Engineering studies in support of the development of high-speed track geometry specifications
DOT National Transportation Integrated Search
1997-03-01
The Federal Railroad Administration has been directing engineering studies to support the development of high speed track geometry standards. These standards are intended to cover train operating speeds from 110 mph to 200 mph. The studies conducted ...
Miniature high speed compressor having embedded permanent magnet motor
NASA Technical Reports Server (NTRS)
Zhou, Lei (Inventor); Zheng, Liping (Inventor); Chow, Louis (Inventor); Kapat, Jayanta S. (Inventor); Wu, Thomas X. (Inventor); Kota, Krishna M. (Inventor); Li, Xiaoyi (Inventor); Acharya, Dipjyoti (Inventor)
2011-01-01
A high speed centrifugal compressor for compressing fluids includes a permanent magnet synchronous motor (PMSM) having a hollow shaft, the being supported on its ends by ball bearing supports. A permanent magnet core is embedded inside the shaft. A stator with a winding is located radially outward of the shaft. The PMSM includes a rotor including at least one impeller secured to the shaft or integrated with the shaft as a single piece. The rotor is a high rigidity rotor providing a bending mode speed of at least 100,000 RPM which advantageously permits implementation of relatively low-cost ball bearing supports.
High-Speed Sealift Technology. Volume 1
1998-09-01
performance of high - speed commercial and military sealift ships , in advance of detailed design studies, in order to help define realistic future mission...Therefore, the viability of new High - Speed Sealift (HSS) ships (oceangoing cargo vessels capable of at least 40 kt that are able to onload and offload... propulsion power for dynamically supported concepts) VK = average ship speed for a voyage (i.e., sustained or service speed )
Scientific Visualization in High Speed Network Environments
NASA Technical Reports Server (NTRS)
Vaziri, Arsi; Kutler, Paul (Technical Monitor)
1997-01-01
In several cases, new visualization techniques have vastly increased the researcher's ability to analyze and comprehend data. Similarly, the role of networks in providing an efficient supercomputing environment have become more critical and continue to grow at a faster rate than the increase in the processing capabilities of supercomputers. A close relationship between scientific visualization and high-speed networks in providing an important link to support efficient supercomputing is identified. The two technologies are driven by the increasing complexities and volume of supercomputer data. The interaction of scientific visualization and high-speed networks in a Computational Fluid Dynamics simulation/visualization environment are given. Current capabilities supported by high speed networks, supercomputers, and high-performance graphics workstations at the Numerical Aerodynamic Simulation Facility (NAS) at NASA Ames Research Center are described. Applied research in providing a supercomputer visualization environment to support future computational requirements are summarized.
Hudson, Penny E; Corr, Sandra A; Wilson, Alan M
2012-07-15
The cheetah and racing greyhound are of a similar size and gross morphology and yet the cheetah is able to achieve a far higher top speed. We compared the kinematics and kinetics of galloping in the cheetah and greyhound to investigate how the cheetah can attain such remarkable maximum speeds. This also presented an opportunity to investigate some of the potential limits to maximum running speed in quadrupeds, which remain poorly understood. By combining force plate and high speed video data of galloping cheetahs and greyhounds, we show how the cheetah uses a lower stride frequency/longer stride length than the greyhound at any given speed. In some trials, the cheetahs used swing times as low as those of the greyhounds (0.2 s) so the cheetah has scope to use higher stride frequencies (up to 4.0 Hz), which may contribute to it having a higher top speed that the greyhound. Weight distribution between the animal's limbs varied with increasing speed. At high speed, the hindlimbs support the majority of the animal's body weight, with the cheetah supporting 70% of its body weight on its hindlimbs at 18 m s(-1); however, the greyhound hindlimbs support just 62% of its body weight. Supporting a greater proportion of body weight on a particular limb is likely to reduce the risk of slipping during propulsive efforts. Our results demonstrate several features of galloping and highlight differences between the cheetah and greyhound that may account for the cheetah's faster maximum speeds.
NASA Technical Reports Server (NTRS)
Brown, Gerald V.; Kascak, Albert F.; Jansen, Ralph H.; Dever, Timothy P.; Duffy, Kirsten P.
2006-01-01
For magnetic-bearing-supported high-speed rotating machines with significant gyroscopic effects, it is necessary to stabilize forward and backward tilt whirling modes. Instability or low damping of these modes can prevent the attainment of desired shaft speed. We show analytically that both modes can be stabilized by using cross-axis proportional gains and high- and low-pass filters in the magnetic bearing controller. Furthermore, at high shaft speeds, where system phase lags degrade the stability of the forward-whirl mode, a phasor advance of the control signal can partially counteract the phase lag. In some range of high shaft speed, the derivative gain for the tilt modes (essential for stability for slowly rotating shafts) can be removed entirely. We show analytically how the tilt eigenvalues depend on shaft speed and on various controller feedback parameters.
Providing a parallel and distributed capability for JMASS using SPEEDES
NASA Astrophysics Data System (ADS)
Valinski, Maria; Driscoll, Jonathan; McGraw, Robert M.; Meyer, Bob
2002-07-01
The Joint Modeling And Simulation System (JMASS) is a Tri-Service simulation environment that supports engineering and engagement-level simulations. As JMASS is expanded to support other Tri-Service domains, the current set of modeling services must be expanded for High Performance Computing (HPC) applications by adding support for advanced time-management algorithms, parallel and distributed topologies, and high speed communications. By providing support for these services, JMASS can better address modeling domains requiring parallel computationally intense calculations such clutter, vulnerability and lethality calculations, and underwater-based scenarios. A risk reduction effort implementing some HPC services for JMASS using the SPEEDES (Synchronous Parallel Environment for Emulation and Discrete Event Simulation) Simulation Framework has recently concluded. As an artifact of the JMASS-SPEEDES integration, not only can HPC functionality be brought to the JMASS program through SPEEDES, but an additional HLA-based capability can be demonstrated that further addresses interoperability issues. The JMASS-SPEEDES integration provided a means of adding HLA capability to preexisting JMASS scenarios through an implementation of the standard JMASS port communication mechanism that allows players to communicate.
Sea Basing and Alternatives for Deploying and Sustaining Ground Combat Forces
2007-07-01
speed roll-on/roll-off ship (top) and an intratheater high - speed vessel (bottom) are shown alongside a notional mobile landing platform (center...F), might be needed to fully support sea-based ground forces. Those other ships could include tankers and high - speed ships for spe- cial cargo . The...maritime prepositioning squadron; T-HSS = high - speed ship ; TBD = to be determined. Vehicles Cargo Aircraft (Thousands of (Thousands
A High-Speed Design of Montgomery Multiplier
NASA Astrophysics Data System (ADS)
Fan, Yibo; Ikenaga, Takeshi; Goto, Satoshi
With the increase of key length used in public cryptographic algorithms such as RSA and ECC, the speed of Montgomery multiplication becomes a bottleneck. This paper proposes a high speed design of Montgomery multiplier. Firstly, a modified scalable high-radix Montgomery algorithm is proposed to reduce critical path. Secondly, a high-radix clock-saving dataflow is proposed to support high-radix operation and one clock cycle delay in dataflow. Finally, a hardware-reused architecture is proposed to reduce the hardware cost and a parallel radix-16 design of data path is proposed to accelerate the speed. By using HHNEC 0.25μm standard cell library, the implementation results show that the total cost of Montgomery multiplier is 130 KGates, the clock frequency is 180MHz and the throughput of 1024-bit RSA encryption is 352kbps. This design is suitable to be used in high speed RSA or ECC encryption/decryption. As a scalable design, it supports any key-length encryption/decryption up to the size of on-chip memory.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hwang, Min; Muljadi, Eduard; Jang, Gilsoo
This paper proposes a disturbance-adaptive short-term frequency support scheme of a doubly fed induction generator (DFIG) that can improve the frequency-supporting capability while ensuring stable operation. In the proposed scheme, the output of the additional control loop is determined as the product of the frequency deviation and adaptive gain, which is modified depending on the rate of change of frequency (ROCOF) and rotor speed. To achieve these objectives, the adaptive gain is set to be high during the early stage of a disturbance, when the ROCOF and rotor speed are high. Until the frequency nadir (FN), the gain decreases withmore » the ROCOF and rotor speed. After the FN, the gain decreases only with the rotor speed. The simulation results demonstrate that the proposed scheme improves the FN and maximum ROCOF while ensuring the stable operation of a DFIG under various wind conditions irrespective of the disturbance conditions by adaptively changing the control gain with the ROCOF and rotor speed, even if the wind speed decreases and a consecutive disturbance occurs.« less
Open tube guideway for high speed air cushioned vehicles
NASA Technical Reports Server (NTRS)
Goering, R. S. (Inventor)
1974-01-01
This invention is a tubular shaped guideway for high-speed air-cushioned supported vehicles. The tubular guideway is split and separated such that the sides of the guideway are open. The upper portion of the tubular guideway is supported above the lower portion by truss-like structural members. The lower portion of the tubular guideway may be supported by the terrain over which the vehicle travels, on pedestals or some similar structure.
Fabrication and Testing of High-Speed-Single-Rotor and Compound-Rotor Systems
2016-05-04
pitch link loads, hub loads, rotor wakes and performance of high -speed single-rotor and compound-rotor systems to support 1. REPORT DATE (DD-MM-YYYY) 4...Public Release; Distribution Unlimited UU UU UU UU 05-04-2016 14-Jul-2014 13-Jan-2016 Final Report: Fabrication and Testing of High -Speed Single- Rotor and...Final Report: Fabrication and Testing of High -Speed Single-Rotor and Compound-Rotor Systems Report Title The Alfred Gessow Rotorcraft Center has
Fabrication and Testing of High-Speed Single-Rotor and Compound-Rotor Systems
2016-04-05
pitch link loads, hub loads, rotor wakes and performance of high -speed single-rotor and compound-rotor systems to support 1. REPORT DATE (DD-MM-YYYY) 4...Public Release; Distribution Unlimited UU UU UU UU 05-04-2016 14-Jul-2014 13-Jan-2016 Final Report: Fabrication and Testing of High -Speed Single- Rotor and...Final Report: Fabrication and Testing of High -Speed Single-Rotor and Compound-Rotor Systems Report Title The Alfred Gessow Rotorcraft Center has
Investigation of the effects of sleeper-passing impacts on the high-speed train
NASA Astrophysics Data System (ADS)
Wu, Xingwen; Cai, Wubin; Chi, Maoru; Wei, Lai; Shi, Huailong; Zhu, Minhao
2015-12-01
The sleeper-passing impact has always been considered negligible in normal conditions, while the experimental data obtained from a High-speed train in a cold weather expressed significant sleeper-passing impacts on the axle box, bogie frame and car body. Therefore, in this study, a vertical coupled vehicle/track dynamic model was developed to investigate the sleeper-passing impacts and its effects on the dynamic performance of the high-speed train. In the model, the dynamic model of vehicle is established with 10 degrees of freedom. The track model is formulated with two rails supported on the discrete supports through the finite element method. The contact forces between the wheel and rail are estimated using the non-linear Hertz contact theory. The parametric studies are conducted to analyse effects of both the vehicle speeds and the discrete support stiffness on the sleeper-passing impacts. The results show that the sleeper-passing impacts become extremely significant with the increased support stiffness of track, especially when the frequencies of sleeper-passing impacts approach to the resonance frequencies of wheel/track system. The damping of primary suspension can effectively lower the magnitude of impacts in the resonance speed ranges, but has little effect on other speed ranges. Finally, a more comprehensively coupled vehicle/track dynamic model integrating with a flexible wheel set is developed to discuss the sleeper-passing-induced flexible vibration of wheel set.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-14
... the Chicago, IL to St. Louis, MO High Speed Rail Program Corridor AGENCY: Federal Railroad... (EIS) for the Chicago, IL to St. Louis, MO High Speed Rail Corridor Program in compliance with the... Joliet and St. Louis to support additional passenger trains. The EIS will consider increasing the number...
Perceived Benefits and Barriers to the Use of High-Speed Broadband in Ireland's Second-Level Schools
ERIC Educational Resources Information Center
Coyne, Bryan; Devitt, Niamh; Lyons, Seán; McCoy, Selina
2015-01-01
As part of Ireland's National Digital Strategy, high-speed broadband is being rolled out to all second-level schools to support greater use of information and communication technology (ICT) in education. This programme signals a move from slow and unreliable broadband connections for many schools to a guaranteed high-speed connection with…
A CBO Study. Sea Basing and Alternatives for Deploying and Sustaining Ground Combat Forces
2007-07-01
ships in the planned MPF(F) will not be large enough to receive aircraft capable of delivering cargo over intercontinental ranges. A high - speed ... speed roll-on/roll-off ship (top) and an intratheater high - speed vessel (bottom) are shown alongside a notional mobile landing platform (center) with...might be needed to fully support sea-based ground forces. Those other ships could include tankers and high - speed ships for spe- cial
NASA Technical Reports Server (NTRS)
Licht, L.
1978-01-01
Flexible surface thrust and journal foil bearings were fabricated, and their performance was demonstrated, both individually and jointly as a unified rotor support system. Experimental results are documented with graphs and oscilloscopic data of trajectories, waveforms, and scans of amplitude response. At speeds of 40,000 to 45,000 rpm and a mean clearance of the order of 15 to 20 micrometers (600 to 800 micrometers, the resilient, air lubricated, spiral groove thrust bearings support a load of 127 N (29 lb; 13 kgf), equivalent to 3.0 N/sq cm (4.5 lb/sq in 0.31 kgf sq cm). Journal bearings with polygonal sections provided stable and highly damped supports at speeds up to 50,000 rpm.
NASA Technical Reports Server (NTRS)
Tobagi, Fouad A.; Dalgic, Ismail; Pang, Joseph
1990-01-01
The design and implementation of interface units for high speed Fiber Optic Local Area Networks and Broadband Integrated Services Digital Networks are discussed. During the last years, a number of network adapters that are designed to support high speed communications have emerged. This approach to the design of a high speed network interface unit was to implement package processing functions in hardware, using VLSI technology. The VLSI hardware implementation of a buffer management unit, which is required in such architectures, is described.
NASA Technical Reports Server (NTRS)
Jansen, Mark; Montague, Gerald; Provenza, Andrew; Palazzolo, Alan
2004-01-01
Closed loop operation of a single, high temperature magnetic radial bearing to 30,000 RPM (2.25 million DN) and 540 C (1000 F) is discussed. Also, high temperature, fault tolerant operation for the three axis system is examined. A novel, hydrostatic backup bearing system was employed to attain high speed, high temperature, lubrication free support of the entire rotor system. The hydrostatic bearings were made of a high lubricity material and acted as journal-type backup bearings. New, high temperature displacement sensors were successfully employed to monitor shaft position throughout the entire temperature range and are described in this paper. Control of the system was accomplished through a stand alone, high speed computer controller and it was used to run both the fault-tolerant PID and active vibration control algorithms.
Safety of advanced braking concepts for high speed ground transportation systems
DOT National Transportation Integrated Search
1995-09-01
The objective of this study is to develop qualitative and quantitative information on the various braking strategies used in high-speed ground transportation systems in support of the Federal Railroad Administration (FRA). The apporach employed in th...
High-speed and high-fidelity system and method for collecting network traffic
Weigle, Eric H [Los Alamos, NM
2010-08-24
A system is provided for the high-speed and high-fidelity collection of network traffic. The system can collect traffic at gigabit-per-second (Gbps) speeds, scale to terabit-per-second (Tbps) speeds, and support additional functions such as real-time network intrusion detection. The present system uses a dedicated operating system for traffic collection to maximize efficiency, scalability, and performance. A scalable infrastructure and apparatus for the present system is provided by splitting the work performed on one host onto multiple hosts. The present system simultaneously addresses the issues of scalability, performance, cost, and adaptability with respect to network monitoring, collection, and other network tasks. In addition to high-speed and high-fidelity network collection, the present system provides a flexible infrastructure to perform virtually any function at high speeds such as real-time network intrusion detection and wide-area network emulation for research purposes.
Zheng, Chenguang; Bieri, Kevin Wood; Trettel, Sean Gregory; Colgin, Laura Lee
2015-01-01
In hippocampal area CA1 of rats, the frequency of gamma activity has been shown to increase with running speed (Ahmed and Mehta, 2012). This finding suggests that different gamma frequencies simply allow for different timings of transitions across cell assemblies at varying running speeds, rather than serving unique functions. However, accumulating evidence supports the conclusion that slow (~25–55 Hz) and fast (~60–100 Hz) gamma are distinct network states with different functions. If slow and fast gamma constitute distinct network states, then it is possible that slow and fast gamma frequencies are differentially affected by running speed. In this study, we tested this hypothesis and found that slow and fast gamma frequencies change differently as a function of running speed in hippocampal areas CA1 and CA3, and in the superficial layers of the medial entorhinal cortex (MEC). Fast gamma frequencies increased with increasing running speed in all three areas. Slow gamma frequencies changed significantly less across different speeds. Furthermore, at high running speeds, CA3 firing rates were low, and MEC firing rates were high, suggesting that CA1 transitions from CA3 inputs to MEC inputs as running speed increases. These results support the hypothesis that slow and fast gamma reflect functionally distinct states in the hippocampal network, with fast gamma driven by MEC at high running speeds and slow gamma driven by CA3 at low running speeds. PMID:25601003
Godi, Marco; Giardini, Marica; Arcolin, Ilaria; Nardone, Antonio; Giordano, Andrea; Schieppati, Marco
2018-01-01
Background Several patients with Parkinson´s disease (PD) can walk normally along straight trajectories, and impairment in their stride length and cadence may not be easily discernible. Do obvious abnormalities occur in these high-functioning patients when more challenging trajectories are travelled, such as circular paths, which normally implicate a graded modulation in the duration of the interlimb gait cycle phases? Methods We compared a cohort of well-treated mildly to moderately affected PD patients to a group of age-matched healthy subjects (HS), by deliberately including HS spontaneously walking at the same speed of the patients with PD. All participants performed, in random order: linear and circular walking (clockwise and counter-clockwise) at self-selected speed. By means of pressure-sensitive insoles, we recorded walking speed, cadence, duration of single support, double support, swing phase, and stride time. Stride length-cadence relationships were built for linear and curved walking. Stride-to-stride variability of temporal gait parameters was also estimated. Results Walking speed, cadence or stride length were not different between PD and HS during linear walking. Speed, cadence and stride length diminished during curved walking in both groups, stride length more in PD than HS. In PD compared to HS, the stride length-cadence relationship was altered during curved walking. Duration of the double-support phase was also increased during curved walking, as was variability of the single support, swing phase and double support phase. Conclusion The spatio-temporal gait pattern and variability are significantly modified in well-treated, high-functioning patients with PD walking along circular trajectories, even when they exhibit no changes in speed in straight-line walking. The increased variability of the gait phases during curved walking is an identifying characteristic of PD. We discuss our findings in term of interplay between control of balance and of locomotor progression: the former is challenged by curved trajectories even in high-functioning patients, while the latter may not be critically affected. PMID:29750815
A decision support system using combined-classifier for high-speed data stream in smart grid
NASA Astrophysics Data System (ADS)
Yang, Hang; Li, Peng; He, Zhian; Guo, Xiaobin; Fong, Simon; Chen, Huajun
2016-11-01
Large volume of high-speed streaming data is generated by big power grids continuously. In order to detect and avoid power grid failure, decision support systems (DSSs) are commonly adopted in power grid enterprises. Among all the decision-making algorithms, incremental decision tree is the most widely used one. In this paper, we propose a combined classifier that is a composite of a cache-based classifier (CBC) and a main tree classifier (MTC). We integrate this classifier into a stream processing engine on top of the DSS such that high-speed steaming data can be transformed into operational intelligence efficiently. Experimental results show that our proposed classifier can return more accurate answers than other existing ones.
Computer Analysis Of High-Speed Roller Bearings
NASA Technical Reports Server (NTRS)
Coe, H.
1988-01-01
High-speed cylindrical roller-bearing analysis program (CYBEAN) developed to compute behavior of cylindrical rolling-element bearings at high speeds and with misaligned shafts. With program, accurate assessment of geometry-induced roller preload possible for variety of out-ring and housing configurations and loading conditions. Enables detailed examination of bearing performance and permits exploration of causes and consequences of bearing skew. Provides general capability for assessment of designs of bearings supporting main shafts of engines. Written in FORTRAN IV.
Differential Velocity between Solar Wind Protons and Alpha Particles in Pressure Balance Structures
NASA Technical Reports Server (NTRS)
Yamauchi, Yohei; Suess, Steven T.; Steinberg, John T.; Sakurai, Takashi
2004-01-01
Pressure balance structures (PBSs) are a common high-plasma beta feature in high-latitude, high-speed solar wind. They have been proposed as remnants of coronal plumes. If true, they should reflect the observation that plumes are rooted in unipolar magnetic flux concentrations in the photosphere and are heated as oppositely directed flux is advected into and reconnects with the flux concentration. A minimum variance analysis (MVA) of magnetic discontinuities in PBSs showed there is a larger proportion of tangential discontinuities than in the surrounding high-speed wind, supporting the hypothesis that plasmoids or extended current sheets are formed during reconnection at the base of plumes. To further evaluate the character of magnetic field discontinuities in PBSs, differential streaming between alpha particles and protons is analyzed here for the same sample of PBSs used in the MVA. Alpha particles in high-speed wind generally have a higher radial flow speed than protons. However, if the magnetic field is folded back on itself, as in a large-amplitude Alfven wave, alpha particles will locally have a radial flow speed less than protons. This characteristic is used here to distinguish between folded back magnetic fields (which would contain rotational discontinuities) and tangential discontinuities using Ulysses high-latitude, high-speed solar wind data. The analysis indicates that almost all reversals in the radial magnetic field in PBSs are folded back field lines. This is found to also be true outside PBSs, supporting existing results for typical high-speed, high-latitude wind. There remains a small number of cases that appear not to be folds in the magnetic field and which may be flux tubes with both ends rooted in the Sun. The distinct difference in MVA results inside and outside PBSs remains unexplained.
Differential Velocity Between Solar Wind Protons and Alpha Particles in Pressure Balance Structures
NASA Technical Reports Server (NTRS)
Yamauchi, Y.; Suess, S. T.; Steinberg, J. T.; Sakurai, T.
2003-01-01
Pressure balance structures (PBSs) are a common high plasma beta feature in high latitude, high speed solar wind. They have been proposed as remnants of coronal plumes. If true, they should reflect the observation that plumes are rooted in unipolar magnetic flux concentrations in the photosphere and are heated as oppositely directed flux is advected into and reconnects with the flux concentration. A minimum variance analysis (MVA) of magnetic discontinuities in PBSs showed there is a larger proportion of tangential discontinuities than in the surrounding high speed wind, supporting the hypothesis that plasmoids or extended current sheets are formed during reconnection at the base of plumes. To further evaluate the character of magnetic field discontinuities in PBSs, differential streaming between alpha particles and protons is analyzed here for the same sample of PBSs used in the MVA. Alpha particles in high speed wind generally have a higher radial flow speed than protons. However, if the magnetic field is folded back on itself, as in a large amplitude Alfven wave, alpha particles will locally have a radial flow speed less than protons. This characteristic is used here to distinguish between folded back magnetic fields (which would contain rotational discontinuities) and tangential discontinuities using Ulysses high latitude, high speed solar wind data. The analysis indicates that almost all reversals in the radial magnetic field in PBSs are folded back field lines. This is found to also be true outside PBSs, supporting existing results for typical high speed, high latitude wind. There remains a small number of cases that appear not to be folds in the magnetic field and which may be flux tubes with both ends rooted in the Sun. The distinct difference in MVA results inside and outside PBSs remains unexplained.
High-speed photodetectors in optical communication system
NASA Astrophysics Data System (ADS)
Zhao, Zeping; Liu, Jianguo; Liu, Yu; Zhu, Ninghua
2017-12-01
This paper presents a review and discussion for high-speed photodetectors and their applications on optical communications and microwave photonics. A detailed and comprehensive demonstration of high-speed photodetectors from development history, research hotspots to packaging technologies is provided to the best of our knowledge. A few typical applications based on photodetectors are also illustrated, such as free-space optical communications, radio over fiber and millimeter terahertz signal generation systems. Project supported by the Preeminence Youth Fund of China (No. 61625504).
High-speed cell recognition algorithm for ultrafast flow cytometer imaging system.
Zhao, Wanyue; Wang, Chao; Chen, Hongwei; Chen, Minghua; Yang, Sigang
2018-04-01
An optical time-stretch flow imaging system enables high-throughput examination of cells/particles with unprecedented high speed and resolution. A significant amount of raw image data is produced. A high-speed cell recognition algorithm is, therefore, highly demanded to analyze large amounts of data efficiently. A high-speed cell recognition algorithm consisting of two-stage cascaded detection and Gaussian mixture model (GMM) classification is proposed. The first stage of detection extracts cell regions. The second stage integrates distance transform and the watershed algorithm to separate clustered cells. Finally, the cells detected are classified by GMM. We compared the performance of our algorithm with support vector machine. Results show that our algorithm increases the running speed by over 150% without sacrificing the recognition accuracy. This algorithm provides a promising solution for high-throughput and automated cell imaging and classification in the ultrafast flow cytometer imaging platform. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
High-speed cell recognition algorithm for ultrafast flow cytometer imaging system
NASA Astrophysics Data System (ADS)
Zhao, Wanyue; Wang, Chao; Chen, Hongwei; Chen, Minghua; Yang, Sigang
2018-04-01
An optical time-stretch flow imaging system enables high-throughput examination of cells/particles with unprecedented high speed and resolution. A significant amount of raw image data is produced. A high-speed cell recognition algorithm is, therefore, highly demanded to analyze large amounts of data efficiently. A high-speed cell recognition algorithm consisting of two-stage cascaded detection and Gaussian mixture model (GMM) classification is proposed. The first stage of detection extracts cell regions. The second stage integrates distance transform and the watershed algorithm to separate clustered cells. Finally, the cells detected are classified by GMM. We compared the performance of our algorithm with support vector machine. Results show that our algorithm increases the running speed by over 150% without sacrificing the recognition accuracy. This algorithm provides a promising solution for high-throughput and automated cell imaging and classification in the ultrafast flow cytometer imaging platform.
ERIC Educational Resources Information Center
Lee, Victor R.
2015-01-01
Biomechanics, and specifically the biomechanics associated with human movement, is a potentially rich backdrop against which educators can design innovative science teaching and learning activities. Moreover, the use of technologies associated with biomechanics research, such as high-speed cameras that can produce high-quality slow-motion video,…
State K-12 Broadband Leadership: Driving Connectivity and Access
ERIC Educational Resources Information Center
Fox, Christine; Jones, Rachel
2016-01-01
In this report, State Educational Technology Directors Association (SETDA) builds upon the research and recommendations from prior publications with a focus on the role of state leadership in supporting districts and schools to increase high-speed connectivity and access for students and educators. SETDA firmly believes that high-speed broadband…
Horvath, C; Lewis, I; Watson, B
2012-03-01
In Australia, young drivers aged 17-24 years, and particularly males, have the highest risk of being involved in a fatal crash. Investigation of young drivers' beliefs allows for a greater understanding of their involvement in risky behaviours, such as speeding, as beliefs are associated with intentions, the antecedent to behaviour. The theory of planned behaviour (TPB) was used to conceptualise beliefs using a scenario based questionnaire distributed to licenced drivers (N=398). The questionnaire measured individual's beliefs and intentions to speed in a particular situation. Consistent with a TPB-based approach, the beliefs of those with low intentions to speed ('low intenders') were compared with the beliefs of those with high intentions ('high intenders') with such comparisons conducted separately for males and females. Overall, significant differences in the beliefs held by low and high intenders and for both females and males were found. Specifically, for females, it was found that high intenders were significantly more likely to perceive advantages of speeding, less likely to perceive disadvantages, and more likely to be encouraged to speed on familiar and inappropriately signed roads than female low intenders. Females, however, did not differ in their perceptions of support from friends, with all females reporting some level of disapproval from most friends and all females (i.e., low and high intenders) reporting approval to speed from their male friends. The results for males revealed that high intenders were significantly more likely to speed on familiar and inappropriately signed roads as well as having greater perceptions of support from all friends, except from those friends with whom they worked. Low and high intending males did not differ in their perceptions of the advantages and disadvantages of speeding, with the exception of feelings of excitement whereby high intenders reported speeding to be more exciting than low intenders. The findings are discussed in terms of how they may directly inform the content of mass media and public education campaigns aimed at encouraging young drivers to slow down. Copyright © 2011 Elsevier Ltd. All rights reserved.
Design project: LONGBOW supersonic interceptor
NASA Technical Reports Server (NTRS)
Stoney, Robert; Baker, Matt; Capstaff, Joseph G.; Dishman, Robert; Fick, Gregory; Frick, Stephen N.; Kelly, Mark
1993-01-01
A recent white paper entitled 'From the Sea' has spotlighted the need for Naval Aviation to provide overland support to joint operations. The base for this support, the Aircraft Carrier (CVN), will frequently be unable to operate within close range of the battleground because of littoral land-based air and subsurface threats. A high speed, long range, carrier capable aircraft would allow the CVN to provide timely support to distant battleground operations. Such an aircraft, operating as a Deck-Launched Interceptor (DLI), would also be an excellent counter to Next Generation Russian Naval Aviation (NGRNA) threats consisting of supersonic bombers, such as the Backfire, equipped with the next generation of high-speed, long-range missiles. Additionally, it would serve as an excellent high speed Reconnaissance airplane, capable of providing Battle Force commanders with timely, accurate pre-mission targeting information and post-mission Bomb Damage Assessment (BDA). Recent advances in computational hypersonic airflow modeling has produced a method of defining aircraft shapes that fit a conical shock flow model to maximize the efficiency of the vehicle. This 'Waverider' concept provides one means of achieving long ranges at high speeds. A Request for Proposal (RFP) was issued by Professor Conrad Newberry that contained design requirements for an aircraft to accomplish the above stated missions, utilizing Waverider technology.
Ways of achieving continuous service from computers
NASA Technical Reports Server (NTRS)
Quinn, M. J., Jr.
1974-01-01
This paper outlines the methods used in the real-time computer complex to keep computers operating. Methods include selectover, high-speed restart, and low-speed restart. The hardware and software needed to implement these methods is discussed as well as the system recovery facility, alternate device support, and timeout. In general, methods developed while supporting the Gemini, Apollo, and Skylab space missions are presented.
ERIC Educational Resources Information Center
Newby, Gregory B.
Information technologies such as computer mediated communication (CMC), virtual reality, and telepresence can provide the communication flow required by high-speed management techniques that high-technology industries have adopted in response to changes in the climate of competition. Intra-corporate CMC might be used for a variety of purposes…
Assessing the costs and benefits of alternative approaches to high speed rail.
DOT National Transportation Integrated Search
2013-05-01
With high-speed rail (HSR) on the national agenda in the U.S. for the first time in quite a few : years, and with the support of the executive branch of the US government, it is of value to turn : our attention to studying various alternatives in ter...
Performance of Simple Gas Foil Thrust Bearings in Air
NASA Technical Reports Server (NTRS)
Bruckner, Robert J.
2012-01-01
Foil bearings are self-acting hydrodynamics devices used to support high speed rotating machinery. The advantages that they offer to process fluid lubricated machines include: high rotational speed capability, no auxiliary lubrication system, non-contacting high speed operation, and improved damping as compared to rigid hydrodynamic bearings. NASA has had a sporadic research program in this technology for almost 6 decades. Advances in the technology and understanding of foil journal bearings have enabled several new commercial products in recent years. These products include oil-free turbochargers for both heavy trucks and automobiles, high speed electric motors, microturbines for distributed power generation, and turbojet engines. However, the foil thrust bearing has not received a complimentary level of research and therefore has become the weak link of oil-free turbomachinery. In an effort to both provide machine designers with basic performance parameters and to elucidate the underlying physics of foil thrust bearings, NASA Glenn Research Center has completed an effort to experimentally measure the performance of simple gas foil thrust bearing in air. The database includes simple bump foil supported thrust bearings with full geometry and manufacturing techniques available to the user. Test conditions consist of air at ambient pressure and temperatures up to 500 C and rotational speeds to 55,000 rpm. A complete set of axial load, frictional torque, and rotational speed is presented for two different compliant sub-structures and inter-pad gaps. Data obtained from commercially available foil thrust bearings both with and without active cooling is presented for comparison. A significant observation made possible by this data set is the speed-load capacity characteristic of foil thrust bearings. Whereas for the foil journal bearing the load capacity increases linearly with rotational speed, the foil thrust bearing operates in the hydrodynamic high speed limit. In this case, the load capacity is constant and in fact often decreases with speed if other factors such as thermal conditions and runner distortions are permitted to dominate the bearing performance.
Han, Xuesong; Zhu, Haihong; Nie, Xiaojia; Wang, Guoqing; Zeng, Xiaoyan
2018-01-01
AlSi10Mg inclined struts with angle of 45° were fabricated by selective laser melting (SLM) using different scanning speed and hatch spacing to gain insight into the evolution of the molten pool morphology, surface roughness, and dimensional accuracy. The results show that the average width and depth of the molten pool, the lower surface roughness and dimensional deviation decrease with the increase of scanning speed and hatch spacing. The upper surface roughness is found to be almost constant under different processing parameters. The width and depth of the molten pool on powder-supported zone are larger than that of the molten pool on the solid-supported zone, while the width changes more significantly than that of depth. However, if the scanning speed is high enough, the width and depth of the molten pool and the lower surface roughness almost keep constant as the density is still high. Therefore, high dimensional accuracy and density as well as good surface quality can be achieved simultaneously by using high scanning speed during SLMed cellular lattice strut. PMID:29518900
Joint High Speed Vessel (JHSV) Follow on Operational Test and Evaluation (FOT and E) Report
2015-09-21
Speed Vessel (JHSV) ship class. The events covered in this testing were not performed during the Initial Operational Test and Evaluation ( IOT &E...support boats since launch of these type boats was completed in IOT &E. 1 “Initial Operational Test...and Evaluation ( IOT &E) with Live Fire Test and Evaluation (LFT&E) on Joint High Speed Vessel (JHSV),” DOT&E, July 17, 2014. 2 MLP (CCS) is a heavy
Centrifugally decoupling touchdown bearings
Post, Richard F
2014-06-24
Centrifugally decoupling mechanical bearing systems provide thin tensioned metallic ribbons contained in a support structure. This assembly rotates around a stationary shaft being centered at low speeds by the action of the metal ribbons. Tension springs are connected on one end to the ribbons and on the other end to the support structure. The ribbons pass through slots in the inner ring of the support structure. The spring preloading thus insures contact (or near-contact) between the ribbons and the shaft at rotation speeds below the transition speed. Above this speed, however, the centrifugal force on the ribbons produces a tensile force on them that exceeds the spring tensile force so that the ribbons curve outward, effectively decoupling them from mechanical contact with the shaft. They still remain, however, in position to act as a touchdown bearing in case of abnormally high transverse accelerations.
Introduction of the M-85 high-speed rotorcraft concept
NASA Technical Reports Server (NTRS)
Stroub, Robert H.
1991-01-01
As a result of studying possible requirements for high-speed rotorcraft and studying many high-speed concepts, a new high-speed rotorcraft concept, designated as M-85, was derived. The M-85 is a helicopter that is reconfigured to a fixed-wing aircraft for high-speed cruise. The concept was derived as an approach to enable smooth, stable conversion between fixed-wing and rotary-wing while retaining hover and low-speed flight characteristics of a low disk loading helicopter. The name, M-85, reflects the high-speed goals of 0.85 Mach number at high altitude. For a high-speed rotorcraft, it is expected that a viable concept must be a cruise-efficient, fixed-wing aircraft so it may be attractive for a multiplicity of missions. It is also expected that a viable high-speed rotorcraft concept must be cruise efficient first and secondly, efficient in hover. What makes the M-85 unique is the large circular hub fairing that is large enough to support the aircraft during conversion between rotary-wind and fixed-wing modes. With the aircraft supported by this hub fairing, the rotor blades can be unloaded during the 100 percent change in rotor rpm. With the blades unloaded, the potential for vibratory loads would be lessened. In cruise, the large circular hub fairing would be part of the lifting system with additional lifting panels deployed for better cruise efficiency. In hover, the circular hub fairing would slightly reduce lift potential and/or decrease hover efficiency of the rotor system. The M-85 concept is described and estimated forward flight performance characteristics are presented in terms of thrust requirements and L/D with airspeed. The forward flight performance characteristics reflect recent completed wind tunnel tests of the wing concept. Also presented is a control system technique that is critical to achieving low oscillatory loads in rotary-wing mode. Hover characteristics, C(sub p) versus C(sub T) from test data, is discussed. Other techniques pertinent to the M-85 concept such as passively controlling inplane vibration during starting and stopping of the rotor system, aircraft control system, and rotor drive technologies are discussed.
Combined High-Speed 3D Scalar and Velocity Reconstruction of Hairpin Vortex
NASA Astrophysics Data System (ADS)
Sabatino, Daniel; Rossmann, Tobias; Zhu, Xuanyu; Thorsen, Mary
2017-11-01
The combination of 3D scanning stereoscopic particle image velocimetry (PIV) and 3D Planar Laser Induced Fluorescence (PLIF) is used to create high-speed three-dimensional reconstructions of the scalar and velocity fields of a developing hairpin vortex. The complete description of the regenerating hairpin vortex is needed as transitional boundary layers and turbulent spots are both comprised of and influenced by these vortices. A new high-speed, high power, laser-based imaging system is used which enables both high-speed 3D scanning stereo PIV and PLIF measurements. The experimental system uses a 250 Hz scanning mirror, two high-speed cameras with a 10 kHz frame rate, and a 40 kHz pulsed laser. Individual stereoscopic PIV images and scalar PLIF images are then reconstructed into time-resolved volumetric velocity and scalar data. The results from the volumetric velocity and scalar fields are compared to previous low-speed tomographic PIV data and scalar visualizations to determine the accuracy and fidelity of the high-speed diagnostics. Comparisons between the velocity and scalar field during hairpin development and regeneration are also discussed. Supported by the National Science Foundation under Grant CBET-1531475, Lafayette College,and the McCutcheon Foundation.
NASA Astrophysics Data System (ADS)
Lee, Victor R.
2015-04-01
Biomechanics, and specifically the biomechanics associated with human movement, is a potentially rich backdrop against which educators can design innovative science teaching and learning activities. Moreover, the use of technologies associated with biomechanics research, such as high-speed cameras that can produce high-quality slow-motion video, can be deployed in such a way to support students' participation in practices of scientific modeling. As participants in classroom design experiment, fifteen fifth-grade students worked with high-speed cameras and stop-motion animation software (SAM Animation) over several days to produce dynamic models of motion and body movement. The designed series of learning activities involved iterative cycles of animation creation and critique and use of various depictive materials. Subsequent analysis of flipbooks of human jumping movements created by the students at the beginning and end of the unit revealed a significant improvement in both the epistemic fidelity of students' representations. Excerpts from classroom observations highlight the role that the teacher plays in supporting students' thoughtful reflection of and attention to slow-motion video. In total, this design and research intervention demonstrates that the combination of technologies, activities, and teacher support can lead to improvements in some of the foundations associated with students' modeling.
NASA Technical Reports Server (NTRS)
Donlan, C. J.; Myers, B. C., II; Mattson, A. T.
1976-01-01
The high speed aerodynamic characteristics of a family of four wing-fuselage configurations of 0, 35, 45, and 60 deg sweepback were determined from transonic bump model tests that were conducted in the Langley high speed 7 by 10 foot tunnel; sting supported model tests were conducted in the Langley 8 foot high speed tunnel and in the Langley high speed 7 by 10 foot tunnel, and rocket model tests were conducted by the Langley Pilotless Aircraft Research Division. A complementary study of the effect of Mach number gradients and streamline curvature on bump results is also included. The qualitative data obtained from the various test facilities for the wing-fuselage configurations were in essential agreement as regards the relative effects of sweepback and Mach number except for drag at zero lift. Quantitatively, important differences were present.
Effects of roadside memorials on traffic flow.
Tay, Richard; Churchill, Anthony; de Barros, Alexandre G
2011-01-01
Despite their growing popularity in North America, little research has been conducted on understanding the effects of roadside memorials on drivers' behaviour. In this study, we examined the short-term effects of roadside memorials on traffic speed and headways on a high speed intercity freeway as well as its long-term effect on traffic speed on a high speed urban freeway. Our study found that the placement of roadside memorials did not have any significant effect on traffic speeds or headways, either in the short or long term. Therefore, concerns about the negative effects on driver behaviour were not supported by this research, at least with regards to speeding and following too closely. However, no positive effects on safety were found either. Copyright © 2010 Elsevier Ltd. All rights reserved.
A Study of Quality of Service Communication for High-Speed Packet-Switching Computer Sub-Networks
NASA Technical Reports Server (NTRS)
Cui, Zhenqian
1999-01-01
In this thesis, we analyze various factors that affect quality of service (QoS) communication in high-speed, packet-switching sub-networks. We hypothesize that sub-network-wide bandwidth reservation and guaranteed CPU processing power at endpoint systems for handling data traffic are indispensable to achieving hard end-to-end quality of service. Different bandwidth reservation strategies, traffic characterization schemes, and scheduling algorithms affect the network resources and CPU usage as well as the extent that QoS can be achieved. In order to analyze those factors, we design and implement a communication layer. Our experimental analysis supports our research hypothesis. The Resource ReSerVation Protocol (RSVP) is designed to realize resource reservation. Our analysis of RSVP shows that using RSVP solely is insufficient to provide hard end-to-end quality of service in a high-speed sub-network. Analysis of the IEEE 802.lp protocol also supports the research hypothesis.
Waste heat recovery with ultra high-speed turbomachinery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vakkilainen, E.; Larjola, J.; Lindgren, O.
1984-08-01
A new ORC heat recovery system which converts waste heat to electricity has been developed in Lappeenranta University of Technology with support from Department of Energy in Finnish Ministry of Trade and Industry. Use of ultra high-speed turbomachinery (10 000 rpm - 200 000 rpm) promises lower unit costs, higher efficiencies and fast amortization rate, 2,4 - 3,0 years.
2009-01-01
Additionally, high-speed air bearings have been demonstrated in micromotors (55 000 rpm) and micro-turbomachinery (2 million rpm) [7, 8]. While...without thrust balances [11]. For applications requiring continuous rotation ( micromotors and micropumps) this hydrostatic balancing force can be...conditions for stable actuation of the micromotor leading to maximum speeds. In addition to increased speed, this device demonstrates a substantial
High Resolution Wind Direction and Speed Information for Support of Fire Operations
B.W. Butler; J.M. Forthofer; M.A. Finney; L.S. Bradshaw; R. Stratton
2006-01-01
Computational Fluid Dynamics (CFD) technology has been used to model wind speed and direction in mountainous terrain at a relatively high resolution compared to other readily available technologies. The process termed âgridded windâ is not a forecast, but rather represents a method for calculating the influence of terrain on general wind flows. Gridded wind simulations...
The Impact of High-Speed Internet Connectivity at Home on Eighth-Grade Student Achievement
ERIC Educational Resources Information Center
Kingston, Kent J.
2013-01-01
In the fall of 2008 Westside Community Schools - District 66, in Omaha, Nebraska implemented a one-to-one notebook computer take home model for all eighth-grade students. The purpose of this study was to determine the effect of a required yearlong one-to-one notebook computer program supported by high-speed Internet connectivity at school on (a)…
Modes of thrust generation in flying animals
NASA Astrophysics Data System (ADS)
Luo, Haoxiang; Song, Jialei; Tobalske, Bret; Luo Team; Tobalske Team
2016-11-01
For flying animals in forward flight, thrust is usually much smaller as compared with weight support and has not been given the same amount of attention. Several modes of thrust generation are discussed in this presentation. For insects performing slow flight that is characterized by low advance ratios (i.e., the ratio between flight speed and wing speed), thrust is usually generated by a "backward flick" mode, in which the wings moves upward and backward at a faster speed than the flight speed. Paddling mode is another mode used by some insects like fruit flies who row their wings backward during upstroke like paddles (Ristroph et al., PRL, 2011). Birds wings have high advance ratios and produce thrust during downstroke by directing aerodynamic lift forward. At intermediate advance ratios around one (e.g., hummingbirds and bats), the animal wings generate thrust during both downstroke and upstroke, and thrust generation during upstroke may come at cost of negative weight support. These conclusions are supported by previous experiment studies of insects, birds, and bats, as well as our recent computational modeling of hummingbirds. Supported by the NSF.
Optimization research of railway passenger transfer scheme based on ant colony algorithm
NASA Astrophysics Data System (ADS)
Ni, Xiang
2018-05-01
The optimization research of railway passenger transfer scheme can provide strong support for railway passenger transport system, and its essence is path search. This paper realized the calculation of passenger transfer scheme for high speed railway when giving the time and stations of departure and arrival. The specific method that used were generating a passenger transfer service network of high-speed railway, establishing optimization model and searching by Ant Colony Algorithm. Finally, making analysis on the scheme from LanZhouxi to BeiJingXi which were based on high-speed railway network of China in 2017. The results showed that the transfer network and model had relatively high practical value and operation efficiency.
1984-09-27
more effectively structured and transportable simulation program modules and powerful support software, are already in place for current use. The early...incorporates the various limits and conditions described for the major acceleration categories. (14) Speed Loop This module Is executed when the shaft speed...available, high confidence models and modules . A great leverage is gained by using generally available general purpose computers and associated support
NASCOM system development plan: System description, capabilities, and plans, FY 94-2
NASA Technical Reports Server (NTRS)
1994-01-01
The Nascom System Development Plan (NSDP) for FY 94-2 contains 17 sections. It is a management document containing the approved plan for maintaining the Nascom Network System. Topics covered include an overview of Nascom systems and services, major ground communication support systems, low-speed data system, voice system, high-speed data system, Nascom support for NASA networks, Nascom planning for NASA missions, and network upgrade and advanced systems developments and plans.
High frequency signal acquisition and control system based on DSP+FPGA
NASA Astrophysics Data System (ADS)
Liu, Xiao-qi; Zhang, Da-zhi; Yin, Ya-dong
2017-10-01
This paper introduces a design and implementation of high frequency signal acquisition and control system based on DSP + FPGA. The system supports internal/external clock and internal/external trigger sampling. It has a maximum sampling rate of 400MBPS and has a 1.4GHz input bandwidth for the ADC. Data can be collected continuously or periodically in systems and they are stored in DDR2. At the same time, the system also supports real-time acquisition, the collected data after digital frequency conversion and Cascaded Integrator-Comb (CIC) filtering, which then be sent to the CPCI bus through the high-speed DSP, can be assigned to the fiber board for subsequent processing. The system integrates signal acquisition and pre-processing functions, which uses high-speed A/D, high-speed DSP and FPGA mixed technology and has a wide range of uses in data acquisition and recording. In the signal processing, the system can be seamlessly connected to the dedicated processor board. The system has the advantages of multi-selectivity, good scalability and so on, which satisfies the different requirements of different signals in different projects.
Experimental analysis of a high-speed railway bridge under Thalys trains
NASA Astrophysics Data System (ADS)
Xia, H.; De Roeck, G.; Zhang, N.; Maeck, J.
2003-11-01
In this paper dynamic experiments on the Antoing Bridge located on the high-speed railway line between Paris and Brussels are reported. The experiments were co-operatively carried out by the Northern Jiaotong University from China, the Catholic University of Leuven, the Free University of Brussels and the Belgium Railway Company NMBS-SNCB from Belgium. The bridge is composed of multi-span simply supported PC girders with spans of 50 m and U-shaped sections. The loads are the high-speed Thalys trains with articulated vehicles. The speeds of the Thalys trains were between 265 and 310 km/h. In the experiments, the dynamic responses of the bridge such as the deflections, the accelerations and the strains that were measured by a laser velocity displacement transducer accelerometers and strain gauges, respectively. Many useful results have been obtained from the analysis of the recorded data. The tests and the measured results can be a reference for the study and the design of high-speed railway bridges.
Mamalis, Andrew; Koo, Eugene; Isseroff, R Rivkah; Murphy, William; Jagdeo, Jared
2015-01-01
Skin fibrosis is a significant medical problem that leads to a functional, aesthetic, and psychosocial impact on quality-of-life. Light-emitting diode-generated 633-nm red light (LED-RL) is part of the visible light spectrum that is not known to cause DNA damage and is considered a safe, non-invasive, inexpensive, and portable potential alternative to ultraviolet phototherapy that may change the treatment paradigm of fibrotic skin disease. The goal of our study was to investigate the how reactive oxygen species (ROS) free radicals generated by high fluence LED-RL inhibit the migration of skin fibroblasts, the main cell type involved in skin fibrosis. Fibroblast migration speed is increased in skin fibrosis, and we studied cellular migration speed of cultured human skin fibroblasts as a surrogate measure of high fluence LED-RL effect on fibroblast function. To ascertain the inhibitory role of LED-RL generated ROS on migration speed, we hypothesized that resveratrol, a potent antioxidant, could prevent the photoinhibitory effects of high fluence LED-RL on fibroblast migration speed. High fluence LED-RL generated ROS were measured by flow cytometry analysis using dihydrorhodamine (DHR). For purposes of comparison, we assessed the effects of ROS generated by hydrogen peroxide (H2O2) on fibroblast migration speed and the ability of resveratrol, a well known antioxidant, to prevent LED-RL and H2O2 generated ROS-associated changes in fibroblast migration speed. To determine whether resveratrol could prevent the high fluence LED-RL ROS-mediated photoinhibition of human skin fibroblast migration, treated cells were incubated with resveratrol at concentrations of 0.0001% and 0.001% for 24 hours, irradiated with high fluences LED-RL of 480, 640, and 800 J/cm2. High fluence LED-RL increases intracellular fibroblast ROS and decreases fibroblast migration speed. LED-RL at 480, 640 and 800 J/cm2 increased ROS levels to 132.8%, 151.0%, and 158.4% relative to matched controls, respectively. These LED-RL associated increases in ROS were prevented by pretreating cells with 0.0001% or 0.001% resveratrol. Next, we quantified the effect of hydrogen peroxide (H2O2)-associated ROS on fibroblast migration speed, and found that while H2O2-associated ROS significantly decreased relative fibroblast migration speed, pretreatment with 0.0001% or 0.001% resveratrol significantly prevented the decreases in migration speed. Furthermore, we found that LED-RL at 480, 640 and 800 J/cm2 decreased fibroblast migration speed to 83.0%, 74.4%, and 68.6% relative to matched controls, respectively. We hypothesized that these decreases in fibroblast migration speed were due to associated increases in ROS generation. Pretreatment with 0.0001% and 0.001% resveratrol prevented the LED-RL associated decreases in migration speed. High fluence LED-RL increases ROS and is associated with decreased fibroblast migration speed. We provide mechanistic support that the decreased migration speed associated with high fluence LED-RL is mediated by ROS, by demonstrating that resveratrol prevents high fluence LED-RL associated migration speed change. These data lend support to an increasing scientific body of evidence that high fluence LED-RL has anti-fibrotic properties. We hypothesize that our findings may result in a greater understanding of the fundamental mechanisms underlying visible light interaction with skin and we anticipate clinicians and other researchers may utilize these pathways for patient benefit.
Chen, Xiaona; Gho, Sheridan A; Wang, Jianping; Steele, Julie R
2016-01-01
This study investigated the effect of sports bra type (encapsulation versus compression) and gait speed on perceptions of breast discomfort, bra discomfort and breast movement reported by Chinese women. Visual analogue scales were used to evaluate breast discomfort, bra component discomfort and perceived breast movement of 21 Chinese participants when they wore an encapsulation or a compression sports bra, while static and while exercising at three different gait speeds. Participants perceived less breast discomfort and breast movement when wearing a compression bra compared to an encapsulation bra at a high gait speed, suggesting that compression bras are likely to provide the most effective support for Chinese women. However, significantly higher bra discomfort was perceived in the compression bra compared to the encapsulation bra when static and at the lower gait speed, implying that ways to modify the design of sports bras, particularly the straps, should be investigated to provide adequate and comfortable breast support. The compression sports bra provided more comfortable support than the encapsulation sports bra for these Chinese women when running on a treadmill. However, these women perceived higher bra discomfort when wearing the compression bra when stationary. Further research is needed to modify the design of sports bras, particularly the straps, to provide adequate and comfortable breast support.
High resolution infrared datasets useful for validating stratospheric models
NASA Technical Reports Server (NTRS)
Rinsland, Curtis P.
1992-01-01
An important objective of the High Speed Research Program (HSRP) is to support research in the atmospheric sciences that will improve the basic understanding of the circulation and chemistry of the stratosphere and lead to an interim assessment of the impact of a projected fleet of High Speed Civil Transports (HSCT's) on the stratosphere. As part of this work, critical comparisons between models and existing high quality measurements are planned. These comparisons will be used to test the reliability of current atmospheric chemistry models. Two suitable sets of high resolution infrared measurements are discussed.
Mechanical design problems associated with turbopump fluid film bearings
NASA Technical Reports Server (NTRS)
Evces, Charles R.
1990-01-01
Most high speed cryogenic turbopumps for liquid propulsion rocket engines currently use ball or roller contact bearings for rotor support. The operating speeds, loads, clearances, and environments of these pumps combine to make bearing wear a limiting factor on turbopump life. An example is the high pressure oxygen turbopump (HPOTP) used in the Space Shuttle Main Engine (SSME). Although the HPOTP design life is 27,000 seconds at 30,000 rpms, or approximately 50 missions, bearings must currently be replaced after 2 missions. One solution to the bearing wear problem in the HPOTP, as well as in future turbopump designs, is the utilization of fluid film bearings in lieu of continuous contact bearings. Hydrostatic, hydrodynamic, and damping seal bearings are all replacement candidates for contact bearings in rocket engine high speed turbomachinery. These three types of fluid film bearings have different operating characteristics, but they share a common set of mechanical design opportunities and difficulties. Results of research to define some of the mechanical design issues are given. Problems considered include transient strat/stop rub, non-operational rotor support, bearing wear inspection and measurement, and bearing fluid supply route. Emphasis is given to the HPOTP preburner pump (PBP) bearing, but the results are pertinent to high-speed cryogenic turbomachinery in general.
The U.S. Navy’s Military Sealift Command 2009 in Review
2009-01-01
USNS Shughart (T- AKR 295) USNS Yano (T- AKR 297) *Long-term charter 31 S E A L I F T M MSC large, medium- speed , roll-on/roll-off ship , USNS Seay conducts...Dry cargo /ammunition ship USNS Lewis and Clark completed a 10-month deployment supporting operations Iraqi Freedom and Enduring Freedom and U.S...Unit Two personnel. High - speed vessel HSV 2 Swift supported Southern Partnership Station, a training mission to Central America, SouthAmerica and the
Synchronous critical speed tracking in hydrostatic bearing supported rotors
NASA Technical Reports Server (NTRS)
Henderson, Thomas W.; Scharrer, Joseph K.
1989-01-01
Hydrostatic bearings used in advanced turbopump designs use the pumped propellant as the working fluid and supply the propellant to the bearing from pump discharge. The resulting rotordynamic coefficients are highly speed-dependent and in some instances can cause system natural frequencies to coincide with spin speed over a wide speed range. This paper discusses this 'synchronous tracking' phenomenon. The factors affecting it are defined, and specific examples are presented. Methods which identify synchronous tracking issues early in the design process are reported, and techniques for eliminating this undesirable characteristic are addressed.
High-speed ethanol micro-droplet impact on a solid surface
NASA Astrophysics Data System (ADS)
Fujita, Yuta; Kiyama, Akihito; Tagawa, Yoshiyuki
2016-11-01
Recently, droplet impact draws great attention in the fluid mechanics. In previous work, micro-droplet impact on a solid surface at velocities up to 100 m s-1 was studied. However the study was only on water micro-droplets. In this study, we experimentally investigate high-speed impact of ethanol micro-droplets in order to confirm the feature about maximum spreading radius with another liquid. A droplet is generated from a laser-induced high-speed liquid jet. The diameter of droplets is around 80 μm and the velocity is larger than 30 m s-1. The surface tension of ethanol is 22.4 mNm-1 and density is 789 kgm-3. Weber number ranges We >1000. By using a high-speed camera, we investigate the deformation of droplets as a function of Weber number. This work was supported by JSPS KAKENHI Grant Number JP26709007.
High-speed optical links for UAV applications
NASA Astrophysics Data System (ADS)
Chen, C.; Grier, A.; Malfa, M.; Booen, E.; Harding, H.; Xia, C.; Hunwardsen, M.; Demers, J.; Kudinov, K.; Mak, G.; Smith, B.; Sahasrabudhe, A.; Patawaran, F.; Wang, T.; Wang, A.; Zhao, C.; Leang, D.; Gin, J.; Lewis, M.; Nguyen, D.; Quirk, K.
2017-02-01
High speed optical backbone links between a fleet of UAVs is an integral part of the Facebook connectivity architecture. To support the architecture, the optical terminals need to provide high throughput rates (in excess of tens of Gbps) while achieving low weight and power consumption. The initial effort is to develop and demonstrate an optical terminal capable of meeting the data rate requirements and demonstrate its functions for both air-air and air-ground engagements. This paper is a summary of the effort to date.
Inventory-transportation integrated optimization for maintenance spare parts of high-speed trains
Wang, Jiaxi; Wang, Huasheng; Wang, Zhongkai; Li, Jian; Lin, Ruixi; Xiao, Jie; Wu, Jianping
2017-01-01
This paper presents a 0–1 programming model aimed at obtaining the optimal inventory policy and transportation mode for maintenance spare parts of high-speed trains. To obtain the model parameters for occasionally-replaced spare parts, a demand estimation method based on the maintenance strategies of China’s high-speed railway system is proposed. In addition, we analyse the shortage time using PERT, and then calculate the unit time shortage cost from the viewpoint of train operation revenue. Finally, a real-world case study from Shanghai Depot is conducted to demonstrate our method. Computational results offer an effective and efficient decision support for inventory managers. PMID:28472097
NASA Technical Reports Server (NTRS)
Johnston, William; Tierney, Brian; Lee, Jason; Hoo, Gary; Thompson, Mary
1996-01-01
We have developed and deployed a distributed-parallel storage system (DPSS) in several high speed asynchronous transfer mode (ATM) wide area networks (WAN) testbeds to support several different types of data-intensive applications. Architecturally, the DPSS is a network striped disk array, but is fairly unique in that its implementation allows applications complete freedom to determine optimal data layout, replication and/or coding redundancy strategy, security policy, and dynamic reconfiguration. In conjunction with the DPSS, we have developed a 'top-to-bottom, end-to-end' performance monitoring and analysis methodology that has allowed us to characterize all aspects of the DPSS operating in high speed ATM networks. In particular, we have run a variety of performance monitoring experiments involving the DPSS in the MAGIC testbed, which is a large scale, high speed, ATM network and we describe our experience using the monitoring methodology to identify and correct problems that limit the performance of high speed distributed applications. Finally, the DPSS is part of an overall architecture for using high speed, WAN's for enabling the routine, location independent use of large data-objects. Since this is part of the motivation for a distributed storage system, we describe this architecture.
Meyns, P; Van de Crommert, H W A A; Rijken, H; van Kuppevelt, D H J M; Duysens, J
2014-12-01
Case series. To determine the optimal testing speed at which the recovery of the EMG (electromyographic) activity should be assessed during and after body weight supported (BWS) locomotor training. Tertiary hospital, Sint Maartenskliniek, Nijmegen, The Netherlands. Four participants with incomplete chronic SCI were included for BWS locomotor training; one AIS-C and three AIS-D (according to the ASIA (American Spinal Injury Association) Impairment Scale or AIS). All were at least 5 years after injury. The SCI participants were trained three times a week for a period of 6 weeks. They improved their locomotor function in terms of higher walking speed, less BWS and less assistance needed. To investigate which treadmill speed for EMG assessment reflects the functional improvement most adequately, all participants were assessed weekly using the same two speeds (0.5 and 1.5 km h(-1), referred to as low and high speed, respectively) for 6 weeks. The change in root mean square EMG (RMS EMG) was assessed in four leg muscles; biceps femoris, rectus femoris, gastrocnemius medialis and tibialis anterior. The changes in RMS EMG occurred at similar phases of the step cycle for both walking conditions, but these changes were larger when the treadmill was set at a low speed (0.5 km h(-1)). Improvement in gait is feasible with BWS treadmill training even long after injury. The EMG changes after treadmill training are more optimally expressed using a low rather than a high testing treadmill speed.
Self-anchoring mast for deploying a high-speed submersible mixer in a tank
Cato, Jr., Joseph E.; Shearer, Paul M [Aiken, SC; Rodwell, Philip O [Evans, GA
2004-10-12
A self-anchoring mast for deploying a high-speed submersible mixer in a tank includes operably connected first and second mast members (20, 22) and a foot member 46 operably connected to the second mast member for supporting the mast in a tank. The second mast member includes a track (36, 38) for slidably receiving a bearing of the mixer to change the orientation of the mixer in the tank.
Rad-Tolerant, Thermally Stable, High-Speed Fiber-Optic Network for Harsh Environments
NASA Technical Reports Server (NTRS)
Leftwich, Matt; Hull, Tony; Leary, Michael; Leftwich, Marcus
2013-01-01
Future NASA destinations will be challenging to get to, have extreme environmental conditions, and may present difficulty in retrieving a spacecraft or its data. Space Photonics is developing a radiation-tolerant (rad-tolerant), high-speed, multi-channel fiber-optic transceiver, associated reconfigurable intelligent node communications architecture, and supporting hardware for intravehicular and ground-based optical networking applications. Data rates approaching 3.2 Gbps per channel will be achieved.
NASA Astrophysics Data System (ADS)
Suárez, B.; Rodriguez, P.; Vázquez, M.; Fernández, I.
2012-01-01
Vehicle-track interaction for a new resilient slab track designed to reduce noise and vibration levels was analysed, in order to assess the derailment risk on a curved track when encountering a broken rail. Sensitivity of the rail support spacing of the relative position of the rail breakage between two adjacent rail supports and of running speed were analysed for two different elasticities of the rail fastening system. In none of the cases analysed was observed an appreciable difference between either of the elastic systems. As was expected, the most unfavourable situations were those with greater rail support spacing and those with greater distance from the breakage to the nearest rail support, although in none of the simulations performed did a derailment occur when running over the broken rail. When varying the running speed, the most favourable condition was obtained for an intermediate speed, due to the superposition of two antagonistic effects.
Noise in the passenger cars of high-speed trains.
Hong, Joo Young; Cha, Yongwon; Jeon, Jin Yong
2015-12-01
The aim of this study is to investigate the effects of both room acoustic conditions and spectral characteristics of noises on acoustic discomfort in a high-speed train's passenger car. Measurement of interior noises in a high-speed train was performed when the train was operating at speeds of 100 km/h and 300 km/h. Acoustic discomfort caused by interior noises was evaluated by paired comparison methods based on the variation of reverberation time (RT) in a passenger car and the spectral differences in interior noises. The effect of RT on acoustic discomfort was not significant, whereas acoustic discomfort significantly varied depending on spectral differences in noise. Acoustic discomfort increased with increment of the sound pressure level (SPL) ratio at high frequencies, and variation in high-frequency noise components were described using sharpness. Just noticeable differences of SPL with low- and high-frequency components were determined to be 3.7 and 2.9 dB, respectively. This indicates that subjects were more sensitive to differences in SPLs at the high-frequency range than differences at the low-frequency range. These results support that, for interior noises, reduction in SPLs at high frequencies would significantly contribute to improved acoustic quality in passenger cars of high-speed trains.
CFD Analysis of A Starved Four-Pad Tilting-Pad Journal Bearing with An Elastic Support of Pads
NASA Astrophysics Data System (ADS)
Parovay, E. F.; Falaleev, S. V.
2018-01-01
Tilting-pad journal bearings are widely used in technics. Oil starvation operation regime is not common for hydrodynamic bearings. However, correctly designed low-flow journal bearing have to operate efficiently and consistently on high rotor speeds. An elastic support of bearing pads is a set of elastic pins made of steel. Elastic support allows pads to self-align and achieve an optimal operational mode. The article presents the thermohydrodynamic performance of an axial journal bearing. The study deals with 60 mm diameter four-pad tilting-pad journal bearing, submitted to a static load varying from 1000 to 30000 N with a rotating speed varying from 1000 to 10000 rpm. The investigation focuses on numerical studying the characteristics of low-flow tilting-pad journal bearings under oil starvation conditions. Dependencies of the bearing performance on the load, rotational speed of the shaft, and the size of the radial clearance are presented.
Toots, Annika; Littbrand, Håkan; Holmberg, Henrik; Nordström, Peter; Lundin-Olsson, Lillemor; Gustafson, Yngve; Rosendahl, Erik
2017-03-01
To investigate the effects of exercise on gait speed, when tested using walking aids and without, and whether effects differed according to amount of support in the test. A cluster-randomized controlled trial. The Umeå Dementia and Exercise (UMDEX) study was set in 16 nursing homes in Umeå, Sweden. One hundred forty-one women and 45 men (mean age 85 years) with dementia, of whom 145 (78%) habitually used walking aids. Participants were randomized to the high-intensity functional exercise program or a seated attention control activity. Blinded assessors measured 4-m usual gait speed with walking aids if any gait speed (GS), and without walking aids and with minimum amount of support, at baseline, 4 months (on intervention completion), and 7 months. Linear mixed models showed no between-group effect in either gait speed test at 4 or 7 months. In interaction analyses exercise effects differed significantly between participants who walked unsupported compared with when walking aids or minimum support was used. Positive between-group exercise effects on gait speed (m/s) were found in subgroups that walked unsupported at 4 and 7 months (GS: 0.07, P = .009 and 0.13, P < .001; and GS test without walking aids: 0.05, P = .011 and 0.07, P = .029, respectively). In people with dementia living in nursing homes exercise had positive effects on gait when tested unsupported compared with when walking aids or minimum support was used. The study suggests that the use of walking aids in gait speed tests may conceal exercise effects. Copyright © 2016 AMDA – The Society for Post-Acute and Long-Term Care Medicine. Published by Elsevier Inc. All rights reserved.
Development of small bore, high speed tapered roller bearing
NASA Technical Reports Server (NTRS)
Morrison, F. R.; Gassel, S. S.; Bovenkerk, R. L.
1981-01-01
The performance of four rolling bearing configurations for use on the input pinion shaft of a proposed commercial helicopter transmission was evaluated. The performance characteristics of a high speed tapered roller bearing operating under conditions comparable to those existing at this input pinion shaft were defined. The tapered roller bearing shaft support configuration was developed for the gearbox using commercially available bearing designings. The configuration was optimized and interactive thermomechanically system analyzed. Automotive pinion quality tapered roller bearings were found to be reliable under load and speed conditions in excess of those anticipated in the helicopter transmission. However, it is indicated that the elastohydrodynamic lubricant films are inadequate.
NASA Technical Reports Server (NTRS)
Game, David; Maly, Kurt J.
1990-01-01
Great interest exists in developing high speed protocols which will be able to support data rates at gigabit speeds. Hardware currently exists which can experimentally transmit at data rates exceeding a gigabit per second, but it is not clear as to what types of protocols will provide the best performance. One possibility is to examine current protocols and their extensibility to these speeds. Scaling of Fiber Distributed Data Interface (FDDI) to gigabit speeds is studied. More specifically, delay statistics are included to provide insight as to which parameters (network length, packet length or number of nodes) have the greatest effect on performance.
Effects of Surface Passivation on Gliding Motility Assays
Maloney, Andy; Herskowitz, Lawrence J.; Koch, Steven J.
2011-01-01
In this study, we report differences in the observed gliding speed of microtubules dependent on the choice of bovine casein used as a surface passivator. We observed differences in both speed and support of microtubules in each of the assays. Whole casein, comprised of αs1, αs2, β, and κ casein, supported motility and averaged speeds of 966±7 nm/s. Alpha casein can be purchased as a combination of αs1 and αs2 and supported gliding motility and average speeds of 949±4 nm/s. Beta casein did not support motility very well and averaged speeds of 870±30 nm/s. Kappa casein supported motility very poorly and we were unable to obtain an average speed. Finally, we observed that mixing alpha, beta, and kappa casein with the proportions found in bovine whole casein supported motility and averaged speeds of 966±6 nm/s. PMID:21674032
Dykes, Charles D.; Daniel, Sabah S.; Wood, J. F. Barry
1990-02-20
In continuously casting molten metal into cast product by a twin-belt machine, it is desirable to achieve dramatic increases in speed (linear feet per minute) at which cast product exits the machine, particularly in installations where steel cast product is intended to feed a downstream regular rolling mill (as distinct from a planetary mill) operating in tandem with the twin-belt caster. Such high-speed casting produces product with a relatively thin shell and molten interior, and the shell tends to bulge outwardly due to metallostatic head pressure of the molten center. A number of cooperative features enable high-speed, twin-belt casting: (1) Each casting belt is slidably supported adjacent to the caster exit pulley for bulge control and enhanced cooling of cast product. (2) Lateral skew steering of each belt provides an effective increase in moving mold length plus a continuity of heat transfer not obtained with prior art belt steering apparatus. (3) The exiting slab is contained and supported downstream from the casting machine to prevent bulging of the shell of the cast product, and (4) spray cooling is incorporated in the exit containment apparatus for secondary cooling of cast product.
Trail, Frances; Gaffoor, Iffa; Vogel, Steven
2005-06-01
Since wind speed drops to zero at a surface, forced ejection should facilitate spore dispersal. But for tiny spores, with low mass relative to surface area, high ejection speed yields only a short range trajectory, so pernicious is their drag. Thus, achieving high speeds requires prodigious accelerations. In the ascomycete Gibberella zeae, we determined the launch speed and kinetic energy of ascospores shot from perithecia, and the source and magnitude of the pressure driving the launch. We asked whether the pressure inside the ascus suffices to account for launch speed and energy. Launch speed was 34.5 ms-1, requiring a pressure of 1.54 MPa and an acceleration of 870,000 g--the highest acceleration reported in a biological system. This analysis allows us to discount the major sugar component of the epiplasmic fluid, mannitol, as having a key role in driving discharge, and supports the role of potassium ion flux in the mechanism.
High-speed real-time animated displays on the ADAGE (trademark) RDS 3000 raster graphics system
NASA Technical Reports Server (NTRS)
Kahlbaum, William M., Jr.; Ownbey, Katrina L.
1989-01-01
Techniques which may be used to increase the animation update rate of real-time computer raster graphic displays are discussed. They were developed on the ADAGE RDS 3000 graphic system in support of the Advanced Concepts Simulator at the NASA Langley Research Center. These techniques involve the use of a special purpose parallel processor, for high-speed character generation. The description of the parallel processor includes the Barrel Shifter which is part of the hardware and is the key to the high-speed character rendition. The final result of this total effort was a fourfold increase in the update rate of an existing primary flight display from 4 to 16 frames per second.
NASA Astrophysics Data System (ADS)
Yu, Nan; Cao, Yu
2017-05-01
The traffic demand elastic is proposed as a new indicator in this study to measure the feasibility of the high-speed railway construction in a more intuitive way. The Matrix Completion (MC) and Semi-Supervised Support Vector Machine (S3VM) are used to realize the measurement and prediction of this index on the basis of the satisfaction investigation on the 326 inter-city railways in china. It is demonstrated that instead of calculating the economic benefits brought by the construction of high-speed railway, this indicator can find the most urgent railways to be improved by directly evaluate the existing railway facilities from the perspective of transportation service improvement requirements.
NASA Astrophysics Data System (ADS)
Bunandar, Darius; Urayama, Junji; Boynton, Nicholas; Martinez, Nicholas; Derose, Christopher; Lentine, Anthony; Davids, Paul; Camacho, Ryan; Wong, Franco; Englund, Dirk
We present a compact polarization-encoded quantum key distribution (QKD) transmitter near a 1550-nm wavelength implemented on a CMOS-compatible silicon-on-insulator photonics platform. The transmitter generates arbitrary polarization qubits at gigahertz bandwidth with an extinction ratio better than 30 dB using high-speed carrier-depletion phase modulators. We demonstrate the performance of this device by generating secret keys at a rate of 1 Mbps in a complete QKD field test. Our work shows the potential of using advanced photonic integrated circuits to enable high-speed quantum-secure communications. This work was supported by the SECANT QKD Grand Challenge, the Samsung Global Research Outreach Program, and the Air Force Office of Scientific Research.
Structural analysis for preliminary design of High Speed Civil Transport (HSCT)
NASA Technical Reports Server (NTRS)
Bhatia, Kumar G.
1992-01-01
In the preliminary design environment, there is a need for quick evaluation of configuration and material concepts. The simplified beam representations used in the subsonic, high aspect ratio wing platform are not applicable for low aspect ratio configurations typical of supersonic transports. There is a requirement to develop methods for efficient generation of structural arrangement and finite element representation to support multidisciplinary analysis and optimization. In addition, empirical data bases required to validate prediction methods need to be improved for high speed civil transport (HSCT) type configurations.
Zhang, Xiaoliang; Li, Jiali; Liu, Yugang; Zhang, Zutao; Wang, Zhuojun; Luo, Dianyuan; Zhou, Xiang; Zhu, Miankuan; Salman, Waleed; Hu, Guangdi; Wang, Chunbai
2017-03-01
The vigilance of the driver is important for railway safety, despite not being included in the safety management system (SMS) for high-speed train safety. In this paper, a novel fatigue detection system for high-speed train safety based on monitoring train driver vigilance using a wireless wearable electroencephalograph (EEG) is presented. This system is designed to detect whether the driver is drowsiness. The proposed system consists of three main parts: (1) a wireless wearable EEG collection; (2) train driver vigilance detection; and (3) early warning device for train driver. In the first part, an 8-channel wireless wearable brain-computer interface (BCI) device acquires the locomotive driver's brain EEG signal comfortably under high-speed train-driving conditions. The recorded data are transmitted to a personal computer (PC) via Bluetooth. In the second step, a support vector machine (SVM) classification algorithm is implemented to determine the vigilance level using the Fast Fourier transform (FFT) to extract the EEG power spectrum density (PSD). In addition, an early warning device begins to work if fatigue is detected. The simulation and test results demonstrate the feasibility of the proposed fatigue detection system for high-speed train safety.
High Speed Videometric Monitoring of Rock Breakage
NASA Astrophysics Data System (ADS)
Allemand, J.; Shortis, M. R.; Elmouttie, M. K.
2018-05-01
Estimation of rock breakage characteristics plays an important role in optimising various industrial and mining processes used for rock comminution. Although little research has been undertaken into 3D photogrammetric measurement of the progeny kinematics, there is promising potential to improve the efficacy of rock breakage characterisation. In this study, the observation of progeny kinematics was conducted using a high speed, stereo videometric system based on laboratory experiments with a drop weight impact testing system. By manually tracking individual progeny through the captured video sequences, observed progeny coordinates can be used to determine 3D trajectories and velocities, supporting the idea that high speed video can be used for rock breakage characterisation purposes. An analysis of the results showed that the high speed videometric system successfully observed progeny trajectories and showed clear projection of the progeny away from the impact location. Velocities of the progeny could also be determined based on the trajectories and the video frame rate. These results were obtained despite the limitations of the photogrammetric system and experiment processes observed in this study. Accordingly there is sufficient evidence to conclude that high speed videometric systems are capable of observing progeny kinematics from drop weight impact tests. With further optimisation of the systems and processes used, there is potential for improving the efficacy of rock breakage characterisation from measurements with high speed videometric systems.
Van Kammen, Klaske; Boonstra, Annemarijke; Reinders-Messelink, Heleen; den Otter, Rob
2014-01-01
Background For the development of specialized training protocols for robot assisted gait training, it is important to understand how the use of exoskeletons alters locomotor task demands, and how the nature and magnitude of these changes depend on training parameters. Therefore, the present study assessed the combined effects of gait speed and body weight support (BWS) on muscle activity, and compared these between treadmill walking and walking in the Lokomat exoskeleton. Methods Ten healthy participants walked on a treadmill and in the Lokomat, with varying levels of BWS (0% and 50% of the participants’ body weight) and gait speed (0.8, 1.8, and 2.8 km/h), while temporal step characteristics and muscle activity from Erector Spinae, Gluteus Medius, Vastus Lateralis, Biceps Femoris, Gastrocnemius Medialis, and Tibialis Anterior muscles were recorded. Results The temporal structure of the stepping pattern was altered when participants walked in the Lokomat or when BWS was provided (i.e. the relative duration of the double support phase was reduced, and the single support phase prolonged), but these differences normalized as gait speed increased. Alternations in muscle activity were characterized by complex interactions between walking conditions and training parameters: Differences between treadmill walking and walking in the exoskeleton were most prominent at low gait speeds, and speed effects were attenuated when BWS was provided. Conclusion Walking in the Lokomat exoskeleton without movement guidance alters the temporal step regulation and the neuromuscular control of walking, although the nature and magnitude of these effects depend on complex interactions with gait speed and BWS. If normative neuromuscular control of gait is targeted during training, it is recommended that very low speeds and high levels of BWS should be avoided when possible. PMID:25226302
Delabastita, Tijs; Desloovere, Kaat; Meyns, Pieter
2016-01-01
Observational research suggests that in children with cerebral palsy, the altered arm swing is linked to instability during walking. Therefore, the current study investigates whether children with cerebral palsy use their arms more than typically developing children, to enhance gait stability. Evidence also suggests an influence of walking speed on gait stability. Moreover, previous research highlighted a link between walking speed and arm swing. Hence, the experiment aimed to explore differences between typically developing children and children with cerebral palsy taking into account the combined influence of restricting arm swing and increasing walking speed on gait stability. Spatiotemporal gait characteristics, trunk movement parameters and margins of stability were obtained using three dimensional gait analysis to assess gait stability of 26 children with cerebral palsy and 24 typically developing children. Four walking conditions were evaluated: (i) free arm swing and preferred walking speed; (ii) restricted arm swing and preferred walking speed; (iii) free arm swing and high walking speed; and (iv) restricted arm swing and high walking speed. Double support time and trunk acceleration variability increased more when arm swing was restricted in children with bilateral cerebral palsy compared to typically developing children and children with unilateral cerebral palsy. Trunk sway velocity increased more when walking speed was increased in children with unilateral cerebral palsy compared to children with bilateral cerebral palsy and typically developing children and in children with bilateral cerebral palsy compared to typically developing children. Trunk sway velocity increased more when both arm swing was restricted and walking speed was increased in children with bilateral cerebral palsy compared to typically developing children. It is proposed that facilitating arm swing during gait rehabilitation can improve gait stability and decrease trunk movements in children with cerebral palsy. The current results thereby partly support the suggestion that facilitating arm swing in specific situations possibly enhances safety and reduces the risk of falling in children with cerebral palsy. PMID:27471457
High-speed inlet research program and supporting analysis
NASA Technical Reports Server (NTRS)
Coltrin, Robert E.
1990-01-01
The technology challenges faced by the high speed inlet designer are discussed by describing the considerations that went into the design of the Mach 5 research inlet. It is shown that the emerging three dimensional viscous computational fluid dynamics (CFD) flow codes, together with small scale experiments, can be used to guide larger scale full inlet systems research. Then, in turn, the results of the large scale research, if properly instrumented, can be used to validate or at least to calibrate the CFD codes.
Main Building (4800) at Dryden FRC
1991-09-05
The X-1E research aircraft provides a striking view at the entrance of NASA's Dryden Flight Research Center, Edwards, California. The X-1E, one of the three original X-1 aircraft modified with a raised cockpit canopy and an ejection seat, was flown at the facility between 1953 and 1958 to investigate speeds at twice that of sound, and also to evaluate a thin wing designed for high-speed flight. The Dryden complex was originally established in 1946 as a small high-speed flight station to support the X-1 program. The X-1 was the first aircraft to fly at supersonic speeds. The main administrative building is to the rear of the X-1E and is the center of a research installation that has grown to more than 450 government employees and nearly 400 civilian contractors. Located on the northwest "shore" of Rogers Dry Lake, the Dryden Center was built around the original administrative-hangar building constructed in 1954 at a cost of $3.8 million. Since then many additional support and operational facilities have been built including a number of unique test facilities such as the Thermalstructures Research Facility, Flow Visualization Facility, and the newest addition, the Integrated Test Facility.
NASA Technical Reports Server (NTRS)
Klopfer, Goetz H.
1993-01-01
The work performed during the past year on this cooperative agreement covered two major areas and two lesser ones. The two major items included further development and validation of the Compressible Navier-Stokes Finite Volume (CNSFV) code and providing computational support for the Laminar Flow Supersonic Wind Tunnel (LFSWT). The two lesser items involve a Navier-Stokes simulation of an oscillating control surface at transonic speeds and improving the basic algorithm used in the CNSFV code for faster convergence rates and more robustness. The work done in all four areas is in support of the High Speed Research Program at NASA Ames Research Center.
Apparatus for high speed rotation of electrically operated devices
Williams, Keith E.; Rogus, Arnold J.
1976-10-26
Most high speed centrifuges employ a relatively small diameter elongate flexible drive shaft, sometimes called a "quill" shaft. These relatively slender shafts are flexible to absorb vibration as the assembly passes through speeds of resonance and to permit re-alignment of the axis of rotation of the shaft and the rotor driven thereby in the event the center of mass of the rotor and shaft assembly is displaced from the nominal axis of the rotation. To use such an apparatus for testing electrical devices and components, electrical conductors for wires are passed from a slip ring assembly located at an end of the quill shaft remote from the rotor and longitudinally alongside the quill shaft to the electrical device mounted on the rotor. The longitudinally extending conductors are supported against the radially outward directed centrifugal forces by a plurality of strong, self-lubricating, slightly compressible wafers or washers co-axially stacked on the slender shaft and provided with radially offset longitudinally aligned openings to support the longitudinally extending conductors. The conductors are supported against the centrifugal forces and thus protected from rupture or other damage without restricting or constraining the essential flexure or bending of the drive shaft.
Shock-like pulse experiment in a strongly coupled dusty plasma
NASA Astrophysics Data System (ADS)
Kananovich, Anton; Goree, J.
2017-10-01
Compressional pulses are excited in a dusty plasma using a wire moved at a supersonic speed. The dusty plasma consists of a 2D monolayer of polymer microspheres electrically levitated in a low-temperature argon RF plasma. The microspheres gained a large negative charge so that they interacted with each other as a strongly coupled component, partly shielded by the electrons and ions. The wire, which had a negative potential that repelled microspheres, was moved at a constant speed, causing a compressional pulse to propagate. This pulse had shock-like properties because the wire was moved faster than the longitudinal sound speed in the microspheres. The experiment was repeated for the dusty plasma both in liquid and solid states, all of the controlled parameters except for the dust kinetic temperature being equal. The laser rastering method was used to change the kinetic temperature. Several experimental runs were done with different wire speeds for the both cases. An increase in the wire propagation speed increased the propagation speed of the compressional pulse. High pulse propagation speeds were obtained with Mach numbers up to 5. For high pulse propagation speeds crystal buckling was observed. Video microscopy was the main diagnostic. Supported by U.S. Dept. of Energy.
An ASIC memory buffer controller for a high speed disk system
NASA Technical Reports Server (NTRS)
Hodson, Robert F.; Campbell, Steve
1993-01-01
The need for large capacity, high speed mass memory storage devices has become increasingly evident at NASA during the past decade. High performance mass storage systems are crucial to present and future NASA systems. Spaceborne data storage system requirements have grown in response to the increasing amounts of data generated and processed by orbiting scientific experiments. Predictions indicate increases in the volume of data by orders of magnitude during the next decade. Current predictions are for storage capacities on the order of terabits (Tb), with data rates exceeding one gigabit per second (Gbps). As part of the design effort for a state of the art mass storage system, NASA Langley has designed a 144 CMOS ASIC to support high speed data transfers. This paper discusses the system architecture, ASIC design and some of the lessons learned in the development process.
Air Traffic Management Technology Demonstration-1 Concept of Operations (ATD-1 ConOps)
NASA Technical Reports Server (NTRS)
Baxley, Brian T.; Johnson, William C.; Swenson, Harry; Robinson, John E.; Prevot, Thomas; Callantine, Todd; Scardina, John; Greene, Michael
2012-01-01
The operational goal of the ATD-1 ConOps is to enable aircraft, using their onboard FMS capabilities, to fly Optimized Profile Descents (OPDs) from cruise to the runway threshold at a high-density airport, at a high throughput rate, using primarily speed control to maintain in-trail separation and the arrival schedule. The three technologies in the ATD-1 ConOps achieve this by calculating a precise arrival schedule, using controller decision support tools to provide terminal controllers with speeds for aircraft to fly to meet times at a particular meter points, and onboard software providing flight crews with speeds for the aircraft to fly to achieve a particular spacing behind preceding aircraft.
NASA Astrophysics Data System (ADS)
Patel, Namu; Patankar, Neelesh A.
2017-11-01
Aquatic locomotion relies on feedback loops to generate the flexural muscle moment needed to attain the reference shape. Experimentalists have consistently reported a difference between the electromyogram (EMG) and curvature wave speeds. The EMG wave speed has been found to correlate with the cross-sectional moment wave. The correlation, however, remains unexplained. Using feedback dependent controller models, we demonstrate two scenarios - one at higher passive elastic stiffness and another at lower passive elastic stiffness of the body. The former case becomes equivalent to the penalty type mathematical model for swimming used in prior literature and it does not reproduce neuromechanical wave speed discrepancy. The latter case at lower elastic stiffness does reproduce the wave speed discrepancy and appears to be biologically most relevant. These findings are applied to develop testable hypotheses about control mechanisms that animals might be using at during low and high Reynolds number swimming. This work is supported by NSF Grants DMS-1547394, CBET-1066575, ACI-1460334, and IOS-1456830. Travel for NP is supported by Institute for Defense Analyses.
High speed turbogenerator for power recovery from fluid flow within conduit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Irvine, M. D.
1985-11-26
A high speed turbogenerator functionally combining, in one machine, an electrical generator and an expansion turbine. The electrical generator itself has a shaft supported on two bearings and the expansion turbine comprises an expander wheel overhung on the generator shaft and which rotates as a high pressure gas is let down in the expansion turbine to a lower pressure at a minimum predetermined flow rate and pressure drop. The shaft operates at speeds of about 6,000 rpm to 32,000 rpm, preferably at the higher end of such range, i.e. 20,000 to 24,000 rpm. The unit is sufficiently compact that amore » new use for the electrical generator is to modify the same such that the entire high speed turbogenerator is contained within the conduit carrying the gas to be let down in pressure and only electrical wires need be led through the conduit. The integrity of the conduit is thus retained to the extent possible and only a high pressure cable fitting extends through the conduit. In the preferred embodiment, the high speed turbogenerator is entirely fitted within a natural gas conduit in a gas distribution station, thereby achieving the pressure letdown and also obtaining useful electrical power.« less
Temperature Prediction in High Speed Bone Grinding using Motor PWM Signal
Tai, Bruce L.; Zhang, Lihui; Wang, Anthony C.; Sullivan, Stephen; Wang, Guangjun; Shih, Albert J.
2013-01-01
This research explores the feasibility of using motor electrical feedback to estimate temperature rise during a surgical bone grinding procedure. High-speed bone grinding is often used during skull base neurosurgery to remove cranial bone and approach skull base tumors through the nasal corridor. Grinding-induced heat could propagate and potentially injure surrounding nerves and arteries, and therefore, predicting the temperature in the grinding region would benefit neurosurgeons during the operation. High-speed electric motors are controlled by pulse-width-modulation (PWM) to alter the current input and thus maintain the rotational speed. Assuming full mechanical to thermal power conversion in the grinding process, PWM can be used as feedback for heat generation and temperature prediction. In this study, the conversion model was established from experiments under a variety of grinding conditions and an inverse heat transfer method to determine heat flux. Given a constant rotational speed, the heat conversion was represented by a linear function, and could predict temperature from the experimental data with less than 20% errors. Such results support the advance of this technology for practical application. PMID:23806419
Overview of Variable-Speed Power-Turbine Research
NASA Technical Reports Server (NTRS)
Welch, Gerard E.
2011-01-01
The vertical take-off and landing (VTOL) and high-speed cruise capability of the NASA Large Civil Tilt-Rotor (LCTR) notional vehicle is envisaged to enable increased throughput in the national airspace. A key challenge of the LCTR is the requirement to vary the main rotor speeds from 100% at take-off to near 50% at cruise as required to minimize mission fuel burn. The variable-speed power-turbine (VSPT), driving a fixed gear-ratio transmission, provides one approach for effecting this wide speed variation. The key aerodynamic and rotordynamic challenges of the VSPT were described in the FAP Conference presentation. The challenges include maintaining high turbine efficiency at high work factor, wide (60 deg.) of incidence variation in all blade rows due to the speed variation, and operation at low Reynolds numbers (with transitional flow). The PT -shaft of the VSPT must be designed for safe operation in the wide speed range required, and therefore poses challenges associated with rotordynamics. The technical challenges drive research activities underway at NASA. An overview of the NASA SRW VSPT research activities was provided. These activities included conceptual and preliminary aero and mechanical (rotordynamics) design of the VSPT for the LCTR application, experimental and computational research supporting the development of incidence tolerant blading, and steps toward component-level testing of a variable-speed power-turbine of relevance to the LCTR application.
Feasibility Analysis and Prototyping of a Fast Autonomous Recon system
2017-06-01
Test and Evaluation Interim Contractor Support System Assessment OPERATIONAL USE AND SYSTEM SUPPORT System Operation in the User Environment...Sustaining Maintenance and Logistics Support Operational Testing System Modifications for Improvement Contractor Support System Assessment...helicopter but has the added benefit of high -speed flight similar to a fixed-wing aircraft. Figure 1 shows the two different flight modes of the V-22
A high-precision instrument for analyzing nonlinear dynamic behavior of bearing cage.
Yang, Z; Chen, H; Yu, T; Li, B
2016-08-01
The high-precision ball bearing is fundamental to the performance of complex mechanical systems. As the speed increases, the cage behavior becomes a key factor in influencing the bearing performance, especially life and reliability. This paper develops a high-precision instrument for analyzing nonlinear dynamic behavior of the bearing cage. The trajectory of the rotational center and non-repetitive run-out (NRRO) of the cage are used to evaluate the instability of cage motion. This instrument applied an aerostatic spindle to support and spin test the bearing to decrease the influence of system error. Then, a high-speed camera is used to capture images when the bearing works at high speeds. A 3D trajectory tracking software tema Motion is used to track the spot which marked the cage surface. Finally, by developing the matlab program, a Lissajous' figure was used to evaluate the nonlinear dynamic behavior of the cage with different speeds. The trajectory of rotational center and NRRO of the cage with various speeds are analyzed. The results can be used to predict the initial failure and optimize cage structural parameters. In addition, the repeatability precision of instrument is also validated. In the future, the motorized spindle will be applied to increase testing speed and image processing algorithms will be developed to analyze the trajectory of the cage.
A high-precision instrument for analyzing nonlinear dynamic behavior of bearing cage
NASA Astrophysics Data System (ADS)
Yang, Z.; Chen, H.; Yu, T.; Li, B.
2016-08-01
The high-precision ball bearing is fundamental to the performance of complex mechanical systems. As the speed increases, the cage behavior becomes a key factor in influencing the bearing performance, especially life and reliability. This paper develops a high-precision instrument for analyzing nonlinear dynamic behavior of the bearing cage. The trajectory of the rotational center and non-repetitive run-out (NRRO) of the cage are used to evaluate the instability of cage motion. This instrument applied an aerostatic spindle to support and spin test the bearing to decrease the influence of system error. Then, a high-speed camera is used to capture images when the bearing works at high speeds. A 3D trajectory tracking software tema Motion is used to track the spot which marked the cage surface. Finally, by developing the matlab program, a Lissajous' figure was used to evaluate the nonlinear dynamic behavior of the cage with different speeds. The trajectory of rotational center and NRRO of the cage with various speeds are analyzed. The results can be used to predict the initial failure and optimize cage structural parameters. In addition, the repeatability precision of instrument is also validated. In the future, the motorized spindle will be applied to increase testing speed and image processing algorithms will be developed to analyze the trajectory of the cage.
A high-precision instrument for analyzing nonlinear dynamic behavior of bearing cage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Z., E-mail: zhaohui@nwpu.edu.cn; Yu, T.; Chen, H.
2016-08-15
The high-precision ball bearing is fundamental to the performance of complex mechanical systems. As the speed increases, the cage behavior becomes a key factor in influencing the bearing performance, especially life and reliability. This paper develops a high-precision instrument for analyzing nonlinear dynamic behavior of the bearing cage. The trajectory of the rotational center and non-repetitive run-out (NRRO) of the cage are used to evaluate the instability of cage motion. This instrument applied an aerostatic spindle to support and spin test the bearing to decrease the influence of system error. Then, a high-speed camera is used to capture images whenmore » the bearing works at high speeds. A 3D trajectory tracking software TEMA Motion is used to track the spot which marked the cage surface. Finally, by developing the MATLAB program, a Lissajous’ figure was used to evaluate the nonlinear dynamic behavior of the cage with different speeds. The trajectory of rotational center and NRRO of the cage with various speeds are analyzed. The results can be used to predict the initial failure and optimize cage structural parameters. In addition, the repeatability precision of instrument is also validated. In the future, the motorized spindle will be applied to increase testing speed and image processing algorithms will be developed to analyze the trajectory of the cage.« less
2010-01-01
service) High assurance software Distributed network-based battle management High performance computing supporting uniform and nonuniform memory...VNIR, MWIR, and LWIR high-resolution systems Wideband SAR systems RF and laser data links High-speed, high-power photodetector characteriza- tion...Antimonide (InSb) imaging system Long-wave infrared ( LWIR ) quantum well IR photodetector (QWIP) imaging system Research and Development Services
High-Performance Computing for the Electromagnetic Modeling and Simulation of Interconnects
NASA Technical Reports Server (NTRS)
Schutt-Aine, Jose E.
1996-01-01
The electromagnetic modeling of packages and interconnects plays a very important role in the design of high-speed digital circuits, and is most efficiently performed by using computer-aided design algorithms. In recent years, packaging has become a critical area in the design of high-speed communication systems and fast computers, and the importance of the software support for their development has increased accordingly. Throughout this project, our efforts have focused on the development of modeling and simulation techniques and algorithms that permit the fast computation of the electrical parameters of interconnects and the efficient simulation of their electrical performance.
NASA Technical Reports Server (NTRS)
Dulac, J.; Latour, J.
1991-01-01
The DSN (Deep Space Network) mission support requirements for Telecom 2-A (TC2A) are summarized. The Telecom 2-A will provide high-speed data link applications, telephone, and television service between France and overseas territories. The mission objectives are outlined and the DSN support requirements are defined through the presentation of tables and narratives describing the spacecraft flight profile; DSN support coverage; frequency assignments; support parameters for telemetry, command and support systems; and tracking support responsibility.
Big Explosives Experimental Facility - BEEF
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
The Big Explosives Experimental Facility or BEEF is a ten acre fenced high explosive testing facility that provides data to support stockpile stewardship and other national security programs. At BEEF conventional high explosives experiments are safely conducted providing sophisticated diagnostics such as high speed optics and x-ray radiography.
Big Explosives Experimental Facility - BEEF
None
2018-01-16
The Big Explosives Experimental Facility or BEEF is a ten acre fenced high explosive testing facility that provides data to support stockpile stewardship and other national security programs. At BEEF conventional high explosives experiments are safely conducted providing sophisticated diagnostics such as high speed optics and x-ray radiography.
Scouts behave as streakers in honeybee swarms
NASA Astrophysics Data System (ADS)
Greggers, Uwe; Schöning, Caspar; Degen, Jacqueline; Menzel, Randolf
2013-08-01
Harmonic radar tracking was used to record the flights of scout bees during takeoff and initial flight path of two honeybee swarms. One swarm remained intact and performed a full flight to a destination beyond the range of the harmonic radar, while a second swarm disintegrated within the range of the radar and most of the bees returned to the queen. The initial stretch of the full flight is characterized by accelerating speed, whereas the disintegrating swarm flew steadily at low speed. The two scouts in the swarm displaying full flight performed characteristic flight maneuvers. They flew at high speed when traveling in the direction of their destination and slowed down or returned over short stretches at low speed. Scouts in the disintegrating swarm did not exhibit the same kind of characteristic flight performance. Our data support the streaker bee hypothesis proposing that scout bees guide the swarm by traveling at high speed in the direction of the new nest site for short stretches of flight and slowing down when reversing flight direction.
Zhang, Xiaoliang; Li, Jiali; Liu, Yugang; Zhang, Zutao; Wang, Zhuojun; Luo, Dianyuan; Zhou, Xiang; Zhu, Miankuan; Salman, Waleed; Hu, Guangdi; Wang, Chunbai
2017-01-01
The vigilance of the driver is important for railway safety, despite not being included in the safety management system (SMS) for high-speed train safety. In this paper, a novel fatigue detection system for high-speed train safety based on monitoring train driver vigilance using a wireless wearable electroencephalograph (EEG) is presented. This system is designed to detect whether the driver is drowsiness. The proposed system consists of three main parts: (1) a wireless wearable EEG collection; (2) train driver vigilance detection; and (3) early warning device for train driver. In the first part, an 8-channel wireless wearable brain-computer interface (BCI) device acquires the locomotive driver’s brain EEG signal comfortably under high-speed train-driving conditions. The recorded data are transmitted to a personal computer (PC) via Bluetooth. In the second step, a support vector machine (SVM) classification algorithm is implemented to determine the vigilance level using the Fast Fourier transform (FFT) to extract the EEG power spectrum density (PSD). In addition, an early warning device begins to work if fatigue is detected. The simulation and test results demonstrate the feasibility of the proposed fatigue detection system for high-speed train safety. PMID:28257073
Lindberg, D A; Humphreys, B L
1995-01-01
The High-Performance Computing and Communications (HPCC) program is a multiagency federal effort to advance the state of computing and communications and to provide the technologic platform on which the National Information Infrastructure (NII) can be built. The HPCC program supports the development of high-speed computers, high-speed telecommunications, related software and algorithms, education and training, and information infrastructure technology and applications. The vision of the NII is to extend access to high-performance computing and communications to virtually every U.S. citizen so that the technology can be used to improve the civil infrastructure, lifelong learning, energy management, health care, etc. Development of the NII will require resolution of complex economic and social issues, including information privacy. Health-related applications supported under the HPCC program and NII initiatives include connection of health care institutions to the Internet; enhanced access to gene sequence data; the "Visible Human" Project; and test-bed projects in telemedicine, electronic patient records, shared informatics tool development, and image systems. PMID:7614116
Fiber-channel audio video standard for military and commercial aircraft product lines
NASA Astrophysics Data System (ADS)
Keller, Jack E.
2002-08-01
Fibre channel is an emerging high-speed digital network technology that combines to make inroads into the avionics arena. The suitability of fibre channel for such applications is largely due to its flexibility in these key areas: Network topologies can be configured in point-to-point, arbitrated loop or switched fabric connections. The physical layer supports either copper or fiber optic implementations with a Bit Error Rate of less than 10-12. Multiple Classes of Service are available. Multiple Upper Level Protocols are supported. Multiple high speed data rates offer open ended growth paths providing speed negotiation within a single network. Current speeds supported by commercially available hardware are 1 and 2 Gbps providing effective data rates of 100 and 200 MBps respectively. Such networks lend themselves well to the transport of digital video and audio data. This paper summarizes an ANSI standard currently in the final approval cycle of the InterNational Committee for Information Technology Standardization (INCITS). This standard defines a flexible mechanism whereby digital video, audio and ancillary data are systematically packaged for transport over a fibre channel network. The basic mechanism, called a container, houses audio and video content functionally grouped as elements of the container called objects. Featured in this paper is a specific container mapping called Simple Parametric Digital Video (SPDV) developed particularly to address digital video in avionics systems. SPDV provides pixel-based video with associated ancillary data typically sourced by various sensors to be processed and/or distributed in the cockpit for presentation via high-resolution displays. Also highlighted in this paper is a streamlined Upper Level Protocol (ULP) called Frame Header Control Procedure (FHCP) targeted for avionics systems where the functionality of a more complex ULP is not required.
Model helicopter rotor high-speed impulsive noise: Measured acoustics and blade pressures
NASA Technical Reports Server (NTRS)
Boxwell, D. A.; Schmitz, F. H.; Splettstoesser, W. R.; Schultz, K. J.
1983-01-01
A 1/17-scale research model of the AH-1 series helicopter main rotor was tested. Model-rotor acoustic and simultaneous blade pressure data were recorded at high speeds where full-scale helicopter high-speed impulsive noise levels are known to be dominant. Model-rotor measurements of the peak acoustic pressure levels, waveform shapes, and directively patterns are directly compared with full-scale investigations, using an equivalent in-flight technique. Model acoustic data are shown to scale remarkably well in shape and in amplitude with full-scale results. Model rotor-blade pressures are presented for rotor operating conditions both with and without shock-like discontinuities in the radiated acoustic waveform. Acoustically, both model and full-scale measurements support current evidence that above certain high subsonic advancing-tip Mach numbers, local shock waves that exist on the rotor blades ""delocalize'' and radiate to the acoustic far-field.
Movement amplitude and tempo change in piano performance
NASA Astrophysics Data System (ADS)
Palmer, Caroline
2004-05-01
Music performance places stringent temporal and cognitive demands on individuals that should yield large speed/accuracy tradeoffs. Skilled piano performance, however, shows consistently high accuracy across a wide variety of rates. Movement amplitude may affect the speed/accuracy tradeoff, so that high accuracy can be obtained even at very fast tempi. The contribution of movement amplitude changes in rate (tempo) is investigated with motion capture. Cameras recorded pianists with passive markers on hands and fingers, who performed on an electronic (MIDI) keyboard. Pianists performed short melodies at faster and faster tempi until they made errors (altering the speed/accuracy function). Variability of finger movements in the three motion planes indicated most change in the plane perpendicular to the keyboard across tempi. Surprisingly, peak amplitudes of motion before striking the keys increased as tempo increased. Increased movement amplitudes at faster rates may reduce or compensate for speed/accuracy tradeoffs. [Work supported by Canada Research Chairs program, HIMH R01 45764.
Design of a high-speed digital processing element for parallel simulation
NASA Technical Reports Server (NTRS)
Milner, E. J.; Cwynar, D. S.
1983-01-01
A prototype of a custom designed computer to be used as a processing element in a multiprocessor based jet engine simulator is described. The purpose of the custom design was to give the computer the speed and versatility required to simulate a jet engine in real time. Real time simulations are needed for closed loop testing of digital electronic engine controls. The prototype computer has a microcycle time of 133 nanoseconds. This speed was achieved by: prefetching the next instruction while the current one is executing, transporting data using high speed data busses, and using state of the art components such as a very large scale integration (VLSI) multiplier. Included are discussions of processing element requirements, design philosophy, the architecture of the custom designed processing element, the comprehensive instruction set, the diagnostic support software, and the development status of the custom design.
NASA Technical Reports Server (NTRS)
Sun, D. C.; Brewe, D. E.; Abel, P. B.
1993-01-01
Cavitation of the oil film in a dynamically loaded journal bearing was studied using high-speed photography and pressure measurement simultaneously. Comparison of the visual and pressure data provided considerable insight into the occurence and non-occurrence of cavitation. It was found that (1), cavitation typically occurred in the form of one bubble with the pressure in the cavitation bubble close to the absolute zero; and (2), for cavitation-producing operating conditions, cavitation did not always occur; with the oil film then supporting a tensile stress.
Real-time data reduction capabilities at the Langley 7 by 10 foot high speed tunnel
NASA Technical Reports Server (NTRS)
Fox, C. H., Jr.
1980-01-01
The 7 by 10 foot high speed tunnel performs a wide range of tests employing a variety of model installation methods. To support the reduction of static data from this facility, a generalized wind tunnel data reduction program had been developed for use on the Langley central computer complex. The capabilities of a version of this generalized program adapted for real time use on a dedicated on-site computer are discussed. The input specifications, instructions for the console operator, and full descriptions of the algorithms are included.
A Dedicated Micro-Tomography Beamline For The Australian Synchrotron
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mayo, Sheridan C.; Stevenson, Andrew W.; Wilkins, Stephen W.
2010-07-23
A dedicated micro-tomography beamline is proposed for the Australian Synchrotron. It will enable high-resolution micro-tomography with resolution below a micron and supporting phase-contrast imaging modes. A key feature of the beamline will be high-throughput/high-speed operation enabling near real-time micro-tomography.
First NASA/Industry High-Speed Research Configuration Aerodynamics Workshop
NASA Technical Reports Server (NTRS)
Wood, Richard M. (Editor)
1999-01-01
This publication is a compilation of documents presented at the First NASA/Industry High Speed Research Configuration Aerodynamics Workshop held on February 27-29, 1996 at NASA Langley Research Center. The purpose of the workshop was to bring together the broad spectrum of aerodynamicists, engineers, and scientists working within the Configuration Aerodynamics element of the HSR Program to collectively evaluate the technology status and to define the needs within Computational Fluid Dynamics (CFD) Analysis Methodology, Aerodynamic Shape Design, Propulsion/Airframe Integration (PAI), Aerodynamic Performance, and Stability and Control (S&C) to support the development of an economically viable High Speed Civil Transport (HSCT) aircraft. To meet these objectives, papers were presented by representative from NASA Langley, Ames, and Lewis Research Centers; Boeing, McDonnell Douglas, Northrop-Grumman, Lockheed-Martin, Vigyan, Analytical Services, Dynacs, and RIACS.
First NASA/Industry High-Speed Research Configuration Aerodynamics Workshop. Pt. 2
NASA Technical Reports Server (NTRS)
Wood, Richard M. (Editor)
1999-01-01
This publication is a compilation of documents presented at the First NASA Industry High Speed Research Configuration Aerodynamics Workshop held on February 27-29, 1996 at NASA Langley Research Center. The purpose of the workshop was to bring together the broad spectrum of aerodynamicists, engineers, and scientists working within the Configuration Aerodynamics element of the HSR Program to collectively evaluate the technology status and to define the needs within Computational Fluid Dynamics (CFD) Analysis Methodology, Aerodynamic Shape Design, Propulsion/Airframe Integration (PAI), Aerodynamic Performance, and Stability and Control (S&C) to support the development of an economically viable High Speed Civil Transport (HSCT) aircraft. To meet these objectives, papers were presented by representatives from NASA Langley, Ames, and Lewis Research Centers; Boeing, McDonnell Douglas, Northrop-Grumman, Lockheed-Martin, Vigyan, Analytical Services, Dynacs, and RIACS.
First NASA/Industry High-Speed Research Configuration Aerodynamics Workshop. Part 1
NASA Technical Reports Server (NTRS)
Wood, Richard M. (Editor)
1999-01-01
This publication is a compilation of documents presented at the First NASA/Industry High Speed Research Configuration Aerodynamics Workshop held on February 27-29, 1996 at NASA Langley Research Center. The purpose of the workshop was to bring together the broad spectrum of aerodynamicists, engineers, and scientists working within the Configuration Aerodynamics element of the HSR Program to collectively evaluate the technology status and to define the needs within Computational Fluid Dynamics (CFD) Analysis Methodology, Aerodynamic Shape Design, Propulsion/Airframe Integration (PAI), Aerodynamic Performance, and Stability and Control (S&C) to support the development of an economically viable High Speed Civil Transport (HSCT) aircraft. To meet these objectives, papers were presented by representative from NASA Langley, Ames, and Lewis Research Centers; Boeing, McDonnell Douglas, Northrop-Grumman, Lockheed-Martin, Vigyan, Analytical Services, Dynacs, and RIACS.
A High-Level Symbolic Representation for Intelligent Agents Across Multiple Architectures
2004-07-01
components of Soar that map to these concepts (instantiation support, selected operator). Fik Ed" Vie Go Boolbmo .’ lookb Wind , Help 1B w ,’ F:ld 1.ý fie...AnswerSpeedRequest ((msg> isa RequestSpeedChange consider (sel’>. pmsg (msg> end 0 St=ndadd irttezf•cc fo1.1 goals . ~interface lGoal s l’n sa,,invq this goail Ys "rt
Testing of Two-Speed Transmission Configurations for Use in Rotorcraft
NASA Technical Reports Server (NTRS)
Lewicki, David G.; Stevens, Mark A.
2015-01-01
Large civil tiltrotors have been identified to replace regional airliners over medium ranges to alleviate next-generation air traffic. Variable rotor speed for these vehicles is required for efficient high-speed operation. Two-speed drive system research has been performed to support these advanced rotorcraft applications. Experimental tests were performed on two promising two-speed transmission configurations. The offset compound gear (OCG) transmission and the dual star/idler (DSI) planetary transmission were tested in the NASA Glenn Research Center variable-speed transmission test facility. Both configurations were inline devices with concentric input and output shafts and designed to provide 1:1 and 2:1 output speed reduction ratios. Both were designed for 200 hp and 15,000 rpm input speed and had a dry shift clutch configuration. Shift tests were performed on the transmissions at input speeds of 5,000, 8,000, 10,000, 12,500, and 15,000 rpm. Both the OCG and DSI configurations successfully perform speed shifts at full rated 15,000 rpm input speed. The transient shifting behavior of the OCG and DSI configurations were very similar. The shift clutch had more of an effect on shifting dynamics than the reduction gearing configuration itself since the same shift clutch was used in both configurations. For both OCG and DSI configurations, low-to-high speed shifts were limited in applied torque levels in order to prevent overloads on the transmission due to transient torque spikes. It is believed that the relative lack of appreciable slippage of the dry shifting clutch at operating conditions and pressure profiles tested was a major cause of the transient torque spikes. For the low-to-high speed shifts, the output speed ramp-up time slightly decreased and the peak out torque slightly increased as the clutch pressure ramp-down rate increased. This was caused by slightly less clutch slippage as the clutch pressure ramp-down rate increased.
Leadership Practices Accelerate into High Speed
ERIC Educational Resources Information Center
Novak, Dori; Reilly, Marceta; Williams, Diana
2010-01-01
In fall 2006, the deputy superintendent of Howard County Schools in Maryland asked a small leadership team to rethink leadership support for central office leaders and to come up with an aligned three-point plan that would meet their unique needs. The leadership support system needed to take into account: (1) Leadership standards and indicators of…
The Costs and Benefits of High Speed Vessels Relative to Traditional C-17 Military Airlift
2003-12-01
37 APPENDIX D SWOT Analysis...Port Action Officers Group IBCT Interim Brigade Combat Team LCS Littoral Combat Ship LST Landing ship tank LSV Logistics Support Vessel... SWOT Strength Weakness Opportunity Threat TACOM Tank and Automotive Command TSV Theater Support Vessel USS United States Ship USTRANSCOM
Support vector machine incremental learning triggered by wrongly predicted samples
NASA Astrophysics Data System (ADS)
Tang, Ting-long; Guan, Qiu; Wu, Yi-rong
2018-05-01
According to the classic Karush-Kuhn-Tucker (KKT) theorem, at every step of incremental support vector machine (SVM) learning, the newly adding sample which violates the KKT conditions will be a new support vector (SV) and migrate the old samples between SV set and non-support vector (NSV) set, and at the same time the learning model should be updated based on the SVs. However, it is not exactly clear at this moment that which of the old samples would change between SVs and NSVs. Additionally, the learning model will be unnecessarily updated, which will not greatly increase its accuracy but decrease the training speed. Therefore, how to choose the new SVs from old sets during the incremental stages and when to process incremental steps will greatly influence the accuracy and efficiency of incremental SVM learning. In this work, a new algorithm is proposed to select candidate SVs and use the wrongly predicted sample to trigger the incremental processing simultaneously. Experimental results show that the proposed algorithm can achieve good performance with high efficiency, high speed and good accuracy.
Temperature prediction in high speed bone grinding using motor PWM signal.
Tai, Bruce L; Zhang, Lihui; Wang, Anthony C; Sullivan, Stephen; Wang, Guangjun; Shih, Albert J
2013-10-01
This research explores the feasibility of using motor electrical feedback to estimate temperature rise during a surgical bone grinding procedure. High-speed bone grinding is often used during skull base neurosurgery to remove cranial bone and approach skull base tumors through the nasal corridor. Grinding-induced heat could propagate and potentially injure surrounding nerves and arteries, and therefore, predicting the temperature in the grinding region would benefit neurosurgeons during the operation. High-speed electric motors are controlled by pulse-width-modulation (PWM) to alter the current input and thus maintain the rotational speed. Assuming full mechanical to thermal power conversion in the grinding process, PWM can be used as feedback for heat generation and temperature prediction. In this study, the conversion model was established from experiments under a variety of grinding conditions and an inverse heat transfer method to determine heat flux. Given a constant rotational speed, the heat conversion was represented by a linear function, and could predict temperature from the experimental data with less than 20% errors. Such results support the advance of this technology for practical application. Copyright © 2013 IPEM. Published by Elsevier Ltd. All rights reserved.
Lai, Frank; Carsten, Oliver
2012-09-01
Intelligent Speed Adaptation (ISA) is a driver support system which brings the speed limit information into the vehicle. This paper describes the UK ISA field trials taken place between 2004 and 2006 and presents evidence on how drivers' choice of speed is altered. The ISA system was observed to have a distinctive effect in transforming the speed distribution from a conventional bell shape to an asymmetric distribution biased towards the high speed end. ISA not only diminished excessive speeding, but also led to a reduction in speed variation, prompting a positive implication to accident reduction. The use of an overridable ISA system also provided an opportunity to investigate where drivers would choose to have ISA based on observed behaviour instead of opinion. Evidence shows that ISA tends to be overridden on roads where it was perhaps needed most. Behavioural difference among driver groups also suggests that ISA tends to be overridden by those drivers who in safety terms stand to benefit most from using it, as with other safety systems. Copyright © 2010 Elsevier Ltd. All rights reserved.
A comparison of high-speed links, their commercial support and ongoing R&D activities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gonzalez, H.L.; Barsotti, E.; Zimmermann, S.
Technological advances and a demanding market have forced the development of higher bandwidth communication standards for networks, data links and busses. Most of these emerging standards are gathering enough momentum that their widespread availability and lower prices are anticipated. The hardware and software that support the physical media for most of these links is currently available, allowing the user community to implement fairly high-bandwidth data links and networks with commercial components. Also, switches needed to support these networks are available or being developed. The commercial suppose of high-bandwidth data links, networks and switching fabrics provides a powerful base for themore » implementation of high-bandwidth data acquisition systems. A large data acquisition system like the one for the Solenoidal Detector Collaboration (SDC) at the SSC can benefit from links and networks that support an integrated systems engineering approach, for initialization, downloading, diagnostics, monitoring, hardware integration and event data readout. The issue that our current work addresses is the possibility of having a channel/network that satisfies the requirements of an integrated data acquisition system. In this paper we present a brief description of high-speed communication links and protocols that we consider of interest for high energy physic High Performance Parallel Interface (HIPPI). Serial HIPPI, Fibre Channel (FC) and Scalable Coherent Interface (SCI). In addition, the initial work required to implement an SDC-like data acquisition system is described.« less
A comparison of high-speed links, their commercial support and ongoing R D activities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gonzalez, H.L.; Barsotti, E.; Zimmermann, S.
Technological advances and a demanding market have forced the development of higher bandwidth communication standards for networks, data links and busses. Most of these emerging standards are gathering enough momentum that their widespread availability and lower prices are anticipated. The hardware and software that support the physical media for most of these links is currently available, allowing the user community to implement fairly high-bandwidth data links and networks with commercial components. Also, switches needed to support these networks are available or being developed. The commercial suppose of high-bandwidth data links, networks and switching fabrics provides a powerful base for themore » implementation of high-bandwidth data acquisition systems. A large data acquisition system like the one for the Solenoidal Detector Collaboration (SDC) at the SSC can benefit from links and networks that support an integrated systems engineering approach, for initialization, downloading, diagnostics, monitoring, hardware integration and event data readout. The issue that our current work addresses is the possibility of having a channel/network that satisfies the requirements of an integrated data acquisition system. In this paper we present a brief description of high-speed communication links and protocols that we consider of interest for high energy physic High Performance Parallel Interface (HIPPI). Serial HIPPI, Fibre Channel (FC) and Scalable Coherent Interface (SCI). In addition, the initial work required to implement an SDC-like data acquisition system is described.« less
Rapidly moving contact lines and damping contributions
NASA Astrophysics Data System (ADS)
Xia, Yi; Daniel, Susan; Steen, Paul
2017-11-01
Contact angle varies dynamically with contact line (CL) speed when a liquid moves across a solid support, as when a liquid spreads rapidly. For sufficiently rapid spreading, inertia competes with capillarity to influence the interface shape near the support. We use resonant-mode plane-normal support oscillations of droplets to drive lateral contact-line motion. Reynolds numbers based on CL speeds are high and capillary numbers are low. These are inertial-capillary motions. By scanning the driving frequency, we locate the frequency at peak amplification (resonance), obtain the scaled peak height (amplification factor) and a measure of band-width (damping ratio). We report how a parameter for CL mobility depends on these scanning metrics, with the goal of distinguishing contributions from the bulk- and CL-dissipation to overall damping.
Naval Research Laboratory Fact Book 2012
2012-11-01
Distributed network-based battle management High performance computing supporting uniform and nonuniform memory access with single and multithreaded...hyperspectral systems VNIR, MWIR, and LWIR high-resolution systems Wideband SAR systems RF and laser data links High-speed, high-power...hyperspectral imaging system Long-wave infrared ( LWIR ) quantum well IR photodetector (QWIP) imaging system Research and Development Services Divi- sion
High-frequency effects in antiferromagnetic Sr3Ir2O7
NASA Astrophysics Data System (ADS)
Williamson, Morgan; Seinige, Heidi; Shen, Shida; Wang, Cheng; Cao, Gang; Zhou, Jianshi; Goodenough, John; Tsoi, Maxim
Antiferromagnetic (AFM) spintronics is one of many promising routes for `beyond the CMOS' technologies where unique properties of AFM materials are exploited to achieve new and improved functionalities. AFMs are especially interesting for high-speed memory applications thanks to their high natural frequencies. Here we report the effects of high-frequency (microwave) currents on transport properties of antiferromagnetic Mott insulator Sr3Ir2O7. The microwaves at 3-7 GHz were found to affect the material's current-voltage characteristic and produce resonance-like features that we tentatively associate with the dissipationless magnonics recently predicted to occur in antiferromagnetic insulators subject to ac electric fields. Our observations support the potential of antiferromagnetic materials for high-speed/high-frequency spintronic applications. This work was supported in part by C-SPIN, one of six centers of STARnet, a Semiconductor Research Corporation program, sponsored by MARCO and DARPA, by NSF Grants DMR-1207577, DMR-1265162, DMR-1600057, and DMR-1122603, and by the King Abdullah University of Science and Technology (KAUST) Office of Sponsored Research (OSR) under Award No. OSR-2015-CRG4-2626.
NASA Technical Reports Server (NTRS)
Eastman, L. F.; Wicks, G. W.
1987-01-01
This project was proposed to be a three-year contract, but was cut off after one year (1987) of support. Sufficient progress was made to allow continuation for a year on minimal internal funds before proper support levels were received from a combination of ONR, RADC, and IBM contracts at about the start of 1989. A major DARPA grant, expected to start August 1, 1990, will sharply expand this effort to include several faculty members. During the course of this project, two students did thesis research, one Ph.D. on lasers and one M.S. on high speed photodetectors. These theses were finished in September 1988, nine months after the contract was cut off. This report covers excerpts from those theses as well as information obtained on other programs since that time.
Hierarchy Bayesian model based services awareness of high-speed optical access networks
NASA Astrophysics Data System (ADS)
Bai, Hui-feng
2018-03-01
As the speed of optical access networks soars with ever increasing multiple services, the service-supporting ability of optical access networks suffers greatly from the shortage of service awareness. Aiming to solve this problem, a hierarchy Bayesian model based services awareness mechanism is proposed for high-speed optical access networks. This approach builds a so-called hierarchy Bayesian model, according to the structure of typical optical access networks. Moreover, the proposed scheme is able to conduct simple services awareness operation in each optical network unit (ONU) and to perform complex services awareness from the whole view of system in optical line terminal (OLT). Simulation results show that the proposed scheme is able to achieve better quality of services (QoS), in terms of packet loss rate and time delay.
A 1024×768-12μm Digital ROIC for uncooled microbolometer FPAs
NASA Astrophysics Data System (ADS)
Eminoglu, Selim
2017-02-01
This paper reports the development of a new digital microbolometer Readout Integrated Circuit (D-ROIC), called MT10212BD. It has a format of 1024 × 768 (XGA) and a pixel pitch of 12μm. MT10212BD is Mikro Tasarim's second 12μm pitch microbolometer ROIC, which is developed specifically for surface micro machined microbolometer detector arrays with small pixel pitch using high-TCR pixel materials, such as VOx and a Si. MT10212BD has an alldigital system on-chip architecture, which generates programmable timing and biasing, and performs 14-bit analog to digital conversion (ADC). The signal processing chain in the ROIC is composed of pixel bias circuitry, integrator based programmable gain amplifier followed by column parallel ADC circuitry. MT10212BD has a serial programming interface that can be used to configure the programmable ROIC features and to load the Non-Uniformity-Correction (NUC) date to the ROIC. MT10212BD has a total of 8 high-speed serial digital video outputs, which can be programmed to operate in the 2, 4, and 8-output modes and can support frames rates above 60 fps. The high-speed serial digital outputs supports data rates as high as 400 Mega-bits/s, when operated at 50 MHz system clock frequency. There is an on-chip phase-locked-loop (PLL) based timing circuitry to generate the high speed clocks used in the ROIC. The ROIC is designed to support pixel resistance values ranging from 30KΩ to 90kΩ, with a nominal value of 60KΩ. The ROIC has a globally programmable gain in the column readout, which can be adjusted based on the detector resistance value.
Membrane-based actuation for high-speed single molecule force spectroscopy studies using AFM.
Sarangapani, Krishna; Torun, Hamdi; Finkler, Ofer; Zhu, Cheng; Degertekin, Levent
2010-07-01
Atomic force microscopy (AFM)-based dynamic force spectroscopy of single molecular interactions involves characterizing unbinding/unfolding force distributions over a range of pulling speeds. Owing to their size and stiffness, AFM cantilevers are adversely affected by hydrodynamic forces, especially at pulling speeds >10 microm/s, when the viscous drag becomes comparable to the unbinding/unfolding forces. To circumvent these adverse effects, we have fabricated polymer-based membranes capable of actuating commercial AFM cantilevers at speeds >or=100 microm/s with minimal viscous drag effects. We have used FLUENT, a computational fluid dynamics (CFD) software, to simulate high-speed pulling and fast actuation of AFM cantilevers and membranes in different experimental configurations. The simulation results support the experimental findings on a variety of commercial AFM cantilevers and predict significant reduction in drag forces when membrane actuators are used. Unbinding force experiments involving human antibodies using these membranes demonstrate that it is possible to achieve bond loading rates >or=10(6) pN/s, an order of magnitude greater than that reported with commercial AFM cantilevers and systems.
RICE, JOHN; SEELEY, MATTHEW K.
2010-01-01
Functional asymmetry is an idea that is often used to explain documented bilateral asymmetries during able-bodied gait. Within this context, this idea suggests that the non-dominant and dominant legs, considered as whole entities, contribute asymmetrically to support and propulsion during walking. The degree of functional asymmetry may depend upon walking speed. The purpose of this study was to better understand the potential relationship between functional asymmetry and walking speed. Bilateral ground reaction forces (GRF) were measured for 20 healthy subjects who walked at nine different speeds: preferred, +10%, +20%, +30%, +40, −10%, −20%, −30%, and −40%. Contribution to support was determined to be the support impulse: the time integral of the vertical GRF during stance. Contribution to propulsion was determined to be the propulsion impulse: the time integral of the anterior-posterior GRF, while this force was directed forward. Repeated measures ANOVA (α = 0.05) revealed leg × speed interactions for normalized support (p = 0.001) and propulsion (p = 0.001) impulse, indicating that speed does affect the degree of functional asymmetry during gait. Post hoc comparisons (α = 0.05) showed that support impulse was approximately 2% greater for the dominant leg, relative to the non-dominant leg, for the −10%, −20%, and −40% speeds. Propulsion impulse was 12% greater for the dominant leg than for the non-dominant leg at the +20% speed. Speed does appear to affect the magnitude of bilateral asymmetry during walking, however, only the bilateral difference for propulsion impulse at one fast speed (+20%) was supportive of the functional asymmetry idea. PMID:27182346
Low-speed airspeed calibration data for a single-engine research-support aircraft
NASA Technical Reports Server (NTRS)
Holmes, B. J.
1980-01-01
A standard service airspeed system on a single engine research support airplane was calibrated by the trailing anemometer method. The effects of flaps, power, sideslip, and lag were evaluated. The factory supplied airspeed calibrations were not sufficiently accurate for high accuracy flight research applications. The trailing anemometer airspeed calibration was conducted to provide the capability to use the research support airplane to perform pace aircraft airspeed calibrations.
NASA Technical Reports Server (NTRS)
Sun, D. C.; Brewe, David E.; Abel, Philip B.
1994-01-01
Cavitation of the oil film in a dynamically loaded journal bearing was studied using high-speed photography and pressure measurement simultaneously. Comparison of the visual and pressure data provided considerable insight into the occurrence and nonoccurrence of cavitation. It was found that (1) for the submerged journal bearing, cavitation typically occurred in the form of one bubble with the pressure in the cavitation bubble close to the absolute zero; and (2) for cavitation-producing operating conditions, cavitation did not always occur; with the oil film then supporting a tensile stress.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eshraghi, Ray
In September 2008, the U.S. Department of Energy and Martin County Economic Development Corporation entered into an agreement to further the advancement of a microtubular PEM fuel cell developed by Microcell Corporation. The overall focus of this project was on research and development related to high volume manufacturing of fuel cells and cost reduction in the fuel cell manufacturing process. The extrusion process used for the microfiber fuel cells in this project is inherently a low cost, high volume, high speed manufacturing process. In order to take advantage of the capabilities that the extrusion process provides, all subsequent manufacturing processesmore » must be enhanced to meet the extrusion line’s speed and output. Significant research and development was completed on these subsequent processes to ensure that power output and performance were not negatively impacted by the higher speeds, design changes and process improvements developed in this project. All tasks were successfully completed resulting in cost reductions, performance improvements and process enhancements in the areas of speed and quality. These results support the Department of Energy’s goal of fuel cell commercialization.« less
Concept Development of a Mach 2.4 High-Speed Civil Transport
NASA Technical Reports Server (NTRS)
Fenbert, James W.; Ozoroski, Lori P.; Geiselhart, Karl A.; Shields, Elwood W.; McElroy, Marcus O.
1999-01-01
In support of the NASA High-Speed Research Program, a Mach 2.4 high-speed civil transport concept was developed to serve as a baseline for studies to assess advanced technologies required for a feasible year 2005 entry-into-service vehicle. The configuration was designed to carry 251 passengers at Mach 2.4 cruise with a 6500-n.mi. range and operate in the existing world airport structure. The details of the configuration development, aerodynamic design, propulsion system and integration, mass properties, sizing, and mission performance are presented. The baseline configuration has a wing area of 9l00 sq ft and a takeoff gross weight of 614300 lb. The four advanced turbine bypass engines have 39 000 lb thrust with a weight of 9950 lb each, yielding a vehicle takeoff thrust-to-weight ratio of 0.254 and a takeoff wing loading of 67.5 lb/sq ft. The configuration was sized by the 11000-ft takeoff field length requirement and the usable fuel volume limit, which results in a rotation speed of 179 knots and an end-of-mission landing approach velocity of 134 knots.
FBI Fingerprint Image Capture System High-Speed-Front-End throughput modeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rathke, P.M.
1993-09-01
The Federal Bureau of Investigation (FBI) has undertaken a major modernization effort called the Integrated Automated Fingerprint Identification System (IAFISS). This system will provide centralized identification services using automated fingerprint, subject descriptor, mugshot, and document processing. A high-speed Fingerprint Image Capture System (FICS) is under development as part of the IAFIS program. The FICS will capture digital and microfilm images of FBI fingerprint cards for input into a central database. One FICS design supports two front-end scanning subsystems, known as the High-Speed-Front-End (HSFE) and Low-Speed-Front-End, to supply image data to a common data processing subsystem. The production rate of themore » HSFE is critical to meeting the FBI`s fingerprint card processing schedule. A model of the HSFE has been developed to help identify the issues driving the production rate, assist in the development of component specifications, and guide the evolution of an operations plan. A description of the model development is given, the assumptions are presented, and some HSFE throughput analysis is performed.« less
NASA Technical Reports Server (NTRS)
Schmied, J.; Pradetto, J. C.
1994-01-01
The combination of a high-speed motor, dry gas seals, and magnetic bearings realized in this unit facilitates the elimination of oil. The motor is coupled with a quill shaft to the compressor. This yields higher natural frequencies of the rotor than with the use of a diaphragm coupling and helps to maintain a sufficient margin of the maximum speed to the frequency of the second compressor bending mode. However, the controller of each bearing then has to take the combined modes of both machines into account. The requirements for the controller to ensure stability and sufficient damping of all critical speeds are designed and compared with the implemented controller. The calculated closed loop behavior was confirmed experimentally, except the stability of some higher modes due to slight frequency deviations of the rotor model to the actual rotor. The influence of a mechanical damper as a device to provide additional damping to high models is demonstrated theoretically. After all, it was not necessary to install the damper, since all modes cold be stabilized by the controller.
1954-01-17
These people and this equipment supported the flight of the NACA D-558-2 Skyrocket at the High-Speed Flight Station at South Base, Edwards AFB. Note the two Sabre chase planes, the P2B-1S launch aircraft, and the profusion of ground support equipment, including communications, tracking, maintenance, and rescue vehicles. Research pilot A. Scott Crossfield stands in front of the Skyrocket.
NASA Technical Reports Server (NTRS)
Allen, M. A.; Roman, G. S.
1979-01-01
The specification used to install a broadband coaxial cable communication system to support remote terminal operations on the Crew Activity Planning system at the Lyndon B. Johnson Space Center are reported. The system supports high speed communications between a Harris Slash 8 computer and one or more Sanders Graphic 7 displays.
High-speed passenger rail tie-ballast interaction.
DOT National Transportation Integrated Search
2015-05-01
This Research Results Report presents : evidence of poor tie support and increased : applied loads that were used to determine the : root cause of transient and permanent vertical : displacements at two Amtrak bridge transitions. : These result...
Bailey, Helen; Fossette, Sabrina; Bograd, Steven J; Shillinger, George L; Swithenbank, Alan M; Georges, Jean-Yves; Gaspar, Philippe; Strömberg, K H Patrik; Paladino, Frank V; Spotila, James R; Block, Barbara A; Hays, Graeme C
2012-01-01
Foraging success for pelagic vertebrates may be revealed by horizontal and vertical movement patterns. We show markedly different patterns for leatherback turtles in the North Atlantic versus Eastern Pacific, which feed on gelatinous zooplankton that are only occasionally found in high densities. In the Atlantic, travel speed was characterized by two modes, indicative of high foraging success at low speeds (<15 km d(-1)) and transit at high speeds (20-45 km d(-1)). Only a single mode was evident in the Pacific, which occurred at speeds of 21 km d(-1) indicative of transit. The mean dive depth was more variable in relation to latitude but closer to the mean annual depth of the thermocline and nutricline for North Atlantic than Eastern Pacific turtles. The most parsimonious explanation for these findings is that Eastern Pacific turtles rarely achieve high foraging success. This is the first support for foraging behaviour differences between populations of this critically endangered species and suggests that longer periods searching for prey may be hindering population recovery in the Pacific while aiding population maintenance in the Atlantic.
Bailey, Helen; Fossette, Sabrina; Bograd, Steven J.; Shillinger, George L.; Swithenbank, Alan M.; Georges, Jean-Yves; Gaspar, Philippe; Strömberg, K. H. Patrik; Paladino, Frank V.; Spotila, James R.; Block, Barbara A.; Hays, Graeme C.
2012-01-01
Foraging success for pelagic vertebrates may be revealed by horizontal and vertical movement patterns. We show markedly different patterns for leatherback turtles in the North Atlantic versus Eastern Pacific, which feed on gelatinous zooplankton that are only occasionally found in high densities. In the Atlantic, travel speed was characterized by two modes, indicative of high foraging success at low speeds (<15 km d−1) and transit at high speeds (20–45 km d−1). Only a single mode was evident in the Pacific, which occurred at speeds of 21 km d−1 indicative of transit. The mean dive depth was more variable in relation to latitude but closer to the mean annual depth of the thermocline and nutricline for North Atlantic than Eastern Pacific turtles. The most parsimonious explanation for these findings is that Eastern Pacific turtles rarely achieve high foraging success. This is the first support for foraging behaviour differences between populations of this critically endangered species and suggests that longer periods searching for prey may be hindering population recovery in the Pacific while aiding population maintenance in the Atlantic. PMID:22615767
HIGH-SPEED IMAGING AND WAVEFRONT SENSING WITH AN INFRARED AVALANCHE PHOTODIODE ARRAY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baranec, Christoph; Atkinson, Dani; Hall, Donald
2015-08-10
Infrared avalanche photodiode (APD) arrays represent a panacea for many branches of astronomy by enabling extremely low-noise, high-speed, and even photon-counting measurements at near-infrared wavelengths. We recently demonstrated the use of an early engineering-grade infrared APD array that achieves a correlated double sampling read noise of 0.73 e{sup −} in the lab, and a total noise of 2.52 e{sup −} on sky, and supports simultaneous high-speed imaging and tip-tilt wavefront sensing with the Robo-AO visible-light laser adaptive optics (AO) system at the Palomar Observatory 1.5 m telescope. Here we report on the improved image quality simultaneously achieved at visible andmore » infrared wavelengths by using the array as part of an image stabilization control loop with AO-sharpened guide stars. We also discuss a newly enabled survey of nearby late M-dwarf multiplicity, as well as future uses of this technology in other AO and high-contrast imaging applications.« less
Efficient system interrupt concept design at the microprogramming level
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fakharzadeh, M.M.
1989-01-01
Over the past decade the demand for high speed super microcomputers has been tremendously increased. To satisfy this demand many high speed 32-bit microcomputers have been designed. However, the currently available 32-bit systems do not provide an adequate solution to many highly demanding problems such as in multitasking, and in interrupt driven applications, which both require context switching. Systems for these purposes usually incorporate sophisticated software. In order to be efficient, a high end microprocessor based system must satisfy stringent software demands. Although these microprocessors use the latest technology in the fabrication design and run at a very high speed,more » they still suffer from insufficient hardware support for such applications. All too often, this lack also is the premier cause of execution inefficiency. In this dissertation a micro-programmable control unit and operation unit is considered in an advanced design. An automaton controller is designed for high speed micro-level interrupt handling. Different stack models are designed for the single task and multitasking environment. The stacks are used for storage of various components of the processor during the interrupt calls, procedure calls, and task switching. A universal (as an example seven port) register file is designed for high speed parameter passing, and intertask communication in the multitasking environment. In addition, the register file provides a direct path between ALU and the peripheral data which is important in real-time control applications. The overall system is a highly parallel architecture, with no pipeline and internal cache memory, which allows the designer to be able to predict the processor's behavior during the critical times.« less
Dorn, Tim W; Schache, Anthony G; Pandy, Marcus G
2012-06-01
Humans run faster by increasing a combination of stride length and stride frequency. In slow and medium-paced running, stride length is increased by exerting larger support forces during ground contact, whereas in fast running and sprinting, stride frequency is increased by swinging the legs more rapidly through the air. Many studies have investigated the mechanics of human running, yet little is known about how the individual leg muscles accelerate the joints and centre of mass during this task. The aim of this study was to describe and explain the synergistic actions of the individual leg muscles over a wide range of running speeds, from slow running to maximal sprinting. Experimental gait data from nine subjects were combined with a detailed computer model of the musculoskeletal system to determine the forces developed by the leg muscles at different running speeds. For speeds up to 7 m s(-1), the ankle plantarflexors, soleus and gastrocnemius, contributed most significantly to vertical support forces and hence increases in stride length. At speeds greater than 7 m s(-1), these muscles shortened at relatively high velocities and had less time to generate the forces needed for support. Thus, above 7 m s(-1), the strategy used to increase running speed shifted to the goal of increasing stride frequency. The hip muscles, primarily the iliopsoas, gluteus maximus and hamstrings, achieved this goal by accelerating the hip and knee joints more vigorously during swing. These findings provide insight into the strategies used by the leg muscles to maximise running performance and have implications for the design of athletic training programs.
The architecture of a distributed medical dictionary.
Fowler, J; Buffone, G; Moreau, D
1995-01-01
Exploiting high-speed computer networks to provide a national medical information infrastructure is a goal for medical informatics. The Distributed Medical Dictionary under development at Baylor College of Medicine is a model for an architecture that supports collaborative development of a distributed online medical terminology knowledge-base. A prototype is described that illustrates the concept. Issues that must be addressed by such a system include high availability, acceptable response time, support for local idiom, and control of vocabulary.
Wing-Alone Aerodynamic Characteristics to High Angles of Attack at Subsonic and Transonic Speeds.
1982-11-01
support subsystems, the test- ing of these models consumes a disproportionate amount of model construction effort and wind-tunnel testing time compared...constant taper ratio with the exception of the aspect ratio 4, taper ratio 0.5 wing at subsonic speeds; the anomalous behavior of this wing is likely...0000000 ...... 0 0 0i 010... 0.. .......... .. .............. tt.. 4t t * PS4 Oft* .. MM.~0o004.0 s.t~o.4
Materiel Readiness Support Activity Automation Plan
1986-09-01
Hardwire leased lines Sytek RF broadband cable modems Digital phone switched service Medium Speed - up to 56k baud RF modems Digital phone service High...dialing 121 I iI Medium Speed - up to 56k baud RF modems - up to 56k baud sync modem $2070 plus installation - $25 per month maintenance - $1200 per...security is to disconnect net- work, modem , and hardwire access (that is, all external access to the machine) after 5 p.m. (normal business hours
Gust wind tunnel study on ballast pick-up by high-speed trains
NASA Astrophysics Data System (ADS)
Navarro-Medina, F.; Sanz-Andres, A.; Perez-Grande, I.
2012-01-01
This paper describes the experimental setup, procedure, and results obtained, concerning the dynamics of a body lying on a floor, attached to a hinge, and exposed to an unsteady flow, which is a model of the initiation of rotational motion of ballast stones due to the wind generated by the passing of a high-speed train. The idea is to obtain experimental data to support the theoretical model developed in Sanz-Andres and Navarro-Medina (J Wind Eng Ind Aerodyn 98, 772-783, (2010), aimed at analyzing the initial phase of the ballast train-induced-wind erosion (BATIWE) phenomenon. The experimental setup is based on an open circuit, closed test section, low-speed wind tunnel, with a new sinusoidal gust generator mechanism concept, designed and built at the IDR/UPM. The tunnel's main characteristic is the ability to generate a flow with a uniform velocity profile and sinusoidal time fluctuation of the speed. Experimental results and theoretical model predictions are in good agreement.
The Emergence of the Worldship (I): The Shift from Planet-Based to Space-Based Civilisation
NASA Astrophysics Data System (ADS)
Ashworth, S.
Design concepts for passenger-carrying interstellar vehicles may be organised according to speed of travel and payload mass. The most likely design solutions fall on a scale which ranges from the high speed, low mass rapid transport at one end to the low speed, high mass multi-generation worldship at the other. The medium speed, medium mass cruiser is defined as an intermediate case. Using an energy-based analysis, it is shown that the rapid transport is a less plausible case. The more credible options for human interstellar flight are the multi-generation cruiser and worldship, in either case requiring the construction of an artificial mobile world-like environment for the sustainable support of a town- to city-sized community of travellers. This could be made possible by a shift in the dominant mode of human civilisation from planetary to space-based life. The long-term consequences for interstellar colonisation are illustrated with reference to the percolation theory presented by Geoffrey Landis.
NASA Astrophysics Data System (ADS)
Modafe, A.; Ghalichechian, N.; Frey, A.; Lang, J. H.; Ghodssi, R.
2006-09-01
This paper presents our latest research activities toward the development of electrostatic micromotors/microgenerators with a microball-bearing support mechanism and benzocyclobutene (BCB) low-k polymer insulating layers. The primary applications of these devices are long-range, high-speed micropositioning, high-speed micro pumping and micro power generation. In this paper, we present the development of the first generation of microball-bearing-supported micromachines. This device is a 6-phase, bottom-drive, linear, variable-capacitance micromotor. The design and fabrication of the linear micromotor, and characterization of the motor capacitance, force and motion in 3-phase and 6-phase excitation modes are presented. The micromotor consists of a silicon stator, a silicon slider and four stainless-steel microballs. The aligning force profile of the micromotor was extracted from simulated and measured capacitances of all phases. An average total aligning force of 0.27 mN with a maximum of 0.41 mN at 100 V dc was measured. The ac operation of the micromotor was verified by applying square-wave voltages and characterizing the slider motion. An average slider speed of 7.32 mm s-1 at 40 Hz and 120 V P-P was reached without losing the synchronization. The design, fabrication and characterization methods presented in this paper can be used as a technology platform for developing rotary micromachines.
Comparison of live high: train low altitude and intermittent hypoxic exposure.
Humberstone-Gough, Clare E; Saunders, Philo U; Bonetti, Darrell L; Stephens, Shaun; Bullock, Nicola; Anson, Judith M; Gore, Christopher J
2013-01-01
Live High:Train Low (LHTL) altitude training is a popular ergogenic aid amongst athletes. An alternative hypoxia protocol, acute (60-90 min daily) Intermittent Hypoxic Exposure (IHE), has shown potential for improving athletic performance. The aim of this study was to compare directly the effects of LHTL and IHE on the running and blood characteristics of elite triathletes. Changes in total haemoglobin mass (Hbmass), maximal oxygen consumption (VO2max), velocity at VO2max (vVO2max), time to exhaustion (TTE), running economy, maximal blood lactate concentration ([La]) and 3 mM [La] running speed were compared following 17 days of LHTL (240 h of hypoxia), IHE (10.2 h of hypoxia) or Placebo treatment in 24 Australian National Team triathletes (7 female, 17 male). There was a clear 3.2 ± 4.8% (mean ± 90% confidence limits) increase in Hbmass following LHTL compared with Placebo, whereas the corresponding change of -1.4 ± 4.5% in IHE was unclear. Following LHTL, running economy was 2.8 ± 4.4% improved compared to IHE and 3mM [La] running speed was 4.4 ± 4.5% improved compared to Placebo. After IHE, there were no beneficial changes in running economy or 3mM [La] running speed compared to Placebo. There were no clear changes in VO2max, vVO2max and TTE following either method of hypoxia. The clear difference in Hbmass response between LHTL and IHE indicated that the dose of hypoxia in IHE was insufficient to induce accelerated erythropoiesis. Improved running economy and 3mM [La] running speed following LHTL suggested that this method of hypoxic exposure may enhance performance at submaximal running speeds. Overall, there was no evidence to support the use of IHE in elite triathletes. Key PointsDespite a clear 3.2% increase in haemoglobin mass following 17 days of Live High: Train Low altitude training, no change in maximal aerobic capacity was observed.There were positive changes in running economy and the lactate-speed relationship at submaximal running speeds following Live High: Train Low altitude training.There was no evidence to support the use of daily 60-90 minute Intermittent Hypoxic Exposure in elite triathletes.
On possible plume-guided seismic waves
Julian, B.R.; Evans, J.R.
2010-01-01
Hypothetical thermal plumes in the Earth's mantle are expected to have low seismic-wave speeds and thus would support the propagation of guided elastic waves analogous to fault-zone guided seismic waves, fiber-optic waves, and acoustic waves in the oceanic SOund Fixing And Ranging channel. Plume-guided waves would be insensitive to geometric complexities in the wave guide, and their dispersion would make them distinctive on seismograms and would provide information about wave-guide structure that would complement seismic tomography. Detecting such waves would constitute strong evidence of a new kind for the existence of plumes. A cylindrical channel embedded in an infinite medium supports two classes of axially symmetric elastic-wave modes, torsional and longitudinal-radial. Torsional modes have rectilinear particle motion tangent to the cylinder surface. Longitudinal-radial modes have elliptical particle motion in planes that include the cylinder axis, with retrograde motion near the axis. The direction of elliptical particle motion reverses with distance from the axis: once for the fundamental mode, twice for the first overtone, and so on. Each mode exists only above its cut-off frequency, where the phase and group speeds equal the shear-wave speed in the infinite medium. At high frequencies, both speeds approach the shear-wave speed in the channel. All modes have minima in their group speeds, which produce Airy phases on seismograms. For shear wave-speed contrasts of a few percent, thought to be realistic for thermal plumes in the Earth, the largest signals are inversely dispersed and have dominant frequencies of about 0.1-1 Hz and durations of 15-30 sec. There are at least two possible sources of observable plume waves: (1) the intersection of mantle plumes with high-amplitude core-phase caustics in the deep mantle; and (2) ScS-like reflection at the core-mantle boundary of downward-propagating guided waves. The widespread recent deployment of broadband seismometers makes searching for these waves possible.
Overview of High Speed Close-Up Imaging in an Icing Environment
NASA Technical Reports Server (NTRS)
Miller, Dean R.; Lynch, Christopher J.; Tate, Peter A.
2004-01-01
The Icing Branch and Imaging Technology Center at NASA Glenn Research Center have recently been involved in several projects where high speed close-up imaging was used to investigate water droplet impact/splash, and also ice particle impact/bounce in an icing wind tunnel. The combination of close-up and high speed imaging capabilities were required because the particles being studied were relatively small (d < 1 mm in diameter), and the impact process occurred in a very short time period (t(sub impact) << 1 sec). High speed close-up imaging was utilized to study the dynamics of droplet impact and splash in simulated Supercooled Large Droplet (SLD) icing conditions. The objective of this test was to evaluate the capability of a ultra high speed camera system to acquire quantitative information about the impact process (e.g., droplet size, velocity). Imaging data were obtained in an icing wind tunnel for spray cloud MVD > 50 m. High speed close-up imaging was also utilized to characterize the impact of ice particles on an airfoil with a thermally protected leading edge. The objective of this investigation was to determine whether ice particles tend to "stick" or "bounce" after impact. Imaging data were obtained for cases where the airfoil surface was heated and unheated. Based on the results from this test, follow on tests were conducted to investigate ice particle impact on the sensing elements of water content measurement devices. This paper will describe the use of the imaging systems to support these experimental investigations, present some representative results, and summarize what was learned about the use of these systems in an icing environment.
Linear spreading speeds from nonlinear resonant interaction
NASA Astrophysics Data System (ADS)
Faye, Grégory; Holzer, Matt; Scheel, Arnd
2017-06-01
We identify a new mechanism for propagation into unstable states in spatially extended systems, that is based on resonant interaction in the leading edge of invasion fronts. Such resonant invasion speeds can be determined solely based on the complex linear dispersion relation at the unstable equilibrium, but rely on the presence of a nonlinear term that facilitates the resonant coupling. We prove that these resonant speeds give the correct invasion speed in a simple example, we show that fronts with speeds slower than the resonant speed are unstable, and corroborate our speed criterion numerically in a variety of model equations, including a nonlocal scalar neural field model. GF received support from the project NONLOCAL (ANR-14-CE25-0013) funded by the French National Research Agency. MH was partially supported by the National Science Foundation through grant NSF-DMS-1516155. AS was partially supported by the National Science Foundation through grant NSF-DMS-1311740 and through a DAAD Fellowship.
A high-speed network for cardiac image review.
Elion, J L; Petrocelli, R R
1994-01-01
A high-speed fiber-based network for the transmission and display of digitized full-motion cardiac images has been developed. Based on Asynchronous Transfer Mode (ATM), the network is scaleable, meaning that the same software and hardware is used for a small local area network or for a large multi-institutional network. The system can handle uncompressed digital angiographic images, considered to be at the "high-end" of the bandwidth requirements. Along with the networking, a general-purpose multi-modality review station has been implemented without specialized hardware. This station can store a full injection sequence in "loop RAM" in a 512 x 512 format, then interpolate to 1024 x 1024 while displaying at 30 frames per second. The network and review stations connect to a central file server that uses a virtual file system to make a large high-speed RAID storage disk and associated off-line storage tapes and cartridges all appear as a single large file system to the software. In addition to supporting archival storage and review, the system can also digitize live video using high-speed Direct Memory Access (DMA) from the frame grabber to present uncompressed data to the network. Fully functional prototypes have provided the proof of concept, with full deployment in the institution planned as the next stage.
A high-speed network for cardiac image review.
Elion, J. L.; Petrocelli, R. R.
1994-01-01
A high-speed fiber-based network for the transmission and display of digitized full-motion cardiac images has been developed. Based on Asynchronous Transfer Mode (ATM), the network is scaleable, meaning that the same software and hardware is used for a small local area network or for a large multi-institutional network. The system can handle uncompressed digital angiographic images, considered to be at the "high-end" of the bandwidth requirements. Along with the networking, a general-purpose multi-modality review station has been implemented without specialized hardware. This station can store a full injection sequence in "loop RAM" in a 512 x 512 format, then interpolate to 1024 x 1024 while displaying at 30 frames per second. The network and review stations connect to a central file server that uses a virtual file system to make a large high-speed RAID storage disk and associated off-line storage tapes and cartridges all appear as a single large file system to the software. In addition to supporting archival storage and review, the system can also digitize live video using high-speed Direct Memory Access (DMA) from the frame grabber to present uncompressed data to the network. Fully functional prototypes have provided the proof of concept, with full deployment in the institution planned as the next stage. PMID:7949964
Simulation of High-Speed Droplet Impact Against Dry Substrates with Partial Velocity Slip
NASA Astrophysics Data System (ADS)
Kondo, Tomoki; Ando, Keita
2017-11-01
High-speed droplet impact can be used to clean substrates such as silicon wafers. Radially spreading shear flow after the impact may allow for mechanically removing contaminant particles at substrate surfaces. Since it is a big challenge to experimentally explore such complicated flow that exhibits contact line motion and water hammer, its flow feature is not well understood. Here, we aim to numerically evaluate shear flow caused by the impact of a spherical water droplet (of submillimeter sizes) at high speed (up to 50 m/s) against a dry rigid wall. We model the flow based on compressible Navier-Stokes equations with Stokes' hypothesis and solve them by a high-order-accurate finite volume method equipped with shock and interface capturing. To treat the motion of a contact line between the three phases (the droplet, the rigid wall, and the ambient air) in a robust manner, we permit velocity slip at the wall with Navier's model, for wall slip is known to come into play under steep velocity gradients that can arise from high-speed droplet impact. In our presentation, we will examine radially spreading flow after the droplet impact and the resulting wall shear stress generation from the simulation. This work was supported by JSPS KAKENHI Grant Number JP17J02211.
Transient line starting analysis of the ultra-high speed PMSM
Cheng, Wenjie; Li, Wei; Xiao, ling; Li, Ming; Tian, Yongsheng; Sun, Yanhua; Yu, Lie
2017-01-01
Aiming at the ultra high speed permanent magnet synchronous motor (PMSM) supported by gas foil bearings (GFBs), this paper calculates the transient line starting of the motor. Firstly, the start effect of the rotor composed of cylindrical PM and stainless steel sleeve is studied. Then, in order to enhance the start torque, copper ring, nickel ring and copper squirrel-cage are introduced in the rotor and their start effect are analysed, respectively. It can be found that the rotor including nickel ring can be accelerated to set speed, but all the other rotors are failed due to the higher PM and braking torques. It can be concluded that some material owning slight large relative permeability can be applied in the rotor to reduce the PM field and contribute to start by using the line-start method. PMID:28105384
Acoustic measurements on aerofoils moving in a circle at high speed
NASA Technical Reports Server (NTRS)
Wright, S. E.; Crosby, W.; Lee, D. L.
1982-01-01
Features of the test apparatus, research objectives and sample test results at the Stanford University rotor aerodynamics and noise facility are described. A steel frame equipped to receive lead shot for damping vibrations supports the drive shaft for rotor blade elements. Sleeve bearings are employed to assure quietness, and a variable speed ac motor produces the rotations. The test stand can be configured for horizontal or vertical orientation of the drive shaft. The entire assembly is housed in an acoustically sealed room. Rotation conditions for hover and large angles of attack can be studied, together with rotational and blade element noises. Research is possible on broad band, discrete frequency, and high speed noise, with measurements taken 3 m from the center of the rotor. Acoustic signatures from Mach 0.3-0.93 trials with a NACA 0012 airfoil are provided.
NASA Technical Reports Server (NTRS)
Proctor, Margaret P.; Gunter, Edgar J.
2005-01-01
Synchronous and nonsynchronous whirl response analysis of a double overhung, high-speed seal test rotor with ball bearings supported in 5.84- and 12.7-mm-long, un-centered squeeze-film oil dampers is presented. Test performance with the original damper of length 5.84 mm was marginal, with nonsynchronous whirling at the overhung seal test disk and high amplitude synchronous response above 32,000 rpm near the drive spline section occurring. A system critical speed analysis of the drive system and the high-speed seal test rotor indicated that the first two critical speeds are associated with the seal test rotor. Nonlinear synchronous unbalance and time transient whirl studies were conducted on the seal test rotor with the original and extended damper lengths. With the original damper design, the nonlinear synchronous response showed that unbalance could cause damper lockup at 33,000 rpm. Alford cross-coupling forces were also included at the overhung seal test disk for the whirl analysis. Sub-synchronous whirling at the seal test disk was observed in the nonlinear time transient analysis. With the extended damper length of 12.7 mm, the sub-synchronous motion was eliminated and the rotor unbalance response was acceptable to 45,000 rpm with moderate rotor unbalance. However, with high rotor unbalance, damper lockup could still occur at 33,000 rpm, even with the extended squeeze-film dampers. Therefore, the test rotor must be reasonably balanced in order for the un-centered dampers to be effective.
Development of high-speed video cameras
NASA Astrophysics Data System (ADS)
Etoh, Takeharu G.; Takehara, Kohsei; Okinaka, Tomoo; Takano, Yasuhide; Ruckelshausen, Arno; Poggemann, Dirk
2001-04-01
Presented in this paper is an outline of the R and D activities on high-speed video cameras, which have been done in Kinki University since more than ten years ago, and are currently proceeded as an international cooperative project with University of Applied Sciences Osnabruck and other organizations. Extensive marketing researches have been done, (1) on user's requirements on high-speed multi-framing and video cameras by questionnaires and hearings, and (2) on current availability of the cameras of this sort by search of journals and websites. Both of them support necessity of development of a high-speed video camera of more than 1 million fps. A video camera of 4,500 fps with parallel readout was developed in 1991. A video camera with triple sensors was developed in 1996. The sensor is the same one as developed for the previous camera. The frame rate is 50 million fps for triple-framing and 4,500 fps for triple-light-wave framing, including color image capturing. Idea on a video camera of 1 million fps with an ISIS, In-situ Storage Image Sensor, was proposed in 1993 at first, and has been continuously improved. A test sensor was developed in early 2000, and successfully captured images at 62,500 fps. Currently, design of a prototype ISIS is going on, and, hopefully, will be fabricated in near future. Epoch-making cameras in history of development of high-speed video cameras by other persons are also briefly reviewed.
High-speed asynchronous data mulitiplexer/demultiplexer for high-density digital recorders
NASA Astrophysics Data System (ADS)
Berdugo, Albert; Small, Martin B.
1996-11-01
Modern High Density Digital Recorders are ideal devices for the storage of large amounts of digital and/or wideband analog data. Ruggedized versions of these recorders are currently available and are supporting many military and commercial flight test applications. However, in certain cases, the storage format becomes very critical, e.g., when a large number of data types are involved, or when channel- to-channel correlation is critical, or when the original data source must be accurately recreated during post mission analysis. A properly designed storage format will not only preserve data quality, but will yield the maximum storage capacity and record time for any given recorder family or data type. This paper describes a multiplex/demultiplex technique that formats multiple high speed data sources into a single, common format for recording. The method is compatible with many popular commercial recorder standards such as DCRsi, VLDS, and DLT. Types of input data typically include PCM, wideband analog data, video, aircraft data buses, avionics, voice, time code, and many others. The described method preserves tight data correlation with minimal data overhead. The described technique supports full reconstruction of the original input signals during data playback. Output data correlation across channels is preserved for all types of data inputs. Simultaneous real- time data recording and reconstruction are also supported.
NASA Technical Reports Server (NTRS)
Wasserbauer, Charles A.; Hathaway, Michael D.
1993-01-01
An atomizer-based system for distributing high-volume rates of seed material was developed to support laser velocimeter investigations of the NASA Low-Speed Centrifugal Compressor flow field. The seeding system and the major concerns that were addressed during its development are described. Of primary importance were that the seed material be dispersed as single particles and that the liquid carrier used be completely evaporated before entering the compressor.
A rotor technology assessment of the advancing blade concept
NASA Technical Reports Server (NTRS)
Pleasants, W. A.
1983-01-01
A rotor technology assessment of the Advancing Blade Concept (ABC) was conducted in support of a preliminary design study. The analytical methodology modifications and inputs, the correlation, and the results of the assessment are documented. The primary emphasis was on the high-speed forward flight performance of the rotor. The correlation data base included both the wind tunnel and the flight test results. An advanced ABC rotor design was examined; the suitability of the ABC for a particular mission was not considered. The objective of this technology assessment was to provide estimates of the performance potential of an advanced ABC rotor designed for high speed forward flight.
Running Performance of a Pinning-Type Superconducting Magnetic Levitation Guide
NASA Astrophysics Data System (ADS)
Okano, M.; Iwamoto, T.; Furuse, M.; Fuchino, S.; Ishii, I.
2006-06-01
A pinning-type superconducting magnetic levitation guide with bulk high-Tc superconductors was studied for use as a goods transportation system, an energy storage system, etc. A superconducting magnetic levitation running test apparatus with a circular track of ca. 38 m length, 12 m diameter, which comprises the magnetic rail constituted by Nd-B-Fe rare-earth permanent magnets and steel plates, was manufactured to examine loss and high-speed performance of the magnetic levitation guide. Running tests were conducted in air. These tests clarify that a vehicle supported by a superconducting magnetic levitation guide runs stably at speeds greater than 42 km/h above the circular track.
Telecom 2-B and 2-C (TC2B and TC2C)
NASA Technical Reports Server (NTRS)
Dulac, J.; Alvarez, H.
1991-01-01
The DSN (Deep Space Network) mission support requirements for Telecom 2-B and 2-C (TC2B and TC2C) are summarized. These Telecom missions will provide high-speed data link applications, telephone, and television service between France and overseas territories as a follow-on to TC2A. Mission objectives are outlined and the DSN support requirements are defined through the presentation of tables and narratives describing the spacecraft flight profile; DSN support coverage; frequency assignments; support parameters for telemetry, command and support systems; and tracking support responsibility.
NASA Astrophysics Data System (ADS)
Johnston, William; Ernst, M.; Dart, E.; Tierney, B.
2014-04-01
Today's large-scale science projects involve world-wide collaborations depend on moving massive amounts of data from an instrument to potentially thousands of computing and storage systems at hundreds of collaborating institutions to accomplish their science. This is true for ATLAS and CMS at the LHC, and it is true for the climate sciences, Belle-II at the KEK collider, genome sciences, the SKA radio telescope, and ITER, the international fusion energy experiment. DOE's Office of Science has been collecting science discipline and instrument requirements for network based data management and analysis for more than a decade. As a result of this certain key issues are seen across essentially all science disciplines that rely on the network for significant data transfer, even if the data quantities are modest compared to projects like the LHC experiments. These issues are what this talk will address; to wit: 1. Optical signal transport advances enabling 100 Gb/s circuits that span the globe on optical fiber with each carrying 100 such channels; 2. Network router and switch requirements to support high-speed international data transfer; 3. Data transport (TCP is still the norm) requirements to support high-speed international data transfer (e.g. error-free transmission); 4. Network monitoring and testing techniques and infrastructure to maintain the required error-free operation of the many R&E networks involved in international collaborations; 5. Operating system evolution to support very high-speed network I/O; 6. New network architectures and services in the LAN (campus) and WAN networks to support data-intensive science; 7. Data movement and management techniques and software that can maximize the throughput on the network connections between distributed data handling systems, and; 8. New approaches to widely distributed workflow systems that can support the data movement and analysis required by the science. All of these areas must be addressed to enable large-scale, widely distributed data analysis systems, and the experience of the LHC can be applied to other scientific disciplines. In particular, specific analogies to the SKA will be cited in the talk.
Stability of rigid rotors supported by air foil bearings: Comparison of two fundamental approaches
NASA Astrophysics Data System (ADS)
Larsen, Jon S.; Santos, Ilmar F.; von Osmanski, Sebastian
2016-10-01
High speed direct drive motors enable the use of Air Foil Bearings (AFB) in a wide range of applications due to the elimination of gear forces. Unfortunately, AFB supported rotors are lightly damped, and an accurate prediction of their Onset Speed of Instability (OSI) is therefore important. This paper compares two fundamental methods for predicting the OSI. One is based on a nonlinear time domain simulation and another is based on a linearised frequency domain method and a perturbation of the Reynolds equation. Both methods are based on equivalent models and should predict similar results. Significant discrepancies are observed leading to the question, is the classical frequency domain method sufficiently accurate? The discrepancies and possible explanations are discussed in detail.
There Is Time for Calculation in Speed Chess, and Calculation Accuracy Increases With Expertise.
Chang, Yu-Hsuan A; Lane, David M
2016-01-01
The recognition-action theory of chess skill holds that expertise in chess is due primarily to the ability to recognize familiar patterns of pieces. Despite its widespread acclaim, empirical evidence for this theory is indirect. One source of indirect evidence is that there is a high correlation between speed chess and standard chess. Assuming that there is little or no time for calculation in speed chess, this high correlation implies that calculation is not the primary factor in standard chess. Two studies were conducted analyzing 100 games of speed chess. In Study 1, we examined the distributions of move times, and the key finding was that players often spent considerable time on a few moves. Moreover, stronger players were more likely than weaker players to do so. Study 2 examined skill differences in calculation by examining poor moves. The stronger players made proportionally fewer blunders (moves that a 2-ply search would have revealed to be errors). Overall, the poor moves made by the weaker players would have required a less extensive search to be revealed as poor moves than the poor moves made by the stronger players. Apparently, the stronger players are searching deeper and more accurately. These results are difficult to reconcile with the view that speed chess does not allow players time to calculate extensively and call into question the assertion that the high correlation between speed chess and standard chess supports recognition-action theory.
Oil-Free Rotor Support Technologies for an Optimized Helicopter Propulsion System
NASA Technical Reports Server (NTRS)
DellaCorte, Christopher; Bruckner, Robert J.
2007-01-01
An optimized rotorcraft propulsion system incorporating a foil air bearing supported Oil-Free engine coupled to a high power density gearbox using high viscosity gear oil is explored. Foil air bearings have adequate load capacity and temperature capability for the highspeed gas generator shaft of a rotorcraft engine. Managing the axial loads of the power turbine shaft (low speed spool) will likely require thrust load support from the gearbox through a suitable coupling or other design. Employing specially formulated, high viscosity gear oil for the transmission can yield significant improvements (approx. 2X) in allowable gear loading. Though a completely new propulsion system design is needed to implement such a system, improved performance is possible.
Gas film disturbance characteristics analysis of high-speed and high-pressure dry gas seal
NASA Astrophysics Data System (ADS)
Chen, Yuan; Jiang, Jinbo; Peng, Xudong
2016-08-01
The dry gas seal(DGS) has been widely used in high parameters centrifugal compressor, but the intense vibrations of shafting, especially in high-speed condition, usually result in DGS's failure. So the DGS's ability of resisting outside interference has become a determining factor of the further development of centrifugal compressor. However, the systematic researches of which about gas film disturbance characteristics of high parameters DGS are very little. In order to study gas film disturbance characteristics of high-speed and high-pressure spiral groove dry gas seal(S-DGS) with a flexibly mounted stator, rotor axial runout and misalignment are taken into consideration, and the finite difference method and analytical method are used to analyze the influence of gas film thickness disturbance on sealing performance parameters, what's more, the effects of many key factors on gas film thickness disturbance are systematically investigated. The results show that, when sealed pressure is 10.1MPa and seal face average linear velocity is 107.3 m/s, gas film thickness disturbance has a significant effect on leakage rate, but has relatively litter effect on open force; Excessively large excitation amplitude or excessively high excitation frequency can lead to severe gas film thickness disturbance; And it is beneficial to assure a smaller gas film thickness disturbance when the stator material density is between 3.1 g/cm3 to 8.4 g/cm3; Ensuring sealing performance while minimizing support axial stiffness and support axial damping can help to improve dynamic tracking property of dry gas seal. The proposed research provides the instruction to optimize dynamic tracking property of the DGS.
High-speed motion picture camera experiments of cavitation in dynamically loaded journal bearings
NASA Technical Reports Server (NTRS)
Jacobson, B. O.; Hamrock, B. J.
1982-01-01
A high-speed camera was used to investigate cavitation in dynamically loaded journal bearings. The length-diameter ratio of the bearing, the speeds of the shaft and bearing, the surface material of the shaft, and the static and dynamic eccentricity of the bearing were varied. The results reveal not only the appearance of gas cavitation, but also the development of previously unsuspected vapor cavitation. It was found that gas cavitation increases with time until, after many hundreds of pressure cycles, there is a constant amount of gas kept in the cavitation zone of the bearing. The gas can have pressures of many times the atmospheric pressure. Vapor cavitation bubbles, on the other hand, collapse at pressures lower than the atmospheric pressure and cannot be transported through a high-pressure zone, nor does the amount of vapor cavitation in a bearing increase with time. Analysis is given to support the experimental findings for both gas and vapor cavitation.
Forecasting the short-term passenger flow on high-speed railway with neural networks.
Xie, Mei-Quan; Li, Xia-Miao; Zhou, Wen-Liang; Fu, Yan-Bing
2014-01-01
Short-term passenger flow forecasting is an important component of transportation systems. The forecasting result can be applied to support transportation system operation and management such as operation planning and revenue management. In this paper, a divide-and-conquer method based on neural network and origin-destination (OD) matrix estimation is developed to forecast the short-term passenger flow in high-speed railway system. There are three steps in the forecasting method. Firstly, the numbers of passengers who arrive at each station or depart from each station are obtained from historical passenger flow data, which are OD matrices in this paper. Secondly, short-term passenger flow forecasting of the numbers of passengers who arrive at each station or depart from each station based on neural network is realized. At last, the OD matrices in short-term time are obtained with an OD matrix estimation method. The experimental results indicate that the proposed divide-and-conquer method performs well in forecasting the short-term passenger flow on high-speed railway.
Development, Analysis and Testing of the High Speed Research Flexible Semispan Model
NASA Technical Reports Server (NTRS)
Schuster, David M.; Spain, Charles V.; Turnock, David L.; Rausch, Russ D.; Hamouda, M-Nabil; Vogler, William A.; Stockwell, Alan E.
1999-01-01
This report presents the work performed by Lockheed Martin Engineering and Sciences (LMES) in support of the High Speed Research (HSR) Flexible Semispan Model (FSM) wind-tunnel test. The test was conducted in order to assess the aerodynamic and aeroelastic character of a flexible high speed civil transport wing. Data was acquired for the purpose of code validation and trend evaluation for this type of wing. The report describes a number of activities in preparing for and conducting the wind-tunnel test. These included coordination of the design and fabrication, development of analytical models, analysis/hardware correlation, performance of laboratory tests, monitoring of model safety issues, and wind-tunnel data acquisition and reduction. Descriptions and relevant evaluations associated with the pretest data are given in sections 1 through 6, followed by pre- and post-test flutter analysis in section 7, and the results of the aerodynamics/loads test in section 8. Finally, section 9 provides some recommendations based on lessons learned throughout the FSM program.
Long-Term Structural Health Monitoring System for a High-Speed Railway Bridge Structure.
Ding, You-Liang; Wang, Gao-Xin; Sun, Peng; Wu, Lai-Yi; Yue, Qing
2015-01-01
Nanjing Dashengguan Bridge, which serves as the shared corridor crossing Yangtze River for both Beijing-Shanghai high-speed railway and Shanghai-Wuhan-Chengdu railway, is the first 6-track high-speed railway bridge with the longest span throughout the world. In order to ensure safety and detect the performance deterioration during the long-time service of the bridge, a Structural Health Monitoring (SHM) system has been implemented on this bridge by the application of modern techniques in sensing, testing, computing, and network communication. The SHM system includes various sensors as well as corresponding data acquisition and transmission equipment for automatic data collection. Furthermore, an evaluation system of structural safety has been developed for the real-time condition assessment of this bridge. The mathematical correlation models describing the overall structural behavior of the bridge can be obtained with the support of the health monitoring system, which includes cross-correlation models for accelerations, correlation models between temperature and static strains of steel truss arch, and correlation models between temperature and longitudinal displacements of piers. Some evaluation results using the mean value control chart based on mathematical correlation models are presented in this paper to show the effectiveness of this SHM system in detecting the bridge's abnormal behaviors under the varying environmental conditions such as high-speed trains and environmental temperature.
Aerodynamic heating effects on wall-modeled large-eddy simulations of high-speed flows
NASA Astrophysics Data System (ADS)
Yang, Xiang; Urzay, Javier; Moin, Parviz
2017-11-01
Aerospace vehicles flying at high speeds are subject to increased wall-heating rates because of strong aerodynamic heating in the near-wall region. In wall-modeled large-eddy simulations (WMLES), this near-wall region is typically not resolved by the computational grid. As a result, the effects of aerodynamic heating need to be modeled using an LES wall model. In this investigation, WMLES of transitional and fully turbulent high-speed flows are conducted to address this issue. In particular, an equilibrium wall model is employed in high-speed turbulent Couette flows subject to different combinations of thermal boundary conditions and grid sizes, and in transitional hypersonic boundary layers interacting with incident shock waves. Specifically, the WMLES of the Couette-flow configuration demonstrate that the shear-stress and heat-flux predictions made by the wall model show only a small sensitivity to the grid resolution even in the most adverse case where aerodynamic heating prevails near the wall and generates a sharp temperature peak there. In the WMLES of shock-induced transition in boundary layers, the wall model is tested against DNS and experiments, and it is shown to capture the post-transition aerodynamic heating and the overall heat transfer rate around the shock-impingement zone. This work is supported by AFOSR.
SPEEDES - A multiple-synchronization environment for parallel discrete-event simulation
NASA Technical Reports Server (NTRS)
Steinman, Jeff S.
1992-01-01
Synchronous Parallel Environment for Emulation and Discrete-Event Simulation (SPEEDES) is a unified parallel simulation environment. It supports multiple-synchronization protocols without requiring users to recompile their code. When a SPEEDES simulation runs on one node, all the extra parallel overhead is removed automatically at run time. When the same executable runs in parallel, the user preselects the synchronization algorithm from a list of options. SPEEDES currently runs on UNIX networks and on the California Institute of Technology/Jet Propulsion Laboratory Mark III Hypercube. SPEEDES also supports interactive simulations. Featured in the SPEEDES environment is a new parallel synchronization approach called Breathing Time Buckets. This algorithm uses some of the conservative techniques found in Time Bucket synchronization, along with the optimism that characterizes the Time Warp approach. A mathematical model derived from first principles predicts the performance of Breathing Time Buckets. Along with the Breathing Time Buckets algorithm, this paper discusses the rules for processing events in SPEEDES, describes the implementation of various other synchronization protocols supported by SPEEDES, describes some new ones for the future, discusses interactive simulations, and then gives some performance results.
Status of NASA High-Speed Research Program
NASA Technical Reports Server (NTRS)
Whitehead, Allen H., Jr.
1998-01-01
This paper provides an overview of the NASA High-Speed Research (HSR) Program dedicated to establishing the technology foundation to support the US transport industry's decision for an environmentally acceptable, economically viable 300 passenger, 5000 n.mi., Mach 2.4 aircraft. The HSR program, begun in 1990, is supported by a team of US aerospace companies. The international economic stakes are high. The projected market for more than 500 High-Speed Civil Transport (HSCT) airplanes introduced between the years 2000 and 2015 translates to more than $200 billion in aircraft sales, and the potential of 140,000 new jobs. The paper addresses the history of supersonic commercial air transportation beginning with the Concorde and TU-144 developments in the early 1960 time period. The technology goals for the HSR program are derived from market study results, projections on environmental requirements, and technical goals for each discipline area referenced to the design and operational features of the Concorde. Progress since the inception of the program is reviewed and a summary of some of the lessons learned will be highlighted. An outline is presented of the remaining technological challenges. Emphasis in this paper will be on the traditional aeronautical technologies that lead to higher performance to ensure economic viability. Specific discussion will center around aerodynamic performance, flight deck research, materials and structures development and propulsion systems. The environmental barriers to the HSCT and that part of the HSR program that addresses those technologies are reviewed and assessed in a companion paper.
Speed, Dissipation, and Accuracy in Early T-cell Recognition
NASA Astrophysics Data System (ADS)
Cui, Wenping; Mehta, Pankaj
In the immune system, T cells can perform self-foreign discrimination with great foreign ligand sensitivity, high decision speed and low energy cost. There is significant evidence T-cells achieve such great performance with a mechanism: kinetic proofreading(KPR). KPR-based mechanisms actively consume energy to increase the specificity of T-cell recognition. An important theoretical question arises: how to understand trade-offs and fundamental limits on accuracy, speed, and dissipation (energy consumption). Recent theoretical work suggests that it is always possible to reduce the the error of KPR-based mechanisms by waiting longer and/or consuming more energy. Surprisingly, we find that this is not the case and that there actually exists an optimal point in the speed-energy-accuracy plane for KPR and its generalizations. This work was supported by NIH R35 and Simons MMLS Grant.
Measurements of Sound Speed and Grüneisen Parameter in Polystyrene Shocked to 8.5 Mbar
NASA Astrophysics Data System (ADS)
Boehly, T. R.; Rygg, J. R.; Zaghoo, M.; Hu, S. X.; Collins, G. W.; Fratanduono, D. E.; Celliers, P. M.; McCoy, C. A.
2017-10-01
The high-pressure behavior of polymers is important to fundamental high-energy-density studies and inertial confinement fusion experiments. The sound speed affects shock timing and determines the amplitude of modulations in unstable shocks. The Grüneisen parameter provides a means to model off-Hugoniot behavior, especially release physics. We use laser-driven shocks and a nonsteady wave analysis to infer sound speed in shocked material from the arrival times of drive-pressure perturbations at the shock front. Data are presented for CH shocked to 8.5 Mbar and compared to models. The Grüneisen parameter is observed to drop significantly near the insulator-conductor transition-a behavior not predicted by tabular models but is observed in quantum molecular dynamic simulations. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.
Visualization of the separation and subsequent transition near the leading edge of airfoils
NASA Technical Reports Server (NTRS)
Arena, A. V.; Mueller, T. J.
1978-01-01
A visual study was performed using the low speed smoke wind tunnels with the objective of obtaining a better understanding of the structure of leading edge separation bubbles on airfoils. The location of separation, transition and reattachment for a cylindrical nose constant-thickness airfoil model were obtained from smoke photographs and surface oil flow techniques. These data, together with static pressure distributions along the leading edge and upper surface of the model, produced the influence of Reynolds number, angle of attack, and trailing edge flap angle on the size and characteristics of the bubble. Additional visual insight into the unsteady nature of the separation bubble was provided by high speed 16 mm movies. The 8 mm color movies taken of the surface oil flow supported the findings of the high speed movies and clearly showed the formation of a scalloped spanwise separation line at the higher Reynolds number.
Mulroy, Sara J; Klassen, Tara; Gronley, JoAnne K; Eberly, Valerie J; Brown, David A; Sullivan, Katherine J
2010-02-01
Task-specific training programs after stroke improve walking function, but it is not clear which biomechanical parameters of gait are most associated with improved walking speed. The purpose of this study was to identify gait parameters associated with improved walking speed after a locomotor training program that included body-weight-supported treadmill training (BWSTT). A prospective, between-subjects design was used. Fifteen people, ranging from approximately 9 months to 5 years after stroke, completed 1 of 3 different 6-week training regimens. These regimens consisted of 12 sessions of BWSTT alternated with 12 sessions of: lower-extremity resistive cycling; lower-extremity progressive, resistive strengthening; or a sham condition of arm ergometry. Gait analysis was conducted before and after the 6-week intervention program. Kinematics, kinetics, and electromyographic (EMG) activity were recorded from the hemiparetic lower extremity while participants walked at a self-selected pace. Changes in gait parameters were compared in participants who showed an increase in self-selected walking speed of greater than 0.08 m/s (high-response group) and in those with less improvement (low-response group). Compared with participants in the low-response group, those in the high-response group displayed greater increases in terminal stance hip extension angle and hip flexion power (product of net joint moment and angular velocity) after the intervention. The intensity of soleus muscle EMG activity during walking also was significantly higher in participants in the high-response group after the intervention. Only sagittal-plane parameters were assessed, and the sample size was small. Task-specific locomotor training alternated with strength training resulted in kinematic, kinetic, and muscle activation adaptations that were strongly associated with improved walking speed. Changes in both hip and ankle biomechanics during late stance were associated with greater increases in gait speed.
High Speed Intensified Video Observations of TLEs in Support of PhOCAL
NASA Technical Reports Server (NTRS)
Lyons, Walter A.; Nelson, Thomas E.; Cummer, Steven A.; Lang, Timothy; Miller, Steven; Beavis, Nick; Yue, Jia; Samaras, Tim; Warner, Tom A.
2013-01-01
The third observing season of PhOCAL (Physical Origins of Coupling to the upper Atmosphere by Lightning) was conducted over the U.S. High Plains during the late spring and summer of 2013. The goal was to capture using an intensified high-speed camera, a transient luminous event (TLE), especially a sprite, as well as its parent cloud-to-ground (SP+CG) lightning discharge, preferably within the domain of a 3-D lightning mapping array (LMA). The co-capture of sprite and its SP+CG was achieved within useful range of an interferometer operating near Rapid City. Other high-speed sprite video sequences were captured above the West Texas LMA. On several occasions the large mesoscale convective complexes (MCSs) producing the TLE-class lightning were also generating vertically propagating convectively generated gravity waves (CGGWs) at the mesopause which were easily visible using NIR-sensitive color cameras. These were captured concurrent with sprites. These observations were follow-ons to a case on 15 April 2012 in which CGGWs were also imaged by the new Day/Night Band on the Suomi NPP satellite system. The relationship between the CGGW and sprite initiation are being investigated. The past year was notable for a large number of elve+halo+sprite sequences sequences generated by the same parent CG. And on several occasions there appear to be prominent banded modulations of the elves' luminosity imaged at >3000 ips. These stripes appear coincident with the banded CGGW structure, and presumably its density variations. Several elves and a sprite from negative CGs were also noted. New color imaging systems have been tested and found capable of capturing sprites. Two cases of sprites with an aurora as a backdrop were also recorded. High speed imaging was also provided in support of the UPLIGHTS program near Rapid City, SD and the USAFA SPRITES II airborne campaign over the Great Plains.
The 12-foot pressure wind tunnel restoration project model support systems
NASA Technical Reports Server (NTRS)
Sasaki, Glen E.
1992-01-01
The 12 Foot Pressure Wind Tunnel is a variable density, low turbulence wind tunnel that operates at subsonic speeds, and up to six atmospheres total pressure. The restoration of this facility is of critical importance to the future of the U.S. aerospace industry. As part of this project, several state of the art model support systems are furnished to provide an optimal balance between aerodynamic and operational efficiency parameters. Two model support systems, the Rear Strut Model Support, and the High Angle of Attack Model Support are discussed. This paper covers design parameters, constraints, development, description, and component selection.
NASA Technical Reports Server (NTRS)
Hathaway, M. D.; Wood, J. R.; Wasserbauer, C. A.
1991-01-01
A low speed centrifugal compressor facility recently built by the NASA Lewis Research Center is described. The purpose of this facility is to obtain detailed flow field measurements for computational fluid dynamic code assessment and flow physics modeling in support of Army and NASA efforts to advance small gas turbine engine technology. The facility is heavily instrumented with pressure and temperature probes, both in the stationary and rotating frames of reference, and has provisions for flow visualization and laser velocimetry. The facility will accommodate rotational speeds to 2400 rpm and is rated at pressures to 1.25 atm. The initial compressor stage being tested is geometrically and dynamically representative of modern high-performance centrifugal compressor stages with the exception of Mach number levels. Preliminary experimental investigations of inlet and exit flow uniformly and measurement repeatability are presented. These results demonstrate the high quality of the data which may be expected from this facility. The significance of synergism between computational fluid dynamic analysis and experimentation throughout the development of the low speed centrifugal compressor facility is demonstrated.
Qu, Jian-Bo; Wan, Xing-Zhong; Zhai, Yan-Qin; Zhou, Wei-Qing; Su, Zhi-Guo; Ma, Guang-Hui
2009-09-11
Using agarose coated gigaporous polystyrene microspheres as a base support, a novel anion exchanger (DEAE-AP) has been developed after functionalization with diethylaminoethyl chloride. The gigaporous structure, static adsorption behavior, and chromatographic properties of DEAE-AP medium were characterized and compared with those of commercially available resin DEAE Sepharose Fast Flow (DEAE-FF). The results implied that there existed some through pores in DEAE-AP microspheres, which effectively reduced resistance to stagnant mobile phase mass transfer by inducing convective flow of mobile phase in the gigapores of medium. As a consequence, the column packed with DEAE-AP exhibited low column backpressure, high column efficiency, high dynamic binding capacity and high protein resolution at high flow velocity up to 2600cm/h. In conclusion, all the results suggested that the gigaporous absorbent is promising for high-speed protein chromatography.
60 V tolerance full symmetrical switch for battery monitor IC
NASA Astrophysics Data System (ADS)
Zhang, Qidong; Yang, Yintang; Chai, Changchun
2017-06-01
For stacked battery monitoring IC high speed and high precision voltage acquisition requirements, this paper introduces a kind of symmetrical type high voltage switch circuit. This kind of switch circuit uses the voltage following structure, which eliminates the leakage path of input signals. At the same time, this circuit adopts a high speed charge pump structure, in any case the input signal voltage is higher than the supply voltage, it can fast and accurately turn on high voltage MOS devices, and convert the battery voltage to an analog to digital converter. The proposed high voltage full symmetry switch has been implemented in a 0.18 μm BCD process; simulated and measured results show that the proposed switch can always work properly regardless of the polarity of the voltage difference between the input signal ports and an input signal higher than the power supply. Project supported by the National Natural Science Foundation of China (No. 61334003).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lawler, J.S.
2001-10-29
An inverter topology and control scheme has been developed that can drive low-inductance, surface-mounted permanent magnet motors over the wide constant power speed range required in electric vehicle applications. This new controller is called the dual-mode inverter control (DMIC) [1]. The DMIC can drive either the Permanent Magnet Synchronous Machine (PMSM) with sinusoidal back emf, or the brushless dc machine (BDCM) with trapezoidal emf in the motoring and regenerative braking modes. In this paper we concentrate on the BDCM under high-speed motoring conditions. Simulation results show that if all motor and inverter loss mechanisms are neglected, the constant power speedmore » range of the DMIC is infinite. The simulation results are supported by closed form expressions for peak and rms motor current and average power derived from analytical solution to the differential equations governing the DMIC/BDCM drive for the lossless case. The analytical solution shows that the range of motor inductance that can be accommodated by the DMIC is more than an order of magnitude such that the DMIC is compatible with both low- and high-inductance BDCMs. Finally, method is given for integrating the classical hysteresis band current control, used for motor control below base speed, with the phase advance of DMIC that is applied above base speed. The power versus speed performance of the DMIC is then simulated across the entire speed range.« less
Wind turbine with automatic pitch and yaw control
Cheney, Jr., Marvin Chapin; Spierings, Petrus A. M.
1978-01-01
A wind turbine having a flexible central beam member supporting aerodynamic blades at opposite ends thereof and fabricated of uni-directional high tensile strength material bonded together into beam form so that the beam is lightweight, and has high tensile strength to carry the blade centrifugal loads, low shear modulus to permit torsional twisting thereof for turbine speed control purposes, and adequate bending stiffness to permit out-of-plane deflection thereof for turbine yard control purposes. A selectively off-set weighted pendulum member is pivotally connected to the turbine and connected to the beam or blade so as to cause torsional twisting thereof in response to centrifugal loading of the pendulum member for turbine speed control purposes.
Silicon on insulator achieved using electrochemical etching
McCarthy, A.M.
1997-10-07
Bulk crystalline silicon wafers are transferred after the completion of circuit fabrication to form thin films of crystalline circuitry on almost any support, such as metal, semiconductor, plastic, polymer, glass, wood, and paper. In particular, this technique is suitable to form silicon-on-insulator (SOI) wafers, whereby the devices and circuits formed exhibit superior performance after transfer due to the removal of the silicon substrate. The added cost of the transfer process to conventional silicon fabrication is insignificant. No epitaxial, lift-off, release or buried oxide layers are needed to perform the transfer of single or multiple wafers onto support members. The transfer process may be performed at temperatures of 50 C or less, permits transparency around the circuits and does not require post-transfer patterning. Consequently, the technique opens up new avenues for the use of integrated circuit devices in high-brightness, high-resolution video-speed color displays, reduced-thickness increased-flexibility intelligent cards, flexible electronics on ultrathin support members, adhesive electronics, touch screen electronics, items requiring low weight materials, smart cards, intelligent keys for encryption systems, toys, large area circuits, flexible supports, and other applications. The added process flexibility also permits a cheap technique for increasing circuit speed of market driven technologies such as microprocessors at little added expense. 57 figs.
Silicon on insulator achieved using electrochemical etching
McCarthy, Anthony M.
1997-01-01
Bulk crystalline silicon wafers are transferred after the completion of circuit fabrication to form thin films of crystalline circuitry on almost any support, such as metal, semiconductor, plastic, polymer, glass, wood, and paper. In particular, this technique is suitable to form silicon-on-insulator (SOI) wafers, whereby the devices and circuits formed exhibit superior performance after transfer due to the removal of the silicon substrate. The added cost of the transfer process to conventional silicon fabrication is insignificant. No epitaxial, lift-off, release or buried oxide layers are needed to perform the transfer of single or multiple wafers onto support members. The transfer process may be performed at temperatures of 50.degree. C. or less, permits transparency around the circuits and does not require post-transfer patterning. Consequently, the technique opens up new avenues for the use of integrated circuit devices in high-brightness, high-resolution video-speed color displays, reduced-thickness increased-flexibility intelligent cards, flexible electronics on ultrathin support members, adhesive electronics, touch screen electronics, items requiring low weight materials, smart cards, intelligent keys for encryption systems, toys, large area circuits, flexible supports, and other applications. The added process flexibility also permits a cheap technique for increasing circuit speed of market driven technologies such as microprocessors at little added expense.
High Speed Video Applications In The Pharmaceutical Industry
NASA Astrophysics Data System (ADS)
Stapley, David
1985-02-01
The pursuit of quality is essential in the development and production of drugs. The pursuit of excellence is relentless, a never ending search. In the pharmaceutical industry, we all know and apply wide-ranging techniques to assure quality production. We all know that in reality none of these techniques are perfect for all situations. We have all experienced, the damaged foil, blister or tube, the missing leaflet, the 'hard to read' batch code. We are all aware of the need to supplement the traditional techniques of fault finding. This paper shows how high speed video systems can be applied to fully automated filling and packaging operations as a tool to aid the company's drive for high quality and productivity. The range of products involved totals some 350 in approximately 3,000 pack variants, encompassing creams, ointments, lotions, capsules, tablets, parenteral and sterile antibiotics. Pharmaceutical production demands diligence at all stages, with optimum use of the techniques offered by the latest technology. Figure 1 shows typical stages of pharmaceutical production in which quality must be assured, and highlights those stages where the use of high speed video systems have proved of value to date. The use of high speed video systems begins with the very first use of machine and materials: commissioning and validation, (the term used for determining that a process is capable of consistently producing the requisite quality) and continues to support inprocess monitoring, throughout the life of the plant. The activity of validation in the packaging environment is particularly in need of a tool to see the nature of high speed faults, no matter how infrequently they occur, so that informed changes can be made precisely and rapidly. The prime use of this tool is to ensure that machines are less sensitive to minor variations in component characteristics.
Colom, Roberto; Stein, Jason L.; Rajagopalan, Priya; Martínez, Kenia; Hermel, David; Wang, Yalin; Álvarez-Linera, Juan; Burgaleta, Miguel; Quiroga, MªÁngeles; Shih, Pei Chun; Thompson, Paul M.
2014-01-01
Here we apply a method for automated segmentation of the hippocampus in 3D high-resolution structural brain MRI scans. One hundred and four healthy young adults completed twenty one tasks measuring abstract, verbal, and spatial intelligence, along with working memory, executive control, attention, and processing speed. After permutation tests corrected for multiple comparisons across vertices (p < .05) significant relationships were found for spatial intelligence, spatial working memory, and spatial executive control. Interactions with sex revealed significant relationships with the general factor of intelligence (g), along with abstract and spatial intelligence. These correlations were mainly positive for males but negative for females, which might support the efficiency hypothesis in women. Verbal intelligence, attention, and processing speed were not related to hippocampal structural differences. PMID:25632167
von Busse, Rhea; Swartz, Sharon M; Voigt, Christian C
2013-06-01
Aerodynamic theory predicts that flight for fixed-wing aircraft requires more energy at low and high speeds compared with intermediate speeds, and this theory has often been extended to predict speed-dependent metabolic rates and optimal flight speeds for flying animals. However, the theoretical U-shaped flight power curve has not been robustly tested for Chiroptera, the only mammals capable of flapping flight. We examined the metabolic rate of seven Seba's short-tailed fruit bats (Carollia perspicillata) during unrestrained flight in a wind tunnel at air speeds from 1 to 7 m s(-1). Following intra-peritoneal administration of (13)C-labeled Na-bicarbonate, we measured the enrichment in (13)C of exhaled breath before and after flight. We converted fractional turnover of (13)C into metabolic rate and power, based on the assumption that bats oxidized glycogen during short flights. Power requirements of flight varied with air speed in a U-shaped manner in five out of seven individuals, whereas energy turnover was not related to air speed in two individuals. Power requirements of flight were close to values predicted by Pennycuick's aerodynamic model for minimum power speed, but differed for maximum range speed. The results of our experiment support the theoretical expectation of a U-shaped power curve for flight metabolism in a bat.
The finite element method in low speed aerodynamics
NASA Technical Reports Server (NTRS)
Baker, A. J.; Manhardt, P. D.
1975-01-01
The finite element procedure is shown to be of significant impact in design of the 'computational wind tunnel' for low speed aerodynamics. The uniformity of the mathematical differential equation description, for viscous and/or inviscid, multi-dimensional subsonic flows about practical aerodynamic system configurations, is utilized to establish the general form of the finite element algorithm. Numerical results for inviscid flow analysis, as well as viscous boundary layer, parabolic, and full Navier Stokes flow descriptions verify the capabilities and overall versatility of the fundamental algorithm for aerodynamics. The proven mathematical basis, coupled with the distinct user-orientation features of the computer program embodiment, indicate near-term evolution of a highly useful analytical design tool to support computational configuration studies in low speed aerodynamics.
Modelling and Control of an Annular Momentum Control Device
NASA Technical Reports Server (NTRS)
Downer, James R.; Johnson, Bruce G.
1988-01-01
The results of a modelling and control study for an advanced momentum storage device supported on magnetic bearings are documented. The control challenge posed by this device lies in its dynamics being such a strong function of flywheel rotational speed. At high rotational speed, this can lead to open loop instabilities, resulting in requirements for minimum and maximum control bandwidths and gains for the stabilizing controllers. Using recently developed analysis tools for systems described by complex coefficient differential equations, the closed properties of the controllers were analyzed and stability properties established. Various feedback controllers are investigated and discussed. Both translational and angular dynamics compensators are developed, and measures of system stability and robustness to plant and operational speed variations are presented.
The Nozzle Acoustic Test Rig: an Acoustic and Aerodynamic Free-jet Facility
NASA Technical Reports Server (NTRS)
Castner, Raymond S.
1994-01-01
The nozzle acoustic test rig (NATR) was built at NASA Lewis Research Center to support the High Speed Research Program. The facility is capable of measuring the acoustic and aerodynamic performance of aircraft engine nozzle concepts. Trade-off studies are conducted to compare performance and noise during simulated low-speed flight and takeoff. Located inside an acoustically treated dome with a 62-ft radius, the NATR is a free-jet that has a 53-in. diameter and is driven by an air ejector. This ejector is operated with 125 lb/s of compressed air, at 125 psig, to achieve 375 lb/s at Mach 0.3. Acoustic and aerodynamic data are collected from test nozzles mounted in the free-jet flow. The dome serves to protect the surrounding community from high noise levels generated by the nozzles, and to provide an anechoic environment for acoustic measurements. Information presented in this report summarizes free-jet performance, fluid support systems, and data acquisition capabilities of the NATR.
Ferrarin, Maurizio; Rabuffetti, Marco; Geda, Elisabetta; Sirolli, Silvia; Marzegan, Alberto; Bruno, Valentina; Sacco, Katiuscia
2018-06-01
Several robotic devices have been developed for the rehabilitation of treadmill walking in patients with movement disorders due to injuries or diseases of the central nervous system. These robots induce coordinated multi-joint movements aimed at reproducing the physiological walking or stepping patterns. Control strategies developed for robotic locomotor training need a set of predefined lower limb joint angular trajectories as reference input for the control algorithm. Such trajectories are typically taken from normative database of overground unassisted walking. However, it has been demonstrated that gait speed and the amount of body weight support significantly influence joint trajectories during walking. Moreover, both the speed and the level of body weight support must be individually adjusted according to the rehabilitation phase and the residual locomotor abilities of the patient. In this work, 10 healthy participants (age range: 23-48 years) were asked to walk in movement analysis laboratory on a treadmill at five different speeds and four different levels of body weight support; besides, a trial with full body weight support, that is, with the subject suspended on air, was performed at two different cadences. The results confirm that lower limb kinematics during walking is affected by gait speed and by the amount of body weight support, and that on-air stepping is radically different from treadmill walking. Importantly, the results provide normative data in a numerical form to be used as reference trajectories for controlling robot-assisted body weight support walking training. An electronic addendum is provided to easily access to such reference data for different combinations of gait speeds and body weight support levels.
Exploring the Universe with the Hubble Space Telescope
NASA Technical Reports Server (NTRS)
1990-01-01
A general overview is given of the operations, engineering challenges, and components of the Hubble Space Telescope. Deployment, checkout and servicing in space are discussed. The optical telescope assembly, focal plane scientific instruments, wide field/planetary camera, faint object spectrograph, faint object camera, Goddard high resolution spectrograph, high speed photometer, fine guidance sensors, second generation technology, and support systems and services are reviewed.
2011-06-01
mm Diameter Barrel and (c) a 12-Hole Spinneret with 150 Micrometer Diameter Holes...6 3. A Schematic of a Mounted Specimen for Compressive Testing Using a High-Speed Camera for Capturing...Tension-Recoil Compressive ..................................................................... 8 4. SEM Images of Oxidized 0 wt% ARHP Mesophase Pitch
Defense Acquisitions Acronyms and Terms
2012-12-01
Computer-Aided Design CADD Computer-Aided Design and Drafting CAE Component Acquisition Executive; Computer-Aided Engineering CAIV Cost As an...Radiation to Ordnance HFE Human Factors Engineering HHA Health Hazard Assessment HNA Host-Nation Approval HNS Host-Nation Support HOL High -Order...Engineering Change Proposal VHSIC Very High Speed Integrated Circuit VLSI Very Large Scale Integration VOC Volatile Organic Compound W WAN Wide
Luximon, Yan; Cong, Yan; Luximon, Ameersing; Zhang, Ming
2015-06-01
High-heeled shoes are associated with instability and a high risk of fall, fracture, and ankle sprain. This study investigated the effects of heel base size (HBS) on walking stability under different walking speeds and slope angles. The trajectory of the center of pressure (COP), maximal peak pressure, pressure time integral, contact area, and perceived stability were analyzed. The results revealed that a small HBS increased the COP deviations, shifting the COP more medially at the beginning of the gait cycle. The slope angle mainly affected the COP in the anteroposterior direction. An increased slope angle shifted the COP posterior and caused greater pressure and a larger contact area in the midfoot and rearfoot regions, which can provide more support. Subjective measures on perceived stability were consistent with objective measures. The results suggested that high-heeled shoes with a small HBS did not provide stable plantar support, particularly on a small slope angle. The changes in the COP and pressure pattern caused by a small HBS might increase joint torque and muscle activity and induce lower limb problems. Copyright © 2015 Elsevier B.V. All rights reserved.
Nolan, Vikki G.; Zhang, Yuqing; Lash, Timothy; Sebastiani, Paola; Steinberg, Martin H.
2015-01-01
Summary The role of the weather as a trigger of sickle cell acute painful episodes has long been debated. To more accurately describe the role of the weather as a trigger of painful events, we conducted a case-crossover study of the association between local weather conditions and the occurrence of painful episodes. From the Cooperative Study of Sickle Cell Disease, we identified 813 patients with sickle cell anaemia who had 3570 acute painful episodes. We found an association between wind speed and the onset of pain, specifically wind speed during the 24-h period preceding the onset of pain. Analysing wind speed as a categorical trait, showed a 13% increase (95% confidence interval: 3%, 24%) in odds of pain, when comparing the high wind speed to lower wind speed (P = 0.007). In addition, the association between wind speed and painful episodes was found to be stronger among men, particularly those in the warmer climate regions of the United States. These results are in agreement with another study that found an association between wind speed and hospital visits for pain in the United Kingdom, and lends support to physiological and clinical studies that have suggested that skin cooling is associated with sickle vasoocclusion and perhaps pain. PMID:18729854
Nolan, Vikki G; Zhang, Yuqing; Lash, Timothy; Sebastiani, Paola; Steinberg, Martin H
2008-11-01
The role of the weather as a trigger of sickle cell acute painful episodes has long been debated. To more accurately describe the role of the weather as a trigger of painful events, we conducted a case-crossover study of the association between local weather conditions and the occurrence of painful episodes. From the Cooperative Study of Sickle Cell Disease, we identified 813 patients with sickle cell anaemia who had 3570 acute painful episodes. We found an association between wind speed and the onset of pain, specifically wind speed during the 24-h period preceding the onset of pain. Analysing wind speed as a categorical trait, showed a 13% increase (95% confidence interval: 3%, 24%) in odds of pain, when comparing the high wind speed to lower wind speed (P = 0.007). In addition, the association between wind speed and painful episodes was found to be stronger among men, particularly those in the warmer climate regions of the United States. These results are in agreement with another study that found an association between wind speed and hospital visits for pain in the United Kingdom, and lends support to physiological and clinical studies that have suggested that skin cooling is associated with sickle vasoocclusion and perhaps pain.
Ashraf, Chowdhury; Jain, Abhishek; Xuan, Yuan; van Duin, Adri C T
2017-02-15
In this paper, we present the first atomistic-scale based method for calculating ignition front propagation speed and hypothesize that this quantity is related to laminar flame speed. This method is based on atomistic-level molecular dynamics (MD) simulations with the ReaxFF reactive force field. Results reported in this study are for supercritical (P = 55 MPa and T u = 1800 K) combustion of hydrocarbons as elevated pressure and temperature are required to accelerate the dynamics for reactive MD simulations. These simulations are performed for different types of hydrocarbons, including alkyne, alkane, and aromatic, and are able to successfully reproduce the experimental trend of reactivity of these hydrocarbons. Moreover, our results indicate that the ignition front propagation speed under supercritical conditions has a strong dependence on equivalence ratio, similar to experimentally measured flame speeds at lower temperatures and pressures which supports our hypothesis that ignition front speed is a related quantity to laminar flame speed. In addition, comparisons between results obtained from ReaxFF simulation and continuum simulations performed under similar conditions show good qualitative, and reasonable quantitative agreement. This demonstrates that ReaxFF based MD-simulations are a promising tool to study flame speed/ignition front speed in supercritical hydrocarbon combustion.
The effect of process parameters on audible acoustic emissions from high-shear granulation.
Hansuld, Erin M; Briens, Lauren; Sayani, Amyn; McCann, Joe A B
2013-02-01
Product quality in high-shear granulation is easily compromised by minor changes in raw material properties or process conditions. It is desired to develop a process analytical technology (PAT) that can monitor the process in real-time and provide feedback for quality control. In this work, the application of audible acoustic emissions (AAEs) as a PAT tool was investigated. A condenser microphone was placed at the top of the air exhaust on a PMA-10 high-shear granulator to collect AAEs for a design of experiment (DOE) varying impeller speed, total binder volume and spray rate. The results showed the 10 Hz total power spectral densities (TPSDs) between 20 and 250 Hz were significantly affected by the changes in process conditions. Impeller speed and spray rate were shown to have statistically significant effects on granulation wetting, and impeller speed and total binder volume were significant in terms of process end-point. The DOE results were confirmed by a multivariate PLS model of the TPSDs. The scores plot showed separation based on impeller speed in the first component and spray rate in the second component. The findings support the use of AAEs to monitor changes in process conditions in real-time and achieve consistent product quality.
Long-Term Structural Health Monitoring System for a High-Speed Railway Bridge Structure
Wu, Lai-Yi
2015-01-01
Nanjing Dashengguan Bridge, which serves as the shared corridor crossing Yangtze River for both Beijing-Shanghai high-speed railway and Shanghai-Wuhan-Chengdu railway, is the first 6-track high-speed railway bridge with the longest span throughout the world. In order to ensure safety and detect the performance deterioration during the long-time service of the bridge, a Structural Health Monitoring (SHM) system has been implemented on this bridge by the application of modern techniques in sensing, testing, computing, and network communication. The SHM system includes various sensors as well as corresponding data acquisition and transmission equipment for automatic data collection. Furthermore, an evaluation system of structural safety has been developed for the real-time condition assessment of this bridge. The mathematical correlation models describing the overall structural behavior of the bridge can be obtained with the support of the health monitoring system, which includes cross-correlation models for accelerations, correlation models between temperature and static strains of steel truss arch, and correlation models between temperature and longitudinal displacements of piers. Some evaluation results using the mean value control chart based on mathematical correlation models are presented in this paper to show the effectiveness of this SHM system in detecting the bridge's abnormal behaviors under the varying environmental conditions such as high-speed trains and environmental temperature. PMID:26451387
DOT National Transportation Integrated Search
2001-03-21
The Rail Passenger Service Act of 1970 created Amtrak to provide intercity passenger rail service. Like other major national intercity passenger rail systems in the world, Amtrak has received substantial government support-nearly $24 billion for capi...
A New Analysis Tool Assessment for Rotordynamic Modeling of Gas Foil Bearings
NASA Technical Reports Server (NTRS)
Howard, Samuel A.; SanAndres, Luis
2010-01-01
Gas foil bearings offer several advantages over traditional bearing types that make them attractive for use in high-speed turbomachinery. They can operate at very high temperatures, require no lubrication supply (oil pumps, seals, etc.), exhibit very long life with no maintenance, and once operating airborne, have very low power loss. The use of gas foil bearings in high-speed turbomachinery has been accelerating in recent years, although the pace has been slow. One of the contributing factors to the slow growth has been a lack of analysis tools, benchmarked to measurements, to predict gas foil bearing behavior in rotating machinery. To address this shortcoming, NASA Glenn Research Center (GRC) has supported the development of analytical tools to predict gas foil bearing performance. One of the codes has the capability to predict rotordynamic coefficients, power loss, film thickness, structural deformation, and more. The current paper presents an assessment of the predictive capability of the code, named XLGFBTH (Texas A&M University). A test rig at GRC is used as a simulated case study to compare rotordynamic analysis using output from the code to actual rotor response as measured in the test rig. The test rig rotor is supported on two gas foil journal bearings manufactured at GRC, with all pertinent geometry disclosed. The resulting comparison shows that the rotordynamic coefficients calculated using XLGFBTH represent the dynamics of the system reasonably well, especially as they pertain to predicting critical speeds.
Far-Field Acoustic Characteristics of Multiple Blade-Vane Configurations for a High Tip Speed Fan
NASA Technical Reports Server (NTRS)
Woodward, Richard P.; Gazzaniga, John A.; Hughes, Christopher
2004-01-01
The acoustic characteristics of a model high-speed fan stage were measured in the NASA Glenn 9- by 15-Foot Low Speed Wind Tunnel at takeoff and approach flight conditions. The fan was designed for a corrected rotor tip speed of 442 m/s (1450 ft/s), and had a powered core, or booster stage, giving the model a nominal bypass ratio of 5. A simulated engine pylon and nozzle bifurcation was contained within the bypass duct. The fan stage consisted of all combinations of 3 possible rotors, and 3 stator vane sets. The 3 rotors were (1) wide chord, (2) forward swept, and (3) shrouded. The 3 stator sets were (1) baseline, moderately swept, (2) swept and leaned, and (3) swept integral vane/frame which incorporated some of the swept and leaned features as well as eliminated the downstream support structure. The baseline configuration is considered to be the wide chord rotor with the radial vane stator. A flyover Effective Perceived Noise Level (EPNL) code was used to generate relative EPNL values for the various configurations. The swept and leaned stator showed a 3 EPNdB reduction at lower fan speeds relative to the baseline stator; while the swept integral vane/frame stator showed lowest noise levels at high fan speeds. The baseline, wide chord rotor was typically the quietest of the three rotors. A tone removal study was performed to assess the acoustic benefits of removing the fundamental rotor interaction tone and its harmonics. Reprocessing the acoustic results with the bypass tone removed had the most impact on reducing fan noise at transonic rotor speeds. Removal of the bypass rotor interaction tones (BPF and nBPF) showed up to a 6 EPNdB noise reduction at transonic rotor speeds relative to noise levels for the baseline (wide chord rotor and radial stator; all tones present) configuration.
Active Vibration Control of Hydrodynamic Journal Bearings
NASA Astrophysics Data System (ADS)
Tůma, J.; Šimek, J.; Škuta, J.; Los, J.; Zavadil, J.
Rotor instability is one of the most serious problems of high-speed rotors supported by sliding bearings. With constantly increasing parameters, new machines problems with rotor instability are encountered more and more often. Even though there are many solutions based on passive improvement of the bearing geometry to enlarge the operational speed range of the journal bearing, the paper deals with a working prototype of a system for the active vibration control of journal bearings with the use of piezoactuators. The actively controlled journal bearing consists of a movable bushing, which is actuated by two piezoactuators. It is assumed that the journal vibration is measured by a pair of proximity probes. Force produced by piezoactuators and acting at the bushing is controlled according to error signals derived from the proximity probe output signals. The active vibration control was tested with the use of a test rig, which consists of a rotor supported by two controllable journal bearings and driven by an inductive motor up to 23,000 rpm. As it was proved by experiments the active vibration control extends considerably the range of the rotor operational speed.
Characterization of friction in the 3.6m Devasthal optical telescope
NASA Astrophysics Data System (ADS)
Kumar, T. S.; Bastin, Christian; Kumar, Brijesh
2016-07-01
In this paper, we present the work on characterization of friction in the 3.6 m Devasthal optical telescope axes. The telescope azimuth axis is supported on a hydrostatic bearing while the altitude and rotator axes are supported on hydrodynamic bearings. Both altitude and azimuth axes are driven directly by high power BLDC motors and the rotator is driven by BLDC motor via a gearbox. This system is designed by AMOS, Belgium and tuned to achieve a tracking accuracy better than 0.1 arcsec RMS. Friction poses control related problems at such low speeds hence it is important to periodically characterize the behaviour at each axes. Compensation is necessary if the friction behaviour changes over the time and starts dominating the overall system response. For identifying friction each axis of telescope is rotated at different constant speeds and speed versus torque maps are generated. The LuGre model for friction is employed and nonlinear optimization is performed to identify the four static parameters of friction. The behaviour of friction for each axis is presented and the results are discussed.
Automated Camouflage Pattern Generation Technology Survey.
1985-08-07
supported by high speed data communications? Costs: 9 What are your rates? $/CPU hour: $/MB disk storage/day: S/connect hour: other charges: What are your... data to the workstation, tape drives are needed for backing up and archiving completed patterns, 256 megabytes of on-line hard disk space as a minimum...is needed to support multiple processes and data files, and 4 megabytes of actual or virtual memory is needed to process the largest expected single
ERIC Educational Resources Information Center
Bergo, Rolv Alexander
2013-01-01
Technology development is moving rapidly and our dependence on information services is growing. Building a broadband infrastructure that can support future demand and change is therefore critical to social, political, economic and technological developments. It is often up to local policy makers to find the best solutions to support this demand…
Boundary Layer Transition Experiments in Support of the Hypersonics Program
NASA Technical Reports Server (NTRS)
Berry, Scott A.; Chen, Fang-Jenq; Wilder, Michael C.; Reda, Daniel C.
2007-01-01
Two experimental boundary layer transition studies in support of fundamental hypersonics research are reviewed. The two studies are the HyBoLT flight experiment and a new ballistic range effort. Details are provided of the objectives and approach associated with each experimental program. The establishment of experimental databases from ground and flight are to provide better understanding of high-speed flows and data to validate and guide the development of simulation tools.
NASA Astrophysics Data System (ADS)
Modafe, Alireza
This dissertation summarizes the research activities that led to the development of the first microball-bearing-supported linear electrostatic micromotor with benzocyclobutene (BCB) low-k polymer insulating layers. The primary application of this device is long-range, high-speed linear micropositioning. The future generations of this device include rotary electrostatic micromotors and microgenerators. The development of the first generation of microball-bearing-supported micromachines, including device theory, design, and modeling, material characterization, process development, device fabrication, and device test and characterization is presented. The first generation of these devices is based on a 6-phase, bottom-drive, linear, variable-capacitance micromotor (B-LVCM). The design of the electrical and mechanical components of the micromotor, lumped-circuit modeling of the device and electromechanical characteristics, including variable capacitance, force, power, and speed are presented. Electrical characterization of BCB polymers, characterization of BCB chemical mechanical planarization (CMP), development of embedded BCB in silicon (EBiS) process, and integration of device components using microfabrication techniques are also presented. The micromotor consists of a silicon stator, a silicon slider, and four stainless-steel microballs. The aligning force profile of the micromotor was extracted from simulated and measured capacitances of all phases. An average total aligning force of 0.27 mN with a maximum of 0.41 mN, assuming a 100 V peak-to-peak square-wave voltage, was measured. The operation of the micromotor was verified by applying square-wave voltages and characterizing the slider motion. An average slider speed of 7.32 mm/s when excited by a 40 Hz, 120 V square-wave voltage was reached without losing the synchronization. This research has a pivotal impact in the field of power microelectromechanical systems (MEMS). It establishes the foundation for the development of more reliable, efficient electrostatic micromachines with variety of applications such as micropropulsion, high-speed micropumping, microfluid delivery, and microsystem power generation.
NASA Technical Reports Server (NTRS)
Welch, Gerard E.
2011-01-01
The main rotors of the NASA Large Civil Tilt-Rotor notional vehicle operate over a wide speed-range, from 100% at take-off to 54% at cruise. The variable-speed power turbine offers one approach by which to effect this speed variation. Key aero-challenges include high work factors at cruise and wide (40 to 60 deg.) incidence variations in blade and vane rows over the speed range. The turbine design approach must optimize cruise efficiency and minimize off-design penalties at take-off. The accuracy of the off-design incidence loss model is therefore critical to the turbine design. In this effort, 3-D computational analyses are used to assess the variation of turbine efficiency with speed change. The conceptual design of a 4-stage variable-speed power turbine for the Large Civil Tilt-Rotor application is first established at the meanline level. The design of 2-D airfoil sections and resulting 3-D blade and vane rows is documented. Three-dimensional Reynolds Averaged Navier-Stokes computations are used to assess the design and off-design performance of an embedded 1.5-stage portion-Rotor 1, Stator 2, and Rotor 2-of the turbine. The 3-D computational results yield the same efficiency versus speed trends predicted by meanline analyses, supporting the design choice to execute the turbine design at the cruise operating speed.
NASA Technical Reports Server (NTRS)
Thompson, Peter M.; Jones, William R., Jr.; Jansen, Mark J.; Prahl, Joseph M.
2000-01-01
A unique tribometer is used to study film forming and pressure supporting abilities of point contacts at zero entrainment velocity (ZEV). Film thickness is determined using a capacitance technique, verified through comparisons of experimental results and theoretical elastohydrodynamic lubrication (EHL) predictions for rolling contacts. Experiments are conducted using through hardened AISI 52 100 steel balls, Polyalphaolefin (PAO) 182 and Pentaerythritol Tetraheptanoate (PT) lubricants, and sliding speeds between 2.0 to 12.0 m/s. PAO 182 and PT are found to support pressures up to 1. 1 GPa and 0.67 GPa respectively. Protective lubricant films ranging in thickness between 90 to 2 10 nm for PAO 182 and 220 to 340 nm for PT are formed. Lubricants experience shear stresses between 14 to 22 MPa for PAO 182 and 7 to 16 MPa for PT at shear rates of 10(exp 7)/sec. The lubricant's pressure supporting ability most likely results from the combination of immobile films and its transition to a glassy solid at high pressures.
Forecasting the Short-Term Passenger Flow on High-Speed Railway with Neural Networks
Xie, Mei-Quan; Li, Xia-Miao; Zhou, Wen-Liang; Fu, Yan-Bing
2014-01-01
Short-term passenger flow forecasting is an important component of transportation systems. The forecasting result can be applied to support transportation system operation and management such as operation planning and revenue management. In this paper, a divide-and-conquer method based on neural network and origin-destination (OD) matrix estimation is developed to forecast the short-term passenger flow in high-speed railway system. There are three steps in the forecasting method. Firstly, the numbers of passengers who arrive at each station or depart from each station are obtained from historical passenger flow data, which are OD matrices in this paper. Secondly, short-term passenger flow forecasting of the numbers of passengers who arrive at each station or depart from each station based on neural network is realized. At last, the OD matrices in short-term time are obtained with an OD matrix estimation method. The experimental results indicate that the proposed divide-and-conquer method performs well in forecasting the short-term passenger flow on high-speed railway. PMID:25544838
Tsai, Tsung-Han; Potsaid, Benjamin; Tao, Yuankai K; Jayaraman, Vijaysekhar; Jiang, James; Heim, Peter J S; Kraus, Martin F; Zhou, Chao; Hornegger, Joachim; Mashimo, Hiroshi; Cable, Alex E; Fujimoto, James G
2013-07-01
We developed a micromotor based miniature catheter with an outer diameter of 3.2 mm for ultrahigh speed endoscopic swept source optical coherence tomography (OCT) using a vertical cavity surface-emitting laser (VCSEL) at a 1 MHz axial scan rate. The micromotor can rotate a micro-prism at several hundred frames per second with less than 5 V drive voltage to provide fast and stable scanning, which is not sensitive to the bending of the catheter. The side-viewing probe can be pulled back to acquire a three-dimensional (3D) data set covering a large area on the specimen. The VCSEL provides a high axial scan rate to support dense sampling under high frame rate operation. Using a high speed data acquisition system, in vivo 3D-OCT imaging in the rabbit GI tract and ex vivo imaging of a human colon specimen with 8 μm axial resolution, 8 μm lateral resolution and 1.2 mm depth range in tissue at a frame rate of 400 fps was demonstrated.
Tsai, Tsung-Han; Potsaid, Benjamin; Tao, Yuankai K.; Jayaraman, Vijaysekhar; Jiang, James; Heim, Peter J. S.; Kraus, Martin F.; Zhou, Chao; Hornegger, Joachim; Mashimo, Hiroshi; Cable, Alex E.; Fujimoto, James G.
2013-01-01
We developed a micromotor based miniature catheter with an outer diameter of 3.2 mm for ultrahigh speed endoscopic swept source optical coherence tomography (OCT) using a vertical cavity surface-emitting laser (VCSEL) at a 1 MHz axial scan rate. The micromotor can rotate a micro-prism at several hundred frames per second with less than 5 V drive voltage to provide fast and stable scanning, which is not sensitive to the bending of the catheter. The side-viewing probe can be pulled back to acquire a three-dimensional (3D) data set covering a large area on the specimen. The VCSEL provides a high axial scan rate to support dense sampling under high frame rate operation. Using a high speed data acquisition system, in vivo 3D-OCT imaging in the rabbit GI tract and ex vivo imaging of a human colon specimen with 8 μm axial resolution, 8 μm lateral resolution and 1.2 mm depth range in tissue at a frame rate of 400 fps was demonstrated. PMID:23847737
Zhang, Dapeng; Long, Zhiqiang; Xue, Song; Zhang, Junge
2012-01-01
This paper studies an absolute positioning sensor for a high-speed maglev train and its fault diagnosis method. The absolute positioning sensor is an important sensor for the high-speed maglev train to accomplish its synchronous traction. It is used to calibrate the error of the relative positioning sensor which is used to provide the magnetic phase signal. On the basis of the analysis for the principle of the absolute positioning sensor, the paper describes the design of the sending and receiving coils and realizes the hardware and the software for the sensor. In order to enhance the reliability of the sensor, a support vector machine is used to recognize the fault characters, and the signal flow method is used to locate the faulty parts. The diagnosis information not only can be sent to an upper center control computer to evaluate the reliability of the sensors, but also can realize on-line diagnosis for debugging and the quick detection when the maglev train is off-line. The absolute positioning sensor we study has been used in the actual project.
Aeroacoustics of advanced propellers
NASA Technical Reports Server (NTRS)
Groeneweg, John F.
1990-01-01
The aeroacoustics of advanced, high speed propellers (propfans) are reviewed from the perspective of NASA research conducted in support of the Advanced Turboprop Program. Aerodynamic and acoustic components of prediction methods for near and far field noise are summarized for both single and counterrotation propellers in uninstalled and configurations. Experimental results from tests at both takeoff/approach and cruise conditions are reviewed with emphasis on: (1) single and counterrotation model tests in the NASA Lewis 9 by 15 (low speed) and 8 by 6 (high speed) wind tunnels, and (2) full scale flight tests of a 9 ft (2.74 m) diameter single rotation wing mounted tractor and a 11.7 ft (3.57 m) diameter counterrotation aft mounted pusher propeller. Comparisons of model data projected to flight with full scale flight data show good agreement validating the scale model wind tunnel approach. Likewise, comparisons of measured and predicted noise level show excellent agreement for both single and counterrotation propellers. Progress in describing angle of attack and installation effects is also summarized. Finally, the aeroacoustic issues associated with ducted propellers (very high bypass fans) are discussed.
Do mental speed and musical abilities interact?
Gruhn, Wilfried; Galley, Niels; Kluth, Christine
2003-11-01
The relation between mental speed and musical ability was investigated. Seventeen subjects aged 3-7 years were divided into two subgroups: one (G1; n = 9) consisted of children who participated in an early childhood music program and who received informal musical guidance, but no special training; the other (G2; n = 8) consisted of highly talented young violin players who received intensive parental support and special training by daily deliberate practice. Mental and musical abilities of both groups were controlled by standardized tests (Kaufman's ABC and Gordon's PMMA) and compared with data taken from recordings of saccadic eye movement using online identification from an electrooculogram (EOG). Results of EOG measurement are referred to as "mental speed," which correlates highly with general mental abilities (intelligence). These results were compared with EOG scores taken from a larger sample of children of the same age range (n = 82) who received no music instruction. The grand average of their scores served as a reference line for mental speed, which is normally expected to be performed by an equivalent age group. Data in the two experimental groups did not differ statistically; however, all musically experienced children had a highly significant advantage in mental age (P <0.01) compared to the reference line of the normal population who did not exhibit any effect of training and practice. This indicates strong interaction between mental speed and music ability, which can be interpreted in terms of the expertise model and cognitive transfer effects.
Design of the SLAC RCE Platform: A General Purpose ATCA Based Data Acquisition System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herbst, R.; Claus, R.; Freytag, M.
2015-01-23
The SLAC RCE platform is a general purpose clustered data acquisition system implemented on a custom ATCA compliant blade, called the Cluster On Board (COB). The core of the system is the Reconfigurable Cluster Element (RCE), which is a system-on-chip design based upon the Xilinx Zynq family of FPGAs, mounted on custom COB daughter-boards. The Zynq architecture couples a dual core ARM Cortex A9 based processor with a high performance 28nm FPGA. The RCE has 12 external general purpose bi-directional high speed links, each supporting serial rates of up to 12Gbps. 8 RCE nodes are included on a COB, eachmore » with a 10Gbps connection to an on-board 24-port Ethernet switch integrated circuit. The COB is designed to be used with a standard full-mesh ATCA backplane allowing multiple RCE nodes to be tightly interconnected with minimal interconnect latency. Multiple shelves can be clustered using the front panel 10-gbps connections. The COB also supports local and inter-blade timing and trigger distribution. An experiment specific Rear Transition Module adapts the 96 high speed serial links to specific experiments and allows an experiment-specific timing and busy feedback connection. This coupling of processors with a high performance FPGA fabric in a low latency, multiple node cluster allows high speed data processing that can be easily adapted to any physics experiment. RTEMS and Linux are both ported to the module. The RCE has been used or is the baseline for several current and proposed experiments (LCLS, HPS, LSST, ATLAS-CSC, LBNE, DarkSide, ILC-SiD, etc).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, L.R.; Rote, D.M.; Hull, J.R.
1989-04-01
This study was undertaken to (1) evaluate the potential contribution of high-temperature superconductors (HTSCs) to the technical and economic feasibility of magnetically levitated (maglev) vehicles, (2) determine the status of maglev transportation research in the United States and abroad, (3) identify the likelihood of a significant transportation market for high-speed maglev vehicles, and (4) provide a preliminary assessment of the potential energy and economic benefits of maglev systems. HTSCs should be considered as an enhancing, rather than an enabling, development for maglev transportation because they should improve reliability and reduce energy and maintenance costs. Superconducting maglev transportation technologies were developedmore » in the United States in the late 1960s and early 1970s. Federal support was withdrawn in 1975, but major maglev transportation programs were continued in Japan and West Germany, where full-scale prototypes now carry passengers at speeds of 250 mi/h in demonstration runs. Maglev systems are generally viewed as very-high-speed train systems, but this study shows that the potential market for maglev technology as a train system, e.g., from one downtown to another, is limited. Rather, aircraft and maglev vehicles should be seen as complementing rather than competing transportation systems. If maglev systems were integrated into major hub airport operations, they could become economical in many relatively high-density US corridors. Air traffic congestion and associated noise and pollutant emissions around airports would also be reduced. 68 refs., 26 figs., 16 tabs.« less
Caruthers, Elena J; Oxendale, Kassandra K; Lewis, Jacqueline M; Chaudhari, Ajit M W; Schmitt, Laura C; Best, Thomas M; Siston, Robert A
2018-04-01
Stair descent (SD) is a common, difficult task for populations who are elderly or have orthopaedic pathologies. Joint torques of young, healthy populations during SD increase at the hip and ankle with increasing speed but not at the knee, contrasting torque patterns during gait. To better understand the sources of the knee torque pattern, we used dynamic simulations to estimate knee muscle forces and how they modulate center of mass (COM) acceleration across SD speeds (slow, self-selected, and fast) in young, healthy adults. The vastus lateralis and vastus medialis forces decreased from slow to self-selected speeds as the individual lowered to the next step. Since the vasti are primary contributors to vertical support during SD, they produced lower forces at faster speeds due to the lower need for vertical COM support observed at faster speeds. In contrast, the semimembranosus and rectus femoris forces increased across successive speeds, allowing the semimembranosus to increase acceleration downward and forward and the rectus femoris to provide more vertical support and resistance to forward progression as SD speed increased. These results demonstrate the utility of dynamic simulations to extend beyond traditional inverse dynamics analyses to gain further insight into muscle mechanisms during tasks like SD.
Review of V/STOL lift/cruise fan technology
NASA Technical Reports Server (NTRS)
Rolls, L. S.; Quigley, H. C.; Perkins, R. G., Jr.
1976-01-01
This paper presents an overview of supporting technology programs conducted to reduce the risk in the joint NASA/Navy Lift/Cruise Fan Research and Technology Aircraft Program. The aeronautical community has endeavored to combine the low-speed and lifting capabilities of the helicopter with the high-speed capabilities of the jet aircraft; recent developments have indicated a lift/cruise fan propulsion system may provide these desired characteristics. NASA and the Navy have formulated a program that will provide a research and technology aircraft to furnish viability of the lift/cruise fan aircraft through flight experiences and obtain data on designs for future naval and civil V/STOL aircraft. The supporting technology programs discussed include: (1) design studies for operational aircraft, a research and technology aircraft, and associated propulsion systems; (2) wind-tunnel tests of several configurations; (3) propulsion-system thrust vectoring tests; and (4) simulation. These supporting technology programs have indicated that a satisfactory research and technology aircraft program can be accomplished within the current level of technology.
Validation of the AVM Blast Computational Modeling and Simulation Tool Set
2015-08-04
by-construction" methodology is powerful and would not be possible without high -level design languages to support validation and verification. [1,4...to enable the making of informed design decisions. Enable rapid exploration of the design trade-space for high -fidelity requirements tradeoffs...live-fire tests, the jump height of the target structure is recorded by using either high speed cameras or a string pot. A simple projectile motion
Resource Management in QoS-Aware Wireless Cellular Networks
ERIC Educational Resources Information Center
Zhang, Zhi
2011-01-01
Emerging broadband wireless networks that support high speed packet data with heterogeneous quality of service (QoS) requirements demand more flexible and efficient use of the scarce spectral resource. Opportunistic scheduling exploits the time-varying, location-dependent channel conditions to achieve multiuser diversity. In this work, we study…
Frictionless Bearing Uses Permanent Magnets
NASA Technical Reports Server (NTRS)
1965-01-01
The purpose of this innovation was to develop a frictionless bearing for high speed, light load applications. The device involves the incorporation of permanent magnets in the bearing design. The repulsion of like magnetic poles provides concentric support of the inner member so that no metallic contact occurs between the bearing surfaces.
DOT National Transportation Integrated Search
1973-06-30
The development of experimental facilities for rail vehicle testing at the DOT High Speed Ground Test Center is being complemented by analytical studies. The purpose of this effort has been to gain insight into the dynamics of rail vehicles to guide ...
Human engineering analysis for the high speed civil transport flight deck
NASA Technical Reports Server (NTRS)
Regal, David M.; Alter, Keith W.
1993-01-01
The Boeing Company is investigating the feasibility of building a second generation supersonic transport. If current studies support its viability, this airplane, known as the High Speed Civil Transport (HSCT), could be launched early in the next century. The HSCT will cruise at Mach 2.4, be over 300 feet long, have an initial range of between 5000 and 6000 NM, and carry approximately 300 passengers. We are presently involved in developing an advanced flight deck for the HSCT. As part of this effort we are undertaking a human engineering analysis that involves a top-down, mission driven approach that will allow a systematic determination of flight deck functional and information requirements. The present paper describes this work.
High-speed digital wireless battlefield network
NASA Astrophysics Data System (ADS)
Dao, Son K.; Zhang, Yongguang; Shek, Eddie C.; van Buer, Darrel
1999-07-01
In the past two years, the Digital Wireless Battlefield Network consortium that consists of HRL Laboratories, Hughes Network Systems, Raytheon, and Stanford University has participated in the DARPA TRP program to leverage the efforts in the development of commercial digital wireless products for use in the 21st century battlefield. The consortium has developed an infrastructure and application testbed to support the digitized battlefield. The consortium has implemented and demonstrated this network system. Each member is currently utilizing many of the technology developed in this program in commercial products and offerings. These new communication hardware/software and the demonstrated networking features will benefit military systems and will be applicable to the commercial communication marketplace for high speed voice/data multimedia distribution services.
Supersonic Combustion Research at NASA
NASA Technical Reports Server (NTRS)
Drummond, J. P.; Danehy, Paul M.; Gaffney, Richard L., Jr.; Tedder, Sarah A.; Cutler, Andrew D.; Bivolaru, Daniel
2007-01-01
This paper discusses the progress of work to model high-speed supersonic reacting flow. The purpose of the work is to improve the state of the art of CFD capabilities for predicting the flow in high-speed propulsion systems, particularly combustor flowpaths. The program has several components including the development of advanced algorithms and models for simulating engine flowpaths as well as a fundamental experimental and diagnostic development effort to support the formulation and validation of the mathematical models. The paper will provide details of current work on experiments that will provide data for the modeling efforts along with the associated nonintrusive diagnostics used to collect the data from the experimental flowfield. Simulation of a recent experiment to partially validate the accuracy of a combustion code is also described.
Research and development of a NYNEX switched multi-megabit data service prototype system
NASA Astrophysics Data System (ADS)
Maman, K. H.; Haines, Robert; Chatterjee, Samir
1991-02-01
Switched Multi-megabit Data Service (SMDS) is a proposed high-speed packet-switched service which will support broadband applications such as Local Area Network (LAN) interconnections across a metropolitan area and beyond. This service is designed to take advantage of evolving Metropolitan Area Network (MAN) standards and technology which will provide customers with 45-mbps and 1 . 5-mbps access to high-speed public data communications networks. This paper will briefly discuss SMDS and review its architecture including the Subscriber Network Interface (SNI) and the SMDS Interface Protocol (SIP). It will review the fundamental features of SMDS such as address screening addressing scheme and access classes. Then it will describe the SMDS prototype system developed in-house by NYNEX Science Technology.
A SVM framework for fault detection of the braking system in a high speed train
NASA Astrophysics Data System (ADS)
Liu, Jie; Li, Yan-Fu; Zio, Enrico
2017-03-01
In April 2015, the number of operating High Speed Trains (HSTs) in the world has reached 3603. An efficient, effective and very reliable braking system is evidently very critical for trains running at a speed around 300 km/h. Failure of a highly reliable braking system is a rare event and, consequently, informative recorded data on fault conditions are scarce. This renders the fault detection problem a classification problem with highly unbalanced data. In this paper, a Support Vector Machine (SVM) framework, including feature selection, feature vector selection, model construction and decision boundary optimization, is proposed for tackling this problem. Feature vector selection can largely reduce the data size and, thus, the computational burden. The constructed model is a modified version of the least square SVM, in which a higher cost is assigned to the error of classification of faulty conditions than the error of classification of normal conditions. The proposed framework is successfully validated on a number of public unbalanced datasets. Then, it is applied for the fault detection of braking systems in HST: in comparison with several SVM approaches for unbalanced datasets, the proposed framework gives better results.
The Xpress Transfer Protocol (XTP): A tutorial (expanded version)
NASA Technical Reports Server (NTRS)
Sanders, Robert M.; Weaver, Alfred C.
1990-01-01
The Xpress Transfer Protocol (XTP) is a reliable, real-time, light weight transfer layer protocol. Current transport layer protocols such as DoD's Transmission Control Protocol (TCP) and ISO's Transport Protocol (TP) were not designed for the next generation of high speed, interconnected reliable networks such as fiber distributed data interface (FDDI) and the gigabit/second wide area networks. Unlike all previous transport layer protocols, XTP is being designed to be implemented in hardware as a VLSI chip set. By streamlining the protocol, combining the transport and network layers and utilizing the increased speed and parallelization possible with a VLSI implementation, XTP will be able to provide the end-to-end data transmission rates demanded in high speed networks without compromising reliability and functionality. This paper describes the operation of the XTP protocol and in particular, its error, flow and rate control; inter-networking addressing mechanisms; and multicast support features, as defined in the XTP Protocol Definition Revision 3.4.
NASA Astrophysics Data System (ADS)
Chang, En-Chih
2018-02-01
This paper presents a high-performance AC power source by applying robust stability control technology for precision material machining (PMM). The proposed technology associates the benefits of finite-time convergent sliding function (FTCSF) and firefly optimization algorithm (FOA). The FTCSF maintains the robustness of conventional sliding mode, and simultaneously speeds up the convergence speed of the system state. Unfortunately, when a highly nonlinear loading is applied, the chatter will occur. The chatter results in high total harmonic distortion (THD) output voltage of AC power source, and even deteriorates the stability of PMM. The FOA is therefore used to remove the chatter, and the FTCSF still preserves finite system-state convergence time. By combining FTCSF with FOA, the AC power source of PMM can yield good steady-state and transient performance. Experimental results are performed in support of the proposed technology.
Role of large-scale motions to turbulent inertia in turbulent pipe and channel flows
NASA Astrophysics Data System (ADS)
Hwang, Jinyul; Lee, Jin; Sung, Hyung Jin
2015-11-01
The role of large-scale motions (LSMs) to the turbulent inertia (TI) term (the wall-normal gradient of the Reynolds shear stress) is examined in turbulent pipe and channel flows at Reτ ~ 930 . The TI term in the mean momentum equation represents the net force of inertia exerted by the Reynolds shear stress. Although the turbulence statistics characterizing the internal turbulent flows are similar close to the wall, the TI term differs in the logarithmic region due to the different characteristics of LSMs (λx > 3 δ) . The contribution of the LSMs to the TI term and the Reynolds shear stress in the channel flow is larger than that in the pipe flow. The LSMs in the logarithmic region act like a mean momentum source (where TI >0) even the TI profile is negative above the peak of the Reynolds shear stress. The momentum sources carried by the LSMs are related to the low-speed regions elongated in the downstream, revealing that momentum source-like motions occur in the upstream position of the low-speed structure. The streamwise extent of this structure is relatively long in the channel flow, whereas the high-speed regions on the both sides of the low-speed region in the channel flow are shorter and weaker than those in the pipe flow. This work was supported by the Creative Research Initiatives (No. 2015-001828) program of the National Research Foundation of Korea (MSIP) and partially supported by KISTI under the Strategic Supercomputing Support Program.
Yang, Mingliang; Li, Jianjun; Guan, Xinyu; Gao, Lianjun; Gao, Feng; Du, Liangjie; Zhao, Hongmei; Yang, Degang; Yu, Yan; Wang, Qimin; Wang, Rencheng; Ji, Linhong
2017-09-01
The high energy cost of paraplegic walking using a reciprocating gait orthosis (RGO) is attributed to limited hip motion and excessive upper limb loading for support. To address the limitation, we designed the hip energy storage walking orthosis (HESWO) which uses a spring assembly on the pelvic shell to store energy from the movements of the healthy upper limbs and flexion-extension of the lumbar spine and hip and returns this energy to lift the pelvis and lower limb to assist with the swing and stance components of a stride. Our aim was to evaluate gait and energy cost indices for the HESWO compared to the RGO in patients with paraplegia. The cross-over design was used in the pilot study. Twelve patients with a complete T4-L5 chronic spinal cord injury underwent gait training using the HESWO and RGO. Gait performance (continuous walking distance, as well as the maximum and comfortable walking speeds) and energy expenditure (at a walking speed of 3.3m/min on a treadmill) were measured at the end of the 4-week training session. Compared to the RGO, the HESWO increased continuous walking distance by 24.7% (P<0.05), maximum walking speed by 20.4% (P<0.05) and the comfortable walking speed by 15.3% (P<0.05), as well as decreasing energy expenditure by 13.9% (P<0.05). Our preliminary results provide support for the use of the HESWO as an alternative support for paraplegic walking. Copyright © 2017. Published by Elsevier B.V.
Reliability of Wind Speed Data from Satellite Altimeter to Support Wind Turbine Energy
NASA Astrophysics Data System (ADS)
Uti, M. N.; Din, A. H. M.; Omar, A. H.
2017-10-01
Satellite altimeter has proven itself to be one of the important tool to provide good quality information in oceanographic study. Nowadays, most countries in the world have begun in implementation the wind energy as one of their renewable energy for electric power generation. Many wind speed studies conducted in Malaysia using conventional method and scientific technique such as anemometer and volunteer observing ships (VOS) in order to obtain the wind speed data to support the development of renewable energy. However, there are some limitations regarding to this conventional method such as less coverage for both spatial and temporal and less continuity in data sharing by VOS members. Thus, the aim of this research is to determine the reliability of wind speed data by using multi-mission satellite altimeter to support wind energy potential in Malaysia seas. Therefore, the wind speed data are derived from nine types of satellite altimeter starting from year 1993 until 2016. Then, to validate the reliability of wind speed data from satellite altimeter, a comparison of wind speed data form ground-truth buoy that located at Sabah and Sarawak is conducted. The validation is carried out in terms of the correlation, the root mean square error (RMSE) calculation and satellite track analysis. As a result, both techniques showing a good correlation with value positive 0.7976 and 0.6148 for point located at Sabah and Sarawak Sea, respectively. It can be concluded that a step towards the reliability of wind speed data by using multi-mission satellite altimeter can be achieved to support renewable energy.
Non-invasive In vivo measurement of the shear modulus of human vocal fold tissue
Kazemirad, Siavash; Bakhshaee, Hani; Mongeau, Luc; Kost, Karen
2014-01-01
Voice is the essential part of singing and speech communication. Voice disorders significantly affect the quality of life. The viscoelastic mechanical properties of the vocal fold mucosa determine the characteristics of the vocal folds oscillations, and thereby voice quality. In the present study, a non-invasive method was developed to determine the shear modulus of human vocal fold tissue in vivo via measurements of the mucosal wave propagation speed during phonation. Images of four human subjects’ vocal folds were captured using high speed digital imaging (HSDI) and magnetic resonance imaging (MRI) for different phonation pitches, specifically fundamental frequencies between 110 to 440 Hz. The MRI images were used to obtain the morphometric dimensions of each subject's vocal folds in order to determine the pixel size in the high-speed images. The mucosal wave propagation speed was determined for each subject and at each pitch value using an automated image processing algorithm. The transverse shear modulus of the vocal fold mucosa was then calculated from a surface (Rayleigh) wave propagation dispersion equation using the measured wave speeds. It was found that the mucosal wave propagation speed and therefore the shear modulus of the vocal fold tissue were generally greater at higher pitches. The results were in good agreement with those from other studies obtained via in vitro measurements, thereby supporting the validity of the proposed measurement method. This method offers the potential for in vivo clinical assessments of vocal folds viscoelasticity from HSDI. PMID:24433668
Blurring emotional memories using eye movements: individual differences and speed of eye movements.
van Schie, Kevin; van Veen, Suzanne C; Engelhard, Iris M; Klugkist, Irene; van den Hout, Marcel A
2016-01-01
In eye movement desensitization and reprocessing (EMDR), patients make eye movements (EM) while recalling traumatic memories. Making EM taxes working memory (WM), which leaves less resources available for imagery of the memory. This reduces memory vividness and emotionality during future recalls. WM theory predicts that individuals with small working memory capacities (WMCs) benefit more from low levels of taxing (i.e., slow EM) whereas individuals with large WMC benefit more from high levels of taxing (i.e., fast EM). We experimentally examined and tested four prespecified hypotheses regarding the role of WMC and EM speed in reducing emotionality and vividness ratings: 1) EM-regardless of WMC and EM speed-are more effective compared to no dual task, 2) increasing EM speed only affects the decrease in memory ratings irrespective of WMC, 3) low-WMC individuals-compared to high-WMC individuals-benefit more from making either type of EM, 4) the EM intervention is most effective when-as predicted by WM theory-EM are adjusted to WMC. Undergraduates with low (n=31) or high (n=35) WMC recalled three emotional memories and rated vividness and emotionality before and after each condition (recall only, recall + slow EM, and recall + fast EM). Contrary to the theory, the data do not support the hypothesis that EM speed should be adjusted to WMC (hypothesis 4). However, the data show that a dual task in general is more effective in reducing memory ratings than no dual task (hypothesis 1), and that a more cognitively demanding dual task increases the intervention's effectiveness (hypothesis 2). Although adjusting EM speed to an individual's WMC seems a straightforward clinical implication, the data do not show any indication that such a titration is helpful.
Farrell, A P
2007-11-29
A prolonged swimming trial is the most common approach in studying steady-state changes in oxygen uptake, cardiac output and tissue oxygen extraction as a function of swimming speed in salmonids. The data generated by these sorts of studies are used here to support the idea that a maximum oxygen uptake is reached during a critical swimming speed test. Maximum oxygen uptake has a temperature optimum. Potential explanations are advanced to explain why maximum aerobic performance falls off at high temperature. The valuable information provided by critical swimming tests can be confounded by non-steady-state swimming behaviours, which typically occur with increasing frequency as salmonids approach fatigue. Two major concerns are noted. Foremost, measurements of oxygen uptake during swimming can considerably underestimate the true cost of transport near critical swimming speed, apparently in a temperature-dependent manner. Second, based on a comparison with voluntary swimming ascents in a raceway, forced swimming trials in a swim tunnel respirometer may underestimate critical swimming speed, possibly because fish in a swim tunnel respirometer are unable to sustain a ground speed.
MacDonald, James; Duerson, Drew
2015-07-01
Baseline assessments using computerized neurocognitive tests are frequently used in the management of sport-related concussions. Such testing is often done on an annual basis in a community setting. Reliability is a fundamental test characteristic that should be established for such tests. Our study examined the test-retest reliability of a computerized neurocognitive test in high school athletes over 1 year. Repeated measures design. Two American high schools. High school athletes (N = 117) participating in American football or soccer during the 2011-2012 and 2012-2013 academic years. All study participants completed 2 baseline computerized neurocognitive tests taken 1 year apart at their respective schools. The test measures performance on 4 cognitive tasks: identification speed (Attention), detection speed (Processing Speed), one card learning accuracy (Learning), and one back speed (Working Memory). Reliability was assessed by measuring the intraclass correlation coefficient (ICC) between the repeated measures of the 4 cognitive tasks. Pearson and Spearman correlation coefficients were calculated as a secondary outcome measure. The measure for identification speed performed best (ICC = 0.672; 95% confidence interval, 0.559-0.760) and the measure for one card learning accuracy performed worst (ICC = 0.401; 95% confidence interval, 0.237-0.542). All tests had marginal or low reliability. In a population of high school athletes, computerized neurocognitive testing performed in a community setting demonstrated low to marginal test-retest reliability on baseline assessments 1 year apart. Further investigation should focus on (1) improving the reliability of individual tasks tested, (2) controlling for external factors that might affect test performance, and (3) identifying the ideal time interval to repeat baseline testing in high school athletes. Computerized neurocognitive tests are used frequently in high school athletes, often within a model of baseline testing of asymptomatic individuals before the start of a sporting season. This study adds to the evidence that suggests in this population such testing may lack sufficient reliability to support clinical decision making.
NASA Astrophysics Data System (ADS)
Maddison, R. J.
1985-02-01
The investigation of certain areas of nuclear reactor safety involves the study of high speed phenomena with timescales ranging from microseconds to a few hundreds of milliseconds. Examples which have been extensively studied at Winfrith are firstly, the thermal interaction of molten fuel and reactor coolant which can generate high pressures on the 100 msec timescale, and which involves phenomena such as vapour film collapse which takes place on the microsecond timescale. Secondly, there is the response of reactor structures to such pressures, and finally there is the response of structural materials such as metals and concrete to the impulsive loading arising from the impact of heavy, high velocity missiles. A wide range of experimental techniques is used in these studies, many of which have been developed specially for this type of work which ranges from small laboratory scale to large field scale experiments. There are two important features which characterise many of these experiments:- i) a long period of meticulous preparation of very heavily instrumented, short duration experiments and; ii) the destructive nature of the experiments. Various forms of High Speed photography are included in the inventory of experimental techniques. These include the use of single and double exposure, short duration, spark photography; the use of an Image Convertor Camera (IMACON 790); and a number of rotating prism cine cameras. High Speed Photography is used both in a primary experimental role in the studies, and in a supportive role for other instrumentation. Because of the sometimes violent nature of these experiments, cameras are often heavily protected and operated remotely; lighting systems are sometimes destroyed. This has led to the development of unconventional techniques for camera operation and subject lighting. This paper will describe some of the experiments and the way in which High Speed Photography has been applied as an essential experimental tool. It will be illustrated with cine film taken during the experiments.
Jung, Mette Holme; Hansen, Peter Bo; Sander, Kaare; Olsen, Peter Skov; Rossing, Kasper; Boesgaard, Soeren; Russell, Stuart D; Gustafsson, Finn
2014-04-01
Continuous-flow left ventricular assist device (CF-LVAD) implantation is associated with improved quality of life, but the effect on exercise capacity is less well documented. It is uncertain whether a fixed CF-LVAD pump speed, which allows for sufficient circulatory support at rest, remains adequate during exercise. The aim of this study was to evaluate the effects of fixed versus incremental pump speed on peak oxygen uptake (peak VO2) during a maximal exercise test. In CF-LVAD (HeartMate II) patients exercise testing measuring peak oxygen uptake (VO2) was performed on an ergometer bike twice in one day: once with fixed pump speed (testfix) and once with incremental pump speed (testinc). The order of testfix and testinc in each patient was determined by randomization. During testinc pump speed was increased from the baseline value by 400 rpm/2 min. Fourteen patients (aged 23–69 years) were included with a mean support duration of 465±483 days. Baseline CF-LVAD speed was 9357±238 rpm and during testinc speed was increased by a mean of 1486±775 rpm. Mean peak VO2 was significantly higher in testinc compared with testfix (15.4±5.9 mL/kg/min vs. 14.1±6.3 mL/kg/min; P=0.012), corresponding to a 9.2% increase. All exercise tests (n=28) were adequately performed with RER>1. Increasing pump speed during exercise augments peak VO2 in patients supported with CF-LVADs. An automatic speed-change function in future generations of CF-LVADs might improve functional capacity. © 2014 The Authors. European Journal of Heart Failure © 2014 European Society of Cardiology.
NASA Astrophysics Data System (ADS)
Vandre, Eric
2014-11-01
Dynamic wetting is crucial to processes where a liquid displaces another fluid along a solid surface, such as the deposition of a coating liquid onto a moving substrate. Dynamic wetting fails when process speed exceeds some critical value, leading to incomplete fluid displacement and transient phenomena that impact a variety of applications, such as microfluidic devices, oil-recovery systems, and splashing droplets. Liquid coating processes are particularly sensitive to wetting failure, which can induce air entrainment and other catastrophic coating defects. Despite the industrial incentives for careful control of wetting behavior, the hydrodynamic factors that influence the transition to wetting failure remain poorly understood from empirical and theoretical perspectives. This work investigates the fundamentals of wetting failure in a variety of systems that are relevant to industrial coating flows. A hydrodynamic model is developed where an advancing fluid displaces a receding fluid along a smooth, moving substrate. Numerical solutions predict the onset of wetting failure at a critical substrate speed, which coincides with a turning point in the steady-state solution path for a given set of system parameters. Flow-field analysis reveals a physical mechanism where wetting failure results when capillary forces can no longer support the pressure gradients necessary to steadily displace the receding fluid. Novel experimental systems are used to measure the substrate speeds and meniscus shapes associated with the onset of air entrainment during wetting failure. Using high-speed visualization techniques, air entrainment is identified by the elongation of triangular air films with system-dependent size. Air films become unstable to thickness perturbations and ultimately rupture, leading to the entrainment of air bubbles. Meniscus confinement in a narrow gap between the substrate and a stationary plate is shown to delay air entrainment to higher speeds for a variety of water/glycerol solutions. In addition, liquid pressurization (relative to ambient air) further postpones air entrainment when the meniscus is located near a sharp corner along the plate. Recorded critical speeds compare well to predictions from the model, supporting the hydrodynamic mechanism for the onset of wetting failure. Lastly, the industrial practice of curtain coating is investigated using the hydrodynamic model. Due to the complexity of this system, a new computational approach is developed combining a finite element method and lubrication theory in order to improve the efficiency of the numerical analysis. Results show that the onset of wetting failure varies strongly with the operating conditions of this system. In addition, stresses from the air flow dramatically affect the steady wetting behavior of curtain coating. Ultimately, these findings emphasize the important role of two-fluid displacement mechanics in high-speed wetting systems.
Grodzinski, Uri; Spiegel, Orr; Korine, Carmi; Holderied, Marc W
2009-05-01
1. Understanding the causes and consequences of animal flight speed has long been a challenge in biology. Aerodynamic theory is used to predict the most economical flight speeds, minimizing energy expenditure either per distance (maximal range speed, Vmr) or per time (minimal power speed, Vmp). When foraging in flight, flight speed also affects prey encounter and energy intake rates. According to optimal flight speed theory, such effects may shift the energetically optimal foraging speed to above Vmp. 2. Therefore, we predicted that if energetic considerations indeed have a substantial effect on flight speed of aerial-hawking bats, they will use high speed (close to Vmr) to commute from their daily roost to the foraging sites, while a slower speed (but still above Vmp) will be preferred during foraging. To test these predictions, echolocation calls of commuting and foraging Pipistrellus kuhlii were recorded and their flight tracks were reconstructed using an acoustic flight path tracking system. 3. Confirming our qualitative prediction, commuting flight was found to be significantly faster than foraging flight (9.3 vs. 6.7 m s(-1)), even when controlling for its lower tortuosity. 4. In order to examine our quantitative prediction, we compared observed flight speeds with Vmp and Vmr values generated for the study population using two alternative aerodynamic models, based on mass and wing morphology variables measured from bats we captured while commuting. The Vmp and Vmr values generated by one of the models were much lower than our measured flight speed. According to the other model used, however, measured foraging flight was faster than Vmp and commuting flight slightly slower than Vmr, which is in agreement with the predictions of optimal flight speed theory. 5. Thus, the second aerodynamic model we used seems to be a reasonable predictor of the different flight speeds used by the bats while foraging and while commuting. This supports the hypothesis that bats fly at a context-dependent, energetically optimal flight speed.
Compact opto-electronic engine for high-speed compressive sensing
NASA Astrophysics Data System (ADS)
Tidman, James; Weston, Tyler; Hewitt, Donna; Herman, Matthew A.; McMackin, Lenore
2013-09-01
The measurement efficiency of Compressive Sensing (CS) enables the computational construction of images from far fewer measurements than what is usually considered necessary by the Nyquist- Shannon sampling theorem. There is now a vast literature around CS mathematics and applications since the development of its theoretical principles about a decade ago. Applications include quantum information to optical microscopy to seismic and hyper-spectral imaging. In the application of shortwave infrared imaging, InView has developed cameras based on the CS single-pixel camera architecture. This architecture is comprised of an objective lens to image the scene onto a Texas Instruments DLP® Micromirror Device (DMD), which by using its individually controllable mirrors, modulates the image with a selected basis set. The intensity of the modulated image is then recorded by a single detector. While the design of a CS camera is straightforward conceptually, its commercial implementation requires significant development effort in optics, electronics, hardware and software, particularly if high efficiency and high-speed operation are required. In this paper, we describe the development of a high-speed CS engine as implemented in a lab-ready workstation. In this engine, configurable measurement patterns are loaded into the DMD at speeds up to 31.5 kHz. The engine supports custom reconstruction algorithms that can be quickly implemented. Our work includes optical path design, Field programmable Gate Arrays for DMD pattern generation, and circuit boards for front end data acquisition, ADC and system control, all packaged in a compact workstation.
NASA Technical Reports Server (NTRS)
Kocurek, Michael J.
2005-01-01
The HARVIST project seeks to automatically provide an accurate, interactive interface to predict crop yield over the entire United States. In order to accomplish this goal, large images must be quickly and automatically classified by crop type. Current trained and untrained classification algorithms, while accurate, are highly inefficient when operating on large datasets. This project sought to develop new variants of two standard trained and untrained classification algorithms that are optimized to take advantage of the spatial nature of image data. The first algorithm, harvist-cluster, utilizes divide-and-conquer techniques to precluster an image in the hopes of increasing overall clustering speed. The second algorithm, harvistSVM, utilizes support vector machines (SVMs), a type of trained classifier. It seeks to increase classification speed by applying a "meta-SVM" to a quick (but inaccurate) SVM to approximate a slower, yet more accurate, SVM. Speedups were achieved by tuning the algorithm to quickly identify when the quick SVM was incorrect, and then reclassifying low-confidence pixels as necessary. Comparing the classification speeds of both algorithms to known baselines showed a slight speedup for large values of k (the number of clusters) for harvist-cluster, and a significant speedup for harvistSVM. Future work aims to automate the parameter tuning process required for harvistSVM, and further improve classification accuracy and speed. Additionally, this research will move documents created in Canvas into ArcGIS. The launch of the Mars Reconnaissance Orbiter (MRO) will provide a wealth of image data such as global maps of Martian weather and high resolution global images of Mars. The ability to store this new data in a georeferenced format will support future Mars missions by providing data for landing site selection and the search for water on Mars.
Taphonomic evidence for high-speed adapted fins in thunniform ichthyosaurs.
Lingham-Soliar, Theagarten; Plodowski, Gerhard
2007-01-01
Ichthyosaurs have been compared with the fast-swimming thunniform groups of marine vertebrates, tuna, lamnid sharks, and dolphins, based on similarity of shape of the body and locomotory organs. In addition to shape, high-tensile stiffness of the control surfaces has been shown to be essential in maximizing hydrodynamic efficiency in extant thunniform swimmers. To date, there has been no evidence of a stiffening support system for the dorsal fin and dorsal lobe of the caudal fin in ichthyosaurs, the sole stiffening structure of the ventral lobe being an extension of the vertebral column along its leading edge. Stenopterygius SMF 457 is arguably the best soft-tissue preserved ichthyosaur specimen known. Here, we examine soft-tissue preservation in this specimen in the control surfaces and provide the first evidence of a complex architecture of stiff fibers in the dorsal and caudal fins. We find by comparisons and by analogy that these fibers provided a remarkable mechanism for high tensile stiffness and efficiency of the locomotory organs virtually identical to that of the great white shark, Carcharodon carcharias. It is the first mechanostructural study of the control surfaces of a Jurassic ichthyosaur that adds essential evidence in support of the view that these forms were high-speed thunniform swimmers.
Taphonomic evidence for high-speed adapted fins in thunniform ichthyosaurs
NASA Astrophysics Data System (ADS)
Lingham-Soliar, Theagarten; Plodowski, Gerhard
2007-01-01
Ichthyosaurs have been compared with the fast-swimming thunniform groups of marine vertebrates, tuna, lamnid sharks, and dolphins, based on similarity of shape of the body and locomotory organs. In addition to shape, high-tensile stiffness of the control surfaces has been shown to be essential in maximizing hydrodynamic efficiency in extant thunniform swimmers. To date, there has been no evidence of a stiffening support system for the dorsal fin and dorsal lobe of the caudal fin in ichthyosaurs, the sole stiffening structure of the ventral lobe being an extension of the vertebral column along its leading edge. Stenopterygius SMF 457 is arguably the best soft-tissue preserved ichthyosaur specimen known. Here, we examine soft-tissue preservation in this specimen in the control surfaces and provide the first evidence of a complex architecture of stiff fibers in the dorsal and caudal fins. We find by comparisons and by analogy that these fibers provided a remarkable mechanism for high tensile stiffness and efficiency of the locomotory organs virtually identical to that of the great white shark, Carcharodon carcharias. It is the first mechanostructural study of the control surfaces of a Jurassic ichthyosaur that adds essential evidence in support of the view that these forms were high-speed thunniform swimmers.
DSP/FPGA Design for a High-Speed Programmable S-Band Space Transceiver
NASA Technical Reports Server (NTRS)
Janicik, Jeffrey; Friedman, Assi
2013-01-01
Traditional command uplink receivers are very limited in performance capability, take a long time to acquire, cannot operate on both uplink bands (NASA & AFSCN), and only support low-rate communications. As a result, transceivers end up on many programs critical paths, even though they should be a standard purchased spacecraft subsystem. Also, many missions are impacted by the low effective uplink throughput. In order to tackle these challenges, a transceiver was developed that will provide on-site frequency agility, support of high uplink rates, and operation on both NASA and AFSCN frequency bands. The device is a low-power, high-reliability, and high-performance digital signal processing (DSP) demodulator for an on-orbit programmable command receiver.
NASA Astrophysics Data System (ADS)
Lu, Haohui; Chai, Tan; Cooley, Christopher G.
2018-03-01
This study investigates the vibration of a rotating piezoelectric device that consists of a proof mass that is supported by elastic structures with piezoelectric layers. Vibration of the proof mass causes deformation in the piezoelectric structures and voltages to power the electrical loads. The coupled electromechanical equations of motion are derived using Newtonian mechanics and Kirchhoff's circuit laws. The free vibration behavior is investigated for devices with identical (tuned) and nonidentical (mistuned) piezoelectric support structures and electrical loads. These devices have complex-valued, speed-dependent eigenvalues and eigenvectors as a result of gyroscopic effects caused by their constant rotation. The characteristics of the complex-valued eigensolutions are related to physical behavior of the device's vibration. The free vibration behaviors differ significantly for tuned and mistuned devices. Due to gyroscopic effects, the proof mass in the tuned device vibrates in either forward or backward decaying circular orbits in single-mode free response. This is proven analytically for all tuned devices, regardless of the device's specific parameters or operating speed. For mistuned devices, the proof mass has decaying elliptical forward and backward orbits. The eigenvalues are shown to be sensitive to changes in the electrical load resistances. Closed-form solutions for the eigenvalues are derived for open and close circuits. At high rotation speeds these devices experience critical speeds and instability.
Tun, Patricia A.; Miller-Martinez, Dana; Lachman, Margie E.; Seeman, Teresa
2012-01-01
We investigated how the association between social strain and cognitive efficiency varies with task demands across adulthood, from latencies on simpler speeded tasks to tests involving executive function. Participants (N= 3280) were drawn from the MIDUS survey, a large, diverse national sample of adults who completed cognitive tests including speeded task-switching (Tun & Lachman, 2008). After controlling for demographic and health variables, we found that higher levels of reported social strain were associated with slower processing speed, particularly for the complex task-switching test relative to simpler speeded tests. Effects of strain were greatest for those with the lowest general cognitive ability. Moreover, those with very high levels of social strain but low levels of social support gave the poorest task-switching performance. These findings provide further evidence for the complex relationship between the social environment and cognition across adulthood, particularly the association between efficiency of executive functions and negative social interactions. PMID:22873285
Strouhal number for free swimming
NASA Astrophysics Data System (ADS)
Saadat, Mehdi; van Buren, Tyler; Floryan, Daniel; Smits, Alexander; Haj-Hariri, Hossein
2015-11-01
In this work, we present experimental results to explore the implications of free swimming for Strouhal number (as an outcome) in the context of a simple model for a fish that consists of a 2D virtual body (source of drag) and a 2D pitching foil (source of thrust) representing cruising with thunniform locomotion. The results validate the findings of Saadat and Haj-Hariri (2012): for pitching foils thrust coefficient is a function of Strouhal number for all gaits having amplitude less than a certain critical value. Equivalently, given the balance of thrust and drag forces at cruise, Strouhal number is only a function of the shape, i.e. drag coefficient and area, and essentially a constant for high enough swimming speeds for which the mild dependence of drag coefficient on the speed vanishes. Furthermore, a dimensional analysis generalizes the findings. A scaling analysis shows that the variation of Strouhal number with cruising speed is functionally related to the variation of body drag coefficient with speed. Supported by ONR MURI Grant N00014-14-1-0533.
Personalized Surgical Risk Assessment Using Population-Based Data Analysis
ERIC Educational Resources Information Center
AbuSalah, Ahmad Mohammad
2013-01-01
The volume of information generated by healthcare providers is growing at a relatively high speed. This tremendous growth has created a gap between knowledge and clinical practice that experts say could be narrowed with the proper use of healthcare data to guide clinical decisions and tools that support rapid information availability at the…
A Laser Technology Program Does Not Start with the Speed of Light.
ERIC Educational Resources Information Center
Gebert, John H.
1982-01-01
Describes the personnel, equipment, and facilities problems encountered by North Central Technical Institute in the development of a laser technician program, and the program's enrollment and job placement rates. Advocates financial support for such programs to meet the national demand for laser and other high technology personnel. (WL)
Improving Cancer-Related Outcomes with Connected Health - Objective 4
The full benefits of connected health cannot be achieved unless everyone in the United States who wants to participate and the organizations that support health and deliver healthcare have adequate access to high-speed Internet service. Access depends both on the availability of broadband service and the resources needed to obtain and maintain service.
Wide Bandgap Superlattice Power Devices for Army Hybrid Electric Power Systems
2006-11-01
years, with many rounds of SBIR Phase I and Phase II, plus several subcontracts for ITP (integrated product teams) supported by DMEA and TARDEC of...higher, and upon which IBM recently announced that a world record of MOSFET speed at over 300GHz has been realized. 11. HIGH TEMPERATURE
From "Work-and-Walk-By" to "Sherpa-at-Work"
ERIC Educational Resources Information Center
Drijvers, Paul
2011-01-01
Nowadays, many technological means are available to support teaching, such as the interactive whiteboard, class sets of laptop or netbook computers, and high speed internet access. For mathematics education there are advanced software packages for geometry, algebra, calculus, and statistics, which in many cases are available on line at no cost.…
An Overview and Analysis of Mobile Internet Protocols in Cellular Environments.
ERIC Educational Resources Information Center
Chao, Han-Chieh
2001-01-01
Notes that cellular is the inevitable future architecture for the personal communication service system. Discusses the current cellular support based on Mobile Internet Protocol version 6 (Ipv6) and points out the shortfalls of using Mobile IP. Highlights protocols especially for mobile management schemes which can optimize a high-speed mobile…
The Management of Cash. NACUBO Professional File, Volume 9, Number 6.
ERIC Educational Resources Information Center
Boyles, William W.
With today's relatively high interest rates, inflationary trend, and declining public support to higher education, cash management programs are of interest to the academic business officer as well as the commercial businessman. Four areas in which the management of cash can be improved are: (1) speeding collections of cash; (2) delaying…
Dynamics of internetwork chromospheric fibrils: Basic properties and magnetohydrodynamic kink waves
NASA Astrophysics Data System (ADS)
Mooroogen, K.; Morton, R. J.; Henriques, V.
2017-11-01
Aims: Current observational instruments are now providing data with the necessary temporal and spatial cadences required to examine highly dynamic, fine-scale magnetic structures in the solar atmosphere. Using the spectroscopic imaging capabilities of the Swedish Solar Telescope, we aim to provide the first investigation on the nature and dynamics of elongated absorption features (fibrils) observed in Hα in the internetwork. Methods: We observe and identify a number of internetwork fibrils, which form away from the kilogauss, network magnetic flux, and we provide a synoptic view on their behaviour. The internetwork fibrils are found to support wave-like behaviour, which we interpret as magnetohydrodynamic (MHD) kink waves. The properties of these waves, that is, amplitude, period, and propagation speed, are measured from time-distance diagrams and we attempt to exploit them via magneto-seismology in order to probe the variation of plasma properties along the wave-guides. Results: We found that the Internetwork (IN) fibrils appear, disappear, and re-appear on timescales of tens of minutes, suggesting that they are subject to repeated heating. No clear photospheric footpoints for the fibrils are found in photospheric magnetograms or Hα wing images. However, we suggest that they are magnetised features as the majority of them show evidence of supporting propagating MHD kink waves, with a modal period of 120 s. Additionally, one IN fibril is seen to support a flow directed along its elongated axis, suggesting a guiding field. The wave motions are found to propagate at speeds significantly greater than estimates for typical chromospheric sound speeds. Through their interpretation as kink waves, the measured speeds provide an estimate for local average Alfvén speeds. Furthermore, the amplitudes of the waves are also found to vary as a function of distance along the fibrils, which can be interpreted as evidence of stratification of the plasma in the neighbourhood of the IN fibril.
Effects of pole flux distribution in a homopolar linear synchronous machine
NASA Astrophysics Data System (ADS)
Balchin, M. J.; Eastham, J. F.; Coles, P. C.
1994-05-01
Linear forms of synchronous electrical machine are at present being considered as the propulsion means in high-speed, magnetically levitated (Maglev) ground transportation systems. A homopolar form of machine is considered in which the primary member, which carries both ac and dc windings, is supported on the vehicle. Test results and theoretical predictions are presented for a design of machine intended for driving a 100 passenger vehicle at a top speed of 400 km/h. The layout of the dc magnetic circuit is examined to locate the best position for the dc winding from the point of view of minimum core weight. Measurements of flux build-up under the machine at different operating speeds are given for two types of secondary pole: solid and laminated. The solid pole results, which are confirmed theoretically, show that this form of construction is impractical for high-speed drives. Measured motoring characteristics are presented for a short length of machine which simulates conditions at the leading and trailing ends of the full-sized machine. Combination of the results with those from a cylindrical version of the machine make it possible to infer the performance of the full-sized traction machine. This gives 0.8 pf and 0.9 efficiency at 300 km/h, which is much better than the reported performance of a comparable linear induction motor (0.52 pf and 0.82 efficiency). It is therefore concluded that in any projected high-speed Maglev systems, a linear synchronous machine should be the first choice as the propulsion means.
Contributions of muscles and passive dynamics to swing initiation over a range of walking speeds.
Fox, Melanie D; Delp, Scott L
2010-05-28
Stiff-knee gait is a common walking problem in cerebral palsy characterized by insufficient knee flexion during swing. To identify factors that may limit knee flexion in swing, it is necessary to understand how unimpaired subjects successfully coordinate muscles and passive dynamics (gravity and velocity-related forces) to accelerate the knee into flexion during double support, a critical phase just prior to swing that establishes the conditions for achieving sufficient knee flexion during swing. It is also necessary to understand how contributions to swing initiation change with walking speed, since patients with stiff-knee gait often walk slowly. We analyzed muscle-driven dynamic simulations of eight unimpaired subjects walking at four speeds to quantify the contributions of muscles, gravity, and velocity-related forces (i.e. Coriolis and centrifugal forces) to preswing knee flexion acceleration during double support at each speed. Analysis of the simulations revealed contributions from muscles and passive dynamics varied systematically with walking speed. Preswing knee flexion acceleration was achieved primarily by hip flexor muscles on the preswing leg with assistance from biceps femoris short head. Hip flexors on the preswing leg were primarily responsible for the increase in preswing knee flexion acceleration during double support with faster walking speed. The hip extensors and abductors on the contralateral leg and velocity-related forces opposed preswing knee flexion acceleration during double support. Copyright 2010 Elsevier Ltd. All rights reserved.
Contributions of muscles and passive dynamics to swing initiation over a range of walking speeds
Fox, Melanie D.; Delp, Scott L.
2010-01-01
Stiff-knee gait is a common walking problem in cerebral palsy characterized by insufficient knee flexion during swing. To identify factors that may limit knee flexion in swing, it is necessary to understand how unimpaired subjects successfully coordinate muscles and passive dynamics (gravity and velocity-related forces) to accelerate the knee into flexion during double support, a critical phase just prior to swing that establishes the conditions for achieving sufficient knee flexion during swing. It is also necessary to understand how contributions to swing initiation change with walking speed, since patients with stiff-knee gait often walk slowly. We analyzed muscle-driven dynamic simulations of eight unimpaired subjects walking at four speeds to quantify the contributions of muscles, gravity, and velocity-related forces (i.e. Coriolis and centrifugal forces) to preswing knee flexion acceleration during double support at each speed. Analysis of the simulations revealed contributions from muscles and passive dynamics varied systematically with walking speed. Preswing knee flexion acceleration was achieved primarily by hip flexor muscles on the preswing leg with assistance from biceps femoris short head. Hip flexors on the preswing leg were primarily responsible for the increase in preswing knee flexion acceleration during double support with faster walking speed. The hip extensors and abductors on the contralateral leg and velocity-related forces opposed preswing knee flexion acceleration during double support. PMID:20236644
Acoustic Benefits of Stator Sweep and Lean for a High Tip Speed Fan
NASA Technical Reports Server (NTRS)
Woodward, Richard P.; Gazzaniga, John A.; Bartos, Linda J.; Hughes, Christopher E.
2002-01-01
A model high-speed fan stage was acoustically tested in the NASA Glenn 9- by 15-Foot Low Speed Wind Tunnel at takeoff/approach flight conditions. The fan was designed for a corrected rotor tip speed of 442 m/s (1450 ft/s), and had a powered core, or booster stage, giving the model a nominal bypass ratio of 5. The model also had a simulated engine pylon and nozzle bifurcation contained within the bypass duct. The fan was tested with three stator sets to evaluate acoustic benefits associated with a swept and leaned stator and with a swept integral vane/frame stator which incorporated some of the swept and leaned features as well as eliminated some of the downstream support structure. The baseline fan with the wide chord rotor and baseline stator approximated a current GEAE CF6 engine. A flyover effective perceived noise level (EPNL) code was used to generate relative EPNL values for the various configurations. Flyover effective perceived noise levels (EPNL) were computed from the model data to help project noise benefits. A tone removal study was also performed. The swept and leaned stator showed a 3 EPNdB reduction at lower fan speeds relative to the baseline stator; while the swept integral vane/frame stator showed lowest noise levels at intermediate fan speeds. Removal of the bypass blade passage frequency rotor tone (BPF) showed a 4 EPNdB reduction for the baseline and swept and leaned stators, and a 6 EPNdB reduction for the swept integral vane/ frame stator. Therefore, selective tone removal techniques such as active noise control and/or tuned liner could be particularly effective in reducing noise levels for certain fan speeds.
Modeling Combustion in Supersonic Flows
NASA Technical Reports Server (NTRS)
Drummond, J. Philip; Danehy, Paul M.; Bivolaru, Daniel; Gaffney, Richard L.; Tedder, Sarah A.; Cutler, Andrew D.
2007-01-01
This paper discusses the progress of work to model high-speed supersonic reacting flow. The purpose of the work is to improve the state of the art of CFD capabilities for predicting the flow in high-speed propulsion systems, particularly combustor flow-paths. The program has several components including the development of advanced algorithms and models for simulating engine flowpaths as well as a fundamental experimental and diagnostic development effort to support the formulation and validation of the mathematical models. The paper will provide details of current work on experiments that will provide data for the modeling efforts along with with the associated nonintrusive diagnostics used to collect the data from the experimental flowfield. Simulation of a recent experiment to partially validate the accuracy of a combustion code is also described.
SPAD electronics for high-speed quantum communications
NASA Astrophysics Data System (ADS)
Bienfang, Joshua C.; Restelli, Alessandro; Migdall, Alan
2011-01-01
We discuss high-speed electronics that support the use of single-photon avalanche diodes (SPADs) in gigahertz singlephoton communications systems. For InGaAs/InP SPADs, recent work has demonstrated reduced afterpulsing and count rates approaching 500 MHz can be achieved with gigahertz periodic-gating techniques designed to minimize the total avalanche charge to less than 100 fC. We investigate afterpulsing in this regime and establish a connection to observations using more conventional techniques. For Si SPADs, we report the benefits of improved timing electronics that enhance the temporal resolution of Si SPADs used in a free-space quantum key distribution (QKD) system operating in the GHz regime. We establish that the effects of count-rate fluctuations induced by daytime turbulent scintillation are significantly reduced, benefitting the performance of the QKD system.
Rahman, Masudur; Day, B Scott; Neff, David; Norton, Michael L
2017-08-01
DNA nanostructures (DN) are powerful platforms for the programmable assembly of nanomaterials. As applications for DN both as a structural material and as a support for functional biomolecular sensing systems develop, methods enabling the determination of reaction kinetics in real time become increasingly important. In this report, we present a study of the kinetics of streptavidin binding onto biotinylated DN constructs enabled by these planar structures. High-speed AFM was employed at a 2.5 frame/s rate to evaluate the kinetics and indicates that the binding fully saturates in less than 60 s. When the the data was fitted with an adsorption-limited kinetic model, a forward rate constant of 5.03 × 10 5 s -1 was found.
Research on the adaptive optical control technology based on DSP
NASA Astrophysics Data System (ADS)
Zhang, Xiaolu; Xue, Qiao; Zeng, Fa; Zhao, Junpu; Zheng, Kuixing; Su, Jingqin; Dai, Wanjun
2018-02-01
Adaptive optics is a real-time compensation technique using high speed support system for wavefront errors caused by atmospheric turbulence. However, the randomness and instantaneity of atmospheric changing introduce great difficulties to the design of adaptive optical systems. A large number of complex real-time operations lead to large delay, which is an insurmountable problem. To solve this problem, hardware operation and parallel processing strategy are proposed, and a high-speed adaptive optical control system based on DSP is developed. The hardware counter is used to check the system. The results show that the system can complete a closed loop control in 7.1ms, and improve the controlling bandwidth of the adaptive optical system. Using this system, the wavefront measurement and closed loop experiment are carried out, and obtain the good results.
LES, DNS and RANS for the analysis of high-speed turbulent reacting flows
NASA Technical Reports Server (NTRS)
Givi, Peyman; Taulbee, Dale B.; Adumitroaie, Virgil; Sabini, George J.; Shieh, Geoffrey S.
1994-01-01
The purpose of this research is to continue our efforts in advancing the state of knowledge in large eddy simulation (LES), direct numerical simulation (DNS), and Reynolds averaged Navier Stokes (RANS) methods for the computational analysis of high-speed reacting turbulent flows. In the second phase of this work, covering the period 1 Sep. 1993 - 1 Sep. 1994, we have focused our efforts on two research problems: (1) developments of 'algebraic' moment closures for statistical descriptions of nonpremixed reacting systems, and (2) assessments of the Dirichlet frequency in presumed scalar probability density function (PDF) methods in stochastic description of turbulent reacting flows. This report provides a complete description of our efforts during this past year as supported by the NASA Langley Research Center under Grant NAG1-1122.
Performance Enhancement of a High Speed Jet Impingement System for Nonvolatile Residue Removal
NASA Technical Reports Server (NTRS)
Klausner, James F.; Mei, Renwei; Near, Steve; Stith, Rex
1996-01-01
A high speed jet impingement cleaning facility has been developed to study the effectiveness of the nonvolatile residue removal. The facility includes a high pressure air compressor which charges the k-bottles to supply high pressure air, an air heating section to vary the temperature of the high pressure air, an air-water mixing chamber to meter the water flow and generate small size droplets, and a converging- diverging nozzle to deliver the supersonic air-droplet mixture flow to the cleaning surface. To reliably quantify the cleanliness of the surface, a simple procedure for measurement and calibration is developed to relate the amount of the residue on the surface to the relative change in the reflectivity between a clean surface and the greased surface. This calibration procedure is economical, simple, reliable, and robust. a theoretical framework is developed to provide qualitative guidance for the design of the test and interpretation of the experimental results. The result documented in this report support the theoretical considerations.
NASA Astrophysics Data System (ADS)
Jaanimagi, Paul A.
1992-01-01
This volume presents papers grouped under the topics on advances in streak and framing camera technology, applications of ultrahigh-speed photography, characterizing high-speed instrumentation, high-speed electronic imaging technology and applications, new technology for high-speed photography, high-speed imaging and photonics in detonics, and high-speed velocimetry. The papers presented include those on a subpicosecond X-ray streak camera, photocathodes for ultrasoft X-ray region, streak tube dynamic range, high-speed TV cameras for streak tube readout, femtosecond light-in-flight holography, and electrooptical systems characterization techniques. Attention is also given to high-speed electronic memory video recording techniques, high-speed IR imaging of repetitive events using a standard RS-170 imager, use of a CCD array as a medium-speed streak camera, the photography of shock waves in explosive crystals, a single-frame camera based on the type LD-S-10 intensifier tube, and jitter diagnosis for pico- and femtosecond sources.
Potiaumpai, Melanie; Martins, Maria Carolina Massoni; Rodriguez, Roberto; Mooney, Kiersten; Signorile, Joseph F
2016-12-01
To compare energy expenditure and volume of oxygen consumption and carbon dioxide production during a high-speed yoga and a standard-speed yoga program. Randomized repeated measures controlled trial. A laboratory of neuromuscular research and active aging. Sun-Salutation B was performed, for eight minutes, at a high speed versus and a standard-speed separately while oxygen consumption was recorded. Caloric expenditure was calculated using volume of oxygen consumption and carbon dioxide production. Difference in energy expenditure (kcal) of HSY and SSY. Significant differences were observed in energy expenditure between yoga speeds with high-speed yoga producing significantly higher energy expenditure than standard-speed yoga (MD=18.55, SE=1.86, p<0.01). Significant differences were also seen between high-speed and standard-speed yoga for volume of oxygen consumed and carbon dioxide produced. High-speed yoga results in a significantly greater caloric expenditure than standard-speed yoga. High-speed yoga may be an effective alternative program for those targeting cardiometabolic markers. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Pendergrass, W.; Vogel, C. A.
2013-12-01
As an outcome of discussions between Duke Energy Generation and NOAA/ARL following the 2009 AMS Summer Community Meeting, in Norman Oklahoma, ARL and Duke Energy Generation (Duke) signed a Cooperative Research and Development Agreement (CRADA) which allows NOAA to conduct atmospheric boundary layer (ABL) research using Duke renewable energy sites as research testbeds. One aspect of this research has been the evaluation of forecast hub-height winds from three NOAA atmospheric models. Forecasts of 10m (surface) and 80m (hub-height) wind speeds from (1) NOAA/GSD's High Resolution Rapid Refresh (HRRR) model, (2) NOAA/NCEP's 12 km North America Model (NAM12) and (3) NOAA/NCEP's 4k high resolution North America Model (NAM4) were evaluated against 18 months of surface-layer wind observations collected at the joint NOAA/Duke Energy research station located at Duke Energy's West Texas Ocotillo wind farm over the period April 2011 through October 2012. HRRR, NAM12 and NAM4 10m wind speed forecasts were compared with 10m level wind speed observations measured on the NOAA/ATDD flux-tower. Hub-height (80m) HRRR , NAM12 and NAM4 forecast wind speeds were evaluated against the 80m operational PMM27-28 meteorological tower supporting the Ocotillo wind farm. For each HRRR update, eight forecast hours (hour 01, 02, 03, 05, 07, 10, 12, 15) plus the initialization hour (hour 00), evaluated. For the NAM12 and NAM4 models forecast hours 00-24 from the 06z initialization were evaluated. Performance measures or skill score based on absolute error 50% cumulative probability were calculated for each forecast hour. HRRR forecast hour 01 provided the best skill score with an absolute wind speed error within 0.8 m/s of observed 10m wind speed and 1.25 m/s for hub-height wind speed at the designated 50% cumulative probability. For both NAM4 and NAM12 models, skill scores were diurnal with comparable best scores observed during the day of 0.7 m/s of observed 10m wind speed and 1.1 m/s for hub-height wind speed at the designated 50% cumulative probability level.
High-efficiency exfoliation of large-area mono-layer graphene oxide with controlled dimension.
Park, Won Kyu; Yoon, Yeojoon; Song, Young Hyun; Choi, Su Yeon; Kim, Seungdu; Do, Youngjin; Lee, Junghyun; Park, Hyesung; Yoon, Dae Ho; Yang, Woo Seok
2017-11-27
In this work, we introduce a novel and facile method of exfoliating large-area, single-layer graphene oxide using a shearing stress. The shearing stress reactor consists of two concentric cylinders, where the inner cylinder rotates at controlled speed while the outer cylinder is kept stationary. We found that the formation of Taylor vortex flow with shearing stress can effectively exfoliate the graphite oxide, resulting in large-area single- or few-layer graphene oxide (GO) platelets with high yields (>90%) within 60 min of reaction time. Moreover, the lateral size of exfoliated GO sheets was readily tunable by simply controlling the rotational speed of the reactor and reaction time. Our approach for high-efficiency exfoliation of GO with controlled dimension may find its utility in numerous industrial applications including energy storage, conducting composite, electronic device, and supporting frameworks of catalyst.
Status of the evidence for a magnetic monopole
NASA Technical Reports Server (NTRS)
Price, P. B.
1975-01-01
The experimental evidence supporting the detection of a moving magnetic monopole, using a balloon-borne array of track detectors, was presented. Although the results cannot be proved to have been produced by a monopole, they do not seem to have been produced by any nucleus. The very high, roughly constant ionization rate inferred from track etch rate measurements in a stack of Lexan detectors implies passage of a minimum-ionizing particle more highly charged than any known nucleus, yet the Cerenkov film detectors indicated a velocity less than about 0.68 times the speed of light and the size of the track in the nuclear emulsion indicated a velocity approximately equal to 0.5 times the speed of light. At this velocity the ionization rate of a highly electrically charged particle would have changed dramatically with pathlength unless its mass to charge ratio were far greater than that of a nucleus.
Yao, Shun; Liu, Renming; Huang, Xuefeng; Kong, Lingyi
2007-01-19
Preparative high-speed counter-current chromatography (HSCCC), as a continuous liquid-liquid partition chromatography with no solid support matrix, combined with evaporative light scattering detection (ELSD) was employed for systematic separation and purification of non-chromophoric chemical components from Chinese medicinal herb Adenophora tetraphlla (Thunb.), Fisch. Nine compounds, including alpha-spinasterol, beta-sitosterol, nonacosan-10-ol, 24-methylene cycloartanol, lupenone, 3-O-palmitoyl-beta-sitosterol, 3-O-beta-d-glucose-beta-sitosterol, eicosanoic acid and an unknown compound, were obtained. The compounds were all above 95% determined by high-performance liquid chromatography (HPLC)-ELSD, and their structures were identified by (1)H NMR and chemical ionization mass spectroscopy (CI-MS). The results demonstrate that HSCCC coupled with ELSD is a feasible and efficient technique for systematic isolation of non-chromophoric components from traditional medicinal herbs.
Aaslund, Mona Kristin; Helbostad, Jorunn Lægdheim; Moe-Nilssen, Rolf
2013-05-01
Rehabilitating walking in ambulatory patients post-stroke, with training that is safe, task-specific, intensive, and of sufficient duration, can be challenging. Some challenges can be met by using body-weight-supported treadmill training (BWSTT). However, it is not known to what degree walking characteristics are similar during BWSTT and overground walking. In addition, important questions regarding the training protocol of BWSTT remain unanswered, such as how proportion of body-weight support (BWS) and walking speed affect walking characteristics during training. The objective was therefore to investigate if and how kinematic walking characteristics are different between overground walking and treadmill walking with BWS in ambulatory patients post-stroke, and the acute response of altering walking speed and percent BWS during treadmill walking with BWS. A cross-sectional repeated-measures design was used. Ambulating patients post-stroke walked in slow, preferred, and fast walking speed overground and at comparable speeds on the treadmill with 20% and 40% BWS. Kinematic walking characteristics were obtained using a kinematic sensor attached over the lower back. Forty-four patients completed the protocol. Kinematic walking characteristics were similar during treadmill walking with BWS, compared to walking overground. During treadmill walking, choice of walking speed had greater impact on kinematic walking characteristics than proportion of BWS. Faster walking speeds tended to affect the kinematic walking characteristics positively. This implies that in order to train safely and with sufficient intensity and duration, therapists may choose to include BWSTT in walking rehabilitation also for ambulatory patients post-stroke without aggravating gait pattern during training.
Experimental observation of ballistic nanofriction on graphene
NASA Astrophysics Data System (ADS)
Blue, Brandon; Lodge, Michael; Tang, Chun; Hubbard, William; Martini, Ashlie; Dawson, Ben; Ishigami, Masa
Recent calculations have predicted that gold nanocrystals slide on graphite with two radically different friction coefficients depending on their speeds. At high sliding speeds in the range of 100?m/s, nanocrystals are expected to behave radically differently in what is known as the ballistic nanofriction regime. In this work, we present a direct measurement of ballistic nanofriction for gold nanocrystals on graphene. Nanocrystals are deposited onto an oscillating graphene-coated quartz crystal microbalance (QCM) in-situ under UHV and allowed to periodically ring down. After deposition, frictional parameters are measured as a function of oscillatory velocity to investigate the predicted velocity dependence of friction. Lubricity beyond even the predictions of ballistic nanofriction is observed at much lower surface velocities than expected, with drag coefficients approaching 8.65*10-14 kg/s. In comparison to the theoretically-predicted value of 2.0*10-13 kg/s, our results suggest a much lower interaction strength than proposed in contemporary models of nanoscopic sliding contacts even at relatively low speeds. This work is based on research supported by the National Science Foundation, Grant No. 0955625 (MLS, BTB, BDD and MI) and Grant No. CMMI-1265594 (CT and AM). BDD and MI were also supported by the Intelligence Community Postdoctoral Fellowship.
NASA Technical Reports Server (NTRS)
Ryabenkii, V. S.; Turchaninov, V. I.; Tsynkov, S. V.
1999-01-01
We propose a family of algorithms for solving numerically a Cauchy problem for the three-dimensional wave equation. The sources that drive the equation (i.e., the right-hand side) are compactly supported in space for any given time; they, however, may actually move in space with a subsonic speed. The solution is calculated inside a finite domain (e.g., sphere) that also moves with a subsonic speed and always contains the support of the right-hand side. The algorithms employ a standard consistent and stable explicit finite-difference scheme for the wave equation. They allow one to calculate tile solution for arbitrarily long time intervals without error accumulation and with the fixed non-growing amount of tile CPU time and memory required for advancing one time step. The algorithms are inherently three-dimensional; they rely on the presence of lacunae in the solutions of the wave equation in oddly dimensional spaces. The methodology presented in the paper is, in fact, a building block for constructing the nonlocal highly accurate unsteady artificial boundary conditions to be used for the numerical simulation of waves propagating with finite speed over unbounded domains.
Developing course lecture notes on high-speed rail.
DOT National Transportation Integrated Search
2017-07-15
1. Introduction a. World-wide Development of High-Speed Rail (Japan, Europe, China) b. High-speed Rail in the U.S. 2. High-Speed Rail Infrastructure a. Geometric Design of High Speed Rail i. Horizontal Curve ii. Vertical Curve iii. Grade and Turnout ...
Cain, Stephen M; McGinnis, Ryan S; Davidson, Steven P; Vitali, Rachel V; Perkins, Noel C; McLean, Scott G
2016-01-01
We utilize an array of wireless inertial measurement units (IMUs) to measure the movements of subjects (n=30) traversing an outdoor balance beam (zigzag and sloping) as quickly as possible both with and without load (20.5kg). Our objectives are: (1) to use IMU array data to calculate metrics that quantify performance (speed and stability) and (2) to investigate the effects of load on performance. We hypothesize that added load significantly decreases subject speed yet results in increased stability of subject movements. We propose and evaluate five performance metrics: (1) time to cross beam (less time=more speed), (2) percentage of total time spent in double support (more double support time=more stable), (3) stride duration (longer stride duration=more stable), (4) ratio of sacrum M-L to A-P acceleration (lower ratio=less lateral balance corrections=more stable), and (5) M-L torso range of motion (smaller range of motion=less balance corrections=more stable). We find that the total time to cross the beam increases with load (t=4.85, p<0.001). Stability metrics also change significantly with load, all indicating increased stability. In particular, double support time increases (t=6.04, p<0.001), stride duration increases (t=3.436, p=0.002), the ratio of sacrum acceleration RMS decreases (t=-5.56, p<0.001), and the M-L torso lean range of motion decreases (t=-2.82, p=0.009). Overall, the IMU array successfully measures subject movement and gait parameters that reveal the trade-off between speed and stability in this highly dynamic balance task. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Zimmermann, Bernhard B.; Fang, Qianqian; Boas, David A.; Carp, Stefan A.
2016-01-01
Frequency domain near-infrared spectroscopy (FD-NIRS) has proven to be a reliable method for quantification of tissue absolute optical properties. We present a full-sampling direct analog-to-digital conversion FD-NIR imager. While we developed this instrument with a focus on high-speed optical breast tomographic imaging, the proposed design is suitable for a wide-range of biophotonic applications where fast, accurate quantification of absolute optical properties is needed. Simultaneous dual wavelength operation at 685 and 830 nm is achieved by concurrent 67.5 and 75 MHz frequency modulation of each laser source, respectively, followed by digitization using a high-speed (180 MS/s) 16-bit A/D converter and hybrid FPGA-assisted demodulation. The instrument supports 25 source locations and features 20 concurrently operating detectors. The noise floor of the instrument was measured at <1.4 pW/√Hz, and a dynamic range of 115+ dB, corresponding to nearly six orders of magnitude, has been demonstrated. Titration experiments consisting of 200 different absorption and scattering values were conducted to demonstrate accurate optical property quantification over the entire range of physiologically expected values.
Zimmermann, Bernhard B.; Fang, Qianqian; Boas, David A.; Carp, Stefan A.
2016-01-01
Abstract. Frequency domain near-infrared spectroscopy (FD-NIRS) has proven to be a reliable method for quantification of tissue absolute optical properties. We present a full-sampling direct analog-to-digital conversion FD-NIR imager. While we developed this instrument with a focus on high-speed optical breast tomographic imaging, the proposed design is suitable for a wide-range of biophotonic applications where fast, accurate quantification of absolute optical properties is needed. Simultaneous dual wavelength operation at 685 and 830 nm is achieved by concurrent 67.5 and 75 MHz frequency modulation of each laser source, respectively, followed by digitization using a high-speed (180 MS/s) 16-bit A/D converter and hybrid FPGA-assisted demodulation. The instrument supports 25 source locations and features 20 concurrently operating detectors. The noise floor of the instrument was measured at <1.4 pW/√Hz, and a dynamic range of 115+ dB, corresponding to nearly six orders of magnitude, has been demonstrated. Titration experiments consisting of 200 different absorption and scattering values were conducted to demonstrate accurate optical property quantification over the entire range of physiologically expected values. PMID:26813081
Gas Wave Bearings: A Stable Alternative to Journal Bearings for High-Speed Oil-Free Machines
NASA Technical Reports Server (NTRS)
Dimofte, Florin
2005-01-01
To run both smoothly and efficiently, high-speed machines need stable, low-friction bearings to support their rotors. In addition, an oil-free bearing system is a common requirement in today's designs. Therefore, self-acting gas film bearings are becoming the bearing of choice in high-performance rotating machinery, including that used in the machine tool industry. Although plain journal bearings carry more load and have superior lift and land characteristics, they suffer from instability problems. Since 1992, a new type of fluid film bearing, the wave bearing, has been under development at the NASA Lewis Research Center in Cleveland, Ohio, by Dr. Florin Dimofte, a Senior Research Associate of the University of Toledo. One unique characteristic of the waved journal bearing that gives it improved capabilities over conventional journal bearings is the low-amplitude waves of its inner diameter surface. The radial clearance is on the order of one thousandth of the shaft radius, and the wave amplitude is nominally up to one-half the clearance. This bearing concept offers a load capacity which is very close to that of a plain journal bearing, but it runs more stably at nominal speeds.
Zhang, Dapeng; Long, Zhiqiang; Xue, Song; Zhang, Junge
2012-01-01
This paper studies an absolute positioning sensor for a high-speed maglev train and its fault diagnosis method. The absolute positioning sensor is an important sensor for the high-speed maglev train to accomplish its synchronous traction. It is used to calibrate the error of the relative positioning sensor which is used to provide the magnetic phase signal. On the basis of the analysis for the principle of the absolute positioning sensor, the paper describes the design of the sending and receiving coils and realizes the hardware and the software for the sensor. In order to enhance the reliability of the sensor, a support vector machine is used to recognize the fault characters, and the signal flow method is used to locate the faulty parts. The diagnosis information not only can be sent to an upper center control computer to evaluate the reliability of the sensors, but also can realize on-line diagnosis for debugging and the quick detection when the maglev train is off-line. The absolute positioning sensor we study has been used in the actual project. PMID:23112619
An Experimental and Numerical Study of Roughness-Induced Instabilities in a Mach 3.5 Boundary Layer
NASA Technical Reports Server (NTRS)
Kegerise, Michael A.; King, Rudolph A.; Owens, Lewis R.; Choudhari, Meelan M.; Norris, Andrew T.; Li, Fei; Chang, Chau-Layn
2012-01-01
Progress on a joint experimental and numerical study of laminar-to-turbulent transition induced by an isolated roughness element in a high-speed laminar boundary layer is reported in this paper. The numerical analysis suggests that transition is driven by the instability of high- and low-speed streaks embedded in the wake of the isolated roughness element. In addition, spatial stability analysis revealed that the wake flow supports multiple modes (even and odd) of convective instabilities that experience strong enough growth to cause transition. The experimental measurements, which included hot-wire and pitot-probe surveys, confirmed the existence of embedded high- and low-speed streaks in the roughness wake. Furthermore, the measurements indicate the presence of both even and odd modes of instability, although their relative magnitude depends on the specifics of the roughness geometry and flow conditions (e.g., the value of Re(sub kk) or k/delta. For the two test cases considered in the measurements (Re(sub kk) values of 462 and 319), the even mode and the odd mode were respectively dominant and appear to play a primary role in the transition process.
NASA Astrophysics Data System (ADS)
Eom, Beomyong; Lee, Changhyeong; Kim, Seokho; Lee, Changyoung; Yun, Sangwon
The existing wheel-type high-speed railway with a rotatable motor has a limit of 600 km/h speed. The normal conducting electromagnet has several disadvantages to realize 600 km/h speed. Several disadvantages are the increased space and weight, and the decreased electric efficiency to generate the required high magnetic field. In order to reduce the volume and weight, superconducting electromagnets can be considered for LSM (Linear Synchronous Motor). Prior to the fabrication of the real system, a prototype demo-coil is designed and fabricated using 2G high temperature superconducting wire. The prototype HTS coil is cooled by the conduction using a GM cryocooler. To reduce the heat penetration, thermal design was performed for the current leads, supporting structure and radiation shield considering the thermal stress. The operating temperature and current are 30∼40 K and 100 A. The coil consists of two double pancake coils (N, S pole, respectively) and it is driven on a test rail, which is installed for the test car. This paper describes the design and test results of the prototype HTS LSM system. Thermal characteristics are investigated with additional dummy thermal mass on the coil after turning off the cryocooler.
Sea surface mean square slope from Ku-band backscatter data
NASA Technical Reports Server (NTRS)
Jackson, F. C.; Walton, W. T.; Hines, D. E.; Walter, B. A.; Peng, C. Y.
1992-01-01
A surface mean-square-slope parameter analysis is conducted for 14-GHz airborne radar altimeter near-nadir, quasi-specular backscatter data, which in raw form obtained by least-squares fitting of an optical scattering model to the return waveform show an approximately linear dependence over the 7-15 m/sec wind speed range. Slope data are used to draw inferences on the structure of the high-wavenumber portion of the spectrum. A directionally-integrated model height spectrum that encompasses wind speed-dependent k exp -5/2 and classical Phillips k exp -3 power laws subranges in the range of gravity waves is supported by the data.
DOT National Transportation Integrated Search
2015-05-31
The datasets in the .pdf and .zip attached to this record are in support of Intelligent Transportation Systems Joint Program Office (ITS JPO) report FHWA-JPO-15-222, "Impacts Assessment of Dynamic Speed Harmonization with Queue Warning : Task 3, Impa...
Application of new electro-optic technology to Space Station Freedom data management system
NASA Technical Reports Server (NTRS)
Husbands, C. R.; Girard, M. M.
1993-01-01
A low risk design methodology to permit the local bus structures to support increased data carrying capacities and to speed messages and data flow between nodes or stations on the Space Station Freedom Data Management System in anticipation of growing requirements was evaluated and recommended. The recommended design employs a collateral fiber optic technique that follows a NATO avionic standard that is developed, tested, and available. Application of this process will permit a potential 25 fold increase in data transfer performance on the local wire bus network with a fiber optic network, maintaining the functionality of the low-speed bus and supporting all of the redundant transmission and fault detection capabilities designed into the existing system. The application of wavelength division multiplexing (WDM) technology to both the local data bus and global data bus segments of the Data Management System to support anticipated additional highspeed data transmission requirements was also examined. Techniques were examined to provide a dual wavelength implementation of the fiber optic collateral networks. This dual wavelength implementation would permit each local bus to support two simultaneous high-speed transfers on the same fiber optic bus structure and operate within the limits of the existing protocol standard. A second WDM study examined the use of spectral sliced technology to provide a fourfold increase in the Fiber Distributed Data Interface (FDDI) global bus networks without requiring modifications to the existing installed cable plant. Computer simulations presented indicated that this data rate improvement can be achieved with commercially available optical components.
Support of the eight-foot high-temperature tunnel modifications project
NASA Technical Reports Server (NTRS)
Hodges, Donald Y.; Shebalin, John V.
1987-01-01
An ultrasonic level sensor was developed to measure the liquid level in a storage vessel under high pressures, namely up to 6000 psi. The sensor is described. A prototype sensor was installed in the cooling-water storage vessel of the Eight-Foot High-Temperature Tunnel. Plans are being made to install the readout instrument in the control room, so that tunnel operators can monitor the water level during the course of a tunnel run. It was discovered that the sensor will operate at cryogenic temperatures. Consequently, a sensor will be installed in the modified Eight-Foot High-Temperature Tunnel to measure the sound speed of liquid oxygen (LOX) as it is transferred from a storage vessel to the tunnel combustor at pressure of about 3000 psi. The sound speed is known to be a reliable indicator of contamination of LOX by pressurized gaseous nitrogen, which will be used to effect the transfer. Subjecting the sensor to a temperature cycle from room temperature to liquid nitrogen temperature and back again several times revealed no deterioration in sensor performance. The method using this sensor is superior to the original method, which was to bleed samples of LOX from the storage vessel to an independent chamber for measurement of the sound speed.
Tough Hydrogel Robots: High-Speed, High-Force and Opto-sonically Invisible in Water
NASA Astrophysics Data System (ADS)
Zhao, Xuanhe
Sea animals such as leptocephali develop tissues and organs composed of active transparent hydrogels to achieve agile motions and natural camouflage in water. Hydrogel-based actuators that can imitate the capabilities of leptocephali will enable new applications in diverse fields. However, existing hydrogel actuators, mostly osmotic-driven, are intrinsically low-speed and/or low-force; and their camouflage capabilities have not been explored. Here we show that hydraulic actuations of tough hydrogels with designed structures and properties can give soft actuators and robots that are high-speed, high-force, and optically and sonically camouflaged in water. We invent a simple method capable of assembling physically-crosslinked hydrogel parts followed by covalent crosslinking to fabricate large-scale hydraulic hydrogel actuators and robots with robust bodies and interfaces. The hydrogel actuators and robots can maintain their robustness and functionality over multiple cycles of actuations, owning to the anti-fatigue property of the hydrogel under moderate stresses. A multiscale theoretical framework has been developed to guide the design and optimization of the hydrogel robots. We further demonstrate that the agile and transparent hydrogel actuators and robots perform extraordinary functions including swimming, kicking rubber-balls and catching a live fish in water. The work was supported by NSF(No. CMMI- 1253495) and ONR (No. N00014-14-1-0528).
NASA Astrophysics Data System (ADS)
Oka, Mohachiro; Enokizono, Masato; Mori, Yuji; Yamazaki, Kazumasa
2018-04-01
Recently, the application areas for electric motors have been expanding. For instance, electric motors are used in new technologies such as rovers, drones, cars, and robots. The motor used in such machinery should be small, high-powered, highly-efficient, and high-speed. In such motors, loss at high-speed rotation must be especially minimal. Eddy-current loss in the stator core is known to increase greatly during loss at high-speed rotation of the motor. To produce an efficient high-speed motor, we are developing a stator core for a motor using an ultrathin electrical steel sheet with only a small amount of eddy-current loss. Furthermore, the magnetic property evaluation for efficient, high-speed motor stator cores that use conventional commercial frequency is insufficient. Thus, we made a new high-speed magnetic property evaluation system to evaluate the magnetic properties of the efficient high-speed motor stator core. This system was composed of high-speed A/D converters, D/A converters, and a high-speed power amplifier. In experiments, the ultrathin electrical steel sheet dramatically suppressed iron loss and, in particular, eddy-current loss. In addition, a new high-speed magnetic property evaluation system accurately evaluated the magnetic properties of the efficient high-speed motor stator core.
Laser-Based Optical System for Reactive Radical Concentration Measurements in Plasmas and Flames
2006-08-01
role of different plasma components in chain propagation support: (1) and (2) - corona plasma generators with high-voltage multiple needle electrodes ; (3...H20 2) and HCN. Measurements in Gliding Arc, Dielectric Barrier Discharge and Pulsed Corona Plasma systems and in flame and flow reactor systems are...discharges operating in air with iron electrodes - 260V.35 Using visual quantification from high speed camera arc images, the approximate thickness of
NASA Technical Reports Server (NTRS)
Stefko, George L.; Rose, Gayle E.; Podboy, Gary G.
1987-01-01
High speed wind tunnel aerodynamic performance tests of the SR-7A advanced prop-fan have been completed in support of the Prop-Fan Test Assessment (PTA) flight test program. The test showed that the SR-7A model performed aerodynamically very well. At the cruise design condition, the SR-7A prop fan had a high measured net efficiency of 79.3 percent.
High speed superconducting flywheel system for energy storage
NASA Astrophysics Data System (ADS)
Bornemann, H. J.; Urban, C.; Boegler, P.; Ritter, T.; Zaitsev, O.; Weber, K.; Rietschel, H.
1994-12-01
A prototype of a flywheel system with auto stable high temperature superconducting bearings was built and tested. The bearings offered good vertical and lateral stability. A metallic flywheel disk, ø 190 mm x 30 mm, was safely rotated at speeds up to 15000 rpm. The disk was driven by a 3 phase synchronous homopolar motor/generator. Maximum energy capacity was 3.8 Wh, maximum power was 1.5 KW. The dynamic behavior of the prototype was tested, characterized and evaluated with respect to axial and lateral stiffness, decay torques (bearing drag), vibrational modes and critical speeds. The bearings supports a maximum weight of 65 N at zero gap, axial and lateral stiffness at 1 mm gap were 440 N/cm and 130 N/cm, respectively. Spin down experiments were performed to investigate the energy efficiency of the system. The decay rate was found to depend upon background pressure in the vacuum chamber and upon the gap width in the bearing. At a background pressure of 5x10 -4 Torr, the coefficient of friction (drag-to-lift ratio) was measured to be 0.000009 at low speeds for 6 mm gap width in the bearing. Our results indicate that further refinement of this technology will allow operation of higly efficient superconducting flywheels in the kWh range.
On the development of lift and drag in a rotating and translating cylinder
NASA Astrophysics Data System (ADS)
Martin-Alcantara, Antonio; Sanmiguel-Rojas, Enrique; Fernandez-Feria, Ramon
2014-11-01
The two-dimensional flow around a rotating cylinder is investigated numerically using a vorticity forces formulation with the aim of analyzing the flow structures, and their evolutions, that contribute to the lift and drag forces on the cylinder. The Reynolds number, based on the cylinder diameter and steady free-stream speed, considered is Re = 200 , while the non-dimensional rotation rate (ratio of the surface speed and free-stream speed) selected were α = 1 and 3. For α = 1 the wake behind the cylinder for the fully developed flow is oscillatory due to vortex shedding, and so are the lift and drag forces. For α = 3 the fully developed flow is steady with constant (high) lift and (low) drag. Each of these cases is considered in two different transient problems, one with angular acceleration of the cylinder and constant speed, and the other one with translating acceleration of the cylinder and constant rotation. Special attention is paid to explaining the mechanisms of vortex shedding suppression for high rotation (when α = 3) and its relation to the mechanisms by which the lift is enhanced and the drag is almost suppressed when the fully developed flow is reached. Supported by the Ministerio de Economia y Competitividad of Spain Grant No. DPI2013-40479-P.
Comparison of loading rate-dependent injury modes in a murine model of post-traumatic osteoarthritis
Lockwood, Kevin A.; Chu, Bryce T.; Anderson, Matthew J.; Haudenschild, Dominik R.; Christiansen, Blaine A.
2014-01-01
Post-traumatic osteoarthritis (PTOA) is a common long-term consequence of joint injuries such as anterior cruciate ligament (ACL) rupture. In this study we used a tibial compression overload mouse model to compare knee injury induced at low speed (1 mm/s), which creates an avulsion fracture, to injury induced at high speed (500 mm/s), which induces midsubstance tear of the ACL. Mice were sacrificed at 0 days, 10 days, 12 weeks, or 16 weeks post-injury, and joints were analyzed with micro-computed tomography, whole joint histology, and biomechanical laxity testing. Knee injury with both injury modes caused considerable trabecular bone loss by 10 days post-injury, with the Low Speed Injury group (avulsion) exhibiting a greater amount of bone loss than the High Speed Injury group (midsubstance tear). Immediately after injury, both injury modes resulted in greater than 2-fold increases in total AP joint laxity relative to control knees. By 12 and 16 weeks post-injury, total AP laxity was restored to uninjured control values, possibly due to knee stabilization via osteophyte formation. This model presents an opportunity to explore fundamental questions regarding the role of bone turnover in PTOA, and the findings of this study support a biomechanical mechanism of osteophyte formation following injury. PMID:24019199
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-12
... High-Speed Rail Authority--Construction Exemption--In Merced, Madera and Fresno Counties, CA AGENCY... High-Speed Rail Authority (Authority). This Final EIS is titled ``California High-Speed Train: Merced... Final EIS assesses the potential environmental impacts of constructing and operating a high-speed...
NASA Technical Reports Server (NTRS)
Aber, Gregory S. (Inventor)
1999-01-01
Methods and apparatus are provided for a blood pump bearing system within a pump housing to support long-term high-speed rotation of a rotor with an impeller blade having a plurality of individual magnets disposed thereon to provide a small radial air gap between the magnets and a stator of less than 0.025 inches. The bearing system may be mounted within a flow straightener, diffuser, or other pump element to support the shaft of a pump rotor. The bearing system includes a zirconia shaft having a radiused end. The radiused end has a first radius selected to be about three times greater than the radius of the zirconia shaft. The radiused end of the zirconia shaft engages a flat sapphire endstone. Due to the relative hardness of these materials a flat is quickly produced during break-in on the zirconia radiused end of precisely the size necessary to support thrust loads whereupon wear substantially ceases. Due to the selection of the first radius, the change in shaft end-play during pump break-in is limited to a total desired end-play of less than about 0.010 inches. Radial loads are supported by an olive hole ring jewel that makes near line contact around the circumference of the shaft to support high speed rotation with little friction. The width of olive hole ring jewel is small to allow heat to conduct through to thereby prevent heat build-up in the bearing. A void defined by the bearing elements may fill with blood that then coagulates within the void. The coagulated blood is then conformed to the shape of the bearing surfaces.
NASA Astrophysics Data System (ADS)
Jeong, K.; Jeong, H.; Ji, M.; Kim, J.; Park, J.; Chung, H.
2015-09-01
With the increase in the size and speed of recently built vessels, the output and speed (rpm) of propulsion or generation engines have continuously increased, and the high-output, highspeed engine has become a major cause of excessive vessel noise and vibration. Accordingly, resonance occurs in the equipment and other outfitting equipment installed in a vessel, and thus, periodic requests for correction are received from ship owners or officers. In this study, to resolve this problem, supports that stably fix the outfitting equipment installed in the engine room of a very large crude oil tanker and provide protection from physical or external shock were classified into seven types for three kinds of widely used standard shapes, and an optimized shape was developed and suggested by analyzing the structural characteristics of the shapes of the supports (the maximum bending moment, maximum bending stress, and maximum deformation) using DNV NATICUS HULL 3D BEAM, a structural analysis program, so that it could be used for the outfitting design of a vessel.
The response of rotating machinery to external random vibration
NASA Technical Reports Server (NTRS)
Tessarzik, J. M.; Chiang, T.; Badgley, R. H.
1974-01-01
A high-speed turbogenerator employing gas-lubricated hydrodynamic journal and thrust bearings was subjected to external random vibrations for the purpose of assessing bearing performance in a dynamic environment. The pivoted-pad type journal bearings and the step-sector thrust bearing supported a turbine-driven rotor weighing approximately twenty-one pounds at a nominal operating speed of 36,000 rpm. The response amplitudes of both the rigid-supported and flexible-supported bearing pads, the gimballed thrust bearing, and the rotor relative to the machine casing were measured with capacitance type displacement probes. Random vibrations were applied by means of a large electrodynamic shaker at input levels ranging between 0.5 g (rms) and 1.5 g (rms). Vibrations were applied both along and perpendicular to the rotor axis. Response measurements were analyzed for amplitude distribution and power spectral density. Experimental results compare well with calculations of amplitude power spectral density made for the case where the vibrations were applied along the rotor axis. In this case, the rotor-bearing system was treated as a linear, three-mass model.
Investigation of excitation control for wind-turbine generator stability
NASA Technical Reports Server (NTRS)
Gebben, V. D.
1977-01-01
High speed horizontal axis wind turbine generators with blades on the downwind side of the support tower require special design considerations to handle disturbances introduced by the flow wake behind the tower. Experiments and analytical analyses were made to determine benefits that might be obtained by using the generator exciter to provide system damping for reducing power fluctuations.
NASA Astrophysics Data System (ADS)
Sentić, Stipo; Sessions, Sharon L.
2017-06-01
The weak temperature gradient (WTG) approximation is a method of parameterizing the influences of the large scale on local convection in limited domain simulations. WTG simulations exhibit multiple equilibria in precipitation; depending on the initial moisture content, simulations can precipitate or remain dry for otherwise identical boundary conditions. We use a hypothesized analogy between multiple equilibria in precipitation in WTG simulations, and dry and moist regions of organized convection to study tropical convective organization. We find that the range of wind speeds that support multiple equilibria depends on sea surface temperature (SST). Compared to the present SST, low SSTs support a narrower range of multiple equilibria at higher wind speeds. In contrast, high SSTs exhibit a narrower range of multiple equilibria at low wind speeds. This suggests that at high SSTs, organized convection might occur with lower surface forcing. To characterize convection at different SSTs, we analyze the change in relationships between precipitation rate, atmospheric stability, moisture content, and the large-scale transport of moist entropy and moisture with increasing SSTs. We find an increase in large-scale export of moisture and moist entropy from dry simulations with increasing SST, which is consistent with a strengthening of the up-gradient transport of moisture from dry regions to moist regions in organized convection. Furthermore, the changes in diagnostic relationships with SST are consistent with more intense convection in precipitating regions of organized convection for higher SSTs.
High-speed civil transport issues and technology program
NASA Technical Reports Server (NTRS)
Hewett, Marle D.
1992-01-01
A strawman program plan is presented, consisting of technology developments and demonstrations required to support the construction of a high-speed civil transport. The plan includes a compilation of technology issues related to the development of a transport. The issues represent technical areas in which research and development are required to allow airframe manufacturers to pursue an HSCT development. The vast majority of technical issues presented require flight demonstrated and validated solutions before a transport development will be undertaken by the industry. The author believes that NASA is the agency best suited to address flight demonstration issues in a concentrated effort. The new Integrated Test Facility at NASA Dryden Flight Research Facility is considered ideally suited to the task of supporting ground validations of proof-of-concept and prototype system demonstrations before night demonstrations. An elaborate ground hardware-in-the-loop (iron bird) simulation supported in this facility provides a viable alternative to developing an expensive fill-scale prototype transport technology demonstrator. Drygen's SR-71 assets, modified appropriately, are a suitable test-bed for supporting flight demonstrations and validations of certain transport technology solutions. A subscale, manned or unmanned flight demonstrator is suitable for flight validation of transport technology solutions, if appropriate structural similarity relationships can be established. The author contends that developing a full-scale prototype transport technology demonstrator is the best alternative to ensuring that a positive decision to develop a transport is reached by the United States aerospace industry.
Forsman, Hannele; Gråstén, Arto; Blomqvist, Minna; Davids, Keith; Liukkonen, Jarmo; Konttinen, Niilo
2016-07-01
The objective of this 1-year, longitudinal study was to examine the development of perceived competence, tactical skills, motivation, technical skills, and speed and agility characteristics of young Finnish soccer players. We also examined associations between latent growth models of perceived competence and other recorded variables. Participants were 288 competitive male soccer players ranging from 12 to 14 years (12.7 ± 0.6) from 16 soccer clubs. Players completed the self-assessments of perceived competence, tactical skills, and motivation, and participated in technical, and speed and agility tests. Results of this study showed that players' levels of perceived competence, tactical skills, motivation, technical skills, and speed and agility characteristics remained relatively high and stable across the period of 1 year. Positive relationships were found between these levels and changes in perceived competence and motivation, and levels of perceived competence and speed and agility characteristics. Together these results illustrate the multi-dimensional nature of talent development processes in soccer. Moreover, it seems crucial in coaching to support the development of perceived competence and motivation in young soccer players and that it might be even more important in later maturing players.
Metallic hot wire anemometer. [for high speed wind tunnel tests
NASA Technical Reports Server (NTRS)
Lemos, F. R. (Inventor)
1977-01-01
A hot wire anemometer is described which has a body formed of heat resistant metal such as an alloy high in nickel content which supports a probe wire disposed in a V groove in the body. The V groove contains a high temperature ceramic adhesive that partially encompasses the downstream side of the probe wire. Mechanical and electrical connection to the probe wire is achieved through conductive support rods that are constructed of the same high temperature metal, insulation between the body and the conductor rods being provided by a coating of an oxide of the same material which coating is formed in situ. The oxide coating insulates the conductor rods from the body, mechanically fixes the conductors within the body, and maintains its integrity at elevated temperatures.
NASA Technical Reports Server (NTRS)
Barrett, Joe, III; Short, David; Roeder, William
2008-01-01
The expected peak wind speed for the day is an important element in the daily 24-Hour and Weekly Planning Forecasts issued by the 45th Weather Squadron (45 WS) for planning operations at Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS). The morning outlook for peak speeds also begins the warning decision process for gusts ^ 35 kt, ^ 50 kt, and ^ 60 kt from the surface to 300 ft. The 45 WS forecasters have indicated that peak wind speeds are a challenging parameter to forecast during the cool season (October-April). The 45 WS requested that the Applied Meteorology Unit (AMU) develop a tool to help them forecast the speed and timing of the daily peak and average wind, from the surface to 300 ft on KSC/CCAFS during the cool season. The tool must only use data available by 1200 UTC to support the issue time of the Planning Forecasts. Based on observations from the KSC/CCAFS wind tower network, surface observations from the Shuttle Landing Facility (SLF), and CCAFS upper-air soundings from the cool season months of October 2002 to February 2007, the AMU created multiple linear regression equations to predict the timing and speed of the daily peak wind speed, as well as the background average wind speed. Several possible predictors were evaluated, including persistence, the temperature inversion depth, strength, and wind speed at the top of the inversion, wind gust factor (ratio of peak wind speed to average wind speed), synoptic weather pattern, occurrence of precipitation at the SLF, and strongest wind in the lowest 3000 ft, 4000 ft, or 5000 ft. Six synoptic patterns were identified: 1) surface high near or over FL, 2) surface high north or east of FL, 3) surface high south or west of FL, 4) surface front approaching FL, 5) surface front across central FL, and 6) surface front across south FL. The following six predictors were selected: 1) inversion depth, 2) inversion strength, 3) wind gust factor, 4) synoptic weather pattern, 5) occurrence of precipitation at the SLF, and 6) strongest wind in the lowest 3000 ft. The forecast tool was developed as a graphical user interface with Microsoft Excel to help the forecaster enter the variables, and run the appropriate regression equations. Based on the forecaster's input and regression equations, a forecast of the day's peak and average wind is generated and displayed. The application also outputs the probability that the peak wind speed will be ^ 35 kt, 50 kt, and 60 kt.
Burnfield, Judith M; Buster, Thad W; Goldman, Amy J; Corbridge, Laura M; Harper-Hanigan, Kellee
2016-06-01
Intensive task-specific training is promoted as one approach for facilitating neural plastic brain changes and associated motor behavior gains following neurologic injury. Partial body weight support treadmill training (PBWSTT), is one task-specific approach frequently used to improve walking during the acute period of stroke recovery (<1month post infarct). However, only limited data have been published regarding the relationship between training parameters and physiologic demands during this early recovery phase. To examine the impact of four walking speeds on stride characteristics, lower extremity muscle demands (both paretic and non-paretic), Borg ratings of perceived exertion (RPE), and blood pressure. A prospective, repeated measures design was used. Ten inpatients post unilateral stroke participated. Following three familiarization sessions, participants engaged in PBWSTT at four predetermined speeds (0.5, 1.0, 1.5 and 2.0mph) while bilateral electromyographic and stride characteristic data were recorded. RPE was evaluated immediately following each trial. Stride length, cadence, and paretic single limb support increased with faster walking speeds (p⩽0.001), while non-paretic single limb support remained nearly constant. Faster walking resulted in greater peak and mean muscle activation in the paretic medial hamstrings, vastus lateralis and medial gastrocnemius, and non-paretic medial gastrocnemius (p⩽0.001). RPE also was greatest at the fastest compared to two slowest speeds (p<0.05). During the acute phase of stroke recovery, PBWSTT at the fastest speed (2.0mph) promoted practice of a more optimal gait pattern with greater intensity of effort as evidenced by the longer stride length, increased between-limb symmetry, greater muscle activation, and higher RPE compared to training at the slowest speeds. Copyright © 2016 Elsevier B.V. All rights reserved.
[Occupational stress situation analysis of different types of train drivers].
Zhou, Wenhui; Gu, Guizhen; Wu, Hui; Yu, Shanfa
2014-11-01
To analyze the status of occupational stress in different types of train drivers. By using cluster sampling method, a cross-sectional study was conducted in 1 339 train drivers (including 289 passenger train drivers, 637 freight trains drivers, 339 passenger shunting train drivers, and 74 high speed rail drivers) from a Railway Bureau depot. The survey included individual factors, occupational stress factors, stress response factors and stress mitigating factors. The occupational stress factors, stress response factors and mitigating factors were measured by the revised effort-reward imbalance (ERI) model questionnaires and occupational stress measurement scale. By using the method of covariance analysized the difference of occupational stress factors of all types train drivers, the method of Stepwise regression was used to analyze the effection (R(2)) of occupational stress factors and stress mitigating factors on stress response factors. Covariance analysis as covariates in age, education level, length of service and marital status showed that the scores of ERI (1.58 ± 0.05), extrinsic effort (19.88 ± 0.44), rewards (23.43 ± 0.43), intrinsic effort (17.86 ± 0.36), physical environment (5.70 ± 0.22), social support (30.51 ± 0.88) and daily tension (10.27 ± 0.38 ) of high speed rail drivers were higher than other drivers (F values were 6.06, 11.32, 7.05, 13.25, 5.20, 9.48 and 6.14 respectively, P < 0.01), but the scores of emotional balance (4.15 ± 0.31) and positive emotion (2.06 ± 0.20) were lower than other drives (P < 0.01);the scores of psychological needs (10.48 ± 0.18), emotional balance (4.88 ± 0.16) and positive emotion (2.63 ± 0.10) of passenger train drivers were higher than other drivers (F values were 4.33 and 5.50 respectively, P < 0.01). The descending rank of the effect value on occupational stress factors and mitigating factors to depressive symptoms of train drivers was high speed rail drivers (R(2) = 0.64), passenger train drivers (R(2) = 0.44), passenger shunting train drivers (R(2) = 0.39), freight trains drivers (R(2) = 0.38); job satisfaction of train drivers was high speed rail drivers (R(2) = 0.68), passenger train drivers (R(2) = 0.62), freight trains drivers (R(2) = 0.43), passenger shunting train drivers(R(2) = 0.38); to daily tension of train drivers was high speed rail drivers (R(2) = 0.54), passenger train drivers (R(2) = 0.37), passenger shunting train drivers (R(2) = 0.33), freight trains drivers (R(2) = 0.30); emotional balance of train drivers was high speed rail drivers (R(2) = 0.47), passenger train drivers (R(2) = 0.43), passenger shunting train drivers (R(2) = 0.33), freight trains drivers(R(2) = 0.31). ERI, psychological needs, work responsibilities, job roles, work conflict, and physical environment were important occupational stress factors of train drivers; social support was pivotal mitigating factors; different train drivers had different occupational stress status, high speed rail drivers were the highest, and freight trains drivers passenger train drivers or passenger shunting train drivers were the lowest.
Sodickson, Daniel K.
2010-01-01
Cardiovascular magnetic resonance imaging (CVMRI) is of proven clinical value in the non-invasive imaging of cardiovascular diseases. CVMRI requires rapid image acquisition, but acquisition speed is fundamentally limited in conventional MRI. Parallel imaging provides a means for increasing acquisition speed and efficiency. However, signal-to-noise (SNR) limitations and the limited number of receiver channels available on most MR systems have in the past imposed practical constraints, which dictated the use of moderate accelerations in CVMRI. High levels of acceleration, which were unattainable previously, have become possible with many-receiver MR systems and many-element, cardiac-optimized RF-coil arrays. The resulting imaging speed improvements can be exploited in a number of ways, ranging from enhancement of spatial and temporal resolution to efficient whole heart coverage to streamlining of CVMRI work flow. In this review, examples of these strategies are provided, following an outline of the fundamentals of the highly accelerated imaging approaches employed in CVMRI. Topics discussed include basic principles of parallel imaging; key requirements for MR systems and RF-coil design; practical considerations of SNR management, supported by multi-dimensional accelerations, 3D noise averaging and high field imaging; highly accelerated clinical state-of-the art cardiovascular imaging applications spanning the range from SNR-rich to SNR-limited; and current trends and future directions. PMID:17562047
On the Nature of the High-Speed Plasma Flows in the 2005 September 13 Flare
NASA Astrophysics Data System (ADS)
Liu, C.; Choudhary, D. P.; Deng, N.; Wang, H.
2008-05-01
A long-duration, successive flaring event accompanied by fast CMEs occurred on 2005 September 13 in the NOAA AR 10808 and was classified as 2B/X1.5 with peak time at 19:27 UT. In this study, we report direct and unambiguous observations of high-speed hot plasma flows associated with the second major peak in soft X-ray that reached X1.4 on the GOES scale at 20:05 UT. The flows are seen as streams of enhanced density in extreme-UV traveling above and toward arcades of the secondary compact-loop flare at the main δ spot with an apparent speed as high as ~350~km~s-1, and the times when they are initiated correspond to those of bursts of nonthermal emissions in hard X-rays (HXRs) and microwaves. In Hα, the flows appear to become emission later on when approaching the lower atmosphere nearby the flaring magnetic polarity inversion line and subsequently trigger a subflare with propagating kernels. It is particularly notable that the flows are spatially and temporally related to HXR sources detected by RHESSI and a large erupting flux rope. We scrutinize several scenarios to investigate the nature of the observed high-speed flows. We conclude that the observations could be interpreted in terms of materials braking away from a preceding filament eruption and falling gravitationally back into the flaring region. A separate scenario is that the observed flow motion could be a manifestation of sunward reconnection outflow supporting the standard reconnection model.
OCCURRENCE OF HIGH-SPEED SOLAR WIND STREAMS OVER THE GRAND MODERN MAXIMUM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mursula, K.; Holappa, L.; Lukianova, R., E-mail: kalevi.mursula@oulu.fi
2015-03-01
In the declining phase of the solar cycle (SC), when the new-polarity fields of the solar poles are strengthened by the transport of same-signed magnetic flux from lower latitudes, the polar coronal holes expand and form non-axisymmetric extensions toward the solar equator. These extensions enhance the occurrence of high-speed solar wind (SW) streams (HSS) and related co-rotating interaction regions in the low-latitude heliosphere, and cause moderate, recurrent geomagnetic activity (GA) in the near-Earth space. Here, using a novel definition of GA at high (polar cap) latitudes and the longest record of magnetic observations at a polar cap station, we calculatemore » the annually averaged SW speeds as proxies for the effective annual occurrence of HSS over the whole Grand Modern Maximum (GMM) from 1920s onward. We find that a period of high annual speeds (frequent occurrence of HSS) occurs in the declining phase of each of SCs 16-23. For most cycles the HSS activity clearly reaches a maximum in one year, suggesting that typically only one strong activation leading to a coronal hole extension is responsible for the HSS maximum. We find that the most persistent HSS activity occurred in the declining phase of SC 18. This suggests that cycle 19, which marks the sunspot maximum period of the GMM, was preceded by exceptionally strong polar fields during the previous sunspot minimum. This gives interesting support for the validity of solar dynamo theory during this dramatic period of solar magnetism.« less
Vehicle Signal Analysis Using Artificial Neural Networks for a Bridge Weigh-in-Motion System
Kim, Sungkon; Lee, Jungwhee; Park, Min-Seok; Jo, Byung-Wan
2009-01-01
This paper describes the procedures for development of signal analysis algorithms using artificial neural networks for Bridge Weigh-in-Motion (B-WIM) systems. Through the analysis procedure, the extraction of information concerning heavy traffic vehicles such as weight, speed, and number of axles from the time domain strain data of the B-WIM system was attempted. As one of the several possible pattern recognition techniques, an Artificial Neural Network (ANN) was employed since it could effectively include dynamic effects and bridge-vehicle interactions. A number of vehicle traveling experiments with sufficient load cases were executed on two different types of bridges, a simply supported pre-stressed concrete girder bridge and a cable-stayed bridge. Different types of WIM systems such as high-speed WIM or low-speed WIM were also utilized during the experiments for cross-checking and to validate the performance of the developed algorithms. PMID:22408487
Vehicle Signal Analysis Using Artificial Neural Networks for a Bridge Weigh-in-Motion System.
Kim, Sungkon; Lee, Jungwhee; Park, Min-Seok; Jo, Byung-Wan
2009-01-01
This paper describes the procedures for development of signal analysis algorithms using artificial neural networks for Bridge Weigh-in-Motion (B-WIM) systems. Through the analysis procedure, the extraction of information concerning heavy traffic vehicles such as weight, speed, and number of axles from the time domain strain data of the B-WIM system was attempted. As one of the several possible pattern recognition techniques, an Artificial Neural Network (ANN) was employed since it could effectively include dynamic effects and bridge-vehicle interactions. A number of vehicle traveling experiments with sufficient load cases were executed on two different types of bridges, a simply supported pre-stressed concrete girder bridge and a cable-stayed bridge. Different types of WIM systems such as high-speed WIM or low-speed WIM were also utilized during the experiments for cross-checking and to validate the performance of the developed algorithms.
Blurring emotional memories using eye movements: individual differences and speed of eye movements
van Schie, Kevin; van Veen, Suzanne C.; Engelhard, Iris M.; Klugkist, Irene; van den Hout, Marcel A.
2016-01-01
Background In eye movement desensitization and reprocessing (EMDR), patients make eye movements (EM) while recalling traumatic memories. Making EM taxes working memory (WM), which leaves less resources available for imagery of the memory. This reduces memory vividness and emotionality during future recalls. WM theory predicts that individuals with small working memory capacities (WMCs) benefit more from low levels of taxing (i.e., slow EM) whereas individuals with large WMC benefit more from high levels of taxing (i.e., fast EM). Objective We experimentally examined and tested four prespecified hypotheses regarding the role of WMC and EM speed in reducing emotionality and vividness ratings: 1) EM—regardless of WMC and EM speed—are more effective compared to no dual task, 2) increasing EM speed only affects the decrease in memory ratings irrespective of WMC, 3) low-WMC individuals—compared to high-WMC individuals—benefit more from making either type of EM, 4) the EM intervention is most effective when—as predicted by WM theory—EM are adjusted to WMC. Method Undergraduates with low (n=31) or high (n=35) WMC recalled three emotional memories and rated vividness and emotionality before and after each condition (recall only, recall + slow EM, and recall + fast EM). Results Contrary to the theory, the data do not support the hypothesis that EM speed should be adjusted to WMC (hypothesis 4). However, the data show that a dual task in general is more effective in reducing memory ratings than no dual task (hypothesis 1), and that a more cognitively demanding dual task increases the intervention's effectiveness (hypothesis 2). Conclusions Although adjusting EM speed to an individual's WMC seems a straightforward clinical implication, the data do not show any indication that such a titration is helpful. PMID:27387843
36 CFR 1192.175 - High-speed rail cars, monorails and systems.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false High-speed rail cars... TRANSPORTATION VEHICLES Other Vehicles and Systems § 1192.175 High-speed rail cars, monorails and systems. (a) All cars for high-speed rail systems, including but not limited to those using “maglev” or high speed...
36 CFR 1192.175 - High-speed rail cars, monorails and systems.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 36 Parks, Forests, and Public Property 3 2012-07-01 2012-07-01 false High-speed rail cars... TRANSPORTATION VEHICLES Other Vehicles and Systems § 1192.175 High-speed rail cars, monorails and systems. (a) All cars for high-speed rail systems, including but not limited to those using “maglev” or high speed...
36 CFR 1192.175 - High-speed rail cars, monorails and systems.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 36 Parks, Forests, and Public Property 3 2011-07-01 2011-07-01 false High-speed rail cars... TRANSPORTATION VEHICLES Other Vehicles and Systems § 1192.175 High-speed rail cars, monorails and systems. (a) All cars for high-speed rail systems, including but not limited to those using “maglev” or high speed...
36 CFR § 1192.175 - High-speed rail cars, monorails and systems.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 36 Parks, Forests, and Public Property 3 2013-07-01 2012-07-01 true High-speed rail cars... TRANSPORTATION VEHICLES Other Vehicles and Systems § 1192.175 High-speed rail cars, monorails and systems. (a) All cars for high-speed rail systems, including but not limited to those using “maglev” or high speed...
36 CFR 1192.175 - High-speed rail cars, monorails and systems.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 36 Parks, Forests, and Public Property 3 2014-07-01 2014-07-01 false High-speed rail cars... TRANSPORTATION VEHICLES Other Vehicles and Systems § 1192.175 High-speed rail cars, monorails and systems. (a) All cars for high-speed rail systems, including but not limited to those using “maglev” or high speed...
LV software support for supersonic flow analysis
NASA Technical Reports Server (NTRS)
Bell, W. A.; Lepicovsky, J.
1992-01-01
The software for configuring an LV counter processor system has been developed using structured design. The LV system includes up to three counter processors and a rotary encoder. The software for configuring and testing the LV system has been developed, tested, and included in an overall software package for data acquisition, analysis, and reduction. Error handling routines respond to both operator and instrument errors which often arise in the course of measuring complex, high-speed flows. The use of networking capabilities greatly facilitates the software development process by allowing software development and testing from a remote site. In addition, high-speed transfers allow graphics files or commands to provide viewing of the data from a remote site. Further advances in data analysis require corresponding advances in procedures for statistical and time series analysis of nonuniformly sampled data.
LV software support for supersonic flow analysis
NASA Technical Reports Server (NTRS)
Bell, William A.
1992-01-01
The software for configuring a Laser Velocimeter (LV) counter processor system was developed using structured design. The LV system includes up to three counter processors and a rotary encoder. The software for configuring and testing the LV system was developed, tested, and included in an overall software package for data acquisition, analysis, and reduction. Error handling routines respond to both operator and instrument errors which often arise in the course of measuring complex, high-speed flows. The use of networking capabilities greatly facilitates the software development process by allowing software development and testing from a remote site. In addition, high-speed transfers allow graphics files or commands to provide viewing of the data from a remote site. Further advances in data analysis require corresponding advances in procedures for statistical and time series analysis of nonuniformly sampled data.
Studies in a transonic rotor aerodynamics and noise facility
NASA Technical Reports Server (NTRS)
Wright, S. E.; Lee, D. J.; Crosby, W.
1984-01-01
The design, construction and testing of a transonic rotor aerodynamics and noise facility was undertaken, using a rotating arm blade element support technique. This approach provides a research capability intermediate between that of a stationary element in a moving flow and that of a complete rotating blade system, and permits the acoustic properties of blade tip elements to be studied in isolation. This approach is an inexpensive means of obtaining data at high subsonic and transonic tip speeds on the effect of variations in tip geometry. The facility may be suitable for research on broad band noise and discrete noise in addition to high-speed noise. Initial tests were conducted over the Mach number range 0.3 to 0.93 and confirmed the adequacy of the acoustic treatment used in the facility to avoid reflection from the enclosure.
Machinability of Al 6061 Deposited with Cold Spray Additive Manufacturing
NASA Astrophysics Data System (ADS)
Aldwell, Barry; Kelly, Elaine; Wall, Ronan; Amaldi, Andrea; O'Donnell, Garret E.; Lupoi, Rocco
2017-10-01
Additive manufacturing techniques such as cold spray are translating from research laboratories into more mainstream high-end production systems. Similar to many additive processes, finishing still depends on removal processes. This research presents the results from investigations into aspects of the machinability of aluminum 6061 tubes manufactured with cold spray. Through the analysis of cutting forces and observations on chip formation and surface morphology, the effect of cutting speed, feed rate, and heat treatment was quantified, for both cold-sprayed and bulk aluminum 6061. High-speed video of chip formation shows changes in chip form for varying material and heat treatment, which is supported by the force data and quantitative imaging of the machined surface. The results shown in this paper demonstrate that parameters involved in cold spray directly impact on machinability and therefore have implications for machining parameters and strategy.
NASA Technical Reports Server (NTRS)
Beatty, R. F.; Hine, M. J.
1986-01-01
The high pressure turbomachinery of the Space Shuttle Main Engine has the highest power-to-weight ratio of any operational machine known. Subsynchronous rotor whirl of the high pressure oxygen turbopump occurred in development testing at full-power level (109 percent thrust). The means by which the turbopump was successfully uprated is presented herein. The subsynchronous motion was determined to be driven by impeller destabilizing forces in combination with low net damping and bearing degradation. The degradation resulted from ball wear due primarily to an excessive loading condition of operating too near the lightly damped rotor second critical speed while under a large static load and, secondarily, from reverse bearing loading or loss of internal clearance and coolant during simulated flight conditions. The rotor response was reduced by stiffening the shaft and supports, optimizing the stiffness and damping of annular seals, and increasing the bearing deadband. The uprated oxygen turbopump configuration was verified by converting the pump and bearing support into a load cell for the purpose of systematically quantifying the load reduction benefits relative to baseline turbopumps. The damped second critical speed margin and the load sharing have been substantially improved which has resulted in reduced bearing loads for improved service life of the machine at full-power level.
Purification of optical imaging ligand-Cybesin by high-speed counter-current chromatography
Ma, Zhiyong; Ma, Ying; Sun, Xilin; Ye, Yunpeng; Shen, Baozhong; Chen, Xiaoyuan; Ito, Yoichiro
2010-01-01
Fluorescent Cybesin (Cypate-Bombesin Peptide Analogue Conjugate) was synthesized from Indocyanine Green (ICG) and the bombesin receptor ligand as a contrast agent for detecting pancreas tumors. However, the LC–MS analysis indicated that the target compound was only a minor component in the reaction mixture. Since preparative HPLC can hardly separate such a small amount of the target compound directly from the original crude reaction mixture without a considerable adsorptive loss onto the solid support, high-speed counter-current chromatography (HSCCC) was used for purification since the method uses no solid support and promises high sample recovery. A suitable two-phase solvent system composed of hexane/ethyl acetate/methanol/methyl t.-butyl ether/acetonitrile/water) at a volume ratio of 1:1:1:4:4:7 was selected based on the partition coefficient of Cybesin (K ≈ 0.9) determined by LC–MS. The separation was performed in two steps using the same solvent system with lower aqueous mobile phase. From 400 mg of the crude reaction mixture the first separation yielded 7.7 mg of fractions containing the target compound at 12.8% purity, and in the second run 1 mg of Cybesin was obtained at purity of 94.0% with a sample recovery rate of over 95% based on the LC–MS Analysis. PMID:20933483
Lubrication of Space Shuttle Main Engine Turbopump Bearings
NASA Technical Reports Server (NTRS)
Gibson, Howard; Munafo, Paul (Technical Monitor)
2001-01-01
The Space Shuttle has three main engines that are used for propulsion into orbit. These engines are fed propellants by four turbopumps on each engine. A main element in the turbopump is the bearings supporting the rotor that spins the turbine blades and the pump impeller. These bearings are required to spin at very high speeds, support radial and thrust loads, and have high wear resistance without the benefit of lubrication. The liquid hydrogen and oxygen propellants flow through the bearings to cool the surfaces. The volatile nature of the propellants excludes any conventional means of lubrication. Lubrication for these bearings is provided by the ball separator inside the bearing. The separator is a composite material that supplies a transfer film of lubrication to the rings and balls. New separator materials and lubrication schemes have been investigated at Marshall Space Flight Center in a bearing test rig with promising results. Hybrid bearings with silicon nitride balls have also been evaluated. The use of hybrid, silicon nitride ball bearings in conjunction -with better separator materials has shown excellent results. The work that Marshall has done is being utilized in turbopumps flying on the space shuttle fleet and will be utilized in future space travel. This result of this work is valuable for all aerospace and commercial applications where high-speed bearings are used.
Kidambi, Piran R; Mariappan, Dhanushkodi D; Dee, Nicholas T; Vyatskikh, Andrey; Zhang, Sui; Karnik, Rohit; Hart, A John
2018-03-28
Scalable, cost-effective synthesis and integration of graphene is imperative to realize large-area applications such as nanoporous atomically thin membranes (NATMs). Here, we report a scalable route to the production of NATMs via high-speed, continuous synthesis of large-area graphene by roll-to-roll chemical vapor deposition (CVD), combined with casting of a hierarchically porous polymer support. To begin, we designed and built a two zone roll-to-roll graphene CVD reactor, which sequentially exposes the moving foil substrate to annealing and growth atmospheres, with a sharp, isothermal transition between the zones. The configurational flexibility of the reactor design allows for a detailed evaluation of key parameters affecting graphene quality and trade-offs to be considered for high-rate roll-to-roll graphene manufacturing. With this system, we achieve synthesis of uniform high-quality monolayer graphene ( I D / I G < 0.065) at speeds ≥5 cm/min. NATMs fabricated from the optimized graphene, via polymer casting and postprocessing, show size-selective molecular transport with performance comparable to that of membranes made from conventionally synthesized graphene. Therefore, this work establishes the feasibility of a scalable manufacturing process of NATMs, for applications including protein desalting and small-molecule separations.
NASA Astrophysics Data System (ADS)
Miszczak, Jarosław Adam
2013-01-01
The presented package for the Mathematica computing system allows the harnessing of quantum random number generators (QRNG) for investigating the statistical properties of quantum states. The described package implements a number of functions for generating random states. The new version of the package adds the ability to use the on-line quantum random number generator service and implements new functions for retrieving lists of random numbers. Thanks to the introduced improvements, the new version provides faster access to high-quality sources of random numbers and can be used in simulations requiring large amount of random data. New version program summaryProgram title: TRQS Catalogue identifier: AEKA_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEKA_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 18 134 No. of bytes in distributed program, including test data, etc.: 2 520 49 Distribution format: tar.gz Programming language: Mathematica, C. Computer: Any supporting Mathematica in version 7 or higher. Operating system: Any platform supporting Mathematica; tested with GNU/Linux (32 and 64 bit). RAM: Case-dependent Supplementary material: Fig. 1 mentioned below can be downloaded. Classification: 4.15. External routines: Quantis software library (http://www.idquantique.com/support/quantis-trng.html) Catalogue identifier of previous version: AEKA_v1_0 Journal reference of previous version: Comput. Phys. Comm. 183(2012)118 Does the new version supersede the previous version?: Yes Nature of problem: Generation of random density matrices and utilization of high-quality random numbers for the purpose of computer simulation. Solution method: Use of a physical quantum random number generator and an on-line service providing access to the source of true random numbers generated by quantum real number generator. Reasons for new version: Added support for the high-speed on-line quantum random number generator and improved methods for retrieving lists of random numbers. Summary of revisions: The presented version provides two signicant improvements. The first one is the ability to use the on-line Quantum Random Number Generation service developed by PicoQuant GmbH and the Nano-Optics groups at the Department of Physics of Humboldt University. The on-line service supported in the version 2.0 of the TRQS package provides faster access to true randomness sources constructed using the laws of quantum physics. The service is freely available at https://qrng.physik.hu-berlin.de/. The use of this service allows using the presented package with the need of a physical quantum random number generator. The second improvement introduced in this version is the ability to retrieve arrays of random data directly for the used source. This increases the speed of the random number generation, especially in the case of an on-line service, where it reduces the time necessary to establish the connection. Thanks to the speed improvement of the presented version, the package can now be used in simulations requiring larger amounts of random data. Moreover, the functions for generating random numbers provided by the current version of the package more closely follow the pattern of functions for generating pseudo- random numbers provided in Mathematica. Additional comments: Speed comparison: The implementation of the support for the QRNG on-line service provides a noticeable improvement in the speed of random number generation. For the samples of real numbers of size 101; 102,…,107 the times required to generate these samples using Quantis USB device and QRNG service are compared in Fig. 1. The presented results show that the use of the on-line service provides faster access to random numbers. One should note, however, that the speed gain can increase or decrease depending on the connection speed between the computer and the server providing random numbers. Running time: Depends on the used source of randomness and the amount of random data used in the experiment. References: [1] M. Wahl, M. Leifgen, M. Berlin, T. Röhlicke, H.-J. Rahn, O. Benson., An ultrafast quantum random number generator with provably bounded output bias based on photon arrival time measurements, Applied Physics Letters, Vol. 098, 171105 (2011). http://dx.doi.org/10.1063/1.3578456.
Fluid flow dynamics in MAS systems
NASA Astrophysics Data System (ADS)
Wilhelm, Dirk; Purea, Armin; Engelke, Frank
2015-08-01
The turbine system and the radial bearing of a high performance magic angle spinning (MAS) probe with 1.3 mm-rotor diameter has been analyzed for spinning rates up to 67 kHz. We focused mainly on the fluid flow properties of the MAS system. Therefore, computational fluid dynamics (CFD) simulations and fluid measurements of the turbine and the radial bearings have been performed. CFD simulation and measurement results of the 1.3 mm-MAS rotor system show relatively low efficiency (about 25%) compared to standard turbo machines outside the realm of MAS. However, in particular, MAS turbines are mainly optimized for speed and stability instead of efficiency. We have compared MAS systems for rotor diameter of 1.3-7 mm converted to dimensionless values with classical turbomachinery systems showing that the operation parameters (rotor diameter, inlet mass flow, spinning rate) are in the favorable range. This dimensionless analysis also supports radial turbines for low speed MAS probes and diagonal turbines for high speed MAS probes. Consequently, a change from Pelton type MAS turbines to diagonal turbines might be worth considering for high speed applications. CFD simulations of the radial bearings have been compared with basic theoretical values proposing considerably smaller frictional loss values. The discrepancies might be due to the simple linear flow profile employed for the theoretical model. Frictional losses generated inside the radial bearings result in undesired heat-up of the rotor. The rotor surface temperature distribution computed by CFD simulations show a large temperature gradient over the rotor.
Ankle moment generation and maximum-effort curved sprinting performance.
Luo, Geng; Stefanyshyn, Darren
2012-11-15
Turning at high speed along acute curves is crucial for athletic performance. One determinant of curved sprinting speed is the ground reaction force that can be created by the supporting limb; the moment generated at the ankle joint may influence such force generation. Body lean associated with curved sprints positions the ankle joints in extreme in-/eversion, and may hinder the ankle moment generation. To examine the influence of ankle moment generation on curved sprinting performance, 17 male subjects performed maximum-effort curved sprints in footwear with and without a wedge. The wedged footwear was constructed with the intention to align the ankle joints closer to their neutral frontal-plane configuration during counter-clockwise curved sprints so greater joint moments might be generated. We found, with the wedged footwear, the average eversion angle of the inside leg ankle was reduced, and the plantarflexion moment generation increased significantly. Meanwhile, the knee extension moment remained unchanged. With the wedged footwear, stance-average centripetal ground reaction force increased significantly while no difference in the vertical ground reaction force was detected. The subjects created a greater centripetal ground reaction impulse in the wedged footwear despite a shortened stance phase when compared to the control. Stance-average curved sprinting speed improved by 4.3% with the wedged footwear. The changes in ankle moment and curved sprinting speed observed in the current study supports the notion that the moment generation at the ankle joint may be a performance constraint for curved sprinting. Copyright © 2012 Elsevier Ltd. All rights reserved.
Murcia, Michael J; Minner, Daniel E; Mustata, Gina-Mirela; Ritchie, Kenneth; Naumann, Christoph A
2008-11-12
The current study reports the facile design of quantum dot (QD)-conjugated lipids and their application to high-speed tracking experiments on cell surfaces. CdSe/ZnS core/shell QDs with two types of hydrophilic coatings, 2-(2-aminoethoxy)ethanol (AEE) and a 60:40 molar mixture of 1,2-dipalmitoyl- sn-glycero-3-phosphocholine and 1,2-dipalmitoyl- sn-glycero-3-phosphoethanolamine- N-[methoxy(polyethylene glycol-2000], are conjugated to sulfhydryl lipids via maleimide reactive groups on the QD surface. Prior to lipid conjugation, the colloidal stability of both types of coated QDs in aqueous solution is confirmed using fluorescence correlation spectroscopy. A sensitive assay based on single lipid tracking experiments on a planar solid-supported phospholipid bilayer is presented that establishes conditions of monovalent conjugation of QDs to lipids. The QD-lipids are then employed as single-molecule tracking probes in plasma membranes of several cell types. Initial tracking experiments at a frame rate of 30 frames/s corroborate that QD-lipids diffuse like dye-labeled lipids in the plasma membrane of COS-7, HEK-293, 3T3, and NRK cells, thus confirming monovalent labeling. Finally, QD-lipids are applied for the first time to high-speed single-molecule imaging by tracking their lateral mobility in the plasma membrane of NRK fibroblasts with up to 1000 frames/s. Our high-speed tracking data, which are in excellent agreement with previous tracking experiments that used larger (40 nm) Au labels, not only push the time resolution in long-time, continuous fluorescence-based single-molecule tracking but also show that highly photostable, photoluminescent nanoprobes of 10 nm size can be employed (AEE-coated QDs). These probes are also attractive because, unlike Au nanoparticles, they facilitate complex multicolor experiments.
Safi, Kamran; Kranstauber, Bart; Weinzierl, Rolf P.; Griffin, Larry; Reese, Eileen C.; Cabot, David; Cruz, Sebastian; Proaño, Carolina; Takekawa, John Y.; Newman, Scott H.; Waldenström, Jonas; Bengtsson, Daniel; Kays, Roland; Wikelski, Martin; Bohrer, Gil
2013-01-01
Background: Understanding how environmental conditions, especially wind, influence birds' flight speeds is a prerequisite for understanding many important aspects of bird flight, including optimal migration strategies, navigation, and compensation for wind drift. Recent developments in tracking technology and the increased availability of data on large-scale weather patterns have made it possible to use path annotation to link the location of animals to environmental conditions such as wind speed and direction. However, there are various measures available for describing not only wind conditions but also the bird's flight direction and ground speed, and it is unclear which is best for determining the amount of wind support (the length of the wind vector in a bird’s flight direction) and the influence of cross-winds (the length of the wind vector perpendicular to a bird’s direction) throughout a bird's journey.Results: We compared relationships between cross-wind, wind support and bird movements, using path annotation derived from two different global weather reanalysis datasets and three different measures of direction and speed calculation for 288 individuals of nine bird species. Wind was a strong predictor of bird ground speed, explaining 10-66% of the variance, depending on species. Models using data from different weather sources gave qualitatively similar results; however, determining flight direction and speed from successive locations, even at short (15 min intervals), was inferior to using instantaneous GPS-based measures of speed and direction. Use of successive location data significantly underestimated the birds' ground and airspeed, and also resulted in mistaken associations between cross-winds, wind support, and their interactive effects, in relation to the birds' onward flight.Conclusions: Wind has strong effects on bird flight, and combining GPS technology with path annotation of weather variables allows us to quantify these effects for understanding flight behaviour. The potentially strong influence of scaling effects must be considered and implemented in developing sampling regimes and data analysis.
Safi, Kamran; Kranstauber, Bart; Weinzierl, Rolf; Griffin, Larry; Rees, Eileen C; Cabot, David; Cruz, Sebastian; Proaño, Carolina; Takekawa, John Y; Newman, Scott H; Waldenström, Jonas; Bengtsson, Daniel; Kays, Roland; Wikelski, Martin; Bohrer, Gil
2013-01-01
Understanding how environmental conditions, especially wind, influence birds' flight speeds is a prerequisite for understanding many important aspects of bird flight, including optimal migration strategies, navigation, and compensation for wind drift. Recent developments in tracking technology and the increased availability of data on large-scale weather patterns have made it possible to use path annotation to link the location of animals to environmental conditions such as wind speed and direction. However, there are various measures available for describing not only wind conditions but also the bird's flight direction and ground speed, and it is unclear which is best for determining the amount of wind support (the length of the wind vector in a bird's flight direction) and the influence of cross-winds (the length of the wind vector perpendicular to a bird's direction) throughout a bird's journey. We compared relationships between cross-wind, wind support and bird movements, using path annotation derived from two different global weather reanalysis datasets and three different measures of direction and speed calculation for 288 individuals of nine bird species. Wind was a strong predictor of bird ground speed, explaining 10-66% of the variance, depending on species. Models using data from different weather sources gave qualitatively similar results; however, determining flight direction and speed from successive locations, even at short (15 min intervals), was inferior to using instantaneous GPS-based measures of speed and direction. Use of successive location data significantly underestimated the birds' ground and airspeed, and also resulted in mistaken associations between cross-winds, wind support, and their interactive effects, in relation to the birds' onward flight. Wind has strong effects on bird flight, and combining GPS technology with path annotation of weather variables allows us to quantify these effects for understanding flight behaviour. The potentially strong influence of scaling effects must be considered and implemented in developing sampling regimes and data analysis.
Molina, Sergio L; Stodden, David F
2018-04-01
This study examined variability in throwing speed and spatial error to test the prediction of an inverted-U function (i.e., impulse-variability [IV] theory) and the speed-accuracy trade-off. Forty-five 9- to 11-year-old children were instructed to throw at a specified percentage of maximum speed (45%, 65%, 85%, and 100%) and hit the wall target. Results indicated no statistically significant differences in variable error across the target conditions (p = .72), failing to support the inverted-U hypothesis. Spatial accuracy results indicated no statistically significant differences with mean radial error (p = .18), centroid radial error (p = .13), and bivariate variable error (p = .08) also failing to support the speed-accuracy trade-off in overarm throwing. As neither throwing performance variability nor accuracy changed across percentages of maximum speed in this sample of children as well as in a previous adult sample, current policy and practices of practitioners may need to be reevaluated.
Active magnetic bearings applied to industrial compressors
NASA Technical Reports Server (NTRS)
Kirk, R. G.; Hustak, J. F.; Schoeneck, K. A.
1993-01-01
The design and shop test results are given for a high-speed eight-stage centrifugal compressor supported by active magnetic bearings. A brief summary of the basic operation of active magnetic bearings and the required rotor dynamics analysis are presented with specific attention given to design considerations for optimum rotor stability. The concerns for retrofits of magnetic bearings in existing machinery are discussed with supporting analysis of a four-stage centrifugal compressor. The current status of industrial machinery in North America using this new support system is presented and recommendations are given on design and analysis requirements for successful machinery operation of either retrofit or new design turbomachinery.
Cornwell, William K; Tarumi, Takashi; Stickford, Abigail; Lawley, Justin; Roberts, Monique; Parker, Rosemary; Fitzsimmons, Catherine; Kibe, Julius; Ayers, Colby; Markham, David; Drazner, Mark H; Fu, Qi; Levine, Benjamin D
2015-12-15
Current-generation left ventricular assist devices provide circulatory support that is minimally or entirely nonpulsatile and are associated with marked increases in muscle sympathetic nerve activity (MSNA), likely through a baroreceptor-mediated pathway. We sought to determine whether the restoration of pulsatile flow through modulations in pump speed would reduce MSNA through the arterial baroreceptor reflex. Ten men and 3 women (54 ± 14 years) with Heartmate II continuous-flow left ventricular assist devices underwent hemodynamic and sympathetic neural assessment. Beat-to-beat blood pressure, carotid ultrasonography at the level of the arterial baroreceptors, and MSNA via microneurography were continuously recorded to determine steady-state responses to step changes (200-400 revolutions per minute) in continuous-flow left ventricular assist device pump speed from a maximum of 10,480 ± 315 revolutions per minute to a minimum of 8500 ± 380 revolutions per minute. Reductions in pump speed led to increases in pulse pressure (high versus low speed: 17 ± 7 versus 26 ± 12 mm Hg; P<0.01), distension of the carotid artery, and carotid arterial wall tension (P<0.05 for all measures). In addition, MSNA was reduced (high versus low speed: 41 ± 15 versus 33 ± 16 bursts per minute; P<0.01) despite a reduction in mean arterial pressure and was inversely related to pulse pressure (P=0.037). Among subjects with continuous-flow left ventricular assist devices, the restoration of pulsatile flow through modulations in pump speed leads to increased distortion of the arterial baroreceptors with a subsequent decline in MSNA. Additional study is needed to determine whether reduction of MSNA in this setting leads to improved outcomes. © 2015 American Heart Association, Inc.
Beam Instrument Development System
DOE Office of Scientific and Technical Information (OSTI.GOV)
DOOLITTLE, LAWRENCE; HUANG, GANG; DU, QIANG
Beam Instrumentation Development System (BIDS) is a collection of common support libraries and modules developed during a series of Low-Level Radio Frequency (LLRF) control and timing/synchronization projects. BIDS includes a collection of Hardware Description Language (HDL) libraries and software libraries. The BIDS can be used for the development of any FPGA-based system, such as LLRF controllers. HDL code in this library is generic and supports common Digital Signal Processing (DSP) functions, FPGA-specific drivers (high-speed serial link wrappers, clock generation, etc.), ADC/DAC drivers, Ethernet MAC implementation, etc.
1981-01-01
ACTIVITIES .......... ............................ 111-548 3/ de ~ &04A.... ~UNCLASSIFIED xiii 0- 4 UNCLASSIFIED FY 1932 ROTE CONGRESSIONAI. DESCRIPTIVE...Title: Comeunicatiois gnlineerin De -elo pmnt DOD Mission Area: i256 - Tactical Communications Sudget Activity: 04 - TactictI Programs Into the...tconditions ot heavy miiltary traffic, high speeds, and severe weather. Army Remote Sensors (REMS) were used to provide 4-cnrity of the Olympic Village complex
A Rotational Gyroscope with a Water-Film Bearing Based on Magnetic Self-Restoring Effect.
Chen, Dianzhong; Liu, Xiaowei; Zhang, Haifeng; Li, Hai; Weng, Rui; Li, Ling; Rong, Wanting; Zhang, Zhongzhao
2018-01-31
Stable rotor levitation is a challenge for rotational gyroscopes (magnetically suspended gyroscopes (MSG) and electrostatically suspended gyroscopes (ESG)) with a ring- or disk-shaped rotor, which restricts further improvement of gyroscope performance. In addition, complicated pick-up circuits and feedback control electronics propose high requirement on fabrication technology. In the proposed gyroscope, a ball-disk shaped rotor is supported by a water-film bearing, formed by centrifugal force to deionized water at the cavity of the lower supporting pillar. Water-film bearing provides stable mechanical support, without the need for complicated electronics and control system for rotor suspension. To decrease sliding friction between the rotor ball and the water-film bearing, a supherhydrophobic surface (SHS) with nano-structures is fabricated on the rotor ball, resulting in a rated spinning speed increase of 12.4% (under the same driving current). Rotor is actuated by the driving scheme of brushless direct current motor (BLDCM). Interaction between the magnetized rotor and the magnetic-conducted stator produces a sinusoidal rotor restoring torque, amplitude of which is proportional to the rotor deflection angle inherently. Utilization of this magnetic restoring effect avoids adding of a high amplitude voltage for electrostatic feedback, which may cause air breakdown. Two differential capacitance pairs are utilized to measure input angular speeds at perpendicular directions of the rotor plane. The bias stability of the fabricated gyroscope is as low as 0.5°/h.
DOT National Transportation Integrated Search
1999-12-01
Amtrak is planning to provide high-speed passenger train service at speeds significantly higher than their current top speed of 125 mph, and with these higher speeds, there are concerns with safety from the aerodynamic effects created by a passing tr...
The control system of synchronous movement of the gantry crane supports
NASA Astrophysics Data System (ADS)
Odnokopylov, I. G.; Gneushev, V. V.; Galtseva, O. V.; Natalinova, N. M.; Li, J.; Serebryakov, D. I.
2017-01-01
The paper presents study findings on synchronization of the gantry crane support movement. Asynchrony moving speed bearings may lead to an emergency mode at the natural rate of deformed metal structure alignment. The use of separate control of asynchronous motors with the vector control method allows synchronizing the movement speed of crane supports and achieving a balance between the motors. Simulation results of various control systems are described. Recommendations regarding the system further application are given.
Oceanographic Research Towers in European Waters
1992-12-01
equipped with an air - conditioner ). Precipitation and fog occurrence are 5 percent and I percent of the time. High humidity is frequent in summer. Water...salinity, temperature; existence of biological systems; air temperature; winds; other weather parameters, etc. "* Accommodation of instruments, support...monitoring network as employed by Rijkwaterstaat. It carries a meteorological station providing information on wind speed and direction, air pressure
Developing and Testing a Mobile Learning Games Framework
ERIC Educational Resources Information Center
Busch, Carsten; Claßnitz, Sabine; Selmanagic,, André; Steinicke, Martin
2015-01-01
In 2010 1.1 million pupils took private lessons in Germany, with 25% of all German children by the age of 17 having attended paid private lessons at some point in their school career (Klemm & Klemm, 2010). The high demand for support for learning curricular content led us to consider an integrated solution that speeds up both the design of…
Lean burn combustor technology at GE Aircraft Engines
NASA Technical Reports Server (NTRS)
Dodds, Willard J.
1992-01-01
This presentation summarizes progress to date at GE Aircraft Engines in demonstration of a lean combustion system for the High Speed Civil Transport (HSCT). These efforts were supported primarily by NASA contracts, with the exception of initial size and weight estimates and development of advanced diagnostics which were conducted under GE Independent Research and Development projects. Key accomplishments to date are summarized below.
ERIC Educational Resources Information Center
Colom, Roberto; Stein, Jason L.; Rajagopalan, Priya; Martinez, Kenia; Hermel, David; Wang, Yalin; Alvarez-Linera, Juan; Burgaleta, Miguel; Quiroga, Ma. Angeles; Shih, Pei Chun; Thompson, Paul M.
2013-01-01
Here we apply a method for automated segmentation of the hippocampus in 3D high-resolution structural brain MRI scans. One hundred and four healthy young adults completed twenty one tasks measuring abstract, verbal, and spatial intelligence, along with working memory, executive control, attention, and processing speed. After permutation tests…
A study of the relationship between micropulsations and solar wind properties
NASA Technical Reports Server (NTRS)
Yedidia, B. A.; Lazarus, A. J.; Vellante, M.; Villante, U.
1991-01-01
A year-long comparison between daily averages of solar wind parameters obtained from the MIT experiment on IMP-8 and micropulsation measurements made by the Universita dell'Aquila has shown a correlation between solar wind speed and micropulsation power with peaks of the correlation coefficient greater than 0.8 in the period range from 20 to 40 s. Different behavior observed for different period bands suggests that the shorter period activity tends to precede the highest values of the solar wind speed while the longer period activity tends to persist for longer intervals within high velocity solar wind streams. A comparison with simultaneous interplanetary magnetic field measurements supports the upstream origin of the observed ground pulsations.
Quantum sequencing: opportunities and challenges
NASA Astrophysics Data System (ADS)
di Ventra, Massimiliano
Personalized or precision medicine refers to the ability of tailoring drugs to the specific genome and transcriptome of each individual. It is however not yet feasible due the high costs and slow speed of present DNA sequencing methods. I will discuss a sequencing protocol that requires the measurement of the distributions of transverse tunneling currents during the translocation of single-stranded DNA into nanochannels. I will show that such a quantum sequencing approach can reach unprecedented speeds, without requiring any chemical preparation, amplification or labeling. I will discuss recent experiments that support these theoretical predictions, the advantages of this approach over other sequencing methods, and stress the challenges that need to be overcome to render it commercially viable.
Cheung, Kit; Schultz, Simon R; Luk, Wayne
2015-01-01
NeuroFlow is a scalable spiking neural network simulation platform for off-the-shelf high performance computing systems using customizable hardware processors such as Field-Programmable Gate Arrays (FPGAs). Unlike multi-core processors and application-specific integrated circuits, the processor architecture of NeuroFlow can be redesigned and reconfigured to suit a particular simulation to deliver optimized performance, such as the degree of parallelism to employ. The compilation process supports using PyNN, a simulator-independent neural network description language, to configure the processor. NeuroFlow supports a number of commonly used current or conductance based neuronal models such as integrate-and-fire and Izhikevich models, and the spike-timing-dependent plasticity (STDP) rule for learning. A 6-FPGA system can simulate a network of up to ~600,000 neurons and can achieve a real-time performance of 400,000 neurons. Using one FPGA, NeuroFlow delivers a speedup of up to 33.6 times the speed of an 8-core processor, or 2.83 times the speed of GPU-based platforms. With high flexibility and throughput, NeuroFlow provides a viable environment for large-scale neural network simulation.
Cheung, Kit; Schultz, Simon R.; Luk, Wayne
2016-01-01
NeuroFlow is a scalable spiking neural network simulation platform for off-the-shelf high performance computing systems using customizable hardware processors such as Field-Programmable Gate Arrays (FPGAs). Unlike multi-core processors and application-specific integrated circuits, the processor architecture of NeuroFlow can be redesigned and reconfigured to suit a particular simulation to deliver optimized performance, such as the degree of parallelism to employ. The compilation process supports using PyNN, a simulator-independent neural network description language, to configure the processor. NeuroFlow supports a number of commonly used current or conductance based neuronal models such as integrate-and-fire and Izhikevich models, and the spike-timing-dependent plasticity (STDP) rule for learning. A 6-FPGA system can simulate a network of up to ~600,000 neurons and can achieve a real-time performance of 400,000 neurons. Using one FPGA, NeuroFlow delivers a speedup of up to 33.6 times the speed of an 8-core processor, or 2.83 times the speed of GPU-based platforms. With high flexibility and throughput, NeuroFlow provides a viable environment for large-scale neural network simulation. PMID:26834542
2008 13th Expeditionary Warfare Conference
2008-10-23
Ships 6 Joint High Speed Vessel (JHSV) • Program Capability – High speed lift ship capable of transporting cargo and personnel across intra... high - speed aluminum trimaran hullform that enables the ship to reach sustainable speeds of over 40 knots and range in excess of 3,500 nautical miles...advancing concepts for a very high speed , manned submersible,
High-speed and ultrahigh-speed cinematographic recording techniques
NASA Astrophysics Data System (ADS)
Miquel, J. C.
1980-12-01
A survey is presented of various high-speed and ultrahigh-speed cinematographic recording systems (covering a range of speeds from 100 to 14-million pps). Attention is given to the functional and operational characteristics of cameras and to details of high-speed cinematography techniques (including image processing, and illumination). A list of cameras (many of them French) available in 1980 is presented
High-speed civil transport flight- and propulsion-control technological issues
NASA Technical Reports Server (NTRS)
Ray, J. K.; Carlin, C. M.; Lambregts, A. A.
1992-01-01
Technology advances required in the flight and propulsion control system disciplines to develop a high speed civil transport (HSCT) are identified. The mission and requirements of the transport and major flight and propulsion control technology issues are discussed. Each issue is ranked and, for each issue, a plan for technology readiness is given. Certain features are unique and dominate control system design. These features include the high temperature environment, large flexible aircraft, control-configured empennage, minimizing control margins, and high availability and excellent maintainability. The failure to resolve most high-priority issues can prevent the transport from achieving its goals. The flow-time for hardware may require stimulus, since market forces may be insufficient to ensure timely production. Flight and propulsion control technology will contribute to takeoff gross weight reduction. Similar technology advances are necessary also to ensure flight safety for the transport. The certification basis of the HSCT must be negotiated between airplane manufacturers and government regulators. Efficient, quality design of the transport will require an integrated set of design tools that support the entire engineering design team.
High-speed single-photon signaling for daytime QKD
NASA Astrophysics Data System (ADS)
Bienfang, Joshua; Restelli, Alessandro; Clark, Charles
2011-03-01
The distribution of quantum-generated cryptographic key at high throughputs can be critically limited by the performance of the systems' single-photon detectors. While noise and afterpulsing are considerations for all single-photon QKD systems, high-transmission rate systems also have critical detector timing-resolution and recovery time requirements. We present experimental results exploiting the high timing resolution and count-rate stability of modified single-photon avalanche diodes (SPADs) in our GHz QKD system operating over a 1.5 km free-space link that demonstrate the ability to apply extremely short temporal gates, enabling daytime free-space QKD with a 4% QBER. We also discuss recent advances in gating techniques for InGaAs SPADs that are suitable for high-speed fiber-based QKD. We present afterpulse-probability measurements that demonstrate the ability to support single-photon count rates above 100 MHz with low afterpulse probability. These results will benefit the design and characterization of free-space and fiber QKD systems. A. Restelli, J.C. Bienfang A. Mink, and C.W. Clark, IEEE J. Sel. Topics in Quant. Electron 16, 1084 (2010).
NASA Technical Reports Server (NTRS)
Drozda, Tomasz G.; Quinlan, Jesse R.; Pisciuneri, Patrick H.; Yilmaz, S. Levent
2012-01-01
Significant progress has been made in the development of subgrid scale (SGS) closures based on a filtered density function (FDF) for large eddy simulations (LES) of turbulent reacting flows. The FDF is the counterpart of the probability density function (PDF) method, which has proven effective in Reynolds averaged simulations (RAS). However, while systematic progress is being made advancing the FDF models for relatively simple flows and lab-scale flames, the application of these methods in complex geometries and high speed, wall-bounded flows with shocks remains a challenge. The key difficulties are the significant computational cost associated with solving the FDF transport equation and numerically stiff finite rate chemistry. For LES/FDF methods to make a more significant impact in practical applications a pragmatic approach must be taken that significantly reduces the computational cost while maintaining high modeling fidelity. An example of one such ongoing effort is at the NASA Langley Research Center, where the first generation FDF models, namely the scalar filtered mass density function (SFMDF) are being implemented into VULCAN, a production-quality RAS and LES solver widely used for design of high speed propulsion flowpaths. This effort leverages internal and external collaborations to reduce the overall computational cost of high fidelity simulations in VULCAN by: implementing high order methods that allow reduction in the total number of computational cells without loss in accuracy; implementing first generation of high fidelity scalar PDF/FDF models applicable to high-speed compressible flows; coupling RAS/PDF and LES/FDF into a hybrid framework to efficiently and accurately model the effects of combustion in the vicinity of the walls; developing efficient Lagrangian particle tracking algorithms to support robust solutions of the FDF equations for high speed flows; and utilizing finite rate chemistry parametrization, such as flamelet models, to reduce the number of transported reactive species and remove numerical stiffness. This paper briefly introduces the SFMDF model (highlighting key benefits and challenges), and discusses particle tracking for flows with shocks, the hybrid coupled RAS/PDF and LES/FDF model, flamelet generated manifolds (FGM) model, and the Irregularly Portioned Lagrangian Monte Carlo Finite Difference (IPLMCFD) methodology for scalable simulation of high-speed reacting compressible flows.
Deliyski, Dimitar D.; Hillman, Robert E.
2015-01-01
Purpose The authors discuss the rationale behind the term laryngeal high-speed videoendoscopy to describe the application of high-speed endoscopic imaging techniques to the visualization of vocal fold vibration. Method Commentary on the advantages of using accurate and consistent terminology in the field of voice research is provided. Specific justification is described for each component of the term high-speed videoendoscopy, which is compared and contrasted with alternative terminologies in the literature. Results In addition to the ubiquitous high-speed descriptor, the term endoscopy is necessary to specify the appropriate imaging technology and distinguish among modalities such as ultrasound, magnetic resonance imaging, and nonendoscopic optical imaging. Furthermore, the term video critically indicates the electronic recording of a sequence of optical still images representing scenes in motion, in contrast to strobed images using high-speed photography and non-optical high-speed magnetic resonance imaging. High-speed videoendoscopy thus concisely describes the technology and can be appended by the desired anatomical nomenclature such as laryngeal. Conclusions Laryngeal high-speed videoendoscopy strikes a balance between conciseness and specificity when referring to the typical high-speed imaging method performed on human participants. Guidance for the creation of future terminology provides clarity and context for current and future experiments and the dissemination of results among researchers. PMID:26375398
14 CFR 23.253 - High speed characteristics.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false High speed characteristics. 23.253 Section... Requirements § 23.253 High speed characteristics. If a maximum operating speed VMO/MMO is established under § 23.1505(c), the following speed increase and recovery characteristics must be met: (a) Operating...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-19
...-Speed Rail Authority--Construction Exemption--in Merced, Madera and Fresno Counties, Cal AGENCY: Surface...-Speed Rail Authority (Authority) to construct an approximately 65- mile high-speed passenger rail line... statewide California High-Speed Train System. This exemption is subject to environmental mitigation...
14 CFR 23.253 - High speed characteristics.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false High speed characteristics. 23.253 Section... Requirements § 23.253 High speed characteristics. If a maximum operating speed VMO/MMO is established under § 23.1505(c), the following speed increase and recovery characteristics must be met: (a) Operating...
Predictors of older drivers' involvement in high-range speeding behavior.
Chevalier, Anna; Coxon, Kristy; Rogers, Kris; Chevalier, Aran John; Wall, John; Brown, Julie; Clarke, Elizabeth; Ivers, Rebecca; Keay, Lisa
2017-02-17
Even small increases in vehicle speed raise crash risk and resulting injury severity. Older drivers are at increased risk of involvement in casualty crashes and injury compared to younger drivers. However, there is little objective evidence about older drivers' speeding. This study investigates the nature and predictors of high-range speeding among drivers aged 75-94 years. Speed per second was estimated using Global Positioning System devices installed in participants' vehicles. High-range speeding events were defined as traveling an average 10+km/h above the speed limit over 30 seconds. Descriptive analysis examined speeding events by participant characteristics and mileage driven. Regression analyses were used to examine the association between involvement in high-range speeding events and possible predictive factors. Most (96%, 182/190) participants agreed to have their vehicle instrumented, and speeding events were accurately recorded for 97% (177/182) of participants. While 77% (136/177) of participants were involved in one or more high-range events, 42% (75/177) were involved in greater than five events during 12-months of data collection. Participants involved in high-range events drove approximately twice as many kilometres as those not involved. High-range events tended to be infrequent (median = 6 per 10,000 km; IQR = 2-18). The rate of high-range speeding was associated with better cognitive function and attention to the driving environment. This suggests those older drivers with poorer cognition and visual attention may drive more cautiously, thereby reducing their high-range speeding behavior.
Bag-breakup control of surface drag in hurricanes
NASA Astrophysics Data System (ADS)
Troitskaya, Yuliya; Zilitinkevich, Sergej; Kandaurov, Alexander; Ermakova, Olga; Kozlov, Dmitry; Sergeev, Daniil
2016-04-01
Air-sea interaction at extreme winds is of special interest now in connection with the problem of the sea surface drag reduction at the wind speed exceeding 30-35 m/s. This phenomenon predicted by Emanuel (1995) and confirmed by a number of field (e.g., Powell, et al, 2003) and laboratory (Donelan et al, 2004) experiments still waits its physical explanation. Several papers attributed the drag reduction to spume droplets - spray turning off the crests of breaking waves (e.g., Kudryavtsev, Makin, 2011, Bao, et al, 2011). The fluxes associated with the spray are determined by the rate of droplet production at the surface quantified by the sea spray generation function (SSGF), defined as the number of spray particles of radius r produced from the unit area of water surface in unit time. However, the mechanism of spume droplets' formation is unknown and empirical estimates of SSGF varied over six orders of magnitude; therefore, the production rate of large sea spray droplets is not adequately described and there are significant uncertainties in estimations of exchange processes in hurricanes. Herewith, it is unknown what is air-sea interface and how water is fragmented to spray at hurricane wind. Using high-speed video, we observed mechanisms of production of spume droplets at strong winds by high-speed video filming, investigated statistics and compared their efficiency. Experiments showed, that the generation of the spume droplets near the wave crest is caused by the following events: bursting of submerged bubbles, generation and breakup of "projections" and "bag breakup". Statistical analysis of results of these experiments showed that the main mechanism of spray-generation is attributed to "bag-breakup mechanism", namely, inflating and consequent blowing of short-lived, sail-like pieces of the water-surface film. Using high-speed video, we show that at hurricane winds the main mechanism of spray production is attributed to "bag-breakup", namely, inflating and consequent breaking of short-lived, sail-like pieces of the water-surface film - "bags". On the base of general principles of statistical physics (model of a canonical ensemble) we developed statistics of the "bag-breakup" events: their number and statistical distribution of geometrical parameters depending on wind speed. Basing on the developed statistics, we estimated the surface stress caused by bags as the average sum of stresses caused by individual bags depending on their eometrical parameters. The resulting stress is subjected to counteracting impacts of the increasing wind speed: the increasing number of bags, and their decreasing sizes and life times and the balance yields a peaking dependence of the bag resistance on the wind speed: the share of bag-stress peaks at U10 35 m/s and then reduces. Peaking of surface stress associated with the "bag-breakup" explains seemingly paradoxical non-monotonous wind-dependence of surface drag coefficient peaking at winds about 35 m/s. This work was supported by the Russian Foundation of Basic Research (14-05-91767, 13-05-12093, 16-05-00839, 14-05-91767, 16-55-52025, 15-35-20953) and experiment and equipment was supported by Russian Science Foundation (Agreements 14-17-00667 and 15-17-20009 respectively), Yu.Troitskaya, A.Kandaurov and D.Sergeev were partially supported by FP7 Collaborative Project No. 612610.
Running energetics in the pronghorn antelope.
Lindstedt, S L; Hokanson, J F; Wells, D J; Swain, S D; Hoppeler, H; Navarro, V
1991-10-24
The pronghorn antelope (Antilocapra americana) has an alleged top speed of 100 km h-1, second only to the cheetah (Acionyx jubatus) among land vertebrates, a possible response to predation in the exposed habitat of the North American prairie. Unlike cheetahs, however, pronghorn antelope are distance runners rather than sprinters, and can run 11 km in 10 min, an average speed of 65 km h-1. We measured maximum oxygen uptake in pronghorn antelope to distinguish between two potential explanations for this ability: either they have evolved a uniquely high muscular efficiency (low cost of transport) or they can supply oxygen to the muscles at unusually high levels. Because the cost of transport (energy per unit distance covered per unit body mass) varies as a predictable function of body mass among terrestrial vertebrates, we can calculate the predicted cost to maintain speeds of 65 and 100 km h-1 in an average 32-kg animal. The resulting range of predicted values, 3.2-5.1 ml O2 kg-1 s-1, far surpasses the predicted maximum aerobic capacity of a 32-kg mammal (1.5 ml O2 kg-1 s-1). We conclude that their performance is achieved by an extraordinary capacity to consume and process enough oxygen to support a predicted running speed greater than 20 ms-1 (70 km h-1), attained without unique respiratory-system structures.
NASA Technical Reports Server (NTRS)
Lieber, Lysbeth; Repp, Russ; Weir, Donald S.
1996-01-01
A calibration of the acoustic and aerodynamic prediction methods was performed and a baseline fan definition was established and evaluated to support the quiet high speed fan program. A computational fluid dynamic analysis of the NASA QF-12 Fan rotor, using the DAWES flow simulation program was performed to demonstrate and verify the causes of the relatively poor aerodynamic performance observed during the fan test. In addition, the rotor flowfield characteristics were qualitatively compared to the acoustic measurements to identify the key acoustic characteristics of the flow. The V072 turbofan source noise prediction code was used to generate noise predictions for the TFE731-60 fan at three operating conditions and compared to experimental data. V072 results were also used in the Acoustic Radiation Code to generate far field noise for the TFE731-60 nacelle at three speed points for the blade passage tone. A full 3-D viscous flow simulation of the current production TFE731-60 fan rotor was performed with the DAWES flow analysis program. The DAWES analysis was used to estimate the onset of multiple pure tone noise, based on predictions of inlet shock position as a function of the rotor tip speed. Finally, the TFE731-60 fan rotor wake structure predicted by the DAWES program was used to define a redesigned stator with the leading edge configured to minimize the acoustic effects of rotor wake / stator interaction, without appreciably degrading performance.
Electron hole tracking PIC simulation
NASA Astrophysics Data System (ADS)
Zhou, Chuteng; Hutchinson, Ian
2016-10-01
An electron hole is a coherent BGK mode solitary wave. Electron holes are observed to travel at high velocities relative to bulk plasmas. The kinematics of a 1-D electron hole is studied using a novel Particle-In-Cell simulation code with fully kinetic ions. A hole tracking technique enables us to follow the trajectory of a fast-moving solitary hole and study quantitatively hole acceleration and coupling to ions. The electron hole signal is detected and the simulation domain moves by a carefully designed feedback control law to follow its propagation. This approach has the advantage that the length of the simulation domain can be significantly reduced to several times the hole width, which makes high resolution simulations tractable. We observe a transient at the initial stage of hole formation when the hole accelerates to several times the cold-ion sound speed. Artificially imposing slow ion speed changes on a fully formed hole causes its velocity to change even when the ion stream speed in the hole frame greatly exceeds the ion thermal speed, so there are no reflected ions. The behavior that we observe in numerical simulations agrees very well with our analytic theory of hole momentum conservation and energization effects we call ``jetting''. The work was partially supported by the NSF/DOE Basic Plasma Science Partnership under Grant DE-SC0010491. Computer simulations were carried out on the MIT PSFC parallel AMD Opteron/Infiniband cluster Loki.
High speed, multi-channel, thermal instrument development in support of HyspIRI-TIR
NASA Astrophysics Data System (ADS)
Johnson, William R.; Hook, Simon J.; Foote, Marc; Eng, Bjorn T.; Jau, Bruno
2011-10-01
The Jet Propulsion Laboratory is currently developing an end-to-end instrument which will provide a proof of concept prototype vehicle for a high data rate, multi-channel, thermal instrument in support of the Hyperspectral Infrared Imager (HyspIRI)-Thermal Infrared (TIR) space mission. HyspIRI mission was recommended by the National Research Council Decadal Survey (DS). The HyspIRI mission includes a visible shortwave infrared (SWIR) pushboom spectrometer and a multispectral whiskbroom thermal infrared (TIR) imager. The prototype testbed instrument addressed in this effort will only support the TIR. Data from the HyspIRI mission will be used to address key science questions related to the Solid Earth and Carbon Cycle and Ecosystems focus areas of the NASA Science Mission Directorate. Current designs for the HyspIRI-TIR space borne imager utilize eight spectral bands delineated with filters. The system will have 60m ground resolution, 200mK NEDT, 0.5C absolute temperature resolution with a 5-day repeat from LEO orbit. The prototype instrument will use mercury cadmium telluride (MCT) technology at the focal plane array in time delay integration mode. A custom read out integrated circuit (ROIC) will provide the high speed readout hence high data rates needed for the 5 day repeat. The current HyspIRI requirements dictate a ground knowledge measurement of 30m, so the prototype instrument will tackle this problem with a newly developed interferometeric metrology system. This will provide an absolute measurement of the scanning mirror to an order of magnitude better than conventional optical encoders. This will minimize the reliance on ground control points hence minimizing postprocessing (e.g. geo-rectification computations).
High Speed Modulation, Beam Steering and Control of High Power Diode Lasers
2000-03-03
designing the interactive simulator in such a way that the user will be able to probe the system and change parameters on the fly. Pull -down menus will...AR and HR coatings, beam splitters, external cavities, etc) can be built and accessed via pull -down menus within an optical systems graphical GUI...supported in part by the National Science Foundation’s GOALI program under grant number DM59811466 and AFOSR under contract number F49620-97-1-0002 and
Retooling the nurse executive for 21st century practice: decision support systems.
Fralic, M F; Denby, C B
2000-01-01
Health care financing and care delivery systems are changing at almost warp speed. This requires new responses and new capabilities from contemporary nurse executives and calls for new approaches to the preparation of the next generation of nursing leaders. The premise of this article is that, in these highly unstable environments, the nurse executive faces the need to make high-impact decisions in relatively short time frames. A standardized process for objective decision making becomes essential. This article describes that process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bachan, John
Chisel is a new open-source hardware construction language developed at UC Berkeley that supports advanced hardware design using highly parameterized generators and layered domain-specific hardware languages. Chisel is embedded in the Scala programming language, which raises the level of hardware design abstraction by providing concepts including object orientation, functional programming, parameterized types, and type inference. From the same source, Chisel can generate a high-speed C++-based cycle-accurate software simulator, or low-level Verilog designed to pass on to standard ASIC or FPGA tools for synthesis and place and route.
Silicon Technologies Adjust to RF Applications
NASA Technical Reports Server (NTRS)
Reinecke Taub, Susan; Alterovitz, Samuel A.
1994-01-01
Silicon (Si), although not traditionally the material of choice for RF and microwave applications, has become a serious challenger to other semiconductor technologies for high-frequency applications. Fine-line electron- beam and photolithographic techniques are now capable of fabricating silicon gate sizes as small as 0.1 micron while commonly-available high-resistivity silicon wafers support low-loss microwave transmission lines. These advances, coupled with the recent development of silicon-germanium (SiGe), arm silicon integrated circuits (ICs) with the speed required for increasingly higher-frequency applications.
Optical burst switching based satellite backbone network
NASA Astrophysics Data System (ADS)
Li, Tingting; Guo, Hongxiang; Wang, Cen; Wu, Jian
2018-02-01
We propose a novel time slot based optical burst switching (OBS) architecture for GEO/LEO based satellite backbone network. This architecture can provide high speed data transmission rate and high switching capacity . Furthermore, we design the control plane of this optical satellite backbone network. The software defined network (SDN) and network slice (NS) technologies are introduced. Under the properly designed control mechanism, this backbone network is flexible to support various services with diverse transmission requirements. Additionally, the LEO access and handoff management in this network is also discussed.
Liu, Yang; Sanchez, Pablo G; Wei, Xufeng; Li, Tieluo; Watkins, Amelia C; Li, Shu-ying; Griffith, Bartley P; Wu, Zhongjun J
2014-01-01
Background Device availability of mechanical circulatory or respiratory support to the right heart has been limited. The purpose of this study was to investigate the effect of right heart unloading and respiratory support with a wearable integrated artificial pump-lung (APL). Methods The APL device was placed surgically between the right atrium and pulmonary artery in seven sheep. Anticoagulation was performed with heparin infusion. Its ability to unload the right ventricle (RV) was investigated by echocardiograms and right heart catheterization at different bypass flow rates. Hemodynamics and Echo data were evaluated. The device flow and gas transfer rates were also measured at different device speeds. Results Hemodynamics remained stable during APL support. There was no significant change in systemic blood pressure and cardiac index. Central venous pressure, RV pressure, RV end-diastolic dimension and RV ejection fraction were significant decreased when APL device flow rate approached 2 L/min. The linear regression showed significant correlative trends between the hemodynamic and cardiac indices and the device speed. The oxygen transfer rate increased with the device speed. The oxygen saturation from APL outlet was fully saturated (>95%) during the support. The impact of the APL support on blood elements (plasma free hemoglobin and platelet activation) was minimal. Conclusion The APL device support significantly unloaded the right ventricle with increasing device speed. The APL device provided stable hemodynamic and respiratory support in terms of blood flow and oxygen transfer. The right heart unloading performance of this wearable device need to be evaluated in the animal model with right heart failure for a long term support. PMID:24746636
Research on bearing fault diagnosis of large machinery based on mathematical morphology
NASA Astrophysics Data System (ADS)
Wang, Yu
2018-04-01
To study the automatic diagnosis of large machinery fault based on support vector machine, combining the four common faults of the large machinery, the support vector machine is used to classify and identify the fault. The extracted feature vectors are entered. The feature vector is trained and identified by multi - classification method. The optimal parameters of the support vector machine are searched by trial and error method and cross validation method. Then, the support vector machine is compared with BP neural network. The results show that the support vector machines are short in time and high in classification accuracy. It is more suitable for the research of fault diagnosis in large machinery. Therefore, it can be concluded that the training speed of support vector machines (SVM) is fast and the performance is good.
Bozkurt, Selim; van de Vosse, Frans N; Rutten, Marcel C M
Continuous-flow left ventricular assist devices (CF-LVADs) generally operate at a constant speed, which reduces pulsatility in the arteries and may lead to complications such as functional changes in the vascular system, gastrointestinal bleeding, or both. The purpose of this study is to increase the arterial pulse pressure and pulsatility by controlling the CF-LVAD flow rate. A MicroMed DeBakey pump was used as the CF-LVAD. A model simulating the flow rate through the aortic valve was used as a reference model to drive the pump. A mock circulation containing two synchronized servomotor-operated piston pumps acting as left and right ventricles was used as a circulatory system. Proportional-integral control was used as the control method. First, the CF-LVAD was operated at a constant speed. With pulsatile-speed CF-LVAD assistance, the pump was driven such that the same mean pump output was generated. Continuous and pulsatile-speed CF-LVAD assistance provided the same mean arterial pressure and flow rate, while the index of pulsatility increased significantly for both arterial pressure and pump flow rate signals under pulsatile speed pump support. This study shows the possibility of improving the pulsatility of CF-LVAD support by regulating pump speed over a cardiac cycle without reducing the overall level of support.
High-speed large angle mammography tomosynthesis system
NASA Astrophysics Data System (ADS)
Eberhard, Jeffrey W.; Staudinger, Paul; Smolenski, Joe; Ding, Jason; Schmitz, Andrea; McCoy, Julie; Rumsey, Michael; Al-Khalidy, Abdulrahman; Ross, William; Landberg, Cynthia E.; Claus, Bernhard E. H.; Carson, Paul; Goodsitt, Mitchell; Chan, Heang-Ping; Roubidoux, Marilyn; Thomas, Jerry A.; Osland, Jacqueline
2006-03-01
A new mammography tomosynthesis prototype system that acquires 21 projection images over a 60 degree angular range in approximately 8 seconds has been developed and characterized. Fast imaging sequences are facilitated by a high power tube and generator for faster delivery of the x-ray exposure and a high speed detector read-out. An enhanced a-Si/CsI flat panel digital detector provides greater DQE at low exposure, enabling tomo image sequence acquisitions at total patient dose levels between 150% and 200% of the dose of a standard mammographic view. For clinical scenarios where a single MLO tomographic acquisition per breast may replace the standard CC and MLO views, total tomosynthesis breast dose is comparable to or below the dose in standard mammography. The system supports co-registered acquisition of x-ray tomosynthesis and 3-D ultrasound data sets by incorporating an ultrasound transducer scanning system that flips into position above the compression paddle for the ultrasound exam. Initial images acquired with the system are presented.
Spin qubit transport in a double quantum dot
NASA Astrophysics Data System (ADS)
Zhao, Xinyu; Hu, Xuedong
Long distance spin communication is a crucial ingredient to scalable quantum computer architectures based on electron spin qubits. One way to transfer spin information over a long distance on chip is via electron transport. Here we study the transport of an electron spin qubit in a double quantum dot by tuning the interdot detuning voltage. We identify a parameter regime where spin relaxation hot-spots can be avoided and high-fidelity spin transport is possible. Within this parameter space, the spin transfer fidelity is determined by the operation speed and the applied magnetic field. In particular, near zero detuning, a proper choice of operation speed is essential to high fidelity. In addition, we also investigate the modification of the effective g-factor by the interdot detuning, which could lead to a phase error between spin up and down states. The results presented in this work could be a useful guidance for experimentally achieving high-fidelity spin qubit transport. We thank financial support by US ARO via Grant W911NF1210609.
NASA Technical Reports Server (NTRS)
Abel, Irving
1997-01-01
An overview of recently completed programs in aeroelasticity and structural dynamics research at the NASA Langley Research Center is presented. Methods used to perform flutter clearance studies in the wind-tunnel on a high performance fighter are discussed. Recent advances in the use of smart structures and controls to solve aeroelastic problems, including flutter and gust response are presented. An aeroelastic models program designed to support an advanced high speed civil transport is described. An extension to transonic small disturbance theory that better predicts flows involving separation and reattachment is presented. The results of a research study to determine the effects of flexibility on the taxi and takeoff characteristics of a high speed civil transport are presented. The use of photogrammetric methods aboard Space Shuttle to measure spacecraft dynamic response is discussed. Issues associated with the jitter response of multi-payload spacecraft are discussed. Finally a Space Shuttle flight experiment that studied the control of flexible spacecraft is described.
NASA Astrophysics Data System (ADS)
Poludnenko, Alexei
2016-11-01
Turbulent reacting flows are pervasive both in our daily lives on Earth and in the Universe. They power modern society being at the heart of many energy generation and propulsion systems, such as gas turbines, internal combustion and jet engines. On astronomical scales, thermonuclear turbulent flames are the driver of some of the most powerful explosions in the Universe, knows as Type Ia supernovae. Despite this ubiquity in Nature, turbulent reacting flows still pose a number of fundamental questions often exhibiting surprising and unexpected behavior. In this talk, we will discuss several such phenomena observed in direct numerical simulations of high-speed, premixed, turbulent flames. We show that turbulent flames in certain regimes are intrinsically unstable even in the absence of the surrounding combustor walls or obstacles, which can support the thermoacoustic feedback. Such instability can fundamentally change the structure and dynamics of the turbulent cascade, resulting in a significant (and anisotropic) redistribution of kinetic energy from small to large scales. In particular, three effects are observed. 1) The turbulent burning velocity can develop pulsations with significant peak-to-peak amplitudes. 2) Unstable burning can result in pressure build-up and the formation of pressure waves or shocks when the flame speed approaches or exceeds the speed of a Chapman-Jouguet deflagration. 3) Coupling of pressure and density gradients across the flame can lead to the anisotropic generation of turbulence inside the flame volume and flame acceleration. We extend our earlier analysis, which relied on a simplified single-step reaction model, by demonstrating existence of these effects in realistic chemical flames (hydrogen and methane) and in thermonuclear flames in degenerate, relativistic plasmas found in stellar interiors. Finally, we discuss the implications of these results for subgrid-scale LES combustion models. This work was supported by the Air Force Office of Scientific Research (AFOSR) under Award No. F4FGA06055G001, and the Department of Defense (DoD) High Performance Computing Modernization Program (HPCMP) under a Frontier project award.
Western and Clark's grebes use novel strategies for running on water.
Clifton, Glenna T; Hedrick, Tyson L; Biewener, Andrew A
2015-04-15
Few vertebrates run on water. The largest animals to accomplish this feat are western and Clark's grebes (Aechmophorus occidentalis and Aechmophorus clarkii). These birds use water running to secure a mate during a display called rushing. Grebes weigh an order of magnitude more than the next largest water runners, basilisk lizards (Basilicus basiliscus), and therefore face a greater challenge to support their body weight. How do these birds produce the hydrodynamic forces necessary to overcome gravity and sustain rushing? We present the first quantitative study of water running by grebes. High-speed video recordings elucidate the hindlimb movements of grebes rushing in the wild. We complement these findings with laboratory experiments using physical models and a preserved grebe foot to estimate how slapping the water surface contributes to weight support. Our results indicate that grebes use three novel tactics to successfully run on water. First, rushing grebes use exceptionally high stride rates, reaching 10 Hz. Second, grebe foot size and high water impact speed allow grebes to generate up to 30-55% of the required weight support through water slap alone. Finally, flattened foot bones reduce downward drag, permitting grebes to retract each foot from the water laterally. Together, these mechanisms outline a water-running strategy qualitatively different from that of the only previously studied water runner, the basilisk lizard. The hydrodynamic specializations of rushing grebes could inform the design of biomimetic appendages. Furthermore, the mechanisms underlying this impressive display demonstrate that evolution can dramatically alter performance under sexual selection. © 2015. Published by The Company of Biologists Ltd.
Stability Limits of a PD Controller for a Flywheel Supported on Rigid Rotor and Magnetic Bearings
NASA Technical Reports Server (NTRS)
Kascak, Albert F.; Brown, Gerald V.; Jansen, Ralph H.; Dever, TImothy P.
2006-01-01
Active magnetic bearings are used to provide a long-life, low-loss suspension of a high-speed flywheel rotor. This paper describes a modeling effort used to understand the stability boundaries of the PD controller used to control the active magnetic bearings on a high speed test rig. Limits of stability are described in terms of allowable stiffness and damping values which result in stable levitation of the nonrotating rig. Small signal stability limits for the system is defined as a nongrowth in vibration amplitude of a small disturbance. A simple mass-force model was analyzed. The force resulting from the magnetic bearing was linearized to include negative displacement stiffness and a current stiffness. The current stiffness was then used in a PD controller. The phase lag of the control loop was modeled by a simple time delay. The stability limits and the associated vibration frequencies were measured and compared to the theoretical values. The results show a region on stiffness versus damping plot that have the same qualitative tendencies as experimental measurements. The resulting stability model was then extended to a flywheel system. The rotor dynamics of the flywheel was modeled using a rigid rotor supported on magnetic bearings. The equations of motion were written for the center of mass and a small angle linearization of the rotations about the center of mass. The stability limits and the associated vibration frequencies were found as a function of nondimensional magnetic bearing stiffness and damping and nondimensional parameters of flywheel speed and time delay.
Zhou, Xian; Chen, Xue
2011-05-09
The digital coherent receivers combine coherent detection with digital signal processing (DSP) to compensate for transmission impairments, and therefore are a promising candidate for future high-speed optical transmission system. However, the maximum symbol rate supported by such real-time receivers is limited by the processing rate of hardware. In order to cope with this difficulty, the parallel processing algorithms is imperative. In this paper, we propose a novel parallel digital timing recovery loop (PDTRL) based on our previous work. Furthermore, for increasing the dynamic dispersion tolerance range of receivers, we embed a parallel adaptive equalizer in the PDTRL. This parallel joint scheme (PJS) can be used to complete synchronization, equalization and polarization de-multiplexing simultaneously. Finally, we demonstrate that PDTRL and PJS allow the hardware to process 112 Gbit/s POLMUX-DQPSK signal at the hundreds MHz range. © 2011 Optical Society of America
A study of facilities and fixtures for testing of a high speed civil transport wing component
NASA Technical Reports Server (NTRS)
Cerro, J. A.; Vause, R. F.; Bowman, L. M.; Jensen, J. K.; Martin, C. J., Jr.; Stockwell, A. E.; Waters, W. A., Jr.
1996-01-01
A study was performed to determine the feasibility of testing a large-scale High Speed Civil Transport wing component in the Structures and Materials Testing Laboratory in Building 1148 at NASA Langley Research Center. The report includes a survey of the electrical and hydraulic resources and identifies the backing structure and floor hard points which would be available for reacting the test loads. The backing structure analysis uses a new finite element model of the floor and backstop support system in the Structures Laboratory. Information on the data acquisition system and the thermal power requirements is also presented. The study identified the hardware that would be required to test a typical component, including the number and arrangement of hydraulic actuators required to simulate expected flight loads. Load introduction and reaction structure concepts were analyzed to investigate the effects of experimentally induced boundary conditions.
NASA Technical Reports Server (NTRS)
Barlow, William H
1946-01-01
Tests have been made at high speeds to determine the drag of models, simulating propeller shanks, in the form of a circular cylinder and three airfoils, the NACA 16-025, the NACA 16-040, and the NACA 16-040 with the rear 25 percent chord cut off. All the models had a maximum thickness of 4 1/2 inches to conform with average propeller-shank dimensions and a span of 20 1/4 inches. For the tests the models were supported perpendicular to the lower surface of the wing of an XP-51 airplane. A wake-survey rake mounted below the wing directly behind the models was used to determine profile drag of Mach numbers of 0.3 to 0.8 over a small range of angle of attack. The drag of the cylinder was also determined from pressure-distribution and force measurements.
High speed civil transport aerodynamic optimization
NASA Technical Reports Server (NTRS)
Ryan, James S.
1994-01-01
This is a report of work in support of the Computational Aerosciences (CAS) element of the Federal HPCC program. Specifically, CFD and aerodynamic optimization are being performed on parallel computers. The long-range goal of this work is to facilitate teraflops-rate multidisciplinary optimization of aerospace vehicles. This year's work is targeted for application to the High Speed Civil Transport (HSCT), one of four CAS grand challenges identified in the HPCC FY 1995 Blue Book. This vehicle is to be a passenger aircraft, with the promise of cutting overseas flight time by more than half. To meet fuel economy, operational costs, environmental impact, noise production, and range requirements, improved design tools are required, and these tools must eventually integrate optimization, external aerodynamics, propulsion, structures, heat transfer, controls, and perhaps other disciplines. The fundamental goal of this project is to contribute to improved design tools for U.S. industry, and thus to the nation's economic competitiveness.
NASA Astrophysics Data System (ADS)
Oyama, T.; Kono, Y.; Suzuki, S.; Mizuno, S.; Bushimata, T.; Jike, T.; Kawaguchi, N.; Kobayashi, H.; Kimura, M.
2012-12-01
The new VLBI observing system (OCTAVE-Family) has been designed and developed based on the VSI-H and VDIF specifications at NAOJ (National Astronomical Observatory of Japan). It consists of 1) a high speed 8-Gsps 3-bit ADC (OCTAD) enabling us to acquire not only wide intermediate frequencies but also radio frequencies up to 50 GHz, 2) a converter (OCTAVIA) between one 10 GigE port and four 2 Gbps input and output ports conformable to VSI-H, 3) new recorders (OCTADISK and OCTADISK2) at rates of 4.5 Gbps and above 8 Gbps, and 4) a high speed software correlator system (OCTACOR) using GICO3 which was developed by NICT. These OCTAVE systems are connected via 10 GigE network with VDIF and VSI specifications. These components are used for VERA, JVN (Japanese VLBI network), and KJJVC (Korea-Japan Joint VLBI Correlator).
Fundamental High-Speed Limits in Single-Molecule, Single-Cell, and Nanoscale Force Spectroscopies
2016-01-01
Force spectroscopy is enhancing our understanding of single-biomolecule, single-cell, and nanoscale mechanics. Force spectroscopy postulates the proportionality between the interaction force and the instantaneous probe deflection. By studying the probe dynamics, we demonstrate that the total force acting on the probe has three different components: the interaction, the hydrodynamic, and the inertial. The amplitudes of those components depend on the ratio between the resonant frequency and the frequency at which the data are measured. A force–distance curve provides a faithful measurement of the interaction force between two molecules when the inertial and hydrodynamic components are negligible. Otherwise, force spectroscopy measurements will underestimate the value of unbinding forces. Neglecting the above force components requires the use of frequency ratios in the 50–500 range. These ratios will limit the use of high-speed methods in force spectroscopy. The theory is supported by numerical simulations. PMID:27359243
The 1990 high-speed civil transport studies
NASA Technical Reports Server (NTRS)
1992-01-01
This summary report contains the results of the Douglas Aircraft Company system studies related to High-Speed Civil Transports (HSCT's). The tasks were performed under an 18-month extension of NASA Langley Research Center Contract NAS1-18378. The system studies were conducted to assess the emission impact of HSCT's at design Mach numbers ranging from 1.6 to 3.2. The tasks specifically addressed an HSCT market and economic assessment, development of supersonic route networks, and an atmospheric emissions scenario. The general results indicated: (1) market projections predict sufficient passenger traffic for the 2000 to 2025 time period to support a fleet of economically viable and environmentally compatible HSCT's; (2) the HSCT route structure to minimize supersonic overland traffic can be increased by innovative routing to avoid land masses; and (3) the atmospheric emission impact on ozone would be significantly lower for Mach 1.6 operations than for Mach 3.2 operations.
Experiences with ATM in a multivendor pilot system at Forschungszentrum Julich
NASA Astrophysics Data System (ADS)
Kleines, H.; Ziemons, K.; Zwoll, K.
1998-08-01
The ATM technology for high speed serial transmission provides a new quality of communication by introducing novel features in a LAN environment, especially support of real time communication, of both LAN and WAN communication and of multimedia streams. In order to evaluate ATM for future DAQ systems and remote control systems as well as for a high speed picture archiving and communications system for medical images, Forschungszentrum Julich has build up a pilot system for the evaluation of ATM and standard low cost multimedia systems. It is a heterogeneous multivendor system containing a variety of switches and desktop solutions, employing different protocol options of ATM. The tests conducted in the pilot system revealed major difficulties regarding stability, interoperability and performance. The paper presents motivations, layout and results of the pilot system. Discussion of results concentrates on performance issues relevant for realistic applications, e.g., connection to a RAID system via NFS over ATM.
A Software Suite for Testing SpaceWire Devices and Networks
NASA Astrophysics Data System (ADS)
Mills, Stuart; Parkes, Steve
2015-09-01
SpaceWire is a data-handling network for use on-board spacecraft, which connects together instruments, mass-memory, processors, downlink telemetry, and other on-board sub-systems. SpaceWire is simple to implement and has some specific characteristics that help it support data-handling applications in space: high-speed, low-power, simplicity, relatively low implementation cost, and architectural flexibility making it ideal for many space missions. SpaceWire provides high-speed (2 Mbits/s to 200 Mbits/s), bi-directional, full-duplex data-links, which connect together SpaceWire enabled equipment. Data-handling networks can be built to suit particular applications using point-to-point data-links and routing switches. STAR-Dundee’s STAR-System software stack has been designed to meet the needs of engineers designing and developing SpaceWire networks and devices. This paper describes the aims of the software and how those needs were met.
Diskless supercomputers: Scalable, reliable I/O for the Tera-Op technology base
NASA Technical Reports Server (NTRS)
Katz, Randy H.; Ousterhout, John K.; Patterson, David A.
1993-01-01
Computing is seeing an unprecedented improvement in performance; over the last five years there has been an order-of-magnitude improvement in the speeds of workstation CPU's. At least another order of magnitude seems likely in the next five years, to machines with 500 MIPS or more. The goal of the ARPA Teraop program is to realize even larger, more powerful machines, executing as many as a trillion operations per second. Unfortunately, we have seen no comparable breakthroughs in I/O performance; the speeds of I/O devices and the hardware and software architectures for managing them have not changed substantially in many years. We have completed a program of research to demonstrate hardware and software I/O architectures capable of supporting the kinds of internetworked 'visualization' workstations and supercomputers that will appear in the mid 1990s. The project had three overall goals: high performance, high reliability, and scalable, multipurpose system.
Amplification of a high-frequency electromagnetic wave by a relativistic plasma
NASA Technical Reports Server (NTRS)
Yoon, Peter H.
1990-01-01
The amplification of a high-frequency transverse electromagnetic wave by a relativistic plasma component, via the synchrotron maser process, is studied. The background plasma that supports the transverse wave is considered to be cold, and the energetic component whose density is much smaller than that of the background component has a loss-cone feature in the perpendicular momentum space and a finite field-aligned drift speed. The ratio of the background plasma frequency squared to the electron gyrofrequency squared is taken to be sufficiently larger than unity. Such a parameter regime is relevant to many space and astrophysical situations. A detailed study of the amplification process is carried out over a wide range of physical parameters including the loss-cone index, the ratio of the electron mass energy to the temperature of the energetic component, the field-aligned drift speed, the normalized density, and the wave propagation angle.
A large-scale computer facility for computational aerodynamics
NASA Technical Reports Server (NTRS)
Bailey, F. R.; Ballhaus, W. F., Jr.
1985-01-01
As a result of advances related to the combination of computer system technology and numerical modeling, computational aerodynamics has emerged as an essential element in aerospace vehicle design methodology. NASA has, therefore, initiated the Numerical Aerodynamic Simulation (NAS) Program with the objective to provide a basis for further advances in the modeling of aerodynamic flowfields. The Program is concerned with the development of a leading-edge, large-scale computer facility. This facility is to be made available to Government agencies, industry, and universities as a necessary element in ensuring continuing leadership in computational aerodynamics and related disciplines. Attention is given to the requirements for computational aerodynamics, the principal specific goals of the NAS Program, the high-speed processor subsystem, the workstation subsystem, the support processing subsystem, the graphics subsystem, the mass storage subsystem, the long-haul communication subsystem, the high-speed data-network subsystem, and software.
Research on natural frequency based on modal test for high speed vehicles
NASA Astrophysics Data System (ADS)
Ma, Guangsong; He, Guanglin; Guo, Yachao
2018-04-01
High speed vehicle as a vibration system, resonance generated in flight may be harmful to high speed vehicles. It is possible to solve the resonance problem by acquiring the natural frequency of the high-speed aircraft and then taking some measures to avoid the natural frequency of the high speed vehicle. Therefore, In this paper, the modal test of the high speed vehicle was carried out by using the running hammer method and the PolyMAX modal parameter identification method. Firstly, the total frequency response function, coherence function of the high speed vehicle are obtained by the running hammer stimulation test, and through the modal assurance criterion (MAC) to determine the accuracy of the estimated parameters. Secondly, the first three order frequencies, the pole steady state diagram of the high speed vehicles is obtained by the PolyMAX modal parameter identification method. At last, the natural frequency of the vibration system was accurately obtained by the running hammer method.
Cox, Helen; Escombe, Rod; McDermid, Cheryl; Mtshemla, Yolanda; Spelman, Tim; Azevedo, Virginia; London, Leslie
2012-01-01
Tuberculosis transmission in healthcare facilities contributes significantly to the TB epidemic, particularly in high HIV settings. Although improving ventilation may reduce transmission, there is a lack of evidence to support low-cost practical interventions. We assessed the efficacy of wind-driven roof turbines to achieve recommended ventilation rates, compared to current recommended practices for natural ventilation (opening windows), in primary care clinic rooms in Khayelitsha, South Africa. Room ventilation was assessed (CO₂ gas tracer technique) in 4 rooms where roof turbines and air-intake grates were installed, across three scenarios: turbine, grate and window closed, only window open, and only turbine and grate open, with concurrent wind speed measurement. 332 measurements were conducted over 24 months. For all 4 rooms combined, median air changes per hour (ACH) increased with wind speed quartiles across all scenarios. Higher median ACH were recorded with open roof turbines and grates, compared to open windows across all wind speed quartiles. Ventilation with open turbine and grate exceeded WHO-recommended levels (60 Litres/second/patient) for 95% or more of measurements in 3 of the 4 rooms; 47% in the remaining room, where wind speeds were lower and a smaller diameter turbine was installed. High room ventilation rates, meeting recommended thresholds, may be achieved using wind-driven roof turbines and grates, even at low wind speeds. Roof turbines and air-intake grates are not easily closed by staff, allowing continued ventilation through colder periods. This simple, low-cost technology represents an important addition to our tools for TB infection control.
Cox, Helen; Escombe, Rod; McDermid, Cheryl; Mtshemla, Yolanda; Spelman, Tim; Azevedo, Virginia; London, Leslie
2012-01-01
Objective Tuberculosis transmission in healthcare facilities contributes significantly to the TB epidemic, particularly in high HIV settings. Although improving ventilation may reduce transmission, there is a lack of evidence to support low-cost practical interventions. We assessed the efficacy of wind-driven roof turbines to achieve recommended ventilation rates, compared to current recommended practices for natural ventilation (opening windows), in primary care clinic rooms in Khayelitsha, South Africa. Methods Room ventilation was assessed (CO2 gas tracer technique) in 4 rooms where roof turbines and air-intake grates were installed, across three scenarios: turbine, grate and window closed, only window open, and only turbine and grate open, with concurrent wind speed measurement. 332 measurements were conducted over 24 months. Findings For all 4 rooms combined, median air changes per hour (ACH) increased with wind speed quartiles across all scenarios. Higher median ACH were recorded with open roof turbines and grates, compared to open windows across all wind speed quartiles. Ventilation with open turbine and grate exceeded WHO-recommended levels (60 Litres/second/patient) for 95% or more of measurements in 3 of the 4 rooms; 47% in the remaining room, where wind speeds were lower and a smaller diameter turbine was installed. Conclusion High room ventilation rates, meeting recommended thresholds, may be achieved using wind-driven roof turbines and grates, even at low wind speeds. Roof turbines and air-intake grates are not easily closed by staff, allowing continued ventilation through colder periods. This simple, low-cost technology represents an important addition to our tools for TB infection control. PMID:22253742
How sand grains stop a high speed intruder
NASA Astrophysics Data System (ADS)
Behringer, Robert
When a speeding intruder impacts on a granular material, it comes rapidly to rest after penetrating only a modest distance. Empirical dynamical models, dating to the 19th century (if not earlier), describe the drag on the intruder in terms of two types of depth-dependent forces: one a static force, which also includes gravity, and the other a collisional force proportional to the square of the instantaneous speed of the intruder. What processes occur in the material to so quickly decelerate the intruder? We address this question through experiments and simulations (work of Lou Kondic and collaborators). We first probe the granular response using quasi-two-dimensional granular materials consisting of photoelastic discs. When such a particle experiences a force, it appears bright under cross-polarized illumination. High speed video reveals dynamic force transmission into the material along force chains that form in response to the intruder motion. These chains are nearly normal to the intruder surface, implying that collisional rather than frictional forces dominate the momentum transfer from intruder to grains. These observations allow the formation of a collision-based model that correctly captures the collisional drag force for both 2D and 3D intruders of a variety of shapes. This talk will develop a collisional picture of impact, and also explore the change in the system response as the impact speed increases. Experimental collaborators include Abe Clark, Cacey Stevens Bester, and Alec Petersen. This work supported by DTRA, NSF Grant DMR1206351, NASA Grant NNX15AD38G, and the William M. Keck Foundation.
Demonstration, Testing and Qualification of a High Temperature, High Speed Magnetic Thrust Bearing
NASA Technical Reports Server (NTRS)
DeWitt, Kenneth
2005-01-01
The gas turbine industry has a continued interest in improving engine performance and reducing net operating and maintenance costs. These goals are being realized because of advancements in aeroelasticity, materials, and computational tools such as CFD and engine simulations. These advancements aid in increasing engine thrust-to-weight ratios, specific fuel consumption, pressure ratios, and overall reliability through higher speed, higher temperature, and more efficient engine operation. Currently, rolling element bearing and squeeze film dampers are used to support rotors in gas turbine engines. Present ball bearing configurations are limited in speed (<2 million DN) and temperature (<5OO F) and require both cooling air and an elaborate lubrication system. Also, ball bearings require extensive preventative maintenance in order to assure their safe operation. Since these bearings are at their operational limits, new technologies must be found in order to take advantage of other advances. Magnetic bearings are well suited to operate at extreme temperatures and higher rotational speeds and are a promising solution to the problems that conventional rolling element bearings present. Magnetic bearing technology is being developed worldwide and is considered an enabling technology for new engine designs. Using magnetic bearings, turbine and compressor spools can be radically redesigned to be significantly larger and stiffer with better damping and higher rotational speeds. These advances, a direct result of magnetic bearing technology, will allow significant increases in engine power and efficiency. Also, magnetic bearings allow for real-time, in-situ health monitoring of the system, lower maintenance costs and down time.
Can enforced behaviour change attitudes: exploring the influence of Intelligent Speed Adaptation.
Chorlton, Kathryn; Conner, Mark
2012-09-01
The Theory of Planned Behaviour model (Ajzen, 1985) was used to determine whether long-term experience with Intelligent Speed Adaption (ISA) prompts a change in speed related cognitions. The study examines data collected as part of a project examining driver behaviour with an intervening but overridable ISA system. Data was collected in four six-month field trials. The trials followed an A-B-A design (28 days driving with no ISA, 112 days driving with ISA, 28 days driving without ISA) to monitor changes in speeding behaviour as a result of the ISA system and any carry-over effect of the system. Findings suggested that following experience with the system, drivers' intention to speed significantly weakened, beyond the removal of ISA support. Drivers were also less likely to believe that exceeding the speed would 'get them to their destination more quickly' and less likely to believe that 'being in a hurry' would facilitate speeding. However, the positive change in intentions and beliefs failed to translate into behaviour. Experience with the ISA system significantly reduced the percentage of distance travelled whilst exceeding the speed limit but this effect was not evident when the ISA support was removed. Copyright © 2010 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kroll, Christine; von der Werth, Monika; Leuck, Holger; Stahl, Christoph; Schertler, Klaus
2017-05-01
For Intelligence, Surveillance, Reconnaissance (ISR) missions of manned and unmanned air systems typical electrooptical payloads provide high-definition video data which has to be exploited with respect to relevant ground targets in real-time by automatic/assisted target recognition software. Airbus Defence and Space is developing required technologies for real-time sensor exploitation since years and has combined the latest advances of Deep Convolutional Neural Networks (CNN) with a proprietary high-speed Support Vector Machine (SVM) learning method into a powerful object recognition system with impressive results on relevant high-definition video scenes compared to conventional target recognition approaches. This paper describes the principal requirements for real-time target recognition in high-definition video for ISR missions and the Airbus approach of combining an invariant feature extraction using pre-trained CNNs and the high-speed training and classification ability of a novel frequency-domain SVM training method. The frequency-domain approach allows for a highly optimized implementation for General Purpose Computation on a Graphics Processing Unit (GPGPU) and also an efficient training of large training samples. The selected CNN which is pre-trained only once on domain-extrinsic data reveals a highly invariant feature extraction. This allows for a significantly reduced adaptation and training of the target recognition method for new target classes and mission scenarios. A comprehensive training and test dataset was defined and prepared using relevant high-definition airborne video sequences. The assessment concept is explained and performance results are given using the established precision-recall diagrams, average precision and runtime figures on representative test data. A comparison to legacy target recognition approaches shows the impressive performance increase by the proposed CNN+SVM machine-learning approach and the capability of real-time high-definition video exploitation.
NASA Astrophysics Data System (ADS)
Narayanan, V. L.
2017-12-01
For the first time, high speed imaging of lightning from few isolated tropical thunderstorms are observed from India. The recordings are made from Tirupati (13.6oN, 79.4oE, 180 m above mean sea level) during summer months with a digital camera capable of recording high speed videos up to 480 fps. At 480 fps, each individual video file is recorded for 30 s resulting in 14400 deinterlaced images per video file. An automatic processing algorithm is developed for quick identification and analysis of the lightning events which will be discussed in detail. Preliminary results indicating different types of phenomena associated with lightning like stepped leader, dart leader, luminous channels corresponding to continuing current and M components are discussed. While most of the examples show cloud to ground discharges, few interesting cases of intra-cloud, inter-cloud and cloud-air discharges will also be displayed. This indicates that though high speed cameras with few 1000 fps are preferred for a detailed study on lightning, moderate range CMOS sensor based digital cameras can provide important information as well. The lightning imaging activity presented herein is initiated as an amateur effort and currently plans are underway to propose a suite of supporting instruments to conduct coordinated campaigns. The images discussed here are acquired from normal residential area and indicate how frequent lightning strikes are in such tropical locations during thunderstorms, though no towering structures are nearby. It is expected that popularizing of such recordings made with affordable digital cameras will trigger more interest in lightning research and provide a possible data source from amateur observers paving the way for citizen science.
High-speed wavefront control using MEMS micromirrors
NASA Astrophysics Data System (ADS)
Bifano, T. G.; Stewart, J. B.
2005-08-01
Over the past decade, a number of electrostatically-actuated MEMS deformable mirror devices have been used for adaptive control in beam-forming and imaging applications. One architecture that has been widely used is the silicon device developed by Boston University, consisting of a continuous or segmented mirror supported by post attachments to an array of parallel plate electrostatic actuators. MEMS deformable mirrors and segmented mirrors with up to 1024 of these actuators have been used in open loop and closed loop control systems to control wavefront errors. Frame rates as high as 11kHz have been demonstrated. Mechanically, the actuators used in this device exhibit a first-mode resonant frequency that is in the range of many tens of kilohertz up to a few hundred kilohertz. Viscous air damping has been found to limit operation at such high frequencies in air at standard pressure. Some applications in high-speed tracking and beam-forming could benefit from increased speed. In this paper, several approaches to achieving critically-damped performance with such MEMS DMs are detailed, and theoretical and experimental results are presented. One approach is to seal the MEMS DM in a full or partial vacuum environment, thereby affecting air damping. After vacuum sealing the device's predicted resonant behavior at tens of kilohertz was observed. In vacuum, the actuator's intrinsic material damping is quite small, resulting in considerable oscillation in step response. To alleviate this problem, a two-step actuation algorithm was employed. Precise control of a single actuator frequencies up to 100kHz without overshoot was demonstrated using this approach. Another approach to increasing actuation speed was to design actuators that reduce air damping effects. This is also demonstrated in the paper.
The Interaction of High-Speed Turbulence with Flames
NASA Astrophysics Data System (ADS)
Poludnenko, Alexei Y.; Oran, E. S.
2010-01-01
Interaction of flames with turbulence occurs in systems ranging from chemical flames on Earth to thermonuclear burning fronts, which are presently believed to be the key component of the explosion mechanism powering the type Ia supernovae. A number of important questions remains concerning the dynamics of turbulent flames in the presence of high-speed turbulence, the flame structure and stability, as well as the ability of the turbulent cascade to penetrate and disrupt the flame creating the distributed mode of burning. We present results of a systematic study of the dynamics and properties of turbulent flames formed under the action of high-speed turbulence using a simplified one-step kinetics similar to the one used to describe hydrogen combustion. This approach makes large-scale highly resolved simulations computationally feasible and it allows one to focus on the process of the turbulence-flame interaction in a simplified controlled setting. Numerical simulations were performed using the massively parallel reactive-flow code Athena-RFX. We discuss global properties of the turbulent flame in this regime (flame width, speed, etc.) and the internal structure of the flame brush. A method is presented for directly reconstructing the internal flame structure and it is shown that correct characterization of the flame regime can be very sensitive to the proper choice of the diagnostic method. We discuss the ability of the turbulent cascade to penetrate the internal flame structure. Finally, we also consider the processes that determine the turbulent burning velocity and identify two distinct regimes of flame evolution. This work was supported in part by the National Research Council, Naval Research Laboratory, and the Office of Naval Research, and by the National Science Foundation through the TeraGrid resources.
Optimization of Angular-Momentum Biases of Reaction Wheels
NASA Technical Reports Server (NTRS)
Lee, Clifford; Lee, Allan
2008-01-01
RBOT [RWA Bias Optimization Tool (wherein RWA signifies Reaction Wheel Assembly )] is a computer program designed for computing angular momentum biases for reaction wheels used for providing spacecraft pointing in various directions as required for scientific observations. RBOT is currently deployed to support the Cassini mission to prevent operation of reaction wheels at unsafely high speeds while minimizing time in undesirable low-speed range, where elasto-hydrodynamic lubrication films in bearings become ineffective, leading to premature bearing failure. The problem is formulated as a constrained optimization problem in which maximum wheel speed limit is a hard constraint and a cost functional that increases as speed decreases below a low-speed threshold. The optimization problem is solved using a parametric search routine known as the Nelder-Mead simplex algorithm. To increase computational efficiency for extended operation involving large quantity of data, the algorithm is designed to (1) use large time increments during intervals when spacecraft attitudes or rates of rotation are nearly stationary, (2) use sinusoidal-approximation sampling to model repeated long periods of Earth-point rolling maneuvers to reduce computational loads, and (3) utilize an efficient equation to obtain wheel-rate profiles as functions of initial wheel biases based on conservation of angular momentum (in an inertial frame) using pre-computed terms.
Potential scenarios of concern for high speed rail operations
DOT National Transportation Integrated Search
2011-03-16
Currently, multiple operating authorities are proposing the : introduction of high-speed rail service in the United States. : While high-speed rail service shares a number of basic : principles with conventional-speed rail service, the operational : ...
14 CFR 25.253 - High-speed characteristics.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false High-speed characteristics. 25.253 Section...-speed characteristics. (a) Speed increase and recovery characteristics. The following speed increase and... inadvertent speed increases (including upsets in pitch and roll) must be simulated with the airplane trimmed...
14 CFR 25.253 - High-speed characteristics.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false High-speed characteristics. 25.253 Section...-speed characteristics. (a) Speed increase and recovery characteristics. The following speed increase and... inadvertent speed increases (including upsets in pitch and roll) must be simulated with the airplane trimmed...
Electrically tunable transport and high-frequency dynamics in antiferromagnetic S r3I r2O7
NASA Astrophysics Data System (ADS)
Seinige, Heidi; Williamson, Morgan; Shen, Shida; Wang, Cheng; Cao, Gang; Zhou, Jianshi; Goodenough, John B.; Tsoi, Maxim
2016-12-01
We report dc and high-frequency transport properties of antiferromagnetic S r3I r2O7 . Temperature-dependent resistivity measurements show that the activation energy of this material can be tuned by an applied dc electrical bias. The latter allows for continuous variations in the sample resistivity of as much as 50% followed by a reversible resistive switching at higher biases. Such a switching is of high interest for antiferromagnetic applications in high-speed memory devices. Interestingly, we found the switching behavior to be strongly affected by a high-frequency (microwave) current applied to the sample. The microwaves at 3-7 GHz suppress the dc switching and produce resonancelike features that we tentatively associated with the dissipationless magnonics recently predicted to occur in antiferromagnetic insulators subject to ac electric fields. We have characterized the effects of microwave irradiation on electronic transport in S r3I r2O7 as a function of microwave frequency and power, strength and direction of external magnetic field, strength and polarity of applied dc bias, and temperature. Our observations support the potential of antiferromagnetic materials for high-speed/high-frequency spintronic applications.
NASA Technical Reports Server (NTRS)
Proctor, Margaret P.; Gunter, Edgar J.
2007-01-01
A case study of a high-speed seal test rotor shows how rotor dynamic analysis can be used to diagnose the source of high vibrations and evaluate a proposed remedy. Experimental results are compared with the synchronous and non-synchronous whirl response analysis of a double overhung, high-speed seal test rotor with ball bearings supported in 5.84- and 12.7-mm-long, un-centered squeeze-film oil dampers. Test performance with the original damper of length 5.84 mm was marginal. Non-synchronous whirling occurred at the overhung seal test disk and there was a high amplitude synchronous response near the drive spline above 32,000 rpm. Nonlinear synchronous unbalance and time transient whirl studies were conducted on the seal test rotor with the original and extended damper lengths. With the original damper design, the nonlinear synchronous response showed that unbalance could cause damper lockup at 33,000 rpm. Alford cross-coupling forces were also included at the overhung seal test disk for the whirl analysis. Sub-synchronous whirling at the seal test disk was observed in the nonlinear time transient analysis. With the extended damper length of 12.7 mm, the sub-synchronous motion was eliminated and the rotor unbalance response was acceptable to 45,000 rpm with moderate rotor unbalance. Seal test rotor orbits and vibration levels with the extended squeeze film dampers showed smooth operation to 40,444 rpm.
Research on fast algorithm of small UAV navigation in non-linear matrix reductionism method
NASA Astrophysics Data System (ADS)
Zhang, Xiao; Fang, Jiancheng; Sheng, Wei; Cao, Juanjuan
2008-10-01
The low Reynolds numbers of small UAV will result in unfavorable aerodynamic conditions to support controlled flight. And as operated near ground, the small UAV will be affected seriously by low-frequency interference caused by atmospheric disturbance. Therefore, the GNC system needs high frequency of attitude estimation and control to realize the steady of the UAV. In company with the dimensional of small UAV dwindling away, its GNC system is more and more taken embedded designing technology to reach the purpose of compactness, light weight and low power consumption. At the same time, the operational capability of GNC system also gets limit in a certain extent. Therefore, a kind of high speed navigation algorithm design becomes the imminence demand of GNC system. Aiming at such requirement, a kind of non-linearity matrix reduction approach is adopted in this paper to create a new high speed navigation algorithm which holds the radius of meridian circle and prime vertical circle as constant and linearizes the position matrix calculation formulae of navigation equation. Compared with normal navigation algorithm, this high speed navigation algorithm decreases 17.3% operand. Within small UAV"s mission radius (20km), the accuracy of position error is less than 0.13m. The results of semi-physical experiments and small UAV's auto pilot testing proved that this algorithm can realize high frequency attitude estimation and control. It will avoid low-frequency interference caused by atmospheric disturbance properly.
High-speed adaptive optics for imaging of the living human eye
Yu, Yongxin; Zhang, Tianjiao; Meadway, Alexander; Wang, Xiaolin; Zhang, Yuhua
2015-01-01
The discovery of high frequency temporal fluctuation of human ocular wave aberration dictates the necessity of high speed adaptive optics (AO) correction for high resolution retinal imaging. We present a high speed AO system for an experimental adaptive optics scanning laser ophthalmoscope (AOSLO). We developed a custom high speed Shack-Hartmann wavefront sensor and maximized the wavefront detection speed based upon a trade-off among the wavefront spatial sampling density, the dynamic range, and the measurement sensitivity. We examined the temporal dynamic property of the ocular wavefront under the AOSLO imaging condition and improved the dual-thread AO control strategy. The high speed AO can be operated with a closed-loop frequency up to 110 Hz. Experiment results demonstrated that the high speed AO system can provide improved compensation for the wave aberration up to 30 Hz in the living human eye. PMID:26368408
Mars, Maurice
2015-01-01
Abstract Background: We investigated the use of third-generation (3G) mobile communications to provide telehealth services in remote health clinics in rural KwaZulu-Natal, South Africa. Materials and Methods: We specified a minimal set of services as our use case that would be representative of typical activity and to provide a baseline for analysis of network performance. Services included database access to manage chronic disease, local support and management of patients (to reduce unnecessary travel to the hospital), emergency care (up to 8 h for an ambulance to arrive), e-mail, access to up-to-date information (Web), and teleclinics. We made site measurements at a representative set of health clinics to determine the type of coverage (general packet radio service [GPRS]/3G), its capabilities to support videoconferencing (H323 and Skype™ [Microsoft, Redmond, WA]) and audio (Skype), and throughput for transmission control protocol (TCP) to gain a measure of application performance. Results: We found that none of the remote health clinics had 3G service. The GPRS service provided typical upload speed of 44 kilobits per second (Kbps) and download speed of 64 Kbps. This was not sufficient to support any form of videoconferencing. We also observed that GPRS had significant round trip time (RTT), in some cases in excess of 750 ms, and this led to slow start-up for TCP applications. Conclusions: We found audio was always so broken as to be unusable and further observed that many applications such as Web access would fail under conditions of very high RTT. We found some health clinics were so remote that they had no mobile service. 3G, where available, had measured upload speed of 331 Kbps and download speed of 446 Kbps and supported videoconferencing and audio at all sites, but we frequently experienced 3G changing to GPRS. We conclude that mobile communications currently provide insufficient coverage and capability to provide reliable clinical services and would advocate dedicated wireless services where reliable communication is essential and use of store and forward for mobile applications. PMID:24926731
Clarke, Malcolm; Mars, Maurice
2015-02-01
We investigated the use of third-generation (3G) mobile communications to provide telehealth services in remote health clinics in rural KwaZulu-Natal, South Africa. We specified a minimal set of services as our use case that would be representative of typical activity and to provide a baseline for analysis of network performance. Services included database access to manage chronic disease, local support and management of patients (to reduce unnecessary travel to the hospital), emergency care (up to 8 h for an ambulance to arrive), e-mail, access to up-to-date information (Web), and teleclinics. We made site measurements at a representative set of health clinics to determine the type of coverage (general packet radio service [GPRS]/3G), its capabilities to support videoconferencing (H323 and Skype™ [Microsoft, Redmond, WA]) and audio (Skype), and throughput for transmission control protocol (TCP) to gain a measure of application performance. We found that none of the remote health clinics had 3G service. The GPRS service provided typical upload speed of 44 kilobits per second (Kbps) and download speed of 64 Kbps. This was not sufficient to support any form of videoconferencing. We also observed that GPRS had significant round trip time (RTT), in some cases in excess of 750 ms, and this led to slow start-up for TCP applications. We found audio was always so broken as to be unusable and further observed that many applications such as Web access would fail under conditions of very high RTT. We found some health clinics were so remote that they had no mobile service. 3G, where available, had measured upload speed of 331 Kbps and download speed of 446 Kbps and supported videoconferencing and audio at all sites, but we frequently experienced 3G changing to GPRS. We conclude that mobile communications currently provide insufficient coverage and capability to provide reliable clinical services and would advocate dedicated wireless services where reliable communication is essential and use of store and forward for mobile applications.
NASA Astrophysics Data System (ADS)
Crail, Stephanie; Reichel, D.; Schreiner, U.; Lindner, E.; Habel, Wolfgang R.; Hofmann, Detlef; Basedau, Frank; Brandes, K.; Barner, A.; Ecke, Wolfgang; Schroeder, Kerstin
2002-07-01
In a German slab track system (Feste Fahrbahn FF, system Boegl) for speeds up to 300 km/h and more different fiber optic sensors have been embedded in several levels and locations of the track system. The track system consists of prestressed precast panels of steel fiber concrete which are supported by a cat-in-situ concrete or asphalt base course. The sensors are to measure the bond behavior or the stress transfer in the track system. For that, tiny fiber-optic sensors - fiber Fabry-Perot and Bragg grating sensors - have been embedded very near to the interface of the layers. Measurements were taken on a full scale test sample (slab track panel of 6.45 m length) as well as on a real high speed track. The paper describes the measurement task and discusses aspects with regard to sensor design and prefabrication of the sensor frames as well as the embedding procedure into the concrete track. Results from static and dynamic full scale tests carried out in the testing laboratory of BAM and from measurements on a track are given.
Size-selective sorting in bubble streaming flows: Particle migration on fast time scales
NASA Astrophysics Data System (ADS)
Thameem, Raqeeb; Rallabandi, Bhargav; Hilgenfeldt, Sascha
2015-11-01
Steady streaming from ultrasonically driven microbubbles is an increasingly popular technique in microfluidics because such devices are easily manufactured and generate powerful and highly controllable flows. Combining streaming and Poiseuille transport flows allows for passive size-sensitive sorting at particle sizes and selectivities much smaller than the bubble radius. The crucial particle deflection and separation takes place over very small times (milliseconds) and length scales (20-30 microns) and can be rationalized using a simplified geometric mechanism. A quantitative theoretical description is achieved through the application of recent results on three-dimensional streaming flow field contributions. To develop a more fundamental understanding of the particle dynamics, we use high-speed photography of trajectories in polydisperse particle suspensions, recording the particle motion on the time scale of the bubble oscillation. Our data reveal the dependence of particle displacement on driving phase, particle size, oscillatory flow speed, and streaming speed. With this information, the effective repulsive force exerted by the bubble on the particle can be quantified, showing for the first time how fast, selective particle migration is effected in a streaming flow. We acknowledge support by the National Science Foundation under grant number CBET-1236141.
Gas and particle motions in a rapidly decompressed flow
NASA Astrophysics Data System (ADS)
Johnson, Blair; Zunino, Heather; Adrian, Ronald; Clarke, Amanda
2017-11-01
To understand the behavior of a rapidly decompressed particle bed in response to a shock, an experimental study is performed in a cylindrical (D = 4.1 cm) glass vertical shock tube of a densely packed (ρ = 61%) particle bed. The bed is comprised of spherical glass particles, ranging from D50 = 44-297 μm between experiments. High-speed pressure sensors are incorporated to capture shock speeds and strengths. High-speed video and particle image velocimetry (PIV) measurements are collected to examine vertical and radial velocities of both the particles and gas to elucidate features of the shock wave and resultant expansion wave in the lateral center of the tube, away from boundaries. In addition to optically analyzing the front velocity of the rising particle bed, interaction between the particle and gas phases are investigated as the flow accelerates and the particle front becomes more dilute. Particle and gas interactions are also considered in exploring mechanisms through which turbulence develops in the flow. This work is supported by the U.S. Department of Energy, National Nuclear Security Administration, Advanced Simulation and Computing Program, as a Cooperative Agreement under the Predictive Science and Academic Alliance Program, under Contract No. DE-NA0002378.
Old Buildings Broadband Home Networks: Technologies and Services Overview
NASA Astrophysics Data System (ADS)
Fantacci, Romano; Pecorella, Tommaso; Micciullo, Luigia; Viti, Roberto; Pasquini, Vincenzo; Calì, Marco
2014-05-01
Internet broadband access is becoming a reality in many countries. To fully exploit the benefits from high-speed connection, both suitable home network connectivity and advanced services support have to be made available to the user. In this article, issues relative to the upgrade of existing home networks, particularly in old buildings, together with networking and security requirements are addressed, and possible solutions are proposed.
49 CFR 236.1007 - Additional requirements for high-speed service.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 4 2011-10-01 2011-10-01 false Additional requirements for high-speed service..., AND APPLIANCES Positive Train Control Systems § 236.1007 Additional requirements for high-speed... by this subpart, and which have been utilized on high-speed rail systems with similar technical and...
NASA Astrophysics Data System (ADS)
Hejtmánek, M.; Neue, G.; Voleš, P.
2015-06-01
This article is devoted to the software design and development of a high-speed readout application used for interfacing particle detectors via the CoaXPress communication standard. The CoaXPress provides an asymmetric high-speed serial connection over a single coaxial cable. It uses a widely available 75 Ω BNC standard and can operate in various modes with a data throughput ranging from 1.25 Gbps up to 25 Gbps. Moreover, it supports a low speed uplink with a fixed bit rate of 20.833 Mbps, which can be used to control and upload configuration data to the particle detector. The CoaXPress interface is an upcoming standard in medical imaging, therefore its usage promises long-term compatibility and versatility. This work presents an example of how to develop DAQ system for a pixel detector. For this purpose, a flexible DAQ card was developed using the XILINX Spartan 6 FPGA. The DAQ card is connected to the framegrabber FireBird CXP6 Quad, which is plugged in the PCI Express bus of the standard PC. The data transmission was performed between the FPGA and framegrabber card via the standard coaxial cable in communication mode with a bit rate of 3.125 Gbps. Using the Medipix2 Quad pixel detector, the framerate of 100 fps was achieved. The front-end application makes use of the FireBird framegrabber software development kit and is suitable for data acquisition as well as control of the detector through the registers implemented in the FPGA.
Fluid flow dynamics in MAS systems.
Wilhelm, Dirk; Purea, Armin; Engelke, Frank
2015-08-01
The turbine system and the radial bearing of a high performance magic angle spinning (MAS) probe with 1.3mm-rotor diameter has been analyzed for spinning rates up to 67kHz. We focused mainly on the fluid flow properties of the MAS system. Therefore, computational fluid dynamics (CFD) simulations and fluid measurements of the turbine and the radial bearings have been performed. CFD simulation and measurement results of the 1.3mm-MAS rotor system show relatively low efficiency (about 25%) compared to standard turbo machines outside the realm of MAS. However, in particular, MAS turbines are mainly optimized for speed and stability instead of efficiency. We have compared MAS systems for rotor diameter of 1.3-7mm converted to dimensionless values with classical turbomachinery systems showing that the operation parameters (rotor diameter, inlet mass flow, spinning rate) are in the favorable range. This dimensionless analysis also supports radial turbines for low speed MAS probes and diagonal turbines for high speed MAS probes. Consequently, a change from Pelton type MAS turbines to diagonal turbines might be worth considering for high speed applications. CFD simulations of the radial bearings have been compared with basic theoretical values proposing considerably smaller frictional loss values. The discrepancies might be due to the simple linear flow profile employed for the theoretical model. Frictional losses generated inside the radial bearings result in undesired heat-up of the rotor. The rotor surface temperature distribution computed by CFD simulations show a large temperature gradient over the rotor. Copyright © 2015 Elsevier Inc. All rights reserved.
Prilutsky, B I; Gregor, R J
2001-07-01
There has been no consistent explanation as to why humans prefer changing their gait from walking to running and from running to walking at increasing and decreasing speeds, respectively. This study examined muscle activation as a possible determinant of these gait transitions. Seven subjects walked and ran on a motor-driven treadmill for 40s at speeds of 55, 70, 85, 100, 115, 130 and 145% of the preferred transition speed. The movements of subjects were videotaped, and surface electromyographic activity was recorded from seven major leg muscles. Resultant moments at the leg joints during the swing phase were calculated. During the swing phase of locomotion at preferred running speeds (115, 130, 145%), swing-related activation of the ankle, knee and hip flexors and peaks of flexion moments were typically lower (P<0.05) during running than during walking. At preferred walking speeds (55, 70, 85%), support-related activation of the ankle and knee extensors was typically lower during stance of walking than during stance of running (P<0.05). These results support the hypothesis that the preferred walk-run transition might be triggered by the increased sense of effort due to the exaggerated swing-related activation of the tibialis anterior, rectus femoris and hamstrings; this increased activation is necessary to meet the higher joint moment demands to move the swing leg during fast walking. The preferred run-walk transition might be similarly triggered by the sense of effort due to the higher support-related activation of the soleus, gastrocnemius and vastii that must generate higher forces during slow running than during walking at the same speed.
High-Power, High-Speed Electro-Optic Pockels Cell Modulator
NASA Technical Reports Server (NTRS)
Hawthorne, Justin; Battle, Philip
2013-01-01
Electro-optic modulators rely on a change in the index of refraction for the optical wave as a function of an applied voltage. The corresponding change in index acts to delay the wavefront in the waveguide. The goal of this work was to develop a high-speed, high-power waveguide- based modulator (phase and amplitude) and investigate its use as a pulse slicer. The key innovation in this effort is the use of potassium titanyl phosphate (KTP) waveguides, making the highpower, polarization-based waveguide amplitude modulator possible. Furthermore, because it is fabricated in KTP, the waveguide component will withstand high optical power and have a significantly higher RF modulation figure of merit (FOM) relative to lithium niobate. KTP waveguides support high-power TE and TM modes - a necessary requirement for polarization-based modulation as with a Pockels cell. High-power fiber laser development has greatly outpaced fiber-based modulators in terms of its maturity and specifications. The demand for high-performance nonlinear optical (NLO) devices in terms of power handling, efficiency, bandwidth, and useful wavelength range has driven the development of bulk NLO options, which are limited in their bandwidth, as well as waveguide based LN modulators, which are limited by their low optical damage threshold. Today, commercially available lithium niobate (LN) modulators are used for laser formatting; however, because of photorefractive damage that can reduce transmission and increase requirements on bias control, LN modulators cannot be used with powers over several mW, dependent on wavelength. The high-power, high-speed modulators proposed for development under this effort will enable advancements in several exciting fields including lidarbased remote sensing, atomic interferometry, free-space laser communications, and others.
49 CFR 38.175 - High-speed rail cars, monorails and systems.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 1 2011-10-01 2011-10-01 false High-speed rail cars, monorails and systems. 38....175 High-speed rail cars, monorails and systems. (a) All cars for high-speed rail systems, including... for high-platform, level boarding and shall comply with § 38.111(a) of this part for each type of car...
49 CFR 38.175 - High-speed rail cars, monorails and systems.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 1 2014-10-01 2014-10-01 false High-speed rail cars, monorails and systems. 38....175 High-speed rail cars, monorails and systems. (a) All cars for high-speed rail systems, including... for high-platform, level boarding and shall comply with § 38.111(a) of this part for each type of car...
49 CFR 38.175 - High-speed rail cars, monorails and systems.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 1 2013-10-01 2013-10-01 false High-speed rail cars, monorails and systems. 38....175 High-speed rail cars, monorails and systems. (a) All cars for high-speed rail systems, including... for high-platform, level boarding and shall comply with § 38.111(a) of this part for each type of car...
49 CFR 38.175 - High-speed rail cars, monorails and systems.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 1 2010-10-01 2010-10-01 false High-speed rail cars, monorails and systems. 38....175 High-speed rail cars, monorails and systems. (a) All cars for high-speed rail systems, including... for high-platform, level boarding and shall comply with § 38.111(a) of this part for each type of car...
49 CFR 38.175 - High-speed rail cars, monorails and systems.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 1 2012-10-01 2012-10-01 false High-speed rail cars, monorails and systems. 38....175 High-speed rail cars, monorails and systems. (a) All cars for high-speed rail systems, including... for high-platform, level boarding and shall comply with § 38.111(a) of this part for each type of car...
NASA Astrophysics Data System (ADS)
Lindblad, P. A. B.; Kristen, H.
1996-09-01
We perform two-dimensional time dependent hydrodynamical simulations of the barred spiral galaxy NGC 1300. The input potential is divided into an axisymmetric part mainly derived from the observed rotation curve, and a perturbing part obtained from near infrared surface photometry of the bar and spiral structure. Self-gravitation of the gas is not taken into account in our modeling. A pure bar perturbed model is unable to reproduce the observations. It was found necessary to add a weak spiral potential to the perturbation, thus suggesting the presence of massive spiral arms in NGC 1300. We find two models, differing mainly in pattern speed, which are able to reproduce the essentials of NGC 1300. The high pattern speed model has {OMEGA}_p_=20km/s/kpc, corresponding to a corotation radius at R_CR_~104"=1.3R_bar_. Furthermore, the adopted rotation curve for this model supports one ILR at R_ILR_~26" and an OLR at R_OLR_~188". The low pattern speed model has {OMEGA}_p_=12km/s/kpc, corresponding to a corotation radius at R_ CR_~190"=2.4R_bar_. The adopted rotation curve for this model, which differs from the fast pattern speed model, supports one ILR at R_ILR_~25" and an OLR at R_OLR_~305". Morphological features, like spiral arms and offset dust lanes, are basically reproduced by both models. They are driven by orbit crowding effects across various resonances, leading to density enhancements. The general velocity structure, as described by HI data and optical long slit measurements, is fairly consistent with the model velocities.
High Speed Balancing Applied to the T700 Engine
NASA Technical Reports Server (NTRS)
Walton, J.; Lee, C.; Martin, M.
1989-01-01
The work performed under Contracts NAS3-23929 and NAS3-24633 is presented. MTI evaluated the feasibility of high-speed balancing for both the T700 power turbine rotor and the compressor rotor. Modifications were designed for the existing Corpus Christi Army Depot (CCAD) T53/T55 high-speed balancing system for balancing T700 power turbine rotors. Tests conducted under these contracts included a high-speed balancing evaluation for T700 power turbines in the Army/NASA drivetrain facility at MTI. The high-speed balancing tests demonstrated the reduction of vibration amplitudes at operating speed for both low-speed balanced and non-low-speed balanced T700 power turbines. In addition, vibration data from acceptance tests of T53, T55, and T700 engines were analyzed and a vibration diagnostic procedure developed.
ERIC Educational Resources Information Center
Johnston, Therese E.; Watson, Kyle E.; Ross, Sandy A.; Gates, Philip E.; Gaughan, John P.; Lauer, Richard T.; Tucker, Carole A.; Engsberg, Jack R.
2011-01-01
Aim: To compare the effects of a supported speed treadmill training exercise program (SSTTEP) with exercise on spasticity, strength, motor control, gait spatiotemporal parameters, gross motor skills, and physical function. Method: Twenty-six children (14 males, 12 females; mean age 9y 6mo, SD 2y 2mo) with spastic cerebral palsy (CP; diplegia, n =…
Cooperative high-performance storage in the accelerated strategic computing initiative
NASA Technical Reports Server (NTRS)
Gary, Mark; Howard, Barry; Louis, Steve; Minuzzo, Kim; Seager, Mark
1996-01-01
The use and acceptance of new high-performance, parallel computing platforms will be impeded by the absence of an infrastructure capable of supporting orders-of-magnitude improvement in hierarchical storage and high-speed I/O (Input/Output). The distribution of these high-performance platforms and supporting infrastructures across a wide-area network further compounds this problem. We describe an architectural design and phased implementation plan for a distributed, Cooperative Storage Environment (CSE) to achieve the necessary performance, user transparency, site autonomy, communication, and security features needed to support the Accelerated Strategic Computing Initiative (ASCI). ASCI is a Department of Energy (DOE) program attempting to apply terascale platforms and Problem-Solving Environments (PSEs) toward real-world computational modeling and simulation problems. The ASCI mission must be carried out through a unified, multilaboratory effort, and will require highly secure, efficient access to vast amounts of data. The CSE provides a logically simple, geographically distributed, storage infrastructure of semi-autonomous cooperating sites to meet the strategic ASCI PSE goal of highperformance data storage and access at the user desktop.
Ion energies in high power impulse magnetron sputtering with and without localized ionization zones
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Yuchen; Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720; Tanaka, Koichi
2015-03-23
High speed imaging of high power impulse magnetron sputtering discharges has revealed that ionization is localized in moving ionization zones but localization disappears at high currents for high yield targets. This offers an opportunity to study the effect ionization zones have on ion energies. We measure that ions have generally higher energies when ionization zones are present, supporting the concept that these zones are associated with moving potential humps. We propose that the disappearance of ionization zones is caused by an increased supply of atoms from the target which cools electrons and reduces depletion of atoms to be ionized.
All-dielectric rod antenna array for terahertz communications
NASA Astrophysics Data System (ADS)
Withayachumnankul, Withawat; Yamada, Ryoumei; Fujita, Masayuki; Nagatsuma, Tadao
2018-05-01
The terahertz band holds a potential for point-to-point short-range wireless communications at sub-terabit speed. To realize this potential, supporting antennas must have a wide bandwidth to sustain high data rate and must have high gain and low dissipation to compensate for the free space path loss that scales quadratically with frequency. Here we propose an all-dielectric rod antenna array with high radiation efficiency, high gain, and wide bandwidth. The proposed array is integral to a low-loss photonic crystal waveguide platform, and intrinsic silicon is the only constituent material for both the antenna and the feed to maintain the simplicity, compactness, and efficiency. Effective medium theory plays a key role in the antenna performance and integrability. An experimental validation with continuous-wave terahertz electronic systems confirms the minimum gain of 20 dBi across 315-390 GHz. A demonstration shows that a pair of such identical rod array antennas can handle bit-error-free transmission at the speed up to 10 Gbit/s. Further development of this antenna will build critical components for future terahertz communication systems.
Stability analysis applied to the early stages of viscous drop breakup by a high-speed gas stream
NASA Astrophysics Data System (ADS)
Padrino, Juan C.; Longmire, Ellen K.
2013-11-01
The instability of a liquid drop suddenly exposed to a high-speed gas stream behind a shock wave is studied by considering the gas-liquid motion at the drop interface. The discontinuous velocity profile given by the uniform, parallel flow of an inviscid, compressible gas over a viscous liquid is considered, and drop acceleration is included. Our analysis considers compressibility effects not only in the base flow, but also in the equations of motion for the perturbations. Recently published high-resolution images of the process of drop breakup by a passing shock have provided experimental evidence supporting the idea that a critical gas dynamic pressure can be found above which drop piercing by the growth of acceleration-driven instabilities gives way to drop breakup by liquid entrainment resulting from the gas shearing action. For a set of experimental runs from the literature, results show that, for shock Mach numbers >= 2, a band of rapidly growing waves forms in the region well upstream of the drop's equator at the location where the base flow passes from subsonic to supersonic, in agreement with experimental images. Also, the maximum growth rate can be used to predict the transition of the breakup mode from Rayleigh-Taylor piercing to shear-induced entrainment. The authors acknowledge support of the NSF (DMS-0908561).
Mach 4 Test Results of a Dual-Flowpath, Turbine Based Combined Cycle Inlet
NASA Technical Reports Server (NTRS)
Albertson, Cindy w.; Emami, Saied; Trexler, Carl A.
2006-01-01
An experimental study was conducted to evaluate the performance of a turbine based combined cycle (TBCC) inlet concept, consisting of a low speed turbojet inlet and high speed dual-mode scramjet inlet. The main objectives of the study were (1) to identify any interactions between the low and the high speed inlets during the mode transition phase in which both inlets are operating simultaneously and (2) to determine the effect of the low speed inlet operation on the performance of the high speed inlet. Tests were conducted at a nominal freestream Mach number of 4 using an 8 percent scale model representing a single module of a TBCC inlet. A flat plate was installed upstream of the model to produce a turbulent boundary layer which simulated the full-scale vehicle forebody boundary layer. A flowmeter/back pressure device, with remote actuation, was attached aft of the high speed inlet isolator to simulate the back pressure resulting from dual-mode scramjet combustion. Results indicate that the inlets did not interact with each other sufficiently to affect inlet operability. Flow spillage resulting from a high speed inlet unstart did not propagate far enough upstream to affect the low speed inlet. Also, a low speed inlet unstart did not cause the high speed inlet to unstart. The low speed inlet improved the performance of the high speed inlet at certain conditions by diverting a portion of the boundary layer generated on the forebody plate.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-16
... the Atlanta to Charlotte Portion of the Southeast High Speed Rail Corridor AGENCY: Federal Rail... potential passenger rail improvements between Atlanta, GA and Charlotte, NC, along the Southeast High-Speed... federal High-Speed Intercity Passenger Rail (HSIPR) program and includes the development of a Passenger...
75 FR 417 - Certificate of Alternative Compliance for the High Speed Ferry SUSITNA
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-05
... Compliance for the High Speed Ferry SUSITNA AGENCY: Coast Guard, DHS. ACTION: Notice. SUMMARY: The Coast Guard announces that a Certificate of Alternative Compliance was issued for the high speed ferry SUSITNA... been issued for the high speed ferry SUSITNA, O.N. 1189367. Full compliance with 72 COLREGS and the...
NASA Astrophysics Data System (ADS)
Xian, Guangming
2018-03-01
In this paper, the vibration flow field parameters of polymer melts in a visual slit die are optimized by using intelligent algorithm. Experimental small angle light scattering (SALS) patterns are shown to characterize the processing process. In order to capture the scattered light, a polarizer and an analyzer are placed before and after the polymer melts. The results reported in this study are obtained using high-density polyethylene (HDPE) with rotation speed at 28 rpm. In addition, support vector regression (SVR) analytical method is introduced for optimization the parameters of vibration flow field. This work establishes the general applicability of SVR for predicting the optimal parameters of vibration flow field.
Realtime multi-plot graphics system
NASA Technical Reports Server (NTRS)
Shipkowski, Michael S.
1990-01-01
The increased complexity of test operations and customer requirements at Langley Research Center's National Transonic Facility (NTF) surpassed the capabilities of the initial realtime graphics system. The analysis of existing hardware and software and the enhancements made to develop a new realtime graphics system are described. The result of this effort is a cost effective system, based on hardware already in place, that support high speed, high resolution, generation and display of multiple realtime plots. The enhanced graphics system (EGS) meets the current and foreseeable future realtime graphics requirements of the NTF. While this system was developed to support wind tunnel operations, the overall design and capability of the system is applicable to other realtime data acquisition systems that have realtime plot requirements.
An Assessment of Gigabit Ethernet Technology and Its Applications at the NASA Glenn Research Center
NASA Technical Reports Server (NTRS)
Bakes, Catherine Murphy; Kim, Chan M.; Ramos, Calvin T.
2000-01-01
This paper describes Gigabit Ethernet and its role in supporting R&D programs at NASA Glenn. These programs require an advanced high-speed network capable of transporting multimedia traffic, including real-time visualization, high- resolution graphics, and scientific data. GigE is a 1 Gbps extension to 10 and 100 Mbps Ethernet. The IEEE 802.3z and 802.3ab standards define the MAC layer and 1000BASE-X and 1000BASE-T physical layer specifications for GigE. GigE switches and buffered distributors support IEEE 802.3x flow control. The paper also compares GigE with ATM in terms of quality of service, data rate, throughput, scalability, interoperability, network management, and cost of ownership.
Communication Simulations for Power System Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fuller, Jason C.; Ciraci, Selim; Daily, Jeffrey A.
2013-05-29
New smart grid technologies and concepts, such as dynamic pricing, demand response, dynamic state estimation, and wide area monitoring, protection, and control, are expected to require considerable communication resources. As the cost of retrofit can be high, future power grids will require the integration of high-speed, secure connections with legacy communication systems, while still providing adequate system control and security. While considerable work has been performed to create co-simulators for the power domain with load models and market operations, limited work has been performed in integrating communications directly into a power domain solver. The simulation of communication and power systemsmore » will become more important as the two systems become more inter-related. This paper will discuss ongoing work at Pacific Northwest National Laboratory to create a flexible, high-speed power and communication system co-simulator for smart grid applications. The framework for the software will be described, including architecture considerations for modular, high performance computing and large-scale scalability (serialization, load balancing, partitioning, cross-platform support, etc.). The current simulator supports the ns-3 (telecommunications) and GridLAB-D (distribution systems) simulators. Ongoing and future work will be described, including planned future expansions for a traditional transmission solver. A test case using the co-simulator, utilizing a transactive demand response system created for the Olympic Peninsula and AEP gridSMART demonstrations, requiring two-way communication between distributed and centralized market devices, will be used to demonstrate the value and intended purpose of the co-simulation environment.« less
NASA Astrophysics Data System (ADS)
Elrod, David A.
1993-11-01
The rolling element bearings (REB's) which support many turbomachinery rotors offer high load capacity, low power requirements, and durability. Two disadvantages of REB's are: (1) rolling or sliding contact within the bearing has life-limiting consequences; and (2) REB's provide essentially no damping. The REB's in the Space Shuttle Main Engine (SSME) turbopumps must sustain high static and dynamic loads, at high speeds, with a cryogenic fluid as lubricant and coolant. The pump end ball bearings limit the life of the SSME high pressure oxygen turbopump (HPOTP). Compliant foil bearing (CFB) manufacturers have proposed replacing turbopump REB's with CFB's CFB's work well in aircraft air cycle machines, auxiliary power units, and refrigeration compressors. In a CFB, the rotor only contracts the foil support structure during start up and shut down. CFB damping is higher than REB damping. However, the load capacity of the CFB is low, compared to a REB. Furthermore, little stiffness and damping data exists for the CFB. A rotordynamic analysis for turbomachinery critical speeds and stability requires the input of bearing stiffness and damping coefficients. The two basic types of CFB are the tension-dominated bearing and the bending-dominated bearing. Many investigators have analyzed and measured characteristics of tension-dominated foil bearings, which are applied principally in magnetic tape recording. The bending-dominated CFB is used more in rotating machinery. This report describes the first phase of a structural analysis of a bending-dominated, multileaf CFB. A brief discussion of CFB literature is followed by a description and results of the present analysis.
AGARD Index of Publications 1983-1985
1987-06-01
a high performance high speed General Aviation propeller the advent of the highly loaded program...distribution data at high speed and CLmax data at low speed are NS3-3036# Saab-.;cania, Linkoping (Sweden). described. A flight wing pressure survey which...also well with predictions based on wind tunnel data. flight at high speed and wind tunnel measurements on a half Reynolds Number and transition
NASA Astrophysics Data System (ADS)
Yu, Liping; Pan, Bing
2017-08-01
Full-frame, high-speed 3D shape and deformation measurement using stereo-digital image correlation (stereo-DIC) technique and a single high-speed color camera is proposed. With the aid of a skillfully designed pseudo stereo-imaging apparatus, color images of a test object surface, composed of blue and red channel images from two different optical paths, are recorded by a high-speed color CMOS camera. The recorded color images can be separated into red and blue channel sub-images using a simple but effective color crosstalk correction method. These separated blue and red channel sub-images are processed by regular stereo-DIC method to retrieve full-field 3D shape and deformation on the test object surface. Compared with existing two-camera high-speed stereo-DIC or four-mirror-adapter-assisted singe-camera high-speed stereo-DIC, the proposed single-camera high-speed stereo-DIC technique offers prominent advantages of full-frame measurements using a single high-speed camera but without sacrificing its spatial resolution. Two real experiments, including shape measurement of a curved surface and vibration measurement of a Chinese double-side drum, demonstrated the effectiveness and accuracy of the proposed technique.
Analysis of optical route in a micro high-speed magneto-optic switch
NASA Astrophysics Data System (ADS)
Weng, Zihua; Yang, Guoguang; Huang, Yuanqing; Chen, Zhimin; Zhu, Yun; Wu, Jinming; Lin, Shufen; Mo, Weiping
2005-02-01
A novel micro high-speed 2x2 magneto-optic switch and its optical route, which is used in high-speed all-optical communication network, is designed and analyzed in this paper. The study of micro high-speed magneto-optic switch mainly involves the optical route and high-speed control technique design. The optical route design covers optical route design of polarization in optical switch, the performance analysis and material selection of magneto-optic crystal and magnetic path design in Faraday rotator. The research of high-speed control technique involves the study of nanosecond pulse generator, high-speed magnetic field and its control technique etc. High-speed current transients from nanosecond pulse generator are used to switch the magnetization of the magneto-optic crystal, which propagates a 1550nm optical beam. The optical route design schemes and electronic circuits of high-speed control technique are both simulated on computer and test by the experiments respectively. The experiment results state that the nanosecond pulse generator can output the pulse with rising edge time 3~35ns, voltage amplitude 10~90V and pulse width 10~100ns. Under the control of CPU singlechip, the optical beam can be stably switched and the switching time is less than 1μs currently.
Wind energy converter with high-speed vertical axis rotor and straight rotor blades
NASA Astrophysics Data System (ADS)
Zelck, G.
1982-11-01
Complete documents for a wind energy converter with a vertical axis rotor and straight blades (H-rotor) were developed. The 2 blade rotor with rigid and rectangular air foils in wooden construction reaches the nominal output of 75 KVA from 11,4 m/sec. wind velocity onwards. The development activities are supported by wind tunnel and component tests. The final design selected was based upon previous development work. Trade offs show that the design is more advantageous compared to other designs. The use of wood as a material for the rotary and horizontal blade supports gives positive result.
Mode transition of plasma expansion for laser induced breakdown in Air
NASA Astrophysics Data System (ADS)
Shimamura, Kohei; Matsui, Kohei; Ofosu, Joseph A.; Yokota, Ippei; Komurasaki, Kimiya
2017-03-01
High-speed shadowgraph visualization experiments conducted using a 10 J pulse transversely excited atmospheric (TEA) CO2 laser in ambient air provided a state transition from overdriven to Chapman-Jouguet in the laser-supported detonation regime. At the state transition, the propagation velocity of the laser-supported detonation wave and the threshold laser intensity were 10 km/s and 1011 W/m2, respectively. State transition information, such as the photoionization caused by plasma UV radiation, of the avalanche ionization ahead of the ionization wave front can be elucidated from examination of the source seed electrons.
NASA Technical Reports Server (NTRS)
Keller, C. W.; Musil, L. M.; Hagy, J. L.
1975-01-01
An apparatus was developed to accurately measure components of force along three mutually perpendicular axes, torque, and the center of pressure imposed by the foot of a subject walking over its surface. The data obtained were used to supplement high-speed motion picture and electromyographic (EMG) data for in-depth studies of normal or abnormal human gait. Significant features of the design (in particular, the mechanisms used to support the loadcell transducers) are described. Results of the development program and typical data obtained with the device are presented and discussed.
NASA Technical Reports Server (NTRS)
Mayers, J; Budiansky, Bernard
1955-01-01
An analysis is presented of the postbuckling behavior of a simply supported square flat plate with straight edges compressed beyond the buckling load into the plastic range. The method of analysis involves the application of a variational principle of the deformation theory of plasticity in conjunction with computations carried out on a high-speed calculating machine. Numerical results are obtained for several plate proportions and for one material. The results indicate plate strengths greater than those that have been found experimentally on plates that do not satisfy straight-edge conditions. (author)
Influence of lower body pressure support on the walking patterns of healthy children and adults.
Kurz, Max J; Deffeyes, Joan E; Arpin, David J; Karst, Gregory M; Stuberg, Wayne A
2012-11-01
The purpose of this investigation was to evaluate the effect of a lower body positive pressure support system on the joint kinematics and activity of the lower extremity antigravity musculature of adults and children during walking. Adults (age = 25 ± 4 years) and children (age = 13 ± 2 years) walked at a preferred speed and a speed that was based on the Froude number, while 0-80% of their body weight was supported. Electrogoniometers were used to monitor knee and ankle joint kinematics. Surface electromyography was used to quantify the magnitude of the vastus lateralis and gastrocnemius muscle activity. There were three key findings: (1) The lower extremity joint angles and activity of the lower extremity antigravity muscles of children did not differ from those of adults. (2) The magnitude of the changes in the lower extremity joint motion and antigravity muscle activity was dependent upon an interaction between body weight support and walking speed. (3) Lower body positive pressure support resulted in reduced activation of the antigravity musculature, and reduced range of motion of the knee and ankle joints.
Recent Progress in Monolithic Silica Columns for High-Speed and High-Selectivity Separations.
Ikegami, Tohru; Tanaka, Nobuo
2016-06-12
Monolithic silica columns have greater (through-pore size)/(skeleton size) ratios than particulate columns and fixed support structures in a column for chemical modification, resulting in high-efficiency columns and stationary phases. This review looks at how the size range of monolithic silica columns has been expanded, how high-efficiency monolithic silica columns have been realized, and how various methods of silica surface functionalization, leading to selective stationary phases, have been developed on monolithic silica supports, and provides information on the current status of these columns. Also discussed are the practical aspects of monolithic silica columns, including how their versatility can be improved by the preparation of small-sized structural features (sub-micron) and columns (1 mm ID or smaller) and by optimizing reaction conditions for in situ chemical modification with various restrictions, with an emphasis on recent research results for both topics.
Cleveland-Columbus-Cincinnati high-speed rail study
DOT National Transportation Integrated Search
2001-07-01
In the past five years, the evaluation of different high-speed rail (HSR) studies in the Midwest has resulted in a realization that high speed rail, with speeds greater than 110 miles per hour, is too expensive in the short term to be implemented in ...
Low-speed wind-tunnel test of a STOL supersonic-cruise fighter concept
NASA Technical Reports Server (NTRS)
Coe, Paul L., Jr.; Riley, Donald R.
1988-01-01
A wind-tunnel investigation was conducted to examine the low-speed static stability and control characteristics of a 0.10 scale model of a STOL supersonic cruise fighter concept. The concept, referred to as a twin boom fighter, was designed as a STOL aircraft capable of efficient long range supersonic cruise. The configuration name is derived from the long twin booms extending aft of the engine to the twin vertical tails which support a high center horizontal tail. The propulsion system features a two dimensional thrust vectoring exhaust nozzle which is located so that the nozzle hinge line is near the aircraft center of gravity. This arrangement is intended to allow large thrust vector angles to be used to obtain significant values of powered lift, while minimizing pitching moment trim changes. Low speed stability and control information was obtained over an angle of attack range including the stall. A study of jet induced power effects was included.
Advanced ESPI-based medical instruments for otolaryngology
NASA Astrophysics Data System (ADS)
Castracane, James; Conerty, M.; Cacace, Anthony T.; Gardner, Glendon M.; Miller, Mitchell B.; Parnes, Steven M.
1993-05-01
Optical fibers have long been used for visual inspection inside the human body for medical diagnoses and treatment. By making use of sophisticated optical interferometric and ultra- small imaging techniques, combined with automated image processing, it is possible to extract significantly increased information for more accurate medical diagnoses. With support from NIH under the SBIR program, we have been developing a range of such instruments. One of these supported by the NIDCD is capable of providing detailed spatial information on the vibratory response of the tympanic membrane (TM). This instrument involves the examination of the TM by means of high speed electronic speckle pattern interferometry (ESPI). This provides a real time view of the vibration patterns of the TM for clinical diagnosis. This Interferometric Otoscope consists of mode conserving fiber optics, miniature diode lasers and high speed solid state detector arrays. We present the current status of the research including holography and ESPI of TM models and excised temporal bone preparations. A second instrument, also developed with support from NIDCD, is for application to the larynx. This system is also ESPI based but will incorporate features for direct vocal cord (VC) examination. By careful examination of the vibratory response of the VC during phonation, the characteristics of the mucosal wave may be examined. Adynamic regions of the cords can signal the start of lesions or cysts. Results of surgery can be evaluated in a quantitative manner. The design of a clinical prototype and preliminary electro-optic experiments on excised larynges and VC models will be presented.
A Rotational Gyroscope with a Water-Film Bearing Based on Magnetic Self-Restoring Effect
Chen, Dianzhong; Liu, Xiaowei; Li, Hai; Li, Ling; Rong, Wanting; Zhang, Zhongzhao
2018-01-01
Stable rotor levitation is a challenge for rotational gyroscopes (magnetically suspended gyroscopes (MSG) and electrostatically suspended gyroscopes (ESG)) with a ring- or disk-shaped rotor, which restricts further improvement of gyroscope performance. In addition, complicated pick-up circuits and feedback control electronics propose high requirement on fabrication technology. In the proposed gyroscope, a ball-disk shaped rotor is supported by a water-film bearing, formed by centrifugal force to deionized water at the cavity of the lower supporting pillar. Water-film bearing provides stable mechanical support, without the need for complicated electronics and control system for rotor suspension. To decrease sliding friction between the rotor ball and the water-film bearing, a supherhydrophobic surface (SHS) with nano-structures is fabricated on the rotor ball, resulting in a rated spinning speed increase of 12.4% (under the same driving current). Rotor is actuated by the driving scheme of brushless direct current motor (BLDCM). Interaction between the magnetized rotor and the magnetic-conducted stator produces a sinusoidal rotor restoring torque, amplitude of which is proportional to the rotor deflection angle inherently. Utilization of this magnetic restoring effect avoids adding of a high amplitude voltage for electrostatic feedback, which may cause air breakdown. Two differential capacitance pairs are utilized to measure input angular speeds at perpendicular directions of the rotor plane. The bias stability of the fabricated gyroscope is as low as 0.5°/h. PMID:29385105
NASA Astrophysics Data System (ADS)
Mohammed, H. A.; Sibley, M. J. N.; Mather, P. J.
2012-05-01
The merging of Orthogonal Frequency Division Multiplexing (OFDM) with Multiple-input multiple-output (MIMO) is a promising mobile air interface solution for next generation wireless local area networks (WLANs) and 4G mobile cellular wireless systems. This paper details the design of a highly robust and efficient OFDM-MIMO system to support permanent accessibility and higher data rates to users moving at high speeds, such as users travelling on trains. It has high relevance for next generation wireless local area networks (WLANs) and 4G mobile cellular wireless systems. The paper begins with a comprehensive literature review focused on both technologies. This is followed by the modelling of the OFDM-MIMO physical layer based on Simulink/Matlab that takes into consideration high vehicular mobility. Then the entire system is simulated and analysed under different encoding and channel estimation algorithms. The use of High Altitude Platform system (HAPs) technology is considered and analysed.
NASA Astrophysics Data System (ADS)
Kandaurov, Alexander; Troitskaya, Yuliya; Caulliez, Guillemette; Sergeev, Daniil; Vdovin, Maxim
2014-05-01
Three examples of usage of high-speed video filming in investigation of wind-wave interaction in laboratory conditions is described. Experiments were carried out at the Wind - wave stratified flume of IAP RAS (length 10 m, cross section of air channel 0.4 x 0.4 m, wind velocity up to 24 m/s) and at the Large Air-Sea Interaction Facility (LASIF) - MIO/Luminy (length 40 m, cross section of air channel 3.2 x 1.6 m, wind velocity up to 10 m/s). A combination of PIV-measurements, optical measurements of water surface form and wave gages were used for detailed investigation of the characteristics of the wind flow over the water surface. The modified PIV-method is based on the use of continuous-wave (CW) laser illumination of the airflow seeded by particles and high-speed video. During the experiments on the Wind - wave stratified flume of IAP RAS Green (532 nm) CW laser with 1.5 Wt output power was used as a source for light sheet. High speed digital camera Videosprint (VS-Fast) was used for taking visualized air flow images with the frame rate 2000 Hz. Velocity air flow field was retrieved by PIV images processing with adaptive cross-correlation method on the curvilinear grid following surface wave profile. The mean wind velocity profiles were retrieved using conditional in phase averaging like in [1]. In the experiments on the LASIF more powerful Argon laser (4 Wt, CW) was used as well as high-speed camera with higher sensitivity and resolution: Optronics Camrecord CR3000x2, frame rate 3571 Hz, frame size 259×1696 px. In both series of experiments spherical 0.02 mm polyamide particles with inertial time 7 ms were used for seeding airflow. New particle seeding system based on utilization of air pressure is capable of injecting 2 g of particles per second for 1.3 - 2.4 s without flow disturbance. Used in LASIF this system provided high particle density on PIV-images. In combination with high-resolution camera it allowed us to obtain momentum fluxes directly from measured air velocity fluctuations. This data was then compared to values retrieved from wind speed profiles [2]. Visualization of water surface structure and droplets under strong wind conditions was carried out at the Wind - wave stratified flume of IAP RAS with high-speed camera NAC Memrecam HX-3 having a record-breaking performance at the moment. Shooting was performed at frame rates over 4500 Hz in 1080p resolution (1920 x 1080 px). Experimental study of droplets under strong winds has discovered a "bag breakup" droplet-production mechanism (observed previously in technical devices for liquid disintegration [3]). The investigation on this mechanism in the laboratory can improve the parameterization of heat fluxes in the models of hurricanes and intense sea storms. This work was supported by RFBR grants (project code 13-05-00865, 13-05-12093, 12-05-01064, 14-08-31740, 14-05-31415), President Grant for young scientists MK-3550.2014.5 and grant of the Government of the Russian Federation designed to support scientific research project implemented under the supervision of leading scientists at Russian institutions of higher learning (project code 11.G34.31.0048). References 1. Troitskaya Yu., D. Sergeev, O. Ermakova, G. Balandina (2011), Statistical Parameters of the Air Turbulent Boundary Layer over Steep Water Waves Measured by the PIV Technique, J. Phys. Oceanogr., 41, 1421-1454 2. Troitskaya, Y. I., D. A. Sergeev, A. A. Kandaurov, G. A. Baidakov, M. A. Vdovin, and V. I. Kazakov "Laboratory and theoretical modeling of air-sea momentum transfer under severe wind conditions" J. Geophys. Res., 117, C00J21, 2012. 3. Villermaux, E. (2007), Fragmentation, Ann. Review Fluid Mech., 39,419-446, doi:10.1146/annurev.fluid.39.050905.110214.
Tuning membrane protein mobility by confinement into nanodomains
NASA Astrophysics Data System (ADS)
Karner, Andreas; Nimmervoll, Benedikt; Plochberger, Birgit; Klotzsch, Enrico; Horner, Andreas; Knyazev, Denis G.; Kuttner, Roland; Winkler, Klemens; Winter, Lukas; Siligan, Christine; Ollinger, Nicole; Pohl, Peter; Preiner, Johannes
2017-03-01
High-speed atomic force microscopy (HS-AFM) can be used to visualize function-related conformational changes of single soluble proteins. Similar studies of single membrane proteins are, however, hampered by a lack of suitable flat, non-interacting membrane supports and by high protein mobility. Here we show that streptavidin crystals grown on mica-supported lipid bilayers can be used as porous supports for membranes containing biotinylated lipids. Using SecYEG (protein translocation channel) and GlpF (aquaglyceroporin), we demonstrate that the platform can be used to tune the lateral mobility of transmembrane proteins to any value within the dynamic range accessible to HS-AFM imaging through glutaraldehyde-cross-linking of the streptavidin. This allows HS-AFM to study the conformation or docking of spatially confined proteins, which we illustrate by imaging GlpF at sub-molecular resolution and by observing the motor protein SecA binding to SecYEG.
Ferrer, E.; Whitaker, K.J.; Steele, J.; Green, C.T.; Wendelken, C.; Bunge, S.A.
2013-01-01
The structure of the human brain changes in several ways throughout childhood and adolescence. Perhaps the most salient of these changes is the strengthening of white matter tracts that enable distal brain regions to communicate with one another more quickly and efficiently. Here, we sought to understand whether and how white matter changes contribute to improved reasoning ability over development. In particular, we sought to understand whether previously reported relationships between white matter microstructure and reasoning are mediated by processing speed. To this end, we analyzed diffusion tensor imaging data as well as data from standard psychometric tests of cognitive abilities from 103 individuals between the ages of 6 and 18. We used structural equation modeling to investigate the network of relationships between brain and behavior variables. Our analyses provide support for the hypothesis that white matter maturation (as indexed either by microstructural organization or volume) supports improved processing speed, which, in turn, supports improved reasoning ability. PMID:24118718
Paris, David L.
1992-01-01
Scores from motor performance tests were compared using subjects with taped and untaped ankles. Previous studies have shown that taped ankle support may be detrimental in vertical and standing broad jumping performance. Conflicting data have been published on the effects of commercial ankle braces on various motor tasks. The performances of 18 elite soccer players in selected tests of speed, balance, agility, and vertical jumping were compared under conditions of untaped, nonelastic adhesive taped, Swede-O-braced, New Cross-braced, and McDavid-braced ankles. Vertical jump performance was significantly reduced when subjects wore New Cross braces. There were no significant differences in tests of speed, balance, and agility among any of the support conditions. Until now, nonelastic adhesive tape has been the preferred method of prophylactic ankle support. I conclude that certain commercial ankle braces may be used as a support alternative during selected activities. ImagesFig 1. PMID:16558170
33 CFR 84.24 - High-speed craft.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false High-speed craft. 84.24 Section... RULES ANNEX I: POSITIONING AND TECHNICAL DETAILS OF LIGHTS AND SHAPES § 84.24 High-speed craft. (a) The masthead light of high-speed craft with a length to breadth ratio of less than 3.0 may be placed at a...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-17
..., LLC High-Speed Passenger Train Project AGENCY: Bureau of Land Management, Interior. ACTION: Notice of... (ROD) for the DesertXpress Enterprises, LLC High-Speed Passenger Train Project (DesertXpress Project...-managed lands to build an Electrical Multiple Unit (EMU) high-speed passenger rail line in compliance with...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-26
...)] California High-Speed Rail Authority--Construction Exemption--In Fresno, Kings, Tulare, and Kern Counties, CA By petition filed on September 26, 2013, California High-Speed Rail Authority (Authority), a state... 49 U.S.C. 10901 for authority to construct an approximately 114-mile high-speed passenger rail line...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-01
... Environmental Impact Statement for the DesertXpress High-Speed Passenger Train Project AGENCY: Federal Railroad... for the DesertXpress High-Speed Passenger Train Project (DesertXpress project). FRA is the Lead Agency... and operation of an interstate high-speed passenger train system between Victorville, California and...
33 CFR 84.24 - High-speed craft.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false High-speed craft. 84.24 Section... RULES ANNEX I: POSITIONING AND TECHNICAL DETAILS OF LIGHTS AND SHAPES § 84.24 High-speed craft. (a) The masthead light of high-speed craft with a length to breadth ratio of less than 3.0 may be placed at a...
X-2 on ramp with B-50 mothership and support crew
NASA Technical Reports Server (NTRS)
1956-01-01
Air Force test pilot Capt. Iven Kincheloe stands in front of the Bell X-2 (46-674) on the ramp at Edwards Air Force Base, California. Behind the X-2 are ground support personnel, the B-50 launch aircraft and crew, chase planes, and support vehicles. Kincheloe had flown nearly 100 combat missions in Korea in an F-86 and was credited with shooting down 10 enemy aircraft. He then graduated from the Empire Test Pilot's School in Great Britain in December 1954, whereupon he was assigned to Edwards Air Force Base. He made four powered flights in the X-2. On September 7, 1956, he reached an altitude of 126,200 feet. After the death of Capt. Mel Apt and the loss of the X-2 #1 on September 27, 1956, in the first Mach 3 flight, Kincheloe was assigned as the Air Force project pilot for the X-15. Before he had a chance to fly that rocket-powered aircraft, Kincheloe himself lost his life on July 26, 1958, in an F-104 accident. The X-2 was a swept-wing, rocket-powered aircraft designed to fly faster than Mach 3 (three times the speed of sound). It was built for the U.S. Air Force by the Bell Aircraft Company, Buffalo, New York. The X-2 was flown to investigate the problems of aerodynamic heating as well as stability and control effectiveness at high altitudes and high speeds (in excess of Mach 3). Bell aircraft built two X-2 aircraft. These were constructed of K-monel (a copper and nickel alloy) for the fuselage and stainless steel for the swept wings and control surfaces. The aircraft had ejectable nose capsules instead of ejection seats because the development of ejection seats had not reached maturity at the time the X-2 was conceived. The X-2 ejection canopy was successfully tested using a German V-2 rocket. The X-2 used a skid-type landing gear to make room for more fuel. The airplane was air launched from a modified Boeing B-50 Superfortress Bomber. X-2 Number 1 made its first unpowered glide flight on Aug. 5, 1954, and made a total of 17 (4 glide and 13 powered) flights before it was lost Sept. 27, 1956. The pilot on Flight 17, Capt. Milburn Apt, had flown the aircraft to a record speed of Mach 3.2 (2,094 mph), thus becoming the first person to exceed Mach 3. During that last flight, inertial coupling occurred and the pilot was killed. The aircraft suffered little damage in the crash, resulting in proposals (never implemented) from the Langley Memorial Aeronautical Laboratory, Hampton, Virginia, to rebuild it for use in a hypersonic (Mach 5+) test program. In 1953, X-2 Number 2 was lost in an in-flight explosion while at the Bell Aircraft Company during captive flight trials and was jettisoned into Lake Ontario. The Air Force had previously flown the aircraft on three glide flights at Edwards Air Force Base, California, in 1952. Although the NACA's High-Speed Flight Station, Edwards, California, (predecessor of NASA's Dryden Flight Research Center) never actually flew the X-2 aircraft, the NACA did support the program primarily through Langley Memorial Aeronautical Laboratory wind-tunnel tests and Wallops Island, Virginia, rocket-model tests. The NACA High-Speed Flight Station also provided stability and control recording instrumentation and simulator support for the Air Force flights. In the latter regard, the NACA worked with the Air Force in using a special computer to extrapolate and predict aircraft behavior from flight data.
Research and development of a control system for multi axis cooperative motion based on PMAC
NASA Astrophysics Data System (ADS)
Guo, Xiao-xiao; Dong, Deng-feng; Zhou, Wei-hu
2017-10-01
Based on Programmable Multi-axes Controller (PMAC), a design of a multi axis motion control system for the simulator of spatial targets' dynamic optical properties is proposed. According to analysis the properties of spatial targets' simulator motion control system, using IPC as the main control layer, TurboPMAC2 as the control layer to meet coordinated motion control, data acquisition and analog output. A simulator using 5 servomotors which is connected with speed reducers to drive the output axis was implemented to simulate the motion of both the sun and the space target. Based on PMAC using PID and a notch filter algorithm, negative feedback, the speed and acceleration feed forward algorithm to satisfy the axis' requirements of the good stability and high precision at low speeds. In the actual system, it shows that the velocity precision is higher than 0.04 s ° and the precision of repetitive positioning is better than 0.006° when each axis is at a low-speed. Besides, the system achieves the control function of multi axis coordinated motion. The design provides an important technical support for detecting spatial targets, also promoting the theoretical research.
Baeken, C; Schrijvers, D L; Sabbe, B G C; Vanderhasselt, M A; De Raedt, R
2012-01-01
Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive tool to investigate neural conduction in motor processes. Most rTMS research has been conducted by targeting the primary motor cortex. Several studies have also found increased psychomotor speed after rTMS of the dorsolateral prefrontal cortex (DLPFC). However, these studies were mainly performed in psychiatric patients, only targeting the left DLPFC, and often without sham control. Moreover, psychomotor speed is mostly measured based on tasks that also require higher executive functions. Here, we examined the lateralized effect of one sham-controlled high-frequency rTMS session applied to the left or right DLPFC on fine motor function in 36 healthy right-handed females, using the Fitts' paradigm. We found a significant improvement in psychomotor speed only after actively stimulating the right DLPFC. Our results support the assumption of a right prefrontal neural network implicated in visuomotor behavior and performance processes, and that the improvement in psychomotor speed is not a secondary effect of decreased mood. Copyright © 2012 S. Karger AG, Basel.
The study of high-speed surface dynamics using a pulsed proton beam
NASA Astrophysics Data System (ADS)
Buttler, William T.; Oro, David M.; Preston, Dean; Mikaelian, Karnig O.; Cherne, Frank J.; Hixson, Robert S.; Mariam, Fesseha G.; Morris, Christopher L.; Stone, Joseph B.; Terrones, Guillermo; Tupa, Dale
2012-03-01
We present experimental results supporting physics based ejecta model development, where we assume ejecta form as a special limiting case of a Richtmyer-Meshkov (RM) instability with Atwood number A = -1. We present and use data to test established RM spike and bubble growth rate theory through application of modern laser Doppler velocimetry techniques applied in a novel manner to coincidentally measure bubble and spike velocities from shocked metals. We also explore the link of ejecta formation from a solid material to its plastic flow stress at high-strain rates (107/s) and high strains (700%).
Wake structure and kinematics in two insectivorous bats
Hristov, Nickolay I.; Swartz, Sharon M.; Breuer, Kenneth S.
2016-01-01
We compare kinematics and wake structure over a range of flight speeds (4.0–8.2 m s−1) for two bats that pursue insect prey aerially, Tadarida brasiliensis and Myotis velifer. Body mass and wingspan are similar in these species, but M. velifer has broader wings and lower wing loading. By using high-speed videography and particle image velocimetry of steady flight in a wind tunnel, we show that three-dimensional kinematics and wake structure are similar in the two species at the higher speeds studied, but differ at lower speeds. At lower speeds, the two species show significant differences in mean angle of attack, body–wingtip distance and sweep angle. The distinct body vortex seen at low speed in T. brasiliensis and other bats studied to date is considerably weaker or absent in M. velifer. We suggest that this could be influenced by morphology: (i) the narrower thorax in this species probably reduces the body-induced discontinuity in circulation between the two wings and (ii) the wing loading is lower, hence the lift coefficient required for weight support is lower. As a result, in M. velifer, there may be a decreased disruption in the lift generation between the body and the wing, and the strength of the characteristic root vortex is greatly diminished, both suggesting increased flight efficiency. This article is part of the themed issue ‘Moving in a moving medium: new perspectives on flight’. PMID:27528775
Low-speed wind tunnel performance of high-speed counterrotation propellers at angle-of-attack
NASA Technical Reports Server (NTRS)
Hughes, Christopher E.; Gazzaniga, John A.
1989-01-01
The low-speed aerodynamic performance characteristics of two advanced counterrotation pusher-propeller configurations with cruise design Mach numbers of 0.72 were investigated in the NASA Lewis 9- by 15-Foot Low-Speed Wind Tunnel. The tests were conducted at Mach number 0.20, which is representative of the aircraft take-off/landing flight regime. The investigation determined the effect of nonuniform inflow on the propeller performance characteristics for several blade angle settings and a range of rotational speeds. The inflow was varied by yawing the propeller model to angle-of-attack by as much as plus or minus 16 degrees and by installing on the counterrotation propeller test rig near the propeller rotors a model simulator of an aircraft engine support pylon and fuselage. The results of the investigation indicated that the low-speed performance of the counterrotation propeller configurations near the take-off target operating points were reasonable and were fairly insensitive to changes in model angle-of-attack without the aircraft pylon/fuselage simulators installed on the propeller test rig. When the aircraft pylon/fuselage simulators were installed, small changes in propeller performance were seen at zero angle-of-attack, but fairly large changes in total power coefficient and very large changes of aft-to-forward-rotor torque ratio were produced when the propeller model was taken to angle-of-attack. The propeller net efficiency, though, was fairly insensitive to any changes in the propeller flowfield conditions near the take-off target operating points.
Calculated performance, stability and maneuverability of high-speed tilting-prop-rotor aircraft
NASA Technical Reports Server (NTRS)
Johnson, Wayne; Lau, Benton H.; Bowles, Jeffrey V.
1986-01-01
The feasibility of operating tilting-prop-rotor aircraft at high speeds is examined by calculating the performance, stability, and maneuverability of representative configurations. The rotor performance is examined in high-speed cruise and in hover. The whirl-flutter stability of the coupled-wing and rotor motion is calculated in the cruise mode. Maneuverability is examined in terms of the rotor-thrust limit during turns in helicopter configuration. Rotor airfoils, rotor-hub configuration, wing airfoil, and airframe structural weights representing demonstrated advance technology are discussed. Key rotor and airframe parameters are optimized for high-speed performance and stability. The basic aircraft-design parameters are optimized for minimum gross weight. To provide a focus for the calculations, two high-speed tilt-rotor aircraft are considered: a 46-passenger, civil transport and an air-combat/escort fighter, both with design speeds of about 400 knots. It is concluded that such high-speed tilt-rotor aircraft are quite practical.
High-resolution laser-projection display system using a grating electromechanical system (GEMS)
NASA Astrophysics Data System (ADS)
Brazas, John C.; Kowarz, Marek W.
2004-01-01
Eastman Kodak Company has developed a diffractive-MEMS spatial-light modulator for use in printing and display applications, the grating electromechanical system (GEMS). This modulator contains a linear array of pixels capable of high-speed digital operation, high optical contrast, and good efficiency. The device operation is based on deflection of electromechanical ribbons suspended above a silicon substrate by a series of intermediate supports. When electrostatically actuated, the ribbons conform to the supporting substructure to produce a surface-relief phase grating over a wide active region. The device is designed to be binary, switching between a reflective mirror state having suspended ribbons and a diffractive grating state having ribbons in contact with substrate features. Switching times of less than 50 nanoseconds with sub-nanosecond jitter are made possible by reliable contact-mode operation. The GEMS device can be used as a high-speed digital-optical modulator for a laser-projection display system by collecting the diffracted orders and taking advantage of the low jitter. A color channel is created using a linear array of individually addressable GEMS pixels. A two-dimensional image is produced by sweeping the line image of the array, created by the projection optics, across the display screen. Gray levels in the image are formed using pulse-width modulation (PWM). A high-resolution projection display was developed using three 1080-pixel devices illuminated by red, green, and blue laser-color primaries. The result is an HDTV-format display capable of producing stunning still and motion images with very wide color gamut.
Big Data over a 100G network at Fermilab
Garzoglio, Gabriele; Mhashilkar, Parag; Kim, Hyunwoo; ...
2014-06-11
As the need for Big Data in science becomes ever more relevant, networks around the world are upgrading their infrastructure to support high-speed interconnections. To support its mission, the high-energy physics community as a pioneer in Big Data has always been relying on the Fermi National Accelerator Laboratory to be at the forefront of storage and data movement. This need was reiterated in recent years with the data-taking rate of the major LHC experiments reaching tens of petabytes per year. At Fermilab, this resulted regularly in peaks of data movement on the Wide area network (WAN) in and out ofmore » the laboratory of about 30 Gbit/s and on the Local are network (LAN) between storage and computational farms of 160 Gbit/s. To address these ever increasing needs, as of this year Fermilab is connected to the Energy Sciences Network (ESnet) through a 100 Gb/s link. To understand the optimal system-and application-level configuration to interface computational systems with the new highspeed interconnect, Fermilab has deployed a Network Research & Development facility connected to the ESnet 100G Testbed. For the past two years, the High Throughput Data Program (HTDP) has been using the Testbed to identify gaps in data movement middleware [5] when transferring data at these high-speeds. The program has published evaluations of technologies typically used in High Energy Physics, such as GridFTP [4], XrootD [9], and Squid [8]. Furthermore, this work presents the new R&D facility and the continuation of the evaluation program.« less
Big Data over a 100G network at Fermilab
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garzoglio, Gabriele; Mhashilkar, Parag; Kim, Hyunwoo
As the need for Big Data in science becomes ever more relevant, networks around the world are upgrading their infrastructure to support high-speed interconnections. To support its mission, the high-energy physics community as a pioneer in Big Data has always been relying on the Fermi National Accelerator Laboratory to be at the forefront of storage and data movement. This need was reiterated in recent years with the data-taking rate of the major LHC experiments reaching tens of petabytes per year. At Fermilab, this resulted regularly in peaks of data movement on the Wide area network (WAN) in and out ofmore » the laboratory of about 30 Gbit/s and on the Local are network (LAN) between storage and computational farms of 160 Gbit/s. To address these ever increasing needs, as of this year Fermilab is connected to the Energy Sciences Network (ESnet) through a 100 Gb/s link. To understand the optimal system-and application-level configuration to interface computational systems with the new highspeed interconnect, Fermilab has deployed a Network Research & Development facility connected to the ESnet 100G Testbed. For the past two years, the High Throughput Data Program (HTDP) has been using the Testbed to identify gaps in data movement middleware [5] when transferring data at these high-speeds. The program has published evaluations of technologies typically used in High Energy Physics, such as GridFTP [4], XrootD [9], and Squid [8]. Furthermore, this work presents the new R&D facility and the continuation of the evaluation program.« less
Aerodynamic Characteristics of Airfoils at High Speeds
NASA Technical Reports Server (NTRS)
Briggs, L J; Hull, G F; Dryden, H L
1925-01-01
This report deals with an experimental investigation of the aerodynamical characteristics of airfoils at high speeds. Lift, drag, and center of pressure measurements were made on six airfoils of the type used by the air service in propeller design, at speeds ranging from 550 to 1,000 feet per second. The results show a definite limit to the speed at which airfoils may efficiently be used to produce lift, the lift coefficient decreasing and the drag coefficient increasing as the speed approaches the speed of sound. The change in lift coefficient is large for thick airfoil sections (camber ratio 0.14 to 0.20) and for high angles of attack. The change is not marked for thin sections (camber ratio 0.10) at low angles of attack, for the speed range employed. At high speeds the center of pressure moves back toward the trailing edge of the airfoil as the speed increases. The results indicate that the use of tip speeds approaching the speed of sound for propellers of customary design involves a serious loss in efficiency.
High-speed optical 3D sensing and its applications
NASA Astrophysics Data System (ADS)
Watanabe, Yoshihiro
2016-12-01
This paper reviews high-speed optical 3D sensing technologies for obtaining the 3D shape of a target using a camera. The focusing speed is from 100 to 1000 fps, exceeding normal camera frame rates, which are typically 30 fps. In particular, contactless, active, and real-time systems are introduced. Also, three example applications of this type of sensing technology are introduced, including surface reconstruction from time-sequential depth images, high-speed 3D user interaction, and high-speed digital archiving.
Hurt, Christopher P; Burgess, Jamie K; Brown, David A
2015-03-01
Individuals poststroke walk at faster self-selected speeds under some nominal level of body weight support (BWS) whereas nonimpaired individuals walk slower after adding BWS. The purpose of this study was to determine whether increases in self-selected overground walking speed under BWS conditions of individuals poststroke can be explained by changes in their paretic and nonparetic ground reaction forces (GRF). We hypothesize that increased self-selected walking speed, recorded at some nominal level of BWS, will relate to decreased braking GRFs by the paretic limb. We recruited 10 chronic (>12 months post-ictus, 57.5±9.6 y.o.) individuals poststroke and eleven nonimpaired participants (53.3±4.1 y.o.). Participants walked overground in a robotic device, the KineAssist Walking and Balance Training System that provided varying degrees of BWS (0-20% in 5% increments) while individuals self-selected their walking speed. Self-selected walking speed and braking and propulsive GRF impulses were quantified. Out of 10 poststroke individuals, 8 increased their walking speed 13% (p=0.004) under some level of BWS (5% n=2, 10% n=3, 20% n=3) whereas nonimpaired controls did not change speed (p=0.470). In individuals poststroke, changes to self-selected walking speed were correlated with changes in paretic propulsive impulses (r=0.68, p=0.003) and nonparetic braking impulses (r=-0.80, p=0.006), but were not correlated with decreased paretic braking impulses (r=0.50 p=0.14). This investigation demonstrates that when individuals poststroke are provided with BWS and allowed to self-select their overground walking speed, they are capable of achieving faster speeds by modulating braking impulses on the nonparetic limb and propulsive impulses of the paretic limb. Copyright © 2015 Elsevier B.V. All rights reserved.
ONRASIA Scientific Information Bulletin. Volume 17, Number 4, October-December 1992
1992-12-01
Corporate Software Planning Oki’s Software Improvement Environment and Engineering Div. Strategy - Effective Management - Improvement of Informa- Mr...a CCITT-supported implementation phase. -- David K fore we have effectively implemented ISO Standard high-level language Kahaner, ONRASIA them...power with a system fo- putation) Result cused on their specific needs. Result Effective speed should be (Readers can write to me or to 150 times VP-400
A Novel Thermal Management Approach for Radial Foil Air Bearings
2010-07-01
injection air. The tests were conducted at room temperature with the bearing operating at speeds from 20 to 50 krpm while supporting 222N. Two different...14 List of Tables Table 1. Bearing temperature results for the two injection air flows at three different operating...no further than the research stage (3, 4). However, during the last 15 years, more advanced, higher load capacity bearings and high temperature
How DARHT Works - the World's Most Powerful X-ray Machine
None
2018-06-01
The Dual Axis Radiographic Hydrodynamic Test (DARHT) facility at Los Alamos National Laboratory is an essential scientific tool that supports Stockpile Stewardship at the Laboratory. The World's most powerful x-ray machine, it's used to take high-speed images of mock nuclear devices - data that is used to confirm and modify advanced computer codes in assuring the safety, security, and effectiveness of the U.S. nuclear deterrent.
High Speed Rail (HSR) in the United States
2009-12-08
Magnetic Levitation ( Maglev ) ...............................................................................................5 High Speed Rail In...commonly referred to as “ maglev .” 6 Passenger Rail Working Group of the National Surface... maglev train in 2003. Because of the greater costs, and relatively minor benefits,11 of operating at extremely high speeds, the top operating speed
DOT National Transportation Integrated Search
2001-09-01
High-speed trains in the speed range of 100 to 160 mph require tracks of nearly perfect geometry and mechanical uniformity, when subjected to moving wheel loads. Therefore, this report briefly describes the remedies being used by various railroads to...
NASA Astrophysics Data System (ADS)
Tresser, Shachar; Dolev, Amit; Bucher, Izhak
2018-02-01
High-speed machinery is often designed to pass several "critical speeds", where vibration levels can be very high. To reduce vibrations, rotors usually undergo a mass balancing process, where the machine is rotated at its full speed range, during which the dynamic response near critical speeds can be measured. High sensitivity, which is required for a successful balancing process, is achieved near the critical speeds, where a single deflection mode shape becomes dominant, and is excited by the projection of the imbalance on it. The requirement to rotate the machine at high speeds is an obstacle in many cases, where it is impossible to perform measurements at high speeds, due to harsh conditions such as high temperatures and inaccessibility (e.g., jet engines). This paper proposes a novel balancing method of flexible rotors, which does not require the machine to be rotated at high speeds. With this method, the rotor is spun at low speeds, while subjecting it to a set of externally controlled forces. The external forces comprise a set of tuned, response dependent, parametric excitations, and nonlinear stiffness terms. The parametric excitation can isolate any desired mode, while keeping the response directly linked to the imbalance. A software controlled nonlinear stiffness term limits the response, hence preventing the rotor to become unstable. These forces warrant sufficient sensitivity required to detect the projection of the imbalance on any desired mode without rotating the machine at high speeds. Analytical, numerical and experimental results are shown to validate and demonstrate the method.
Development of a 300,000-pixel ultrahigh-speed high-sensitivity CCD
NASA Astrophysics Data System (ADS)
Ohtake, H.; Hayashida, T.; Kitamura, K.; Arai, T.; Yonai, J.; Tanioka, K.; Maruyama, H.; Etoh, T. Goji; Poggemann, D.; Ruckelshausen, A.; van Kuijk, H.; Bosiers, Jan T.
2006-02-01
We are developing an ultrahigh-speed, high-sensitivity broadcast camera that is capable of capturing clear, smooth slow-motion videos even where lighting is limited, such as at professional baseball games played at night. In earlier work, we developed an ultrahigh-speed broadcast color camera1) using three 80,000-pixel ultrahigh-speed, highsensitivity CCDs2). This camera had about ten times the sensitivity of standard high-speed cameras, and enabled an entirely new style of presentation for sports broadcasts and science programs. Most notably, increasing the pixel count is crucially important for applying ultrahigh-speed, high-sensitivity CCDs to HDTV broadcasting. This paper provides a summary of our experimental development aimed at improving the resolution of CCD even further: a new ultrahigh-speed high-sensitivity CCD that increases the pixel count four-fold to 300,000 pixels.
Lubrication of optimized-design tapered-roller bearings to 2.4 million DN
NASA Technical Reports Server (NTRS)
Parker, R. J.; Pinel, S. I.; Signer, Hans R.
1980-01-01
The performance of 120.65 mm (4.75 in.) bore high speed design, tapered roller bearings was investigated at shaft speeds to 20,000 rpm (2.4 million DN) under combined thrust and radial load. The test bearing design was computer optimized for high speed operation. Temperature distribution bearing heat generation were determined as a function of shaft speed, radial and thrust loads, lubricant flow rates, and lubricant inlet temperature. The high speed design, tapered roller bearing operated successfully at shaft speeds up to 20,000 rpm under heavy thrust and radial loads. Bearing temperatures and heat generation with the high speed design bearing were significantly less than those of a modified standard bearing tested previously. Cup cooling was effective in decreasing the high cup temperatures to levels equal to the cone temperature.
Two laboratory methods for the calibration of GPS speed meters
NASA Astrophysics Data System (ADS)
Bai, Yin; Sun, Qiao; Du, Lei; Yu, Mei; Bai, Jie
2015-01-01
The set-ups of two calibration systems are presented to investigate calibration methods of GPS speed meters. The GPS speed meter calibrated is a special type of high accuracy speed meter for vehicles which uses Doppler demodulation of GPS signals to calculate the measured speed of a moving target. Three experiments are performed: including simulated calibration, field-test signal replay calibration, and in-field test comparison with an optical speed meter. The experiments are conducted at specific speeds in the range of 40-180 km h-1 with the same GPS speed meter as the device under calibration. The evaluation of measurement results validates both methods for calibrating GPS speed meters. The relative deviations between the measurement results of the GPS-based high accuracy speed meter and those of the optical speed meter are analyzed, and the equivalent uncertainty of the comparison is evaluated. The comparison results justify the utilization of GPS speed meters as reference equipment if no fewer than seven satellites are available. This study contributes to the widespread use of GPS-based high accuracy speed meters as legal reference equipment in traffic speed metrology.