnose them from general circulation model (GCM) outputs written by various members of the CFMIP community. This aims to facilitate use of the diagnostics by the wider community studying climate and climate change. Here, this paper describes the diagnostics and metrics which are currently in the catalogue, together with examples of their application to model evaluation studies and a summary of some of the insights these diagnostics have provided into the main shortcomings in current GCMs. Analysis of outputs from CFMIP and CMIP6 experiments willmore » also be facilitated by the sharing of diagnostic codes via this catalogue. Any code which implements diagnostics relevant to analysing clouds – including cloud–circulation interactions and the contribution of clouds to estimates of climate sensitivity in models – and which is documented in peer-reviewed studies, can be included in the catalogue. We very much welcome additional contributions to further support community analysis of CMIP6 outputs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsushima, Yoko; Brient, Florent; Klein, Stephen A.
The CFMIP Diagnostic Codes Catalogue assembles cloud metrics, diagnostics and methodologies, together with programs to diagnose them from general circulation model (GCM) outputs written by various members of the CFMIP community. This aims to facilitate use of the diagnostics by the wider community studying climate and climate change. Here, this paper describes the diagnostics and metrics which are currently in the catalogue, together with examples of their application to model evaluation studies and a summary of some of the insights these diagnostics have provided into the main shortcomings in current GCMs. Analysis of outputs from CFMIP and CMIP6 experiments willmore » also be facilitated by the sharing of diagnostic codes via this catalogue. Any code which implements diagnostics relevant to analysing clouds – including cloud–circulation interactions and the contribution of clouds to estimates of climate sensitivity in models – and which is documented in peer-reviewed studies, can be included in the catalogue. We very much welcome additional contributions to further support community analysis of CMIP6 outputs.« less
Evaluation of mean climate in a chemistry-climate model simulation
NASA Astrophysics Data System (ADS)
Hong, S.; Park, H.; Wie, J.; Park, R.; Lee, S.; Moon, B. K.
2017-12-01
Incorporation of the interactive chemistry is essential for understanding chemistry-climate interactions and feedback processes in climate models. Here we assess a newly developed chemistry-climate model (GRIMs-Chem), which is based on the Global/Regional Integrated Model system (GRIMs) including the aerosol direct effect as well as stratospheric linearized ozone chemistry (LINOZ). We conducted GRIMs-Chem with observed sea surface temperature during the period of 1979-2010, and compared the simulation results with observations and also with CMIP models. To measure the relative performance of our model, we define the quantitative performance metric using the Taylor diagram. This metric allow us to assess overall features in simulating multiple variables. Overall, our model better reproduce the zonal mean spatial pattern of temperature, horizontal wind, vertical motion, and relative humidity relative to other models. However, the model did not produce good simulations at upper troposphere (200 hPa). It is currently unclear which model processes are responsible for this. AcknowledgementsThis research was supported by the Korea Ministry of Environment (MOE) as "Climate Change Correspondence Program."
Climate Model Diagnostic Analyzer Web Service System
NASA Astrophysics Data System (ADS)
Lee, S.; Pan, L.; Zhai, C.; Tang, B.; Jiang, J. H.
2013-12-01
The latest Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report stressed the need for the comprehensive and innovative evaluation of climate models with newly available global observations. The traditional approach to climate model evaluation, which compares a single parameter at a time, identifies symptomatic model biases and errors but fails to diagnose the model problems. The model diagnosis process requires physics-based multi-variable comparisons that typically involve large-volume and heterogeneous datasets, making them both computationally- and data-intensive. To address these challenges, we are developing a parallel, distributed web-service system that enables the physics-based multi-variable model performance evaluations and diagnoses through the comprehensive and synergistic use of multiple observational data, reanalysis data, and model outputs. We have developed a methodology to transform an existing science application code into a web service using a Python wrapper interface and Python web service frameworks (i.e., Flask, Gunicorn, and Tornado). The web-service system, called Climate Model Diagnostic Analyzer (CMDA), currently supports (1) all the datasets from Obs4MIPs and a few ocean datasets from NOAA and Argo, which can serve as observation-based reference data for model evaluation and (2) many of CMIP5 model outputs covering a broad range of atmosphere, ocean, and land variables from the CMIP5 specific historical runs and AMIP runs. Analysis capabilities currently supported by CMDA are (1) the calculation of annual and seasonal means of physical variables, (2) the calculation of time evolution of the means in any specified geographical region, (3) the calculation of correlation between two variables, and (4) the calculation of difference between two variables. A web user interface is chosen for CMDA because it not only lowers the learning curve and removes the adoption barrier of the tool but also enables instantaneous use, avoiding the hassle of local software installation and environment incompatibility. CMDA is planned to be used as an educational tool for the summer school organized by JPL's Center for Climate Science in 2014. The requirements of the educational tool are defined with the interaction with the school organizers, and CMDA is customized to meet the requirements accordingly. The tool needs to be production quality for 30+ simultaneous users. The summer school will thus serve as a valuable testbed for the tool development, preparing CMDA to serve the Earth-science modeling and model-analysis community at the end of the project. This work was funded by the NASA Earth Science Program called Computational Modeling Algorithms and Cyberinfrastructure (CMAC).
The Distribution of Climate Change Public Opinion in Canada.
Mildenberger, Matto; Howe, Peter; Lachapelle, Erick; Stokes, Leah; Marlon, Jennifer; Gravelle, Timothy
2016-01-01
While climate scientists have developed high resolution data sets on the distribution of climate risks, we still lack comparable data on the local distribution of public climate change opinions. This paper provides the first effort to estimate local climate and energy opinion variability outside the United States. Using a multi-level regression and post-stratification (MRP) approach, we estimate opinion in federal electoral districts and provinces. We demonstrate that a majority of the Canadian public consistently believes that climate change is happening. Belief in climate change's causes varies geographically, with more people attributing it to human activity in urban as opposed to rural areas. Most prominently, we find majority support for carbon cap and trade policy in every province and district. By contrast, support for carbon taxation is more heterogeneous. Compared to the distribution of US climate opinions, Canadians believe climate change is happening at higher levels. This new opinion data set will support climate policy analysis and climate policy decision making at national, provincial and local levels.
The Distribution of Climate Change Public Opinion in Canada
Gravelle, Timothy
2016-01-01
While climate scientists have developed high resolution data sets on the distribution of climate risks, we still lack comparable data on the local distribution of public climate change opinions. This paper provides the first effort to estimate local climate and energy opinion variability outside the United States. Using a multi-level regression and post-stratification (MRP) approach, we estimate opinion in federal electoral districts and provinces. We demonstrate that a majority of the Canadian public consistently believes that climate change is happening. Belief in climate change’s causes varies geographically, with more people attributing it to human activity in urban as opposed to rural areas. Most prominently, we find majority support for carbon cap and trade policy in every province and district. By contrast, support for carbon taxation is more heterogeneous. Compared to the distribution of US climate opinions, Canadians believe climate change is happening at higher levels. This new opinion data set will support climate policy analysis and climate policy decision making at national, provincial and local levels. PMID:27486659
The Evaluation of Role-Playing in the Context of Teaching Climate Change
ERIC Educational Resources Information Center
Belova, Nadja; Eilks, Ingo; Feierabend, Timo
2015-01-01
Role-plays are a common pedagogical tool in the Social Sciences. As an imitation of societal practices, role-plays are thought to support the development of argumentation and decision-making skills among learners. However, argumentation and decision making are also goals in science education in general and in socioscientific issues-oriented…
The Kalamazoo Promise and Perceived Changes in School Climate
ERIC Educational Resources Information Center
Miron, Gary; Jones, Jeffrey N.; Kelaher-Young, Allison J.
2011-01-01
The Kalamazoo Promise was announced in the fall of 2005, offering free college tuition at any public state college or university for graduates of the district who have gained acceptance to a postsecondary institution. This program was funded through the generous support of anonymous donors, and a federally-funded evaluation is underway to examine…
ERIC Educational Resources Information Center
Abós, Ángel; Sevil, Javier; Julián, José Antonio; Abarca-Sos, Alberto; García-González, Luis
2017-01-01
Grounded in self-determination theory and achievement goal theory, this quasi-experimental study evaluated the effectiveness of a teaching intervention programme to improve predisposition towards physical education based on developing a task-oriented motivational climate and supporting basic psychological needs. The final sample consisted of 35…
The climate4impact portal: bridging CMIP5 data to impact users
NASA Astrophysics Data System (ADS)
Som de Cerff, Wim; Plieger, Maarten; Page, Christian; Hutjes, Ronald; de Jong, Fokke; Barring, Lars; Sjökvist, Elin
2013-04-01
Together with seven other partners (CERFACS, CNRS-IPSL, SMHI, INHGA, CMCC, WUR, MF-CNRM), KNMI is involved in the FP7 project IS-ENES (http://is.enes.org), which supports the European climate modeling infrastructure, in the work package 'Bridging Climate Research Data and the Needs of the Impact Community'. The aim of this work package is to enhance the use of climate model data and to enhance the interaction with climate effect/impact communities. The portal is based on 17 impact use cases from 5 different European countries, and is evaluated by a user panel consisting of use case owners. As the climate impact community is very broad, the focus is mainly on the scientific impact community. This work has resulted in a prototype portal, the ENES portal interface for climate impact communities, that can be visited at www.climate4impact.eu. The portal is connected to all Earth System Grid Federation (ESGF) nodes containing global climate model data (GCM data) from the fifth phase of the Coupled Model Intercomparison Project (CMIP5) and later from the Coordinated Regional Climate Downscaling Experiment (CORDEX). This global network of all major climate model data centers offers services for data description, discovery and download. The climate4impact portal connects to these services and offers a user interface for searching, visualizing and downloading global climate model data and more. A challenging task was to describe the available model data and how it can be used. The portal tries to inform users about possible caveats when using model data. All impact use cases are described in the documentation section, using highlighted keywords pointing to detailed information in the glossary. The current portal is a Prototype. It is built to explore state-of-art technologies to provide improved access to climate model data. The prototype will be evaluated and is the basis for development of an operational service. The portal and services provided will be sustained and supported during the development of these operational services (2013-2016) in the second phase of the FP7 IS-ENES project, ISENES2. In this presentation the architecture and following items will be detailed: • Security: Login using OpenID for access to the ESGF data nodes. The ESGF works in conjunction with several external websites and systems. The portal provides access to several distributed archives, most importantly the ESGF nodes. Single Sign-on (SSO) is used to let these websites and systems work together. • Discovery: Intelligent search based on e.g. variable name, model, institute. A catalog browser allows for browsing through CMIP5 and other climate model data catalogues (e.g. ESSENCE, EOBS, UNIDATA). • Download: Directly from ESGF nodes and other THREDDS catalogs • Visualization: Visualize any data directly on a map (ADAGUC Map services). • Transformation: Transform your data into other formats, perform basic calculations and extractions
A lower bound to the social cost of CO2 emissions
NASA Astrophysics Data System (ADS)
van den Bergh, J. C. J. M.; Botzen, W. J. W.
2014-04-01
Many studies have estimated the social cost of carbon (SCC). We critically evaluate SCC estimates, focusing on omitted cost categories, discounting, uncertainties about damage costs and risk aversion. This allows for the calculation of a lower bound to the SCC. Dominant SCC values turn out to be gross underestimates, notably, but not only, for a low discount rate. The validity of this lower bound is supported by a precautionary approach to reflect risk aversion against extreme climate change. The results justify a more stringent climate policy than is suggested by most influential past studies.
An interoperable research data infrastructure to support climate service development
NASA Astrophysics Data System (ADS)
De Filippis, Tiziana; Rocchi, Leandro; Rapisardi, Elena
2018-02-01
Accessibility, availability, re-use and re-distribution of scientific data are prerequisites to build climate services across Europe. From this perspective the Institute of Biometeorology of the National Research Council (IBIMET-CNR), aiming at contributing to the sharing and integration of research data, has developed a research data infrastructure to support the scientific activities conducted in several national and international research projects. The proposed architecture uses open-source tools to ensure sustainability in the development and deployment of Web applications with geographic features and data analysis functionalities. The spatial data infrastructure components are organized in typical client-server architecture and interact from the data provider download data process to representation of the results to end users. The availability of structured raw data as customized information paves the way for building climate service purveyors
to support adaptation, mitigation and risk management at different scales.
This work is a bottom-up collaborative initiative between different IBIMET-CNR research units (e.g. geomatics and information and communication technology - ICT; agricultural sustainability; international cooperation in least developed countries - LDCs) that embrace the same approach for sharing and re-use of research data and informatics solutions based on co-design, co-development and co-evaluation among different actors to support the production and application of climate services. During the development phase of Web applications, different users (internal and external) were involved in the whole process so as to better define user needs and suggest the implementation of specific custom functionalities. Indeed, the services are addressed to researchers, academics, public institutions and agencies - practitioners who can access data and findings from recent research in the field of applied meteorology and climatology.
Cool Science: Using Children's Art to Communicate Climate Change (Invited)
NASA Astrophysics Data System (ADS)
Lustick, D. S.; Lohmeier, J.; Chen, R. F.
2013-12-01
Cool Science is a K-12 Climate Change Science Art Competition. Working with teachers, parents, and students, the project aims to identify outstanding works of art by students about climate change and display the art throughout public mass transit. Cool Science has three distinct goals: 1) provide a convenient means for art and science teachers to incorporate climate change into their curriculum, 2) support teacher/student learning about climate change science, and 3) foster informal learning about climate change among people riding mass transit. By efficiently connecting formal and informal learning with one project, Cool Science is an innovative project that expands the way we engage and evaluate students. Using children's artwork to communicate complex scientific issues such as climate change is a powerful learning experience for the artist, teacher, and audience. Last year, Cool Science received nearly 600 entries from students representing 36 teachers from 32 school districts. Six winning entries went on public display with one highlighted each month from January through June. In addition, there were 6 Runner Ups and 12 Honorable Mentions. For the winning students, it is an unforgettable experience to see a nine-foot version of their artwork traveling around the streets on the side of a bus!
Milsom, Sophia A; Freestone, Mark; Duller, Rachel; Bouman, Marisa; Taylor, Celia
2014-04-01
Social climate has an influence on a number of treatment-related factors, including service users' behaviour, staff morale and treatment outcomes. Reliable assessment of social climate is, therefore, beneficial within forensic mental health settings. The Essen Climate Evaluation Schema (EssenCES) has been validated in forensic mental health services in the UK and Germany. Preliminary normative data have been produced for UK high-security national health services and German medium-security and high-security services. We aim to validate the use of the EssenCES scale (English version) and provide preliminary normative data in UK medium-security hospital settings. The EssenCES scale was completed in a medium-security mental health service as part of a service-wide audit. A total of 89 patients and 112 staff completed the EssenCES. The three-factor structure of the EssenCES and its internal construct validity were maintained within the sample. Scores from this medium-security hospital sample were significantly higher than those from earlier high-security hospital data, with three exceptions--'patient cohesion' according to the patients and 'therapeutic hold' according to staff and patients. Our data support the use of the EssenCES scale as a valid measure for assessing social climate within medium-security hospital settings. Significant differences between the means of high-security and medium-security service samples imply that degree of security is a relevant factor affecting the ward climate and that in monitoring quality of secure services, it is likely to be important to apply different scores to reflect standards. Copyright © 2013 John Wiley & Sons, Ltd.
ERIC Educational Resources Information Center
Köse, Akif
2016-01-01
The purpose of this study is to examine the relationship between work engagement and perceived organizational support and organizational climate. The present study, in which quantitative methods have been used, is carried out in the relational screening model. Perceived organizational support scale, organizational climate scale, and work…
Frey, Ariel; Ruchkin, Vladislav; Martin, Andrés; Schwab-Stone, Mary
2009-03-01
Adolescents are vulnerable to becoming involved in problematic behaviors, disengaging academically, and dropping out of school. This study was designed to evaluate the protective role of self-perceived school attachment and family involvement on the development of these negative behaviors during adolescence. The Social and Health Assessment (SAHA) survey was conducted among 652 predominantly minority, inner-city adolescents during their transition from middle to high school in order to examine school attachment, perceived teacher support, parental control, and exposure to community violence as predictors of engagement in violent activities, development of aggressive beliefs, perception of school climate, and academic motivation one year later. Family and school factors appeared to be differentially associated with the negative outcomes. School attachment was associated with lower levels of violent delinquency and aggressive beliefs, as well as with academic motivation. Perceived teacher support was associated with positive perceptions of school climate and with academic motivation. Parental control was associated with lower levels of violent activity and with higher levels of academic motivation. Violence exposure was related to violent delinquency and negative perception of school climate. School attachment, teacher support, parental control, and violence exposure must all be incorporated into school reform efforts intended to break the inner city cycle of violence.
Nakanishi, Miharu; Tei-Tominaga, Maki
2018-05-08
Background : Quality improvement initiatives can help nursing homes strengthen psychosocial work environments. The aim of the present study was to examine the association between supportive psychosocial work environment, and professional and organizational characteristics regarding quality improvement initiatives in dementia care. Methods : A paper questionnaire survey was administered to a convenience sample of 365 professional caregivers in 12 special nursing homes in Japan. Psychosocial work environment was assessed using the Social Capital and Ethical Climate at the Workplace Scale to calculate a score of social capital in the workplace, ethical leadership, and exclusive workplace climate. Variables for quality improvement initiatives included type of home (unit-type or traditional), presence of additional benefit for dementia care, and professionalism in dementia care among caregivers evaluated using the Japanese version of the Sense of Competence in Dementia Care Staff Scale. Results : Elevated professionalism and unit-type home were significantly associated with high social capital, strong ethical leadership, and low exclusive workplace climate. The presence of dementia care benefit was not associated with any subscale of psychosocial work environment. Conclusions : Quality improvement initiatives to foster supportive psychosocial work environment should enhance professionalism in dementia care with unit-based team building of professional caregivers in special nursing homes.
Below-ground biotic interactions moderated the postglacial range dynamics of trees.
Pither, Jason; Pickles, Brian J; Simard, Suzanne W; Ordonez, Alejandro; Williams, John W
2018-05-17
Tree range shifts during geohistorical global change events provide a useful real-world model for how future changes in forest biomes may proceed. In North America, during the last deglaciation, the distributions of tree taxa varied significantly as regards the rate and direction of their responses for reasons that remain unclear. Local-scale processes such as establishment, growth, and resilience to environmental stress ultimately influence range dynamics. Despite the fact that interactions between trees and soil biota are known to influence local-scale processes profoundly, evidence linking below-ground interactions to distribution dynamics remains scarce. We evaluated climate velocity and plant traits related to dispersal, environmental tolerance and below-ground symbioses, as potential predictors of the geohistorical rates of expansion and contraction of the core distributions of tree genera between 16 and 7 ka bp. The receptivity of host genera towards ectomycorrhizal fungi was strongly supported as a positive predictor of poleward rates of distribution expansion, and seed mass was supported as a negative predictor. Climate velocity gained support as a positive predictor of rates of distribution contraction, but not expansion. Our findings indicate that understanding how tree distributions, and thus forest ecosystems, respond to climate change requires the simultaneous consideration of traits, biotic interactions and abiotic forcing. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.
Briner, Simon; Elkin, Ché; Huber, Robert
2013-11-15
Provisioning of ecosystem services (ES) in mountainous regions is predicted to be influenced by i) the direct biophysical impacts of climate change, ii) climate mediated land use change, and iii) socioeconomic driven changes in land use. The relative importance and the spatial distribution of these factors on forest and agricultural derived ES, however, is unclear, making the implementation of ES management schemes difficult. Using an integrated economic-ecological modeling framework, we evaluated the impact of these driving forces on the provision of forest and agricultural ES in a mountain region of southern Switzerland. Results imply that forest ES will be strongly influenced by the direct impact of climate change, but that changes in land use will have a comparatively small impact. The simulation of direct impacts of climate change affects forest ES at all elevations, while land use changes can only be found at high elevations. In contrast, changes to agricultural ES were found to be primarily due to shifts in economic conditions that alter land use and land management. The direct influence of climate change on agriculture is only predicted to be substantial at high elevations, while socioeconomic driven shifts in land use are projected to affect agricultural ES at all elevations. Our simulation results suggest that policy schemes designed to mitigate the negative impact of climate change on forests should focus on suitable adaptive management plans, accelerating adaptation processes for currently forested areas. To maintain provision of agricultural ES policy needs to focus on economic conditions rather than on supporting adaptation to new climate. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Saito, L.; Biondi, F.; Fenstermaker, L. F.; Arnone, J.; Devitt, D.; Riddle, B.; Young, M.
2010-12-01
In 2008, the Nevada System of Higher Education received a 5-year, $15 million grant from the National Science Foundation’s (NSF) Experimental Program to Stimulate Competitive Research (EPSCoR). The mission of the project is to create a statewide interdisciplinary program to stimulate transformative research, education, and outreach about the effects of regional climate change on ecosystem services (especially water resources), and support use of this knowledge by policy makers and stakeholders. The overarching question that this effort will address is: how will climate change affect water resources, disturbance regimes and linked ecosystem and human services? While the overall project includes cyberinfrastructure, policy, education and climate modeling, this presentation will focus on the ecological change and water resources components. The goals of these two components are: 1) improving understanding of processes controlling local- and basin-wide impacts of climate on species dynamics, disturbance regimes, and water recharge rates; 2) evaluating interactions between landscape-level processes and biophysical indicators; 3) evaluating interactions between surface and groundwater systems; 4) predicting changes in wildfire regime, primary productivity, and biodiversity (including invasive species); and 5) assessing how interactions between water and ecology will differ under climate change and/or climate variability scenarios. To achieve these goals, the two components will quantify present-day climate variability at multiple temporal and spatial scales, including at multiple elevations within Nevada’s Basin and Range ecosystem continuum. This presentation will discuss key elements for achieving these goals, including the establishment of instrumented transects spanning a range of elevations and vegetation zones in eastern and southern Nevada.
America's Climate Choices: Informing an Effective Response to Climate Change (Invited)
NASA Astrophysics Data System (ADS)
Liverman, D. M.; McConnell, M. C.; Raven, P.
2010-12-01
At the request of Congress, the National Academy of Sciences convened a series of coordinated activities to provide advice on actions and strategies that the nation can take to respond to climate change. As part of this suite of activities, this study examines information needs and recommends ways the federal government can better inform responses by enhancing climate change and greenhouse gas information and reporting systems and by improving climate communication and education. Demand for better information to support climate-related decisions has grown rapidly as people, organizations, and governments have moved ahead with plans and actions to reduce greenhouse gas emissions and to adapt to the impacts of climate change. To meet this demand, good information systems and services are needed. Without such systems, decision makers cannot evaluate whether particular policies and actions are achieving their goals or should be modified. Although the many non-federal efforts to reduce emissions and/or adapt to future climate changes carry considerable potential to reduce risks related to climate change, there is currently no comprehensive way to assess the effectiveness of those efforts. In addition, the diverse climate change responses to date have resulted in a patchwork of regional, state, and local policies that has prompted many state and business leaders to call for the development of a more predictable and coherent policy environment at the federal level. This report demonstrates that the nation lacks comprehensive, robust, and credible information and reporting systems to inform climate choices and evaluate their effectiveness. This report also argues that decision makers can benefit from a systematic and iterative framework for responding to climate change, in which decisions and policies can be revised in light of new information and experience and that improved information and reporting systems allow for ongoing evaluation of responses to climate risks. The climate-related decisions that society will confront over the coming decades will require an informed and engaged public and an education system that provides students with the knowledge to make informed choices. Although nearly all Americans have now heard of climate change, many have yet to understand the full implications of the issue and the opportunities and risks that lie in the solutions. Nonetheless, national surveys demonstrate a clear public desire for more information about climate change and how it might affect local communities. A majority of Americans want the government to take action in response to climate change and are willing to take action themselves. Although communicating about climate change and choices is vitally important, it can be difficult. This report summarizes some simple guidelines for more effective communications.
ERIC Educational Resources Information Center
Piscatelli, Jennifer; Lee, Chiqueena
2011-01-01
The National School Climate Center (NSCC) completed a 50-state policy scan on state school climate and anti-bullying policies to better understand the current state policy infrastructure supporting the development of positive school climates. This policy brief examines the current status of school climate and anti-bullying policies in each state,…
NASA Astrophysics Data System (ADS)
Bachelet, D. M.
2012-12-01
Public land managers are under increasing pressure to consider the potential impacts of climate change but they often lack access to the necessary scientific information and the support to interpret projections. Over 27% of the United States land area are designated as protected areas (e.g. National Parks and Wilderness Areas) including 76,900,000 ha of National Forests areas for which management plans need to be revised to prepare for climate change. Projections of warmer drier conditions raise concerns about extended summer drought, increased fire risks and potential pest/insect outbreaks threatening the carbon sequestration potential of the region as well as late summer water availability. Downscaled climate projections, soil vulnerability indices, and simulated climate change impacts on vegetation cover, fire frequency, carbon stocks, as well as species range shifts, have been uploaded in databasin.org to provide easy access to documented information that can be displayed, shared, and freely manipulated on line. We have uploaded NARCCAP scenarios and provided animations and time series display to look at regional and temporal trends in climate projections. We have uploaded simulation results of vegetation shifts from the global scale to local national parks and shared results with concerned managers. We have used combinations of vegetation models and niche models to evaluate wildlife resilience to future conditions. We have designed fuzzy logic models for ecological assessment projects and made them available on the Data Basin web site. We describe how we have used all this information to quantify climate change vulnerability for a variety of ecosystems, developing new web tools to provide comparative summaries of the various types of spatial and temporal data available for different regions.
Data near processing support for climate data analysis
NASA Astrophysics Data System (ADS)
Kindermann, Stephan; Ehbrecht, Carsten; Hempelmann, Nils
2016-04-01
Climate data repositories grow in size exponentially. Scalable data near processing capabilities are required to meet future data analysis requirements and to replace current "data download and process at home" workflows and approaches. On one hand side, these processing capabilities should be accessible via standardized interfaces (e.g. OGC WPS), on the other side a large variety of processing tools, toolboxes and deployment alternatives have to be supported and maintained at the data/processing center. We present a community approach of a modular and flexible system supporting the development, deployment and maintenace of OGC-WPS based web processing services. This approach is organized in an open source github project (called "bird-house") supporting individual processing services ("birds", e.g. climate index calculations, model data ensemble calculations), which rely on basic common infrastructural components (e.g. installation and deployment recipes, analysis code dependencies management). To support easy deployment at data centers as well as home institutes (e.g. for testing and development) the system supports the management of the often very complex package dependency chain of climate data analysis packages as well as docker based packaging and installation. We present a concrete deployment scenario at the German Climate Computing Center (DKRZ). The DKRZ one hand side hosts a multi-petabyte climate archive which is integrated e.g. into the european ENES and worldwide ESGF data infrastructure, and on the other hand hosts an HPC center supporting (model) data production and data analysis. The deployment scenario also includes openstack based data cloud services to support data import and data distribution for bird-house based WPS web processing services. Current challenges for inter-institutionnal deployments of web processing services supporting the european and international climate modeling community as well as the climate impact community are highlighted. Also aspects supporting future WPS based cross community usage scenarios supporting data reuse and data provenance aspects are reflected.
Ramírez-Barahona, Santiago; González, Clementina; González-Rodríguez, Antonio; Ornelas, Juan Francisco
2017-06-01
The prevalent view on genetic structuring in parasitic plants is that host-race formation is caused by varying degrees of host specificity. However, the relative importance of ecological niche divergence and host specificity to population differentiation remains poorly understood. We evaluated the factors associated with population differentiation in mistletoes of the Psittacanthus schiedeanus complex (Loranthaceae) in Mexico. We used genetic data from chloroplast sequences and nuclear microsatellites to study population genetic structure and tested its association with host preferences and climatic niche variables. Pairwise genetic differentiation was associated with environmental and host preferences, independent of geography. However, environmental predictors appeared to be more important than host preferences to explain genetic structure, supporting the hypothesis that the occurrence of the parasite is largely determined by its own climatic niche and, to a lesser degree, by host specificity. Genetic structure is significant within this mistletoe species complex, but the processes associated with this structure appear to be more complex than previously thought. Although host specificity was not supported as the major determinant of population differentiation, we consider this to be part of a more comprehensive ecological model of mistletoe host-race formation that incorporates the effects of climatic niche evolution. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.
Cramm, Jane M; Strating, Mathilde M H; Nieboer, Anna P
2014-05-22
This study aimed to (1) evaluate the effectiveness of implementing transition programmes in improving the quality of chronic care delivery and (2) identify the predictive role of (changes in) team climate on the quality of chronic care delivery over time. This longitudinal study was undertaken with professionals working in hospitals and rehabilitation units that participated in the transition programme 'On Your Own Feet Ahead!' in the Netherlands. A total of 145/180 respondents (80.6%) filled in the questionnaire at the beginning of the programme (T1), and 101/173 respondents (58.4%) did so 1 year later at the end of the programme (T2). A total of 90 (52%) respondents filled in the questionnaire at both time points. Two-tailed, paired t tests were used to investigate improvements over time and multilevel analyses to investigate the predictive role of (changes in) team climate on the quality of chronic care delivery. Transition programme. Quality of chronic care delivery measured with the Assessment of Chronic Illness Care Short version (ACIC-S). The overall ACIC-S score at T1 was 5.90, indicating basic or intermediate support for chronic care delivery. The mean ACIC-S score at T2 significantly improved to 6.70, indicating advanced support for chronic care. After adjusting for the quality of chronic care delivery at T1 and significant respondents' characteristics, multilevel regression analyses showed that team climate at T1 (p<0.01) and changes in team climate (p<0.001) predicted the quality of chronic care delivery at T2. The implementation of transition programmes requires a supportive and stimulating team climate to enhance the quality of chronic care delivery to chronically ill adolescents. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Interdisciplinarity, Climate, and Change
NASA Astrophysics Data System (ADS)
Pulwarty, R. S.
2016-12-01
Interdisciplinarity has become synonymous with all things progressive about research and education. This is so not simply because of a philosophical belief in the heterogeneity of knowledge but because of the scientific and social complexities of problems of major concern. The increased demand for improved climate knowledge and information has increased pressure to support planning under changing rates of extremes event occurrence, is well-documented. The application of useful climate data, information and knowledge requires multiple networks and information services infrastructure that support planning and implementation. As widely quoted, Pasteur's quadrant is a label given to a class of scientific research methodologies that seeks fundamental understanding of scientific problems and, simultaneously, to benefit society-what Stokes called "use-inspired research". Innovation, in this context, has been defined as "the process by which individuals and organizations generate new ideas and put them into practice". A growing number of research institutes and programs have begun developing a cadre of professionals focused on integrating basic and applied research in areas such as climate risk assessment and adaptation. There are now several examples of where researchers and teams have crafted examples that include affected communities. In this presentation we will outline the lessons from several efforts including the PACE program, the RISAs, NIDIS, the Climate Services Information System and other interdisciplinary service-oriented efforts in which the author has been involved. Some early lessons include the need to: Recognize that key concerns of social innovation go beyond the projections of climate and other global changes to embrace multiple methods Continue to train scientists of all stripes of disciplinary norms, but higher education should also prepare students who plan to seek careers outside of academia by increasing flexibility in graduate training programs Develop and support boundary institutions that span research, monitoring, prototype development and practice but recognize both the benefits and the limits of co-production Design more comprehensive metrics for evaluation to combat perceptions that interdisciplinary work is only a sideline to a traditional academic career.
An Evidence-Based Public Health Approach to Climate Change Adaptation
Eidson, Millicent; Tlumak, Jennifer E.; Raab, Kristin K.; Luber, George
2014-01-01
Background: Public health is committed to evidence-based practice, yet there has been minimal discussion of how to apply an evidence-based practice framework to climate change adaptation. Objectives: Our goal was to review the literature on evidence-based public health (EBPH), to determine whether it can be applied to climate change adaptation, and to consider how emphasizing evidence-based practice may influence research and practice decisions related to public health adaptation to climate change. Methods: We conducted a substantive review of EBPH, identified a consensus EBPH framework, and modified it to support an EBPH approach to climate change adaptation. We applied the framework to an example and considered implications for stakeholders. Discussion: A modified EBPH framework can accommodate the wide range of exposures, outcomes, and modes of inquiry associated with climate change adaptation and the variety of settings in which adaptation activities will be pursued. Several factors currently limit application of the framework, including a lack of higher-level evidence of intervention efficacy and a lack of guidelines for reporting climate change health impact projections. To enhance the evidence base, there must be increased attention to designing, evaluating, and reporting adaptation interventions; standardized health impact projection reporting; and increased attention to knowledge translation. This approach has implications for funders, researchers, journal editors, practitioners, and policy makers. Conclusions: The current approach to EBPH can, with modifications, support climate change adaptation activities, but there is little evidence regarding interventions and knowledge translation, and guidelines for projecting health impacts are lacking. Realizing the goal of an evidence-based approach will require systematic, coordinated efforts among various stakeholders. Citation: Hess JJ, Eidson M, Tlumak JE, Raab KK, Luber G. 2014. An evidence-based public health approach to climate change adaptation. Environ Health Perspect 122:1177–1186; http://dx.doi.org/10.1289/ehp.1307396 PMID:25003495
BASINs 4.0 Climate Assessment Tool (CAT): Supporting ...
EPA announced the availability of the report, BASINS 4.0 Climate Assessment Tool (CAT): Supporting Documentation and User's Manual. This report was prepared by the EPA's Global Change Research Program (GCRP), an assessment-oriented program, that sits within the Office of Research and Development, that focuses on assessing how potential changes in climate and other global environmental stressors may impact water quality, air quality, aquatic ecosystems, and human health in the United States. The Program’s focus on water quality is consistent with the Research Strategy of the U.S. Climate Change Research Program—the federal umbrella organization for climate change science in the U.S. government—and is responsive to U.S. EPA’s mission and responsibilities as defined by the Clean Water Act and the Safe Drinking Water Act. A central goal of the EPA GCRP is to provide EPA program offices, Regions, and other stakeholders with tools and information for assessing and responding to any potential future impacts of climate change. In 2007, the EPA Global Change Research Program (GCRP), in partnership with the EPA Office of Water, supported development of a Climate Assessment Tool (CAT) for version 4 of EPA’s BASINS modeling system. This report provides supporting documentation and user support materials for the BASINS CAT tool. The purpose of this report is to provide in a single document a variety of documentation and user support materials supporting the use
ERIC Educational Resources Information Center
National Center on Safe Supportive Learning Environments, 2017
2017-01-01
Improving school climate takes time and commitment from a variety of people in a variety of roles. This document outlines key action steps that district leaders--including superintendents, assistant superintendents, directors of student support services, or others--can take to support school climate improvements. Key action steps are provided for…
Opportunities and Challenges in Using Research to Facilitate Climate Communication Collaborations
NASA Astrophysics Data System (ADS)
Akerlof, K.; Johnson, B. B.; Nackerman, C. J.; Maibach, E.
2014-12-01
Climate change represents the worst of wicked environmental problems, requiring collaborations among individuals and groups that cross public, private and voluntary sectors on a global scale to reduce greenhouse gas emissions and prepare for impacts. The Climate Communication Consortium of Maryland represents such a collaboration on a state level for the purpose of supporting governments, non-profits, businesses and universities in communicating with the public about climate and energy within the context of multiple frames, such as public health, extreme weather, and coastal resilience. The collaboration was developed using communication research as an organizational framework - providing data from yearly public opinion surveys on Marylanders' attitudes, behaviors and policy support, and a variety of other qualitative and quantitative studies. In this presentation, we will highlight four dimensions of the use of research within collaborative organizational climate communication that can lead to success, or impediments: 1) individual organizational ability and resources for using audience data; 2) the linking of research questions to programmatic development goals and processes; 3) the weighing of audience- versus communicator-oriented values and priorities; and 4) identification of overarching communication objectives that span individual organizational interests. We will illustrate these dimensions using findings from surveys of our member organizations describing the types of barriers organizations face in communicating about climate change effectively, including their use of formative and evaluative research, and will discuss some of the findings from our public opinion and experimental research, illustrating the ways in which these findings influenced programmatic development and were used by Consortium member organizations.
Potential Climate-driven Silvicultural and Agricultural Transformations in Siberia in the 21 Century
NASA Astrophysics Data System (ADS)
Tchebakova, N. M.; Parfenova, E. I.; Shvetsov, E.; Soja, A. J.
2017-12-01
Simulations of Siberian forests in a changing climate showed them to be changed in composition, decreased, and shifted northwards. Our goals were to evaluate the ecological consequences for the forests and agriculture in Siberia and to offer adaptive measures that may be undertaken to minimize negative consequences and maximize benefits from a rapidly changing environment in the socially important region of southern Siberia. We considered two strategies to estimate climate-change effects on potentially failing forests within an expanding forest-steppe ecotone. To support forestry, seed transfers from locations that are best suited to the genotypes in future climates may be applied to assist trees and forests in a changing climate. To support agriculture, in view of the growing world concerns on food safety, new farming lands may be established in a new forest-steppe ecotone with its favorable climatic and soil resources. We used our bioclimatic vegetation models of various levels: a forest type model to predict forest shifts and forest-failing lands, tree species range and their climatypes models to predict what tree species/climatype would be suitable and crop models to predict crops to introduce in potentially climate-disturbed areas in Siberia. Climate change data for the 2080s were calculated from the ensemble of 20 general circulation models of the Coupled Model Intercomparison Project phase 5 (CMIP5) and two scenarios to characterize the range of climate change: mild climate (RCP2.6 scenario) and sharp climate (RCP 8.5 scenario). By the 2080s, forest-steppe and steppe rather than forests would dominate up to half of Siberia in the warmer and dryer RCP 8.5 climate. Water stress tolerant and fire-resistant light-needled species Pinus sylvestris and Larix spp. would dominate the forest-steppe ecotone. Failing forests in a dryer climate may be maintained by moving and substituting proper climatypes from locations often hundreds of km away. Agriculture in Siberia would likely benefit from climate warming. Farming may be a choice to use lands where forests would fail. Potential croplands would be limited by suitable soils in the north and irrigation in the south. To recommend an economic strategy that would optimize economic gains/losses due to the effects of climate change will require additional research
The Climate Services Partnership (CSP): Working Together to Improve Climate Services Worldwide
NASA Astrophysics Data System (ADS)
Zebiak, S.; Brasseur, G.; Members of the CSP Coordinating Group
2012-04-01
Throughout the world, climate services are required to address urgent needs for climate-informed decision-making, policy and planning. These needs were explored in detail at the first International Conference on Climate Services (ICCS), held in New York in October 2011. After lengthy discussions of needs and capabilities, the conference culminated in the creation of the Climate Services Partnership (CSP). The CSP is an informal interdisciplinary network of climate information users, providers, donors and researchers interested in improving the provision and development of climate services worldwide. Members of the Climate Services Partnership work together to share knowledge, accelerate learning, develop new capacities, and establish good practices. These collaborative efforts will inform and support the evolution and implementation of the Global Framework for Climate Services. The Climate Services Partnership focuses its efforts on three levels. These include: 1. encouraging and sustaining connections between climate information providers, users, donors, and researchers 2. gathering, synthesizing and disseminating current knowledge on climate services by way of an online knowledge management platform 3. generating new knowledge on critical topics in climate service development and provision, through the creation of focused working groups on specific topics To date, the Climate Services Partnership has made progress on all three fronts. Connections have been fostered through outreach at major international conferences and professional societies. The CSP also maintains a website and a monthly newsletter, which serves as a resource for those interested in climate services. The second International Conference on Climate Services (ICCS2) will be held in Berlin in September. The CSP has also created a knowledge capture system that gathers and disseminates a wide range of information related to the development and provision of climate services. This includes an online-searchable database that allows users to see what climate services activities are underway in what locations, to gather and analyze information. As part of the knowledge capture system, more than 10 CSP members are currently developing case studies to describe specific climate services activities; in a few cases, this involves in-depth evaluations of the service in question. Finally, the Economics Working Group of the Climate Services Partnership is analyzing previous methods to economically value climate services in hopes of generating knew knowledge regarding the methods are best suited to assessing the benefits associated with various climate services. Other groups are working to develop guidance materials for the development and use of climate information to support decision and policy-making. The Climate Services Partnership is an open, informal network that builds on activities that are already underway and works to create synergies to improve the provision and development for climate services. Its members currently number more than 50 organizations; it seeks new participants and new initiatives.
ERIC Educational Resources Information Center
Wang, Ming-Te; Dishion, Thomas J.
2012-01-01
This longitudinal study examined trajectories of change in adolescents' perceptions of four dimensions of school climate (academic support, behavior management, teacher social support, and peer social support) and the effects of such trajectories on adolescent problem behaviors. We also tested whether school climate moderated the associations…
Wallace, J Craig; Popp, Eric; Mondore, Scott
2006-05-01
Building on recent work in occupational safety and climate, the authors examined 2 organizational foundation climates thought to be antecedents of specific safety climate and the relationships among these climates and occupational accidents. It is believed that both foundation climates (i.e., management-employee relations and organizational support) will predict safety climate, which will in turn mediate the relationship between occupational accidents and these 2 distal foundation climates. Using a sample of 9,429 transportation workers in 253 work groups, the authors tested the proposed relationships at the group level. Results supported all hypotheses. Overall it appears that different climates have direct and indirect effects on occupational accidents.
NASA Astrophysics Data System (ADS)
Nijssen, B.; Chiao, T. H.; Lettenmaier, D. P.; Vano, J. A.
2016-12-01
Hydrologic models with varying complexities and structures are commonly used to evaluate the impact of climate change on future hydrology. While the uncertainties in future climate projections are well documented, uncertainties in streamflow projections associated with hydrologic model structure and parameter estimation have received less attention. In this study, we implemented and calibrated three hydrologic models (the Distributed Hydrology Soil Vegetation Model (DHSVM), the Precipitation-Runoff Modeling System (PRMS), and the Variable Infiltration Capacity model (VIC)) for the Bull Run watershed in northern Oregon using consistent data sources and best practice calibration protocols. The project was part of a Piloting Utility Modeling Applications (PUMA) project with the Portland Water Bureau (PWB) under the umbrella of the Water Utility Climate Alliance (WUCA). Ultimately PWB would use the model evaluation to select a model to perform in-house climate change analysis for Bull Run Watershed. This presentation focuses on the experimental design of the comparison project, project findings and the collaboration between the team at the University of Washington and at PWB. After calibration, the three models showed similar capability to reproduce seasonal and inter-annual variations in streamflow, but differed in their ability to capture extreme events. Furthermore, the annual and seasonal hydrologic sensitivities to changes in climate forcings differed among models, potentially attributable to different model representations of snow and vegetation processes.
A Water Resources Management Model to Evaluate Climate Change Impacts in North-Patagonia, Argentina
NASA Astrophysics Data System (ADS)
Bucciarelli, L. F.; Losano, F. T.; Marizza, M.; Cello, P.; Forni, L.; Young, C. A.; Girardin, L. O.; Nadal, G.; Lallana, F.; Godoy, S.; Vallejos, R.
2014-12-01
Most recently developed climate scenarios indicate a potential future increase in water stress in the region of Comahue, located in the North-Patagonia, Argentina. This region covers about 140,000 km2 where the Limay River and the Neuquén River converge into the Negro River, constituting the largest integrated basins in Argentina providing various uses of water resources: a) hydropower generation, contributing 15% of the national electricity market; b) fruit-horticultural products for local markets and export; c) human and industrial water supply; d) mining and oil exploitation, including Vaca Muerta, second world largest reserves of shale gas and fourth world largest reserves of shale-oil. The span of multiple jurisdictions and the convergence of various uses of water resources are a challenge for integrated understanding of economically and politically driven resource use activities on the natural system. The impacts of climate change on the system could lead to water resource conflicts between the different political actors and stakeholders. This paper presents the results of a hydrological simulation of the Limay river and Neuquén river basins using WEAP (Water Evaluation and Planning) considering the operation of artificial reservoirs located downstream at a monthly time step. This study aims to support policy makers via integrated tools for water-energy planning under climate uncertainties, and to facilitate the formulation of water policy-related actions for future water stress adaptation. The value of the integrated resource use model is that it can support local policy makers understand the implications of resource use trade-offs under a changing climate: 1) water availability to meet future growing demand for irrigated areas; 2) water supply for hydropower production; 3) increasing demand of water for mining and extraction of unconventional oil; 4) potential resource use conflicts and impacts on vulnerable populations.
Zhu, Junya; Li, Liping; Zhao, Hailei; Han, Guangshu; Wu, Albert W; Weingart, Saul N
2014-10-01
Existing patient safety climate instruments, most of which have been developed in the USA, may not accurately reflect the conditions in the healthcare systems of other countries. To develop and evaluate a patient safety climate instrument for healthcare workers in Chinese hospitals. Based on a review of existing instruments, expert panel review, focus groups and cognitive interviews, we developed items relevant to patient safety climate in Chinese hospitals. The draft instrument was distributed to 1700 hospital workers from 54 units in six hospitals in five Chinese cities between July and October 2011, and 1464 completed surveys were received. We performed exploratory and confirmatory factor analyses and estimated internal consistency reliability, within-unit agreement, between-unit variation, unit-mean reliability, correlation between multi-item composites, and association between the composites and two single items of perceived safety. The final instrument included 34 items organised into nine composites: institutional commitment to safety, unit management support for safety, organisational learning, safety system, adequacy of safety arrangements, error reporting, communication and peer support, teamwork and staffing. All composites had acceptable unit-mean reliabilities (≥0.74) and within-unit agreement (Rwg ≥0.71), and exhibited significant between-unit variation with intraclass correlation coefficients ranging from 9% to 21%. Internal consistency reliabilities ranged from 0.59 to 0.88 and were ≥0.70 for eight of the nine composites. Correlations between composites ranged from 0.27 to 0.73. All composites were positively and significantly associated with the two perceived safety items. The Chinese Hospital Survey on Patient Safety Climate demonstrates adequate dimensionality, reliability and validity. The integration of qualitative and quantitative methods is essential to produce an instrument that is culturally appropriate for Chinese hospitals. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
NASA Astrophysics Data System (ADS)
Niyogi, D.; Andresen, J.
2011-12-01
Corn and soybean production contributes over $100 billion annually to the U.S. economy, most of which comes from the intensely cultivated corn-belt region of the Midwest. Successful crop production in this region is highly dependent on favorable temperatures and appropriate precipitation patters, making this industry vulnerable to changes in climate patterns. Though predictive models are constantly improving, there are gaps in our understanding of how different management practices can be used to help farmers adapt to changes in climate while maintaining economic viability. Furthermore, currently available tools and models are not meeting producers' needs, and little is known about the types of information they would like to access. Useful to Usable (U2U): Transforming Climate Variability and Change Information for Cereal Crop Producers is an integrated research and extension project that seeks to improve the resilience and profitability of farms in the North Central Region amid variable climate change through the development and dissemination of improved decision support tools, resource materials, and training. The goal is to work closely with producers to help them make better long-term plans on what, when and where to plant, and also how to manage crops for maximum yields and minimum environmental damage. The U2U team is composed of a uniquely qualified group of climatologists, crop modelers, agronomists, economists, and social scientists from 10 partner universities across the Midwest. Over the span of 5 years, collaborators will complete tasks associated with 5 objectives that will enhance the usability of climate information for the agricultural community and lead to more sustainable farming operations. First the team will produce research on the biophysical and economic impacts of different climate scenarios on corn and soybean yields in the North Central Region (objective 1) and conduct complementary research to understand how producers and advisors are likely to use this information (objective 2). Based on these findings, decision support tools (DSTs) and training materials will be developed to effectively deliver climate information to stakeholders (objective 3). Next, DSTs will be piloted in a four-state region (Indiana, Iowa, Nebraska, and Michigan) to help improve tools and evaluate effectiveness (objective 4). After several iterations with stakeholders to ensure the usability and utility of the tools, the program will be extended to all twelve states in the region (objective 5). Decision support tools, along with training products, surveys, feedback mechanisms and collaborative social tools, will be supported using the NSF-funded and Purdue University developed HUBzero web-based technology.
Skerfving, Annemi; Johansson, Fredrik; Elgán, Tobias H
2014-01-24
Support groups for children in troubled families are available in a majority of Swedish municipalities. They are used as a preventive effort for children in families with different parental problems such as addiction to alcohol/other drugs, mental illness, domestic violence, divorce situations, or even imprisonment. Children from families with these problems are a well-known at-risk group for various mental health and social problems. Support groups aim at strengthening children's coping behaviour, to improve their mental health and to prevent a negative psycho-social development. To date, evaluations using a control-group study design are scarce. The aim of the current study is to evaluate the effects of support groups. This paper describes the design of an effectiveness study, initially intended as a randomized controlled trial, but instead is pursued as a quasi-experimental study using a non-randomized control group. The aim is to include 116 children, aged 7-13 years and one parent/another closely related adult, in the study. Participants are recruited via existing support groups in the Stockholm county district and are allocated either into an intervention group or a waiting list control group, representing care as usual. The assessment consists of questionnaires that are to be filled in at baseline and at four months following the baseline. Additionally, the intervention group completes a 12-month follow-up. The outcomes include the Strength and Difficulties Questionnaire (SDQ S11-16), the Kids Coping Scale, the "Ladder of life" which measures overall life satisfaction, and "Jag tycker jag är" (I think I am) which measures self-perception and self-esteem. The parents complete the SDQ P4-16 (parent-report version) and the Swedish scale "Familjeklimat" (Family Climate), which measures the emotional climate in the family. There is a need for evaluating the effects of support groups targeted to children from troubled families. This quasi-experimental study therefore makes an important contribution to this novel field of research. In the article various problems related to pursuing a study with children at risk are discussed. ISRCTN52310507.
Evaluating the Usability of a Professional Modeling Tool Repurposed for Middle School Learning
ERIC Educational Resources Information Center
Peters, Vanessa L.; Songer, Nancy Butler
2013-01-01
This paper reports the results of a three-stage usability test of a modeling tool designed to support learners' deep understanding of the impacts of climate change on ecosystems. The design process involved repurposing an existing modeling technology used by professional scientists into a learning tool specifically designed for middle school…
D.G. Brockway
1998-01-01
Old-growth forests in the Pacific Northwest are known to support high levels of diversity across the varied landscapes they occupy. On 1200 plots distributed over the Cascade Mountains in southwestern Washington, climatic, physiographic, edaphic and floristic data were collected to evaluate the ecological characteristics of these coniferous forests and develop a...
Using Local Stories as a Call to Action on Climate Change Adaptation and Mitigation in Minnesota
NASA Astrophysics Data System (ADS)
Phipps, M.
2015-12-01
Climate Generation: A Will Steger Legacy and the University of Minnesota's Regional Sustainability Development Partnerships (RSDP) have developed a novel approach to engaging rural Minnesotans on climate change issues. Through the use of personal, local stories about individuals' paths to action to mitigate and or adapt to climate change, Climate Generation and RSDP aim to spur others to action. Minnesota's Changing Climate project includes 12 Climate Convenings throughout rural Minnesota in a range of communities (tourism-based, agrarian, natural resources-based, university towns) to engage local populations in highly local conversations about climate change, its local impacts, and local solutions currently occurring. Climate Generation and RSDP have partnered with Molly Phipps Consulting to evaluate the efficacy of this approach in rural Minnesota. Data include pre and post convening surveys examining participants' current action around climate change, attitudes toward climate change (using questions from Maibach, Roser-Renouf, and Leiserowitz, 2009), and the strength of their social network to support their current and ongoing work toward mitigating and adapting to climate change. Although the Climate Convenings are tailored to each community, all include a resource fair of local organizations already engaging in climate change mitigation and adaptation activities which participants can participate in, a welcome from a trusted local official, a presentation on the science of climate change, sharing of local climate stories, and break-out groups where participants can learn how to get involved in a particular mitigation or adaptation strategy. Preliminary results have been positive: participants feel motivated to work toward mitigating and adapting to climate change, and more local stories have emerged that can be shared in follow-up webinars and on a project website to continue to inspire others to act.
NASA Astrophysics Data System (ADS)
Rooney-Varga, J. N.; Sterman, J.; Sawin, E.; Jones, A.; Merhi, H.; Hunt, C.
2012-12-01
Climate change, its mitigation, and adaption to its impacts are among the greatest challenges of our times. Despite the importance of societal decisions in determining climate change outcomes, flawed mental models about climate change remain widespread, are often deeply entrenched, and present significant barriers to understanding and decision-making around climate change. Here, we describe two simulation role-playing games that combine active, affective, and analytical learning to enable shifts of deeply held conceptions about climate change. The games, World Climate and Future Climate, use a state-of-the-art decision support simulation, C-ROADS (Climate Rapid Overview and Decision Support) to provide users with immediate feedback on the outcomes of their mitigation strategies at the national level, including global greenhouse gas (GHG) emissions and concentrations, mean temperature changes, sea level rise, and ocean acidification. C-ROADS outcomes are consistent with the atmosphere-ocean general circulation models (AOGCMS), such as those used by the IPCC, but runs in less than one second on ordinary laptops, providing immediate feedback to participants on the consequences of their proposed policies. Both World Climate and Future Climate role-playing games provide immersive, situated learning experiences that motivate active engagement with climate science and policy. In World Climate, participants play the role of United Nations climate treaty negotiators. Participant emissions reductions proposals are continually assessed through interactive exploration of the best available science through C-ROADS. Future Climate focuses on time delays in the climate and energy systems. Participants play the roles of three generations: today's policymakers, today's youth, and 'just born.' The game unfolds in three rounds 25 simulated years apart. In the first round, only today's policymakers make decisions; In the next round, the young become the policymakers and inherit the results of the earlier decisions, as simulated by C-ROADS. Preliminary evaluations show that both exercises have the potential to provide powerful learning experiences. University students who played World Climate in a climate change course cited it as one of the course activities "promoting the most learning." Students' responses on anonymous surveys and open-ended questions revealed that the experience affected them at visceral, as well as intellectual levels. All of the students recommended that the exercise be continued in future years and many felt that it was the most important learning experience of the semester. Similarly, understanding of climate change and the dynamics of the climate improved for the majority of Future Climate participants, and 90% of participants stated that they were more likely to take action to address climate change on a personal level because of their experience.
Evaluating the health impacts of participation in Australian community arts groups.
Kelaher, Margaret; Dunt, David; Berman, Naomi; Curry, Steve; Joubert, Lindy; Johnson, Victoria
2014-09-01
This study evaluates the impacts of three well-established community arts programmes in Victoria, Australia, on the mental health and well-being outcomes of participants typically from disadvantaged backgrounds during 2006-07. It employs a theoretical framework that reconciles evidence-based practice in health and the phenomenological nature of community arts practice. Self-determination theory (SDT) was used to do this with SDT-derived psychometric instruments [arts climate and Basic Psychological Needs Scales (BPNS)]. Self-administered surveys using these instruments as well as a measure of social support were undertaken on two occasions. Two overlapping but distinct samples were defined and analysed cross-sectionally. These were a (pre-)survey at the commencement of rehearsals for the annual performance (n = 103) and a (post-)survey following the performance (n = 70). The most significant change (MSC) technique was used to study the arts-making process and how it contributes to outcomes. Using these mixed-methods approach, impacts on the climate of the arts organizations, participant access to supportive relationships and participant's mental health and well-being were studied. There were positive changes in the BPNS (p = 0.00), as well as its autonomy (p = 0.04) and relatedness (p = 0.00) subscales. Social support increased from 65.3% in the pre-survey to 82.4% in the post-survey (p = 0.03). MSC data indicated that the supportive, collaborative environment provided by the arts organizations was highly valued by participants and was perceived to have mental health benefits.Overall, the study demonstrated the potential health promoting effects of community arts programmes in disadvantaged populations. Its multi-method approach should be further studied in evaluating other community arts programmes. © The Author (2013). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Projected climate change impacts and short term predictions on staple crops in Sub-Saharan Africa
NASA Astrophysics Data System (ADS)
Mereu, V.; Spano, D.; Gallo, A.; Carboni, G.
2013-12-01
Agriculture in Sub-Saharan Africa (SSA) drives the economy of many African countries and it is mainly rain-fed agriculture used for subsistence. Increasing temperatures, changed precipitation patterns and more frequent droughts may lead to a substantial decrease of crop yields. The projected impacts of future climate change on agriculture are expected to be significant and extensive in the SSA due to the shortening of the growing seasons and the increasing of water-stress risk. Differences in Agro-Ecological Zones and geographical characteristics of SSA influence the diverse impacts of climate change, which can greatly differ across the continent and within countries. The vulnerability of African Countries to climate change is aggravated by the low adaptive capacity of the continent, due to the increasing of its population, the widespread poverty, and other social factors. In this contest, the assessment of climate change impact on agricultural sector has a particular interest to stakeholder and policy makers, in order to identify specific agricultural sectors and Agro-Ecological Zones that could be more vulnerable to changes in climatic conditions and to develop the most appropriate policies to cope with these threats. For these reasons, the evaluation of climate change impacts for key crops in SSA was made exploring climate uncertainty and focusing on short period monitoring, which is particularly useful for food security and risk management analysis. The DSSAT-CSM (Decision Support System for Agrotechnology Transfer - Cropping System Model) software, version 4.5 was used for the analysis. Crop simulation models included in DSSAT-CSM are tools that allow to simulate physiological process of crop growth, development and production, by combining genetic crop characteristics and environmental (soil and weather) conditions. For each selected crop, the models were used, after a parameterization phase, to evaluate climate change impacts on crop phenology and production. Multiple combinations of soils and climate conditions, crop management and varieties were considered for the different Agro-Ecological Zones. The climate impact was assessed using future climate prediction, statistically and/or dynamically downscaled, for specific areas. Direct and indirect effects of different CO2 concentrations projected for the future periods were separately explored to estimate their effects on crops. Several adaptation strategies (e.g., introduction of full irrigation, shift of the ordinary sowing/planting date, changes in the ordinary fertilization management) were also evaluated with the aim to reduce the negative impact of climate change on crop production. The results of the study, analyzed at local, AEZ and country level, will be discussed.
The climate4impact portal: bridging the CMIP5 data infrastructure to impact users
NASA Astrophysics Data System (ADS)
Plieger, Maarten; Som de Cerff, Wim; Page, Christian; Hutjes, Ronald; de Jong, Fokke; Bärring, Lars; Sjökvist, Elin
2013-04-01
Together with seven other partners (CERFACS, CNRS-IPSL, SMHI, INHGA, CMCC, WUR, MF-CNRM), KNMI is involved in the FP7 project IS-ENES (http://is.enes.org), which supports the European climate modeling infrastructure, in the work package 'Bridging Climate Research Data and the Needs of the Impact Community'. The aim of this work package is to enhance the use of climate model data and to enhance the interaction with climate effect/impact communities. The portal is based on 17 impact use cases from 5 different European countries, and is evaluated by a user panel consisting of use case owners. As the climate impact community is very broad, the focus is mainly on the scientific impact community. This work has resulted in a prototype portal, the ENES portal interface for climate impact communities, that can be visited at www.climate4impact.eu. The portal is connected to all Earth System Grid Federation (ESGF) nodes containing global climate model data (GCM data) from the fifth phase of the Coupled Model Intercomparison Project (CMIP5) and later from the Coordinated Regional Climate Downscaling Experiment (CORDEX). This global network of all major climate model data centers offers services for data description, discovery and download. The climate4impact portal connects to these services and offers a user interface for searching, visualizing and downloading global climate model data and more. A challenging task was to describe the available model data and how it can be used. The portal tries to inform users about possible caveats when using GCM data. All impact use cases are described in the documentation section, using highlighted keywords pointing to detailed information in the glossary. During the project, the content management system Drupal was used to enable partners to contribute on the documentation section. In this presentation the architecture and following items will be detailed: - Security: Login using OpenID for access to the ESG data nodes. The ESG works in conjunction with several external websites and systems. The climate4impact portal uses X509 based short lived credentials, generated on behalf of the user with a MyProxy service. Single Sign-on (SSO) is used to make these websites and systems work together. - Discovery: Facetted search based on e.g. variable name, model and institute using the ESG search services. A catalog browser allows for browsing through CMIP5 and other climate model data catalogues (e.g. ESSENCE, EOBS, UNIDATA). - Download: Directly from ESG nodes and other THREDDS catalogs - Visualization: Visualize any data directly using ADAGUC dynamic Web Map Services. - Transformation: Transform your data into other formats, perform basic calculations and extractions using OCG Web Processing Services The current portal is a Prototype. It is built to explore state-of-art technologies to provide improved access to climate model data. The prototype will be evaluated and is the basis for development of an operational service. The portal and services provided will be sustained and supported during the development of these operational services (2013-2016) in the second phase of the FP7 IS-ENES project, ISENES2.
NASA Astrophysics Data System (ADS)
Mahler, B. J.; Long, A. J.; Stamm, J. F.; Poteet, M.; Symstad, A.
2013-12-01
Karst aquifers present an extreme case of flow along structurally variable pathways, making them highly dynamic systems and therefore likely to respond rapidly to climate change. In turn, many biological communities and ecosystems associated with karst are sensitive to hydrologic changes. We explored how three sites in the Edwards aquifer (Texas) and two sites in the Madison aquifer (South Dakota) might respond to projected climate change from 2011 to 2050. Ecosystems associated with these karst aquifers support federally listed endangered and threatened species and state-listed species of concern, including amphibians, birds, insects, and plants. The vulnerability of selected species associated with projected climate change was assessed. The Advanced Research Weather and Research Forecasting (WRF) model was used to simulate projected climate at a 36-km grid spacing for three weather stations near the study sites, using boundary and initial conditions from the global climate model Community Climate System Model (CCSM3) and an A2 emissions scenario. Daily temperature and precipitation projections from the WRF model were used as input for the hydrologic Rainfall-Response Aquifer and Watershed Flow (RRAWFLOW) model and the Climate Change Vulnerability Index (CCVI) model. RRAWFLOW is a lumped-parameter model that simulates hydrologic response at a single site, combining the responses of quick and slow flow that commonly characterize karst aquifers. CCVI uses historical and projected climate and hydrologic metrics to determine the vulnerability of selected species on the basis of species exposure to climate change, sensitivity to factors associated with climate change, and capacity to adapt to climate change. An upward trend in temperature was projected for 2011-2050 at all three weather stations; there was a trend (downward) in annual precipitation only for the weather station in Texas. A downward trend in mean annual spring flow or groundwater level was projected for all of the Edwards sites, but there was no significant trend for the Madison sites. Of 16 Edwards aquifer species evaluated (four amphibians, six arthropods, one fish, one mollusk, and four plants), 12 were scored as highly or moderately vulnerable under the projected climate change scenario. In contrast, all of the 8 Madison aquifer species evaluated (two mammals, one bird, one mollusk, and four plants) were scored as moderately vulnerable, stable, or intermediate between the two. The inclusion of hydrologic projections in the vulnerability assessment was essential for interpreting the effects of climate change on aquatic species of conservations concern, such as endemic salamanders. The linkage of climate, hydrologic, and vulnerability models provided a bridge to project the effects of global climate change on local karst aquifer and stream systems and selected species.
Rashford, Benjamin S.; Adams, Richard M.; Wu, Jun; Voldseth, Richard A.; Guntenspergen, Glenn R.; Werner, Brett; Johnson, W. Carter
2016-01-01
Wetland productivity in the Prairie Pothole Region (PPR) of North America is closely linked to climate. A warmer and drier climate, as predicted, will negatively affect the productivity of PPR wetlands and the services they provide. The effect of climate change on wetland productivity, however, will not only depend on natural processes (e.g., evapotranspiration), but also on human responses. Agricultural land use, the predominant use in the PPR, is unlikely to remain static as climate change affects crop yields and prices. Land use in uplands surrounding wetlands will further affect wetland water budgets and hence wetland productivity. The net impact of climate change on wetland productivity will therefore depend on both the direct effects of climate change on wetlands and the indirect effects on upland land use. We examine the effect of climate change and land-use response on semipermanent wetland productivity by combining an economic model of agricultural land-use change with an ecological model of wetland dynamics. Our results suggest that the climate change scenarios evaluated are likely to have profound effects on land use in the North and South Dakota PPR, with wheat displacing other crops and pasture. The combined pressure of land-use and climate change significantly reduces wetland productivity. In a climate scenario with a +4 °C increase in temperature, our model predicts that almost the entire region may lack the wetland productivity necessary to support wetland-dependent species.
NASA Astrophysics Data System (ADS)
Kirchhoff, C.; Vang Rasmussen, L.; Lemos, M. C.
2016-12-01
While there has been considerable focus on understanding how factors related to the creation of climate knowledge affect its uptake and use, less attention has been paid to the actors, decisions, and processes through which climate information supports, or fails to support, action. This is particularly the case concerning how different scales of decision-making influence information uptake. In this study, we seek to understand how water and resource managers' decision space influences climate information use in two Great Lakes watersheds. We find that despite the availability of tailored climate information, actual use of information in decision making remains low. Reasons include: a) lack of willingness to place climate on agendas because local managers perceive climate change as politically risky and a difficult and intangible problem; b) lack of formal mandate or authority at the city and county scale to translate climate information into on-the-ground action, c) problems with the information itself, and d) perceived lack of demand for climate information by those managers who have the mandate and authority (e.g. at the state level) to use (or help others use) climate information. Our findings suggest that 1) climate scientists and information brokers should produce information that meets a range of decision needs and reserve intensive tailoring efforts for decision makers who have authority and willingness to employ climate information, 2) without support from higher levels of decision-making (e.g. state) it is unlikely that climate information use for adaptation decisions will accelerate significantly in the next few years, and 3) the trend towards adopting more sustainability and resilience practices over climate-specific actions should be supported as an important component of the climate adaptation repertoire.
A Decision Support System for Drinking Water Production Integrating Health Risks Assessment
Delpla, Ianis; Monteith, Donald T.; Freeman, Chris; Haftka, Joris; Hermens, Joop; Jones, Timothy G.; Baurès, Estelle; Jung, Aude-Valérie; Thomas, Olivier
2014-01-01
The issue of drinking water quality compliance in small and medium scale water services is of paramount importance in relation to the 98/83/CE European Drinking Water Directive (DWD). Additionally, concerns are being expressed over the implementation of the DWD with respect to possible impacts on water quality from forecast changes in European climate with global warming and further anticipated reductions in north European acid emissions. Consequently, we have developed a decision support system (DSS) named ARTEM-WQ (AwaReness Tool for the Evaluation and Mitigation of drinking Water Quality issues resulting from environmental changes) to support decision making by small and medium plant operators and other water stakeholders. ARTEM-WQ is based on a sequential risk analysis approach that includes consideration of catchment characteristics, climatic conditions and treatment operations. It provides a holistic evaluation of the water system, while also assessing human health risks of organic contaminants potentially present in treated waters (steroids, pharmaceuticals, pesticides, bisphenol-a, polychlorobiphenyls, polycyclic aromatic hydrocarbons, petrochemical hydrocarbons and disinfection by-products; n = 109). Moreover, the system provides recommendations for improvement while supporting decision making in its widest context. The tool has been tested on various European catchments and shows a promising potential to inform water managers of risks and appropriate mitigative actions. Further improvements should include toxicological knowledge advancement, environmental background pollutant concentrations and the assessment of the impact of distribution systems on water quality variation. PMID:25046634
Sulda, Heidi; Coveney, John; Bentley, Michael
2010-03-01
To develop a framework to guide action in the public health nutrition workforce to develop policies and practices addressing factors contributing to climate change. Action/consultative research. Interviews - South Australia, questionnaire - Australia. Interviews - key informants (n 6) were from various government, academic and non-government positions, invited through email. Questionnaire - participants were members of the public health nutrition workforce (n 186), recruited to the study through emails from public health nutrition contacts for each State in Australia (with the exception of South Australia). Support by participants for climate change as a valid role for dietitians and nutritionists was high (78 %). However, climate change was ranked low against other public health nutrition priorities. Support of participants to conduct programmes to address climate change from professional and work organisations was low. The final framework developed included elements of advocacy/lobbying, policy, professional recognition/support, organisational support, knowledge/skills, partnerships and programmes. This research demonstrates a need for public health nutrition to address climate change, which requires support by organisations, policy, improved knowledge and increased professional development opportunities.
Gower, Amy L; Forster, Myriam; Gloppen, Kari; Johnson, Abigail Z; Eisenberg, Marla E; Connett, John E; Borowsky, Iris W
2017-10-14
Lesbian, gay, bisexual, and transgender (LGBT) youth experience disproportionate rates of bullying compared to their heterosexual peers. Schools are well-positioned to address these disparities by creating supportive school climates for LGBT youth, but more research is needed to examine the variety of practices and professional development opportunities put in place to this end. The current study examines how school practices to create supportive LGBT student climate relate to student reports of bullying. Student-level data come from the 2013 Minnesota Student Survey, a state-wide survey of risk and protective factors. Ninth and eleventh grade students (N = 31,183) reported on frequency of physical and relational bullying victimization and perpetration and sexual orientation-based harassment. School administrators reported on six practices related to creating supportive LGBT school climate (N = 103 schools): having a point person for LGBT student issues, displaying sexual orientation-specific content, having a gay-straight alliance, discussing bullying based on sexual orientation, and providing professional development around LGBT inclusion and LGBT student issues. An index was created to indicate how many practices each school used (M = 2.45; SD = 1.76). Multilevel logistic regressions indicated that students attending schools with more supportive LGBT climates reported lower odds of relational bullying victimization, physical bullying perpetration, and sexual orientation-based harassment compared to students in schools with less supportive LGBT climates. Sexual orientation did not moderate these relations, indicating that LGBT-supportive practices may be protective for all students, regardless of their sexual orientation. Findings support school-wide efforts to create supportive climates for LGBQ youth as part of a larger bullying prevention strategy.
NASA Astrophysics Data System (ADS)
Tadesse, T.; Zaitchik, B. F.; Habib, S.; Funk, C. C.; Senay, G. B.; Dinku, T.; Policelli, F. S.; Block, P.; Baigorria, G. A.; Beyene, S.; Wardlow, B.; Hayes, M. J.
2014-12-01
The development of effective strategies to adapt to changes in the character of droughts and floods in Africa will rely on improved seasonal prediction systems that are robust to an evolving climate baseline and can be integrated into disaster preparedness and response. Many efforts have been made to build models to improve seasonal forecasts in the Greater Horn of Africa region (GHA) using satellite and climate data, but these efforts and models must be improved and translated into future conditions under evolving climate conditions. This has considerable social significance, but is challenged by the nature of climate predictability and the adaptability of coupled natural and human systems facing exposure to climate extremes. To address these issues, work is in progress under a project funded by NASA. The objectives of the project include: 1) Characterize and explain large-scale drivers in the ocean-atmosphere-land system associated with years of extreme flood or drought in the GHA. 2) Evaluate the performance of state-of-the-art seasonal forecast methods for prediction of decision-relevant metrics of hydrologic extremes. 3) Apply seasonal forecast systems to prediction of socially relevant impacts on crops, flood risk, and economic outcomes, and assess the value of these predictions to decision makers. 4) Evaluate the robustness of seasonal prediction systems to evolving climate conditions. The National Drought Mitigation Center (University of Nebraska-Lincoln, USA) is leading this project in collaboration with the USGS, Johns Hopkins University, University of Wisconsin-Madison, the International Research Institute for Climate and Society, NASA, and GHA local experts. The project is also designed to have active engagement of end users in various sectors, university researchers, and extension agents in GHA through workshops and/or webinars. This project is expected improve and implement new and existing climate- and remote sensing-based agricultural, meteorological, and hydrologic drought and flood monitoring products (or indicators) that can enhance the preparedness for extreme climate events and climate change adaptation and mitigation strategies in the GHA. Even though this project is in its first year, the preliminary results and future plans to carry out the objectives will be presented.
Localizing Climate Information for Municipal Planning in the Central U.S.
NASA Astrophysics Data System (ADS)
Shulski, M.; Umphlett, N.; Abdel-Monem, T.; Tang, Z.; Uhlarik, F.
2017-12-01
The impacts of projected climate change are an ongoing concern for municipalities. Planning at the local level often involves investigations of multiple hazards on decadal timescales. Of particular interest to cities are implications of too much or too little water, snow storms, heat waves, and freeze/thaw cycles on infrastructure, health, energy demands and water quality and availability. A two-year project led by the University of Nebraska - Lincoln has brought together scientist and stakeholder for the purpose of informing municipal planning and climate adaptation for 12 cities in the lower Missouri River Basin states (IA, NE, KS, MO). City-specific climate reports have been developed with municipal input to aid local planning efforts. Surveys to assess municipal climate data usage were distributed to all cities with a population greater than 5,000 in the four-state region. In addition, planning efforts for 18 municipalities have been evaluated for nearly 20 cities in the region to investigate local hazard mitigation, emergency, and comprehensive plans. This presentation will outline key outcomes of the project and discuss decision support tools developed in co-production with city planners.
Data in support of energy performance of double-glazed windows.
Shakouri, Mahmoud; Banihashemi, Saeed
2016-06-01
This paper provides the data used in a research project to propose a new simplified windows rating system based on saved annual energy ("Developing an empirical predictive energy-rating model for windows by using Artificial Neural Network" (Shakouri Hassanabadi and Banihashemi Namini, 2012) [1], "Climatic, parametric and non-parametric analysis of energy performance of double-glazed windows in different climates" (Banihashemi et al., 2015) [2]). A full factorial simulation study was conducted to evaluate the performance of 26 different types of windows in a four-story residential building. In order to generalize the results, the selected windows were tested in four climates of cold, tropical, temperate, and hot and arid; and four different main orientations of North, West, South and East. The accompanied datasets include the annual saved cooling and heating energy in different climates and orientations by using the selected windows. Moreover, a complete dataset is provided that includes the specifications of 26 windows, climate data, month, and orientation of the window. This dataset can be used to make predictive models for energy efficiency assessment of double glazed windows.
Community, Collective or Movement? Evaluating Theoretical Perspectives on Network Building
NASA Astrophysics Data System (ADS)
Spitzer, W.
2015-12-01
Since 2007, the New England Aquarium has led a national effort to increase the capacity of informal science venues to effectively communicate about climate change. We are now leading the NSF-funded National Network for Ocean and Climate Change Interpretation (NNOCCI), partnering with the Association of Zoos and Aquariums, FrameWorks Institute, Woods Hole Oceanographic Institution, Monterey Bay Aquarium, and National Aquarium, with evaluation conducted by the New Knowledge Organization, Pennsylvania State University, and Ohio State University. NNOCCI enables teams of informal science interpreters across the country to serve as "communication strategists" - beyond merely conveying information they can influence public perceptions, given their high level of commitment, knowledge, public trust, social networks, and visitor contact. We provide in-depth training as well as an alumni network for ongoing learning, implementation support, leadership development, and coalition building. Our goals are to achieve a systemic national impact, embed our work within multiple ongoing regional and national climate change education networks, and leave an enduring legacy. What is the most useful theoretical model for conceptualizing the work of the NNOCCI community? This presentation will examine the pros and cons of three perspectives -- community of practice, collective impact, and social movements. The community of practice approach emphasizes use of common tools, support for practice, social learning, and organic development of leadership. A collective impact model focuses on defining common outcomes, aligning activities toward a common goal, structured collaboration. A social movement emphasizes building group identity and creating a sense of group efficacy. This presentation will address how these models compare in terms of their utility in program planning and evaluation, their fit with the unique characteristics of the NNOCCI community, and their relevance to our program goals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hutchings, Jennifer; Joseph, Renu
2013-09-14
The goal of this project is to develop an eddy resolving ocean model (POP) with tides coupled to a sea ice model (CICE) within the Regional Arctic System Model (RASM) to investigate the importance of ocean tides and mesoscale eddies in arctic climate simulations and quantify biases associated with these processes and how their relative contribution may improve decadal to centennial arctic climate predictions. Ocean, sea ice and coupled arctic climate response to these small scale processes will be evaluated with regard to their influence on mass, momentum and property exchange between oceans, shelf-basin, ice-ocean, and ocean-atmosphere. The project willmore » facilitate the future routine inclusion of polar tides and eddies in Earth System Models when computing power allows. As such, the proposed research addresses the science in support of the BER’s Climate and Environmental Sciences Division Long Term Measure as it will improve the ocean and sea ice model components as well as the fully coupled RASM and Community Earth System Model (CESM) and it will make them more accurate and computationally efficient.« less
Climate Change and Vector Borne Diseases on NASA Langley Research Center
NASA Technical Reports Server (NTRS)
Cole, Stuart K.; DeYoung, Russell J.; Shepanek, Marc A.; Kamel, Ahmed
2014-01-01
Increasing global temperature, weather patterns with above average storm intensities, and higher sea levels have been identified as phenomena associated with global climate change. As a causal system, climate change could contribute to vector borne diseases in humans. Vectors of concern originate from the vicinity of Langley Research Center include mosquitos and ticks that transmit disease that originate regionally, nationwide, or from outside the US. Recognizing changing conditions, vector borne diseases propagate under climate change conditions, and understanding the conditions in which they may exist or propagate, presents opportunities for monitoring their progress and mitigating their potential impacts through communication, continued monitoring, and adaptation. Personnel comprise a direct and fundamental support to NASA mission success, continuous and improved understanding of climatic conditions, and the resulting consequence of disease from these conditions, helps to reduce risk in terrestrial space technologies, ground operations, and space research. This research addresses conditions which are attributed to climatic conditions which promote environmental conditions conducive to the increase of disease vectors. This investigation includes evaluation of local mosquito population count and rainfall data for statistical correlation and identification of planning recommendations unique to LaRC, other NASA Centers to assess adaptation approaches, Center-level planning strategies.
A Three-Legged Stool or Race? Governance Models for NOAA RISAs, DOI CSCs, and USDA Climate Hubs
NASA Astrophysics Data System (ADS)
Foster, J. G.
2014-12-01
NOAAs Regional Integrated Sciences and Assessments (RISA) Teams, DOIs Climate Science Centers (CSCs), and USDAs Regional Climate Hubs (RCHs) have common missions of integrating climate and related knowledge across scientific disciplines and regions to create "actionable" information that decision-makes can use to manage climate risks and impacts at state and local scales. However, the sponsoring agency programs, university investigators, and local federal officials govern each differently. The three models of program and center governance are 1) exclusively university (RISAs), 2) a hybrid of Federal government and (host) university (CSCs,), and 3) exclusively Federal (Hubs). Each model has it's advantages and disadvantages in terms of legal definition and authority, scientific mission requirements and strategies, flexibility and legitimacy to conduct research and to collaborate regionally with constituencies, leadership and governance approach and "friction points,", staff capacity and ability to engage stakeholders, necessity to deliver products and services, bureaucratic oversight, performance evaluation, and political support at Congressional, state, and local levels. Using available sources of information and data, this paper will compare and contrast the strengths and weakness of these three regional applied climate science center governance models.
A Three-Legged Stool or Race? Governance Models for NOAA RISAs, DOI CSCs, and USDA Climate Hub
NASA Astrophysics Data System (ADS)
Foster, J. G.
2014-12-01
NOAAs Regional Integrated Sciences and Assessments (RISA) Teams, DOIs Climate Science Centers (CSCs), and USDAs Regional Climate Hubs (RCHs) have common missions of integrating climate and related knowledge across scientific disciplines and regions to create "actionable" information that decision-makes can use to manage climate risks and impacts at state and local scales. However, the sponsoring agency programs, university investigators, and local federal officials govern each differently. The three models of program and center governance are 1) exclusively university (RISAs), 2) a hybrid of Federal government and (host) university (CSCs,), and 3) exclusively Federal (Hubs). Each model has it's advantages and disadvantages in terms of legal definition and authority, scientific mission requirements and strategies, flexibility and legitimacy to conduct research and to collaborate regionally with constituencies, leadership and governance approach and "friction points,", staff capacity and ability to engage stakeholders, necessity to deliver products and services, bureaucratic oversight, performance evaluation, and political support at Congressional, state, and local levels. Using available sources of information and data, this paper will compare and contrast the strengths and weakness of these three regional applied climate science center governance models.
Otmani del Barrio, Mariam
2017-01-01
Background: There is limited published evidence of the effectiveness of adaptation in managing the health risks of climate variability and change in low- and middle-income countries. Objectives: To document lessons learned and good practice examples from health adaptation pilot projects in low- and middle-income countries to facilitate assessing and overcoming barriers to implementation and to scaling up. Methods: We evaluated project reports and related materials from the first five years of implementation (2008–2013) of multinational health adaptation projects in Albania, Barbados, Bhutan, China, Fiji, Jordan, Kazakhstan, Kenya, Kyrgyzstan, Philippines, Russian Federation, Tajikistan, and Uzbekistan. We also collected qualitative data through a focus group consultation and 19 key informant interviews. Results: Our recommendations include that national health plans, policies, and budget processes need to explicitly incorporate the risks of current and projected climate variability and change. Increasing resilience is likely to be achieved through longer-term, multifaceted, and collaborative approaches, with supporting activities (and funding) for capacity building, communication, and institutionalized monitoring and evaluation. Projects should be encouraged to focus not just on shorter-term outputs to address climate variability, but also on establishing processes to address longer-term climate change challenges. Opportunities for capacity development should be created, identified, and reinforced. Conclusions: Our analyses highlight that, irrespective of resource constraints, ministries of health and other institutions working on climate-related health issues in low- and middle-income countries need to continue to prepare themselves to prevent additional health burdens in the context of a changing climate and socioeconomic development patterns. https://doi.org/10.1289/EHP405 PMID:28632491
Job characteristics and safety climate: the role of effort-reward and demand-control-support models.
Phipps, Denham L; Malley, Christine; Ashcroft, Darren M
2012-07-01
While safety climate is widely recognized as a key influence on organizational safety, there remain questions about the nature of its antecedents. One potential influence on safety climate is job characteristics (that is, psychosocial features of the work environment). This study investigated the relationship between two job characteristics models--demand-control-support (Karasek & Theorell, 1990) and effort-reward imbalance (Siegrist, 1996)--and safety climate. A survey was conducted with a random sample of 860 British retail pharmacists, using the job contents questionnaire (JCQ), effort-reward imbalance indicator (ERI) and a measure of safety climate in pharmacies. Multivariate data analyses found that: (a) both models contributed to the prediction of safety climate ratings, with the demand-control-support model making the largest contribution; (b) there were some interactions between demand, control and support from the JCQ in the prediction of safety climate scores. The latter finding suggests the presence of "active learning" with respect to safety improvement in high demand, high control settings. The findings provide further insight into the ways in which job characteristics relate to safety, both individually and at an aggregated level.
Nylén, Eva Charlotta; Lindfors, Petra; Ishäll, Lars; Göransson, Sara; Aronsson, Gunnar; Kylin, Camilla; Sverke, Magnus
2017-01-01
Psychosocial factors, including job demands and poor resources, have been linked to stress, health problems, and negative job attitudes. However, worksite based interventions and programs targeting psychosocial factors may change employees' perceptions of their work climate and work attitudes. This pilot study describes a newly developed worksite based participatory organizational intervention program that was tested in the social service sector. It is evaluated using participants' perceptions of the intervention to investigate its acceptability as a feature of feasibility and its short-term effects on work climate factors (job demands and resources) and work-related attitudes. Forty employees of a Swedish social service unit provided self-reports before, during, and after the intervention. As for effects, quantitative role overload and social support decreased while turnover intention increased. Responses to an open-ended question showed that participants considered the intervention program valuable for addressing issues relating to the psychosocial work climate. Although the findings are preliminary, it was possible to carry out this worksite based participatory organizational program in this particular setting. Also, the preliminary findings underscore the challenges associated with designing and implementing this type of intervention program, thus adding to the methodological discussion on implementation and evaluation.
Advance strategy for climate change adaptation and mitigation in cities
NASA Astrophysics Data System (ADS)
Varquez, A. C. G.; Kanda, M.; Darmanto, N. S.; Sueishi, T.; Kawano, N.
2017-12-01
An on-going 5-yr project financially supported by the Ministry of Environment, Japan, has been carried out to specifically address the issue of prescribing appropriate adaptation and mitigation measures to climate change in cities. Entitled "Case Study on Mitigation and Local Adaptation to Climate Change in an Asian Megacity, Jakarta", the project's relevant objectives is to develop a research framework that can consider both urbanization and climate change with the main advantage of being readily implementable for all cities around the world. The test location is the benchmark city, Jakarta, Indonesia, with the end focus of evaluating the benefits of various mitigation and adaptation strategies in Jakarta and other megacities. The framework was designed to improve representation of urban areas when conducting climate change investigations in cities; and to be able to quantify separately the impacts of urbanization and climate change to all cities globally. It is comprised of a sophisticated, top-down, multi-downscaling approach utilizing a regional model (numerical weather model) and a microscale model (energy balance model and CFD model), with global circulation models (GCM) as input. The models, except the GCM, were configured to reasonably consider land cover, urban morphology, and anthropogenic heating (AH). Equally as important, methodologies that can collect and estimate global distribution of urban parametric and AH datasets are continually being developed. Urban growth models, climate scenario matrices that match representative concentration pathways with shared socio-economic pathways, present distribution of socio-demographic indicators such as population and GDP, existing GIS datasets of urban parameters, are utilized. From these tools, future urbanization (urban morphological parameters and AH) can be introduced into the models. Sensitivity using various combinations of GCM and urbanization can be conducted. Furthermore, since the models utilize parameters that can be readily modified to suit certain countermeasures, adaptation and mitigation strategies can be evaluated using thermal comfort and other social indicators. With the approaches introduced through this project, a deeper understanding of urban-climate interactions in the changing global climate can be achieved.
Cox, Anne; Williams, Lavon
2008-04-01
Research illustrates the positive roles of perceived competence, autonomy, and mastery climate and the negative role of performance climate in student motivation in physical education. Less research has examined perceptions of relationships within this setting (i.e., perceived teacher support and relatedness) and their role in student motivation. The purpose of this study was to test the mediating roles of perceived competence, autonomy, and relatedness in the relationship between social contextual factors and motivation in physical education students (N = 508). Results from structural equation modeling showed that perceived competence, autonomy, and relatedness partially mediated the relationship between perceived teacher support and self-determined motivation and that mastery climate related directly to self-determined motivation. The results highlight the importance of perceived teacher support, mastery climate, and relatedness to motivation in physical education.
Mountain landscapes offer few opportunities for high-elevation tree species migration
Bell, David M.; Bradford, John B.; Lauenroth, William K.
2014-01-01
Climate change is anticipated to alter plant species distributions. Regional context, notably the spatial complexity of climatic gradients, may influence species migration potential. While high-elevation species may benefit from steep climate gradients in mountain regions, their persistence may be threatened by limited suitable habitat as land area decreases with elevation. To untangle these apparently contradictory predictions for mountainous regions, we evaluated the climatic suitability of four coniferous forest tree species of the western United States based on species distribution modeling (SDM) and examined changes in climatically suitable areas under predicted climate change. We used forest structural information relating to tree species dominance, productivity, and demography from an extensive forest inventory system to assess the strength of inferences made with a SDM approach. We found that tree species dominance, productivity, and recruitment were highest where climatic suitability (i.e., probability of species occurrence under certain climate conditions) was high, supporting the use of predicted climatic suitability in examining species risk to climate change. By predicting changes in climatic suitability over the next century, we found that climatic suitability will likely decline, both in areas currently occupied by each tree species and in nearby unoccupied areas to which species might migrate in the future. These trends were most dramatic for high elevation species. Climatic changes predicted over the next century will dramatically reduce climatically suitable areas for high-elevation tree species while a lower elevation species, Pinus ponderosa, will be well positioned to shift upslope across the region. Reductions in suitable area for high-elevation species imply that even unlimited migration would be insufficient to offset predicted habitat loss, underscoring the vulnerability of these high-elevation species to climatic changes.
ClimateSpark: An In-memory Distributed Computing Framework for Big Climate Data Analytics
NASA Astrophysics Data System (ADS)
Hu, F.; Yang, C. P.; Duffy, D.; Schnase, J. L.; Li, Z.
2016-12-01
Massive array-based climate data is being generated from global surveillance systems and model simulations. They are widely used to analyze the environment problems, such as climate changes, natural hazards, and public health. However, knowing the underlying information from these big climate datasets is challenging due to both data- and computing- intensive issues in data processing and analyzing. To tackle the challenges, this paper proposes ClimateSpark, an in-memory distributed computing framework to support big climate data processing. In ClimateSpark, the spatiotemporal index is developed to enable Apache Spark to treat the array-based climate data (e.g. netCDF4, HDF4) as native formats, which are stored in Hadoop Distributed File System (HDFS) without any preprocessing. Based on the index, the spatiotemporal query services are provided to retrieve dataset according to a defined geospatial and temporal bounding box. The data subsets will be read out, and a data partition strategy will be applied to equally split the queried data to each computing node, and store them in memory as climateRDDs for processing. By leveraging Spark SQL and User Defined Function (UDFs), the climate data analysis operations can be conducted by the intuitive SQL language. ClimateSpark is evaluated by two use cases using the NASA Modern-Era Retrospective Analysis for Research and Applications (MERRA) climate reanalysis dataset. One use case is to conduct the spatiotemporal query and visualize the subset results in animation; the other one is to compare different climate model outputs using Taylor-diagram service. Experimental results show that ClimateSpark can significantly accelerate data query and processing, and enable the complex analysis services served in the SQL-style fashion.
NASA Astrophysics Data System (ADS)
Kadow, Christopher; Illing, Sebastian; Schartner, Thomas; Ulbrich, Uwe; Cubasch, Ulrich
2017-04-01
Operationalization processes are important for Weather and Climate Services. Complex data and work flows need to be combined fast to fulfill the needs of service centers. Standards in data and software formats help in automatic solutions. In this study we show a software solution in between hindcasts, forecasts, and validation to be operationalized. Freva (see below) structures data and evaluation procedures and can easily be monitored. Especially in the development process of operationalized services, Freva supports scientists and project partners. The showcase of the decadal climate prediction project MiKlip (fona-miklip.de) shows such a complex development process. Different predictions, scientists input, tasks, and time evolving adjustments need to be combined to host precise climate informations in a web environment without losing track of its evolution. The Freie Univ Evaluation System Framework (Freva - freva.met.fu-berlin.de) is a software infrastructure for standardized data and tool solutions in Earth system science. Freva runs on high performance computers to handle customizable evaluation systems of research projects, institutes or universities. It combines different software technologies into one common hybrid infrastructure, including all features present in the shell and web environment. The database interface satisfies the international standards provided by the Earth System Grid Federation (ESGF). Freva indexes different data projects into one common search environment by storing the meta data information of the self-describing model, reanalysis and observational data sets in a database. This implemented meta data system with its advanced but easy-to-handle search tool supports users, developers and their plugins to retrieve the required information. A generic application programming interface (API) allows scientific developers to connect their analysis tools with the evaluation system independently of the programming language used. Users of the evaluation techniques benefit from the common interface of the evaluation system without any need to understand the different scripting languages. Facilitation of the provision and usage of tools and climate data automatically increases the number of scientists working with the data sets and identifying discrepancies. The integrated webshell (shellinabox) adds a degree of freedom in the choice of the working environment and can be used as a gateto the research projects HPC. Plugins are able to integrate their e.g. post-processed results into the database ofthe user. This allows e.g. post-processing plugins to feed statistical analysis plugins, which fosters an active exchange between plugin developers of a research project. Additionally, the history and configuration sub-system stores every analysis performed with the evaluation system in a database. Configurations and results of the tools can be shared among scientists via shell or web system. Therefore, plugged-in tools benefit from transparency and reproducibility. Furthermore, if configurations match while starting an evaluation plugin, the system suggests to use results already produced by other users - saving CPU/h, I/O, disk space and time. The efficient interaction between different technologies improves the Earth system modeling science framed by Freva.
NASA Astrophysics Data System (ADS)
Brady, M.; Lathrop, R.; Auermuller, L. M.; Leichenko, R.
2016-12-01
Despite the recent surge of Web-based decision support tools designed to promote resiliency in U.S. coastal communities, to-date there has been no systematic study of their effectiveness. This study demonstrates a method to evaluate important aspects of effectiveness of four Web map tools designed to promote consideration of climate risk information in local decision-making and planning used in coastal New Jersey. In summer 2015, the research team conducted in-depth phone interviews with users of one regulatory and three non-regulatory Web map tools using a semi-structured questionnaire. The interview and analysis design drew from a combination of effectiveness evaluation approaches developed in software and information usability, program evaluation, and management information system (MIS) research. Effectiveness assessment results were further analyzed and discussed in terms of conceptual hierarchy of system objectives defined by respective tool developer and user organizations represented in the study. Insights from the interviews suggest that users rely on Web tools as a supplement to desktop and analog map sources because they provide relevant and up-to-date information in a highly accessible and mobile format. The users also reported relying on multiple information sources and comparison between digital and analog sources for decision support. However, with respect to this decision support benefit, users were constrained by accessibility factors such as lack of awareness and training with some tools, lack of salient information such as planning time horizons associated with future flood scenarios, and environmental factors such as mandates restricting some users to regulatory tools. Perceptions of Web tool credibility seem favorable overall, but factors including system design imperfections and inconsistencies in data and information across platforms limited trust, highlighting a need for better coordination between tools. Contributions of the study include user feedback on web-tool system designs consistent with collaborative methods for enhancing usability and a systematic look at effectiveness that includes both user perspectives and consideration of developer and organizational objectives.
NASA Astrophysics Data System (ADS)
Grecni, Z. N.; Keener, V. W.
2017-12-01
An external evaluation found that the inclusion of users of climate information and diverse regional experts in developing the 2012 Pacific Islands Regional Climate Assessment was a key factor in the report's perceived credibility and usefulness (Moser 2013). The 2012 assessment is seen as a foundational summary for Hawai`i and the U.S.-Affiliated Pacific Islands and is still used in vulnerability assessments and to support decisions by public- and private-sector actors. Recently, lessons learned from the 2012 assessment process were applied in engaging technical experts and potential future users in developing a chapter for the U.S. National Climate Assessment, as a regional update that builds on previous assessment activities. In the absence of downscaled climate projection scenarios and products available to the contiguous U.S., the Pacific Islands chapter continued to draw on projections from regional climate models and extensive user engagement. Through surveys, webinars, technical sectoral workshops, and peer review networks, the regional author team received input from a range of stakeholders. In particular, engagement aimed to identify key risks in sectors of importance to the Hawai`i and U.S.-Affiliated Pacific Islands region and cases in which stakeholder groups are already implementing measures toward resilience and adaptation. Data collection began during the chapter development process and will continue at the release of the 4th National Climate Assessment in 2018, with the aim of evaluating how stakeholder engagement affects the assessment's usefulness in assisting island communities to understand risks and vulnerabilities and review potential adaptation strategies.
Climate change and Public health: vulnerability, impacts, and adaptation
NASA Astrophysics Data System (ADS)
Guzzone, F.; Setegn, S.
2013-12-01
Climate Change plays a significant role in public health. Changes in climate affect weather conditions that we are accustomed to. Increases in the frequency or severity of extreme weather events such as storms could increase the risk of dangerous flooding, high winds, and other direct threats to people and property. Changes in temperature, precipitation patterns, and extreme events could enhance the spread of some diseases. According to studies by EPA, the impacts of climate change on health will depend on many factors. These factors include the effectiveness of a community's public health and safety systems to address or prepare for the risk and the behavior, age, gender, and economic status of individuals affected. Impacts will likely vary by region, the sensitivity of populations, the extent and length of exposure to climate change impacts, and society's ability to adapt to change. Transmissions of infectious disease have been associated with social, economic, ecological, health care access, and climatic factors. Some vector-borne diseases typically exhibit seasonal patterns in which the role of temperature and rainfall is well documented. Some of the infectious diseases that have been documented by previous studies, include the correlation between rainfall and drought in the occurrence of malaria, the influence of the dry season on epidemic meningococcal disease in the sub-Saharan African, and the importance of warm ocean waters in driving cholera occurrence in the Ganges River delta in Asia The rise of climate change has been a major concern in the public health sector. Climate change mainly affects vulnerable populations especially in developing countries; therefore, it's important that public health advocates are involve in the decision-making process in order to provide resources and preventative measures for the challenges that are associated with climate change. The main objective of this study is to assess the vulnerability and impact of climate change on public health and identify appropriate adaptation strategies. Several studies have evaluated the impact of climate change on health, which have included evaluating the current associations between the recent changes in climate, and the evidence base analysis of current, as well as projecting the future impacts of climate change on health. This study will document the use of building an integrated approach for sustainable management of climate, environmental, health surveillance and epidemiological data that will support the assessment of vulnerability, impact and adaption to climate change.
Climate change and the effects of dengue upon Australia: An analysis of health impacts and costs
NASA Astrophysics Data System (ADS)
Newth, D.; Gunasekera, D.
2010-08-01
Projected regional warming and climate change analysis and health impact studies suggest that Australia is potentially vulnerable to increased occurrence of vector borne diseases such as dengue fever. Expansion of the dengue fever host, Aedes aegypti could potentially pose a significant public health risk. To manage such health risks, there is a growing need to focus on adaptive risk management strategies. In this paper, we combine analyses from climate, biophysical and economic models with a high resolution population model for disease spread, the EpiCast model to analyse the health impacts and costs of spread of dengue fever. We demonstrate the applicability of EpiCast as a decision support tool to evaluate mitigation strategies to manage the public health risks associated with shifts in the distribution of dengue fever in Australia.
NASA Astrophysics Data System (ADS)
Matulla, Christoph; Namyslo, Joachim; Fuchs, Tobias; Türk, Konrad
2013-04-01
The European road sector is vulnerable to extreme weather phenomena, which can cause large socio-economic losses. Almost every year there occur several weather triggered events (like heavy precipitation, floods, landslides, high winds, snow and ice, heat or cold waves, etc.), that disrupt transportation, knock out power lines, cut off populated regions from the outside and so on. So, in order to avoid imbalances in the supply of vital goods to people as well as to prevent negative impacts on health and life of people travelling by car it is essential to know present and future threats to roads. Climate change might increase future threats to roads. CliPDaR focuses on parts of the European road network and contributes, based on the current body of knowledge, to the establishment of guidelines helping to decide which methods and scenarios to apply for the estimation of future climate change based challenges in the field of road maintenance. Based on regional scale climate change projections specific road-impact models are applied in order to support protection measures. In recent years, it has been recognised that it is essential to assess the uncertainty and reliability of given climate projections by using ensemble approaches and downscaling methods. A huge amount of scientific work has been done to evaluate these approaches with regard to reliability and usefulness for investigations on possible impacts of climate changes. CliPDaR is going to collect the existing approaches and methodologies in European countries, discuss their differences and - in close cooperation with the road owners - develops a common line on future applications of climate projection data to road impact models. As such, the project will focus on reviewing and assessing existing regional climate change projections regarding transnational highway transport needs. The final project report will include recommendations how the findings of CliPDaR may support the decision processes of European national road administrations regarding possible future climate change impacts. First project results are presented at the conference.
Engaging Students In The Science Of Climate Change
NASA Astrophysics Data System (ADS)
Rhew, R. C.; Halversen, C.; Weiss, E.; Pedemonte, S.; Weirman, T.
2013-12-01
Climate change is arguably the defining environmental issue of our generation. It is thus increasingly necessary for every member of the global community to understand the basic underlying science of Earth's climate system and how it is changing in order to make informed, evidence-based decisions about how we will respond individually and as a society. Through exploration of the inextricable interconnection between Earth's ocean, atmosphere and climate, we believe students will be better prepared to tackle the complex issues surrounding the causes and effects of climate change and evaluate possible solutions. If students are also given opportunities to gather evidence from real data and use scientific argumentation to make evidence-based explanations about climate change, not only will they gain an increased understanding of the science concepts and science practices, the students will better comprehend the nature of climate change science. Engaging in argument from evidence is a scientific practice not only emphasized in the Framework for K-12 Science Education and the Next Generation Science Standards (NGSS), but also emphasized in the Common Core State Standards for English Language Arts & Literacy in History/Social Studies and Science (CCSS). This significant overlap between NGSS and CCSS has implications for science and language arts classrooms, and should influence how we support and build students' expertise with this practice of sciences. The featured exemplary curricula supports middle school educators as they address climate change in their classrooms. The exemplar we will use is the NOAA-funded Ocean Sciences Sequence (OSS) for Grades 6-8: The ocean-atmosphere connection and climate change, which are curriculum units that deliver rich science content correlated to the Next Generation Science Standards (NGSS) Disciplinary Core Ideas and an emphasis on the Practices of Science, as called for in NGSS and the Framework. Designed in accordance with the latest research on learning this curriculum provides numerous opportunities for students to use real data to make evidence-based explanations. During the session, we will discuss ways in which students can use scientific data related to climate change as evidence in their construction of scientific arguments.
Arbuckle, J Gordon; Morton, Lois Wright; Hobbs, Jon
2015-02-01
Agriculture is vulnerable to climate change and a source of greenhouse gases (GHGs). Farmers face pressures to adjust agricultural systems to make them more resilient in the face of increasingly variable weather (adaptation) and reduce GHG production (mitigation). This research examines relationships between Iowa farmers' trust in environmental or agricultural interest groups as sources of climate information, climate change beliefs, perceived climate risks to agriculture, and support for adaptation and mitigation responses. Results indicate that beliefs varied with trust, and beliefs in turn had a significant direct effect on perceived risks from climate change. Support for adaptation varied with perceived risks, while attitudes toward GHG reduction (mitigation) were associated predominantly with variation in beliefs. Most farmers were supportive of adaptation responses, but few endorsed GHG reduction, suggesting that outreach should focus on interventions that have adaptive and mitigative properties (e.g., reduced tillage, improved fertilizer management).
Evaluation of Historical and Projected Agricultural Climate Risk Over the Continental US
NASA Astrophysics Data System (ADS)
Zhu, X.; Troy, T. J.; Devineni, N.
2016-12-01
Food demands are rising due to an increasing population with changing food preferences, which places pressure on agricultural systems. In addition, in the past decade climate extremes have highlighted the vulnerability of our agricultural production to climate variability. Quantitative analyses in the climate-agriculture research field have been performed in many studies. However, climate risk still remains difficult to evaluate at large scales yet shows great potential of help us better understand historical climate change impacts and evaluate the future risk given climate projections. In this study, we developed a framework to evaluate climate risk quantitatively by applying statistical methods such as Bayesian regression, distribution fitting, and Monte Carlo simulation. We applied the framework over different climate regions in the continental US both historically and for modeled climate projections. The relative importance of any major growing season climate index, such as maximum dry period or heavy precipitation, was evaluated to determine what climate indices play a role in affecting crop yields. The statistical modeling framework was applied using county yields, with irrigated and rainfed yields separated to evaluate the different risk. This framework provides estimates of the climate risk facing agricultural production in the near-term that account for the full uncertainty of climate occurrences, range of crop response, and spatial correlation in climate. In particular, the method provides robust estimates of importance of irrigation in mitigating agricultural climate risk. The results of this study can contribute to decision making about crop choice and water use in an uncertain climate.
Limantol, Andrew Manoba; Keith, Bruce Edward; Azabre, Bismark Atiayure; Lennartz, Bernd
2016-01-01
Rain-fed agriculture remains the source of employment for a majority of Ghana's population, particularly in northern Ghana where annual rainfall is low. The purpose of this study is to examine farmers' perceptions and adaptation practices to climate change and variability in accordance with actual recorded weather data of the Vea catchment in Upper East Region of northern Ghana during the time interval from 1972 to 2012. Climatic data over 41-years (1972-2012) from four stations in vicinity of the catchment was evaluated to identify actual weather outcomes. A survey questionnaire targeting farmers with at least 30-years of farming experience in the area was administered in six of the eleven agricultural enumeration areas in the catchment covering 305 km(2). Of the 466 farmers interviewed, 79 % utilized rain-fed practices while 21 % utilized some form of irrigation. Results indicate that nearly 90 % of the farmers interviewed believe that temperature increased over the past 30-years, while over 94 % of the farmers believe that amount of rainfall, duration, intensity and rainy days has decreased. Nearly 96 % of the farmers believe that their farms are extremely vulnerable to decreased rainfall, droughts and changed timing of rainfall events. Climatic data of the catchment indicates a rising trend in temperature but no long-term changes in annual and monthly rainfall, thereby possibly increasing levels of evapotranspiration. While no statistical differences were found between rain-fed and irrigation agricultural types regarding receipt of external support, their approaches to climatic change adaptation do differ. Patently, 94 and 90 % of farmers relying on rain-fed and irrigation strategies respectively receive some form of support, primarily via extension services. Farmers using rain-fed practices adjust to climate variability by varying crop types via rotation without fertilizer while farmers employing irrigation practices are more likely to offset climate variability with a greater use of fertilizer application. The Vea catchment faces rising temperature and evapotranspiration trends. Farmers are aware of these climatic changes and are adapting strategies to cope with the effects but require support. Adequate extension services and irrigation facilities are needed to assist farmers in order to sustain their livelihoods on the long run.
Integrating Climate Projections into Multi-Level City Planning: A Texas Case Study
NASA Astrophysics Data System (ADS)
Hayhoe, K.; Gelca, R.; Baumer, Z.; Gold, G.
2016-12-01
Climate change impacts on energy and water are a serious concern for many cities across the United States. Regional projections from the National Assessment process, or state-specific efforts as in California and Delaware, are typically used to quantify impacts at the regional scale. However, these are often insufficient to provide information at the scale of decision-making for an individual city. Here, we describe a multi-level approach to developing and integrating usable climate information into planning, using a case study from the City of Austin in Texas, a state where few official climate resources are available. Spearheaded by the Office of Sustainability in collaboration with Austin Water, the first step was to characterize observed trends and future projections of how global climate change might affect Austin's current climate. The City then assembled a team of city experts, consulting engineers, and climate scientists to develop a methodology to assess impacts on regional hydrology as part of its Integrated Water Resource Plan, Austin's 100-year water supply and demand planning effort, an effort which included calculating a range of climate indicators and developing and evaluating a new approach to generating climate inputs - including daily streamflow and evaporation - for existing water availability models. This approach, which brings together a range of public, private, and academic experts to support a stakeholder-initiated planning effort, provides concrete insights into the critical importance of multi-level, long-term engagement for development and application of actionable climate science at the local to regional scale.
Quality management and perceptions of teamwork and safety climate in European hospitals.
Kristensen, Solvejg; Hammer, Antje; Bartels, Paul; Suñol, Rosa; Groene, Oliver; Thompson, Caroline A; Arah, Onyebuchi A; Kutaj-Wasikowska, Halina; Michel, Philippe; Wagner, Cordula
2015-12-01
This study aimed to investigate the associations of quality management systems with teamwork and safety climate, and to describe and compare differences in perceptions of teamwork climate and safety climate among clinical leaders and frontline clinicians. We used a multi-method, cross-sectional approach to collect survey data of quality management systems and perceived teamwork and safety climate. Our data analyses included descriptive and multilevel regression methods. Data on implementation of quality management system from seven European countries were evaluated including patient safety culture surveys from 3622 clinical leaders and 4903 frontline clinicians. Perceived teamwork and safety climate. Teamwork climate was reported as positive by 67% of clinical leaders and 43% of frontline clinicians. Safety climate was perceived as positive by 54% of clinical leaders and 32% of frontline clinicians. We found positive associations between implementation of quality management systems and teamwork and safety climate. Our findings, which should be placed in a broader clinical quality improvement context, point to the importance of quality management systems as a supportive structural feature for promoting teamwork and safety climate. To gain a deeper understanding of this association, further qualitative and quantitative studies using longitudinally collected data are recommended. The study also confirms that more clinical leaders than frontline clinicians have a positive perception of teamwork and safety climate. Such differences should be accounted for in daily clinical practice and when tailoring initiatives to improve teamwork and safety climate. © The Author 2015. Published by Oxford University Press in association with the International Society for Quality in Health Care; all rights reserved.
NASA Astrophysics Data System (ADS)
DeWaters, J.; Powers, S.; Dhaniyala, S.; Small, M.
2012-12-01
Middle school (MS) and high school (HS) teachers have developed and taught instructional modules that were created through their participation in Clarkson University's NASA-funded Project-Based Global Climate Change Education project. A quantitative survey was developed to help evaluate the project's impact on students' climate literacy, which includes content knowledge as well as affective and behavioral attributes. Content objectives were guided primarily by the 2009 document, Climate Literacy: The Essential Principles of Climate Sciences. The survey was developed according to established psychometric principles and methodologies in the sociological and educational sciences which involved developing and evaluating a pool of survey items, adapted primarily from existing climate surveys and questionnaires; preparing, administering, and evaluating two rounds of pilot tests; and preparing a final instrument with revisions informed by both pilot assessments. The resulting survey contains three separate subscales: cognitive, affective, and behavioral, with five self-efficacy items embedded within the affective subscale. Cognitive items use a multiple choice format with one correct response; non-cognitive items use a 5-point Likert-type scale with options generally ranging from "strongly agree" to "strongly disagree" (affective), or "almost always" to "hardly ever" (behavioral). Three versions of the survey were developed and administered using an on-line Zoomerang™ platform to college students/adults; HS students; and MS students, respectively. Instrument validity was supported by using items drawn from existing surveys, by reviewing/applying prior research in climate literacy, and through comparative age-group analysis. The internal consistency reliability of each subscale, as measured by Cronbach's alpha, ranges from 0.78-0.86 (cognitive), 0.87-0.89 (affective) and 0.84-0.85 (behavioral), all satisfying generally accepted criteria for internal reliability of educational surveys. MS and HS students completed the on-line survey prior to and at least 3 weeks following participation in one of the newly developed project-based climate change modules. Surveys were completed anonymously. In all, 9 HS and 3 MS teachers successfully completed the educational programming and assessment protocol in AY2012, yielding 200 HS and 227 MS matched pre/post climate literacy surveys. Both groups of students demonstrated significant gains in climate-related content knowledge (p<<0.001) and affect (p<0.01). MS students also experienced significant gains in their climate-related self-efficacy (p=0.03), with no significant change in self-efficacy for HS students and no change in either group on the behavioral subscale. Post-scores were remarkably similar for the two groups of students; reported as percent of maximum attainable score for HS/MS students: 59%/58%, knowledge; 65%/64%, affect; 71%/72%, self-efficacy, and 63%/62%, behavior. The presentation will include a description of the development and content of the climate literacy survey used in this research, as well the interpretation of specific pre/post changes in participating MS and HS students relative to the content of and approach used in the project-based modules.
ERIC Educational Resources Information Center
Gkotzos, Dimitrios
2017-01-01
This article presents an effort to integrate the issues of climate change and children's rights into the Greek primary school curriculum through the use of information and communication technologies (ICTs). The curriculum Act for Climate was developed through the lens of children's rights and with the support of a web-based learning environment…
ERIC Educational Resources Information Center
Eacho, Thomas Christopher
2013-01-01
The primary purpose of this study was to examine the relationship between school climate and student outcome variables. The secondary purpose was to examine the relationship between the use of Positive Behavioral Interventions and Supports (PBIS) and the same student outcome variables. Variables depicting student perceptions of school climate,…
77 FR 29322 - Updating State Residential Building Energy Efficiency Codes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-17
... supporting the change to the SHGC requirements in climate zone 4. Specifically, RECA supported the... to change Climate Zone 3 from R13 to either R20 or R13+5 ci.'' (CFEC, No. 2 at p. 2) In response, DOE... difference of 50 Pascals (5 ACH50) in climate zone 1 and climate zone 2; and 3 air changes/hour (3 ACH50) in...
Lombarts, Kiki M J M H; Heineman, Maas Jan; Scherpbier, Albert J J A; Arah, Onyebuchi A
2014-01-01
To understand teaching performance of individual faculty, the climate in which residents' learning takes place, the learning climate, may be important. There is emerging evidence that specific climates do predict specific outcomes. Until now, the effect of learning climate on the performance of the individual faculty who actually do the teaching was unknown. THIS STUDY: (i) tested the hypothesis that a positive learning climate was associated with better teaching performance of individual faculty as evaluated by residents, and (ii) explored which dimensions of learning climate were associated with faculty's teaching performance. We conducted two cross-sectional questionnaire surveys amongst residents from 45 residency training programs and multiple specialties in 17 hospitals in the Netherlands. Residents evaluated the teaching performance of individual faculty using the robust System for Evaluating Teaching Qualities (SETQ) and evaluated the learning climate of residency programs using the Dutch Residency Educational Climate Test (D-RECT). The validated D-RECT questionnaire consisted of 11 subscales of learning climate. Main outcome measure was faculty's overall teaching (SETQ) score. We used multivariable adjusted linear mixed models to estimate the separate associations of overall learning climate and each of its subscales with faculty's teaching performance. In total 451 residents completed 3569 SETQ evaluations of 502 faculty. Residents also evaluated the learning climate of 45 residency programs in 17 hospitals in the Netherlands. Overall learning climate was positively associated with faculty's teaching performance (regression coefficient 0.54, 95% confidence interval: 0.37 to 0.71; P<0.001). Three out of 11 learning climate subscales were substantially associated with better teaching performance: 'coaching and assessment', 'work is adapted to residents' competence', and 'formal education'. Individual faculty's teaching performance evaluations are positively affected by better learning climate of residency programs.
ERIC Educational Resources Information Center
Bygdeson-Larsson, Kerstin
2006-01-01
Educational process reflection (EPR) is a professional development model aimed at supporting preschool teachers reflecting on and changing their practice. A particular focus is on interaction between practitioners and children, and between the children themselves. In this article, I first describe the theoretical frameworks that helped shape EPR,…
Plant community dynamics and restoring Louisiana's wetland ecosystems
NASA Astrophysics Data System (ADS)
Duke-Sylvester, S. M.; Visser, J.
2017-12-01
We have developed a computational model of plant community dynamics. Our model is designed to evaluate the effects of management actions on the structure and health of Louisiana's coastal wetland plant communities. A number of projects have been initiated or proposed to preserve and restore this ecosystem while still allowing the area to support Louisiana's economy. These projects involve both modification of the flow of freshwater as well as restoring natural wetlands. Evaluating the long term effects of these projects is complex and involves numerous moving pieces operating over an extensive and diverse landscape. The situation is further complicated by in sea level rise and climate change associated with global warming. The vegetation model is part of a larger set of linked models that include hydrology and soil morphology. Using hydrological conditions projected by the linked hydrology models, we are able to evaluate the effects of anthropogenic and climatic changes on Louisiana's wetland plant communities. Unique features of our model include replacing the division of wetlands into coarse groups defined by salinity conditions with species level responses to environmental conditions and extending the spatial scale of modeling to encompass the entirety of Louisiana's Gulf coast. Model results showing the potential impact of alternative management and climate change scenarios are presented.
Evolving the US Climate Resilience Toolkit to Support a Climate-Smart Nation
NASA Astrophysics Data System (ADS)
Tilmes, C.; Niepold, F., III; Fox, J. F.; Herring, D.; Dahlman, L. E.; Hall, N.; Gardiner, N.
2015-12-01
Communities, businesses, resource managers, and decision-makers at all levels of government need information to understand and ameliorate climate-related risks. Likewise, climate information can expose latent opportunities. Moving from climate science to social and economic decisions raises complex questions about how to communicate the causes and impacts of climate variability and change; how to characterize and quantify vulnerabilities, risks, and opportunities faced by communities and businesses; and how to make and implement "win-win" adaptation plans at local, regional, and national scales. A broad coalition of federal agencies launched the U.S. Climate Resilience Toolkit (toolkit.climate.gov) in November 2014 to help our nation build resilience to climate-related extreme events. The site's primary audience is planners and decision makers in business, resource management, and government (at all levels) who seek science-based climate information and tools to help them in their near- and long-term planning. The Executive Office of the President assembled a task force of dozens of subject experts from across the 13 agencies of the U.S. Global Change Research Program to guide the site's development. The site's ongoing evolution is driven by feedback from the target audience. For example, based on feedback, climate projections will soon play a more prominent role in the site's "Climate Explorer" tool and case studies. The site's five-step adaptation planning process is being improved to better facilitate people getting started and to provide clear benchmarks for evaluating progress along the way. In this session, we will share lessons learned from a series of user engagements around the nation and evidence that the Toolkit couples climate information with actionable decision-making processes in ways that are helping Americans build resilience to climate-related stressors.
NASA Astrophysics Data System (ADS)
Lanfredi, M.; Simoniello, T.; Cuomo, V.; Macchiato, M.
2009-02-01
This study originated from recent results reported in literature, which support the existence of long-range (power-law) persistence in atmospheric temperature fluctuations on monthly and inter-annual scales. We investigated the results of Detrended Fluctuation Analysis (DFA) carried out on twenty-two historical daily time series recorded in Europe in order to evaluate the reliability of such findings in depth. More detailed inspections emphasized systematic deviations from power-law and high statistical confidence for functional form misspecification. Rigorous analyses did not support scale-free correlation as an operative concept for Climate modelling, as instead suggested in literature. In order to understand the physical implications of our results better, we designed a bivariate Markov process, parameterised on the basis of the atmospheric observational data by introducing a slow dummy variable. The time series generated by this model, analysed both in time and frequency domains, tallied with the real ones very well. They accounted for both the deceptive scaling found in literature and the correlation details enhanced by our analysis. Our results seem to evidence the presence of slow fluctuations from another climatic sub-system such as ocean, which inflates temperature variance up to several months. They advise more precise re-analyses of temperature time series before suggesting dynamical paradigms useful for Climate modelling and for the assessment of Climate Change.
NASA Astrophysics Data System (ADS)
Lanfredi, M.; Simoniello, T.; Cuomo, V.; Macchiato, M.
2009-07-01
This study originated from recent results reported in literature, which support the existence of long-range (power-law) persistence in atmospheric temperature fluctuations on monthly and inter-annual scales. We investigated the results of Detrended Fluctuation Analysis (DFA) carried out on twenty-two historical daily time series recorded in Europe in order to evaluate the reliability of such findings in depth. More detailed inspections emphasized systematic deviations from power-law and high statistical confidence for functional form misspecification. Rigorous analyses did not support scale-free correlation as an operative concept for Climate modelling, as instead suggested in literature. In order to understand the physical implications of our results better, we designed a bivariate Markov process, parameterised on the basis of the atmospheric observational data by introducing a slow dummy variable. The time series generated by this model, analysed both in time and frequency domains, tallied with the real ones very well. They accounted for both the deceptive scaling found in literature and the correlation details enhanced by our analysis. Our results seem to evidence the presence of slow fluctuations from another climatic sub-system such as ocean, which inflates temperature variance up to several months. They advise more precise re-analyses of temperature time series before suggesting dynamical paradigms useful for Climate modelling and for the assessment of Climate Change.
NASA Astrophysics Data System (ADS)
Maynard, J. A.; Marshall, P. A.; Johnson, J. E.; Harman, S.
2010-06-01
Climate change is now considered the greatest long-term threat to coral reefs, with some future change inevitable despite mitigation efforts. Managers must therefore focus on supporting the natural resilience of reefs, requiring that resilient reefs and reef regions be identified. We develop a framework for assessing resilience and trial it by applying the framework to target management responses to climate change on the southern Great Barrier Reef. The framework generates a resilience score for a site based on the evaluation of 19 differentially weighted indicators known or thought to confer resilience to coral reefs. Scores are summed, and sites within a region are ranked in terms of (1) their resilience relative to the other sites being assessed, and (2) the extent to which managers can influence their resilience. The framework was applied to 31 sites in Keppel Bay of the southern Great Barrier Reef, which has a long history of disturbance and recovery. Resilience and ‘management influence potential’ were both found to vary widely in Keppel Bay, informing site selection for the staged implementation of resilience-based management strategies. The assessment framework represents a step towards making the concept of resilience operational to reef managers and conservationists. Also, it is customisable, easy to teach and implement and effective in building support among local communities and stakeholders for management responses to climate change.
Global Climate Change and Ocean Education
NASA Astrophysics Data System (ADS)
Spitzer, W.; Anderson, J.
2011-12-01
The New England Aquarium, collaborating with other aquariums across the country, is leading a national effort to enable aquariums and related informal science education institutions to effectively communicate the impacts of climate change and ocean acidification on marine animals, habitats and ecosystems. Our goal is to build on visitors' emotional connection with ocean animals, connect to their deeply held values, help them understand causes and effects of climate change and motivate them to embrace effective solutions. Our objectives are to: (1) Build a national coalition of aquariums and related informal education institutions collaborating on climate change education; (2) Develop an interpretive framework for climate change and the ocean that is scientifically sound, research-based, field tested and evaluated; and (3) Build capacity of aquariums to interpret climate change via training for interpreters, interactive exhibits and activities and communities of practice for ongoing support. Centers of informal learning have the potential to bring important environmental issues to the public by presenting the facts, explaining the science, connecting with existing values and interests, and motivating concern and action. Centers that work with live animals (including aquariums, zoos, nature centers, national parks, national marine sanctuaries, etc.) are unique in that they attract large numbers of people of all ages (over 140 million in the US), have strong connections to the natural, and engage many visitors who may not come with a primary interest in science. Recent research indicates that that the public expects and trusts aquariums, zoos, and museums to communicate solutions to environmental and ocean issues, and to advance ocean conservation, and that climate change is the environmental issue of most concern to the public; Ironically, however, most people do not associate climate change with ocean health, or understand the critical role that the ocean plays in the Earth's climate system. The problem is not simply that the public lacks information. In fact, the problem is often that there is too much information available with much of it complicated and even contradictory. The news media, both print and electronic, tend to exacerbate this by aiming for "balance" even when there is an overwhelming scientific or policy consensus. An additional problem is "reinforcement bias," which tends to lead people to focus on information that supports what they already believe or think they know. Instead, we need an approach that facilitates "meaning-making." A "framing" approach to communication (Frameworks Institute, 2010) supports meaning-making by appealing to strongly held values, providing metaphoric language and models, and illustrating specific applications to real world problems. This approach translates complex science in a way that allows people to examine evidence, make well-informed decisions, and embrace science-based solutions. However, interpreters need specialized training, resources, up-to-date information, and ongoing support to help understand a complex topic such as climate change, its connections to the ocean, and how to relate it to the live animals, habitats and exhibits they interpret.
Advantages and applicability of commonly used homogenisation methods for climate data
NASA Astrophysics Data System (ADS)
Ribeiro, Sara; Caineta, Júlio; Henriques, Roberto; Soares, Amílcar; Costa, Ana Cristina
2014-05-01
Homogenisation of climate data is a very relevant subject since these data are required as an input in a wide range of studies, such as atmospheric modelling, weather forecasting, climate change monitoring, or hydrological and environmental projects. Often, climate data series include non-natural irregularities which have to be detected and removed prior to their use, otherwise it would generate biased and erroneous results. Relocation of weather stations or changes in the measuring instruments are amongst the most relevant causes for these inhomogeneities. Depending on the climate variable, its temporal resolution and spatial continuity, homogenisation methods can be more or less effective. For example, due to its natural variability, precipitation is identified as a very challenging variable to be homogenised. During the last two decades, numerous methods have been proposed to homogenise climate data. In order to compare, evaluate and develop those methods, the European project COST Action ES0601, Advances in homogenisation methods of climate series: an integrated approach (HOME), was released in 2008. Existing homogenisation methods were improved based on the benchmark exercise issued by this project. A recent approach based on Direct Sequential Simulation (DSS), not yet evaluated by the benchmark exercise, is also presented as an innovative methodology for homogenising climate data series. DSS already proved to be a successful geostatistical method in environmental and hydrological studies, and it provides promising results for the homogenisation of climate data. Since DSS is a geostatistical stochastic approach, it accounts for the joint spatial and temporal dependence between observations, as well as the relative importance of stations both in terms of distance and correlation. This work presents a chronological review of the most commonly used homogenisation methods for climate data and available software packages. A short description and classification is provided for each method. Their advantages and applicability are discussed based on literature review and on the results of the HOME project. Acknowledgements: The authors gratefully acknowledge the financial support of "Fundação para a Ciência e Tecnologia" (FCT), Portugal, through the research project PTDC/GEO-MET/4026/2012 ("GSIMCLI - Geostatistical simulation with local distributions for the homogenization and interpolation of climate data").
Optimal crop selection and water allocation under limited water supply in irrigation
NASA Astrophysics Data System (ADS)
Stange, Peter; Grießbach, Ulrike; Schütze, Niels
2015-04-01
Due to climate change, extreme weather conditions such as droughts may have an increasing impact on irrigated agriculture. To cope with limited water resources in irrigation systems, a new decision support framework is developed which focuses on an integrated management of both irrigation water supply and demand at the same time. For modeling the regional water demand, local (and site-specific) water demand functions are used which are derived from optimized agronomic response on farms scale. To account for climate variability the agronomic response is represented by stochastic crop water production functions (SCWPF). These functions take into account different soil types, crops and stochastically generated climate scenarios. The SCWPF's are used to compute the water demand considering different conditions, e.g., variable and fixed costs. This generic approach enables the consideration of both multiple crops at farm scale as well as of the aggregated response to water pricing at a regional scale for full and deficit irrigation systems. Within the SAPHIR (SAxonian Platform for High Performance IRrigation) project a prototype of a decision support system is developed which helps to evaluate combined water supply and demand management policies.
Climate simulations and services on HPC, Cloud and Grid infrastructures
NASA Astrophysics Data System (ADS)
Cofino, Antonio S.; Blanco, Carlos; Minondo Tshuma, Antonio
2017-04-01
Cloud, Grid and High Performance Computing have changed the accessibility and availability of computing resources for Earth Science research communities, specially for Climate community. These paradigms are modifying the way how climate applications are being executed. By using these technologies the number, variety and complexity of experiments and resources are increasing substantially. But, although computational capacity is increasing, traditional applications and tools used by the community are not good enough to manage this large volume and variety of experiments and computing resources. In this contribution, we evaluate the challenges to run climate simulations and services on Grid, Cloud and HPC infrestructures and how to tackle them. The Grid and Cloud infrastructures provided by EGI's VOs ( esr , earth.vo.ibergrid and fedcloud.egi.eu) will be evaluated, as well as HPC resources from PRACE infrastructure and institutional clusters. To solve those challenges, solutions using DRM4G framework will be shown. DRM4G provides a good framework to manage big volume and variety of computing resources for climate experiments. This work has been supported by the Spanish National R&D Plan under projects WRF4G (CGL2011-28864), INSIGNIA (CGL2016-79210-R) and MULTI-SDM (CGL2015-66583-R) ; the IS-ENES2 project from the 7FP of the European Commission (grant agreement no. 312979); the European Regional Development Fund—ERDF and the Programa de Personal Investigador en Formación Predoctoral from Universidad de Cantabria and Government of Cantabria.
NASA Astrophysics Data System (ADS)
Addor, Nans; Ewen, Tracy; Johnson, Leigh; Ćöltekin, Arzu; Derungs, Curdin; Muccione, Veruska
2015-08-01
In the context of climate change, both climate researchers and decision makers deal with uncertainties, but these uncertainties differ in fundamental ways. They stem from different sources, cover different temporal and spatial scales, might or might not be reducible or quantifiable, and are generally difficult to characterize and communicate. Hence, a mutual understanding between current and future climate researchers and decision makers must evolve for adaptation strategies and planning to progress. Iterative two-way dialogue can help to improve the decision making process by bridging current top-down and bottom-up approaches. One way to cultivate such interactions is by providing venues for these actors to interact and exchange on the uncertainties they face. We use a workshop-seminar series involving academic researchers, students, and decision makers as an opportunity to put this idea into practice and evaluate it. Seminars, case studies, and a round table allowed participants to reflect upon and experiment with uncertainties. An opinion survey conducted before and after the workshop-seminar series allowed us to qualitatively evaluate its influence on the participants. We find that the event stimulated new perspectives on research products and communication processes, and we suggest that similar events may ultimately contribute to the midterm goal of improving support for decision making in a changing climate. Therefore, we recommend integrating bridging events into university curriculum to foster interdisciplinary and iterative dialogue among researchers, decision makers, and students.
A dynamic viticultural zoning to explore the resilience of terroir concept under climate change.
Bonfante, A; Monaco, E; Langella, G; Mercogliano, P; Bucchignani, E; Manna, P; Terribile, F
2018-05-15
Climate change (CC) directly influences agricultural sectors, presenting the need to identify both adaptation and mitigation actions that can make local farming communities and crop production more resilient. In this context, the viticultural sector is one of those most challenged by CC due to the need to combine grape quality, grapevine cultivar adaptation and therefore farmers' future incomes. Thus, understanding how suitability for viticulture is changing under CC is of primary interest in the development of adaptation strategies in traditional wine-growing regions. Considering that climate is an essential part of the terroir system, the expected variability in climate change could have a marked influence on terroir resilience with important effects on local farming communities in viticultural regions. From this perspective, the aim of this paper is to define a new dynamic viticultural zoning procedure that is able to integrate the effects of CC on grape quality responses and evaluate terroir resilience, providing a support tool for stakeholders involved in viticultural planning (winegrowers, winegrower consortiums, policy makers etc.). To achieve these aims, a Hybrid Land Evaluation System, combining qualitative (standard Land Evaluation) and quantitative (simulation model) approaches, was applied within a traditional region devoted to high quality wine production in Southern Italy (Valle Telesina, BN), for a specific grapevine cultivar (Aglianico). The work employed high resolution climate projections that were derived under two different IPCC scenarios, namely RCP 4.5 and RCP 8.5. The results obtained indicate that: (i) only 2% of the suitable area of Valle Telesina expresses the concept of terroir resilience orientated towards Aglianico ultra quality grape production; (ii) within 2010-2040, it is expected that 41% of the area suitable for Aglianico cultivation will need irrigation to achieve quality grape production; (iii) by 2100, climate change benefits for the cultivation of Aglianico will decrease, as well as the suitable areas. Copyright © 2017 Elsevier B.V. All rights reserved.
Supporting Climatic Trends of Corn and Soybean Production in the USA
NASA Astrophysics Data System (ADS)
Mishra, V.; Cherkauer, K. A.; Verdin, J. P.
2010-12-01
The United States of America (USA) is a major source of corn and soybeans, producing about 39 percent of the world’s corn and 50 percent of world’s soybean supply. The north central states, including parts of the Midwestern US and the Great Plains form what is commonly described as the “Corn Belt” and consist of the most productive grain growing region in the United States. Changes in climate, including precipitation and temperature, are being observed throughout the world, and the Corn Belt region of the US is not immune posing a potential threat to global food security. We conducted a retrospective analysis of observed climate variables and crop production statistics to evaluate if observed climatic trends are having a positive or negative effect on corn and soybean production in the US. We selected climate indices based on gridded daily precipitation, maximum and minimum air temperature data from the National Climatic Data Center (NCDC) for the period of 1920-2009 and for 13 states in the Corn Belt region. We used the standardized precipitation index (SPI) and standardized precipitation evapotranspiration index (SPEI) for different periods overlapping the important seasons for crop growths, such as the planting (April-May), grain-filling (June-August), and harvesting (September -October) seasons. We estimated the seasonal average of maximum and minimum daily temperatures to identify the historic trends and variability in air temperature during the key crop-growth seasons. Extreme warm temperatures can affect crop growth and yields adversely; therefore, cumulative maximum air temperature above the 90th percentiles (e.g. Cumulative Heat Index) was estimated for each growing period. We evaluated historic trends and variability of areal extents of severe or extreme droughts along with the areal extents facing the high cumulative heat stress. Our results showed that climatic extremes (e.g. droughts and heat stress) that occurred during the period of June - August (JJA), affected the yields of corn and soybeans most severely. High moisture and low heat stress during the JJA period favored crop yields, while low moisture and high heat conditions during the planting season (April-May) increased yields. Results also indicated that this part of the US is trending towards lower heat stress and drought extents, and higher moisture conditions during the JJA period. Therefore, in future, if the present trends persist, we expect the climate will more supportive of increased corn and soybean yields.
Teaching to the Next Generation Science Standards with Energy, Climate, and Water Focused Games
NASA Astrophysics Data System (ADS)
Mayhew, M. A.; Hall, M.; Civjan, N.
2015-12-01
We produced two fun-to-play card games with the theme, The Nexus of Energy, Water, and Climate, that directly support teaching to the NGSS. In the games, players come to understand how demand for energy, water use, and climate change are tightly intertwined. Analysis by scientists from the national laboratories ensured that the games are reflect current data and research. The games have been tested with high school and informal science educators and their students and have received a formal evaluation. The games website http://isenm.org/games-for-learning shows how the games align with the NGSS, the Common Core, and the NRC's Strands of Science Learning. It also contains an extensive collection of accessible articles on the nexus to support use of the games in instruction. Thirst for Power is a challenging resource management game. Players, acting as governors of regions, compete to be the first to meet their citizens' energy needs. A governor can choose from a variety of carbon-based or renewable energy sources, but each source uses water and has an environmental—including climate change—impact. Energy needs must be met using only the water resources allocated to the region and without exceeding the environmental impact limit. "ACTION" cards alter game play and increase competition. Challenge and Persuade is a game of scientific argumentation, using evidence on nexus-related fact cards. Players must evaluate information, develop fact-based arguments, and communicate their findings. One card deck contains a set of adjectives, a second a series of fact cards. Players use their fact cards to make the best argument that aligns with an adjective selected by the "Judge". Players take turns being the "Judge," who determines who made the best argument. The games particularly align with NGSS elements: Connections to Engineering, Technology, and Application of Science. Players come to understand the science and engineering behind many energy sources and their impacts. Connection to Nature of Science. Players must manage the complexity of relationships among water, energy, and climate change and solve problems with science, technology, and policies. Science and Engineering Practice. Both games require players to use evidence, evaluate information, and develop strategies to address real world problems.
Linking seasonal climate forecasts with crop models in Iberian Peninsula
NASA Astrophysics Data System (ADS)
Capa, Mirian; Ines, Amor; Baethgen, Walter; Rodriguez-Fonseca, Belen; Han, Eunjin; Ruiz-Ramos, Margarita
2015-04-01
Translating seasonal climate forecasts into agricultural production forecasts could help to establish early warning systems and to design crop management adaptation strategies that take advantage of favorable conditions or reduce the effect of adverse conditions. In this study, we use seasonal rainfall forecasts and crop models to improve predictability of wheat yield in the Iberian Peninsula (IP). Additionally, we estimate economic margins and production risks associated with extreme scenarios of seasonal rainfall forecast. This study evaluates two methods for disaggregating seasonal climate forecasts into daily weather data: 1) a stochastic weather generator (CondWG), and 2) a forecast tercile resampler (FResampler). Both methods were used to generate 100 (with FResampler) and 110 (with CondWG) weather series/sequences for three scenarios of seasonal rainfall forecasts. Simulated wheat yield is computed with the crop model CERES-wheat (Ritchie and Otter, 1985), which is included in Decision Support System for Agrotechnology Transfer (DSSAT v.4.5, Hoogenboom et al., 2010). Simulations were run at two locations in northeastern Spain where the crop model was calibrated and validated with independent field data. Once simulated yields were obtained, an assessment of farmer's gross margin for different seasonal climate forecasts was accomplished to estimate production risks under different climate scenarios. This methodology allows farmers to assess the benefits and risks of a seasonal weather forecast in IP prior to the crop growing season. The results of this study may have important implications on both, public (agricultural planning) and private (decision support to farmers, insurance companies) sectors. Acknowledgements Research by M. Capa-Morocho has been partly supported by a PICATA predoctoral fellowship of the Moncloa Campus of International Excellence (UCM-UPM) and MULCLIVAR project (CGL2012-38923-C02-02) References Hoogenboom, G. et al., 2010. The Decision Support System for Agrotechnology Transfer (DSSAT).Version 4.5 [CD-ROM].University of Hawaii, Honolulu, Hawaii. Ritchie, J.T., Otter, S., 1985. Description and performanceof CERES-Wheat: a user-oriented wheat yield model. In: ARS Wheat Yield Project. ARS-38.Natl Tech Info Serv, Springfield, Missouri, pp. 159-175.
NASA Astrophysics Data System (ADS)
LI, Y.; Castelletti, A.; Giuliani, M.
2014-12-01
Over recent years, long-term climate forecast from global circulation models (GCMs) has been demonstrated to show increasing skills over the climatology, thanks to the advances in the modelling of coupled ocean-atmosphere dynamics. Improved information from long-term forecast is supposed to be a valuable support to farmers in optimizing farming operations (e.g. crop choice, cropping time) and for more effectively coping with the adverse impacts of climate variability. Yet, evaluating how valuable this information can be is not straightforward and farmers' response must be taken into consideration. Indeed, while long-range forecast are traditionally evaluated in terms of accuracy by comparison of hindcast and observed values, in the context of agricultural systems, potentially useful forecast information should alter the stakeholders' expectation, modify their decisions and ultimately have an impact on their annual benefit. Therefore, it is more desirable to assess the value of those long-term forecasts via decision-making models so as to extract direct indication of probable decision outcomes from farmers, i.e. from an end-to-end perspective. In this work, we evaluate the operational value of thirteen state-of-the-art long-range forecast ensembles against climatology forecast and subjective prediction (i.e. past year climate and historical average) within an integrated agronomic modeling framework embedding an implicit model of farmers' behavior. Collected ensemble datasets are bias-corrected and downscaled using a stochastic weather generator, in order to address the mismatch of the spatio-temporal scale between forecast data from GCMs and distributed crop simulation model. The agronomic model is first simulated using the forecast information (ex-ante), followed by a second run with actual climate (ex-post). Multi-year simulations are performed to account for climate variability and the value of the different climate forecast is evaluated against the perfect foresight scenario based on the expected crop productivity as well as the land-use decisions. Our results show that not all the products generate beneficial effects to farmers and that the forecast errors might be amplified by the farmers decisions.
Jarnevich, Catherine S.; Young, Nicholas E; Sheffels, Trevor R.; Carter, Jacoby; Systma, Mark D.; Talbert, Colin
2017-01-01
Invasive species provide a unique opportunity to evaluate factors controlling biogeographic distributions; we can consider introduction success as an experiment testing suitability of environmental conditions. Predicting potential distributions of spreading species is not easy, and forecasting potential distributions with changing climate is even more difficult. Using the globally invasive coypu (Myocastor coypus [Molina, 1782]), we evaluate and compare the utility of a simplistic ecophysiological based model and a correlative model to predict current and future distribution. The ecophysiological model was based on winter temperature relationships with nutria survival. We developed correlative statistical models using the Software for Assisted Habitat Modeling and biologically relevant climate data with a global extent. We applied the ecophysiological based model to several global circulation model (GCM) predictions for mid-century. We used global coypu introduction data to evaluate these models and to explore a hypothesized physiological limitation, finding general agreement with known coypu distribution locally and globally and support for an upper thermal tolerance threshold. Global circulation model based model results showed variability in coypu predicted distribution among GCMs, but had general agreement of increasing suitable area in the USA. Our methods highlighted the dynamic nature of the edges of the coypu distribution due to climate non-equilibrium, and uncertainty associated with forecasting future distributions. Areas deemed suitable habitat, especially those on the edge of the current known range, could be used for early detection of the spread of coypu populations for management purposes. Combining approaches can be beneficial to predicting potential distributions of invasive species now and in the future and in exploring hypotheses of factors controlling distributions.
Distributed Generation to Support Development-Focused Climate Action
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cox, Sadie; Gagnon, Pieter; Stout, Sherry
2016-09-01
This paper explores the role of distributed generation, with a high renewable energy contribution, in supporting low emission climate-resilient development. The paper presents potential impacts on development (via energy access), greenhouse gas emission mitigation, and climate resilience directly associated with distributed generation, as well as specific actions that may enhance or increase the likelihood of climate and development benefits. This paper also seeks to provide practical and timely insights to support distributed generation policymaking and planning within the context of common climate and development goals as the distributed generation landscape rapidly evolves globally. Country-specific distributed generation policy and program examples,more » as well as analytical tools that can inform efforts internationally, are also highlighted throughout the paper.« less
Transformational leadership and team innovation: integrating team climate principles.
Eisenbeiss, Silke A; van Knippenberg, Daan; Boerner, Sabine
2008-11-01
Fostering team innovation is increasingly an important leadership function. However, the empirical evidence for the role of transformational leadership in engendering team innovation is scarce and mixed. To address this issue, the authors link transformational leadership theory to principles of M. A. West's (1990) team climate theory and propose an integrated model for the relationship between transformational leadership and team innovation. This model involves support for innovation as a mediating process and climate for excellence as a moderator. Results from a study of 33 research and development teams confirmed that transformational leadership works through support for innovation, which in turn interacts with climate for excellence such that support for innovation enhances team innovation only when climate for excellence is high.
Maritime Archaeology and Climate Change: An Invitation
NASA Astrophysics Data System (ADS)
Wright, Jeneva
2016-12-01
Maritime archaeology has a tremendous capacity to engage with climate change science. The field is uniquely positioned to support climate change research and the understanding of past human adaptations to climate change. Maritime archaeological data can inform on environmental shifts and submerged sites can serve as an important avenue for public outreach by mobilizing public interest and action towards understanding the impacts of climate change. Despite these opportunities, maritime archaeologists have not fully developed a role within climate change science and policy. Moreover, submerged site vulnerabilities stemming from climate change impacts are not yet well understood. This article discusses potential climate change threats to maritime archaeological resources, the challenges confronting cultural resource managers, and the contributions maritime archaeology can offer to climate change science. Maritime archaeology's ability to both support and benefit from climate change science argues its relevant and valuable place in the global climate change dialogue, but also reveals the necessity for our heightened engagement.
Canadian Federal Support for Climate Change and Health Research Compared With the Risks Posed
Smith, Tanya R.; Berrang-Ford, Lea
2011-01-01
For emerging public health risks such as climate change, the Canadian federal government has a mandate to provide information and resources to protect citizens' health. Research is a key component of this mandate and is essential if Canada is to moderate the health effects of a changing climate. We assessed whether federal support for climate change and health research is consistent with the risks posed. We audited projects receiving federal support between 1999 and 2009, representing an investment of Can$16 million in 105 projects. Although funding has increased in recent years, it remains inadequate, with negligible focus on vulnerable populations, limited research on adaptation, and volatility in funding allocations. A federal strategy to guide research support is overdue. PMID:21490335
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loulou, Richard; Waaub, Jean-Philippe; Zaccour, Georges
2005-07-01
This volume on energy and environmental modeling describes a broad variety of modeling methodologies. It includes chapters covering: The Sustainability of Economic Growth by Cabo, Martin-Herran & Martinez-Garcia; Abatement Scenarios in the Swiss Housing Sector by L. Drouet and others; Support and Planning for Off-Site Emergency Management, by Geldermann and others; Hybrid Energy-Economy Models, by Jaccard; The World-MARKAL Model and Its Application, by Kanudia and others; Methodology for Evaluating a Market of Tradable CO{sub 2}-Permits, by Kunsch and Springael; MERGE - A Model for Global Climate Change, by Manne and Richels; A Linear Programming Model for Capacity Expansion in anmore » Autonomous Power Generation System, by Mavrotas and Diakoulaki; Transport and Climate Policy Modeling in the Transport Sector, by Paltsev and others; Analysis of Ontario Electricity Capacity Requirements and Emissions, by Pineau and Schott; Environmental Damage in Energy/Environmental Policy Evaluation, by Van Regemorter. 71 figs.« less
NASA Astrophysics Data System (ADS)
Lloro-Bidart, T.
2012-12-01
Ethnographic interviewing is an under-utilized tool in climate change evaluation research, even though it has the potential to serve as a powerful method of data collection. The utility of the ethnographic interview lies in its ability to elicit responses from program participants describing what a program is in practice, shedding light on both intended and unintended program impacts. Drawing on evaluation work involving a federally-funded climate change grant at the University of California, Riverside, I will discuss how to design an ethnographic interview protocol in an effort to share "best practices" with other climate change evaluators. Particular attention will be given to applying ethnographic approaches to various program types, even those differing from the one discussed. I will share some of the concrete findings from my work on this grant, to serve as examples of the kinds of data evaluators can collect when employing an ethnographic approach to interviewing. UC Riverside's climate change grant is multi-faceted, however the component studied ethnographically was a science fair mentoring program. About twenty K-12 students from high poverty, ethnically diverse schools who expressed an interest in participating in science fair were paired up with graduate student mentors to simultaneously research climate change and design authentic science fair projects to compete at various levels. Since one of the stated goals of the grant is to "stimulate…students to consider climate science as a career track through experiential education activities" I was particularly interested in how student experiences with the project might differ from school science which has historically "pushed out" ethnically diverse students like those in many of Riverside's schools. (In the program students are able to interact one-on-one with a mentor and in school settings there is typically one teacher for more than thirty students). I also sought to understand student perceptions of the project design and implementation and how these perceptions might influence their thinking about science as a career. Further, I aimed to explore how mentor pedagogical philosophies might impact student experiences with the projects, since the scholarly literature supports the idea that teaching practices are linked to student success and interest in science. The key to ethnographic interviewing, which sets it apart from survey research and other interviewing styles is that the evaluator or researcher designs guided, yet open-ended questions, allowing informants to discuss what is important to them. This type of questioning affords the researcher the opportunity to ascertain whether or not the grant met some of its intended goals and impacts, while simultaneously granting participants the freedom to discuss unintended impacts not anticipated by the principal investigator and evaluator.
NASA Astrophysics Data System (ADS)
Niepold, F., III; Crim, H.; Fiorile, G.; Eldadah, S.
2017-12-01
Since 2012, the Climate and Energy Literacy community have realized that as cities, nations and the international community seek solutions to global climate change over the coming decades, a more comprehensive, interdisciplinary approach to climate literacy—one that includes economic and social considerations—will play a vital role in knowledgeable planning, decision-making, and governance. City, county and state leaders are now leading the American response to a changing climate by incubating social innovation to prevail in the face of unprecedented change. Cities are beginning to realize the importance of critical investments to support the policies and strategies that will foster the climate literacy necessary for citizens to understand the urgency of climate actions and to succeed in a resilient post-carbon economy and develop the related workforce. Over decade of federal and non-profit Climate Change Education effective methods have been developed that can support municipality's significant educational capabilities for the purpose of strengthening and scaling city, state, business, and education actions designed to sustain and effectively address this significant social change. Looking to foster the effective and innovative strategies that will enable their communities several networks have collaborated to identify recommendations for effective education and communication practices when working with different types of audiences. U.S. National Science Foundation funded Climate Change Education Partnership (CCEP) Alliance, the National Wildlife Federation, NOAA Climate Program Office, Tri-Agency Climate Change Education Collaborative and the Climate Literacy and Energy Awareness Network (CLEAN) are working to develop a new web portal that will highlight "effective" practices that includes the acquisition and use of climate change knowledge to inform decision-making. The purpose of the web portal is to transfer effective practice to support communities to be empowered to address the challenges of a new climate reality and ensure that all people are capable of taking an active role in shaping a sustainable future.
Murray, Aileen; Hall, Amanda; Williams, Geoffrey C; McDonough, Suzanne M; Ntoumanis, Nikos; Taylor, Ian; Jackson, Ben; Copsey, Bethan; Hurley, Deirdre A; Matthews, James
2018-02-27
To assess the inter-rater reliability and concurrent validity of the Communication Evaluation in Rehabilitation Tool, which aims to externally assess physiotherapists competency in using Self-Determination Theory-based communication strategies in practice. Audio recordings of initial consultations between 24 physiotherapists and 24 patients with chronic low back pain in four hospitals in Ireland were obtained as part of a larger randomised controlled trial. Three raters, all of whom had Ph.Ds in psychology and expertise in motivation and physical activity, independently listened to the 24 audio recordings and completed the 18-item Communication Evaluation in Rehabilitation Tool. Inter-rater reliability between all three raters was assessed using intraclass correlation coefficients. Concurrent validity was assessed using Pearson's r correlations with a reference standard, the Health Care Climate Questionnaire. The total score for the Communication Evaluation in Rehabilitation Tool is an average of all 18 items. Total scores demonstrated good inter-rater reliability (Intraclass Correlation Coefficient (ICC) = 0.8) and concurrent validity with the Health Care Climate Questionnaire total score (range: r = 0.7-0.88). Item-level scores of the Communication Evaluation in Rehabilitation Tool identified five items that need improvement. Results provide preliminary evidence to support future use and testing of the Communication Evaluation in Rehabilitation Tool. Implications for Rehabilitation Promoting patient autonomy is a learned skill and while interventions exist to train clinicians in these skills there are no tools to assess how well clinicians use these skills when interacting with a patient. The lack of robust assessment has severe implications regarding both the fidelity of clinician training packages and resulting outcomes for promoting patient autonomy. This study has developed a novel measurement tool Communication Evaluation in Rehabilitation Tool and a comprehensive user manual to assess how well health care providers use autonomy-supportive communication strategies in real world-clinical settings. This tool has demonstrated good inter-rater reliability and concurrent validity in its initial testing phase. The Communication Evaluation in Rehabilitation Tool can be used in future studies to assess autonomy-supportive communication and undergo further measurement property testing as per our recommendations.
Assessing gains in teacher knowledge and confidence in a long-duration climate literacy initiative
NASA Astrophysics Data System (ADS)
Haine, D. B.; Kendall, L.; Yelton, S.
2013-12-01
Climate Literacy: Integrating Modeling & Technology Experiences (CLIMATE) in NC Classrooms, an interdisciplinary, global climate change program for NC high school science teachers is administered by UNC Chapel Hill's Institute for the Environment (IE) with funding from NASA's Innovations in Climate Education (NICE) Program. Currently in its third year, this year-long program serves 24 teaching fellows annually and combines hands-on climate science investigations with experiential learning in fragile ecosystem environments to achieve the following program goals: increased teacher knowledge of climate change science and predicted impacts; increased teacher knowledge of modeling and technology resources, with an emphasis on those provided by NASA; and increased teacher confidence in using technology to address climate change education. A mixed-methods evaluation approach that includes external evaluation is providing quantitative and qualitative data about the extent to which program goals are being achieved. With regard to increases in teacher knowledge, teachers often self-report an increase in knowledge as a result of a program activity; this session will describe our strategies for assessing actual gains in teacher knowledge which include pre- and post-collaborative concept mapping and pre- and post-open response questionnaires. For each evaluation approach utilized, the process of analyzing these qualitative data will be discussed and results shared. For example, a collaborative concept mapping activity for assessment of learning as a result of the summer institute was utilized to assess gains in content knowledge. Working in small groups, teachers were asked to identify key vocabulary terms and show their relationship to one another via a concept map to answer these questions: What is global climate change? What is/are the: evidence? mechanisms? causes? consequences? Concept maps were constructed at the beginning (pre) and again at the end (post) of the Summer Institute. Concept map analysis revealed that post-maps included more key terms/concepts on average than pre-concept maps and that 6-9 NEW terms were present on post-maps; these NEW terms were directly related to science content addressed during the summer institute. In an effort to assess knowledge gained as a result of participating in an experiential weekend retreat, a pre- and post-open response questionnaire focused on the spruce-fir forest, an ecosystem prominently featured during programming, was administered. Post-learning assessments revealed learning gains for 100% of participants, all of whom were able to provide responses that referenced specific content covered during the retreat. To demonstrate increased teacher confidence in using technology to support climate science instruction, teachers are asked to develop and pilot a lesson that integrates at least one NASA resource. In collaboration with an external evaluator, a rubric was developed to evaluate submitted lessons in an effort to assess progress at achieving this program goal. The process of developing this rubric as well as the results from this analysis will be shared along with the challenges and insights that have been revealed from analyzing submitted lessons.
Informing climate change adaptation with insights from famine early warning (Invited)
NASA Astrophysics Data System (ADS)
Funk, C. C.; Verdin, J. P.
2010-12-01
Famine early warning systems provide a unique viewpoint for understanding the implications of climate change on food security, identifying the locations and seasons where millions of food insecure people are dependent upon climate-sensitive agricultural systems. The Famine Early Warning Systems Network (FEWS NET) is a decision support system sponsored by the Office of Food for Peace of the U.S. Agency for International Development (USAID), which distributes over two billion dollars of food aid to more than 40 countries each year. FEWS NET identifies the times and places where food aid is required by the most climatically sensitive and consequently food insecure populations of the developing world. As result, FEWS NET has developed its own "climate service", implemented by USGS, NOAA, and NASA, to support its decision making processes. The foundation of this climate service is the monitoring of current growing conditions for early identification of agricultural drought that might impact food security. Since station networks are sparse in the countries monitored, FEWS NET has a tradition (dating back to 1985) of reliance on satellite remote sensing of vegetation and rainfall. In the last ten years, climate forecasts have become an additional tool for food security assessment, extending the early warning perspective to include expected agricultural outcomes for the season ahead. More recently, research has expanded to include detailed analyses of recent observed climate trends, combined with diagnostic ocean-atmosphere studies. These studies are then used to develop interpretations of GCM scenarios and their implications for future patterns of precipitation and temperature, revealing trends towards warmer/drier climate conditions and increases in the relative frequency of drought. In some regions, like Eastern Africa, such changes seem to be already occurring, with an associated increase in food insecurity. Sub-national analyses for Kenya, for example, point to the need for adaptation through improved agricultural practices, so that increased yields can offset the impacts of rising temperatures and declining rainfall. Future work will focus on assessing temperature-PET linkages, and evaluating pathways for agricultural development.
NASA Astrophysics Data System (ADS)
Werth, D. W.
2016-12-01
The state of South Carolina, home to the Department of Energy's (DOE) Savannah River Site (SRS), has been identified as facing an `above average' risk due to extreme heat, and the threat due to wildfire is expected to nearly double by 2050. To comply with DOE requirements that each of its sites prepares for climate change, the Savannah River National Laboratory (SRNL) is involved in an ongoing process to evaluate the site vulnerability and establish policies to mitigate those effects. This requires close cooperation between the managers of various site facilities and on-site climate researchers. The Atmospheric Technologies Group at SRNL currently provides short-term weather forecasts to support outdoor activities on site, but is also now working with site decision-makers to achieve DOE's goals of climate change mitigation and adaptation. We will discuss the results of our climate vulnerability assessment, which includes the effects of climate change on the energy requirements for mission critical infrastructure, the health, safety and productivity of the outdoor workforce, the danger of fire in the SRS forest, and the levels of surface water impoundments. (The latter of which must be maintained to avoid the release of radioactive contaminants sequestered beneath them). For each of these, existing climate change projections were carefully studied and `translated' into numerical indices relevant to facility personnel at SRS, along with a vulnerability rating (also based on conversations with site workers) to estimate the most endangered `assets'. We will also explain the process we have developed to facilitate effective communication between researchers and managers - involving them both in the development of the climate vulnerability assessment and the next steps toward planning, resource allocation, actions to mitigate rising costs, and safety considerations as well as helping the site remain sustainable throughout the future of its missions.
Appraisal of the dental school learning environment: the students' view.
Henzi, David; Davis, Elaine; Jasinevicius, Roma; Hendricson, William; Cintron, Laura; Isaacs, Marcia
2005-10-01
The majority of studies examining dental school curriculum have addressed organization, structure, and content issues from the perspectives of administrators, faculty, practitioners/alumni, and professional organizations. However, few studies have focused on students' opinions of dental school. The purpose of this study was to determine students' perceptions of the learning environment, intellectual climate, and teacher-student relationships in dental school. This report describes how the "dental version" of the Medical Student Learning Environment Survey (MSLES) was used to identify students' perceptions of their dental education. Freshman and junior dental students' perceptions were measured with the Dental Student Learning Environment Survey (DSLES), which evaluates learning environment, intellectual climate, and relationships among students and teachers in seven areas: flexibility, student-to-student interaction, emotional climate, supportiveness, meaningful experience, organization, and breadth of interest. The DSLES was mailed to twenty-three dental schools in North America with eighteen of the schools distributing the inventory. A total of 619 dental students responded. Results were differentiated between freshman and junior dental students. Both freshman and junior students provided the highest (most positive) ratings for the DSLES subscales of "breadth of interest" (interest in dentistry and outside interests are encouraged) and "meaningful learning experience" (significance of courses to dentistry). Freshman students provided the lowest (least positive) ratings for "emotional climate" (students' responses to the way their courses were conducted and stress levels), and junior students provided the least positive ratings for "faculty supportiveness" (extent of faculty support and encouragement provided to students). The DSLES identified students' perceptions of their educational experience and localized areas for improvement. By addressing these areas of concern, faculty can increase student satisfaction with their dental education.
NASA Astrophysics Data System (ADS)
Straatsma, Menno; Droogers, Peter; Brandsma, Jairus; Buytaert, Wouter; Karssenberg, Derek; Meijer, Karen; van Aalst, Maaike; van Beek, Rens; Wada, Yoshihide; Bierkens, Marc
2013-04-01
Decision makers responsible for climate change adaptation investments are confronted with large uncertainties regarding future water availability and water demand, as well as the investment cost required to reduce the water gap. Moreover, scientists have worked hard to increase fundamental knowledge on climate change and its impacts (climate services), while practical use of this knowledge is limited due to a lack of tools for decision support under uncertain long term future scenarios (decision services). The Water2Invest project aims are to (i) assess the joint impact of climate change and socioeconomic change on water scarcity, (ii) integrate impact and potential adaptation in one flow, (iii) prioritize adaptation options to counteract water scarcity on their financial, regional socio-economic and environmental implications, and (iv) deliver all this information in an integrated user-friendly web-based service. Global water availability is computed between 2006 and 2100 using the PCR-GLOBWB water resources model at a 6 minute spatial resolution. Climate change scenarios are based on the fifth Assessment Report (AR5) of the IPCC Coupled Model Intercomparison Project (CMIP5) that defines four CO2 emission scenarios as representative concentration pathways. Water demand is computed for agriculture, industry, domestic, and environmental requirements based on socio-economic scenarios of increase in population and gross domestic product. Using a linear programming algorithm, water is allocated on a monthly basis over the four sectors. Based on these assessments, the user can evaluate various technological and infrastructural adaptation measures to assess the investments needed to bridge the future water gap. Regional environmental and socioeconomic effects of these investments are evaluated, such as environmental flows or downstream effects. A scheme is developed to evaluate the strategies on robustness and flexibility under climate change and scenario uncertainty, and each measure is linked to possibilities for investment and financing mechanisms. The tool can be used by consultants, water authorities, non-governmental and commercial investors alike to test investment strategies, but could also be used by companies as a vehicle for advertisement water saving or crop water productivity technologies that can be evaluated on their effectiveness on the spot. We show initial results based on a preliminary study on the Middle East and North African region.
Understanding Farmer Perspectives on Climate Change Adaptation and Mitigation
Morton, Lois Wright; Hobbs, Jon
2015-01-01
Agriculture is vulnerable to climate change and a source of greenhouse gases (GHGs). Farmers face pressures to adjust agricultural systems to make them more resilient in the face of increasingly variable weather (adaptation) and reduce GHG production (mitigation). This research examines relationships between Iowa farmers’ trust in environmental or agricultural interest groups as sources of climate information, climate change beliefs, perceived climate risks to agriculture, and support for adaptation and mitigation responses. Results indicate that beliefs varied with trust, and beliefs in turn had a significant direct effect on perceived risks from climate change. Support for adaptation varied with perceived risks, while attitudes toward GHG reduction (mitigation) were associated predominantly with variation in beliefs. Most farmers were supportive of adaptation responses, but few endorsed GHG reduction, suggesting that outreach should focus on interventions that have adaptive and mitigative properties (e.g., reduced tillage, improved fertilizer management). PMID:25983336
Efficacy Trade-Offs in Individuals' Support for Climate Change Policies
ERIC Educational Resources Information Center
Rosentrater, Lynn D.; Saelensminde, Ingrid; Ekström, Frida; Böhm, Gisela; Bostrom, Ann; Hanss, Daniel; O'Connor, Robert E.
2013-01-01
Using survey data, the authors developed an architecture of climate change beliefs in Norway and their correlation with support for policies aimed at reducing greenhouse gas emissions. A strong majority of respondents believe that anthropogenic climate change is occurring and identify carbon dioxide emissions as a cause. Regression analysis shows…
Cook, John; Lewandowsky, Stephan; Ecker, Ullrich K. H.
2017-01-01
Misinformation can undermine a well-functioning democracy. For example, public misconceptions about climate change can lead to lowered acceptance of the reality of climate change and lowered support for mitigation policies. This study experimentally explored the impact of misinformation about climate change and tested several pre-emptive interventions designed to reduce the influence of misinformation. We found that false-balance media coverage (giving contrarian views equal voice with climate scientists) lowered perceived consensus overall, although the effect was greater among free-market supporters. Likewise, misinformation that confuses people about the level of scientific agreement regarding anthropogenic global warming (AGW) had a polarizing effect, with free-market supporters reducing their acceptance of AGW and those with low free-market support increasing their acceptance of AGW. However, we found that inoculating messages that (1) explain the flawed argumentation technique used in the misinformation or that (2) highlight the scientific consensus on climate change were effective in neutralizing those adverse effects of misinformation. We recommend that climate communication messages should take into account ways in which scientific content can be distorted, and include pre-emptive inoculation messages. PMID:28475576
Full Life Cycle of Data Analysis with Climate Model Diagnostic Analyzer (CMDA)
NASA Astrophysics Data System (ADS)
Lee, S.; Zhai, C.; Pan, L.; Tang, B.; Zhang, J.; Bao, Q.; Malarout, N.
2017-12-01
We have developed a system that supports the full life cycle of a data analysis process, from data discovery, to data customization, to analysis, to reanalysis, to publication, and to reproduction. The system called Climate Model Diagnostic Analyzer (CMDA) is designed to demonstrate that the full life cycle of data analysis can be supported within one integrated system for climate model diagnostic evaluation with global observational and reanalysis datasets. CMDA has four subsystems that are highly integrated to support the analysis life cycle. Data System manages datasets used by CMDA analysis tools, Analysis System manages CMDA analysis tools which are all web services, Provenance System manages the meta data of CMDA datasets and the provenance of CMDA analysis history, and Recommendation System extracts knowledge from CMDA usage history and recommends datasets/analysis tools to users. These four subsystems are not only highly integrated but also easily expandable. New datasets can be easily added to Data System and scanned to be visible to the other subsystems. New analysis tools can be easily registered to be available in the Analysis System and Provenance System. With CMDA, a user can start a data analysis process by discovering datasets of relevance to their research topic using the Recommendation System. Next, the user can customize the discovered datasets for their scientific use (e.g. anomaly calculation, regridding, etc) with tools in the Analysis System. Next, the user can do their analysis with the tools (e.g. conditional sampling, time averaging, spatial averaging) in the Analysis System. Next, the user can reanalyze the datasets based on the previously stored analysis provenance in the Provenance System. Further, they can publish their analysis process and result to the Provenance System to share with other users. Finally, any user can reproduce the published analysis process and results. By supporting the full life cycle of climate data analysis, CMDA improves the research productivity and collaboration level of its user.
NASA Technical Reports Server (NTRS)
Duncan, Bryan
2012-01-01
There is now a wealth of satellite data products available with which to evaluate a model fs simulation of tropospheric composition and other model processes. All of these data products have their strengths and limitations that need to be considered for this purpose. For example, uncertainties are introduced into a data product when 1) converting a slant column to a vertical column and 2) estimating the amount of a total column of a trace gas (e.g., ozone, nitrogen dioxide) that resides in the troposphere. Oftentimes, these uncertainties are not well quantified and the satellite data products are not well evaluated against in situ observations. However, these limitations do not preclude us from using these data products to evaluate our model processes if we understand these strengths and limitations when developing diagnostics. I will show several examples of how satellite data products are being used to evaluate particular model processes with a focus on the strengths and limitations of these data products. In addition, I will introduce the goals of a newly formed team to address issues on the topic of "satellite data for improved model evaluation and process studies" that is established in support of the IGAC/SPARC Global Chemistry ]Climate Modeling and Evaluation Workshop.
Climate Change and Water Working Group - User Needs to Manage Hydrclimatic Risk from Days to Decades
NASA Astrophysics Data System (ADS)
Raff, D. A.; Brekke, L. D.; Werner, K.; Wood, A.; White, K. D.
2012-12-01
The Federal Climate Change Water Working Group (CCAWWG) provides engineering and scientific collaborations in support of water management. CCAWWG objectives include building working relationships across federal science and water management agencies, provide a forum to share expertise and leverage resources, develop education and training forums, to work with water managers to understand scientific needs and to foster collaborative efforts across the Federal and non-Federal water management and science communities to address those needs. Identifying and addressing water management needs has been categorized across two major time scales: days to a decade and multi-decadal, respectively. These two time periods are termed "Short-Term" and "Long-Term" in terms of the types of water management decisions they support where Short-Term roughly correlates to water management operations and Long-Term roughly correlates to planning activities. This presentation will focus on portraying the identified water management user needs across these two time periods. User Needs for Long-Term planning were identified in the 2011 Reclamation and USACE "Addressing Climate Change in Long-Term Water Resources Planning and Management: User Needs for Improving Tools and Information." User needs for Long-Term planning are identified across eight major categories: Summarize Relevant Literature, Obtain Climate Change Information, Make Decisions About How to Use the Climate Change Information, Assess Natural Systems Response, Assess Socioeconomic and Institutional Response, Assess System Risks and Evaluate Alternatives, Assess and Characterize Uncertainties, and Communicating Results and Uncertainties to Decisionmakers. User Needs for Short-Term operations are focused on needs relative to available or desired monitoring and forecast products from the hydroclimatic community. These needs are presenting in the 2012 USACE, Reclamation, and NOAA - NWS "Short-Term Water Management Decisions: User Needs for Improved Climate, Weather, and Hydrologic Information." Identified needs are presented in four categories: Monitoring, Forecasting, Understanding on Product Relationships and Utilization in Water Management, and Information Services Enterprise. These needs represent everything from continuation and enhancement of in situ monitoring products such as USGS water gages and precipitation networks to supporting product maintenance and evolution to accommodate newly developed technologies.
Abou Hashish, Ebtsam Aly
2017-03-01
Healthcare organizations are now challenged to retain nurses' generation and understand why they are leaving their nursing career prematurely. Acquiring knowledge about the effect of ethical work climate and level of perceived organizational support can help organizational leaders to deal effectively with dysfunctional behaviors and make a difference in enhancing nurses' dedication, commitment, satisfaction, and loyalty to their organization. This study aims to determine the relationship between ethical work climate, and perceived organizational support and nurses' organizational commitment, job satisfaction, and turnover intention. A descriptive correlational research design was conducted in all inpatient care units at three major hospitals affiliated to different health sectors at Alexandria governorate. All nurses working in these previous hospitals were included in the study (N = 500). Ethical Climate Questionnaire, Survey of Perceived Organizational Support, Organizational Commitment Questionnaire, Index of Job Satisfaction, and Intention to Turnover scale were used to measure study variables. Ethical considerations: Approval was obtained from Ethics Committee at Faculty of Nursing, Alexandria University. Privacy and confidentiality of data were maintained and assured by obtaining subjects' informed consent to participate in the research before data collection. The result revealed positive significant correlations between nurses' perception of overall ethical work climate and each of perceived organizational support, commitment, as well as their job satisfaction. However, negative significant correlations were found between nurses' turnover intention and each of these variables. Also, approximately 33% of the explained variance of turnover intention is accounted by ethical work climate, organizational support, organizational commitment, and job satisfaction, and these variables independently contributed significantly in the prediction of turnover intention. Strategies to foster and enhance ethical and supportive work climates as well as job-related benefits are considered significant factors in increasing nurses' commitment and satisfaction and decreasing their turnover intention.
NASA Astrophysics Data System (ADS)
Valentina, Gallina; Silvia, Torresan; Anna, Sperotto; Elisa, Furlan; Andrea, Critto; Antonio, Marcomini
2014-05-01
Nowadays, the challenge for coastal stakeholders and decision makers is to incorporate climate change in land and policy planning in order to ensure a sustainable integrated coastal zone management aimed at preserve coastal environments and socio-economic activities. Consequently, an increasing amount of information on climate variability and its impact on human and natural ecosystem is requested. Climate risk services allows to bridge the gap between climate experts and decision makers communicating timely science-based information about impacts and risks related to climate change that could be incorporated into land planning, policy and practice. Within the CLIM-RUN project (FP7), a participatory Regional Risk Assessment (RRA) methodology was applied for the evaluation of water-related hazards in coastal areas (i.e. pluvial flood and sea-level rise inundation risks) taking into consideration future climate change scenarios in the case study of the North Adriatic Sea for the period 2040-2050. Specifically, through the analysis of hazard, exposure, vulnerability and risk and the application of Multi-Criteria Decision Analysis (MCDA), the RRA methodology allowed to identify and prioritize targets (i.e. residential and commercial-industrial areas, beaches, infrastructures, wetlands, agricultural typology) and sub-areas that are more likely to be affected by pluvial flood and sea-level rise impacts in the same region. From the early stages of the climate risk services development and application, the RRA followed a bottom-up approach taking into account the needs, knowledge and perspectives of local stakeholders dealing with the Integrated Coastal Zone Management (ICZM), by means of questionnaires, workshops and focus groups organized within the project. Specifically, stakeholders were asked to provide their needs in terms of time scenarios, geographical scale and resolution, choice of receptors, vulnerability factors and thresholds that were considered in the implementation of the RRA methodology. The main output of the analysis are climate risk products produced with the DEcision support SYstem for COastal climate change impact assessment (DESYCO) and represented by GIS-based maps and statistics of hazard, exposure, physical and environmental vulnerability, risk and damage. These maps are useful to transfer information about climate change impacts to stakeholders and decision makers, to allow the classification and prioritization of areas that are likely to be affected by climate change impacts more severely than others in the same region, and therefore to support the identification of suitable areas for infrastructure, economic activities and human settlements toward the development of regional adaptation plans. The climate risk products and the results of North Adriatic case study will be here presented and discussed.
Faulkner, Stephen P.
2010-01-01
Landscape patterns and processes reflect both natural ecosystem attributes and the policy and management decisions of individual Federal, State, county, and private organizations. Land-use regulation, water management, and habitat conservation and restoration efforts increasingly rely on landscape-level approaches that incorporate scientific information into the decision-making process. Since management actions are implemented to affect future conditions, decision-support models are necessary to forecast potential future conditions resulting from these decisions. Spatially explicit modeling approaches enable testing of different scenarios and help evaluate potential outcomes of management actions in conjunction with natural processes such as climate change. The ability to forecast the effects of changing land use and climate is critically important to land and resource managers since their work is inherently site specific, yet conservation strategies and practices are expressed at higher spatial and temporal scales that must be considered in the decisionmaking process.
PRMS-IV, the precipitation-runoff modeling system, version 4
Markstrom, Steven L.; Regan, R. Steve; Hay, Lauren E.; Viger, Roland J.; Webb, Richard M.; Payn, Robert A.; LaFontaine, Jacob H.
2015-01-01
Computer models that simulate the hydrologic cycle at a watershed scale facilitate assessment of variability in climate, biota, geology, and human activities on water availability and flow. This report describes an updated version of the Precipitation-Runoff Modeling System. The Precipitation-Runoff Modeling System is a deterministic, distributed-parameter, physical-process-based modeling system developed to evaluate the response of various combinations of climate and land use on streamflow and general watershed hydrology. Several new model components were developed, and all existing components were updated, to enhance performance and supportability. This report describes the history, application, concepts, organization, and mathematical formulation of the Precipitation-Runoff Modeling System and its model components. This updated version provides improvements in (1) system flexibility for integrated science, (2) verification of conservation of water during simulation, (3) methods for spatial distribution of climate boundary conditions, and (4) methods for simulation of soil-water flow and storage.
Hostetler, S.W.; Alder, J.R.; Allan, A.M.
2011-01-01
We have completed an array of high-resolution simulations of present and future climate over Western North America (WNA) and Eastern North America (ENA) by dynamically downscaling global climate simulations using a regional climate model, RegCM3. The simulations are intended to provide long time series of internally consistent surface and atmospheric variables for use in climate-related research. In addition to providing high-resolution weather and climate data for the past, present, and future, we have developed an integrated data flow and methodology for processing, summarizing, viewing, and delivering the climate datasets to a wide range of potential users. Our simulations were run over 50- and 15-kilometer model grids in an attempt to capture more of the climatic detail associated with processes such as topographic forcing than can be captured by general circulation models (GCMs). The simulations were run using output from four GCMs. All simulations span the present (for example, 1968-1999), common periods of the future (2040-2069), and two simulations continuously cover 2010-2099. The trace gas concentrations in our simulations were the same as those of the GCMs: the IPCC 20th century time series for 1968-1999 and the A2 time series for simulations of the future. We demonstrate that RegCM3 is capable of producing present day annual and seasonal climatologies of air temperature and precipitation that are in good agreement with observations. Important features of the high-resolution climatology of temperature, precipitation, snow water equivalent (SWE), and soil moisture are consistently reproduced in all model runs over WNA and ENA. The simulations provide a potential range of future climate change for selected decades and display common patterns of the direction and magnitude of changes. As expected, there are some model to model differences that limit interpretability and give rise to uncertainties. Here, we provide background information about the GCMs and the RegCM3, a basic evaluation of the model output and examples of simulated future climate. We also provide information needed to access the web applications for visualizing and downloading the data, and give complete metadata that describe the variables in the datasets.
NASA Astrophysics Data System (ADS)
Kothari, K.; Ale, S.; Bordovsky, J.; Hoogenboom, G.; Munster, C. L.
2017-12-01
The semi-arid Texas High Plains (THP) is one of the most productive agricultural regions in the United States. However, agriculture in the THP is faced with the challenges of rapid groundwater depletion in the underlying Ogallala Aquifer, restrictions on pumping groundwater, recurring droughts, and projected warmer and drier future climatic conditions. Therefore, it is imperative to adopt strategies that enhance climate change resilience of THP agriculture to maintain a sustainable agricultural economy in this region. The overall goal of this study is to assess the impacts of climate change and potential reduction in groundwater availability on production of two major crops in the region, cotton and grain sorghum, and suggest adaptation strategies using the Decision Support System for Agrotechnology Transfer (DSSAT) Cropping System Model. The DSSAT model was calibrated and evaluated using data from the long-term cotton-sorghum rotation experiments conducted at Helms Farm near Halfway in the THP. After achieving a satisfactory calibration for crop yield (RMSE < 1.0 T ha-1 or 14%) and dates of onset of various growth stages, the model was used to simulate historic (1980-2010) and future (2040-2070) cotton and sorghum yields and water use. The Multivariate Adaptive Constructed Analogs (MACA) projected future climate datasets from nine CMIP5 global climate models (GCMs) and two representative concentration pathways (RCP 4.5 and 8.5) were used in this study. Preliminary results indicated a reduction in irrigated grain sorghum yield per hectare by 6% and 8%, and a reduction in dryland sorghum yield per hectare by 9% and 17% under RCP 4.5 and RCP 8.5 scenarios, respectively. Grain sorghum future water use declined by about 2% and 5% under RCP 4.5 and RCP 8.5, respectively. Climate change impacts on cotton production and evaluation of several adaptation strategies such as incorporating heat and drought tolerances in cultivars, early planting, shifting to short season varieties, and deficit irrigation are currently being studied.
Effects of Climate Change on Diffuse Pollution in Lake Mogan Watershed
NASA Astrophysics Data System (ADS)
Alp, E.; Özcan, Z.
2017-12-01
Climate change is putting increasing pressure on water bodies. It can affect the behavior of pollutants in the environment and their interaction with the hydrological cycle. For instance, changing precipitation patterns may result in higher volumes of runoff containing numerous contaminants to water bodies and eventually loss of life-supporting function of them. The purpose of this study is to evaluate the impacts of climate change on diffuse pollution in Lake Mogan watershed located in a climate change vulnerable region and where agricultural diffuse pollution is one of the significant concerns. Lake Mogan watershed has an area of 970 km2 and it is dominated by dry agricultural practices and characterized by intermittent creeks. The lake was declared as a special environmental protection region in 1990. In this study, the impacts of climate change on diffuse pollution in the Lake Mogan watershed was evaluated using with a water quality model, SWAT (Soil and Water Assessment Tool). SWAT is a conceptual, continuous time model that operates on a daily time step. The model has been used in many studies to estimate the impacts of climate change, to calculate pollutant loads and to evaluate the best management practices all over the world. The required inputs for SWAT model can be categorized under the following basic categories: topography, land use/land cover, soil properties, land management practices occurring in the watershed, and meteorological inputs. According to Turkish Ministry of Forestry and Water Affairs (2016), it is estimated that the annual average temperature values will increase up to 3.3°C during the 85 year projection period as compared to reference period in the RCP4.5 scenario in the study area. This increase is predicted as up to 5.7°C based on the RCP8.5 scenario. The calibrated SWAT model for the Lake Mogan Watershed is used for the climate change scenarios for a period of 2010 and 2100. It is aimed that the outcomes of this study will help decision makers to develop beneficial management strategies so that the sustainable management of the specially protected water body is provided.
NASA Astrophysics Data System (ADS)
Brown, I.; Wennbom, M.
2013-12-01
Climate change, population growth and changes in traditional lifestyles have led to instabilities in traditional demarcations between neighboring ethic and religious groups in the Sahel region. This has resulted in a number of conflicts as groups resort to arms to settle disputes. Such disputes often centre on or are justified by competition for resources. The conflict in Darfur has been controversially explained by resource scarcity resulting from climate change. Here we analyse established methods of using satellite imagery to assess vegetation health in Darfur. Multi-decadal time series of observations are available using low spatial resolution visible-near infrared imagery. Typically normalized difference vegetation index (NDVI) analyses are produced to describe changes in vegetation ';greenness' or ';health'. Such approaches have been widely used to evaluate the long term development of vegetation in relation to climate variations across a wide range of environments from the Arctic to the Sahel. These datasets typically measure peak NDVI observed over a given interval and may introduce bias. It is furthermore unclear how the spatial organization of sparse vegetation may affect low resolution NDVI products. We develop and assess alternative measures of vegetation including descriptors of the growing season, wetness and resource availability. Expanding the range of parameters used in the analysis reduces our dependence on peak NDVI. Furthermore, these descriptors provide a better characterization of the growing season than the single NDVI measure. Using multi-sensor data we combine high temporal/moderate spatial resolution data with low temporal/high spatial resolution data to improve the spatial representativity of the observations and to provide improved spatial analysis of vegetation patterns. The approach places the high resolution observations in the NDVI context space using a longer time series of lower resolution imagery. The vegetation descriptors derived are evaluated using independent high spatial resolution datasets that reveal the pattern and health of vegetation at metre scales. We also use climate variables to support the interpretation of these data. We conclude that the spatio-temporal patterns in Darfur vegetation and climate datasets suggest that labelling the conflict a climate-change conflict is inaccurate and premature.
Public perceptions about climate change mitigation in British Columbia's forest sector
Hagerman, Shannon; Kozak, Robert; Hoberg, George
2018-01-01
The role of forest management in mitigating climate change is a central concern for the Canadian province of British Columbia. The successful implementation of forest management activities to achieve climate change mitigation in British Columbia will be strongly influenced by public support or opposition. While we now have increasingly clear ideas of the management opportunities associated with forest mitigation and some insight into public support for climate change mitigation in the context of sustainable forest management, very little is known with respect to the levels and basis of public support for potential forest management strategies to mitigate climate change. This paper, by describing the results of a web-based survey, documents levels of public support for the implementation of eight forest carbon mitigation strategies in British Columbia’s forest sector, and examines and quantifies the influence of the factors that shape this support. Overall, respondents ascribed a high level of importance to forest carbon mitigation and supported all of the eight proposed strategies, indicating that the British Columbia public is inclined to consider alternative practices in managing forests and wood products to mitigate climate change. That said, we found differences in levels of support for the mitigation strategies. In general, we found greater levels of support for a rehabilitation strategy (e.g. reforestation of unproductive forest land), and to a lesser extent for conservation strategies (e.g. old growth conservation, reduced harvest) over enhanced forest management strategies (e.g. improved harvesting and silvicultural techniques). We also highlighted multiple variables within the British Columbia population that appear to play a role in predicting levels of support for conservation and/or enhanced forest management strategies, including environmental values, risk perception, trust in groups of actors, prioritized objectives of forest management and socio-demographic factors. PMID:29684041
Public perceptions about climate change mitigation in British Columbia's forest sector.
Peterson St-Laurent, Guillaume; Hagerman, Shannon; Kozak, Robert; Hoberg, George
2018-01-01
The role of forest management in mitigating climate change is a central concern for the Canadian province of British Columbia. The successful implementation of forest management activities to achieve climate change mitigation in British Columbia will be strongly influenced by public support or opposition. While we now have increasingly clear ideas of the management opportunities associated with forest mitigation and some insight into public support for climate change mitigation in the context of sustainable forest management, very little is known with respect to the levels and basis of public support for potential forest management strategies to mitigate climate change. This paper, by describing the results of a web-based survey, documents levels of public support for the implementation of eight forest carbon mitigation strategies in British Columbia's forest sector, and examines and quantifies the influence of the factors that shape this support. Overall, respondents ascribed a high level of importance to forest carbon mitigation and supported all of the eight proposed strategies, indicating that the British Columbia public is inclined to consider alternative practices in managing forests and wood products to mitigate climate change. That said, we found differences in levels of support for the mitigation strategies. In general, we found greater levels of support for a rehabilitation strategy (e.g. reforestation of unproductive forest land), and to a lesser extent for conservation strategies (e.g. old growth conservation, reduced harvest) over enhanced forest management strategies (e.g. improved harvesting and silvicultural techniques). We also highlighted multiple variables within the British Columbia population that appear to play a role in predicting levels of support for conservation and/or enhanced forest management strategies, including environmental values, risk perception, trust in groups of actors, prioritized objectives of forest management and socio-demographic factors.
Nevada Infrastructure for Climate Change Science, Education, and Outreach
NASA Astrophysics Data System (ADS)
Dana, G. L.; Piechota, T. C.; Lancaster, N.; Mensing, S. A.
2009-12-01
The Nevada system of Higher Education, including the University of Nevada, Las Vegas, the University of Nevada, Reno, the Desert Research Institute, and Nevada State College have begun a five year research and infrastructure building program, funded by the National Science Foundation Experimental Program to Stimulate Competitive Research (NSF EPSCoR) with the vision “to create a statewide interdisciplinary program and virtual climate change center that will stimulate transformative research, education, and outreach on the effects of regional climate change on ecosystem resources (especially water) and support use of this knowledge by policy makers and stakeholders.” Six major strategies are proposed: 1) Develop a capability to model climate change and its effects at a regional and sub-regional scales to evaluate different future scenarios and strategies (Climate Modeling Component) 2) Develop data collection, modeling, and visualization infrastructure to determine and analyze effects on ecosystems and disturbance regimes (Ecological Change Component) 3) Develop data collection, modeling, and visualization infrastructure to better quantify and model changes in water balance and resources under climate change (Water Resources Component) 4) Develop data collection and modeling infrastructure to assess effects on human systems, responses to institutional and societal aspects, and enhance policy making and outreach to communities and stakeholders (Policy, Decision-Making, and Outreach Component) 5) Develop a data portal and software to support interdisciplinary research via integration of data from observational networks and modeling (Cyberinfrastructure Component) and 6) Develop educational infrastructure to train students at all levels and provide public outreach in climate change issues (Education Component). As part of the new infrastructure, two observational transects will be established across Great Basin Ranges, one in southern Nevada in the Spring Mountains, and the second to be located in the Snake Range of eastern Nevada which will reach bristlecone pine stands. Climatic, hydrologic and ecological data from these transects will be downloaded into high capacity data storage units and made available to researchers through creation of the Nevada climate change portal. Our research will aim to answer two interdisciplinary science questions: 1) How will climate change affect water resources and linked ecosystem resources and human systems? And 2) How will climate change affect disturbance regimes (e.g., wildland fires, invasive species, insect outbreaks, droughts) and linked systems?
Impact of Seasonal Forecasts on Agriculture
NASA Astrophysics Data System (ADS)
Aldor-Noiman, S. C.
2014-12-01
More extreme and volatile weather conditions are a threat to U.S. agricultural productivity today, as multiple environmental conditions during the growing season impact crop yields. That's why farmers' agronomic management decisions are dominated by consideration for near, medium and seasonal forecasts of climate. The Climate Corporation aims to help farmers around the world protect and improve their farming operations by providing agronomic decision support tools that leverage forecasts on multiple timescales to provide valuable insights directly to farmers. In this talk, we will discuss the impact of accurate seasonal forecasts on major decisions growers face each season. We will also discuss assessment and evaluation of seasonal forecasts in the context of agricultural applications.
The role of academic institutions in leveraging engagement and action on climate change
NASA Astrophysics Data System (ADS)
Hill, T. M.; Palca, J.
2016-12-01
Growing global concern over the impact of climate change places climate scientists at the forefront of communicating risks, impacts, and adaptation strategies to non-scientists. Academic institutions can play a leadership role in providing support, incentives, and structures that encourage scientific engagement on this, and other, complex societal and scientific issues. This presentation will focus on `best practices' in supporting university scientists in communicating their science and engaging in thoughtful dialogue with decision makers, managers, media, and public audiences. For example, institutions that can provide significant administrative support for science communication (press officers, training workshops) may decrease barriers between academic science and public knowledge. Additionally, financial (or similar) support in the form of teaching releases and institutional awards can be utilized to acknowledge the time and effort spent in engagement. This presentation will feature examples from universities, professional societies and other institutions where engagement on climate science is structurally encouraged and supported.
Portoghese, Igor; Galletta, Maura; Burdorf, Alex; Cocco, Pierluigi; D'Aloja, Ernesto; Campagna, Marcello
2017-10-01
The aim of the study was to examine the relationship between role stress, emotional exhaustion, and a supportive coworker climate among health care workers, by adopting a multilevel perspective. Aggregated data of 738 health care workers nested within 67 teams of three Italian hospitals were collected. Multilevel regression analysis with a random intercept model was used. Hierarchical linear modeling showed that a lack of role clarity was significantly linked to emotional exhaustion at the individual level. At the unit level, the cross-level interaction revealed that a supportive coworker climate moderated the relationship between lack of role clarity and emotional exhaustion. This study supports previous results of single-level burnout studies, extending the existing literature with evidence on the multidimensional and cross-level interaction associations of a supportive coworker climate as a key aspect of job resources on burnout.
Eric J. Greenfield; David J. Nowak
2013-01-01
Future projections of tree cover and climate change are useful to natural resource managers as they illustrate potential changes to our natural resources and the ecosystem services they provide. This report a) details three projections of tree cover change across the conterminous United States based on predicted land-use changes from 2000 to 2060; b) evaluates nine...
Minigrants to Local Health Departments: An Opportunity to Promote Climate Change Preparedness.
Grossman, Elena; Hathaway, Michelle; Bush, Kathleen F; Cahillane, Matthew; English, Dorette Q; Holmes, Tisha; Moran, Colleen E; Uejio, Christopher K; York, Emily A; Dorevitch, Samuel
2018-06-20
Human health is threatened by climate change. While the public health workforce is concerned about climate change, local health department (LHD) administrators have reported insufficient knowledge and resources to address climate change. Minigrants from state to LHDs have been used to promote a variety of local public health initiatives. To describe the minigrant approach used by state health departments implementing the Centers for Disease Control and Prevention's (CDC's) Building Resilience Against Climate Effects (BRACE) framework, to highlight successes of this approach in promoting climate change preparedness at LHDs, and to describe challenges encountered. Cross-sectional survey and discussion. State-level recipients of CDC funding issued minigrants to local public health entities to promote climate change preparedness, adaptation, and resilience. The amount of funding, number of LHDs funded per state, goals, selection process, evaluation process, outcomes, successes, and challenges of the minigrant programs. Six state-level recipients of CDC funding for BRACE framework implementation awarded minigrants ranging from $7700 to $28 500 per year to 44 unique local jurisdictions. Common goals of the minigrants included capacity building, forging partnerships with entities outside of health departments, incorporating climate change information into existing programs, and developing adaptation plans. Recipients of minigrants reported increases in knowledge, engagement with diverse stakeholders, and the incorporation of climate change content into existing programs. Challenges included addressing climate change in regions where the topic is politically sensitive, as well as the uncertainty about the long-term sustainability of local projects beyond the term of minigrant support. Minigrants can increase local public health capacity to address climate change. Jurisdictions that wish to utilize minigrant mechanisms to promote climate change adaptation and preparedness at the local level may benefit from the experience of the 6 states and 44 local health programs described.
Wang, Ming-Te; Dishion, Thomas J.
2012-01-01
This longitudinal study examined trajectories of change in adolescents’ perceptions of four dimensions of school climate (academic support, behavior management, teacher social support, peer social support) and the effects of such trajectories on adolescent problem behaviors. We also tested whether school climate moderated the associations between deviant peer affiliation and adolescent problem behaviors. The 1,030 participating adolescents from 8 schools were followed from 6th through 8th grades (54% female; 76% European American). Findings indicated that all the dimensions of school climate declined and behavioral problems and deviant peer affiliation increased. Declines in each of the dimensions were associated with increases in behavioral problems. The prediction of problem behavior from peer affiliation was moderated by adolescents’ perceptions of school climate. PMID:22822296
USGCRP assessments: Meeting the challenges of climate and global change
NASA Astrophysics Data System (ADS)
Dickinson, T.; Kuperberg, J. M.
2016-12-01
The United States Global Change Research Program (USGCRP) is a confederation of the research arms of 13 Federal departments and agencies. Its mission is to build a knowledge base that informs human responses to climate and global change through coordinated and integrated Federal programs of research, education, communication, and decision support. USGCRP has supported several initiatives to promote better understanding of climate change impacts on health, support responses, and build on the progress of the 2014 National Climate Assessment. Most recently, USGCRP released a new report, "The Impacts of Climate Change on Human Health: A Scientific Assessment". This presentation will provide an overview of USGCRP, highlight the importance of assessments, and introduce ways in which assessment findings and underlying data can be translated into critical tools to build resilience.
NASA Astrophysics Data System (ADS)
Bellugi, D. G.; Tennant, C.; Larsen, L.
2016-12-01
Catchment and climate heterogeneity complicate prediction of runoff across time and space, and resulting parameter uncertainty can lead to large accumulated errors in hydrologic models, particularly in ungauged basins. Recently, data-driven modeling approaches have been shown to avoid the accumulated uncertainty associated with many physically-based models, providing an appealing alternative for hydrologic prediction. However, the effectiveness of different methods in hydrologically and geomorphically distinct catchments, and the robustness of these methods to changing climate and changing hydrologic processes remain to be tested. Here, we evaluate the use of machine learning techniques to predict daily runoff across time and space using only essential climatic forcing (e.g. precipitation, temperature, and potential evapotranspiration) time series as model input. Model training and testing was done using a high quality dataset of daily runoff and climate forcing data for 25+ years for 600+ minimally-disturbed catchments (drainage area range 5-25,000 km2, median size 336 km2) that cover a wide range of climatic and physical characteristics. Preliminary results using Support Vector Regression (SVR) suggest that in some catchments this nonlinear-based regression technique can accurately predict daily runoff, while the same approach fails in other catchments, indicating that the representation of climate inputs and/or catchment filter characteristics in the model structure need further refinement to increase performance. We bolster this analysis by using Sparse Identification of Nonlinear Dynamics (a sparse symbolic regression technique) to uncover the governing equations that describe runoff processes in catchments where SVR performed well and for ones where it performed poorly, thereby enabling inference about governing processes. This provides a robust means of examining how catchment complexity influences runoff prediction skill, and represents a contribution towards the integration of data-driven inference and physically-based models.
NASA Astrophysics Data System (ADS)
Malard, J. J.; Rojas, M.; Adamowski, J. F.; Gálvez, J.; Tuy, H. A.; Melgar-Quiñonez, H.
2015-12-01
While cropping models represent the biophysical aspects of agricultural systems, system dynamics modelling offers the possibility of representing the socioeconomic (including social and cultural) aspects of these systems. The two types of models can then be coupled in order to include the socioeconomic dimensions of climate change adaptation in the predictions of cropping models.We develop a dynamically coupled socioeconomic-biophysical model of agricultural production and its repercussions on food security in two case studies from Guatemala (a market-based, intensive agricultural system and a low-input, subsistence crop-based system). Through the specification of the climate inputs to the cropping model, the impacts of climate change on the entire system can be analysed, and the participatory nature of the system dynamics model-building process, in which stakeholders from NGOs to local governmental extension workers were included, helps ensure local trust in and use of the model.However, the analysis of climate variability's impacts on agroecosystems includes uncertainty, especially in the case of joint physical-socioeconomic modelling, and the explicit representation of this uncertainty in the participatory development of the models is important to ensure appropriate use of the models by the end users. In addition, standard model calibration, validation, and uncertainty interval estimation techniques used for physically-based models are impractical in the case of socioeconomic modelling. We present a methodology for the calibration and uncertainty analysis of coupled biophysical (cropping) and system dynamics (socioeconomic) agricultural models, using survey data and expert input to calibrate and evaluate the uncertainty of the system dynamics as well as of the overall coupled model. This approach offers an important tool for local decision makers to evaluate the potential impacts of climate change and their feedbacks through the associated socioeconomic system.
NASA Astrophysics Data System (ADS)
Proestos, Y.; Christophides, G.; Erguler, K.; Tanarhte, M.; Waldock, J.; Lelieveld, J.
2014-12-01
Climate change can influence the transmission of vector borne diseases (VBDs) through altering the habitat suitability of insect vectors. Here we present global climate model simulations and evaluate the associated uncertainties in view of the main meteorological factors that may affect the distribution of the Asian Tiger mosquito (Aedes albopictus), which can transmit pathogens that cause Chikungunya, Dengue fever, yellow fever and various encephalitides. Using a general circulation model (GCM) at 50 km horizontal resolution to simulate mosquito survival variables including temperature, precipitation and relative humidity, we present both global and regional projections of the habitat suitability up to the middle of the 21st century. The model resolution of 50 km allows evaluation against previous projections for Europe and provides a basis for comparative analyses with other regions. Model uncertainties and performance are addressed in light of the recent CMIP5 ensemble climate model simulations for the RCP8.5 concentration pathway and using meteorological re-analysis data (ERA-Interim/ECMWF) for the recent past. Uncertainty ranges associated with the thresholds of meteorological variables that may affect the distribution of Ae. albopictus are diagnosed using fuzzy-logic methodology, notably to assess the influence of selected meteorological criteria and combinations of criteria that influence mosquito habitat suitability. From the climate projections for 2050, and adopting a habitat suitability index larger than 70%, we estimate that about 2.4 billion individuals in a land area of nearly 20 million square kilometres will potentially be exposed to Ae. albopictus. The synthesis of fuzzy-logic based on mosquito biology and climate change analysis provides new insights into the regional and global spreading of VBDs to support disease control and policy making.
Petrů, Martina; Tielbörger, Katja
2008-04-01
The role of local adaptation and factors other than climate in determining extinction probabilities of species under climate change has not been yet explicitly studied. Here we performed a field experiment with annual plants growing along a steep climatic gradient in Israel to isolate climatic effects for local trait expression. The focus trait was seed dormancy, for which many theoretical predictions exist regarding climate-driven optimal germination behaviour. We evaluated how germination is consistent with theory, indicating local adaptation to current and changing climatic conditions, and how it varies among species and between natural and standardised soil conditions. We reciprocally sowed seeds from three or four origins for each of three annual species, Biscutella didyma, Bromus fasciculatus and Hymenocarpos circinnatus, in their home and neighbouring sowing locations along an aridity gradient. Our predictions were: lower germination fraction for seeds from more arid origins, and higher germination at wetter sowing locations for all seed origins. By sowing seeds in both local and standard soil, we separated climatic effects from local conditions. At the arid sowing location, two species supported the prediction of low germination of drier seed origins, but differences between seed origins at the other sites were not substantial. There were no clear rainfall effects on germination. Germination fractions were consistently lower on local soil than on standard soil, indicating the important role of soil type and neighbour conditions for trait expression. Local environmental conditions may override effects of climate and so should be carefully addressed in future studies testing for the potential of species to adapt or plastically respond to climate change.
Recent ecological responses to climate change support predictions of high extinction risk
Maclean, Ilya M. D.; Wilson, Robert J.
2011-01-01
Predicted effects of climate change include high extinction risk for many species, but confidence in these predictions is undermined by a perceived lack of empirical support. Many studies have now documented ecological responses to recent climate change, providing the opportunity to test whether the magnitude and nature of recent responses match predictions. Here, we perform a global and multitaxon metaanalysis to show that empirical evidence for the realized effects of climate change supports predictions of future extinction risk. We use International Union for Conservation of Nature (IUCN) Red List criteria as a common scale to estimate extinction risks from a wide range of climate impacts, ecological responses, and methods of analysis, and we compare predictions with observations. Mean extinction probability across studies making predictions of the future effects of climate change was 7% by 2100 compared with 15% based on observed responses. After taking account of possible bias in the type of climate change impact analyzed and the parts of the world and taxa studied, there was less discrepancy between the two approaches: predictions suggested a mean extinction probability of 10% across taxa and regions, whereas empirical evidence gave a mean probability of 14%. As well as mean overall extinction probability, observations also supported predictions in terms of variability in extinction risk and the relative risk associated with broad taxonomic groups and geographic regions. These results suggest that predictions are robust to methodological assumptions and provide strong empirical support for the assertion that anthropogenic climate change is now a major threat to global biodiversity. PMID:21746924
Recent ecological responses to climate change support predictions of high extinction risk.
Maclean, Ilya M D; Wilson, Robert J
2011-07-26
Predicted effects of climate change include high extinction risk for many species, but confidence in these predictions is undermined by a perceived lack of empirical support. Many studies have now documented ecological responses to recent climate change, providing the opportunity to test whether the magnitude and nature of recent responses match predictions. Here, we perform a global and multitaxon metaanalysis to show that empirical evidence for the realized effects of climate change supports predictions of future extinction risk. We use International Union for Conservation of Nature (IUCN) Red List criteria as a common scale to estimate extinction risks from a wide range of climate impacts, ecological responses, and methods of analysis, and we compare predictions with observations. Mean extinction probability across studies making predictions of the future effects of climate change was 7% by 2100 compared with 15% based on observed responses. After taking account of possible bias in the type of climate change impact analyzed and the parts of the world and taxa studied, there was less discrepancy between the two approaches: predictions suggested a mean extinction probability of 10% across taxa and regions, whereas empirical evidence gave a mean probability of 14%. As well as mean overall extinction probability, observations also supported predictions in terms of variability in extinction risk and the relative risk associated with broad taxonomic groups and geographic regions. These results suggest that predictions are robust to methodological assumptions and provide strong empirical support for the assertion that anthropogenic climate change is now a major threat to global biodiversity.
Advancing the framework for considering the effects of climate change on worker safety and health.
Schulte, P A; Bhattacharya, A; Butler, C R; Chun, H K; Jacklitsch, B; Jacobs, T; Kiefer, M; Lincoln, J; Pendergrass, S; Shire, J; Watson, J; Wagner, G R
2016-11-01
In 2009, a preliminary framework for how climate change could affect worker safety and health was described. That framework was based on a literature search from 1988-2008 that supported seven categories of climate-related occupational hazards: (1) increased ambient temperature; (2) air pollution; (3) ultraviolet radiation exposure; (4) extreme weather; (5) vector-borne diseases and expanded habitats; (6) industrial transitions and emerging industries; and (7) changes in the built environment. This article reviews the published literature from 2008-2014 in each of the seven categories. Additionally, three new topics related to occupational safety and health are considered: mental health effects, economic burden, and potential worker safety and health impacts associated with the nascent field of climate intervention (geoengineering). Beyond updating the literature, this article also identifies key priorities for action to better characterize and understand how occupational safety and health may be associated with climate change events and ensure that worker health and safety issues are anticipated, recognized, evaluated, and mitigated. These key priorities include research, surveillance, risk assessment, risk management, and policy development. Strong evidence indicates that climate change will continue to present occupational safety and health hazards, and this framework may be a useful tool for preventing adverse effects to workers.
Advancing the framework for considering the effects of climate change on worker safety and health
Schulte, P.A.; Bhattacharya, A.; Butler, C.R.; Chun, H.K.; Jacklitsch, B.; Jacobs, T.; Kiefer, M.; Lincoln, J.; Pendergrass, S.; Shire, J.; Watson, J.; Wagner, G.R.
2016-01-01
ABSTRACT In 2009, a preliminary framework for how climate change could affect worker safety and health was described. That framework was based on a literature search from 1988–2008 that supported seven categories of climate-related occupational hazards: (1) increased ambient temperature; (2) air pollution; (3) ultraviolet radiation exposure; (4) extreme weather; (5) vector-borne diseases and expanded habitats; (6) industrial transitions and emerging industries; and (7) changes in the built environment. This article reviews the published literature from 2008–2014 in each of the seven categories. Additionally, three new topics related to occupational safety and health are considered: mental health effects, economic burden, and potential worker safety and health impacts associated with the nascent field of climate intervention (geoengineering). Beyond updating the literature, this article also identifies key priorities for action to better characterize and understand how occupational safety and health may be associated with climate change events and ensure that worker health and safety issues are anticipated, recognized, evaluated, and mitigated. These key priorities include research, surveillance, risk assessment, risk management, and policy development. Strong evidence indicates that climate change will continue to present occupational safety and health hazards, and this framework may be a useful tool for preventing adverse effects to workers. PMID:27115294
Factorial validity and internal consistency of the motivational climate in physical education scale.
Soini, Markus; Liukkonen, Jarmo; Watt, Anthony; Yli-Piipari, Sami; Jaakkola, Timo
2014-01-01
The aim of the study was to examine the construct validity and internal consistency of the Motivational Climate in Physical Education Scale (MCPES). A key element of the development process of the scale was establishing a theoretical framework that integrated the dimensions of task- and ego involving climates in conjunction with autonomy, and social relatedness supporting climates. These constructs were adopted from the self-determination and achievement goal theories. A sample of Finnish Grade 9 students, comprising 2,594 girls and 1,803 boys, completed the 18-item MCPES during one physical education class. The results of the study demonstrated that participants had highest mean in task-involving climate and the lowest in autonomy climate and ego-involving climate. Additionally, autonomy, social relatedness, and task- involving climates were significantly and strongly correlated with each other, whereas the ego- involving climate had low or negligible correlations with the other climate dimensions.The construct validity of the MCPES was analyzed using confirmatory factor analysis. The statistical fit of the four-factor model consisting of motivational climate factors supporting perceived autonomy, social relatedness, task-involvement, and ego-involvement was satisfactory. The results of the reliability analysis showed acceptable internal consistencies for all four dimensions. The Motivational Climate in Physical Education Scale can be considered as psychometrically valid tool to measure motivational climate in Finnish Grade 9 students. Key PointsThis study developed Motivational Climate in School Physical Education Scale (MCPES). During the development process of the scale, the theoretical framework using dimensions of task- and ego involving as well as autonomy, and social relatedness supporting climates was constructed. These constructs were adopted from the self-determination and achievement goal theories.The statistical fit of the four-factor model of the MCPES consisting of motivational climate factors supporting perceived autonomy, social relatedness, task-involvement, and ego-involvement was satisfactory. Additionally, the results of the reliability analysis showed acceptable internal consistencies for all four dimensions.The results of the study demonstrated that participants had highest mean in task-involving climate and the lowest in autonomy climate.Autonomy, social relatedness, and task climate were significantly and strongly correlated with each other, whereas the ego climate factor had low or negligible correlations with the other three factors.
Factorial Validity and Internal Consistency of the Motivational Climate in Physical Education Scale
Soini, Markus; Liukkonen, Jarmo; Watt, Anthony; Yli-Piipari, Sami; Jaakkola, Timo
2014-01-01
The aim of the study was to examine the construct validity and internal consistency of the Motivational Climate in Physical Education Scale (MCPES). A key element of the development process of the scale was establishing a theoretical framework that integrated the dimensions of task- and ego involving climates in conjunction with autonomy, and social relatedness supporting climates. These constructs were adopted from the self-determination and achievement goal theories. A sample of Finnish Grade 9 students, comprising 2,594 girls and 1,803 boys, completed the 18-item MCPES during one physical education class. The results of the study demonstrated that participants had highest mean in task-involving climate and the lowest in autonomy climate and ego-involving climate. Additionally, autonomy, social relatedness, and task- involving climates were significantly and strongly correlated with each other, whereas the ego- involving climate had low or negligible correlations with the other climate dimensions.The construct validity of the MCPES was analyzed using confirmatory factor analysis. The statistical fit of the four-factor model consisting of motivational climate factors supporting perceived autonomy, social relatedness, task-involvement, and ego-involvement was satisfactory. The results of the reliability analysis showed acceptable internal consistencies for all four dimensions. The Motivational Climate in Physical Education Scale can be considered as psychometrically valid tool to measure motivational climate in Finnish Grade 9 students. Key Points This study developed Motivational Climate in School Physical Education Scale (MCPES). During the development process of the scale, the theoretical framework using dimensions of task- and ego involving as well as autonomy, and social relatedness supporting climates was constructed. These constructs were adopted from the self-determination and achievement goal theories. The statistical fit of the four-factor model of the MCPES consisting of motivational climate factors supporting perceived autonomy, social relatedness, task-involvement, and ego-involvement was satisfactory. Additionally, the results of the reliability analysis showed acceptable internal consistencies for all four dimensions. The results of the study demonstrated that participants had highest mean in task-involving climate and the lowest in autonomy climate. Autonomy, social relatedness, and task climate were significantly and strongly correlated with each other, whereas the ego climate factor had low or negligible correlations with the other three factors. PMID:24570617
User-centered design to improve clinical decision support in primary care.
Brunner, Julian; Chuang, Emmeline; Goldzweig, Caroline; Cain, Cindy L; Sugar, Catherine; Yano, Elizabeth M
2017-08-01
A growing literature has demonstrated the ability of user-centered design to make clinical decision support systems more effective and easier to use. However, studies of user-centered design have rarely examined more than a handful of sites at a time, and have frequently neglected the implementation climate and organizational resources that influence clinical decision support. The inclusion of such factors was identified by a systematic review as "the most important improvement that can be made in health IT evaluations." (1) Identify the prevalence of four user-centered design practices at United States Veterans Affairs (VA) primary care clinics and assess the perceived utility of clinical decision support at those clinics; (2) Evaluate the association between those user-centered design practices and the perceived utility of clinical decision support. We analyzed clinic-level survey data collected in 2006-2007 from 170 VA primary care clinics. We examined four user-centered design practices: 1) pilot testing, 2) provider satisfaction assessment, 3) formal usability assessment, and 4) analysis of impact on performance improvement. We used a regression model to evaluate the association between user-centered design practices and the perceived utility of clinical decision support, while accounting for other important factors at those clinics, including implementation climate, available resources, and structural characteristics. We also examined associations separately at community-based clinics and at hospital-based clinics. User-centered design practices for clinical decision support varied across clinics: 74% conducted pilot testing, 62% conducted provider satisfaction assessment, 36% conducted a formal usability assessment, and 79% conducted an analysis of impact on performance improvement. Overall perceived utility of clinical decision support was high, with a mean rating of 4.17 (±.67) out of 5 on a composite measure. "Analysis of impact on performance improvement" was the only user-centered design practice significantly associated with perceived utility of clinical decision support, b=.47 (p<.001). This association was present in hospital-based clinics, b=.34 (p<.05), but was stronger at community-based clinics, b=.61 (p<.001). Our findings are highly supportive of the practice of analyzing the impact of clinical decision support on performance metrics. This was the most common user-centered design practice in our study, and was the practice associated with higher perceived utility of clinical decision support. This practice may be particularly helpful at community-based clinics, which are typically less connected to VA medical center resources. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Hou, Z.; Ren, H.; Sun, N.; Leung, L. R.; Liu, Y.; Coleman, A. M.; Skaggs, R.; Wigmosta, M. S.
2017-12-01
Hydrologic engineering design usually involves intensity-duration-frequency (IDF) analysis for calculating runoff from a design storm of specified precipitation frequency and duration using event-based hydrologic rainfall-runoff models. Traditionally, the procedure assumes climate stationarity and neglects snowmelt-driven runoff contribution to floods. In this study, we used high resolution climate simulations to provide inputs to the physics-based Distributed Hydrology Soil and Vegetation Model (DHSVM) to determine the spatially distributed precipitation and snowmelt available for runoff. Climate model outputs were extracted around different mountainous field sites in Colorado and California. IDF curves were generated at each numerical grid of DHSVM based on the simulated precipitation, temperature, and available water for runoff. Quantitative evaluation of trending and stationarity tests were conducted to identify (quasi-)stationary time periods for reliable IDF analysis. The impact of stationarity was evaluated by comparing the derived IDF attributes with respect to time windows of different length and level of stationarity. Spatial mapping of event return-period was performed for various design storms, and spatial mapping of event intensity was performed for given duration and return periods. IDF characteristics were systematically compared (historical vs RCP4.5 vs RCP8.5) using annual maximum series vs partial duration series data with the goal of providing reliable IDF analyses to support hydrologic engineering design.
Social controversy belongs in the climate science classroom
NASA Astrophysics Data System (ADS)
Walsh, Elizabeth M.; Tsurusaki, Blakely K.
2014-04-01
Scientists, educators and stakeholders are grappling with how to best approach climate change education for diverse audiences, a task made difficult due to persistent social controversy. This Perspective examines how sociocultural learning theories can inform the design and implementation of climate change education experiences for learners with varied understandings of and attitudes towards climate change. The literature demonstrates that explicitly addressing learners' social and community experiences, values and knowledge supports understandings of and increased concern about climate change. Science learning environments that situate climate change in its social context can support conceptual understandings, shift attitudes and increase the participation of diverse communities in responding to climate change. Examples are provided of successful programmes that attend to social dimensions and learners' previous experiences, including experiences of social controversy.
Teesson, M; Newton, N C; Slade, T; Carragher, N; Barrett, E L; Champion, K E; Kelly, E V; Nair, N K; Stapinski, L A; Conrod, P J
2017-07-01
No existing models of alcohol prevention concurrently adopt universal and selective approaches. This study aims to evaluate the first combined universal and selective approach to alcohol prevention. A total of 26 Australian schools with 2190 students (mean age: 13.3 years) were randomized to receive: universal prevention (Climate Schools); selective prevention (Preventure); combined prevention (Climate Schools and Preventure; CAP); or health education as usual (control). Primary outcomes were alcohol use, binge drinking and alcohol-related harms at 6, 12 and 24 months. Climate, Preventure and CAP students demonstrated significantly lower growth in their likelihood to drink and binge drink, relative to controls over 24 months. Preventure students displayed significantly lower growth in their likelihood to experience alcohol harms, relative to controls. While adolescents in both the CAP and Climate groups demonstrated slower growth in drinking compared with adolescents in the control group over the 2-year study period, CAP adolescents demonstrated faster growth in drinking compared with Climate adolescents. Findings support universal, selective and combined approaches to alcohol prevention. Particularly novel are the findings of no advantage of the combined approach over universal or selective prevention alone.
ERIC Educational Resources Information Center
Bosworth, Kris; Judkins, Maryann
2014-01-01
Preventing bullying requires a comprehensive approach that includes a focus on school climate. We review the climate features shown to reduce bullying, then illustrate how School-wide Positive Behavioral Interventions and Supports (SWPBIS) applies these principles in practice. SWPBIS, grounded in multiple theories--behaviorism, social learning…
NASA Astrophysics Data System (ADS)
Bermudez, L. E.; Percivall, G.; Idol, T. A.
2015-12-01
Experts in climate modeling, remote sensing of the Earth, and cyber infrastructure must work together in order to make climate predictions available to decision makers. Such experts and decision makers worked together in the Open Geospatial Consortium's (OGC) Testbed 11 to address a scenario of population displacement by coastal inundation due to the predicted sea level rise. In a Policy Fact Sheet "Harnessing Climate Data to Boost Ecosystem & Water Resilience", issued by White House Office of Science and Technology (OSTP) in December 2014, OGC committed to increase access to climate change information using open standards. In July 2015, the OGC Testbed 11 Urban Climate Resilience activity delivered on that commitment with open standards based support for climate-change preparedness. Using open standards such as the OGC Web Coverage Service and Web Processing Service and the NetCDF and GMLJP2 encoding standards, Testbed 11 deployed an interoperable high-resolution flood model to bring climate model outputs together with global change assessment models and other remote sensing data for decision support. Methods to confirm model predictions and to allow "what-if-scenarios" included in-situ sensor webs and crowdsourcing. A scenario was in two locations: San Francisco Bay Area and Mozambique. The scenarios demonstrated interoperation and capabilities of open geospatial specifications in supporting data services and processing services. The resultant High Resolution Flood Information System addressed access and control of simulation models and high-resolution data in an open, worldwide, collaborative Web environment. The scenarios examined the feasibility and capability of existing OGC geospatial Web service specifications in supporting the on-demand, dynamic serving of flood information from models with forecasting capacity. Results of this testbed included identification of standards and best practices that help researchers and cities deal with climate-related issues. Results of the testbeds will now be deployed in pilot applications. The testbed also identified areas of additional development needed to help identify scientific investments and cyberinfrastructure approaches needed to improve the application of climate science research results to urban climate resilence.
Kahouei, Mehdi; Alaei, Safollah; Panahi, Sohaila Sadat Ghazavi Shariat; Zadeh, Jamileh Mahdi
2015-01-01
The health sector of Iran has endeavored to encourage physicians and medical students to use research findings in their practice. Remarkable changes have occurred, including: holding computer skills courses, digital library workshops for physicians and students, and establishing websites in hospitals. The findings showed that a small number of the participants completely agreed that they were supported by supervisors and colleagues to use evidence-based information resources in their clinical decisions. Health care organizations in Iran need other organizational facilitators such as social influences, organizational support, leadership, strong organizational culture, and climate in order to implement evidence-based practice.
Arenas-Castro, Salvador; Gonçalves, João; Alves, Paulo; Alcaraz-Segura, Domingo; Honrado, João P
2018-01-01
Global environmental changes are rapidly affecting species' distributions and habitat suitability worldwide, requiring a continuous update of biodiversity status to support effective decisions on conservation policy and management. In this regard, satellite-derived Ecosystem Functional Attributes (EFAs) offer a more integrative and quicker evaluation of ecosystem responses to environmental drivers and changes than climate and structural or compositional landscape attributes. Thus, EFAs may hold advantages as predictors in Species Distribution Models (SDMs) and for implementing multi-scale species monitoring programs. Here we describe a modelling framework to assess the predictive ability of EFAs as Essential Biodiversity Variables (EBVs) against traditional datasets (climate, land-cover) at several scales. We test the framework with a multi-scale assessment of habitat suitability for two plant species of conservation concern, both protected under the EU Habitats Directive, differing in terms of life history, range and distribution pattern (Iris boissieri and Taxus baccata). We fitted four sets of SDMs for the two test species, calibrated with: interpolated climate variables; landscape variables; EFAs; and a combination of climate and landscape variables. EFA-based models performed very well at the several scales (AUCmedian from 0.881±0.072 to 0.983±0.125), and similarly to traditional climate-based models, individually or in combination with land-cover predictors (AUCmedian from 0.882±0.059 to 0.995±0.083). Moreover, EFA-based models identified additional suitable areas and provided valuable information on functional features of habitat suitability for both test species (narrowly vs. widely distributed), for both coarse and fine scales. Our results suggest a relatively small scale-dependence of the predictive ability of satellite-derived EFAs, supporting their use as meaningful EBVs in SDMs from regional and broader scales to more local and finer scales. Since the evaluation of species' conservation status and habitat quality should as far as possible be performed based on scalable indicators linking to meaningful processes, our framework may guide conservation managers in decision-making related to biodiversity monitoring and reporting schemes.
NOAA Climate Information and Tools for Decision Support Services
NASA Astrophysics Data System (ADS)
Timofeyeva, M. M.; Higgins, W.; Strager, C.; Horsfall, F. M.
2013-12-01
NOAA is an active participant of the Global Framework for Climate Services (GFCS) contributing data, information, analytical capabilities, forecasts, and decision support services to the Climate Services Partnership (CSP). These contributions emerge from NOAA's own climate services, which have evolved to respond to the urgent and growing need for reliable, trusted, transparent, and timely climate information across all sectors of the U.S. economy. Climate services not only enhance development opportunities in many regions, but also reduce vulnerability to climate change around the world. The NOAA contribution lies within the NOAA Climate Goal mission, which is focusing its efforts on four key climate priority areas: water, extremes, coastal inundation, and marine ecosystems. In order to make progress in these areas, NOAA is exploiting its fundamental capabilities, including foundational research to advance understanding of the Earth system, observations to preserve and build the climate data record and monitor changes in climate conditions, climate models to predict and project future climate across space and time scales, and the development and delivery of decision support services focused on risk management. NOAA's National Weather Services (NWS) is moving toward provision of Decision Support Services (DSS) as a part of the Roadmap on the way to achieving a Weather Ready National (WRN) strategy. Both short-term and long-term weather, water, and climate information are critical for DSS and emergency services and have been integrated into NWS in the form of pilot projects run by National and Regional Operations Centers (NOC and ROCs respectively) as well as several local offices. Local offices with pilot projects have been focusing their efforts on provision of timely and actionable guidance for specific tasks such as DSS in support of Coastal Environments and Integrated Environmental Studies. Climate information in DSS extends the concept of climate services to provision of information that will help guide long-term preparedness for severe weather events and extreme conditions as well as climate variability and change GFCS recently summarized examples of existing initiatives to advance provision of climate services in the 2012 publication Climate ExChange. In this publication, NWS introduced the new Local Climate Analysis Tool (LCAT), a tool that is used to conduct local climate studies that are needed to create efficient and reliable guidance for DSS. LCAT allows for analyzing trends in local climate variables and identifying local impacts of climate variability (e.g., ENSO) on weather and water conditions. In addition to LCAT, NWS, working in partnership with the North East Regional Climate center, released xmACIS version 2, a climate data mining tool, for NWS field operations. During this talk we will demonstrate LCAT and xmACIS as well as outline several examples of their application to DSS and its potential use for achieving GFCS goals. The examples include LCAT-based temperature analysis for energy decisions, guidance on weather and water events leading to increased algal blooms and red tide months in advance, local climate sensitivities to droughts, probabilities of hot/cold conditions and their potential impacts on agriculture and fish kills or fish stress.
Recent Challenges Facing US Government Climate Science Access and Application
NASA Astrophysics Data System (ADS)
Goldman, G. T.; Carter, J. M.; Licker, R.
2017-12-01
Climate scientists have long faced politicization of their work, especially those working within the US federal government. However, political interference in federal government climate change science has escalated in the current political era with efforts by political actors to undermine and disrupt infrastructure supporting climate science. This has included funding changes, decreased access to climate science information on federal agency websites, restrictions on media access to scientific experts within the government, and rolling back of science-based policies designed to incorporate and respond to climate science findings. What are the impacts of such changes for both the climate science community and the broader public? What can be done to ensure that access to and application of climate change-related research to policy decisions continues? We will summarize and analyze the state of climate change research and application in the US government. The impacts of political interference in climate change science as well as opportunities the scientific community has to support climate science in the US government, will be discussed.
NASA Astrophysics Data System (ADS)
Gálos, Borbála; Ostler, Wolf-Uwe; Csáki, Péter; Bidló, András; Panferov, Oleg
2016-04-01
Recent results of climate science (e.g. IPCC AR5, 2013) and statements of climate policy (e.g. Paris Agreement) confirm that climate change is an ongoing issue. The consequences will be noticeable for a long time even if the 2 Degree goal is reached. Therefore, action plans are necessary for adaptation and mitigation on national and international level. Forestry and agriculture are especially threatened by the probable increase of the frequency and/or intensity of climate extremes. Severe impacts of recurrent droughts/heat waves that were observed in the last decades in the sensitive and vulnerable ecosystems and regions are very likely to occur with increasing probability throughout the 21st century. For the adequate climate impact assessments, for adaptation strategies as well as for supporting decisions in the above mentioned sectors the reliable information on the long-term climate tendencies and on ecosystem responses are required. Here are the two major problems: on the one hand the information on current climate and future climate developments are highly uncertain. On the other hand, due to limited knowledge on ecosystem responses, it is difficult to define how certain or accurate the provided climate data should be for the plausible application in agricultural/forestry research and practice. Considering agriculture and forestry, our research is focusing on the following questions: • What is the climate information demand of practice and impact research in the two sectors? • What quality level of climate information is necessary for adaptation support? • How does the accuracy of climate input affect the results of the climate impact assessments? The agriculture and forestry operate at two very different time scales and have a different reaction times and adaptation capacities. Agriculture requires short-term information on current conditions and short-/medium-term weather forecast. To assess the degree of information accuracy required by practical agriculture a questionnaire has been carried out among 180 farms of different sizes and specializations (mostly arable farming and viniculture) in Reinland-Palatine, Germany. The results show that almost all farmers use the weather information daily and are in need of weather forecast. More than a half requires also the forecast on extreme events. However the farmers require more qualitative (e.g. temperature coarser than 1°C) than high-precision quantitative information in short and medium-term forecasts. Forestry requires long-term (30-100 years) climate projections. For the assessment of climate change impacts on forest distribution, production and tree species selection, monthly temperature means and precipitation sums are sufficient. Based on the results of regional climate models it will be shown how the bias, the spread and spatial resolution of the simulation results are affecting the accuracy of impact assessments. Our analyses can help to fill the gap between climate services and the needs of impact researchers and end users in agriculture and forestry. User-relevant climate information can contribute to appropriate adaptation support services and management options in the two sectors. Keywords: regional climate projections, climate impact assessment, agriculture, forestry, adaptation support, accuracy of climate information Funding: The research is supported by the "Agroclimate-2" (VKSZ_12-1-2013-0034) joint EU-national research project.
Improving the Nation's Climate Literacy through the Next Generation Science Standards
NASA Astrophysics Data System (ADS)
Grogan, M.; Niepold, F.; Ledley, T. S.; Gold, A. U.; Breslyn, W. G.; Carley, S.
2013-12-01
Climate Literacy: The Essential Principles of Climate Science (2009) presented the information that is deemed important for individuals and communities to know and understand about Earth's climate, impacts of climate change, and approaches to adaptation or mitigation by a group of federal agencies, science and educational partners. These principles guided the development of the NRC Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas (2012) and the Next Generation Science Standards (NGSS, 2013). National Science Foundation recently funded two partnership projects which support the implementation of the climate component of the NGSS using the Climate Literacy framework. The first project, the Climate Literacy and Energy Awareness Network (CLEAN), was launched in 2010 as a National Science Digital Library (NSDL) Pathways project. CLEAN's primary effort is to steward a collection of educational resources around energy and climate topics and foster a community that supports learning about climate and energy topics. CLEAN's focus has been to integrate the effective use of the educational resources across all grade levels - with a particular focus on the middle-school through undergraduate levels (grades 6-16) and align the resources with educational standards. The second project, the Maryland and Delaware Climate Change Education, Assessment and Research (MADE-CLEAR) program is supported by a Phase II Climate Change Education Partnership (CCEP) grant awarded to the University System of Maryland (USM) by the National Science Foundation. The MADE-CLEAR project's related goals are to support innovations in interdisciplinary P-20 (preschool through graduate school) climate change education, and develop new pathways for teacher education and professional development leading to expertise in climate change content and pedagogy. Work in Maryland, Delaware (MADE-CLEAR) and other states on the implementation of the NGSS, that will utilize the years of work, the efforts of hundreds of community members and tens of millions of dollars of investment and to increase the nations climate literacy, will be highlighted. We will particularly focus on the partnerships among MADE-CLEAR, NOAA and CLEAN. Climate science and energy are complex topics, with rapidly developing science and technology and the potential for controversy. The NGSS offer educators an opportunity to effectively bring these important subjects into their classrooms across a learning progression spanning K-12 and well beyond. Yet regardless of the pedagogic setting, using a literacy-based approach can provide a sound foundation for building learners' understanding of these topics. In this presentation, we will describe contributions by a group of collaborative projects and organizations to support the NGSS implementation through an integrated Earth system science approach in K-12 education.
Holocene Substrate Influences on Plant and Fire Response to Climate Change
NASA Astrophysics Data System (ADS)
Briles, C.; Whitlock, C. L.
2011-12-01
The role of substrates in facilitating plant responses to climate change in the past has received little attention. Ecological studies, documenting the relative role of fertile and infertile substrates in mediating the effects of climate change, lack the temporal information that paleoecological lake studies provide on how plants have responded under equal, larger and more rapid past climate events than today. In this paper, pollen and macroscopic charcoal preserved in the sediments of eight lakes surrounded by infertile ultramafic soils and more fertile soils in the Klamath Mountains of northern California were analyzed. Comparison of late-Quaternary paleoecological sites suggests that infertile and fertile substrates supported distinctly different plant communities. Trees and shrubs on infertile substrates were less responsive to climate change than those on fertile substrates, with the only major compositional change occurring at the glacial/interglacial transition (~11.5ka), when temperature rose 5oC. Trees and shrubs on fertile substrates were more responsive to climate changes, and tracked climate by moving along elevational gradients, including during more recent climate events such as the Little Ice Age and Medieval Climate Anomaly. Fire regimes were similar until 4ka on both substrate types. After 4ka, understory fuels on infertile substrates became sparse and fire activity decreased, while on fertile substrates forests became increasingly denser and fire activity increased. The complacency of plant communities on infertile sites to climate change contrasts with the individualistic and rapid adjustments of species on fertile sites. The findings differ from observations on shorter time scales that show the most change in herb cover and richness in the last 60 years on infertile substrates. Thus, the paleorecord provides unique long-term ecological data necessary to evaluate the response of plants to future climate change under different levels of soil fertility.
Energy Switching Threshold for Climatic Benefits
NASA Astrophysics Data System (ADS)
Zhang, X.; Cao, L.; Caldeira, K.
2013-12-01
Climate change is one of the great challenges facing humanity currently and in the future. Its most severe impacts may still be avoided if efforts are made to transform current energy systems (1). A transition from the global system of high Greenhouse Gas (GHG) emission electricity generation to low GHG emission energy technologies is required to mitigate climate change (2). Natural gas is increasingly seen as a choice for transitions to renewable sources. However, recent researches in energy and climate puzzled about the climate implications of relying more energy on natural gas. On one hand, a shift to natural gas is promoted as climate mitigation because it has lower carbon per unit energy than coal (3). On the other hand, the effect of switching to natural gas on nuclear-power and other renewable energies development may offset benefits from fuel-switching (4). Cheap natural gas is causing both coal plants and nuclear plants to close in the US. The objective of this study is to measure and evaluate the threshold of energy switching for climatic benefits. We hypothesized that the threshold ratio of energy switching for climatic benefits is related to GHGs emission factors of energy technologies, but the relation is not linear. A model was developed to study the fuel switching threshold for greenhouse gas emission reduction, and transition from coal and nuclear electricity generation to natural gas electricity generation was analyzed as a case study. The results showed that: (i) the threshold ratio of multi-energy switching for climatic benefits changes with GHGs emission factors of energy technologies. (ii)The mathematical relation between the threshold ratio of energy switching and GHGs emission factors of energies is a curved surface function. (iii) The analysis of energy switching threshold for climatic benefits can be used for energy and climate policy decision support.
Reading for Reliability: Preservice Teachers Evaluate Web Sources about Climate Change
ERIC Educational Resources Information Center
Damico, James S.; Panos, Alexandra
2016-01-01
This study examined what happened when 65 undergraduate prospective secondary level teachers across content areas evaluated the reliability of four online sources about climate change: an oil company webpage, a news report, and two climate change organizations with competing views on climate change. The students evaluated the sources at three time…
Supporting Coral Reef Ecosystem Management Decisions Appropriate to Climate Change
NASA Astrophysics Data System (ADS)
Hendee, J. C.; Fletcher, P.; Shein, K. A.
2013-05-01
There has been a perception that the myriad of environmental information products derived from satellite and other instrumental sources means ipso facto that there is a direct use for them by environmental managers. Trouble is, as information providers, for the most part we don't really know what decisions managers face daily, nor is it a trivial matter to ascertain the effect of management decisions on the environment, at least in a time frame that facilitates timely maintenance and enhancement of decision support software. To bridge this gap in understanding, we conducted a Needs Assessment (using methodology from the NOAA/Coastal Services Center's Product Design and Evaluation training program) from December, 2011 through May, 2012, in which we queried 15 resource managers in southeast Florida to identify the types of climate data and information products they needed to understand the effects of climate change in their region of purview, and how best these products should be delivered and subsequently enhanced or corrected. Our intent has been to develop a suite of software and information products customized specifically for environmental managers. This report summarizes our success to date, including a report on the development of software for gathering and presenting specific types of climate data, and a narrative about how some U.S. government sponsored efforts, such as Giovanni and TerraVis, as well as non-governmental sponsored efforts such as Marxan, Zonation, SimCLIM, and other off-the-shelf software might be customized for use in specific regions.
Primozic, Lauren
2010-05-01
Climate change is one of the most important social, economic, ecological and ethical issues of the 21st century. The effects of climate change on human health are now widely accepted as a genuine threat and the Australian Government has initiated policy and legislative responses. In addition, in the 2009-2010 budget the Australian Government has committed A$64 billion to public health and hospital reform. But will this Commonwealth funding support--and should it support--the government's high-profile climate change policy? Does Commonwealth funding translate to an obligation to support Commonwealth policies? This article explores the role of public hospitals as champions and role models of the Australian Government's climate change policy and how this might be done without detracting from the primary purpose of public hospital funding: improving patient care.
Development of a multilevel health and safety climate survey tool within a mining setting.
Parker, Anthony W; Tones, Megan J; Ritchie, Gabrielle E
2017-09-01
This study aimed to design, implement and evaluate the reliability and validity of a multifactorial and multilevel health and safety climate survey (HSCS) tool with utility in the Australian mining setting. An 84-item questionnaire was developed and pilot tested on a sample of 302 Australian miners across two open cut sites. A 67-item, 10 factor solution was obtained via exploratory factor analysis (EFA) representing prioritization and attitudes to health and safety across multiple domains and organizational levels. Each factor demonstrated a high level of internal reliability, and a series of ANOVAs determined a high level of consistency in responses across the workforce, and generally irrespective of age, experience or job category. Participants tended to hold favorable views of occupational health and safety (OH&S) climate at the management, supervisor, workgroup and individual level. The survey tool demonstrated reliability and validity for use within an open cut Australian mining setting and supports a multilevel, industry specific approach to OH&S climate. Findings suggested a need for mining companies to maintain high OH&S standards to minimize risks to employee health and safety. Future research is required to determine the ability of this measure to predict OH&S outcomes and its utility within other mine settings. As this tool integrates health and safety, it may have benefits for assessment, monitoring and evaluation in the industry, and improving the understanding of how health and safety climate interact at multiple levels to influence OH&S outcomes. Copyright © 2017 National Safety Council and Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Mach, K. J.; Field, C. B.
2017-12-01
Over decades, assessment by the Intergovernmental Panel on Climate Change and many others has bolstered understanding of the climate problem: unequivocal warming, pervasive impacts, and serious risks from continued high emissions of heat-trapping gases. Societies are increasingly responding with early actions to decarbonize energy systems and prepare for impacts. This emerging era of climate solutions creates a need for new approaches to assessment that emphasize learning from ongoing real-world experiences and that help close the gap between aspirations and the pace of progress. Against this backdrop, the presentation will take stock of recent advances and challenges in assessment, especially drawing from analysis of climate change assessment. Four assessment priorities will be considered: (1) integrating diverse evidence including quantitative and qualitative results, (2) applying rigorous expert judgment in evaluating knowledge and uncertainties, (3) exploring widely ranging futures and their connections to ongoing choices and actions, and (4) incorporating interactions among experts and decision-makers in assessment processes. Across these assessment priorities, the presentation will critique both opportunities and pitfalls, outlining possibilities for future experimentation, innovation, and learning. It will evaluate, in particular, lessons from risk-based approaches; strategies for transparently acknowledging persistent uncertainties and contested priorities; ways to minimize biases and foster creativity in expert judgments; scenario-based assessment of surprises, deep uncertainties, and decision-making implications; and opportunities for broadening the conception of expertise and engaging different decision-makers and stakeholders. Overall, these approaches can advance assessment products and processes as a basis for sustained dialogue supporting decision-making.
Estrada-Peña, Agustín; Sánchez, Nely; Estrada-Sánchez, Adrián
2012-09-01
We applied a process-driven model to evaluate the impact of climate scenarios for the years 2020, 2050, and 2080 on the life cycle of Hyalomma marginatum ticks in the western Palearctic. The net growth rate of the tick populations increased in every scenario tested compared to the current climate baseline. These results support the expectations of increased tick survival and increased population turnover in future climate scenarios. We included a basic evaluation of host movement based on rules connected to altitude, slope, size of the near patches, and inter-patch distances in the real landscape over the target area. Data on landscape were obtained from medium-resolution MODIS satellite imagery, which allowed us to test the potential spread of the populations. Such a model of host dispersal linked to the process-driven life cycle model demonstrated that eastern (Turkey, Russia, and Balkans) populations of H. marginatum currently are well separated and have little mixing with western (Italy, Spain, and northern Africa) populations. The northern limit is marked by the cold areas in the Balkans, Alps, and Pyrenees. Under the warmer conditions predicted by the climate scenarios, the exchange of ticks throughout new areas, previously free of the vector, is expected to increase, mainly in the Balkans and southern Russia, over the limit of the mountain ranges. Therefore, the northern limit of the tick range would increase. Additional studies are necessary to understand the implications of host changes in range and abundance for H. marginatum and Crimean-Congo hemorrhagic fever virus.
NASA Astrophysics Data System (ADS)
Bonfante, Antonello; Impagliazzo, Adriana; Fiorentino, Nunzio; Langella, Giuliano; Mori, Mauro; Fagnano, Massimo
2017-04-01
In literature on climate change, the bioenergy crops are well known for their ability to reduce greenhouse gases emission and increase the soil carbon stock. Nevertheless, in several countries they are considered in competition with food crops, representing a problem for facing the current and future "Food Security" issue related to climate change and population increase. At same time, in order to sustain local farming communities and crop production, mitigation actions at farm scale are identified to face climate change. However, in some cases the specific actions required by the pedo-climatic conditions, are not always economically sustainable by farmers. In this contest, the energy crops with high environmental adaptability and high productive performances, as the giant reed (Arundo donax spp.), cultivated in the areas not suitable for food crop (marginal areas) may represent an opportunity to increase the farmers' incomes, through the direct sale of above ground biomass (AGB) (as raw material for energy or green chemistry) or by means of the obtained biofuel or biogas. Moreover, the bioenergy crops, with low-input cropping systems (i.e. without irrigation and fertilized with compost from organic residues) are considered the most efficient crops for Greenhouse Gases reduction. In fact, they have a direct effect on processes affecting the CC at global scale: i) preserving and improving the soil carbon stock, ii) reducing the soil tillage and preserving the soil erosion, iii) allowing the conservation of fossil fuel resources with a reduction of CO2 emission in the atmosphere. Finally, their high environmental adaptability allows a riparian vegetation use (in the soils near water drains or rivers) with an important effect on the interception of nutrients as nitrogen and phosphorus that, if leached, have a high environmental impact on watercourses (e.g. eutrophication). Thus the correct use of this crops allows to respond to 3 of 17 Sustainable Development Goals (SDG) of United Nations: (i) SDG 2 on food security and sustainable agriculture, (ii) SDG 7 on reliable, sustainable and modern energy and (iii) SDG 13 on action to combat climate change and its impacts. Therefore, in order to support the resilience of local farming communities and food production, a mitigation action to face climate change can be bases on the assessment of the possible increase of farmers' incomes derived by the cultivation of bioenergy crops in their marginal areas. On these premises, we have evaluated the giant reed responses in the marginal areas of an agricultural district of southern Italy (Destra Sele) and evaluated the expected farmers' income in a near future (2021-2050) through a simulation model application. In order to realize this applicative and pro-active approach to farmer support, the normalized water productivity index of giant reed has been determined, through the use of agro-hydrological model SWAP, calibrated and validated on two years of long term field experiment on giant reed, realized within of study area. Keywords: Climate Change; SWAP; giant reed;water productivity (WP); Sustainable Development Goals (SDG)
NASA Astrophysics Data System (ADS)
Günther, Andreas; Van Den Eeckhaut, Miet; Malet, Jean-Philippe; Reichenbach, Paola; Hervás, Javier
2014-11-01
With the adoption of the EU Thematic Strategy for Soil Protection in 2006, small-scale (1:1 M) assessments of threats affecting soils over Europe received increasing attention. As landslides have been recognized as one of eight threats requiring a Pan-European evaluation, we present an approach for landslide susceptibility evaluation at the continental scale over Europe. Unlike previous continental and global scale landslide susceptibility studies not utilizing spatial information on the events, we collected more than 102,000 landslide locations in 22 European countries. These landslides are heterogeneously distributed over Europe, but are indispensable for the evaluation and classification of Pan-European datasets used as spatial predictors, and the validation of the resulting assessments. For the analysis we subdivided the European territory into seven different climate-physiographical zones by combining morphometric and climatic data for terrain differentiation, and adding a coastal zone defined as a 1 km strip inland from the coastline. Landslide susceptibility modeling was performed for each zone using heuristic spatial multicriteria evaluations supported by analytical hierarchy processes, and validated with the inventory data using the receiver operating characteristics. In contrast to purely data-driven statistical modeling techniques, our semi-quantitative approach is capable to introduce expert knowledge into the analysis, which is indispensable considering quality and resolution of the input data, and incompleteness and bias in the inventory information. The reliability of the resulting susceptibility map ELSUS 1000 Version 1 (1 km resolution) was examined on an administrative terrain unit level in areas with landslide information and through the comparison with available national susceptibility zonations. These evaluations suggest that although the ELSUS 1000 is capable for a correct synoptic prediction of landslide susceptibility in the majority of the area, it needs further improvement in terms of data used.
Report for Oregon State University Reporting Period: June 2016 to June 2017
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hutchings, Jennifer
The goal of this project is to develop an eddy resolving ocean model (POP) with tides coupled to a sea ice model (CICE) within the Regional Arctic System Model (RASM) to investigate the importance of ocean tides and mesoscale eddies in arctic climate simulations and quantify biases associated with these processes and how their relative contribution may improve decadal to centennial arctic climate predictions. Ocean, sea ice and coupled arctic climate response to these small scale processes will be evaluated with regard to their influence on mass, momentum and property exchange between oceans, shelf-basin, ice-ocean, and ocean-atmosphere. The project willmore » facilitate the future routine inclusion of polar tides and eddies in Earth System Models when computing power allows. As such, the proposed research addresses the science in support of the BER’s Climate and Environmental Sciences Division Long Term Measure as it will improve the ocean and sea ice model components as well as the fully coupled RASM and Community Earth System Model (CESM) and it will make them more accurate and computationally efficient.« less
ERIC Educational Resources Information Center
Leroy, Nadia; Bressoux, Pascal; Sarrazin, Philippe; Trouilloud, David
2007-01-01
According to self-determination theory, when teachers establish an autonomy supportive climate in the classroom, students demonstrate high levels of self-determination and are intrinsically motivated. The aim of this study was to identify factors leading teachers (N=336) to report that they create such a climate. We conducted a path analysis in…
NASA Astrophysics Data System (ADS)
Gergel, D. R.; Watts, L. H.; Salathe, E. P.; Mankowski, J. D.
2017-12-01
Climate science, already a highly interdisciplinary field, is rapidly evolving, and natural resource managers are increasingly involved in policymaking and adaptation decisions to address climate change that need to be informed by state-of-the-art climate science. Consequently, there is a strong demand for unique organizations that engender collaboration and cooperation between government, non-profit, academic and for-profit sectors that are addressing issues relating to natural resources management and climate adaptation and resilience. These organizations are often referred to as boundary organizations. The Northwest Climate Science Center (NW CSC) and the North Pacific Landscape Conservation Cooperative (NP LCC) are two such boundary organizations operating in different contexts. Together, the NW CSC and the NP LCC fulfill the need for sites of co-production between researchers and managers working on climate-related issues, and a key component of this work is a monthly climate science newsletter that includes recent climate science journal articles, reports, and climate-related events. Our study evaluates the effectiveness of the climate science digest (CSD) through a three-pronged approach: a) in-depth interviews with natural resource managers who use the CSD, b) poll questions distributed to CSD subscribers, and c) quantitative analysis of CSD effectiveness using analytics from MailChimp distribution. We aim to a) map the reach of the CSD across the Northwest and at a national level; b) understand the efficacy of the CSD at communicating climate science to diverse audiences; c) evaluate the usefulness of CSD content for diverse constituencies of subscribers; d) glean transferrable knowledge for future evaluations of boundary management tools; and e) establish a protocol for designing climate science newsletters for other agencies disseminating climate science information. We will present results from all three steps of our evaluation process and describe their implications for future evaluations of climate science communications products and other boundary management tools in the field of natural resources management.
Translational Environmental Research: Improving the Usefulness and Usability of Research Results
NASA Astrophysics Data System (ADS)
Garfin, G.
2008-12-01
In recent years, requests for proposals more frequently emphasize outreach to stakeholder communities, decision support, and science that serves societal needs. Reports from the National Academy of Sciences and Western States Water Council emphasize the need for science translation and outreach, in order to address societal concerns with climate extremes, such as drought, the use of climate predictions, and the growing challenges of climate change. In the 1990s, the NOAA Climate Program Office developed its Regional Integrated Sciences and Asssessments program to help bridge the gap between climate science (notably, seasonal predictions) and society, to improve the flow of information to stakeholders, and to increase the relevance of climate science to inform decisions. During the same time period, the National Science Foundation initiated multi-year Science and Technology Centers and Decision Making Under Uncertainty Centers, with similar goals, but different metrics of success. Moreover, the combination of population growth, climate change, and environmental degradation has prompted numerous research initiatives on linking knowledge and action for sustainable development. This presentation reviews various models and methodologies for translating science results from field, lab, or modeling work to use by society. Lessons and approaches from cooperative extension, boundary organizations, co-production of science and policy, and medical translational research are examined. In particular, multi-step translation as practiced within the health care community is examined. For example, so- called "T1" (translation 1) research moves insights from basic science to clinical research; T2 research evaluates the effectiveness of clinical practice, who benefits from promising care regimens, and develops tools for clinicians, patients, and policy makers. T3 activities test the implementation, delivery, and spread of research results and clinical practices in order to foster policy changes and improve general health. Parallels in environmental sciences might be TER1 (translational environmental research 1), basic insights regarding environmental processes and relationships between environmental changes and their causes. TER2, applied environmental research, development of best practices, and development of decision support tools. TER3, might include usability and impact evaluation, effective outreach and implementation of best practices, and application of research insights to public policy and institutional change. According to the medical literature, and in anecdotal evidence from end-to-end environmental science, decision-maker and public involvement in these various forms of engaged research decreases the lag between scientific discovery and implementation of discoveries in operational practices, information tools, and organizational and public policies.
NASA Astrophysics Data System (ADS)
Anisimov, O. A.; Kokorev, V.
2013-12-01
Addressing Arctic urban sustainability today forces planners to deal with the complex interplay of multiple factors, including governance and economic development, demography and migration, environmental changes and land use, changes in the ecosystems and their services, and climate change. While the latter can be seen as a factor that exacerbates the existing vulnerabilities to other stressors, changes in temperature, precipitation, snow, river and lake ice, and the hydrological regime also have direct implications for the cities in the North. Climate change leads to reduced demand for heating energy, on one hand, and heightened concerns about the fate of the infrastructure built upon thawing permafrost, on the other. Changes in snowfall are particularly important and have direct implications for the urban economy, as together with heating costs, expenses for snow removal from streets, airport runways, roofs and ventilation corridors underneath buildings erected on pile foundations on permafrost constitute the bulk of the city's maintenance budget. Many cities are located in river valleys and are prone to flooding that leads to enormous economic losses and casualties, including human deaths. The severity of the northern climate has direct implications for demographic changes governed by regional migration and labor flows. Climate could thus be viewed as an inexhaustible public resource that creates opportunities for sustainable urban development. Long-term trends show that climate as a resource is becoming more readily available in the Russian North, notwithstanding the general perception that globally climate change is one of the challenges facing humanity in the 21st century. In this study we explore the sustainability of the Arctic urban environment under changing climatic conditions. We identify key governing variables and indexes and study the thresholds beyond which changes in the governing climatic parameters have significant impact on the economy, infrastructure and society in the Arctic cities. We use CMIP-5 ensemble projection to evaluate future changes in these parameters and identify regions where immediate attention is needed to develop appropriate adaptation strategies. Acknowledgement. This study is supported by the German-Russian Otto Schmidt Laboratory, project OSL-13-02, and the Russian Foundation for Basic Research, projects 13-05-0072 and 13-05-91171.
Supporting UK adaptation: building services for the next set of UK climate projections
NASA Astrophysics Data System (ADS)
Fung, Fai; Lowe, Jason
2016-04-01
As part of the Climate Change Act 2008, the UK Government sets out a national adaptation programme to address the risks and opportunities identified in a national climate change risk assessment (CCRA) every five years. The last risk assessment in 2012 was based on the probabilistic projections for the UK published in 2009 (UKCP09). The second risk assessment will also use information from UKCP09 alongside other evidence on climate projections. However, developments in the science of climate projeciton, and evolving user needs (based partly on what has been learnt about the diverse user requirements of the UK adaptation community from the seven years of delivering and managing UKCP09 products, market research and the peer-reviewed literature) suggest now is an appropriate time to update the projections and how they are delivered. A new set of UK climate projections are now being produced to upgrade UKCP09 to reflect the latest developments in climate science, the first phase of which will be delivered in 2018 to support the third CCRA. A major component of the work is the building of a tailored service to support users of the new projections during their development and to involve users in key decisions so that the projections are of most use. We will set out the plan for the new climate projections that seek to address the evolving user need. We will also present a framework which aims to (i) facilitate the dialogue between users, boundary organisations and producers, reflecting their different decision-making roles (ii) produce scientifically robust, user-relevant climate information (iii) provide the building blocks for developing further climate services to support adaptation activities in the UK.
Climate change is advancing spring onset across the U.S. national park system
Monahan, William B.; Rosemartin, Alyssa; Gerst, Katharine L.; Fisichelli, Nicholas A.; Ault, Toby R.; Schwartz, Mark D.; Gross, John E.; Weltzin, Jake F.
2016-01-01
Many U.S. national parks are already at the extreme warm end of their historical temperature distributions. With rapidly warming conditions, park resource management will be enhanced by information on seasonality of climate that supports adjustments in the timing of activities such as treating invasive species, operating visitor facilities, and scheduling climate-related events (e.g., flower festivals and fall leaf-viewing). Seasonal changes in vegetation, such as pollen, seed, and fruit production, are important drivers of ecological processes in parks, and phenology has thus been identified as a key indicator for park monitoring. Phenology is also one of the most proximate biological responses to climate change. Here, we use estimates of start of spring based on climatically modeled dates of first leaf and first bloom derived from indicator plant species to evaluate the recent timing of spring onset (past 10–30 yr) in each U.S. natural resource park relative to its historical range of variability across the past 112 yr (1901–2012). Of the 276 high latitude to subtropical parks examined, spring is advancing in approximately three-quarters of parks (76%), and 53% of parks are experiencing “extreme” early springs that exceed 95% of historical conditions. Our results demonstrate how changes in climate seasonality are important for understanding ecological responses to climate change, and further how spatial variability in effects of climate change necessitates different approaches to management. We discuss how our results inform climate change adaptation challenges and opportunities facing parks, with implications for other protected areas, by exploring consequences for resource management and planning.
Gómez, Camila; Tenorio, Elkin A.; Montoya, Paola; Cadena, Carlos Daniel
2016-01-01
Differences in life-history traits between tropical and temperate lineages are often attributed to differences in their climatic niche dynamics. For example, the more frequent appearance of migratory behaviour in temperate-breeding species than in species originally breeding in the tropics is believed to have resulted partly from tropical climatic stability and niche conservatism constraining tropical species from shifting their ranges. However, little is known about the patterns and processes underlying climatic niche evolution in migrant and resident animals. We evaluated the evolution of overlap in climatic niches between seasons and its relationship to migratory behaviour in the Parulidae, a family of New World passerine birds. We used ordination methods to measure seasonal niche overlap and niche breadth of 54 resident and 49 migrant species and used phylogenetic comparative methods to assess patterns of climatic niche evolution. We found that despite travelling thousands of kilometres, migrants tracked climatic conditions across the year to a greater extent than tropical residents. Migrant species had wider niches than resident species, although residents as a group occupied a wider climatic space and niches of migrants and residents overlapped extensively. Neither breeding latitude nor migratory distance explained variation among species in climatic niche overlap between seasons. Our findings support the notion that tropical species have narrower niches than temperate-breeders, but does not necessarily constrain their ability to shift or expand their geographical ranges and become migratory. Overall, the tropics may have been historically less likely to experience the suite of components that generate strong selection pressures for the evolution of migratory behaviour. PMID:26865303
NASA Astrophysics Data System (ADS)
Chase, M.; Brunacini, J.; Sparrow, E. B.
2016-12-01
As interest in Indigenous Knowledge (IK) grows, how can researchers ensure that collaboration is meaningful, relevant, and valuable for those involved? The Signs of the Land: Reaching Arctic Communities Facing Climate Change Camp is a collaborative project developed by the Association for Interior Native Educators (AINE), the International Arctic Research Center (IARC), and the PoLAR Partnership. Modeled on AINE's Elder Academy and supported by a grant from the National Science Foundation, the camp facilitates in-depth dialogue about climate change and explores causes, impacts, and solutions through the cultural lens of Alaska Native communities. The project integrates local observations, IK, and western climate science. Participants engage with Alaska Native Elders, local climate researchers, and learn about climate communication tools and resources for responding. Following camps in 2014 and 2016, project partners identified a variety of questions about the challenges and opportunities of the collaboration that will be discussed in this presentation. For instance, what does it mean to equitably integrate IK, and in what ways are Native communities able to participate in research project design, delivery, and evaluation? How are decisions made and consensus built within cultural practices, project goals, and funding expectations? How do opportunities available to Indigenous communities to engage with western climate science broaden understanding and response? And, how does the ability to connect with and learn from Alaska Native Elders affect motivation, engagement, and community action? Finally, what is the effect of learning about climate change in a cultural camp setting?
Efficient in-situ visualization of unsteady flows in climate simulation
NASA Astrophysics Data System (ADS)
Vetter, Michael; Olbrich, Stephan
2017-04-01
The simulation of climate data tends to produce very large data sets, which hardly can be processed in classical post-processing visualization applications. Typically, the visualization pipeline consisting of the processes data generation, visualization mapping and rendering is distributed into two parts over the network or separated via file transfer. Within most traditional post-processing scenarios the simulation is done on a supercomputer whereas the data analysis and visualization is done on a graphics workstation. That way temporary data sets with huge volume have to be transferred over the network, which leads to bandwidth bottlenecks and volume limitations. The solution to this issue is the avoidance of temporary storage, or at least significant reduction of data complexity. Within the Climate Visualization Lab - as part of the Cluster of Excellence "Integrated Climate System Analysis and Prediction" (CliSAP) at the University of Hamburg, in cooperation with the German Climate Computing Center (DKRZ) - we develop and integrate an in-situ approach. Our software framework DSVR is based on the separation of the process chain between the mapping and the rendering processes. It couples the mapping process directly to the simulation by calling methods of a parallelized data extraction library, which create a time-based sequence of geometric 3D scenes. This sequence is stored on a special streaming server with an interactive post-filtering option and then played-out asynchronously in a separate 3D viewer application. Since the rendering is part of this viewer application, the scenes can be navigated interactively. In contrast to other in-situ approaches where 2D images are created as part of the simulation or synchronous co-visualization takes place, our method supports interaction in 3D space and in time, as well as fixed frame rates. To integrate in-situ processing based on our DSVR framework and methods in the ICON climate model, we are continuously evolving the data structures and mapping algorithms of the framework to support the ICON model's native grid structures, since DSVR originally was designed for rectilinear grids only. We now have implemented a new output module to ICON to take advantage of the DSVR visualization. The visualization can be configured as most output modules by using a specific namelist and is exemplarily integrated within the non-hydrostatic atmospheric model time loop. With the integration of a DSVR based in-situ pathline extraction within ICON, a further milestone is reached. The pathline algorithm as well as the grid data structures have been optimized for the domain decomposition used for the parallelization of ICON based on MPI and OpenMP. The software implementation and evaluation is done on the supercomputers at DKRZ. In principle, the data complexity is reduced from O(n3) to O(m), where n is the grid resolution and m the number of supporting point of all pathlines. The stability and scalability evaluation is done using Atmospheric Model Intercomparison Project (AMIP) runs. We will give a short introduction in our software framework, as well as a short overview on the implementation and usage of DSVR within ICON. Furthermore, we will present visualization and evaluation results of sample applications.
NASA Astrophysics Data System (ADS)
Tarboton, D. G.; Habib, E. H.; Deshotel, M.; Merck, M. F.; Lall, U.; Farnham, D. J.
2016-12-01
Traditional approaches to undergraduate hydrology and water resource education are textbook based, adopt unit processes and rely on idealized examples of specific applications, rather than examining the contextual relations in the processes and the dynamics connecting climate and ecosystems. The overarching goal of this project is to address the needed paradigm shift in undergraduate education of engineering hydrology and water resources education to reflect parallel advances in hydrologic research and technology, mainly in the areas of new observational settings, data and modeling resources and web-based technologies. This study presents efforts to develop a set of learning modules that are case-based, data and simulation driven and delivered via a web user interface. The modules are based on real-world case studies from three regional hydrologic settings: Coastal Louisiana, Utah Rocky Mountains and Florida Everglades. These three systems provide unique learning opportunities on topics such as: regional-scale budget analysis, hydrologic effects of human and natural changes, flashflood protection, climate-hydrology teleconnections and water resource management scenarios. The technical design and contents of the modules aim to support students' ability for transforming their learning outcomes and skills to hydrologic systems other than those used by the specific activity. To promote active learning, the modules take students through a set of highly engaging learning activities that are based on analysis of hydrologic data and model simulations. The modules include user support in the form of feedback and self-assessment mechanisms that are integrated within the online modules. Module effectiveness is assessed through an improvement-focused evaluation model using a mixed-method research approach guiding collection and analysis of evaluation data. Both qualitative and quantitative data are collected through student learning data, product analysis, and staff interviews. The presentation shares with the audience lessons learned from the development and implementation of the modules, students' feedback, guidelines on design and content attributes that support active learning in hydrology, and challenges encountered during the class implementation and evaluation of the modules.
NASA Astrophysics Data System (ADS)
Walker, E. L.; Hogue, T. S.; Anderson, A. M.; Read, L.
2015-12-01
In semi-arid basins across the world, the gap between water supply and demand is growing due to climate change, population growth, and shifts in agriculture and unconventional energy development. Water conservation efforts among residential and industrial water users, recycling and reuse techniques and innovative regulatory frameworks for water management strive to mitigate this gap, however, the extent of these strategies are often difficult to quantify and not included in modeling water allocations. Decision support systems (DSS) are purposeful for supporting water managers in making informed decisions when competing demands create the need to optimize water allocation between sectors. One region of particular interest is the semi-arid region of the South Platte River basin in northeastern Colorado, where anthropogenic and climatic effects are expected to increase the gap between water supply and demand in the near future. Specifically, water use in the South Platte is impacted by several high-intensity activities, including unconventional energy development, i.e. hydraulic fracturing, and large withdrawals for agriculture; these demands are in addition to a projected population increase of 100% by 2050. The current work describes the development of a DSS for the South Platte River basin, using the Water Evaluation and Planning system software (WEAP) to explore scenarios of how variation in future water use in the energy, agriculture, and municipal sectors will impact water allocation decisions. Detailed data collected on oil and gas water use in the Niobrara shale play will be utilized to predict future sector use. We also employ downscaled climate projections for the region to quantify the potential range of water availability in the basin under each scenario, and observe whether or not, and to what extent, climate may impact management decisions at the basin level.
NASA Astrophysics Data System (ADS)
Spitzer, W.
2015-12-01
Since 2007, the New England Aquarium has led a national effort to increase the capacity of informal science venues to effectively communicate about climate change. We are now leading the NSF-funded National Network for Ocean and Climate Change Interpretation (NNOCCI), partnering with the Association of Zoos and Aquariums, FrameWorks Institute, Woods Hole Oceanographic Institution, Monterey Bay Aquarium, and National Aquarium, with evaluation conducted by the New Knowledge Organization, Pennsylvania State University, and Ohio State University. NNOCCI enables teams of informal science interpreters across the country to serve as "communication strategists" - beyond merely conveying information they can influence public perceptions, given their high level of commitment, knowledge, public trust, social networks, and visitor contact. We provide in-depth training as well as an alumni network for ongoing learning, implementation support, leadership development, and coalition building. Our goals are to achieve a systemic national impact, embed our work within multiple ongoing regional and national climate change education networks, and leave an enduring legacy. Our project represents a cross-disciplinary partnership among climate scientists, social and cognitive scientists, and informal education practitioners. We have built a growing national network of more than 250 alumni, including approximately 15-20 peer leaders who co-lead both in-depth training programs and introductory workshops. We have found that this alumni network has been assuming increasing importance in providing for ongoing learning, support for implementation, leadership development, and coalition building. As we look toward the future, we are exploring potential partnerships with other existing networks, both to sustain our impact and to expand our reach. This presentation will address what we have learned in terms of network impacts, best practices, factors for success, and future directions.
NASA Astrophysics Data System (ADS)
Lackett, J.; Ojima, D. S.; McNeeley, S.
2017-12-01
As climate change impacts become more apparent in our environment, action is needed to enhance the social-ecological system resilience. Incorporating principles which lead to actionable research and project co-development, when appropriate, will facilitate building linkages between the research and the natural resource management communities. In order to develop strategies to manage for climatic and ecosystem changes, collaborative actions are needed between researchers and resource managers to apply appropriate knowledge of the ecosystem and management environments to enable feasible solutions and management actions to respond to climate change. Our team has been involved in developing and establishing a research and engagement center, the North Central Climate Science Center (NC CSC), for the US Department of Interior, to support the development and translation of pertinent climate science information to natural resource managers in the north central portion of the United States. The NC CSC has implemented a platform to support the Resource for Vulnerability Assessment, Adaptation, and Mitigation Projects (ReVAMP) with research, engagement, and training activities to support resource managers and researchers. These activities are aimed at the co-production of appropriate response strategies to climate change in the region, in particular to drought-related responses. Through this platform we, with other partners in the region, including the Department of Interior and the Department of Agriculture, are bringing various training tools, climate information, and management planning tools to resource managers. The implementation of ReVAMP has led to development of planning efforts which include a more explicit representation of climate change as a driver of drought events in our region. Scenario planning provides a process which integrates management goals with possible outcomes derived from observations and simulations of ecological impacts of climate change. Co-development of management options under these various scenarios have allowed for guidance about further research needed, observations needed to better monitor ecological conditions under climate changes, and adaptive management practices to increase resilience.
NASA Astrophysics Data System (ADS)
Timofeyeva-Livezey, M. M.; Horsfall, F. M. C.; Pulwarty, R. S.; Klein-Tank, A.; Kolli, R. K.; Hechler, P.; Dilley, M.; Ceron, J. P.; Goodess, C.
2017-12-01
The WMO Commission on Climatology (CCl) supports the implementation of the Global Framework for Climate Services (GFCS) with a particular focus on the Climate Services Information System (CSIS), which is the core operational component of GFCS at the global, regional, and national level. CSIS is designed for producing, packaging and operationally delivering authoritative climate information data and products through appropriate operational systems, practices, data exchange, technical standards, authentication, communication, and product delivery. Its functions include climate analysis and monitoring, assessment and attribution, prediction (monthly, seasonal, decadal), and projection (centennial scale) as well as tailoring the associated products tUEAo suit user requirements. A central, enabling piece of implementation of CSIS is a Climate Services Toolkit (CST). In its development phase, CST exists as a prototype (www.wmo.int/cst) as a compilation of tools for generating tailored data and products for decision-making, with a special focus on national requirements in developing countries. WMO provides a server to house the CST prototype as well as support operations and maintenance. WMO members provide technical expertise and other in-kind support, including leadership of the CSIS development team. Several recent WMO events have helped with the deployment of CST within the eight countries that have been recognized by GFCS as illustrative for developing their climate services at national levels. Currently these countries are developing climate services projects focusing service development and delivery for selected economic sectors, such as for health, agriculture, energy, water resources, and hydrometeorological disaster risk reduction. These countries are working together with their respective WMO Regional Climate Centers (RCCs), which provide technical assistance with implementation of climate services projects at the country level and facilitate development of regional climate products, starting with the CST. The paper will introduce the CST prototype to the wider meteorological, hydrological, and climatological communities and provide details of its implementation in the context of the global framework.
The Cloud Feedback Model Intercomparison Project (CFMIP) contribution to CMIP6
Webb, Mark J.; Andrews, Timothy; Bodas-Salcedo, Alejandro; ...
2017-01-01
Our primary objective of CFMIP is to inform future assessments of cloud feedbacks through improved understanding of cloud–climate feedback mechanisms and better evaluation of cloud processes and cloud feedbacks in climate models. But, the CFMIP approach is also increasingly being used to understand other aspects of climate change, and so a second objective has now been introduced, to improve understanding of circulation, regional-scale precipitation, and non-linear changes. CFMIP is supporting ongoing model inter-comparison activities by coordinating a hierarchy of targeted experiments for CMIP6, along with a set of cloud-related output diagnostics. CFMIP contributes primarily to addressing the CMIP6 questions Howmore » does the Earth system respond to forcing? and What are the origins and consequences of systematic model biases? and supports the activities of the WCRP Grand Challenge on Clouds, Circulation and Climate Sensitivity.A compact set of Tier 1 experiments is proposed for CMIP6 to address this question: (1) what are the physical mechanisms underlying the range of cloud feedbacks and cloud adjustments predicted by climate models, and which models have the most credible cloud feedbacks? Additional Tier 2 experiments are proposed to address the following questions. (2) Are cloud feedbacks consistent for climate cooling and warming, and if not, why? (3) How do cloud-radiative effects impact the structure, the strength and the variability of the general atmospheric circulation in present and future climates? (4) How do responses in the climate system due to changes in solar forcing differ from changes due to CO 2, and is the response sensitive to the sign of the forcing? (5) To what extent is regional climate change per CO 2 doubling state-dependent (non-linear), and why? (6) Are climate feedbacks during the 20th century different to those acting on long-term climate change and climate sensitivity? (7) How do regional climate responses (e.g. in precipitation) and their uncertainties in coupled models arise from the combination of different aspects of CO 2 forcing and sea surface warming?CFMIP also proposes a number of additional model outputs in the CMIP DECK, CMIP6 Historical and CMIP6 CFMIP experiments, including COSP simulator outputs and process diagnostics to address the following questions. How well do clouds and other relevant variables simulated by models agree with observations?What physical processes and mechanisms are important for a credible simulation of clouds, cloud feedbacks and cloud adjustments in climate models?Which models have the most credible representations of processes relevant to the simulation of clouds?How do clouds and their changes interact with other elements of the climate system?« less
The Cloud Feedback Model Intercomparison Project (CFMIP) contribution to CMIP6.
NASA Technical Reports Server (NTRS)
Webb, Mark J.; Andrews, Timothy; Bodas-Salcedo, Alejandro; Bony, Sandrine; Bretherton, Christopher S.; Chadwick, Robin; Chepfer, Helene; Douville, Herve; Good, Peter; Kay, Jennifer E.;
2017-01-01
The primary objective of CFMIP is to inform future assessments of cloud feedbacks through improved understanding of cloud-climate feedback mechanisms and better evaluation of cloud processes and cloud feedbacks in climate models. However, the CFMIP approach is also increasingly being used to understand other aspects of climate change, and so a second objective has now been introduced, to improve understanding of circulation, regional-scale precipitation, and non-linear changes. CFMIP is supporting ongoing model inter-comparison activities by coordinating a hierarchy of targeted experiments for CMIP6, along with a set of cloud-related output diagnostics. CFMIP contributes primarily to addressing the CMIP6 questions 'How does the Earth system respond to forcing?' and 'What are the origins and consequences of systematic model biases?' and supports the activities of the WCRP Grand Challenge on Clouds, Circulation and Climate Sensitivity. A compact set of Tier 1 experiments is proposed for CMIP6 to address this question: (1) what are the physical mechanisms underlying the range of cloud feedbacks and cloud adjustments predicted by climate models, and which models have the most credible cloud feedbacks? Additional Tier 2 experiments are proposed to address the following questions. (2) Are cloud feedbacks consistent for climate cooling and warming, and if not, why? (3) How do cloud-radiative effects impact the structure, the strength and the variability of the general atmospheric circulation in present and future climates? (4) How do responses in the climate system due to changes in solar forcing differ from changes due to CO2, and is the response sensitive to the sign of the forcing? (5) To what extent is regional climate change per CO2 doubling state-dependent (non-linear), and why? (6) Are climate feedbacks during the 20th century different to those acting on long-term climate change and climate sensitivity? (7) How do regional climate responses (e.g. in precipitation) and their uncertainties in coupled models arise from the combination of different aspects of CO2 forcing and sea surface warming? CFMIP also proposes a number of additional model outputs in the CMIP DECK, CMIP6 Historical and CMIP6 CFMIP experiments, including COSP simulator outputs and process diagnostics to address the following questions. 1. How well do clouds and other relevant variables simulated by models agree with observations? 2. What physical processes and mechanisms are important for a credible simulation of clouds, cloud feedbacks and cloud adjustments in climate models? 3. Which models have the most credible representations of processes relevant to the simulation of clouds? 4. How do clouds and their changes interact with other elements of the climate system?
The Cloud Feedback Model Intercomparison Project (CFMIP) contribution to CMIP6
DOE Office of Scientific and Technical Information (OSTI.GOV)
Webb, Mark J.; Andrews, Timothy; Bodas-Salcedo, Alejandro
Our primary objective of CFMIP is to inform future assessments of cloud feedbacks through improved understanding of cloud–climate feedback mechanisms and better evaluation of cloud processes and cloud feedbacks in climate models. But, the CFMIP approach is also increasingly being used to understand other aspects of climate change, and so a second objective has now been introduced, to improve understanding of circulation, regional-scale precipitation, and non-linear changes. CFMIP is supporting ongoing model inter-comparison activities by coordinating a hierarchy of targeted experiments for CMIP6, along with a set of cloud-related output diagnostics. CFMIP contributes primarily to addressing the CMIP6 questions Howmore » does the Earth system respond to forcing? and What are the origins and consequences of systematic model biases? and supports the activities of the WCRP Grand Challenge on Clouds, Circulation and Climate Sensitivity.A compact set of Tier 1 experiments is proposed for CMIP6 to address this question: (1) what are the physical mechanisms underlying the range of cloud feedbacks and cloud adjustments predicted by climate models, and which models have the most credible cloud feedbacks? Additional Tier 2 experiments are proposed to address the following questions. (2) Are cloud feedbacks consistent for climate cooling and warming, and if not, why? (3) How do cloud-radiative effects impact the structure, the strength and the variability of the general atmospheric circulation in present and future climates? (4) How do responses in the climate system due to changes in solar forcing differ from changes due to CO 2, and is the response sensitive to the sign of the forcing? (5) To what extent is regional climate change per CO 2 doubling state-dependent (non-linear), and why? (6) Are climate feedbacks during the 20th century different to those acting on long-term climate change and climate sensitivity? (7) How do regional climate responses (e.g. in precipitation) and their uncertainties in coupled models arise from the combination of different aspects of CO 2 forcing and sea surface warming?CFMIP also proposes a number of additional model outputs in the CMIP DECK, CMIP6 Historical and CMIP6 CFMIP experiments, including COSP simulator outputs and process diagnostics to address the following questions. How well do clouds and other relevant variables simulated by models agree with observations?What physical processes and mechanisms are important for a credible simulation of clouds, cloud feedbacks and cloud adjustments in climate models?Which models have the most credible representations of processes relevant to the simulation of clouds?How do clouds and their changes interact with other elements of the climate system?« less
Endemism hotspots are linked to stable climatic refugia
Noss, Reed
2017-01-01
Background Centres of endemism have received much attention from evolutionists, biogeographers, ecologists and conservationists. Climatic stability is often cited as a major reason for the occurrences of these geographic concentrations of species which are not found anywhere else. The proposed linkage between endemism and climatic stability raises unanswered questions about the persistence of biodiversity during the present era of rapidly changing climate. Key Questions The current status of evidence linking geographic centres of endemism to climatic stability over evolutionary time was examined. The following questions were asked. Do macroecological analyses support such an endemism–stability linkage? Do comparative studies find that endemic species display traits reflecting evolution in stable climates? Will centres of endemism in microrefugia or macrorefugia remain relatively stable and capable of supporting high biological diversity into the future? What are the implications of the endemism–stability linkage for conservation? Conclusions Recent work using the concept of climate change velocity supports the classic idea that centres of endemism occur where past climatic fluctuations have been mild and where mountainous topography or favourable ocean currents contribute to creating refugia. Our knowledge of trait differences between narrow endemics and more widely distributed species remains highly incomplete. Current knowledge suggests that centres of endemism will remain relatively climatically buffered in the future, with the important caveat that absolute levels of climatic change and species losses in these regions may still be large. PMID:28064195
Psychometric assessment of the Spiritual Climate Scale Arabic version for nurses in Saudi Arabia.
Cruz, Jonas Preposi; Albaqawi, Hamdan Mohammad; Alharbi, Sami Melbes; Alicante, Jerico G; Vitorino, Luciano M; Abunab, Hamzeh Y
2017-12-07
To assess the psychometric properties of the Spiritual Climate Scale Arabic version for Saudi nurses. Evidence showed that a high level of spiritual climate in the workplace is associated with increased productivity and performance, enhanced emotional intelligence, organisational commitment and job satisfaction among nurses. A convenient sample of 165 Saudi nurses was surveyed in this descriptive, cross-sectional study. Cronbach's α and intraclass correlation coefficient of the 2 week test-retest scores were computed to establish reliability. Exploratory factor analysis was performed to support the validity of the Spiritual Climate Scale Arabic version. The Spiritual Climate Scale Arabic version manifested excellent content validity. Exploratory factor analysis supported a single factor with an explained variance of 73.2%. The Cronbach's α values of the scale ranged from .79 to .88, while the intraclass correlation coefficient value was .90. The perceived spiritual climate was associated with the respondents' hospital, gender, age and years of experience. Findings of this study support the sound psychometric properties of the Spiritual Climate Scale Arabic version. The Spiritual Climate Scale Arabic version can be used by nurse managers to assess the nurses' perception of the spiritual climate in any clinical area. This process can lead to spiritually centred interventions, thereby ensuring a clinical climate that accepts and respects different spiritual beliefs and practices. © 2017 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Jasinski, M. F.; Kumar, S.; Peters-Lidard, C. D.; Arsenault, K. R.; Beaudoing, H. K.; Bolten, J. D.; Borak, J.; Kempler, S.; Li, B.; Mocko, D. M.; Rodell, M.; Rui, H.; Silberstein, D. S.; Teng, W. L.; Vollmer, B.
2016-12-01
The National Climate Assessment - Land Data Assimilation System, or NCA-LDAS, is an integrated terrestrial water analysis system created as an end-to-end enabling tool for sustained assessment and dissemination of terrestrial hydrologic indicators in support of the NCA. The primary features are i) gridded, daily time series of over forty hydrologic variables including terrestrial water and energy balance stores, states and fluxes over the continental U.S. derived from land surface modeling with multivariate satellite data record assimilation (1979-2015), ii) estimated trends of the principal water balance components over a wide range of scales and locations, and iii) public dissemination of all NCA-LDAS model forcings, and input and output data products through dedicated NCA-LDAS and NASA GES-DISC websites. NCA-LDAS supports sustained assessment of our national terrestrial hydrologic climate for improved scientific understanding, and the adaptation and management of water resources and related energy sectors. This presentation provides an overview of the NCA-LDAS system together with an evaluation of the initial release of NCA-LDAS data products and trends using two land surface models; Noah Ver. 3.3 and Catchment Ver. Fortuna 2.5, and a listing of several available pathways for public access and visualization of NCA-LDAS background information and data products.
Sopharat, Jessada; Gay, Frederic; Thaler, Philippe; Sdoodee, Sayan; Isarangkool Na Ayutthaya, Supat; Tanavud, Charlchai; Hammecker, Claude; Do, Frederic C.
2015-01-01
Climate change and fast extension in climatically suboptimal areas threaten the sustainability of rubber tree cultivation. A simple framework based on reduction factors of potential transpiration was tested to evaluate the water constraints on seasonal transpiration in tropical sub-humid climates, according pedoclimatic conditions. We selected a representative, mature stand in a drought-prone area. Tree transpiration, evaporative demand and soil water availability were measured every day over 15 months. The results showed that basic relationships with evaporative demand, leaf area index and soil water availability were globally supported. However, the implementation of a regulation of transpiration at high evaporative demand whatever soil water availability was necessary to avoid large overestimates of transpiration. The details of regulation were confirmed by the analysis of canopy conductance response to vapor pressure deficit. The final objective of providing hierarchy between the main regulation factors of seasonal and annual transpiration was achieved. In the tested environmental conditions, the impact of atmospheric drought appeared larger importance than soil drought contrary to expectations. Our results support the interest in simple models to provide a first diagnosis of water constraints on transpiration with limited data, and to help decision making toward more sustainable rubber plantations. PMID:25610443
Hydrological Sensitivity of Land Use Scenarios for Climate Mitigation
NASA Astrophysics Data System (ADS)
Boegh, E.; Friborg, T.; Hansen, K.; Jensen, R.; Seaby, L. P.
2014-12-01
Bringing atmospheric concentration to 550 ppm CO2 or below by 2100 will require large-scale changes to global and national energy systems, and potentially the use of land (IPCC, 2013) The Danish government aims at reducing greenhouse gas emissions (GHG) by 40 % in 1990-2020 and energy consumption to be based on 100 % renewable energy by 2035. By 2050, GHG emissions should be reduced by 80-95 %. Strategies developed to reach these goals require land use change to increase the production of biomass for bioenergy, further use of catch crops, reduced nitrogen inputs in agriculture, reduced soil tillage, afforestation and establishment of permanent grass fields. Currently, solar radiation in the growing season is not fully exploited, and it is expected that biomass production for bioenergy can be supported without reductions in food and fodder production. Impacts of climate change on the hydrological sensitivity of biomass growth and soil carbon storage are however not known. The present study evaluates the hydrological sensitivity of Danish land use options for climate mitigation in terms of crop yields (including straw for bioenergy) and net CO2 exchange for wheat, barley, maize and clover under current and future climate conditions. Hydrological sensitivity was evaluated using the agrohydrological model Daisy. Simulations during current climate conditions were in good agreement with measured dry matter, crop nitrogen content and eddy covariance fluxes of water vapour and CO2. Climate scenarios from the European ENSEMBLES database were downscaled for simulating water, nitrogen and carbon balance for 2071-2100. The biomass potential generally increase, but water stress also increases in strength and extends over a longer period, thereby increasing sensitivity to water availability. The potential of different land use scenarios to maximize vegetation cover and biomass for climate mitigation is further discussed in relation to impacts on the energy- and water balance.
Mosquito populations dynamics associated with climate variations.
Wilke, André Barretto Bruno; Medeiros-Sousa, Antônio Ralph; Ceretti-Junior, Walter; Marrelli, Mauro Toledo
2017-02-01
Mosquitoes are responsible for the transmission of numerous serious pathogens. Members of the Aedes and Culex genera, which include many important vectors of mosquito-borne diseases, are highly invasive and adapted to man-made environments. They are spread around the world involuntarily by humans and are highly adapted to urbanized environments, where they are exposed to climate-related abundance drivers. We investigated Culicidae fauna in two urban parks in the city of São Paulo to analyze the correlations between climatic variables and the population dynamics of mosquitoes in these urban areas. Mosquitoes were collected monthly over one year, and sampling sufficiency was evaluated after morphological identification of the specimens. The average monthly temperature and accumulated rainfall for the collection month and previous month were used to explain climate-related abundance drivers for the six most abundant species (Aedes aegypti, Aedes albopictus, Aedes fluviatilis, Aedes scapularis, Culex nigripalpus and Culex quinquefasciatus) and then analyzed using generalized linear statistical models and the Akaike Information Criteria corrected for small samples (AICc). The strength of evidence in favor of each model was evaluated using Akaike weights, and the explanatory model power was measured by McFadden's Pseudo-R 2 . Associations between climate and mosquito abundance were found in both parks, indicating that predictive models based on climate variables can provide important information on mosquito population dynamics. We also found that this association is species-dependent. Urbanization processes increase the abundance of a few mosquito species that are well adapted to man-made environments and some of which are important vectors of pathogens. Predictive models for abundance based on climate variables may help elucidate the population dynamics of urban mosquitoes and their impact on the risk of disease transmission, allowing better predictive scenarios to be developed and supporting the implementation of vector mosquito control strategies. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Weihs, R. R.
2012-12-01
A series of professional development workshops covering the fundamentals of climate change have been developed and facilitated for two groups of middle school science teachers in three Florida counties. The NASA-supported joint venture between Florida State University's Center for Ocean-Atmospheric Prediction Studies (COAPS) and the University of South Florida's (USF's) Coalition for Science Literacy, ASK Florida, focuses on expanding and deepening teachers' content knowledge of a wide range of climate change topics, connecting local and regional changes to the global picture, and supporting classroom implementation and effective teaching practices. Education experts from USF, climate scientists from COAPS, and Hillsborough county teachers and science coaches coordinated and developed the workshop content, which is based on Florida's Next Generation Sunshine State Standards in science, science curriculum guides for 6th grade, and teacher interest. Several scientists have facilitated activities during the workshop, including professors in meteorology and climatology, research scientists in the field, a NOAA program manager, the state climatologists for Florida, and others. Having these climate scientists present during the workshop provides teachers an opportunity to interact directly with the scientists and gain insight into the climatology field. Additionally, we host an open-forum discussion panel during which teachers can ask the experts about any topics of interest. Activities are designed to enhance the scientific skill level of the teachers. Introductory activities reinforce teachers' abilities to distinguish facts from opinions and to evaluate sources. Other activities provide hands-on experience using actual scientific data from NASA and other agencies. For example, teachers analyze precipitation data to create distributions of Florida rainfall, examine sea level trends at various locations, identify Atlantic hurricane frequencies during the phases of ENSO, and create maps of climate data available on the MYNASADATA web portal. The human aspect of climate change is addressed by discussing anthropological influences such as land use changes. In addition, we examine scientific and public use and interpretation of climate models, scenarios, and projections, and explore adaptation and mitigation strategies for Florida-specific climate projections. Pedagogy is incorporated throughout the workshops to demonstrate how the content and activities can be adapted for their students. Furthermore, we support educators in overcoming obstacles associated with teaching global and regional climate change. This program targets teachers from Title-I schools because students from these schools are typically underrepresented in the STEM fields. Additionally, classroom technology is often limited; therefore, it is important to adapt resources so they can be used in the classroom with or without computers. Activities are presented through an inquiry-based format to encourage knowledge acquisition and discovery similar to that occurring in the actual scientific field. Finally, we prepare teachers to address apathetic or antiscientific sentiments their students may have about climate change by identifying the background issues and ideology and developing strategies to make the content more relevant to their students' lives.
IT-based soil quality evaluation for agroecologically smart land-use planning in RF conditions
NASA Astrophysics Data System (ADS)
Vasenev, Ivan
2016-04-01
Activated in the first decades of XXI century global climate, economy and farming changes sharply actualized novel IT-based approaches in soil quality evaluation to address modern agricultural issues with agroecologically smart land-use planning. Despite global projected climate changes will affect a general decline of crop yields (IPCC 2014), RF boreal and subboreal regions will benefit from predicted and already particularly verified temperature warming and increased precipitation (Valentini, Vasenev, 2015) due to essential increasing of growing season length and mild climate conditions favorable for most prospective crops and best available agrotechnologies. However, the essential spatial heterogeneity is mutual feature for most natural and man-changed soils at the Central European region of Russia which is one of the biggest «food baskets» in RF. In these conditions potentially favorable climate circumstances will increase not only soil fertility and workability features but also their dynamics and spatial variability that determine crucial issues of IT-based soil quality evaluation systems development and agroecologically smart farming planning. Developed and verified within the LAMP project (RF Governmental projects #11.G34.31.0079 and #14.120.14.4266) regionally adapted DSS (ACORD-R - RF #2012612944) gives effective informational and methodological support for smart farming agroecological optimization in global climate and farming changes challenges. Information basis for agroecologically smart land-use planning consists of crops and agrotechnologies requirements, regional and local systems of agroecological zoning, local landscape and soil cover patterns, land quality and degradation risk assessments, current and previous farming practices results, agroclimatic predictions and production agroecological models, environmental limitations and planned profitability, fertilizing efficiency DSS ACORD-R. Smart land-use practice refers to sustainable balance among soil 7 principal types of agroecological functions: (a) Agroclimatic ones of plant supply with photosynthetic active radiation, effective heat and available moisture; (b) Agrochemical functions of crop supply with available macro- and micro-nutrients; (c) Agrophysical ones of favorable condition support for farming effective workability and trafficability; (d) Hydrophysical functions of plant seasonal supply with available moisture and soil air exchange; (e) Phyto-sanitary functions of favorable condition support for crop minimum damage by pathogens, pests and weeds; (f) Ecogeochemical ones of soil resistance to contamination; (g) Ecopedomorphogenetic functions of plant and farming support with soil agroecological quasi-homogeneity in space and time. The IT-based soil evaluation algorithm includes 4 particular ones: (i) the principal agroecological parameters assessment by their modelling or adapted to concrete soil type logistic equation; (ii) agroecological function assessment as corrected harmonic mean from its parameters assessment values; (iii) homogeneous land unit assessment as combination of its functions values; (iv) heterogeneous land unit assessment as weighted average value corrected by soil cover patterns contrast and boundary complexity - with their results visualization. The principal limitations for sustainable land use practices are usually determined by the level of photosynthetic active radiation or soil available water deficit, soil fertility and agrotechnological parameters, risks of soil degradation processes development, crop physiological stress, production or environmental contamination. The agriculture intensification often leads to the raised issue of greenhouse gases, including CO2 (as a result of soil organic carbon mineralization), CH4 (animal production) and N2O (mineral fertilizing), to changes of the profitability and decrease in soil potential of the atmospheric carbon sequestration. The consequence of agricultural land degradation due to non-rational land-use can be disturbance of soil organic matter fluxes and traditional transformation processes. So, agroecosystems are very sensitive to global changes and their IT-based timely adaptation is the necessary condition for their sustainable functioning and ecosystem services support, including an inhabitancy, water and foodstuffs stocks.
Demand driven decision support for efficient water resources allocation in irrigated agriculture
NASA Astrophysics Data System (ADS)
Schuetze, Niels; Grießbach, Ulrike Ulrike; Röhm, Patric; Stange, Peter; Wagner, Michael; Seidel, Sabine; Werisch, Stefan; Barfus, Klemens
2014-05-01
Due to climate change, extreme weather conditions, such as longer dry spells in the summer months, may have an increasing impact on the agriculture in Saxony (Eastern Germany). For this reason, and, additionally, declining amounts of rainfall during the growing season the use of irrigation will be more important in future in Eastern Germany. To cope with this higher demand of water, a new decision support framework is developed which focuses on an integrated management of both irrigation water supply and demand. For modeling the regional water demand, local (and site-specific) water demand functions are used which are derived from the optimized agronomic response at farms scale. To account for climate variability the agronomic response is represented by stochastic crop water production functions (SCWPF) which provide the estimated yield subject to the minimum amount of irrigation water. These functions take into account the different soil types, crops and stochastically generated climate scenarios. By applying mathematical interpolation and optimization techniques, the SCWPF's are used to compute the water demand considering different constraints, for instance variable and fix costs or the producer price. This generic approach enables the computation for both multiple crops at farm scale as well as of the aggregated response to water pricing at a regional scale for full and deficit irrigation systems. Within the SAPHIR (SAxonian Platform for High Performance Irrigation) project a prototype of a decision support system is developed which helps to evaluate combined water supply and demand management policies for an effective and efficient utilization of water in order to meet future demands. The prototype is implemented as a web-based decision support system and it is based on a service-oriented geo-database architecture.
Developing rural community health risk assessments for climate change: a Tasmanian pilot study.
Bell, Erica J; Turner, Paul; Meinke, Holger; Holbrook, Neil J
2015-01-01
This article examines the development and pilot implementation of an approach to support local community decision-makers to plan health adaptation responses to climate change. The approach involves health and wellbeing risk assessment supported through the use of an electronic tool. While climate change is a major foreseeable public health threat, the extent to which health services are prepared for, or able to adequately respond to, climate change impact-related risks remains unclear. Building health decision-support mechanisms in order to involve and empower local stakeholders to help create the basis for agreement on these adaptive actions is an important first step. The primary research question was 'What can be learned from pilot implementation of a community health and well-being risk assessment (CHWRA) information technology-based tool designed to support understanding of, and decision-making on, local community challenges and opportunities associated with health risks posed by climate change? The article examines the complexity of climate change science to adaptation translational processes, with reference to existing research literature on community development. This is done in the context of addressing human health risks for rural and remote communities in Tasmania, Australia. This process is further examined through the pilot implementation of an electronic tool designed to support the translation of physically based climate change impact information into community-level assessments of health risks and adaptation priorities. The procedural and technical nature of the CHWRA tool is described, and the implications of the data gathered from stakeholder workshops held at three rural Tasmanian local government sites are considered and discussed. Bushfire, depression and waterborne diseases were identified by community stakeholders as being potentially 'catastrophic' health effects 'likely' to 'almost certain' to occur at one or more Tasmanian rural sites - based on an Intergovernmental Panel on Climate Change style of assessment. Consensus statements from stakeholders also suggested concern with health sector adaptation capacity and community resilience, and what community stakeholders defined as 'last straw' climate effects in already stressed communities. Preventative action and community engagement were also seen as important, especially with regard to managing the ways that climate change can multiply socioeconomic and health outcome inequality. Above all, stakeholder responses emphasised the importance of an applied, complexity-oriented understanding of how climate and climate change impacts affect local communities and local services to compromise the overall quality of human health in these communities. Complex community-level assessments about climate change and related health risks and responses can be captured electronically in ways that offer potentially actionable information about priorities for health sector adaptation, as a first step in planning. What is valuable about these community judgements is the creation of shared values and commitments. Future iteration of the IT tool could include decision-support modules to support best practice health sector adaptation scenarios, providing participants with opportunities to develop their know-how about health sector adaptation to climate change. If managed carefully, such tools could work within a balanced portfolio of measures to help reduce the rising health burden from climate change.
NASA Astrophysics Data System (ADS)
Vennemann, T. W.; Tutken, T.; Kocsis, L.; Mullis, J.
2005-12-01
The Tertiary circum-Alpine Molasse sediments were deposited during major periods of Alpine tectonism but also at a time of large global climatic change. They are well suited to study the effects of tectonic forcing on climate, because the sediments were deposited in marginal basins, partly to completely isolated from other major oceanic basins. Hence, a comparison of the past climatic and oceanographic evolution indicated by the sediments to those on a global scale, does allow for a qualitative evaluation of the relationship between tectonism and regional climate. Much is known about the geological-geochronological framework of alpine tectonism, including associated erosional rates and sediment volumes. Estimates of changes in paleoelevation and its direct influence on climate have, however, been less well constrained. Three independent lines of evidence indicate significant altitudes of the Alps during the Miocene: 1) H isotope compositions of clay minerals, formed as weathering products and subsequently deposited as part of the Alpine Molasse, have δD reaching values as low as -97‰. 2) O isotope compositions of retrograde metamorphic vein and fissure quartz and H isotope composition of its included fluids have δ18O values as low as -3.5‰ and δD values of -140‰, respectively. 3) ``Exotic" shark teeth from Swiss Upper Marine Molasse sediments that have δ18O values (VSMOW) around 11‰ (n=2), values unlike those from other teeth of the same locality (20.7 to 21.8‰; n=6), but for which the REE patterns support the same diagenetic history, hence supporting a freshwater formation of the low δ18O teeth (also supported by distinct Sr isotope compositions). Using these three approaches as a basis for estimating the isotopic composition of past precipitation and applying the present-day altitude effects on the compositions, it can be concluded that the Miocene Alps had mean altitudes of about 1500 to 2000 m, that is elevations similar to those of today. Paleoclimatic reconstructions from North Alpine Molasse sediments are based on oxygen isotope compositions of fossil mammalian tooth enamel for freshwater molasse deposits, and shark teeth, marine ostracoda, foraminifera, and mammalian phosphatic fossils for the Upper Marine Molasse deposits. The δ18O values (VPDB) of carbonate in phosphate from Oligocene and Miocene large mammal teeth (n=270), for example, vary over a large range from -11.9‰ to -0.5‰, but these variations parallel the composite O isotope curve of Tertiary benthic foraminifera, thus reflecting major global climatic changes such as the Late Oligocene warming, Mid-Miocene climate optimum, and Middle to Late Miocene cooling trends. The δ18O values (VSMOW) of phosphate in shark teeth (19.8 to 23.3‰; n=130) from Miocene marine molasse sediments as well as those of ostracods and foraminifera from these sediments all have variations that parallel those of composite curves for global changes. Collectively, the data support a Neogene paleogeography with a high mountain belt adjacent to marginal marine or freshwater depositional basins but with a regional climate, at least for the northern Molasse realm, that was strongly coupled to the global climate. The Alps thus appear not have influenced the local climate and/or atmospheric circulation patterns significantly.
Supporting observation campaigns with high resolution modeling
NASA Astrophysics Data System (ADS)
Klocke, Daniel; Brueck, Matthias; Voigt, Aiko
2017-04-01
High resolution simulation in support of measurement campaigns offers a promising and emerging way to create large-scale context for small-scale observations of clouds and precipitation processes. As these simulation include the coupling of measured small-scale processes with the circulation, they also help to integrate the research communities from modeling and observations and allow for detailed model evaluations against dedicated observations. In connection with the measurement campaign NARVAL (August 2016 and December 2013) simulations with a grid-spacing of 2.5 km for the tropical Atlantic region (9000x3300 km), with local refinement to 1.2 km for the western part of the domain, were performed using the icosahedral non-hydrostatic (ICON) general circulation model. These simulations are again used to drive large eddy resolving simulations with the same model for selected days in the high definition clouds and precipitation for advancing climate prediction (HD(CP)2) project. The simulations are presented with the focus on selected results showing the benefit for the scientific communities doing atmospheric measurements and numerical modeling of climate and weather. Additionally, an outlook will be given on how similar simulations will support the NAWDEX measurement campaign in the North Atlantic and AC3 measurement campaign in the Arctic.
NASA Astrophysics Data System (ADS)
Tayne, K.
2015-12-01
As K12 teachers seek ways to provide meaningful learning opportunities for students to understand climate change, they often face barriers to teaching about climate and/or lack relevant resources on the topic. In an effort to better understand how to support K12 teachers in this role, a survey about "teaching climate change" was created and distributed. The results of the 2015 survey are presented, based on more than 200 teacher responses. Respondents included National Science Teachers Association (NSTA) members, 2015 STEM Teacher and Researcher (STAR) Fellows and science teachers from several U.S. school districts. The survey identifies teachers' perceived barriers to teaching climate change, for example difficulty integrating climate change concepts into specific core courses (i.e., biology), as well as desired classroom resources, such as climate change project-based learning (PBL) units that connect to the Next Generation Science Standards (NGSS). Survey results also indicate possible pathways for federal agencies, non-profits, universities and other organizations to have a more significant impact on climate literacy in the classroom. In response to the survey results, a comprehensive guide is being created to teach climate change in K12 classrooms, addressing barriers and providing resources for teachers. For example, in the survey, some teachers indicated that they lacked confidence in their content knowledge and understanding of climate change, so this guide provides web-based resources to help further an educator's understanding of climate change, as well as opportunities for relevant online and in-person professional development. In this quest for desired resources to teach climate change, gaps in accessible and available online resources are being identified. Information about these "gaps" may help organizations that strive to support climate literacy in the classroom better serve teachers.
Psychology: Fear and hope in climate messages
NASA Astrophysics Data System (ADS)
Stern, Paul C.
2012-08-01
Scientists often expect fear of climate change and its impacts to motivate public support of climate policies. A study suggests that climate change deniers don't respond to this, but that positive appeals can change their views.
ERIC Educational Resources Information Center
Ommundsen, Yngvar; Kvalo, Silje Eikanger
2007-01-01
We investigated the role of motivational climates, teacher autonomy support, perceived competence and autonomy on pupils' self-regulated motivation in physical education (PE) classes of Norwegian 10th-graders. Path analyses revealed that a mastery climate and teacher autonomy support both (a) positively influenced intrinsically regulated…
NASA Astrophysics Data System (ADS)
Straatsma, Menno; Droogers, Peter; Brandsma, Jaïrus; Buytaert, Wouter; Karssenberg, Derek; Van Beek, Rens; Wada, Yoshihide; Sutanudjaja, Edwin; Vitolo, Claudia; Schmitz, Oliver; Meijer, Karen; Van Aalst, Maaike; Bierkens, Marc
2014-05-01
Water scarcity affects large parts of the world. Over the course of the twenty-first century, water demand is likely to increase due to population growth and associated food production, and increased economic activity, while water supply is projected to decrease in many regions due to climate change. Despite recent studies that analyze the effect of climate change on water scarcity, e.g. using climate projections under representative concentration pathways (RCP) of the fifth assessment report of the IPCC (AR5), decision support for closing the water gap between now and 2100 does not exist at a meaningful scale and with a global coverage. In this study, we aimed (i) to assess the joint impact of climatic and socio-economic change on water scarcity, (ii) to integrate impact and potential adaptation in one workflow, (iii) to prioritize adaptation options to counteract water scarcity based on their financial, regional socio-economic and environmental implications, and (iv) to deliver all this information in an integrated user-friendly web-based service. To enable the combination of global coverage with local relevance, we aggregated all results for 1604 water provinces (food producing units) delineated in this study, which is five times smaller than previous food producing units. Water supply was computed using the PCR-GLOBWB hydrological and water resources model, parameterized at 5 arcminutes for the whole globe, excluding Antarctica and Greenland. We ran PCR-GLOBWB with a daily forcing derived from five different GCM models from the CMIP5 (GFDL-ESM2M, Hadgem2-ES, IPSL-CMA5-LR, MIROC-ESM-CHEM, NorESM1-M) that were bias corrected using observation-based WATCH data between 1960-1999. For each of the models all four RCPs (RCP 2.6, 4.5, 6.0, and 8.5) were run, producing the ensemble of 20 future projections. The blue water supply was aggregated per month and per water province. Industrial, domestic and irrigation water demands were computed for a limited number of realistic combinations of a shared socio-economic pathways (SSPs) and RCPs. Our Water And Climate Adaptation Model (WatCAM) was used to compute the water gap based on reservoir capacity, water supply, and water demand. WatCam is based on the existing ModSim (Labadie, 2010) water allocation model, and facilitated the evaluation of nine technological and infrastructural adaptation measures to assess the investments needed to bridge the future water gap. Regional environmental and socio-economic effects of these investments, such as environmental flows or downstream effects, were evaluated. A scheme was developed to evaluate the strategies on robustness and flexibility under climate change and scenario uncertainty, and each measure was linked to possibilities for investment and financing mechanisms. The WatCAM is available as a web modeling service from www.water2invest.com, and enables user specified adaptation measures and the creation of an ensemble of water gap forecasts.
Assessing a Norwegian translation of the Organizational Climate Measure.
Bernstrøm, Vilde Hoff; Lone, Jon Anders; Bjørkli, Cato A; Ulleberg, Pål; Hoff, Thomas
2013-04-01
This study investigated the Norwegian translation of the Organizational Climate Measure developed by Patterson and colleagues. The Organizational Climate Measure is a global measure of organizational climate based on Quinn and Rohrbaugh's competing values model. The survey was administered to a Norwegian branch of an international service sector company (N = 555). The results revealed satisfactory internal reliability and interrater agreement for the 17 scales, and confirmatory factor analysis supported the original factor structure. The findings gave preliminary support for the Organizational Climate Measure as a reliable measure with a stable factor structure, and indicated that it is potentially useful in the Norwegian context.
Bohmert, Miriam Northcutt; Duwe, Grant; Hipple, Natalie Kroovand
2018-02-01
In a climate in which stigmatic shaming is increasing for sex offenders as they leave prison, restorative justice practices have emerged as a promising approach to sex offender reentry success and have been shown to reduce recidivism. Criminologists and restorative justice advocates believe that providing ex-offenders with social support that they may not otherwise have is crucial to reducing recidivism. This case study describes the expressive and instrumental social support required and received, and its relationship to key outcomes, by sex offenders who participated in Circles of Support and Accountability (COSAs), a restorative justice, reentry program in Minnesota. In-depth interviews with re-entering sex offenders and program volunteers revealed that 75% of offenders reported weak to moderate levels of social support leaving prison, 70% reported receiving instrumental support in COSAs, and 100% reported receiving expressive support. Findings inform work on social support, structural barriers, and restorative justice programming during sex offender reentry.
NASA Astrophysics Data System (ADS)
Waliser, D. E.; Kim, J.; Mattman, C.; Goodale, C.; Hart, A.; Zimdars, P.; Lean, P.
2011-12-01
Evaluation of climate models against observations is an essential part of assessing the impact of climate variations and change on regionally important sectors and improving climate models. Regional climate models (RCMs) are of a particular concern. RCMs provide fine-scale climate needed by the assessment community via downscaling global climate model projections such as those contributing to the Coupled Model Intercomparison Project (CMIP) that form one aspect of the quantitative basis of the IPCC Assessment Reports. The lack of reliable fine-resolution observational data and formal tools and metrics has represented a challenge in evaluating RCMs. Recent satellite observations are particularly useful as they provide a wealth of information and constraints on many different processes within the climate system. Due to their large volume and the difficulties associated with accessing and using contemporary observations, however, these datasets have been generally underutilized in model evaluation studies. Recognizing this problem, NASA JPL and UCLA have developed the Regional Climate Model Evaluation System (RCMES) to help make satellite observations, in conjunction with in-situ and reanalysis datasets, more readily accessible to the regional modeling community. The system includes a central database (Regional Climate Model Evaluation Database: RCMED) to store multiple datasets in a common format and codes for calculating and plotting statistical metrics to assess model performance (Regional Climate Model Evaluation Tool: RCMET). This allows the time taken to compare model data with satellite observations to be reduced from weeks to days. RCMES is a component of the recent ExArch project, an international effort for facilitating the archive and access of massive amounts data for users using cloud-based infrastructure, in this case as applied to the study of climate and climate change. This presentation will describe RCMES and demonstrate its utility using examples from RCMs applied to the southwest US as well as to Africa based on output from the CORDEX activity. Application of RCMES to the evaluation of multi-RCM hindcast for CORDEX-Africa will be presented in a companion paper in A41.
Development of Climate Change Adaptation Platform using Spatial Information
NASA Astrophysics Data System (ADS)
Lee, J.; Oh, K. Y.; Lee, M. J.; Han, W. J.
2014-12-01
Climate change adaptation has attracted growing attention with the recent extreme weather conditions that affect people around the world. More and more countries, including the Republic of Korea, have begun to hatch adaptation plan to resolve these matters of great concern. They all, meanwhile, have mentioned that it should come first to integrate climate information in all analysed areas. That's because climate information is not independently made through one source; that is to say, the climate information is connected one another in a complicated way. That is the reason why we have to promote integrated climate change adaptation platform before setting up climate change adaptation plan. Therefore, the large-scaled project has been actively launched and worked on. To date, we researched 620 literatures and interviewed 51 government organizations. Based on the results of the researches and interviews, we obtained 2,725 impacts about vulnerability assessment information such as Monitoring and Forecasting, Health, Disaster, Agriculture, Forest, Water Management, Ecosystem, Ocean/Fisheries, Industry/Energy. Among 2,725 impacts, 995 impacts are made into a database until now. This database is made up 3 sub categories like Climate-Exposure, Sensitivity, Adaptive capacity, presented by IPCC. Based on the constructed database, vulnerability assessments were carried out in order to evaluate climate change capacity of local governments all over the country. These assessments were conducted by using web-based vulnerability assessment tool which was newly developed through this project. These results have shown that, metropolitan areas like Seoul, Pusan, Inchon, and so on have high risks more than twice than rural areas. Acknowledgements: The authors appreciate the support that this study has received from "Development of integrated model for climate change impact and vulnerability assessment and strengthening the framework for model implementation ", an initiative of the Korea Environmental & Industry Technology Institute .
netherland hydrological modeling instrument
NASA Astrophysics Data System (ADS)
Hoogewoud, J. C.; de Lange, W. J.; Veldhuizen, A.; Prinsen, G.
2012-04-01
Netherlands Hydrological Modeling Instrument A decision support system for water basin management. J.C. Hoogewoud , W.J. de Lange ,A. Veldhuizen , G. Prinsen , The Netherlands Hydrological modeling Instrument (NHI) is the center point of a framework of models, to coherently model the hydrological system and the multitude of functions it supports. Dutch hydrological institutes Deltares, Alterra, Netherlands Environmental Assessment Agency, RWS Waterdienst, STOWA and Vewin are cooperating in enhancing the NHI for adequate decision support. The instrument is used by three different ministries involved in national water policy matters, for instance the WFD, drought management, manure policy and climate change issues. The basis of the modeling instrument is a state-of-the-art on-line coupling of the groundwater system (MODFLOW), the unsaturated zone (metaSWAP) and the surface water system (MOZART-DM). It brings together hydro(geo)logical processes from the column to the basin scale, ranging from 250x250m plots to the river Rhine and includes salt water flow. The NHI is validated with an eight year run (1998-2006) with dry and wet periods. For this run different parts of the hydrology have been compared with measurements. For instance, water demands in dry periods (e.g. for irrigation), discharges at outlets, groundwater levels and evaporation. A validation alone is not enough to get support from stakeholders. Involvement from stakeholders in the modeling process is needed. There fore to gain sufficient support and trust in the instrument on different (policy) levels a couple of actions have been taken: 1. a transparent evaluation of modeling-results has been set up 2. an extensive program is running to cooperate with regional waterboards and suppliers of drinking water in improving the NHI 3. sharing (hydrological) data via newly setup Modeling Database for local and national models 4. Enhancing the NHI with "local" information. The NHI is and has been used for many decision supports and evaluations. The main focus of the instrument is operational drought management and evaluating adaptive measures for different climate scenario's. It has also been used though as a basis to evaluate water quality of WFD-water bodies and measures, nutrient-leaching and describing WFD groundwater bodies. There is a toolkit to translate the hydrological NHI results to values for different water users. For instance with the NHI results agricultural yields can be calculated, effects on ground water dependant ecosystems, subsidence, shipping, drinking water supply. This makes NHI a valuable decision support system in Dutch water management.
Wilson, Dawn K; Griffin, Sarah; Saunders, Ruth P; Evans, Alexandra; Mixon, Gary; Wright, Marcie; Beasley, Amelia; Umstattd, M Renee; Lattimore, Diana; Watts, Ashley; Freelove, Julie
2006-08-01
The present study was designed to develop an innovative motivational intervention (based on Self-Determination Theory and Social Cognitive Theory) to increase physical activity (PA) in underserved adolescents. Sixty-four adolescents (35 females, 29 males; 50% minority; 65% on reduced lunch program; ages 11-13 yr) participated in either an 8-week motivational intervention after-school (n = 32) or a typical after-school program (n = 32). The conceptual framework for the intervention targeted the social environment (perceived autonomy, perceived social support, participation, fun), cognitive mediators (perceived choice, self-efficacy, and relatedness/belongingness), and motivational orientation (intrinsic motivation, commitment, positive self-concept). Formative evaluation data was collected by staff through daily forms throughout the 8-week program and through observational data completed by independent objective observers during 2 weeks of the program. The major themes that were identified addressed theoretical concepts regarding the intervention and logistical issues in delivering the intervention. The data revealed information regarding the importance of the cognitive appropriateness of the PA and motivational activities, the environmental climate for promoting nurturing relationships, developing specific strategies for increasing intrinsic rather than extrinsic reinforcement, and developing methods for preventing social "cliques" and gender conflicts to maintain an appropriate level of support in the social climate. Themes for training staff included focusing on team building, leadership, and nurturing. This formative evaluation is being used to formalize a randomized trial to test the effects of a student-centered motivational intervention on increasing PA in underserved 6th graders.
Smith-Jentsch, K A; Salas, E; Brannick, M T
2001-04-01
Eighty pilots participated in a study of variables influencing the transfer process. Posttraining performance was assessed in a flight simulation under 1 of 2 conditions. Those in the maximum performance condition were made aware of the skill to be assessed and the fact that their teammates were confederates, whereas those in the typical performance condition were not. The results indicated that (a) simulator ratings correlated with a measure of transfer to the cockpit for those in the typical condition only; (b) team leader support, manipulated in a pretask brief, moderated the disparity between maximum and typical performance; (c) team climate mediated the impact of support on performance in the typical condition; (d) those with a stronger predisposition toward the trained skill viewed their climate as more supportive; and (e) perceptions of team climate were better predictors of performance for those with a more external locus of control.
Teams as innovative systems: multilevel motivational antecedents of innovation in R&D teams.
Chen, Gilad; Farh, Jiing-Lih; Campbell-Bush, Elizabeth M; Wu, Zhiming; Wu, Xin
2013-11-01
Integrating theories of proactive motivation, team innovation climate, and motivation in teams, we developed and tested a multilevel model of motivators of innovative performance in teams. Analyses of multisource data from 428 members of 95 research and development (R&D) teams across 33 Chinese firms indicated that team-level support for innovation climate captured motivational mechanisms that mediated between transformational leadership and team innovative performance, whereas members' motivational states (role-breadth self-efficacy and intrinsic motivation) mediated between proactive personality and individual innovative performance. Furthermore, individual motivational states and team support for innovation climate uniquely promoted individual innovative performance, and, in turn, individual innovative performance linked team support for innovation climate to team innovative performance. (c) 2013 APA, all rights reserved.
NASA Astrophysics Data System (ADS)
Duffy, P. B.; Colohan, P.; Driggers, R.; Herring, D.; Laurier, F.; Petes, L.; Ruffo, S.; Tilmes, C.; Venkataraman, B.; Weaver, C. P.
2014-12-01
Effective adaptation to impacts of climate change requires best-available information. To be most useful, this information should be easily found, well-documented, and translated into tools that decision-makers use and trust. To meet these needs, the President's Climate Action Plan includes efforts to develop "actionable climate science". The Climate Data Initiative (CDI) leverages the Federal Government's extensive, open data resources to stimulate innovation and private-sector entrepreneurship in support of actions to prepare for climate change. The Initiative forges commitments and partnerships from the private, NGO, academic, and public sectors to create data-driven tools. Open data from Federal agencies to support this innovation is available on Climate.Data.gov, initially focusing on coastal flooding but soon to expand to topics including food, energy, water, energy, transportation, and health. The Climate Resilience Toolkit (CRT) will facilitate access to data-driven resilience tools, services, and best practices, including those accessible through the CDI. The CRT will also include access to training and tutorials, case studies, engagement forums, and other information sources. The Climate Action Plan also calls for a public-private partnership on extreme weather risk, with the goal of generating improved assessments of risk from different types of extreme weather events, using methods and data that are transparent and accessible. Finally, the U.S. Global Change Research Program and associated agencies work to advance the science necessary to inform decisions and sustain assessments. Collectively, these efforts represent increased emphasis across the Federal Government on the importance of information to support climate resilience.
On the use of integrating FLUXNET eddy covariance and remote sensing data for model evaluation
NASA Astrophysics Data System (ADS)
Reichstein, Markus; Jung, Martin; Beer, Christian; Carvalhais, Nuno; Tomelleri, Enrico; Lasslop, Gitta; Baldocchi, Dennis; Papale, Dario
2010-05-01
The current FLUXNET database (www.fluxdata.org) of CO2, water and energy exchange between the terrestrial biosphere and the atmosphere contains almost 1000 site-years with data from more than 250 sites, encompassing all major biomes of the world and being processed in a standardized way (1-3). In this presentation we show that the information in the data is sufficient to derive generalized empirical relationships between vegetation/respective remote sensing information, climate and the biosphere-atmosphere exchanges across global biomes. These empirical patterns are used to generate global grids of the respective fluxes and derived properties (e.g. radiation and water-use efficiencies or climate sensitivities in general, bowen-ratio, AET/PET ratio). For example we revisit global 'text-book' numbers such as global Gross Primary Productivity (GPP) estimated since the 70's as ca. 120PgC (4), or global evapotranspiration (ET) estimated at 65km3/yr-1 (5) - for the first time with a more solid and direct empirical basis. Evaluation against independent data at regional to global scale (e.g. atmospheric CO2 inversions, runoff data) lends support to the validity of our almost purely empirical up-scaling approaches. Moreover climate factors such as radiation, temperature and water balance are identified as driving factors for variations and trends of carbon and water fluxes, with distinctly different sensitivities between different vegetation types. Hence, these global fields of biosphere-atmosphere exchange and the inferred relations between climate, vegetation type and fluxes should be used for evaluation or benchmarking of climate models or their land-surface components, while overcoming scale-issues with classical point-to-grid-cell comparisons. 1. M. Reichstein et al., Global Change Biology 11, 1424 (2005). 2. D. Baldocchi, Australian Journal of Botany 56, 1 (2008). 3. D. Papale et al., Biogeosciences 3, 571 (2006). 4. D. E. Alexander, R. W. Fairbridge, Encyclopedia of Environmental Science (Springer, Heidelberg, 1999), pp. 741. 5. T. Oki, S. Kanae, Science 313, 1068 (Aug 25, 2006)
WRF model forecasts and their use for hydroclimate monitoring over southern South America
NASA Astrophysics Data System (ADS)
Muller, Omar; Lovino, Miguel; Berbery, E. Hugo
2017-04-01
Weather forecasting and monitoring systems based on regional models are becoming increasingly relevant for decision support in agriculture and water management. This work evaluates the predictive and monitoring capabilities of a system based on WRF model simulations at 15 km grid spacing over a domain that encompasses La Plata Basin (LPB) in southern South America, where agriculture and water resources are essential. The model's skill up to a lead-time of 7 days is evaluated with daily precipitation and 2m temperature in-situ observations. Results show high prediction performance with 7 days lead-time throughout the domain and particularly over LPB, where about 70% of rain and no-rain days are correctly predicted. The scores tend to be better over humid climates than over arid-to-semiarid climates. Compared to the arid-semiarid climate, the humid climate has a higher probability of detection and less false alarms. The ranges of the skill scores are similar to those found over the United States, suggesting that proper choice of parameterizations lead to no loss of performance of the model. Daily mean, minimum and maximum forecast temperatures are highly correlated with observations up to 7 day lead time. The best performance is for daily mean temperature, followed by minimum temperature and a slightly weaker performance for maximum temperature over arid regions. The usefulness of WRF products for hydroclimate monitoring was tested for an unprecedented drought in southern Brazil and for a slightly above normal precipitation season in northeastern Argentina. In both cases the model products reproduce the observed precipitation conditions with consistent impacts on soil moisture, evapotranspiration and runoff. This evaluation validates the model's usefulness to fore-cast weather up to one week and to monitor climate conditions in real time. The scores suggest that the forecast lead-time can be extended into week two, while bias correction methods can reduce part of the systematic errors.
The Pacific Northwest's Climate Impacts Group: Climate Science in the Public Interest
NASA Astrophysics Data System (ADS)
Mantua, N.; Snover, A.
2006-12-01
Since its inception in 1995, the University of Washington's Climate Impacts Group (CIG) (funded under NOAA's Regional Integrated Science and Assessments (RISA) Program) has become the leader in exploring the impacts of climate variability and climate change on natural and human systems in the U.S. Pacific Northwest (PNW), specifically climate impacts on water, forest, fish and coastal resource systems. The CIG's research provides PNW planners, decision makers, resource managers, local media, and the general public with valuable knowledge of ways in which the region's key natural resources are vulnerable to changes in climate, and how this vulnerability can be reduced. The CIG engages in climate science in the public interest, conducting original research on the causes and consequences of climate variability and change for the PNW and developing forecasts and decision support tools to support the use of this information in federal, state, local, tribal, and private sector resource management decisions. The CIG's focus on the intersection of climate science and public policy has placed the CIG nationally at the forefront of regional climate impacts assessment and integrated analysis.
Developing A Positive School Climate. Newsletter
ERIC Educational Resources Information Center
Center for Comprehensive School Reform and Improvement, 2009
2009-01-01
Decades of research support the role of a positive school climate on teaching and learning. This newsletter takes a look at the topic of school climate and sets out to determine: (1) What is school climate? (2) How can schools assess their school climate? (3) What are some practical examples of how schools are assessing school climate? and (4)…
Knowing climate change, embodying climate praxis: experiential knowledge in southern Appalachia
Jennifer L. Rice; Brian J. Burke; Nik Heynen
2015-01-01
Whether used to support or impede action, scientific knowledge is now, more than ever, the primary framework for political discourse on climate change. As a consequence, science has become a hegemonic way of knowing climate change by mainstream climate politics, which not only limits the actors and actions deemed legitimate in climate politics but also silences...
NASA Astrophysics Data System (ADS)
Gauchat, Gordon
2018-06-01
Those who distrust climate scientists are more likely to be skeptical of climate change and reluctant to support mitigation policies. Now research shows that scientific interest in early adolescence is associated with increased trust in climate scientists in adulthood irrespective of political ideology.
Providing the Larger Climate Context During Extreme Weather - Lessons from Local Television News
NASA Astrophysics Data System (ADS)
Woods, M.; Cullen, H. M.
2015-12-01
Local television weathercasters, in their role as Station Scientists, are often called upon to educate viewers about the science and impacts of climate change. Climate Central supports these efforts through its Climate Matters program. Launched in 2010 with support from the National Science Foundation, the program has grown into a network that includes more than 245 weathercasters from across the country and provides localized information on climate and ready-to-use, broadcast quality graphics and analyses in both English and Spanish. This presentation will focus on discussing best practices for integrating climate science into the local weather forecast as well as advances in the science of extreme event attribution. The Chief Meteorologist at News10 (Sacramento, CA) will discuss local news coverage of the ongoing California drought, extreme weather and climate literacy.
NASA Astrophysics Data System (ADS)
Forsythe, N. D.; Fowler, H.; Pritchard, D.
2016-12-01
High mountain Asia (HMA) constitutes one the key "water towers of the world", giving rise to river basins whose resources support hundreds of millions of people. This area will experience rapid demographic growth and socio-economic development for the next few decades compounding pressure on resource managements systems from inevitable climate change. In order to develop climate services to support water resources planning and facilitate adaptive capacity building, it is essential to critically characterise the skill and biases of the evaluation (reanalysis-driven) and control (historical period) components of presently available regional climate model (RCM) experiments. For mountain regions in particular, the ability of RCMs to reasonably reproduce the influence of complex topography, through lapse rates and orographic forcing, on sub-regional climate - notably temperature and precipitation - must be assessed in detail. HMA falls within the South Asia domain of the Coordinated Regional Downscaling Experiment (CORDEX) initiative. Multiple international modelling centres have contributed RCM experiments for the CORDEX South Asia domain. This substantial multi-model ensemble provides a valuable opportunity to explore the spread in model skill at simulation of key characteristics of the present HMA climate. This study focuses geographically on the northwest Upper Indus basin (NW UIB) which covers the bulk of the Karakoram range. Within this subdomain we use climatologies derived from local observations and meteorological reanalyses (ERA-Interim, NASA MERRA-2, HAR)as benchmarks for inter-comparison of individual CORDEX South Asia ensemble members skill in reproducing seasonality and spatial gradients (orographic precipitation profile, temperature lapse rates). Validation of individual CORDEX South Asia ensemble members to this level of detail is indispensable because discontinuities - e.g. differences in latent heat regimes (fusion versus vaporisation) - abound in mountain environments. These discontinuities may undermine widely used statistical approaches (e.g. change factors) used for downscaling and bias correction of future climate projections to locally observed conditions.
Kesorn, Kraisak; Ongruk, Phatsavee; Chompoosri, Jakkrawarn; Phumee, Atchara; Thavara, Usavadee; Tawatsin, Apiwat; Siriyasatien, Padet
2015-01-01
Background In the past few decades, several researchers have proposed highly accurate prediction models that have typically relied on climate parameters. However, climate factors can be unreliable and can lower the effectiveness of prediction when they are applied in locations where climate factors do not differ significantly. The purpose of this study was to improve a dengue surveillance system in areas with similar climate by exploiting the infection rate in the Aedes aegypti mosquito and using the support vector machine (SVM) technique for forecasting the dengue morbidity rate. Methods and Findings Areas with high incidence of dengue outbreaks in central Thailand were studied. The proposed framework consisted of the following three major parts: 1) data integration, 2) model construction, and 3) model evaluation. We discovered that the Ae. aegypti female and larvae mosquito infection rates were significantly positively associated with the morbidity rate. Thus, the increasing infection rate of female mosquitoes and larvae led to a higher number of dengue cases, and the prediction performance increased when those predictors were integrated into a predictive model. In this research, we applied the SVM with the radial basis function (RBF) kernel to forecast the high morbidity rate and take precautions to prevent the development of pervasive dengue epidemics. The experimental results showed that the introduced parameters significantly increased the prediction accuracy to 88.37% when used on the test set data, and these parameters led to the highest performance compared to state-of-the-art forecasting models. Conclusions The infection rates of the Ae. aegypti female mosquitoes and larvae improved the morbidity rate forecasting efficiency better than the climate parameters used in classical frameworks. We demonstrated that the SVM-R-based model has high generalization performance and obtained the highest prediction performance compared to classical models as measured by the accuracy, sensitivity, specificity, and mean absolute error (MAE). PMID:25961289
Climate Change Impacts on Crop Production in Nigeria
NASA Astrophysics Data System (ADS)
Mereu, V.; Gallo, A.; Carboni, G.; Spano, D.
2011-12-01
The agricultural sector in Nigeria is particularly important for the country's food security, natural resources, and growth agenda. The cultivable areas comprise more than 70% of the total area; however, the cultivated area is about the 35% of the total area. The most important components in the food basket of the nation are cereals and tubers, which include rice, maize, corn, millet, sorghum, yam, and cassava. These crops represent about 80% of the total agricultural product in Nigeria (from NPAFS). The major crops grown in the country can be divided into food crops (produced for consumption) and export products. Despite the importance of the export crops, the primary policy of agriculture is to make Nigeria self-sufficient in its food and fiber requirements. The projected impacts of future climate change on agriculture and water resources are expected to be adverse and extensive in these area. This implies the need for actions and measures to adapt to climate change impacts, and especially as they affect agriculture, the primary sector for Nigerian economy. In the framework of the Project Climate Risk Analysis in Nigeria (founded by World Bank Contract n.7157826), a study was made to assess the potential impact of climate change on the main crops that characterize Nigerian agriculture. The DSSAT-CSM (Decision Support System for Agrotechnology Transfer - Cropping System Model) software, version 4.5 was used for the analysis. Crop simulation models included in DSSAT are tools that simulate physiological processes of crop growth, development and production by combining genetic crop characteristics and environmental (soil and weather) conditions. For each selected crop, the models were calibrated to evaluate climate change impacts on crop production. The climate data used for the analysis are derived by the Regional Circulation Model COSMO-CLM, from 1971 to 2065, at 8 km of spatial resolution. The RCM model output was "perturbed" with 10 Global Climate Models to have a wide variety of possible climate projections for the impact analysis. Multiple combinations of soil and climate conditions and crop management and varieties were considered for each Agro-Ecological Zone (AEZ) of Nigeria. A sensitivity analysis was made to evaluate the model response to changes in precipitation and temperature. The climate impact assessment was made by comparing the yield obtained with the climate data for the present period and the yield obtainable under future climate conditions. The results were analyzed at state, AEZ and country levels. The analysis shows a general reduction in crop yields in particular in the dryer regions of northern Nigeria.
Assessment of flood risk in Tokyo metropolitan area
NASA Astrophysics Data System (ADS)
Hirano, J.; Dairaku, K.
2013-12-01
Flood is one of the most significant natural hazards in Japan. The Tokyo metropolitan area has been affected by several large flood disasters. Therefore, investigating potential flood risk in Tokyo metropolitan area is important for development of adaptation strategy for future climate change. We aim to develop a method for evaluating flood risk in Tokyo Metropolitan area by considering effect of historical land use and land cover change, socio-economic change, and climatic change. Ministry of land, infrastructure, transport and tourism in Japan published 'Statistics of flood', which contains data for flood causes, number of damaged houses, area of wetted surface, and total amount of damage for each flood at small municipal level. By using these flood data, we estimated damage by inundation inside a levee for each prefecture based on a statistical method. On the basis of estimated damage, we developed flood risk curves in the Tokyo metropolitan area, representing relationship between damage and exceedance probability of flood for the period 1976-2008 for each prefecture. Based on the flood risk curve, we attempted evaluate potential flood risk in the Tokyo metropolitan area and clarify the cause for regional difference of flood risk. By analyzing flood risk curves, we found out regional differences of flood risk. We identified high flood risk in Tokyo and Saitama prefecture. On the other hand, flood risk was relatively low in Ibaraki and Chiba prefecture. We found that these regional differences of flood risk can be attributed to spatial distribution of entire property value and ratio of damaged housing units in each prefecture.We also attempted to evaluate influence of climate change on potential flood risk by considering variation of precipitation amount and precipitation intensity in the Tokyo metropolitan area. Results shows that we can evaluate potential impact of precipitation change on flood risk with high accuracy by using our methodology. Acknowledgments This study is conducted as part of the research subject "Vulnerability and Adaptation to Climate Change in Water Hazard Assessed Using Regional Climate Scenarios in the Tokyo Region' (National Research Institute for Earth Science and Disaster Prevention; PI: Koji Dairaku) of Research Program on Climate Change Adaptation (RECCA) and was supported by the SOUSEI Program, funded by Ministry of Education, Culture, Sports, Science and Technology, Government of Japan
NASA Astrophysics Data System (ADS)
Lucas, S. E.
2016-12-01
The Climate Variability & Predictability (CVP) Program supports research aimed at providing process-level understanding of the climate system through observation, modeling, analysis, and field studies. This vital knowledge is needed to improve climate models and predictions so that scientists can better anticipate the impacts of future climate variability and change. To achieve its mission, the CVP Program supports research carried out at NOAA and other federal laboratories, NOAA Cooperative Institutes, and academic institutions. The Program also coordinates its sponsored projects with major national and international scientific bodies including the World Climate Research Programme (WCRP), the International and U.S. Climate Variability and Predictability (CLIVAR/US CLIVAR) Program, and the U.S. Global Change Research Program (USGCRP). The CVP program sits within NOAA's Climate Program Office (http://cpo.noaa.gov/CVP). This poster will present the recently funded CVP projects on improving the understanding Atlantic Meridional Overturning Circulation (AMOC), its impact on decadal predictability, and its relationship with the overall climate system.
Evaluation of climatic changes in South-Asia
NASA Astrophysics Data System (ADS)
Kjellstrom, Erik; Rana, Arun; Grigory, Nikulin; Renate, Wilcke; Hansson, Ulf; Kolax, Michael
2016-04-01
Literature has sufficient evidences of climate change impact all over the world and its impact on various sectors. In light of new advancements made in climate modeling, availability of several climate downscaling approaches, the more robust bias correction methods with varying complexities and strengths, in the present study we performed a systematic evaluation of climate change impact over South-Asia region. We have used different Regional Climate Models (RCMs) (from CORDEX domain), (Global Climate Models GCMs) and gridded observations for the study area to evaluate the models in historical/control period (1980-2010) and changes in future period (2010-2099). Firstly, GCMs and RCMs are evaluated against the Gridded observational datasets in the area using precipitation and temperature as indicative variables. Observational dataset are also evaluated against the reliable set of observational dataset, as pointed in literature. Bias, Correlation, and changes (among other statistical measures) are calculated for the entire region and both the variables. Eventually, the region was sub-divided into various smaller domains based on homogenous precipitation zones to evaluate the average changes over time period. Spatial and temporal changes for the region are then finally calculated to evaluate the future changes in the region. Future changes are calculated for 2 Representative Concentration Pathways (RCPs), the middle emission (RCP4.5) and high emission (RCP8.5) and for both climatic variables, precipitation and temperature. Lastly, Evaluation of Extremes is performed based on precipitation and temperature based indices for whole region in future dataset. Results have indicated that the whole study region is under extreme stress in future climate scenarios for both climatic variables i.e. precipitation and temperature. Precipitation variability is dependent on the location in the area leading to droughts and floods in various regions in future. Temperature is hinting towards a constant increase throughout the region regardless of location.
Translating Climate Projections for Bridge Engineering
NASA Astrophysics Data System (ADS)
Anderson, C.; Takle, E. S.; Krajewski, W.; Mantilla, R.; Quintero, F.
2015-12-01
A bridge vulnerability pilot study was conducted by Iowa Department of Transportation (IADOT) as one of nineteen pilots supported by the Federal Highway Administration Climate Change Resilience Pilots. Our pilot study team consisted of the IADOT senior bridge engineer who is the preliminary design section leader as well as climate and hydrological scientists. The pilot project culminated in a visual graphic designed by the bridge engineer (Figure 1), and an evaluation framework for bridge engineering design. The framework has four stages. The first two stages evaluate the spatial and temporal resolution needed in climate projection data in order to be suitable for input to a hydrology model. The framework separates streamflow simulation error into errors from the streamflow model and from the coarseness of input weather data series. In the final two stages, the framework evaluates credibility of climate projection streamflow simulations. Using an empirically downscaled data set, projection streamflow is generated. Error is computed in two time frames: the training period of the empirical downscaling methodology, and an out-of-sample period. If large errors in projection streamflow were observed during the training period, it would indicate low accuracy and, therefore, low credibility. If large errors in streamflow were observed during the out-of-sample period, it would mean the approach may not include some causes of change and, therefore, the climate projections would have limited credibility for setting expectations for changes. We address uncertainty with confidence intervals on quantiles of streamflow discharge. The results show the 95% confidence intervals have significant overlap. Nevertheless, the use of confidence intervals enabled engineering judgement. In our discussions, we noted the consistency in direction of change across basins, though the flood mechanism was different across basins, and the high bound of bridge lifetime period quantiles exceeded that of the historical period. This suggested the change was not isolated, and it systemically altered the risk profile. One suggestion to incorporate engineering judgement was to consider degrees of vulnerability using the median discharge of the historical period and the upper bound discharge for the bridge lifetime period.
The World Climate Exercise: Is (Simulated) Experience Our Best Teacher?
NASA Astrophysics Data System (ADS)
Rath, K.; Rooney-varga, J. N.; Jones, A.; Johnston, E.; Sterman, J.
2015-12-01
Meeting the challenge of climate change will clearly require 'deep learning' - learning that motivates a search for underlying meaning, a willingness to exert the sustained effort needed to understand complex problems, and innovative problem-solving. This type of learning is dependent on the level of the learner's engagement with the material, their intrinsic motivation to learn, intention to understand, and relevance of the material to the learner. Here, we present evidence for deep learning about climate change through a simulation-based role-playing exercise, World Climate. The exercise puts participants into the roles of delegates to the United Nations climate negotiations and asks them to create an international climate deal. They find out the implications of their decisions, according to the best available science, through the same decision-support computer simulation used to provide feedback for the real-world negotiations, C-ROADS. World Climate provides an opportunity for participants have an immersive, social experience in which they learn first-hand about both the social dynamics of climate change decision-making, through role-play, and the dynamics of the climate system, through an interactive computer simulation. Evaluation results so far have shown that the exercise is highly engaging and memorable and that it motivates large majorities of participants (>70%) to take action on climate change. In addition, we have found that it leads to substantial gains in understanding key systems thinking concepts (e.g., the stock-flow behavior of atmospheric CO2), as well as improvements in understanding of climate change causes and impacts. While research is still needed to better understand the impacts of simulation-based role-playing exercises like World Climate on behavior change, long-term understanding, transfer of systems thinking skills across topics, and the importance of social learning during the exercise, our results to date indicate that it is a powerful, active learning tool that has strong potential to foster deep learning about climate change.
NASA Astrophysics Data System (ADS)
Harjanne, Atte; Haavisto, Riina; Tuomenvirta, Heikki; Gregow, Hilppa
2017-10-01
Weather, climate and climate change can cause significant risks to businesses and public administration. However, understanding these processes can also create opportunities. Information can help to manage these risks and opportunities, but in order to do so, it must be in line with how risk management and decision making works. To better understand how climate risks and opportunities are reflected in different organizational processes and what types of information is needed and used, we conducted a study on the perceptions and management of weather and climate risks in Finnish organizations and on their use of weather and climate information. In addition, we collected feedback on how the existing climate information tools should be developed. Data on climate risk management was collected in an online survey and in one full-day workshop. The survey was aimed to the Finnish public and private organizations who use weather and climate data and altogether 118 responses were collected. The workshop consisted of two parts: weather and climate risk management processes in general and the development of the current information tools to further address user needs.
We found that climate risk management in organizations is quite diverse and often de-centralized and that external experts are considered the most useful sources of information. Consequently, users emphasize the need for networks of expertise and sector-specific information tools. Creating such services requires input and information sharing from the user side as well. Better temporal and spatial accuracy is naturally asked for, but users also stressed the need for transparency when it comes to communicating uncertainties, and the availability and up-to-datedness of information. Our results illustrate that weather and climate risks compete and blend in with other risks and changes perceived by the organizations and supporting information is sought from different types of sources. Thus the design and evaluation of climate services should take into account the context of existing and developing processes in organizational risk management.
Comparative study on Climate Change Policies in the EU and China
NASA Astrophysics Data System (ADS)
Bray, M.; Han, D.
2012-04-01
Both the EU and China are among the largest CO2 emitters in the world; their climate actions and policies have profound impacts on global climate change and may influence the activities in other countries. Evidence of climate change has been observed across Europe and China. Despite the many differences between the two regions, the European Commission and Chinese government support climate change actions. The EU has three priority areas in climate change: 1) understanding, monitoring and predicting climate change and its impact; 2) providing tools to analyse the effectiveness, cost and benefits of different policy options for mitigating climate change and adapting to its impacts; 3) improving, demonstrating and deploying existing climate friendly technologies and developing the technologies of the future. China is very vulnerable to climate change, because of its vast population, fast economic development, and fragile ecological environment. The priority policies in China are: 1) Carbon Trading Policy; 2) Financing Loan Policy (Special Funds for Renewable Energy Development); 3) Energy Efficiency Labelling Policy; 4) Subsidy Policy. In addition, China has formulated the "Energy Conservation Law", "Renewable Energy Law", "Cleaner Production Promotion Law" and "Circular Economy Promotion Law". Under the present EU Framework Programme FP7 there is a large number of funded research activities linked to climate change research. Current climate change research projects concentrate on the carbon cycle, water quality and availability, climate change predictors, predicting future climate and understanding past climates. Climate change-related scientific and technological projects in China are mostly carried out through national scientific and technological research programs. Areas under investigation include projections and impact of global climate change, the future trends of living environment change in China, countermeasures and supporting technologies of global environment change, formation mechanism and prediction theory of major climate and weather disasters in China, technologies of efficient use of clean energy, energy conservation and improvement of energy efficiency, development and utilisation technology of renewable energy and new energy. The EU recognises that developing countries, such as China and India, need to strengthen their economies through industrialisation. However this needs to be achieved at the same time as protecting the environment and sustainable use of energy. The EU has committed itself to assisting developing countries to achieve their goals in four priority areas: 1) raising the policy profile of climate change; 2) support for adaption to climate change; 3) support for mitigation of climate change; and 4) capacity development. This comparative study is part of the EU funded SPRING project which seeks to understand and assess Chinese and European competencies, with the aim of facilitating greater cooperation in future climate and environment research.
NASA Astrophysics Data System (ADS)
Lee, H.
2016-12-01
Precipitation is one of the most important climate variables that are taken into account in studying regional climate. Nevertheless, how precipitation will respond to a changing climate and even its mean state in the current climate are not well represented in regional climate models (RCMs). Hence, comprehensive and mathematically rigorous methodologies to evaluate precipitation and related variables in multiple RCMs are required. The main objective of the current study is to evaluate the joint variability of climate variables related to model performance in simulating precipitation and condense multiple evaluation metrics into a single summary score. We use multi-objective optimization, a mathematical process that provides a set of optimal tradeoff solutions based on a range of evaluation metrics, to characterize the joint representation of precipitation, cloudiness and insolation in RCMs participating in the North American Regional Climate Change Assessment Program (NARCCAP) and Coordinated Regional Climate Downscaling Experiment-North America (CORDEX-NA). We also leverage ground observations, NASA satellite data and the Regional Climate Model Evaluation System (RCMES). Overall, the quantitative comparison of joint probability density functions between the three variables indicates that performance of each model differs markedly between sub-regions and also shows strong seasonal dependence. Because of the large variability across the models, it is important to evaluate models systematically and make future projections using only models showing relatively good performance. Our results indicate that the optimized multi-model ensemble always shows better performance than the arithmetic ensemble mean and may guide reliable future projections.
NASA Astrophysics Data System (ADS)
Donner, S. D.; Webber, S.
2011-12-01
Climate change is expected to have the greatest impact in parts of the developing world. At the 2010 meeting of U.N. Framework Convention on Climate Change in Cancun, industrialized countries agreed in principle to provide US$100 billion per year by 2020 to assist the developing world respond to climate change. This "Green Climate Fund" is a critical step towards addressing the challenge of climate change. However, the policy and discourse on supporting adaptation in the developing world remains highly idealized. For example, the efficacy of "no regrets" adaptation efforts or "mainstreaming" adaptation into decision-making are rarely evaluated in the real world. In this presentation, I will discuss the gap between adaptation theory and practice using a multi-year case study of the cultural, social and scientific obstacles to adapting to sea level rise in the Pacific atoll nation of Kiribati. Our field research reveals how scientific and institutional uncertainty can limit international efforts to fund adaptation and lead to spiraling costs. Scientific uncertainty about hyper-local impacts of sea level rise, though irreducible, can at times limit decision-making about adaptation measures, contrary to the notion that "good" decision-making practices can incorporate scientific uncertainty. Efforts to improve institutional capacity must be done carefully, or they risk inadvertently slowing the implementation of adaptation measures and increasing the likelihood of "mal"-adaptation.
Nolan, Bernard T; Dubus, Igor G; Surdyk, Nicolas; Fowler, Hayley J; Burton, Aidan; Hollis, John M; Reichenberger, Stefan; Jarvis, Nicholas J
2008-09-01
Key climatic factors influencing the transport of pesticides to drains and to depth were identified. Climatic characteristics such as the timing of rainfall in relation to pesticide application may be more critical than average annual temperature and rainfall. The fate of three pesticides was simulated in nine contrasting soil types for two seasons, five application dates and six synthetic weather data series using the MACRO model, and predicted cumulative pesticide loads were analysed using statistical methods. Classification trees and Pearson correlations indicated that simulated losses in excess of 75th percentile values (0.046 mg m(-2) for leaching, 0.042 mg m(-2) for drainage) generally occurred with large rainfall events following autumn application on clay soils, for both leaching and drainage scenarios. The amount and timing of winter rainfall were important factors, whatever the application period, and these interacted strongly with soil texture and pesticide mobility and persistence. Winter rainfall primarily influenced losses of less mobile and more persistent compounds, while short-term rainfall and temperature controlled leaching of the more mobile pesticides. Numerous climatic characteristics influenced pesticide loss, including the amount of precipitation as well as the timing of rainfall and extreme events in relation to application date. Information regarding the relative influence of the climatic characteristics evaluated here can support the development of a climatic zonation for European-scale risk assessment for pesticide fate.
Ranabhat, Sunita; Ghate, Rucha; Bhatta, Laxmi Dutt; Agrawal, Nand Kishor; Tankha, Sunil
2018-06-01
Least Developed Countries are likely to be hit the hardest by climate change and need focused efforts towards adaptation. Nepal recognizes that it needs to integrate climate change adaptation into various policies, but limited understanding of how to make these policies coherent is among the factors that hinder effective adaptation action. This can lead to wasted resources and lost opportunities. This paper applies concepts from policy coherence for development frameworks and policy content analysis to examine coherence in Nepal's climate and forest policies-and discusses the factors hindering effective implementation. The policies are analyzed at the horizontal/external level at three layers-motivation, measures, and planned implementation process. The paper finds that policies are more consistent on motivation level and adaptation measures, but are less coherent on implementation. The National Adaptation Programme of Action (NAPA) is more explicit in identifying institutions, organizations, roles and responsibilities, resource allocation (financial), and a monitoring and evaluation plan for climate change adaptation while other policies such as Climate Change Policy 2011, National Biodiversity Strategy and Action Plan 2014-2020, Forest Policy 2015, and Forest Sector Strategy 2016 have critical gaps in this area. This paper conclude that formulation of a policy, articulating targets, and mobilizing financial resources are in themselves not sufficient to effectively address climate change adaptation. Policy-based legislation is required, together with development of a supportive collaborative multi-stakeholder approach at different levels of governance, backed up by effective, collaborative monitoring and enforcement.
Ensembles-based predictions of climate change impacts on bioclimatic zones in Northeast Asia
NASA Astrophysics Data System (ADS)
Choi, Y.; Jeon, S. W.; Lim, C. H.; Ryu, J.
2017-12-01
Biodiversity is rapidly declining globally and efforts are needed to mitigate this continually increasing loss of species. Clustering of areas with similar habitats can be used to prioritize protected areas and distribute resources for the conservation of species, selection of representative sample areas for research, and evaluation of impacts due to environmental changes. In this study, Northeast Asia (NEA) was classified into 14 bioclimatic zones using statistical techniques, which are correlation analysis and principal component analysis (PCA), and the iterative self-organizing data analysis technique algorithm (ISODATA). Based on these bioclimatic classification, we predicted shift of bioclimatic zones due to climate change. The input variables include the current climatic data (1960-1990) and the future climatic data of the HadGEM2-AO model (RCP 4.5(2050, 2070) and 8.5(2050, 2070)) provided by WorldClim. Using these data, multi-modeling methods including maximum likelihood classification, random forest, and species distribution modelling have been used to project the impact of climate change on the spatial distribution of bioclimatic zones within NEA. The results of various models were compared and analyzed by overlapping each result. As the result, significant changes in bioclimatic conditions can be expected throughout the NEA by 2050s and 2070s. The overall zones moved upward and some zones were predicted to disappear. This analysis provides the basis for understanding potential impacts of climate change on biodiversity and ecosystem. Also, this could be used more effectively to support decision making on climate change adaptation.
NASA Astrophysics Data System (ADS)
Ranabhat, Sunita; Ghate, Rucha; Bhatta, Laxmi Dutt; Agrawal, Nand Kishor; Tankha, Sunil
2018-06-01
Least Developed Countries are likely to be hit the hardest by climate change and need focused efforts towards adaptation. Nepal recognizes that it needs to integrate climate change adaptation into various policies, but limited understanding of how to make these policies coherent is among the factors that hinder effective adaptation action. This can lead to wasted resources and lost opportunities. This paper applies concepts from policy coherence for development frameworks and policy content analysis to examine coherence in Nepal's climate and forest policies—and discusses the factors hindering effective implementation. The policies are analyzed at the horizontal/external level at three layers—motivation, measures, and planned implementation process. The paper finds that policies are more consistent on motivation level and adaptation measures, but are less coherent on implementation. The National Adaptation Programme of Action (NAPA) is more explicit in identifying institutions, organizations, roles and responsibilities, resource allocation (financial), and a monitoring and evaluation plan for climate change adaptation while other policies such as Climate Change Policy 2011, National Biodiversity Strategy and Action Plan 2014-2020, Forest Policy 2015, and Forest Sector Strategy 2016 have critical gaps in this area. This paper conclude that formulation of a policy, articulating targets, and mobilizing financial resources are in themselves not sufficient to effectively address climate change adaptation. Policy-based legislation is required, together with development of a supportive collaborative multi-stakeholder approach at different levels of governance, backed up by effective, collaborative monitoring and enforcement.
Zhou, Ping; Bai, Fei; Tang, Hui-qin; Bai, Jie; Li, Min-qi; Xue, Di
2018-01-01
Objective This study analysed differences in the perceived patient safety climate among different working departments and job types in public general hospitals in China. Design Cross-sectional survey. Setting Eighteen tertiary hospitals and 36 secondary hospitals from 10 areas in Shanghai, Hubei Province and Gansu Province, China. Participants Overall, 4753 staff, including physicians, nurses, medical technicians and managers, were recruited from March to June 2015. Main outcome measure The Patient Safety Climate in Healthcare Organisations (PSCHO) tool and the percentages of ‘problematic responses’ (PPRs) were used as outcome measures. Multivariable two-level random intercept models were applied in the analysis. Results A total of 4121 valid questionnaires were collected. Perceptions regarding the patient safety climate varied among departments and job types. Physicians responded with relatively more negative evaluations of ‘organisational resources for safety’, ‘unit recognition and support for safety efforts’, ‘psychological safety’, ‘problem responsiveness’ and overall safety climate. Paediatrics departments, intensive care units, emergency departments and clinical auxiliary departments require more attention. The PPRs for ‘fear of blame and punishment’ were universally significantly high, and the PPRs for ‘fear of shame’ and ‘provision of safe care’ were remarkably high, especially in some departments. Departmental differences across all dimensions and the overall safety climate primarily depended on job type. Conclusions The differences suggest that strategies and measures for improving the patient safety climate should be tailored by working department and job type. PMID:29666125
Assessing the Added Value of Dynamical Downscaling in the Context of Hydrologic Implication
NASA Astrophysics Data System (ADS)
Lu, M.; IM, E. S.; Lee, M. H.
2017-12-01
There is a scientific consensus that high-resolution climate simulations downscaled by Regional Climate Models (RCMs) can provide valuable refined information over the target region. However, a significant body of hydrologic impact assessment has been performing using the climate information provided by Global Climate Models (GCMs) in spite of a fundamental spatial scale gap. It is probably based on the assumption that the substantial biases and spatial scale gap from GCMs raw data can be simply removed by applying the statistical bias correction and spatial disaggregation. Indeed, many previous studies argue that the benefit of dynamical downscaling using RCMs is minimal when linking climate data with the hydrological model, from the comparison of the impact between bias-corrected GCMs and bias-corrected RCMs on hydrologic simulations. It may be true for long-term averaged climatological pattern, but it is not necessarily the case when looking into variability across various temporal spectrum. In this study, we investigate the added value of dynamical downscaling focusing on the performance in capturing climate variability. For doing this, we evaluate the performance of the distributed hydrological model over the Korean river basin using the raw output from GCM and RCM, and bias-corrected output from GCM and RCM. The impacts of climate input data on streamflow simulation are comprehensively analyzed. [Acknowledgements]This research is supported by the Korea Agency for Infrastructure Technology Advancement (KAIA) grant funded by the Ministry of Land, Infrastructure and Transport (Grant 17AWMP-B083066-04).
Impacts of Climate Change on Ecosystem Services
USDA-ARS?s Scientific Manuscript database
Ecosystems, and the biodiversity and services they support, are intrinsically dependent on climate. During the twentieth century, climate change has had documented impacts on ecological systems, and impacts are expected to increase as climate change continues and perhaps even accelerates. This techn...
Madrigal-González, Jaime; Ballesteros-Cánovas, Juan A; Herrero, Asier; Ruiz-Benito, Paloma; Stoffel, Markus; Lucas-Borja, Manuel E; Andivia, Enrique; Sancho-García, Cesar; Zavala, Miguel A
2017-12-20
The North Atlantic Oscillation (NAO) depicts annual and decadal oscillatory modes of variability responsible for dry spells over the European continent. The NAO therefore holds a great potential to evaluate the role, as carbon sinks, of water-limited forests under climate change. However, uncertainties related to inconsistent responses of long-term forest productivity to NAO have so far hampered firm conclusions on its impacts. We hypothesize that, in part, such inconsistencies might have their origin in periodical sea surface temperature anomalies in the Atlantic Ocean (i.e., Atlantic Multidecadal Oscillation, AMO). Here we show strong empirical evidence in support of this hypothesis using 120 years of periodical inventory data from Iberian pine forests. Our results point to AMO + NAO + and AMO - NAO - phases as being critical for forest productivity, likely due to decreased winter water balance and abnormally low winter temperatures, respectively. Our findings could be essential for the evaluation of ecosystem functioning vulnerabilities associated with increased climatic anomalies under unprecedented warming conditions in the Mediterranean.
NASA Astrophysics Data System (ADS)
Samantha, Mosier; Jonathan, Fisk
2013-05-01
Previous research on voluntary environmental programs (VEPs) frequently assesses the effectiveness of federal, state, and third party programs and why organizations seek to join such programs. Yet, research has yet to evaluate the effectiveness or firm motivation relative to local VEPs. Recognizing this gap, our paper examines the structure and organization of Fort Collins' Climate Wise program, a local VEP. Using a variety of sources, we find that the program has successfully met both short- and long-term goals by persistently self-evaluating and seeking outside financial support. Findings from this analysis can aid in understanding and developing local VEPs elsewhere. Specifically, this initial research suggests that local VEPs need to consider local context and available resources when implementing such programs. Furthermore, it is possible for local VEPs to attract a diverse variety of participating firms by avoiding one-size-fits-all participation levels and by establishing a sense of ownership among partners.
Mosier, Samantha; Samantha, Mosier; Fisk, Jonathan; Jonathan, Fisk
2013-05-01
Previous research on voluntary environmental programs (VEPs) frequently assesses the effectiveness of federal, state, and third party programs and why organizations seek to join such programs. Yet, research has yet to evaluate the effectiveness or firm motivation relative to local VEPs. Recognizing this gap, our paper examines the structure and organization of Fort Collins' Climate Wise program, a local VEP. Using a variety of sources, we find that the program has successfully met both short- and long-term goals by persistently self-evaluating and seeking outside financial support. Findings from this analysis can aid in understanding and developing local VEPs elsewhere. Specifically, this initial research suggests that local VEPs need to consider local context and available resources when implementing such programs. Furthermore, it is possible for local VEPs to attract a diverse variety of participating firms by avoiding one-size-fits-all participation levels and by establishing a sense of ownership among partners.
NASA Astrophysics Data System (ADS)
Gold, A. U.; Sullivan, S. B.; Smith, L. K.; Lynds, S. E.
2014-12-01
The need for robust scientific and especially climate literacy is increasing. Funding agencies mandate that scientists make their findings and data publically available. Ideally, this mandate is achieved by scientists and educators working together to translate research findings into common knowledge. The Cooperative Institute for Research in Environmental Sciences (CIRES) is the largest research institute at the University of Colorado and home institute to over 500 scientists. CIRES provides an effective organizational infrastructure to support its scientists in broadening their research impact. Education specialists provide the necessary experience, connections, logistical support, and evaluation expertise to develop and conduct impactful education and outreach efforts. Outreach efforts are tailored to the project needs and the scientists' interests. They span from deep engagement efforts with a high time commitment by the scientist thus a high dosage to short presentations by the scientists that reach many people without stimulating a deep engagement and have therefore a low dosage. We use three examples of current successful programs to showcase these different engagement levels and report on their impact: i) deep transformative and time-intensive engagement through a Research Experience for Community College students program, ii) direct engagement during a teacher professional development workshop centered around a newly developed curriculum bringing authentic climate data into secondary classrooms, iii) short-time engagement through a virtual panel discussion about the state of recent climate science topics, the recordings of which were repurposed in a Massive Open Online Course (MOOC). In this presentation, we discuss the challenges and opportunities of broader impacts work. We discuss successful strategies that we developed, stress the importance of robust impact evaluation, and summarize different avenues of funding outreach efforts.
NASA Astrophysics Data System (ADS)
Kao, S. C.; Shi, X.; Kumar, J.; Ricciuto, D. M.; Mao, J.; Thornton, P. E.
2017-12-01
With the concern of changing hydrologic regime, there is a crucial need to better understand how water availability may change and influence water management decisions in the projected future climate conditions. Despite that surface hydrology has long been simulated by land model within the Earth System modeling (ESM) framework, given the coarser horizontal resolution and lack of engineering-level calibration, raw runoff from ESM is generally discarded by water resource managers when conducting hydro-climate impact assessments. To identify a likely path to improve the credibility of ESM-simulated natural runoff, we conducted regional model simulation using the land component (ALM) of the Accelerated Climate Modeling for Energy (ACME) version 1 focusing on the conterminous United States (CONUS). Two very different forcing data sets, including (1) the conventional 0.5° CRUNCEP (v5, 1901-2013) and (2) the 1-km Daymet (v3, 1980-2013) aggregated to 0.5°, were used to conduct 20th century transient simulation with satellite phenology. Additional meteorologic and hydrologic observations, including PRISM precipitation and U.S. Geological Survey WaterWatch runoff, were used for model evaluation. For various CONUS hydrologic regions (such as Pacific Northwest), we found that Daymet can significantly improve the reasonableness of simulated ALM runoff even without intensive calibration. The large dry bias of CRUNCEP precipitation (evaluated by PRISM) in multiple CONUS hydrologic regions is believed to be the main reason causing runoff underestimation. The results suggest that when driving with skillful precipitation estimates, ESM has the ability to produce reasonable natural runoff estimates to support further water management studies. Nevertheless, model calibration will be required for regions (such as Upper Colorado) where ill performance is showed for multiple different forcings.
Zweber, Zandra M; Henning, Robert A; Magley, Vicki J; Faghri, Pouran
2015-01-01
One potential way that healthy organizations can impact employee health is by promoting a climate for health within the organization. Using a definition of health climate that includes support for health from multiple levels within the organization, this study examines whether all three facets of health climate--the workgroup, supervisor, and organization--work together to contribute to employee well-being. Two samples are used in this study to examine health climate at the individual level and group level in order to provide a clearer picture of the impact of the three health climate facets. k-means cluster analysis was used on each sample to determine groups of individuals based on their levels of the three health climate facets. A discriminant function analysis was then run on each sample to determine if clusters differed on a function of employee well-being variables. Results provide evidence that having strength in all three of the facets is the most beneficial in terms of employee well-being at work. Findings from this study suggest that organizations must consider how health is treated within workgroups, how supervisors support employee health, and what the organization does to support employee health when promoting employee health.
NASA Astrophysics Data System (ADS)
Martin, A. M.; Barnes, M. H.; Chambers, L. H.; Pippin, M. R.
2011-12-01
As part of NASA's Minority University Research and Education Program (MUREP), the NASA Innovations in Climate Education (NICE) project at Langley Research Center has funded 71 climate education initiatives since 2008. The funded initiatives span across the nation and contribute to the development of a climate-literate public and the preparation of a climate-related STEM workforce through research experiences, professional development opportunities, development of data access and modeling tools, and educational opportunities in both K-12 and higher education. Each of the funded projects proposes and carries out its own evaluation plan, in collaboration with external or internal evaluation experts. Using this portfolio as an exemplar case, NICE has undertaken a systematic meta-evaluation of these plans, focused primarily on evaluation questions, approaches, and methods. This meta-evaluation study seeks to understand the range of evaluations represented in the NICE portfolio, including descriptive information (what evaluations, questions, designs, approaches, and methods are applied?) and questions of value (do these evaluations meet the needs of projects and their staff, and of NASA/NICE?). In the current climate, as federal funders of climate change and STEM education projects seek to better understand and incorporate evaluation into their decisions, evaluators and project leaders are also seeking to build robust understanding of program effectiveness. Meta-evaluations like this provide some baseline understanding of the current status quo and the kinds of evaluations carried out within such funding portfolios. These explorations are needed to understand the common ground between evaluative best practices, limited resources, and agencies' desires, capacity, and requirements. When NASA asks for evaluation of funded projects, what happens? Which questions are asked and answered, using which tools? To what extent do the evaluations meet the needs of projects and program officers? How do they contribute to best practices in climate science education? These questions are important to ask about STEM and climate literacy work more generally; the NICE portfolio provides a broad test case for thinking strategically, critically, and progressively about evaluation in our community. Our findings can inform the STEM education, communication, and public outreach communities, and prompt us to consider a broad range of informative evaluation options. During this presentation, we will consider the breadth, depth and utility of evaluations conducted through a NASA climate education funding opportunity. We will examine the relationship between what we want to know about education programs, what we want to achieve with our interventions, and what we ask in our evaluations.
NASA Astrophysics Data System (ADS)
Martin, A. M.; Barnes, M. H.; Chambers, L. H.; Pippin, M. R.
2013-12-01
As part of NASA's Minority University Research and Education Program (MUREP), the NASA Innovations in Climate Education (NICE) project at Langley Research Center has funded 71 climate education initiatives since 2008. The funded initiatives span across the nation and contribute to the development of a climate-literate public and the preparation of a climate-related STEM workforce through research experiences, professional development opportunities, development of data access and modeling tools, and educational opportunities in both K-12 and higher education. Each of the funded projects proposes and carries out its own evaluation plan, in collaboration with external or internal evaluation experts. Using this portfolio as an exemplar case, NICE has undertaken a systematic meta-evaluation of these plans, focused primarily on evaluation questions, approaches, and methods. This meta-evaluation study seeks to understand the range of evaluations represented in the NICE portfolio, including descriptive information (what evaluations, questions, designs, approaches, and methods are applied?) and questions of value (do these evaluations meet the needs of projects and their staff, and of NASA/NICE?). In the current climate, as federal funders of climate change and STEM education projects seek to better understand and incorporate evaluation into their decisions, evaluators and project leaders are also seeking to build robust understanding of program effectiveness. Meta-evaluations like this provide some baseline understanding of the current status quo and the kinds of evaluations carried out within such funding portfolios. These explorations are needed to understand the common ground between evaluative best practices, limited resources, and agencies' desires, capacity, and requirements. When NASA asks for evaluation of funded projects, what happens? Which questions are asked and answered, using which tools? To what extent do the evaluations meet the needs of projects and program officers? How do they contribute to best practices in climate science education? These questions are important to ask about STEM and climate literacy work more generally; the NICE portfolio provides a broad test case for thinking strategically, critically, and progressively about evaluation in our community. Our findings can inform the STEM education, communication, and public outreach communities, and prompt us to consider a broad range of informative evaluation options. During this presentation, we will consider the breadth, depth and utility of evaluations conducted through a NASA climate education funding opportunity. We will examine the relationship between what we want to know about education programs, what we want to achieve with our interventions, and what we ask in our evaluations.
Argumentation Key to Communicating Climate Change to the Public
NASA Astrophysics Data System (ADS)
Bleicher, R. E.; Lambert, J. L.
2012-12-01
Argumentation plays an important role in how we communicate climate change science to the public and is a key component integrated throughout the Next Generation Science Standards. A scientific argument can be described as a disagreement between explanations with data being used to justify each position. Argumentation is social process where two or more individuals construct and critique arguments (Kuhn & Udell, 2003; Nussbaum, 1997). Sampson, Grooms, and Walker's (2011) developed a framework for understanding the components of a scientific argument. The three components start with a claim (a conjecture, conclusion, explanation, or an answer to a research question). This claim must fit the evidence (observations that show trends over time, relationships between variables or difference between groups). The evidence must be justified with reasoning (explains how the evidence supports the explanation and whey it should count as support). In a scientific argument, or debate, the controversy focuses on how data were collected, what data can or should be included, and what inferences can be made based on a set of evidence. Toulmin's model (1969) also includes rebutting or presenting an alternative explanation supported by counter evidence and reasoning of why the alternative is not the appropriate explanation for the question of the problem. The process of scientific argumentation should involve the construction and critique of scientific arguments, one that involves the consideration of alternative hypotheses (Lawson, 2003). Scientific literacy depends as much on the ability to refute and recognize poor scientific arguments as much as it does on the ability to present an effective argument based on good scientific data (Osborne, 2010). Argument is, therefore, a core feature of science. When students learn to construct a sound scientific argument, they demonstrate critical thinking and a mastery of the science being taught. To present a convincing argument in support of climate change, students must have a sound foundation in the science underlying it. One place to lay this foundation is in the high school science classroom. For students to gain a good conceptual understanding of climate change science, teachers need a sound understanding of climate change and effective resources to teach it to students. Teacher professional development opportunities are required to provide this background as well as establish collaborative curriculum planning opportunities on the school site (Shulman, 2007). Various strategies for and challenges of implementing argumentation with preservice and practicing teachers will be discussed in this session, as well as ways that argumentation skills can help the broader public evaluate claims of climate skeptics. In the field of argumentation theory, Goodwin (2010) has designed a strategy for developing the ability to make effective scientific arguments. The goal is to establish trust even when there is strong disagreement. At the core, a student fully acknowledges the uncertainty involved in the complex science underlying climate change. This has the effect of establishing some degree of trust. In other words, teachers or students trying to explain climate change to others might be perceived as more trustworthy if they openly declare that there are degrees of uncertainty in different aspects of climate change science (American Meteorological Society, 2011).
DeBono, Roberto; Vincenti, Karen; Calleja, Neville
2012-02-01
Scientific evidence shows that climate change is very likely the product of human behaviour and lifestyle. The effects of climate change on human health are diverse in nature and range from direct effects due to extreme weather events such as heat waves, floods and storms, to indirect effects such as those caused by water and food shortages. A telephone survey was conducted between January and February 2009, on a stratified representative random sample of the Maltese population over the age of 18 years (N = 310,819). Five hundred and forty-three individuals successfully participated in the survey giving a response rate of 92.7%. The respondent sample was very similar to the target population by gender (P = 0.977), age (P = 0.767) and district (P = 0.812). The results of the study demonstrate a very strong relationship between the perception of climate change as a threat to health and well-being, support for climate change mitigation policy and a willingness to implement measures to address climate change. The findings of this study show that the perception that climate change may claim lives, cause disease, reduce the standard of living and worsen water shortages, may be the strongest driver behind support for climate change mitigation policy and a willingness to act. It is recommended that, in order to gain more public support, climate change campaigns and risk communication strategies should frame climate change as a threat to human health and general well-being.
Endemism hotspots are linked to stable climatic refugia.
Harrison, Susan; Noss, Reed
2017-01-01
Centres of endemism have received much attention from evolutionists, biogeographers, ecologists and conservationists. Climatic stability is often cited as a major reason for the occurrences of these geographic concentrations of species which are not found anywhere else. The proposed linkage between endemism and climatic stability raises unanswered questions about the persistence of biodiversity during the present era of rapidly changing climate. The current status of evidence linking geographic centres of endemism to climatic stability over evolutionary time was examined. The following questions were asked. Do macroecological analyses support such an endemism-stability linkage? Do comparative studies find that endemic species display traits reflecting evolution in stable climates? Will centres of endemism in microrefugia or macrorefugia remain relatively stable and capable of supporting high biological diversity into the future? What are the implications of the endemism-stability linkage for conservation? Recent work using the concept of climate change velocity supports the classic idea that centres of endemism occur where past climatic fluctuations have been mild and where mountainous topography or favourable ocean currents contribute to creating refugia. Our knowledge of trait differences between narrow endemics and more widely distributed species remains highly incomplete. Current knowledge suggests that centres of endemism will remain relatively climatically buffered in the future, with the important caveat that absolute levels of climatic change and species losses in these regions may still be large. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Manley, J.; Chegwidden, D.; Mote, A. S.; Ledley, T. S.; Lynds, S. E.; Haddad, N.; Ellins, K.
2016-02-01
EarthLabs, envisioned as a national model for high school Earth or Environmental Science lab courses, is adaptable for both undergraduate middle school students. The collection includes ten online modules that combine to feature a global view of our planet as a dynamic, interconnected system, by engaging learners in extended investigations. EarthLabs support state and national guidelines, including the NGSS, for science content. Four modules directly guide students to discover vital aspects of the oceans while five other modules incorporate ocean sciences in order to complete an understanding of Earth's climate system. Students gain a broad perspective on the key role oceans play in fishing industry, droughts, coral reefs, hurricanes, the carbon cycle, as well as life on land and in the seas to drive our changing climate by interacting with scientific research data, manipulating satellite imagery, numerical data, computer visualizations, experiments, and video tutorials. Students explore Earth system processes and build quantitative skills that enable them to objectively evaluate scientific findings for themselves as they move through ordered sequences that guide the learning. As a robust collection, EarthLabs modules engage students in extended, rigorous investigations allowing a deeper understanding of the ocean, climate and weather. This presentation provides an overview of the ten curriculum modules that comprise the EarthLabs collection developed by TERC and found at http://serc.carleton.edu/earthlabs/index.html. Evaluation data on the effectiveness and use in secondary education classrooms will be summarized.
NASA Astrophysics Data System (ADS)
Guy, Breonte Stephan
The scant literature on persistence of African American males in science typically takes a deficits-based approach to encapsulate the myriad reasons this population is so often underrepresented. Scientist Identity, Mentoring, and Campus Climate have, individually, been found to be related to the persistence of African American students. However, the unified impact of these three variables on the persistence of African American students with science interests has not been evaluated, and the relationship between the variables, the students' gender, and markers of academic achievement have not been previously investigated. The current study takes a strengths-based approach to evaluating the relationship between Scientist Identity, Mentoring, and Campus climate with a population of African American students with science interests who were studying at six Minority Serving Institutions and Predominantly White Institutions in the Southern United States. Multiple regression analyses were conducted to determine the impact of Scientist Identity, Mentoring, and Campus Climate on Intention to Persist of African American males. The results indicate that Scientist Identity predicts Intention to Persist, and that gender, academic performance, and institution type moderate the relationship between Scientist Identity and Intention to Persist. These results lend credence to the emerging notion that, for African American men studying science, generating a greater depth and breadth of understanding of the factors that lead to persistence will aid in the development of best practices for supporting persistence among this perpetually underrepresented population.
Effective Teacher Practice on the Plausibility of Human-Induced Climate Change
NASA Astrophysics Data System (ADS)
Niepold, F.; Sinatra, G. M.; Lombardi, D.
2013-12-01
Climate change education programs in the United States seek to promote a deeper understanding of the science of climate change, behavior change and stewardship, and support informed decision making by individuals, organizations, and institutions--all of which are summarized under the term 'climate literacy.' The ultimate goal of climate literacy is to enable actors to address climate change, both in terms of stabilizing and reducing emissions of greenhouse gases, but also an increased capacity to prepare for the consequences and opportunities of climate change. However, the long-term nature of climate change and the required societal response involve the changing students' ideas about controversial scientific issues which presents unique challenges for educators (Lombardi & Sinatra, 2010; Sinatra & Mason, 2008). This session will explore how the United States educational efforts focus on three distinct, but related, areas: the science of climate change, the human-climate interaction, and using climate education to promote informed decision making. Each of these approaches are represented in the Atlas of Science Literacy (American Association for the Advancement of Science, 2007) and in the conceptual framework for science education developed at the National Research Council (NRC) in 2012. Instruction to develop these fundamental thinking skills (e.g., critical evaluation and plausibility reappraisal) has been called for by the Next Generation Science Standards (NGSS) (Achieve, 2013), an innovative and research based way to address climate change education within the decentralized U.S. education system. However, the promise of the NGSS is that students will have more time to build mastery on the subjects, but the form of that instructional practice has been show to be critical. Research has show that effective instructional activities that promote evaluation of evidence improve students' understanding and acceptance toward the scientifically accepted model of human-induced climate change (Lombardi, Sinatra, & Nussbaum, 2013). This study and many others show the critical role instructional practice plays in the development of a climate literate nation. Climate change communication faces many challenges, but federal agencies, civil society, and individuals have invested in numerous initiatives to develop a climate-literate citizenry. In the NRC Report America's Climate Choices the authors find that 'climate change is difficult to understand by its very nature,' however, 'education and communication are among the most powerful tools the nation has to bring hidden hazards to public attention, understanding, and action.' This session will explore how the federal science mission agencies and their partners are working to harness these tools and use the best available research to develop programs and partnership that build on the promise of the NGSS. When citizens have knowledge of the causes, likelihood, and severity of climate impacts, as well as of the range, cost, and efficacy of options to adapt to impacts, they are more prepared to effectively address the risks and opportunities
A mathematical model for the Andean Tiwanaku civilization collapse: climate variations.
Flores, J C; Bologna, Mauro; Urzagasti, Deterlino
2011-12-21
We propose a mathematical nonlinear model for the Tiwanaku civilization collapse based on the assumption, supported by archeological data, that a drought caused a lack of the main resource, water. We evaluate the parameter of our model using archaeological data. According to our numerical simulation the population core should have decreased from 45,000 to 2000 inhabitants due to lake surface contraction. Copyright © 2011 Elsevier Ltd. All rights reserved.
2010-09-30
and climate forecasting and use of satellite data assimilation for model evaluation. He is a task leader on another NSF_EPSCoR project for the...1 DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited. Data Analysis, Modeling, and Ensemble Forecasting to...observations including remotely sensed data . OBJECTIVES The main objectives of the study are: 1) to further develop, test, and continue twice daily
Projecting Future Water Levels of the Laurentian Great Lakes
NASA Astrophysics Data System (ADS)
Bennington, V.; Notaro, M.; Holman, K.
2013-12-01
The Laurentian Great Lakes are the largest freshwater system on Earth, containing 84% of North America's freshwater. The lakes are a valuable economic and recreational resource, valued at over 62 billion in annual wages and supporting a 7 billion fishery. Shipping, recreation, and coastal property values are significantly impacted by water level variability, with large economic consequences. Great Lakes water levels fluctuate both seasonally and long-term, responding to natural and anthropogenic climate changes. Due to the integrated nature of water levels, a prolonged small change in any one of the net basin supply components: over-lake precipitation, watershed runoff, or evaporation from the lake surface, may result in important trends in water levels. We utilize the Abdus Salam International Centre for Theoretical Physics's Regional Climate Model Version 4.5.6 to dynamically downscale three global global climate models that represent a spread of potential future climate change for the region to determine whether the climate models suggest a robust response of the Laurentian Great Lakes to anthropogenic climate change. The Model for Interdisciplinary Research on Climate Version 5 (MIROC5), the National Centre for Meteorological Research Earth system model (CNRM-CM5), and the Community Climate System Model Version 4 (CCSM4) project different regional temperature increases and precipitation change over the next century and are used as lateral boundary conditions. We simulate the historical (1980-2000) and late-century periods (2080-2100). Upon model evaluation we will present dynamically downscaled projections of net basin supply changes for each of the Laurentian Great Lakes.
NASA Astrophysics Data System (ADS)
Cullen, H. M.; Maibach, E.
2016-12-01
Most Americans view climate change as a threat that is distant in space (i.e., not here), time (i.e., not now), and species (i.e., not us). TV weathercasters are ideally positioned to educate Americans about the current and projected impacts of climate change in their community: they have tremendous reach, are trusted sources of climate information, and are highly skilled science communicators. In 2009, we learned that many weathercasters were potentially interested in reporting on climate change, but few actually were, citing significant barriers including a lack of time to prepare and air stories, and lack of access to high quality content. To test the premise that TV weathercasters can be effective climate educators - if supported with high quality localized climate communication content - in 2010 George Mason University, Climate Central and WLTX-TV (Columbia, SC) developed and pilot-tested Climate Matters, a series of short on-air (and online) segments about the local impacts of climate change, delivered by the station's chief meteorologist. During the first year, more than a dozen stories aired. To formally evaluate Climate Matters, we conducted pre- and post-test surveys of local TV news viewers in Columbia. After one year, WLTX viewers had developed a more science-based understanding of climate change than viewers of other local news stations, confirming our premise that when TV weathercasters report on the local implications of climate change, their viewers learn. Through a series of expansions, including the addition of important new partners - AMS, NASA, NOAA & Yale University - Climate Matters has become a comprehensive nationwide climate communication resource program for American TV weathercasters. As of March 2016, a network of 313 local weathercasters nationwide (at 202 stations in 111 media markets) are participating in the program, receiving new content on a weekly basis. This presentation will review the theoretical basis of the program, detail its development and national scale-up, and conclude with insights for how to develop climate communication initiatives for other professional communities of practice in the U.S. and other countries.
Building Training Curricula for Accelerating the Use of NOAA Climate Products and Tools
NASA Astrophysics Data System (ADS)
Timofeyeva-Livezey, M. M.; Meyers, J. C.; Stevermer, A.; Abshire, W. E.; Beller-Simms, N.; Herring, D.
2016-12-01
The National Oceanic and Atmospheric Administration (NOAA) plays a leading role in U.S. intergovernmental efforts on the Climate Data Initiative and the Climate Resilience Toolkit (CRT). CRT (http://toolkit.climate.gov/) is a valuable resource that provides tools, information, and subject matter expertise to decision makers in various sectors, such as agriculture, water resources and transportation, to help them build resilience to our changing climate. In order to make best use of the toolkit and all the resources within it, a training component is critical. The training section helps building users' understanding of the data, science, and impacts of climate variability and change. CRT identifies five steps in building resilience that includes use of appropriate tools to support decision makers depending on their needs. One tool that can be potentially integrated into CRT is NOAA's Local Climate Analysis Tool (LCAT), which provides access to trusted NOAA data and scientifically-sound analysis techniques for doing regional and local climate studies on climate variability and climate change. However, in order for LCAT to be used effectively, we have found an iterative learning approach using specific examples to train users. For example, for LCAT application in analysis of water resources, we use existing CRT case studies for Arizona and Florida water supply users. The Florida example demonstrates primary sensitivity to climate variability impacts, whereas the Arizona example takes into account longer- term climate change. The types of analyses included in LCAT are time series analysis of local climate and the estimated rate of change in the local climate. It also provides a composite analysis to evaluate the relationship between local climate and climate variability events such as El Niño Southern Oscillation, the Pacific North American Index, and other modes of climate variability. This paper will describe the development of a training module for use of LCAT and its integration into CRT. An iterative approach was used that incorporates specific examples of decision making while working with subject matter experts within the water supply community. The recommended strategy is to use a "stepping stone" learning structure to build users knowledge of best practices for use of LCAT.
Annual Proxy Records from Tropical Cloud Forest Trees in the Monteverde Cloud Forest, Costa Rica
NASA Astrophysics Data System (ADS)
Anchukaitis, K. J.; Evans, M. N.; Wheelwright, N. T.; Schrag, D. P.
2005-12-01
The extinction of the Golden Toad (Bufo periglenes) from Costa Rica's Monteverde Cloud Forest prompted research into the causes of ecological change in the montane forests of Costa Rica. Subsequent analysis of meteorological data has suggested that warmer global surface and tropical Pacific sea surface temperatures contribute to an observed decrease in cloud cover at Monteverde. However, while recent studies may have concluded that climate change is already having an effect on cloud forest environments in Costa Rica, without the context provided by long-term climate records, it is difficult to confidently conclude that the observed ecological changes are the result of anthropogenic climate forcing, land clearance in the lowland rainforest, or natural variability in tropical climate. To address this, we develop high-resolution proxy paleoclimate records from trees without annual rings in the Monteverde Cloud Forest in Costa Rica. Calibration of an age model in these trees is a fundamental prerequisite for proxy paleoclimate reconstructions. Our approach exploits the isotopic seasonality in the δ18O of water sources (fog versus rainfall) used by trees over the course of a single year. Ocotea tenera individuals of known age and measured annual growth increments were sampled in long-term monitored plantation sites in order to test this proposed age model. High-resolution (200μm increments) stable isotope measurements on cellulose reveal distinct, coherent δ18O cycles of 6 to 10‰. The calculated growth rates derived from the isotope timeseries match those observed from basal growth increment measurements. Spatial fidelity in the age model and climate signal is examined by using multiple cores from multiple trees and multiple sites. These data support our hypothesis that annual isotope cycles in these trees can be used to provide chronological control in the absence of rings. The ability of trees to record interannual climate variability in local hydrometeorology and remote climate forcing is evaluated using the isotope signal from multiple trees, local meteorological observations, and climate field data for the well-observed 1997-1998 warm El Niño-Southern Oscillation (ENSO) event. The successful calibration of our age model is a necessary step toward the development of long, annually-resolved paleoclimate reconstructions from old trees, even without rings, which will be used to evaluate the cause of recent observed climate change at Monteverde and as proxies for tropical climate field reconstructions.
NASA Astrophysics Data System (ADS)
Galos, Borbala; Hänsler, Andreas; Gulyas, Krisztina; Bidlo, Andras; Czimber, Kornel
2014-05-01
Climate change is expected to have severe impacts in the forestry sector, especially in low-elevation regions in Southeast Europe, where forests are vulnerable and sensitive to the increasing probability and severity of climatic extremes, especially to droughts. For providing information about the most important regional and local risks and mitigation options for the Carpathian basin, a GIS-supported Decision Support System is under development. This study focuses on the future tendencies of climate indicators that determine the distribution, growth, health status and production of forests as well as the potential pests and diseases. For the analyses the climate database of the Decision Support System has been applied, which contains daily time series for precipitation and temperature means and extremes as well as derived climate indices for 1961-2100. For the future time period, simulation results of 12 regional climate models are included (www.ensembles-eu.org) based on the A1B emission scenario. The main results can be summarized as follows: · The projected change of the climate indices (e.g. total number of hot days, frost days, dry days, consecutive dry periods) and forestry indices (e.g. Ellenberg climate quotient, Forestry aridity index; Tolerance index for beech) indicates the warming and drying of the growing season towards the end of the 21st century. These can have severe consequences on the ecosystem services of forests. · The climatic suitable area of the native tree species is projected to move northwards and upwards in the mountains, respectively. For beech (Fagus sylvatica L.) this shift would mean the drastic shrink of the distribution area in the analyzed region. · The characteristic climate conditions that are expected in the Carpathian basin in the second half of the century, are now located southeastern from the case study region. In this way, the potential future provenance regions can be determined. Results provide input for the climate impact analyses and build an important basis of the future adaptation strategies in forestry, agriculture and water management. Funding: The research is supported by the TÁMOP-4.2.2.A-11/1/KONV-2012-0013 and TÁMOP-4.1.1.C-12/1/KONV-2012-0012 (ZENFE) joint EU-national research projects. Keywords: climate indices, climate change impacts, forestry, regional climate modelling
Wardekker, J A; Wildschut, D; Stemberger, S; van der Sluijs, J P
2016-01-01
Freshwater systems provide various resources and services. These are often vulnerable to climate change and other pressures. Therefore, enhancing resilience to climate change is important for their long term viability. This paper explores how management options can be evaluated on their resilience implications. The approach included five steps: (1) characterizing the system, (2) characterizing the impacts of climate change and other disturbances, (3) inventorying management options, (4) assessing the impacts of these on climate resilience, and (5) follow-up analysis. For the resilience assessment, we used a set of 'resilience principles': homeostasis, omnivory, high flux, flatness, buffering, and redundancy. We applied the approach in a case study in a Dutch wetlands region. Many options in the region's management plan contribute to resilience, however, the plan underutilised several principles, particularly flatness, but also redundancy and omnivory for agriculture, and high flux for nature. Co-benefits was identified as an important additional criterion to obtain support for adaptation from local stakeholders, such as farmers. The approach provided a relatively quick and participatory way to screen options. It allowed us to consider multiple impacts and sectors, multiple dimensions of resilience, and stakeholder perspectives. The results can be used to identify gaps or pitfalls, and set priorities for follow-up analyses.
NASA Astrophysics Data System (ADS)
Nunes, João Pedro; Pulquério, Mário; Grosso, Nuno; Duarte Santos, Filipe; João Cruz, Maria
2015-04-01
The Tagus river basin is located in a transitional region between humid and semi-arid climate. The lower part of the basin is a strategic source of water for Portugal, providing water for agricultural irrigation, hydropower generation, and domestic water supplies for over 4 million people. Climate change in this region is expected to lead to higher temperatures and lower rainfall, therefore increasing climatic aridity. In this transitional region, this could lead to an increased frequency of severe droughts, threatening climatic support for current agricultural and forestry practices, as well as the sustainability of domestic water supplies. This work evaluated the impacts of climate change on drought frequency and severity for the Portuguese part of the Tagus river basin. Climate change scenarios for 2010-2100 (A2 greenhouse emission scenarios) were statistically downscaled for the study area. They were evaluated with the Soil and Water Assessment Tool (SWAT) eco-hydrological model, which simulated vegetation water demand and drought stress, soil water availability, irrigation abstraction, streamflow, reservoir storage and groundwater recharge. Water inflows from Spain were estimated using an empirical climate-based model. Drought occurrence and severity was analyzed in terms of: * meteorological drought, based on (i) the Standardized Precipitation Index and (ii) the Aridity Index; * vegetation/agricultural drought, based on plant water stress; * hydrological drought, based on (i) streamflow rates and (ii) reservoir storage; * socio-economic drought, based on (i) the capacity of the main reservoir in the system (Castelo de Bode) to sustain hydropower and domestic supplies, and (ii) the rate of groundwater extraction vs. irrigation demands for the cultures located in the intensive cultivation regions of the Lezírias near the Tagus estuary. The results indicate a trend of increasing frequency and severity of most drought types during the XXIst century, with a noticeable increase in the latter decades. The exceptions are agricultural droughts for annual crops, which appear to benefit from a milder and rainier winter; and domestic water supplies, which are not threatened in any scenario as long as they are prioritized over other water uses.
Evaluation of Projected Agricultural Climate Risk over the Contiguous US
NASA Astrophysics Data System (ADS)
Zhu, X.; Troy, T. J.; Devineni, N.
2017-12-01
Food demands are rising due to an increasing population with changing food preferences, which places pressure on agricultural production. Additionally, climate extremes have recently highlighted the vulnerability of our agricultural system to climate variability. This study seeks to fill two important gaps in current knowledge: how does the widespread response of irrigated crops differ from rainfed and how can we best account for uncertainty in yield responses. We developed a stochastic approach to evaluate climate risk quantitatively to better understand the historical impacts of climate change and estimate the future impacts it may bring about to agricultural system. Our model consists of Bayesian regression, distribution fitting, and Monte Carlo simulation to simulate rainfed and irrigated crop yields at the US county level. The model was fit using historical data for 1970-2010 and was then applied over different climate regions in the contiguous US using the CMIP5 climate projections. The relative importance of many major growing season climate indices, such as consecutive dry days without rainfall or heavy precipitation, was evaluated to determine what climate indices play a role in affecting future crop yields. The statistical modeling framework also evaluated the impact of irrigation by using county-level irrigated and rainfed yields separately. Furthermore, the projected years with negative yield anomalies were specifically evaluated in terms of magnitude, trend and potential climate drivers. This framework provides estimates of the agricultural climate risk for the 21st century that account for the full uncertainty of climate occurrences, range of crop response, and spatial correlation in climate. The results of this study can contribute to decision making about crop choice and water use in an uncertain future climate.
Alternative Evaluation Designs for Data-Centered Technology-Based Geoscience Education Projects
NASA Astrophysics Data System (ADS)
Zalles, D. R.
2012-12-01
This paper will present different strategies for how to evaluate contrasting K-12 geoscience classroom-based interventions with different goals, leveraging the first author's experiences as principal investigator of four NSF and NASA-funded geoscience education projects. Results will also be reported. Each project had its own distinctive features but all had in common the broad goal of bringing to high school classrooms uses of real place-based geospatial data to study the relationships of Earth system phenomena to climate change and sustainability. The first project's goal was to produce templates and exemplars for curriculum and assessment designs around studying contrasting geoscience topics with different data sets and forms of data representation. The project produced a near transfer performance assessment task in which students who studied climate trends in Phoenix turned their attention to climate in Chicago. The evaluation looked at the technical quality of the assessment instrument as measured by inter-rater reliability. It then analyzed the assessment results against student responses to the instructional tasks about Phoenix. The evaluation proved useful in pinpointing areas of student strength and weakness on different inquiry tasks, from simple map interpretation to analysis of contrasting claims about what the data indicate. The goal of the second project was to produce an exemplar curriculum unit that bridges Western science and traditional American Indian ecological knowledge for student learning and skill building about local environmental sustainability issues. The evaluation looked at the extent to which Western and traditional perspectives were incorporated into the design of the curriculum. The curriculum was not constructed with a separate assessment, yet evidence centered design was utilized to extrapolate from the exemplar unit templates for future instructional and assessment tasks around other places, other sustainability problems, and other repositories of traditional ecological knowledge. The goals of the two other projects, in progress, are to build forms of support and access by teachers to complex scientific geospatial data sets concerning climate change and a myriad of related Earth system phenomena for which measurements are available from different government agencies such as NASA, NCAR, and the USGS. The driving philosophy of these projects has been that teachers are more likely to use these powerful resources when provided with curricula and educative supports, yet have the option of implementing the curricula as written, adapting the curricula, or developing their own curricula provided that they on at least some of the data about the local region. These projects are being evaluated on the extent to which this model of flexible implementation is bearing fruit in teacher capacity building and student learning outcomes. Hence, teachers are being provided with a set of pre post assessment options that they can choose from, including for example selected response items on Earth system variables of their choice, map interpretation items, and open-ended constructed response items about the weather, climate, and ecosystem concepts that they select to focus on with their students. Teacher capacity building is being measured through oral and written documentation of the teachers' evolving learning about the data resources and evolving decision-making about how to use the resources.
The Impact of Market Orientation on Patient Safety Climate Among Hospital Nurses.
Weng, Rhay-Hung; Chen, Jung-Chien; Pong, Li-Jung; Chen, Li-Mei; Lin, Tzu-Chi
2016-03-01
Improving market orientation and patient safety have become the key concerns of nursing management. For nurses, establishing a patient safety climate is the key to enhancing nursing quality. This study explores how market orientation affects the climate of patient safety among hospital nurses. We proposed adopting a cross-sectional research design and using questionnaires to collect responses from nurses working in two Taiwanese hospitals. Three-hundred and forty-three valid samples were obtained. Multiple regression and path analyses were conducted to test the study. Market orientation was defined as the combination of customer orientation, competitor orientation, and interfunctional coordination. Customer orientation directly affects the climate of patient safety. Although the findings only supported Hypothesis 1, competitor orientation and interfunctional coordination positively affected the patient safety climate through the mediating effects of hospital support for staff. Health care managers could encourage nurses to adopt customer-oriented perspectives to enhance their nursing care. In addition, to enhance competitor orientation, interfunctional coordination, and the patient safety climate, hospital managers could strengthen their support for staff members. © The Author(s) 2014.
NASA Astrophysics Data System (ADS)
Funk, C. C.; Verdin, J.; Thiaw, W. M.; Hoell, A.; Korecha, D.; McNally, A.; Shukla, S.; Arsenault, K. R.; Magadzire, T.; Novella, N.; Peters-Lidard, C. D.; Robjohn, M.; Pomposi, C.; Galu, G.; Rowland, J.; Budde, M. E.; Landsfeld, M. F.; Harrison, L.; Davenport, F.; Husak, G. J.; Endalkachew, E.
2017-12-01
Drought early warning science, in support of famine prevention, is a rapidly advancing field that is helping to save lives and livelihoods. In 2015-2017, a series of extreme droughts afflicted Ethiopia, Southern Africa, Eastern Africa in OND and Eastern Africa in MAM, pushing more than 50 million people into severe food insecurity. Improved drought forecasts and monitoring tools, however, helped motivate and target large and effective humanitarian responses. Here we describe new science being developed by a long-established early warning system - the USAID Famine Early Warning Systems Network (FEWS NET). FEWS NET is a leading provider of early warning and analysis on food insecurity. FEWS NET research is advancing rapidly on several fronts, providing better climate forecasts and more effective drought monitoring tools that are being used to support enhanced famine early warning. We explore the philosophy and science underlying these successes, suggesting that a modal view of climate change can support enhanced seasonal prediction. Under this modal perspective, warming of the tropical oceans may interact with natural modes of variability, like the El Niño-Southern Oscillation, to enhance Indo-Pacific sea surface temperature gradients during both El Niño and La Niña-like climate states. Using empirical data and climate change simulations, we suggest that a sequence of droughts may commence in northern Ethiopia and Southern Africa with the advent of a moderate-to-strong El Niño, and then continue with La Niña/West Pacific related droughts in equatorial eastern East Africa. Scientifically, we show that a new hybrid statistical-dynamic precipitation forecast system, the FEWS NET Integrated Forecast System (FIFS), based on reformulations of the Global Ensemble Forecast System weather forecasts and National Multi-Model Ensemble (NMME) seasonal climate predictions, can effectively anticipate recent East and Southern African drought events. Using cross-validation, we evaluate FIFS' skill and compare it to the NMME and the International Research Institute forecasts. Our study concludes with an overview of the satellite observations provided by FEWS NET partners at NOAA, NASA, USGS, and UC Santa Barbara, and the assimilation of these products within the FEWS NET Land Data Assimilation System (FLDAS).
Authoritative school climate, number of parents at home, and academic achievement.
Huang, Francis L; Eklund, Katie; Cornell, Dewey G
2017-12-01
School climate is widely recognized as an important factor in promoting student academic achievement. The current study investigated the hypothesis that a demanding and supportive school climate, based on authoritative school climate theory, would serve as a protective factor for students living with 1 or no parents at home. Using a statewide sample of 56,508 middle school students from 415 public schools in 1 state, results indicated that student perceptions of disciplinary structure, academic demandingness, and student support all had positive associations with student self-reported grade point average (GPA). In addition, findings showed that academic expectations and student support were more highly associated with GPA for students not living with any parent. Implications for policy and practice are discussed. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
NASA Astrophysics Data System (ADS)
Weihs, R. R.
2013-12-01
A variety of Florida-focused climate change activities will be featured as part of the ASK Florida global and regional climate change professional development workshops. In a combined effort from Florida State University's Center for Ocean-Atmospheric Prediction Studies (COAPS) and University of South Florida's Coalition for Science Literacy (CSL), and supported by NASA's NICE initiative, the ASK Florida professional development workshops are a series of workshops designed to enhance and support climate change information and related pedagogical skills for middle school science teachers from Title-I schools in Florida. These workshops took place during a two-year period from 2011 to 2013 and consisted of two cohorts in Hillsborough and Volusia counties in Florida. Featured activities include lab-style exercises demonstrating topics such as storm surge and coastal geometry, sea level rise from thermal expansion, and the greenhouse effect. These types of labs are modified so that they allow more independent, inquiry thinking as they require teachers to design their own experiment in order to test a hypothesis. Lecture based activities are used to cover a broad range of topics including hurricanes, climate modeling, and sink holes. The more innovative activities are group activities that utilize roll-playing, technology and resources, and group discussion. For example, 'Climate Gallery Walk' is an activity that features group discussions on each of the climate literacy principles established by the United States Global Change Research Program. By observing discussions between individuals and groups, this activity helps the facilitators gather information on their previous knowledge and identify possible misconceptions that will be addressed within the workshops. Furthermore, 'Fact or Misconception' presents the challenge of identifying whether a given statement is fact or misconception based on the material covered throughout the workshops. It serves as a way to evaluate retention of knowledge as well as clarification and reinforcement of topics. Another featured activity is 'Climate Change Scenario' in which teachers roll play as groups from various facets of local government, who decide how to deal with a given climate change scenario in the Miami-Dade county area. This activity demonstrates the complexities of negotiations that policy makers must make for the greater good of the local economy and ecology. Finally, we highlight activities that utilize online resources for both scientific information and pedagogical strategies for teaching climate change at the middle school level. Such resources include MYNASADATA, hurricane tracking websites, other scientist-vetted climate change lessons, and outreach events like NOAA's Adopt-a-drifter. These activities are highlighted for other scientists, educators, and professional development groups in the hopes that they will inspire further collaboration and further commitment to enhancing climate change education for our nation's youth.
Climate-smart agriculture for food security
NASA Astrophysics Data System (ADS)
Lipper, Leslie; Thornton, Philip; Campbell, Bruce M.; Baedeker, Tobias; Braimoh, Ademola; Bwalya, Martin; Caron, Patrick; Cattaneo, Andrea; Garrity, Dennis; Henry, Kevin; Hottle, Ryan; Jackson, Louise; Jarvis, Andrew; Kossam, Fred; Mann, Wendy; McCarthy, Nancy; Meybeck, Alexandre; Neufeldt, Henry; Remington, Tom; Sen, Pham Thi; Sessa, Reuben; Shula, Reynolds; Tibu, Austin; Torquebiau, Emmanuel F.
2014-12-01
Climate-smart agriculture (CSA) is an approach for transforming and reorienting agricultural systems to support food security under the new realities of climate change. Widespread changes in rainfall and temperature patterns threaten agricultural production and increase the vulnerability of people dependent on agriculture for their livelihoods, which includes most of the world's poor. Climate change disrupts food markets, posing population-wide risks to food supply. Threats can be reduced by increasing the adaptive capacity of farmers as well as increasing resilience and resource use efficiency in agricultural production systems. CSA promotes coordinated actions by farmers, researchers, private sector, civil society and policymakers towards climate-resilient pathways through four main action areas: (1) building evidence; (2) increasing local institutional effectiveness; (3) fostering coherence between climate and agricultural policies; and (4) linking climate and agricultural financing. CSA differs from 'business-as-usual' approaches by emphasizing the capacity to implement flexible, context-specific solutions, supported by innovative policy and financing actions.
Regional climate response collaboratives: Multi-institutional support for climate resilience
Averyt, Kristen; Derner, Justin D.; Dilling, Lisa; Guerrero, Rafael; Joyce, Linda A.; McNeeley, Shannon; McNie, Elizabeth; Morisette, Jeffrey T.; Ojima, Dennis; O'Malley, Robin; Peck, Dannele; Ray, Andrea J.; Reeves, Matt; Travis, William
2018-01-01
Federal investments by U.S. agencies to enhance climate resilience at regional scales grew over the past decade (2010s). To maximize efficiency and effectiveness in serving multiple sectors and scales, it has become critical to leverage existing agency-specific research, infrastructure, and capacity while avoiding redundancy. We discuss lessons learned from a multi-institutional “regional climate response collaborative” that comprises three different federally-supported climate service entities in the Rocky Mountain west and northern plains region. These lessons include leveraging different strengths of each partner, creating deliberate mechanisms to increase cross-entity communication and joint ownership of projects, and placing a common priority on stakeholder-relevant research and outcomes. We share the conditions that fostered successful collaboration, which can be transferred elsewhere, and suggest mechanisms for overcoming potential barriers. Synergies are essential for producing actionable research that informs climate-related decisions for stakeholders and ultimately enhances climate resilience at regional scales.
Land Use Explains the Distribution of Threatened New World Amphibians Better than Climate
Brum, Fernanda Thiesen; Gonçalves, Larissa Oliveira; Cappelatti, Laura; Carlucci, Marcos Bergmann; Debastiani, Vanderlei Júlio; Salengue, Elisa Viana; dos Santos Seger, Guilherme Dubal; Both, Camila; Bernardo-Silva, Jorge Sebastião; Loyola, Rafael Dias; da Silva Duarte, Leandro
2013-01-01
Background We evaluated the direct and indirect influence of climate, land use, phylogenetic structure, species richness and endemism on the distribution of New World threatened amphibians. Methodology/Principal Findings We used the WWF’s New World ecoregions, the WWFs amphibian distributional data and the IUCN Red List Categories to obtain the number of threatened species per ecoregion. We analyzed three different scenarios urgent, moderate, and the most inclusive scenario. Using path analysis we evaluated the direct and indirect effects of climate, type of land use, phylogenetic structure, richness and endemism on the number of threatened amphibians in New World ecoregions. In all scenarios we found strong support for direct influences of endemism, the cover of villages and species richness on the number of threatened species in each ecoregion. The proportion of wild area had indirect effects in the moderate and the most inclusive scenario. Phylogenetic composition was important in determining the species richness and endemism in each ecoregion. Climate variables had complex and indirect effects on the number of threatened species. Conclusion/Significance Land use has a more direct influence than climate in determining the distribution of New World threatened amphibians. Independently of the scenario analyzed, the main variables influencing the distribution of threatened amphibians were consistent, with endemism having the largest magnitude path coefficient. The importance of phylogenetic composition could indicate that some clades may be more threatened than others, and their presence increases the number of threatened species. Our results highlight the importance of man-made land transformation, which is a local variable, as a critical factor underlying the distribution of threatened amphibians at a biogeographic scale. PMID:23637764
Baumann, Michael R; Vadeboncoeur, Tyler F; Schafermeyer, Robert W
2004-07-01
In May 2004, the Society for Academic Emergency Medicine (SAEM) National Affairs Committee was tasked with evaluation of graduate medical education (GME) funding in the face of declining Medicare reimbursement and support, and its implications for emergency medicine. This article was developed to educate the SAEM membership on the current status and climate of funding for GME and to serve as the basis of a position statement from SAEM on this topic. The paper presents the history and background on GME financing followed by currently known changes from the recently signed Medicare Act of 2003.
ERIC Educational Resources Information Center
Tonkin, Matthew; Howells, Kevin; Ferguson, Eamonn; Clark, Amanda; Newberry, Michelle; Schalast, Norbert
2012-01-01
The social climate of correctional (forensic) settings is likely to have a significant impact on the outcome of treatment and the overall functioning of these units. The Essen Climate Evaluation Schema (EssenCES) provides an objective way of measuring social climate that overcomes the content, length, and psychometric limitations of other…
Preparing Teachers to Support the Development of Climate Literate Students
NASA Astrophysics Data System (ADS)
Haddad, N.; Ledley, T. S.; Ellins, K. K.; Bardar, E. W.; Youngman, E.; Dunlap, C.; Lockwood, J.; Mote, A. S.; McNeal, K.; Libarkin, J. C.; Lynds, S. E.; Gold, A. U.
2014-12-01
The EarthLabs climate project includes curriculum development, teacher professional development, teacher leadership development, and research on student learning, all directed at increasing high school teachers' and students' understanding of the factors that shape our planet's climate. The project has developed four new modules which focus on climate literacy and which are part of the larger Web based EarthLabs collection of Earth science modules. Climate related themes highlighted in the new modules include the Earth system with its positive and negative feedback loops; the range of temporal and spatial scales at which climate, weather, and other Earth system processes occur; and the recurring question, "How do we know what we know about Earth's past and present climate?" which addresses proxy data and scientific instrumentation. EarthLabs climate modules use two central strategies to help students navigate the multiple challenges inherent in understanding climate science. The first is to actively engage students with the content by using a variety of learning modes, and by allowing students to pace themselves through interactive visualizations that address particularly challenging content. The second strategy, which is the focus of this presentation, is to support teachers in a subject area where few have substantive content knowledge or technical skills. Teachers who grasp the processes and interactions that give Earth its climate and the technical skills to engage with relevant data and visualizations are more likely to be successful in supporting students' understanding of climate's complexities. This presentation will briefly introduce the EarthLabs project and will describe the steps the project takes to prepare climate literate teachers, including Web based resources, teacher workshops, and the development of a cadre of teacher leaders who are prepared to continue leading the workshops after project funding ends.
Fostering Climate Change Literacy Through Rural-Urban Collaborations and GIS
NASA Astrophysics Data System (ADS)
Boger, R. A.; Low, R.; Gorokhovich, Y.; Mandryk, C.
2012-12-01
Three universities, University of Nebraska-Lincoln (UNL), Brooklyn College, and Lehman College, shared expertise and resources to expand the spectrum of climate change topics offered at these institutions. Through this collaboration, four independent but linked modules that incorporate geographic information systems (GIS) and remote sensing desktop and web-based tools and resources (e.g., NASA, NOAA, USGS, and a variety of universities and organizations) have been developed for use by instructors in all three institutions. Module 1 theme is an introduction to sustainability, climate, with an introduction to remote sensing and online GIS tools. The theme for Module 2 is water resources while Module 3 explores local meteorological data and global climate change models. The last module focuses on food production and independent research building on the urban farm movement in New York City and the agricultural stronghold of Nebraska. The hybrid online and face-face course, Global Climate Change, Food Security, and Local Sustainability, was piloted Fall 2012 in a jointly-taught course offered through UNL and Brooklyn College. The online portion was offered through the CAMEL Climate Change website to foster interactions between the rural Nebraska and urban New York City students. A major objective of the course materials is to foster rural-urban student exchanges while motivating students to make connections between climate change and the potential impacts on health, food, and water in their local communities, the nation and around the world. The research component of the project focuses on understanding the importance of spatial literacy in climate change understanding, and is supported by assessment instruments designed specifically for this course. In addition, the formal evaluation will determine whether our rural-urban, local-global approach will empower students to better understand the causes and impacts of climate change.
Garnier, Monica; Harper, David M; Blaskovicova, Lotta; Hancz, Gabriella; Janauer, Georg A; Jolánkai, Zsolt; Lanz, Eva; Lo Porto, Antonio; Mándoki, Monika; Pataki, Beata; Rahuel, Jean-Luc; Robinson, Victoria J; Stoate, Chris; Tóth, Eszter; Jolánkai, Géza
2015-08-01
There is general agreement among scientists that global temperatures are rising and will continue to increase in the future. It is also agreed that human activities are the most important causes of these climatic variations, and that water resources are already suffering and will continue to be greatly impaired as a consequence of these changes. In particular, it is probable that areas with limited water resources will expand and that an increase of global water demand will occur, estimated to be around 35-60% by 2025 as a consequence of population growth and the competing needs of water uses. This will cause a growing imbalance between water demand (including the needs of nature) and supply. This urgency demands that climate change impacts on water be evaluated in different sectors using a cross-cutting approach (Contestabile in Nat Clim Chang 3:11-12, 2013). These issues were examined by the EU FP7-funded Co-ordination and support action "ClimateWater" (bridging the gap between adaptation strategies of climate change impacts and European water policies). The project studied adaptation strategies to minimize the water-related consequences of climate change and assessed how these strategies should be taken into consideration by European policies. This article emphasizes that knowledge gaps still exist about the direct effects of climate change on water bodies and their indirect impacts on production areas that employ large amounts of water (e.g., agriculture). Some sectors, such as ecohydrology and alternative sewage treatment technologies, could represent a powerful tool to mitigate climate change impacts. Research needs in these still novel fields are summarized.
Fu, Baihua; Pollino, Carmel A; Cuddy, Susan M; Andrews, Felix
2015-07-01
Globally wetlands are increasingly under threat due to changes in water regimes as a result of river regulation and climate change. We developed the Exploring CLimAte Impacts on Management (EXCLAIM) decision support system (DSS), which simulates flow-driven habitat condition for 16 vegetation species, 13 waterbird species and 4 fish groups in the Macquarie catchment, Australia. The EXCLAIM DSS estimates impacts to habitat condition, considering scenarios of climate change and water management. The model framework underlying the DSS is a probabilistic Bayesian network, and this approach was chosen to explicitly represent uncertainties in climate change scenarios and predicted ecological outcomes. The results suggest that the scenario with no climate change and no water resource development (i.e. flow condition without dams, weirs or water license entitlements, often regarded as a surrogate for 'natural' flow) consistently has the most beneficial outcomes for vegetation, waterbird and native fish. The 2030 dry climate change scenario delivers the poorest ecological outcomes overall, whereas the 2030 wet climate change scenario has beneficial outcomes for waterbird breeding, but delivers poor outcomes for river red gum and black box woodlands, and fish that prefer river channels as habitats. A formal evaluation of the waterbird breeding model showed that higher numbers of observed nest counts are typically associated with higher modelled average breeding habitat conditions. The EXCLAIM DSS provides a generic framework to link hydrology and ecological habitats for a large number of species, based on best available knowledge of their flood requirements. It is a starting point towards developing an integrated tool for assessing climate change impacts on wetland ecosystems. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Alexeev, V. A.; Gordov, E. P.
2016-12-01
Recently initiated collaborative research project is presented. Its main objective is to develop high spatial and temporal resolution datasets for studying the ongoing and future climate changes in Siberia, caused by global and regional processes in the atmosphere and the ocean. This goal will be achieved by using a set of regional and global climate models for the analysis of the mechanisms of climate change and quantitative assessment of changes in key climate variables, including analysis of extreme weather and climate events and their dynamics, evaluation of the frequency, amplitude and the risks caused by the extreme events in the region. The main practical application of the project is to provide experts, stakeholders and the public with quantitative information about the future climate change in Siberia obtained on the base of a computational web- geoinformation platform. The thematic platform will be developed in order to facilitate processing and analysis of high resolution georeferenced datasets that will be delivered and made available to scientific community, policymakes and other end users as a result of the project. Software packages will be developed to implement calculation of various climatological indicators in order to characterize and diagnose climate change and its dynamics, as well as to archive results in digital form of electronic maps (GIS layers). By achieving these goals the project will provide science based tools necessary for developing mitigation measures for adapting to climate change and reducing negative impact on the population and infrastructure of the region. Financial support of the computational web- geoinformation platform prototype development by the RF Ministry of Education and Science under Agreement 14.613.21.0037 (RFMEFI61315X0037) is acknowledged.
Large Scale Relationship between Aquatic Insect Traits and Climate.
Bhowmik, Avit Kumar; Schäfer, Ralf B
2015-01-01
Climate is the predominant environmental driver of freshwater assemblage pattern on large spatial scales, and traits of freshwater organisms have shown considerable potential to identify impacts of climate change. Although several studies suggest traits that may indicate vulnerability to climate change, the empirical relationship between freshwater assemblage trait composition and climate has been rarely examined on large scales. We compared the responses of the assumed climate-associated traits from six grouping features to 35 bioclimatic indices (~18 km resolution) for five insect orders (Diptera, Ephemeroptera, Odonata, Plecoptera and Trichoptera), evaluated their potential for changing distribution pattern under future climate change and identified the most influential bioclimatic indices. The data comprised 782 species and 395 genera sampled in 4,752 stream sites during 2006 and 2007 in Germany (~357,000 km² spatial extent). We quantified the variability and spatial autocorrelation in the traits and orders that are associated with the combined and individual bioclimatic indices. Traits of temperature preference grouping feature that are the products of several other underlying climate-associated traits, and the insect order Ephemeroptera exhibited the strongest response to the bioclimatic indices as well as the highest potential for changing distribution pattern. Regarding individual traits, insects in general and ephemeropterans preferring very cold temperature showed the highest response, and the insects preferring cold and trichopterans preferring moderate temperature showed the highest potential for changing distribution. We showed that the seasonal radiation and moisture are the most influential bioclimatic aspects, and thus changes in these aspects may affect the most responsive traits and orders and drive a change in their spatial distribution pattern. Our findings support the development of trait-based metrics to predict and detect climate-related changes of freshwater assemblages.
NASA Astrophysics Data System (ADS)
Petrie, M. D.; Bradford, J. B.; Hubbard, R. M.; Lauenroth, W. K.; Andrews, C.
2016-12-01
The persistence of ponderosa pine forests and the ability for these forests to colonize new habitats in the 21st century will be influenced by how climate change supports ponderosa pine regeneration through the demographic processes of seed production, germination and survival. Yet, the way that climate change may support or restrict the frequency of successful regeneration is unclear. We developed a quantitative, criteria-based framework to estimate ponderosa pine regeneration potential (RP: a metric from 0-1) in response to climate forcings and environmental conditions. We used the SOILWAT ecosystem water balance model to simulate drivers of air and soil temperature, evaporation and soil moisture availability for 47 ponderosa pine sites across the western United States, using meteorological data from 1910-2014, and projections from nine General Circulation Models and the RCP 8.5 emissions scenario for 2020-2099. Climate change simulations increased the success of early developmental stages of seed production and germination, and supported 49.7% higher RP in 2020-2059 compared to averages from 1910-2014. As temperatures increased in 2060-2099, survival scores decreased, and RP was reduced by 50.3% compared to 1910-2014. Although the frequency of years with high RP did not change in 2060-2099 (12% of years), the frequency of years with very low RP increased from 25% to 58% of years. Thus, climate change will initially support higher RP and more favorable years in 2020-2059, yet will reduce average RP and the frequency of years with moderate regeneration support in 2060-2099. Forest regeneration is complex and not fully-understood, but our results suggest it is likely that climate change alone will instigate restrictions to the persistence and expansion of ponderosa pine in the 21st century.
Panic, Mirna; Ford, James D.
2013-01-01
Climate change is likely to have significant implications for human health, particularly through alterations of the incidence, prevalence, and distribution of infectious diseases. In the context of these risks, governments in high income nations have begun developing strategies to reduce potential climate change impacts and increase health system resilience (i.e., adaptation). In this paper, we review and evaluate national-level adaptation planning in relation to infectious disease risks in 14 OECD countries with respect to “best practices” for adaptation identified in peer-reviewed literature. We find a number of limitations to current planning, including negligible consideration of the needs of vulnerable population groups, limited emphasis on local risks, and inadequate attention to implementation logistics, such as available funding and timelines for evaluation. The nature of planning documents varies widely between nations, four of which currently lack adaptation plans. In those countries where planning documents were available, adaptations were mainstreamed into existing public health programs, and prioritized a sectoral, rather than multidisciplinary, approach. The findings are consistent with other scholarship examining adaptation planning indicating an ad hoc and fragmented process, and support the need for enhanced attention to adaptation to infectious disease risks in public health policy at a national level. PMID:24351735
Current and Projected Carbon Dynamics in US Agricultural Systems
NASA Astrophysics Data System (ADS)
Ogle, S. M.; Paustian, K.; Zhang, Y.; Kent, J.; Gurung, R.; Klotz, R.
2016-12-01
Agricultural lands occur across a variety of landscapes in the United States, and carbon dynamics are largely controlled by management decisions along with edaphic characteristics, climate and other environmental drivers. Due to the influence of management, there is potential to sequester carbon in soils with adoption of conservation practices, such as setting aside degraded land from production, limiting tillage disturbance, enhancing crop production with higher yielding varieties, planting cover crops, and restoring wetlands where they have been drained for crop production. In 2010, the level of sequestration in mineral soils across US croplands was 48 million metric tonnes CO2 equivalent, which is down from the high during the past 25 years of 90 million metric tonnes CO2 equivalent. In contrast, drained wetlands that are used for crop production were emitting 22.1 million metric tonnes CO2 equivalent in 2010. In the short term, restoring drained wetlands would decrease CO2emissions to the atmosphere, and even with the additional CH4 emissions from restored wetlands, there would an overall reduction in greenhouse gas emissions from these lands. In turn, this would make a significant contribution to the USDA Climate Smart Agriculture Plan for reducing greenhouse gas emissions by 120 million metric tonnes CO2 equivalent in support of the Paris Agreement. The potential to sequester carbon in the future will also be impacted by climate change, in addition to the management decisions of land managers. We simulated future carbon dynamics through 2060 based on climate change projections for RCP 2.5, 4.5 and 8.5 scenarios, with and without CO2 fertilization effects. We are using the results as input to a general equilibrium model for the agricultural economic sector to better understand the economic consequences of climate change and the potential for greenhouse gas mitigation. By evaluating the influence of climate change and economic welfare, our study is providing a basis to understand the potential long-term contribution of carbon sequestration in support of a Climate Smart Agriculture Program in the United States.
Hare, Jonathan A; Morrison, Wendy E; Nelson, Mark W; Stachura, Megan M; Teeters, Eric J; Griffis, Roger B; Alexander, Michael A; Scott, James D; Alade, Larry; Bell, Richard J; Chute, Antonie S; Curti, Kiersten L; Curtis, Tobey H; Kircheis, Daniel; Kocik, John F; Lucey, Sean M; McCandless, Camilla T; Milke, Lisa M; Richardson, David E; Robillard, Eric; Walsh, Harvey J; McManus, M Conor; Marancik, Katrin E; Griswold, Carolyn A
2016-01-01
Climate change and decadal variability are impacting marine fish and invertebrate species worldwide and these impacts will continue for the foreseeable future. Quantitative approaches have been developed to examine climate impacts on productivity, abundance, and distribution of various marine fish and invertebrate species. However, it is difficult to apply these approaches to large numbers of species owing to the lack of mechanistic understanding sufficient for quantitative analyses, as well as the lack of scientific infrastructure to support these more detailed studies. Vulnerability assessments provide a framework for evaluating climate impacts over a broad range of species with existing information. These methods combine the exposure of a species to a stressor (climate change and decadal variability) and the sensitivity of species to the stressor. These two components are then combined to estimate an overall vulnerability. Quantitative data are used when available, but qualitative information and expert opinion are used when quantitative data is lacking. Here we conduct a climate vulnerability assessment on 82 fish and invertebrate species in the Northeast U.S. Shelf including exploited, forage, and protected species. We define climate vulnerability as the extent to which abundance or productivity of a species in the region could be impacted by climate change and decadal variability. We find that the overall climate vulnerability is high to very high for approximately half the species assessed; diadromous and benthic invertebrate species exhibit the greatest vulnerability. In addition, the majority of species included in the assessment have a high potential for a change in distribution in response to projected changes in climate. Negative effects of climate change are expected for approximately half of the species assessed, but some species are expected to be positively affected (e.g., increase in productivity or move into the region). These results will inform research and management activities related to understanding and adapting marine fisheries management and conservation to climate change and decadal variability.
Hare, Jonathan A.; Morrison, Wendy E.; Nelson, Mark W.; Stachura, Megan M.; Teeters, Eric J.; Griffis, Roger B.; Alexander, Michael A.; Scott, James D.; Alade, Larry; Bell, Richard J.; Chute, Antonie S.; Curti, Kiersten L.; Curtis, Tobey H.; Kircheis, Daniel; Kocik, John F.; Lucey, Sean M.; McCandless, Camilla T.; Milke, Lisa M.; Richardson, David E.; Robillard, Eric; Walsh, Harvey J.; McManus, M. Conor; Marancik, Katrin E.; Griswold, Carolyn A.
2016-01-01
Climate change and decadal variability are impacting marine fish and invertebrate species worldwide and these impacts will continue for the foreseeable future. Quantitative approaches have been developed to examine climate impacts on productivity, abundance, and distribution of various marine fish and invertebrate species. However, it is difficult to apply these approaches to large numbers of species owing to the lack of mechanistic understanding sufficient for quantitative analyses, as well as the lack of scientific infrastructure to support these more detailed studies. Vulnerability assessments provide a framework for evaluating climate impacts over a broad range of species with existing information. These methods combine the exposure of a species to a stressor (climate change and decadal variability) and the sensitivity of species to the stressor. These two components are then combined to estimate an overall vulnerability. Quantitative data are used when available, but qualitative information and expert opinion are used when quantitative data is lacking. Here we conduct a climate vulnerability assessment on 82 fish and invertebrate species in the Northeast U.S. Shelf including exploited, forage, and protected species. We define climate vulnerability as the extent to which abundance or productivity of a species in the region could be impacted by climate change and decadal variability. We find that the overall climate vulnerability is high to very high for approximately half the species assessed; diadromous and benthic invertebrate species exhibit the greatest vulnerability. In addition, the majority of species included in the assessment have a high potential for a change in distribution in response to projected changes in climate. Negative effects of climate change are expected for approximately half of the species assessed, but some species are expected to be positively affected (e.g., increase in productivity or move into the region). These results will inform research and management activities related to understanding and adapting marine fisheries management and conservation to climate change and decadal variability. PMID:26839967
NASA Astrophysics Data System (ADS)
Howell, C.
2013-05-01
In reviewing studies evaluating trends in greenhouse gasses, weather, climate and/or ecosystems, it becomes apparent that climate change is a reality. It has also become evident that the energy sector accounts for most of the greenhouse gas emissions with worldwide emissions of carbon dioxide increasing by 31 percent from 1990 to 2005, higher than in the previous thousands of years. While energy courses and topics are presented in high school and community college classes the topic of Climate Change Science is not always a part of the conversation. During the summer of 2011 and 2012, research undergraduates conducted interviews with a total of 39 national community college and 8 high school instructors who participated in a two week Sustainable Energy Education Training (SEET) workshop. Interview questions addressed the barriers and opportunities to the incorporation of climate change as a dimension of an energy/renewable energy curriculum. Barriers found included: there is not enough instruction time to include it; some school administrators including community members do not recognize climate change issues; quality information about climate change geared to students is difficult to find; and, most climate change information is too scientific for most audiences. A Solution to some barriers included dialogue on sustainability as a common ground in recognizing environmental changes/concerns among educators, administrators and community members. Sustainability discussions are already supported in school business courses as well as in technical education. In conclusion, we cannot expect climate change to dissipate without humans making more informed energy and environmental choices. With global population growth producing greater emissions resulting in increased climate change, we must include the topic of climate change to students in high school and community college classrooms, preparing our next generation of leaders and workforce to be equipped to find solutions, (such as renewable energy and sustainability practices), to climate change and environmental sustainability.
Results from the BRACE 1.5 study: Climate change impacts of 1.5 C and 2 C warming
NASA Astrophysics Data System (ADS)
O'Neill, B. C.; Anderson, B.; Monaghan, A. J.; Ren, X.; Sanderson, B.; Tebaldi, C.
2017-12-01
In 2015, 195 countries negotiated the Paris Agreement on climate change, which set long-term goals of limiting global mean warming to well below 2 C and possibly 1.5 C. This event stimulated substantial scientific interest in climate outcomes and impacts on society associated with those levels of warming. Recently, the first set of global climate model simulations explicitly designed to meet those targets were undertaken with the Community Earth System Model (CESM) for use by the research community (Sanderson et al, accepted). The BRACE 1.5 project models societal impacts from these climate outcomes, combined with assumptions about future socioeconomic conditions according to the Shared Socioeconomic Pathways. These analyses build on a recently completed study of the Benefits of Reduced Anthropogenic Climate changE (BRACE), published as a set of 20 papers in Climatic Change, which examined the difference in impacts between two higher scenarios resulting in about 2.5 C and 3.7 C warming by late this century. BRACE 1.5 consists of a set of six papers to be submitted to a special collection in Environmental Research Letters that takes a similar approach but focuses on impacts at 1.5 and 2 C warming. We ask whether impacts differ substantially between the two climate scenarios, accounting for uncertainty in climate outcomes through the use of initial condition ensembles of CESM simulations, and in societal conditions by using alternative SSP-based development pathways. Impact assessment focuses on the health and agricultural sectors; modeling approaches include the use of a global mutli-region CGE model for economic analysis, both a process-based and an empirical crop model, a model of spatial population change, a model of climatic suitability for the aedes aegypti mosquito, and an epidemiological model of heat-related mortality. A methodological analysis also evaluates the use of climate model emulation techniques for providing climate information sufficient to support impact assessment in low warming scenarios.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ralph, F. M.; Prather, K. A.; Cayan, D.
The variability of precipitation and water supply along the U.S. West Coast creates major challenges to the region’s economy and environment, as evidenced by the recent California drought. This variability is strongly influenced by atmospheric rivers (AR), which deliver much of the precipitation along the U.S. West Coast and can cause flooding, and by aerosols (from local sources and transported from remote continents and oceans) that modulate clouds and precipitation. A better understanding of these processes is needed to reduce uncertainties in weather predictions and climate projections of droughts and floods, both now and under changing climate conditions.To address thesemore » gaps a group of meteorologists, hydrologists, climate scientists, atmospheric chemists, and oceanographers have created an interdisciplinary research effort, with support from multiple agencies. From 2009-2011 a series of field campaigns (CalWater 1) collected atmospheric chemistry, cloud microphysics and meteorological measurements in California and associated modeling and diagnostic studies were carried out. Based on remaining gaps, a vision was developed to extend these studies offshore over the Eastern North Pacific and to enhance land based measurements from 2014-2018 (CalWater 2). The data set and selected results from CalWater 1 are summarized here. The goals of CalWater-2, and measurements to date, are then described. CalWater is producing new findings and exploring new technologies to evaluate and improve global climate models and their regional performance and to develop tools supporting water and hydropower management. These advances also have potential to enhance hazard mitigation by improving near-term weather prediction and subseasonal and seasonal outlooks.« less
Decadal-Scale Forecasting of Climate Drivers for Marine Applications.
Salinger, J; Hobday, A J; Matear, R J; O'Kane, T J; Risbey, J S; Dunstan, P; Eveson, J P; Fulton, E A; Feng, M; Plagányi, É E; Poloczanska, E S; Marshall, A G; Thompson, P A
Climate influences marine ecosystems on a range of time scales, from weather-scale (days) through to climate-scale (hundreds of years). Understanding of interannual to decadal climate variability and impacts on marine industries has received less attention. Predictability up to 10 years ahead may come from large-scale climate modes in the ocean that can persist over these time scales. In Australia the key drivers of climate variability affecting the marine environment are the Southern Annular Mode, the Indian Ocean Dipole, the El Niño/Southern Oscillation, and the Interdecadal Pacific Oscillation, each has phases that are associated with different ocean circulation patterns and regional environmental variables. The roles of these drivers are illustrated with three case studies of extreme events-a marine heatwave in Western Australia, a coral bleaching of the Great Barrier Reef, and flooding in Queensland. Statistical and dynamical approaches are described to generate forecasts of climate drivers that can subsequently be translated to useful information for marine end users making decisions at these time scales. Considerable investment is still needed to support decadal forecasting including improvement of ocean-atmosphere models, enhancement of observing systems on all scales to support initiation of forecasting models, collection of important biological data, and integration of forecasts into decision support tools. Collaboration between forecast developers and marine resource sectors-fisheries, aquaculture, tourism, biodiversity management, infrastructure-is needed to support forecast-based tactical and strategic decisions that reduce environmental risk over annual to decadal time scales. © 2016 Elsevier Ltd. All rights reserved.
Evaluation of decadal hindcasts using satellite simulators
NASA Astrophysics Data System (ADS)
Spangehl, Thomas; Mazurkiewicz, Alex; Schröder, Marc
2013-04-01
The evaluation of dynamical ensemble forecast systems requires a solid validation of basic processes such as the global atmospheric water and energy cycle. The value of any validation approach strongly depends on the quality of the observational data records used. Current approaches utilize in situ measurements, remote sensing data and reanalyses. Related data records are subject to a number of uncertainties and limitations such as representativeness, spatial and temporal resolution and homogeneity. However, recently several climate data records with known and sufficient quality became available. In particular, the satellite data records offer the opportunity to obtain reference information on global scales including the oceans. Here we consider the simulation of satellite radiances from the climate model output enabling an evaluation in the instrument's parameter space to avoid uncertainties stemming from the application of retrieval schemes in order to minimise uncertainties on the reference side. Utilizing the CFMIP Observation Simulator Package (COSP) we develop satellite simulators for the Tropical Rainfall Measuring Mission precipitation radar (TRMM PR) and the Infrared Atmospheric Sounding Interferometer (IASI). The simulators are applied within the MiKlip project funded by BMBF (German Federal Ministry of Education and Research) to evaluate decadal climate predictions performed with the MPI-ESM developed at the Max Planck Institute for Meteorology. While TRMM PR enables the evaluation of the vertical structure of precipitation over tropical and sub-tropical areas, IASI is used to support the global evaluation of clouds and radiation. In a first step the reliability of the developed simulators needs to be explored. The simulation of radiances in the instrument space requires the generation of sub-grid scale variability from the climate model output. Furthermore, assumptions are made to simulate radiances such as, for example, the distribution of different hydrometeor types. Therefore, testing is performed to determine the extent to which the quality of the simulator results depends on the applied methods used to generate sub-grid variability (e.g. sub-grid resolution). Moreover, the sensitivity of results to the choice of different distributions of hydrometeors is explored. The model evaluation is carried out in a statistical manner using histograms of radar reflectivities (TRMM PR) and brightness temperatures (IASI). Finally, methods to deduce data suitable for probabilistic evaluation of decadal hindcasts such as simple indices are discussed.
ERIC Educational Resources Information Center
Kosciw, Joseph G.; Palmer, Neal A.; Kull, Ryan M.; Greytak, Emily A.
2013-01-01
For many lesbian, gay, bisexual, and transgender (LGBT) youth, intolerance and prejudice make school a hostile and dangerous place. This study examined simultaneously the effects of a negative school climate on achievement and the role that school-based supports--safe school policies, supportive school personnel, and gay-straight alliance (GSA)…
Public attention to science and political news and support for climate change mitigation
NASA Astrophysics Data System (ADS)
Hart, P. Sol; Nisbet, Erik C.; Myers, Teresa A.
2015-06-01
We examine how attention to science and political news may influence public knowledge, perceived harm, and support for climate mitigation policies. Previous research examining these relationships has not fully accounted for how political ideology shapes the mental processes through which the public interprets media discourses about climate change. We incorporate political ideology and the concept of motivated cognition into our analysis to compare and contrast two prominent models of opinion formation, the scientific literacy model, which posits that disseminating scientific information will move public opinion towards the scientific consensus, and the motivated reasoning model, which posits that individuals will interpret information in a biased manner. Our analysis finds support for both models of opinion formation with key differences across ideological groups. Attention to science news was associated with greater perceptions of harm and knowledge for conservatives, but only additional knowledge for liberals. Supporting the literacy model, greater knowledge was associated with more support for climate mitigation for liberals. In contrast, consistent with motivated reasoning, more knowledgeable conservatives were less supportive of mitigation policy. In addition, attention to political news had a negative association with perceived harm for conservatives but not for liberals.
Decision-support tools for Extreme Weather and Climate Events in the Northeast United States
NASA Astrophysics Data System (ADS)
Kumar, S.; Lowery, M.; Whelchel, A.
2013-12-01
Decision-support tools were assessed for the 2013 National Climate Assessment technical input document, "Climate Change in the Northeast, A Sourcebook". The assessment included tools designed to generate and deliver actionable information to assist states and highly populated urban and other communities in assessment of climate change vulnerability and risk, quantification of effects, and identification of adaptive strategies in the context of adaptation planning across inter-annual, seasonal and multi-decadal time scales. State-level adaptation planning in the Northeast has generally relied on qualitative vulnerability assessments by expert panels and stakeholders, although some states have undertaken initiatives to develop statewide databases to support vulnerability assessments by urban and local governments, and state agencies. The devastation caused by Superstorm Sandy in October 2012 has raised awareness of the potential for extreme weather events to unprecedented levels and created urgency for action, especially in coastal urban and suburban communities that experienced pronounced impacts - especially in New Jersey, New York and Connecticut. Planning approaches vary, but any adaptation and resiliency planning process must include the following: - Knowledge of the probable change in a climate variable (e.g., precipitation, temperature, sea-level rise) over time or that the climate variable will attain a certain threshold deemed to be significant; - Knowledge of intensity and frequency of climate hazards (past, current or future events or conditions with potential to cause harm) and their relationship with climate variables; - Assessment of climate vulnerabilities (sensitive resources, infrastructure or populations exposed to climate-related hazards); - Assessment of relative risks to vulnerable resources; - Identification and prioritization of adaptive strategies to address risks. Many organizations are developing decision-support tools to assist in the urban planning process by addressing some of these needs. In this paper we highlight the decision tools available today, discuss their application in selected case studies, and present a gap analysis with opportunities for innovation and future work.
NASA Astrophysics Data System (ADS)
Smilovic, M.; Gleeson, T. P.; Adamowski, J. F.; Langhorn, C.; Kienzle, S. W.
2016-12-01
Supplemental irrigation is the practice of supporting precipitation-fed agriculture with limited irrigation. Precipitation-fed agriculture dominates the agricultural landscape, but is vulnerable to intraseasonal and interannual variability in precipitation and climate. The interplay between food security, water resources, ecosystem health, energy, and livelihoods necessitates evaluating and integrating initiatives that increase agricultural production while reducing demands on water resources. Supplemental irrigation is the practice of minimally irrigating in an effort to stabilize and increase agricultural production, as well as increase water productivity - the amount of crop produced per unit of water. The potential of supplemental irrigation to support both water and food security has yet to be evaluated at regional and global scales. We evaluate whether supplemental irrigation could stabilize and increase agricultural production of wheat by determining locally-calibrated water use-crop yield relationships, known as crop-water production functions. Crop-water production functions are functions of seasonal water use and crop yield, and previous efforts have largely ignored the effects of the temporal distribution of water use throughout the growing season. We significantly improve upon these efforts and provide an opportunity to evaluate supplemental irrigation that appropriately acknowledges the effects of irrigation scheduling. Integrating agroclimatic and crop data with the crop-water model Aquacrop, we determine the increases in wheat production achieved by maximizing water productivity, sharing limited water between different years, and other irrigation scenarios. The methodology presented and evaluation of supplemental irrigation provides water mangers, policy makers, governments, and non-governmental organizations the tools to appropriately understand and determine the potential of this initiative to support precipitation-fed agriculture.
Climate Model Diagnostic and Evaluation: With a Focus on Satellite Observations
NASA Technical Reports Server (NTRS)
Waliser, Duane
2011-01-01
Each year, we host a summer school that brings together the next generation of climate scientists - about 30 graduate students and postdocs from around the world - to engage with premier climate scientists from the Jet Propulsion Laboratory and elsewhere. Our yearly summer school focuses on topics on the leading edge of climate science research. Our inaugural summer school, held in 2011, was on the topic of "Using Satellite Observations to Advance Climate Models," and enabled students to explore how satellite observations can be used to evaluate and improve climate models. Speakers included climate experts from both NASA and the National Oceanic and Atmospheric Administration (NOAA), who provided updates on climate model diagnostics and evaluation and remote sensing of the planet. Details of the next summer school will be posted here in due course.
Using Rasch Measurement To Evaluate the Organizational Climate Index.
ERIC Educational Resources Information Center
Borkan, Bengu; Capa, Yesim; Figueiredo, Claudia; Loadman, William E.
School climate has been acknowledged as a construct with impact on important aspects of educational outcomes, such as student achievement, school effectiveness, and school completion. The Organizational Climate Index was an instrument developed to measure school climate (W.Hoy, 2001). This study evaluated this instrument by using Rasch…
DOT National Transportation Integrated Search
2014-01-01
The main objective of this study was to collect and evaluate climatic and soil data pertaining to Oklahoma for the climatic model (EICM) in the mechanistic-empirical design guide for pavements. The EICM climatic input files were updated and extended ...
MIDWESTERN REGIONAL CENTER OF THE DOE NATIONAL INSTITUTE FOR CLIMATIC CHANGE RESEARCH
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burton, Andrew J.
2014-02-28
The goal of NICCR (National Institute for Climatic Change Research) was to mobilize university researchers, from all regions of the country, in support of the climatic change research objectives of DOE/BER. The NICCR Midwestern Regional Center (MRC) supported work in the following states: North Dakota, South Dakota, Nebraska, Kansas, Oklahoma, Minnesota, Iowa, Missouri, Wisconsin, Illinois, Michigan, Indiana, and Ohio. The MRC of NICCR was able to support nearly $8 million in climatic change research, including $6,671,303 for twenty projects solicited and selected by the MRC over five requests for proposals (RFPs) and $1,051,666 for the final year of ten projectsmore » from the discontinued DOE NIGEC (National Institute for Global Environmental Change) program. The projects selected and funded by the MRC resulted in 135 peer-reviewed publications and supported the training of 25 PhD students and 23 Masters students. Another 36 publications were generated by the final year of continuing NIGEC projects supported by the MRC. The projects funded by the MRC used a variety of approaches to answer questions relevant to the DOE’s climate change research program. These included experiments that manipulated temperature, moisture and other global change factors; studies that sought to understand how the distribution of species and ecosystems might change under future climates; studies that used measurements and modeling to examine current ecosystem fluxes of energy and mass and those that would exist under future conditions; and studies that synthesized existing data sets to improve our understanding of the effects of climatic change on terrestrial ecosystems. In all of these efforts, the MRC specifically sought to identify and quantify responses of terrestrial ecosystems that were not well understood or not well modeled by current efforts. The MRC also sought to better understand and model important feedbacks between terrestrial ecosystems, atmospheric chemistry, and regional and global climate systems. The broad variety of projects the MRC has supported gave us a unique opportunity to greatly improve our ability to predict the future health, composition and function of important agricultural and natural terrestrial ecosystems within the Midwestern Region.« less
ERIC Educational Resources Information Center
Walsh, Elizabeth M.
2012-01-01
Preparing a generation of citizens to respond to the impacts of climate change will require collaborative interactions between natural scientists, learning scientists, educators and learners. Promoting effective involvement of scientists in climate change education is especially important as climate change science and climate impacts are…
ERIC Educational Resources Information Center
National Center on Safe Supportive Learning Environments, 2017
2017-01-01
Improving school climate takes time and commitment from a variety of people in a variety of roles. This document outlines how family members--including guardians of students--can support school climate improvements. Key action steps are provided for the following strategies: (1) Participate in planning for school climate improvements; (2) Engage…
NASA Astrophysics Data System (ADS)
Ray, A. J.; Barsugli, J. J.; Averyt, K. B.; Deheza, V.; Udall, B.
2008-12-01
In 2007 Colorado's Governor Ritter issued a Colorado Climate Action Plan, in response to the risks associated with climate change and sets a goal to adapt to those climate changes "that cannot be avoided." The Western Water Assessment, a NOAA funded RISA program, was commissioned to do a synthesis of the science on climate change aimed at planners, decisionmakers, and policymakers in water in Colorado. Changes in Colorado's climate and implications for water resources are occurring in a global context. The objective of the report is to communicate the state of the science regarding the physical aspects of climate change that are important for evaluating impacts on Colorado's water resources, and to support state efforts to develop a water adaptation plan. However, the identification of specific climate change impacts on water resources is beyond the scope of this report. Water managers have a long history of adapting to changing circumstances, including changes in economies and land use, environmental concerns, and population growth. Climate change will further affect the decisions made about use of water. However, current water management practices may not be robust enough to cope with this climate change. This presentation reports on the process of developing the report and challenges we faced. We developed the report based on ongoing interactions with the water management community and discussions with them about their decision processes and needs. A second presentation (see Barsugli et al) presents the synthesis findings from the report. We followed the IPCC WG1 model of observations, attribution, and projections. However, many published studies and datasets include information about Colorado, there are few climate studies that focus only on the state. Consequently, many important scientific analyses for Colorado have not been done, and Colorado- specific information is often imbedded in or averaged with studies of the larger Western U.S. We used findings from peer-reviewed regional studies, and conducted new analyses derived from existing datasets and model projections, and took advantage of new regional analyses. In addition to the IPCC Fourth Assessment, we also took advantage of very new Climate Change Science Program Assessments. Many water managers, although often technically savvy engineers, hydrologists and other professionals, but are not trained as climate or atmospheric scientists, and seeks to complexity by using Fahrenheit units, minimizing use of or defining jargon terms, and re-plotting published figures/data for simplicity. The report is written at a less technical level than the IPCC reports, and some features are intended to raise the level of climate literacy of our audience about climate and how climate science is done. For example, the report includes a primer on climate models and theory that situates Colorado in the context of global climate change and describes how the unique features of the state -- such as the complex topography -- relate to interpreting and using climate change projections. This report responds to Colorado state agencies' and water management community needs to understanding of climate change and is an initial step in establishing Colorado's water-related adaptation needs. Another impact of this report is as an experiment in climate services for climate change information and exploring the challenges of communicating the information to diverse decisionmakers.
The Cloud Feedback Model Intercomparison Project (CFMIP) contribution to CMIP6
NASA Astrophysics Data System (ADS)
Webb, Mark J.; Andrews, Timothy; Bodas-Salcedo, Alejandro; Bony, Sandrine; Bretherton, Christopher S.; Chadwick, Robin; Chepfer, Hélène; Douville, Hervé; Good, Peter; Kay, Jennifer E.; Klein, Stephen A.; Marchand, Roger; Medeiros, Brian; Pier Siebesma, A.; Skinner, Christopher B.; Stevens, Bjorn; Tselioudis, George; Tsushima, Yoko; Watanabe, Masahiro
2017-01-01
The primary objective of CFMIP is to inform future assessments of cloud feedbacks through improved understanding of cloud-climate feedback mechanisms and better evaluation of cloud processes and cloud feedbacks in climate models. However, the CFMIP approach is also increasingly being used to understand other aspects of climate change, and so a second objective has now been introduced, to improve understanding of circulation, regional-scale precipitation, and non-linear changes. CFMIP is supporting ongoing model inter-comparison activities by coordinating a hierarchy of targeted experiments for CMIP6, along with a set of cloud-related output diagnostics. CFMIP contributes primarily to addressing the CMIP6 questions How does the Earth system respond to forcing?
and What are the origins and consequences of systematic model biases?
and supports the activities of the WCRP Grand Challenge on Clouds, Circulation and Climate Sensitivity.A compact set of Tier 1 experiments is proposed for CMIP6 to address this question: (1) what are the physical mechanisms underlying the range of cloud feedbacks and cloud adjustments predicted by climate models, and which models have the most credible cloud feedbacks? Additional Tier 2 experiments are proposed to address the following questions. (2) Are cloud feedbacks consistent for climate cooling and warming, and if not, why? (3) How do cloud-radiative effects impact the structure, the strength and the variability of the general atmospheric circulation in present and future climates? (4) How do responses in the climate system due to changes in solar forcing differ from changes due to CO2, and is the response sensitive to the sign of the forcing? (5) To what extent is regional climate change per CO2 doubling state-dependent (non-linear), and why? (6) Are climate feedbacks during the 20th century different to those acting on long-term climate change and climate sensitivity? (7) How do regional climate responses (e.g. in precipitation) and their uncertainties in coupled models arise from the combination of different aspects of CO2 forcing and sea surface warming?CFMIP also proposes a number of additional model outputs in the CMIP DECK, CMIP6 Historical and CMIP6 CFMIP experiments, including COSP simulator outputs and process diagnostics to address the following questions.
How well do clouds and other relevant variables simulated by models agree with observations?
What physical processes and mechanisms are important for a credible simulation of clouds, cloud feedbacks and cloud adjustments in climate models?
Which models have the most credible representations of processes relevant to the simulation of clouds?
How do clouds and their changes interact with other elements of the climate system?
Bradford, John B.; Schlaepfer, Daniel R.; Lauenroth, William K.; Yackulic, Charles B.; Duniway, Michael C.; Hall, Sonia A.; Jia, Gensuo; Jamiyansharav, Khishigbayar; Munson, Seth M.; Wilson, Scott D.; Tietjen, Britta
2017-01-01
The distribution of rainfed agriculture is expected to respond to climate change and human population growth. However, conditions that support rainfed agriculture are driven by interactions among climate, including climate extremes, and soil moisture availability that have not been well defined. In the temperate regions that support much of the world’s agriculture, these interactions are complicated by seasonal temperature fluctuations that can decouple climate and soil moisture. Here, we show that suitability to support rainfed agriculture can be effectively represented by the interactive effects of just two variables: suitability increases where warm conditions occur with wet soil, and suitability decreases with extreme high temperatures. 21st century projections based on ecohydrological modeling of downscaled climate forecasts imply geographic shifts and overall increases in the area suitable for rainfed agriculture in temperate regions, especially at high latitudes, and pronounced, albeit less widespread, declines in suitable areas in low latitude drylands, especially in Europe. These results quantify the integrative direct and indirect impact of rising temperatures on rainfed agriculture.
Evaluation of the multi-model CORDEX-Africa hindcast using RCMES
NASA Astrophysics Data System (ADS)
Kim, J.; Waliser, D. E.; Lean, P.; Mattmann, C. A.; Goodale, C. E.; Hart, A.; Zimdars, P.; Hewitson, B.; Jones, C.
2011-12-01
Recent global climate change studies have concluded with a high confidence level that the observed increasing trend in the global-mean surface air temperatures since mid-20th century is triggered by the emission of anthropogenic greenhouse gases (GHGs). The increase in the global-mean temperature due to anthropogenic emissions is nearly monotonic and may alter the climatological norms resulting in a new climate normal. In the presence of anthropogenic climate change, assessing regional impacts of the altered climate state and developing the plans for mitigating any adverse impacts are an important concern. Assessing future climate state and its impact remains a difficult task largely because of the uncertainties in future emissions and model errors. Uncertainties in climate projections propagates into impact assessment models and result in uncertainties in the impact assessments. In order to facilitate the evaluation of model data, a fundamental step for assessing model errors, the JPL Regional Climate Model Evaluation System (RCMES: Lean et al. 2010; Hart et al. 2011) has been developed through a joint effort of the investigators from UCLA and JPL. RCMES is also a regional climate component of a larger worldwide ExArch project. We will present the evaluation of the surface temperatures and precipitation from multiple RCMs participating in the African component of the Coordinated Regional Climate Downscaling Experiment (CORDEX) that has organized a suite of regional climate projection experiments in which multiple RCMs and GCMs are incorporated. As a part of the project, CORDEX organized a 20-year regional climate hindcast study in order to quantify and understand the uncertainties originating from model errors. Investigators from JPL, UCLA, and the CORDEX-Africa team collaborate to analyze the RCM hindcast data using RCMES. The analysis is focused on measuring the closeness between individual regional climate model outputs as well as their ensembles and observed data. The model evaluation is quantified in terms of widely used metrics. Details on the conceptual outline and architecture of RCMES is presented in two companion papers "The Regional climate model Evaluation System (RCMES) based on contemporary satellite and other observations for assessing regional climate model fidelity" and "A Reusable Framework for Regional Climate Model Evaluation" in GC07 and IN30, respectively.
... Chapter . Additional information regarding the health effects of climate change and references to supporting literature can be found ... globalchange.gov/engage/activities-products/NCA3/technical-inputs . Climate change, together with other natural and human-made health ...
DOT National Transportation Integrated Search
2015-09-30
The nature of the U.S. transportation system requires that actions to adapt to climate change impacts occur primarily at the State and local levels. Federal agencies support State, regional, and local agencies and they work hard to provide frameworks...
Belote, R Travis; Carroll, Carlos; Martinuzzi, Sebastián; Michalak, Julia; Williams, John W; Williamson, Matthew A; Aplet, Gregory H
2018-06-21
Addressing uncertainties in climate vulnerability remains a challenge for conservation planning. We evaluate how confidence in conservation recommendations may change with agreement among alternative climate projections and metrics of climate exposure. We assessed agreement among three multivariate estimates of climate exposure (forward velocity, backward velocity, and climate dissimilarity) using 18 alternative climate projections for the contiguous United States. For each metric, we classified maps into quartiles for each alternative climate projections, and calculated the frequency of quartiles assigned for each gridded location (high quartile frequency = more agreement among climate projections). We evaluated recommendations using a recent climate adaptation heuristic framework that recommends emphasizing various conservation strategies to land based on current conservation value and expected climate exposure. We found that areas where conservation strategies would be confidently assigned based on high agreement among climate projections varied substantially across regions. In general, there was more agreement in forward and backward velocity estimates among alternative projections than agreement in estimates of local dissimilarity. Consensus of climate predictions resulted in the same conservation recommendation assignments in a few areas, but patterns varied by climate exposure metric. This work demonstrates an approach for explicitly evaluating alternative predictions in geographic patterns of climate change.
The Climate Variability & Predictability (CVP) Program at NOAA - Recent Program Advancements
NASA Astrophysics Data System (ADS)
Lucas, S. E.; Todd, J. F.
2015-12-01
The Climate Variability & Predictability (CVP) Program supports research aimed at providing process-level understanding of the climate system through observation, modeling, analysis, and field studies. This vital knowledge is needed to improve climate models and predictions so that scientists can better anticipate the impacts of future climate variability and change. To achieve its mission, the CVP Program supports research carried out at NOAA and other federal laboratories, NOAA Cooperative Institutes, and academic institutions. The Program also coordinates its sponsored projects with major national and international scientific bodies including the World Climate Research Programme (WCRP), the International and U.S. Climate Variability and Predictability (CLIVAR/US CLIVAR) Program, and the U.S. Global Change Research Program (USGCRP). The CVP program sits within NOAA's Climate Program Office (http://cpo.noaa.gov/CVP). The CVP Program currently supports multiple projects in areas that are aimed at improved representation of physical processes in global models. Some of the topics that are currently funded include: i) Improved Understanding of Intraseasonal Tropical Variability - DYNAMO field campaign and post -field projects, and the new climate model improvement teams focused on MJO processes; ii) Climate Process Teams (CPTs, co-funded with NSF) with projects focused on Cloud macrophysical parameterization and its application to aerosol indirect effects, and Internal-Wave Driven Mixing in Global Ocean Models; iii) Improved Understanding of Tropical Pacific Processes, Biases, and Climatology; iv) Understanding Arctic Sea Ice Mechanism and Predictability;v) AMOC Mechanisms and Decadal Predictability Recent results from CVP-funded projects will be summarized. Additional information can be found at http://cpo.noaa.gov/CVP.
Malloy, Margaret; Acock, Alan; DuBois, David L; Vuchinich, Samuel; Silverthorn, Naida; Ji, Peter; Flay, Brian R
2015-11-01
Organizational climate has been proposed as a factor that might influence a school's readiness to successfully implement school-wide prevention programs. The aim of this study was to evaluate the influence of teachers' perceptions of three dimensions of school organizational climate on the dosage and quality of teacher implementation of Positive Action, a social-emotional and character development (SECD) program. The dimensions measured were teachers' perceptions of (a) the school's openness to innovation, (b) the extent to which schools utilize participatory decision-making practices, and (c) the existence of supportive relationships among teachers (teacher-teacher affiliation). Data from 46 teachers in seven schools enrolled in the treatment arm of a longitudinal, cluster-randomized, controlled trial were analyzed. Teacher perceptions of a school's tendency to be innovative was associated with a greater number of lessons taught and self-reported quality of delivery, and teacher-teacher affiliation was associated with a higher use of supplementary activities. The findings suggest that perceptions of a school's organizational climate impact teachers' implementation of SECD programs and have implications for school administrators and technical assistance providers as they work to implement and sustain prevention programs in schools.
Decline of the world's saline lakes
NASA Astrophysics Data System (ADS)
Wurtsbaugh, Wayne A.; Miller, Craig; Null, Sarah E.; Derose, R. Justin; Wilcock, Peter; Hahnenberger, Maura; Howe, Frank; Moore, Johnnie
2017-11-01
Many of the world's saline lakes are shrinking at alarming rates, reducing waterbird habitat and economic benefits while threatening human health. Saline lakes are long-term basin-wide integrators of climatic conditions that shrink and grow with natural climatic variation. In contrast, water withdrawals for human use exert a sustained reduction in lake inflows and levels. Quantifying the relative contributions of natural variability and human impacts to lake inflows is needed to preserve these lakes. With a credible water balance, causes of lake decline from water diversions or climate variability can be identified and the inflow needed to maintain lake health can be defined. Without a water balance, natural variability can be an excuse for inaction. Here we describe the decline of several of the world's large saline lakes and use a water balance for Great Salt Lake (USA) to demonstrate that consumptive water use rather than long-term climate change has greatly reduced its size. The inflow needed to maintain bird habitat, support lake-related industries and prevent dust storms that threaten human health and agriculture can be identified and provides the information to evaluate the difficult tradeoffs between direct benefits of consumptive water use and ecosystem services provided by saline lakes.
García L., Juan Carlos; Posada-Suárez, Húver; Läderach, Peter
2014-01-01
The Colombian National Federation of Coffee Growers (FNC) conducted an agro-ecological zoning study based on climate, soil, and terrain of the Colombian coffee-growing regions (CCGR) located in the tropics, between 1° and 11.5° N, in areas of complex topography. To support this study, a climate baseline was constructed at a spatial resolution of 5 km. Twenty-one bioclimatic indicators were drawn from this baseline data and from yield data for different coffee genotypes evaluated under conditions at eight experimental stations (ESs) belonging to the National Center for Coffee Research (CENICAFÉ). Three topographic indicators were obtained from a digital elevation model (DEM). Zoning at a national level resulted in the differentiation of 12 agro-climatic zones. Altitude notably influenced zone differentiation, however other factors such as large air currents, low-pressure atmospheric systems, valleys of the great rivers, and physiography also played an important role. The strategy of zoning according to coffee-growing conditions will enable areas with the greatest potential for the development of coffee cultivation to be identified, criteria for future research to be generated, and the level of technology implementation to be assessed. PMID:25436456
García L, Juan Carlos; Posada-Suárez, Húver; Läderach, Peter
2014-01-01
The Colombian National Federation of Coffee Growers (FNC) conducted an agro-ecological zoning study based on climate, soil, and terrain of the Colombian coffee-growing regions (CCGR) located in the tropics, between 1° and 11.5° N, in areas of complex topography. To support this study, a climate baseline was constructed at a spatial resolution of 5 km. Twenty-one bioclimatic indicators were drawn from this baseline data and from yield data for different coffee genotypes evaluated under conditions at eight experimental stations (ESs) belonging to the National Center for Coffee Research (CENICAFÉ). Three topographic indicators were obtained from a digital elevation model (DEM). Zoning at a national level resulted in the differentiation of 12 agro-climatic zones. Altitude notably influenced zone differentiation, however other factors such as large air currents, low-pressure atmospheric systems, valleys of the great rivers, and physiography also played an important role. The strategy of zoning according to coffee-growing conditions will enable areas with the greatest potential for the development of coffee cultivation to be identified, criteria for future research to be generated, and the level of technology implementation to be assessed.
Bonfante, A; Impagliazzo, A; Fiorentino, N; Langella, G; Mori, M; Fagnano, M
2017-12-01
Bioenergy crops are well known for their ability to reduce greenhouse gas emissions and increase the soil carbon stock. Although such crops are often held to be in competition with food crops and thus raise the question of current and future food security, at the same time mitigation measures are required to tackle climate change and sustain local farming communities and crop production. However, in some cases the actions envisaged for specific pedo-climatic conditions are not always economically sustainable by farmers. In this frame, energy crops with high environmental adaptability and yields, such as giant reed (Arundo donax L.), may represent an opportunity to improve farm incomes, making marginal areas not suitable for food production once again productive. In so doing, three of the 17 Sustainable Development Goals (SDGs) of the United Nations would be met, namely SDG 2 on food security and sustainable agriculture, SDG 7 on reliable, sustainable and modern energy, and SDG 13 on action to combat climate change and its impacts. In this work, the response of giant reed in the marginal areas of an agricultural district of southern Italy (Destra Sele) and expected farm incomes under climate change (2021-2050) are evaluated. The normalized water productivity index of giant reed was determined (WP; 30.1gm -2 ) by means of a SWAP agro-hydrological model, calibrated and validated on two years of a long-term field experiment. The model was used to estimate giant reed response (biomass yield) in marginal areas under climate change, and economic evaluation was performed to determine expected farm incomes (woodchips and chopped forage). The results show that woodchip production represents the most profitable option for farmers, yielding a gross margin 50% lower than ordinary high-input maize cultivation across the study area. Copyright © 2017 Elsevier B.V. All rights reserved.
Assessing methods for developing crop forecasting in the Iberian Peninsula
NASA Astrophysics Data System (ADS)
Ines, A. V. M.; Capa Morocho, M. I.; Baethgen, W.; Rodriguez-Fonseca, B.; Han, E.; Ruiz Ramos, M.
2015-12-01
Seasonal climate prediction may allow predicting crop yield to reduce the vulnerability of agricultural production to climate variability and its extremes. It has been already demonstrated that seasonal climate predictions at European (or Iberian) scale from ensembles of global coupled climate models have some skill (Palmer et al., 2004). The limited predictability that exhibits the atmosphere in mid-latitudes, and therefore de Iberian Peninsula (PI), can be managed by a probabilistic approach based in terciles. This study presents an application for the IP of two methods for linking tercile-based seasonal climate forecasts with crop models to improve crop predictability. Two methods were evaluated and applied for disaggregating seasonal rainfall forecasts into daily weather realizations: 1) a stochastic weather generator and 2) a forecast tercile resampler. Both methods were evaluated in a case study where the impacts of two seasonal rainfall forecasts (wet and dry forecast for 1998 and 2015 respectively) on rainfed wheat yield and irrigation requirements of maize in IP were analyzed. Simulated wheat yield and irrigation requirements of maize were computed with the crop models CERES-wheat and CERES-maize which are included in Decision Support System for Agrotechnology Transfer (DSSAT v.4.5, Hoogenboom et al., 2010). Simulations were run at several locations in Spain where the crop model was calibrated and validated with independent field data. These methodologies would allow quantifying the benefits and risks of a seasonal climate forecast to potential users as farmers, agroindustry and insurance companies in the IP. Therefore, we would be able to establish early warning systems and to design crop management adaptation strategies that take advantage of favorable conditions or reduce the effect of adverse ones. ReferencesPalmer, T. et al., 2004. Development of a European multimodel ensemble system for seasonal-to-interannual prediction (DEMETER). Bulletin of the American Meteorological Society, 85(6): 853-872.
Setting priorities for land management to mitigate climate change
2012-01-01
Background No consensus has been reached how to measure the effectiveness of climate change mitigation in the land-use sector and how to prioritize land use accordingly. We used the long-term cumulative and average sectorial C stocks in biomass, soil and products, C stock changes, the substitution of fossil energy and of energy-intensive products, and net present value (NPV) as evaluation criteria for the effectiveness of a hectare of productive land to mitigate climate change and produce economic returns. We evaluated land management options using real-life data of Thuringia, a region representative for central-western European conditions, and input from life cycle assessment, with a carbon-tracking model. We focused on solid biomass use for energy production. Results In forestry, the traditional timber production was most economically viable and most climate-friendly due to an assumed recycling rate of 80% of wood products for bioenergy. Intensification towards "pure bioenergy production" would reduce the average sectorial C stocks and the C substitution and would turn NPV negative. In the forest conservation (non-use) option, the sectorial C stocks increased by 52% against timber production, which was not compensated by foregone wood products and C substitution. Among the cropland options wheat for food with straw use for energy, whole cereals for energy, and short rotation coppice for bioenergy the latter was most climate-friendly. However, specific subsidies or incentives for perennials would be needed to favour this option. Conclusions When using the harvested products as materials prior to energy use there is no climate argument to support intensification by switching from sawn-wood timber production towards energy-wood in forestry systems. A legal framework would be needed to ensure that harvested products are first used for raw materials prior to energy use. Only an effective recycling of biomaterials frees land for long-term sustained C sequestration by conservation. Reuse cascades avoid additional emissions from shifting production or intensification. PMID:22423646
Do Community-based Institutions Build Resilience to Climate Change in Mongolia?
NASA Astrophysics Data System (ADS)
Fernandez-Gimenez, M.
2012-12-01
Climate change impacts are inherently local, yet relatively little is known about the role of local people and institutions in adapting to climate change. Mongolia has experienced one of the strongest warming trends on Earth over the past 40 years, associated declines in streamflow, and increases in the frequency of extreme winter weather events. Environmental changes are compounded by rapid political, economic and social transformations beginning in 1990. We investigate the complex interactions of social, ecological and climate changes across multiple levels from local to regional to national. We hypothesize that community-based institutions increase resilience by strengthening self-regulating feedbacks between social and ecological systems through development and enforcement of formal management rules, implementation of innovative management practices, strengthening of social networks and information exchange within and across levels of social organization, and enhanced monitoring. These result in better ecological and socio-economic conditions and greater adaptive capacity in areas under formal community-based management compared to adjacent areas without formal community management institutions. Evaluation of this hypothesis involves integrated collection and analysis of quantitative and qualitative ecological, social and hydro-climatic data at household, community and regional levels of spatial and social organization. Here, we present preliminary results evaluating these hypotheses from 10 counties (soum) in 3 provinces (aimag) in the Gobi desert-steppe of southern Mongolia based on household-level social data and plot-level ecological data representing. Our initial findings support the hypothesis that community-based institutions are associated with greater household adaptive capacity and healthier pasture ecological conditions, characterized by greater perennial vegetation cover and biomass, especially in the functional group most important for livestock production, grasses. Our results suggest that even in the Gobi desert-steppe, where inter-annual variations in climate and vegetation production are high, formal community-based management institutions may play an important role in enhancing the adaptive capacity of social-ecological systems.