Sample records for support leg base

  1. Motion of the center of mass in children with spastic hemiplegia: balance, energy transfer, and work performed by the affected leg vs. the unaffected leg.

    PubMed

    Feng, Jing; Pierce, Rosemary; Do, K Patrick; Aiona, Michael

    2014-01-01

    Asymmetry between limbs in people with spastic hemiplegic cerebral palsy (HEMI) adversely affects limb coordination and energy generation and consumption. This study compared how the affected leg and the unaffected leg of children with HEMI would differ based on which leg trails. Full-body gait analysis data and force-plate data were analyzed for 31 children (11.9 ± 3.8 years) with HEMI and 23 children (11.1 ± 3.1 years) with typical development (TD). Results showed that peak posterior center of mass-center of pressure (COM-COP) inclination angles of HEMI were smaller than TD when the affected leg trailed but not when the unaffected leg trailed. HEMI showed greater peak medial COM-COP inclination angles and wider step width than TD, no matter which leg trailed. More importantly, when the affected leg of HEMI trailed, it did not perform enough positive work during double support to propel COM motion. Consequently, the unaffected leg had to perform additional positive work during the early portion of single support, which costs more energy. When the unaffected leg trailed, the affected leg performed more negative work during double support; therefore, more positive work was still needed during early single support, but energy efficiency was closer to that of TD. Energy recovery factor was lower when the affected leg trailed than when the unaffected leg trailed; both were lower than TD. These findings suggest that the trailing leg plays a significant role in propelling COM motion during double support, and the 'unaffected' side of HEMI may not be completely unaffected. It is important to strengthen both legs. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. [Measurement of external pressure of peroneal nerve tract coming in contact with lithotomy leg holders using pressure distribution measurement system BIG-MAT®].

    PubMed

    Mizuno, Ju; Namba, Chikara; Takahashi, Toru

    2014-10-01

    We investigated external pressure on peroneal nerve tract coming in contact with two kinds of leg holders using pressure distribution measurement system BIG- MAT® (Nitta Corp., Osaka) in the lithotomy position Peak contact (active) pressure at the left fibular head region coming in contact with knee-crutch-type leg holder M® (Takara Belmont Corp., Osaka), which supports the left popliteal fossa, was 78.0 ± 26.4 mmHg. On the other hand, peak contact pressure at the left lateral lower leg region coming in contact with boot-support-type leg holder Bel Flex® (Takara Belmont Corp., Osaka), which supports the left lower leg and foot was 26.3±7.9 mmHg. These results suggest that use of knee-crutch-type leg holder is more likely to induce common peroneal nerve palsy at the fibular head region, but use of boot-support-type leg holder dose not easily induce superficial peroneal nerve palsy at the lateral lower leg region, because capillary blood pressure is known to be 32 mmHg. Safer holders for positioning will be developed to prevent nerve palsy based on the analysis of chronological change in external pressure using BIG-MAT® system during anesthesia.

  3. Thermoelectric materials evaluation program. Technical summary report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hinderman, J.D.

    1979-04-01

    Research progress on the thermoelectric materials evaluation program is reported covering the period January 1, 1976 to September 30, 1978. Topical reports are presented on (1) hot and cold end ..delta..T's, (2) hardware mobility, (3) p-leg sublimation suppression, (4) thermodynamic stability of p-legs, (5) n-leg material process improvements to reduce extraneous resistance, (6) n-leg cracking, (7) dynamic evaluation of converter, and (8) data base and degradation modes. Twenty attachments are included which present supporting drawings, specifications, procedures, and data. (WHK)

  4. Tandem Stance Avoidance Using Adaptive and Asymmetric Admittance Control for Fall Prevention.

    PubMed

    Nakagawa, Shotaro; Hasegawa, Yasuhisa; Fukuda, Toshio; Kondo, Izumi; Tanimoto, Masanori; Di, Pei; Huang, Jian; Huang, Qiang

    2016-05-01

    Fall prevention is one of the most important functions of walking assistance devices for user's safety. It is preferable that these devices prevent the user from being in the state where the risk of falling is high rather than helping them recovering from falling motion. During turning, when the user is in the tandem stance, a state where both legs form a line along walking direction, a support base that is surrounded by two legs becomes small, and a stability margin becomes small. This paper therefore aims to prevent the tandem stance by using nonwearable robot "intelligent cane" for the elderly or physically challenged person. Generally, the behavior of the lower limb follows the upper body turning. This paper therefore introduces a cane robot control method which constrains the behavior of user's upper body. By adjusting an admittance parameter of the robot according to the positions of a support leg, the robot resists to turn while a support leg is on the same side of the turning direction. A swing leg on the turning direction side therefore freely moves to the turning direction, while a swing leg on the opposite direction side of turning hardly move to the turning direction.

  5. Testing the effectiveness of a self-efficacy based exercise intervention for adults with venous leg ulcers: protocol of a randomised controlled trial

    PubMed Central

    2014-01-01

    Background Exercise and adequate self-management capacity may be important strategies in the management of venous leg ulcers. However, it remains unclear if exercise improves the healing rates of venous leg ulcers and if a self-management exercise program based on self-efficacy theory is well adhered to. Method/design This is a randomised controlled in adults with venous leg ulcers to determine the effectiveness of a self-efficacy based exercise intervention. Participants with venous leg ulcers are recruited from 3 clinical sites in Australia. After collection of baseline data, participants are randomised to either an intervention group or control group. The control group receive usual care, as recommended by evidence based guidelines. The intervention group receive an individualised program of calf muscle exercises and walking. The twelve week exercise program integrates multiple elements, including up to six telephone delivered behavioural coaching and goal setting sessions, supported by written materials, a pedometer and two follow-up booster calls if required. Participants are encouraged to seek social support among their friends, self-monitor their weekly steps and lower limb exercises. The control group are supported by a generic information sheet that the intervention group also receive encouraging lower limb exercises, a pedometer for self-management and phone calls at the same time points as the intervention group. The primary outcome is the healing rates of venous leg ulcers which are assessed at fortnightly clinic appointments. Secondary outcomes, assessed at baseline and 12 weeks: functional ability (range of ankle motion and Tinetti gait and balance score), quality of life and self-management scores. Discussion This study seeks to address a significant gap in current wound management practice by providing evidence for the effectiveness of a home-based exercise program for adults with venous leg ulcers. Theory-driven, evidence-based strategies that can improve an individual’s exercise self-efficacy and self-management capacity could have a significant impact in improving the management of people with venous leg ulcers. Information gained from this study will provide much needed information on management of this chronic disease to promote health and independence in this population. Trial registration Australian New Zealand Clinical Trials Registry ACTRN12612000475842. PMID:25277416

  6. Leg ulcer assessment techniques in a remote rural area.

    PubMed

    Graham, Julia

    Community-based leg ulcer clinics are a cost-effective and efficient way of managing patients with leg ulcers in the community (Blair et al, 1988; Moffatt and Oldroyd, 1994). According to the Scottish Clinical Standards for Vascular Services (NHS Quality Improvement Scotland, 2003): 'It is essential that all vascular patients are seen by a nurse with vascular expertise, who is able to provide information, support and health promotion advice'.

  7. Effects of leg dominance on performance of ballet turns (pirouettes) by experienced and novice dancers.

    PubMed

    Lin, Chia-Wei; Su, Fong-Chin; Wu, Hong-Wen; Lin, Cheng-Feng

    2013-01-01

    Turns (pirouettes) are an important movement in ballet and may be affected by "lateral bias". This study investigated physiological differences exhibited by experienced and novice dancers, respectively, when performing pirouette with dominant and non-dominant leg supports, respectively. Thirteen novice and 13 experienced dancers performed turns on dominant or non-dominant legs. The maximum ankle plantarflexion, knee extension and hip extension were measured during the single-leg support phase. The inclination angle of rotation axis is the angle between instantaneous rotation axis and global vertical axis in the early single-leg support phase. Both groups exhibited a greater hip extension, knee extension, and ankle plantarflexion when performing a turn on the non-dominant leg. For experienced dancers, the inclination angle of rotation axis during the pre-swing phase was generally smaller for dominant leg support than non-dominant leg. However, no significant difference was found in inclination angle of rotation axis of novice dancers. For experienced dancers, an improved performance is obtained when using the dominant leg for support. By contrast, for novice dancers, the performance is independent of choice of support leg. The significant lateral bias in experienced dancers indicates the possible influence of training. That is, repetitive rehearsal on the preferred leg strengthens the impact of side dominance in experienced dancers.

  8. Kinematic and kinetic analysis of the fouetté turn in classical ballet.

    PubMed

    Imura, Akiko; Iino, Yoichi; Kojima, Takeji

    2010-11-01

    The fouetté turn in classical ballet dancing is a continuous turn with the whipping of the gesture leg and the arms and the bending and stretching of the supporting leg. The knowledge of the movement intensities of both legs for the turn would be favorable for the conditioning of the dancer's body. The purpose of this study was to estimate the intensities. The hypothesis of this study was that the intensities were higher in the supporting leg than in the gesture leg. The joint torques of both legs were determined in the turns performed by seven experienced female classical ballet dancers with inverse dynamics using three high-speed cine cameras and a force platform. The hip abductor torque, knee extensor and plantar flexor torques of the supporting leg were estimated to be exerted up to their maximum levels and the peaks of the torques were larger than the peaks of their matching torques of the gesture leg. Thus, the hypothesis was partly supported. Training of the supporting leg rather than the gesture leg would help ballet dancers perform many revolutions of the fouetté turn continuously.

  9. Investigation of effect of leg support elevation timing on the horizontal force acting on the buttocks in a reclining wheelchair.

    PubMed

    Kobara, Kenichi; Takahashi, Hisashi; Fujita, Daisuke; Osaka, Hiroshi; Ito, Tomotaka; Suehiro, Tadanobu; Watanabe, Susumu

    2015-08-01

    [Purpose] The purpose of this study was to investigate the effect of the timing of leg support elevation on the horizontal force acting on the buttocks in a reclining wheelchair. [Subjects and Methods] The participants were 17 healthy men. Two experimental conditions were tested: the leg-down and leg-up conditions. The back support was reclined at increasing angles, from the initial upright position (IUP), proceeding to the fully reclined position (FRP), and returned to the upright position (RUP). The posterior inclination phase was from IUP to FRP, and the returning inclination phase was from FRP to RUP. [Results] The horizontal force under the leg-up condition was significantly higher than that under the leg-down condition in all positions of back support. [Conclusion] The leg supports should be positioned downward before reclining the back support of a wheelchair.

  10. Loading and performance of the support leg in kicking.

    PubMed

    Ball, Kevin

    2013-09-01

    The punt kick is important in many football codes and support leg kinematics and ground reaction forces have been implicated in injury and performance in kicking. To evaluate ground reaction forces and support leg kinematics in the punt kick. Cross sectional study. Seven elite Australian football players performed maximal kicks into a net using both the preferred and non-preferred legs. A force plate measured ground reaction forces and an optical motion capture system (200Hz) collected kinematic data during the stance phase of the kick. Preferred and non-preferred legs were compared and performance was evaluated by correlating parameters with foot speed at ball contact. Vertical forces were larger than running at a similar speed but did not reach levels that might be considered an injury risk. Braking forces were directed solely posteriorly, as for soccer kicks, but lateral force patterns varied with some players experiencing greater forces medially and others laterally. A more extended support leg, larger peak vertical and braking force during the stance phase and a shorter stance contact time was associated with larger kick leg foot speed at ball contact. No difference existed between the preferred and non-preferred legs for ground reaction forces or support leg mechanics. To punt kick longer, a straighter support leg, less time on the ground and stronger braking should be encouraged. Conditioning the support leg to provide stronger braking potential is recommended. Copyright © 2012 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  11. Increasing the Mobility of Dismounted Marines

    DTIC Science & Technology

    2009-10-01

    actually been the inspiration for military UGV development programs, including the Defense Advanced Research Projects Agency’s (DARPA) Legged Squad Support...or wheel-based; only the BigDog is a leg -based system. This presented BigDog with certain advantages (particularly involving its ability to traverse...1,000 pounds) Website: http://www.dtiweb.net/index.html 50 General Discussion: Ranlo The Ranlo – named after Defense Technologies, Inc.’s ( DTI

  12. The Lindsay Leg Club: supporting the NHS to provide leg ulcer care.

    PubMed

    McKenzie, Morag

    2013-06-01

    Public health services will need to cope with additional demands due to an ageing society and the increasing prevalence of chronic conditions. Lower-limb ulceration is a long-term, life-changing condition and leg ulcer management can be challenging for nursing staff. The Lindsay Leg Club model is a unique partnership between community nurses, members and the local community, which provides quality of care and empowerment for patients with leg ulcers, while also supporting and educating nursing staff. The Leg Club model works in accord with core themes of Government and NHS policy. Patient feedback on the Leg Club model is positive and the Leg Clubs provide a service to members which is well accepted by patients, yet is more economically efficient than the traditional district nursing practice of home visits. Lindsay Leg Clubs provide a valuable support service to the NHS in delivering improved quality of care while improving efficiency.

  13. Mechanical evidence that flamingos can support their body on one leg with little active muscular force.

    PubMed

    Chang, Young-Hui; Ting, Lena H

    2017-05-01

    Flamingos (Phoenicopteridae) often stand and sleep on one leg for long periods, but it is unknown how much active muscle contractile force they use for the mechanical demands of standing on one leg: body weight support and maintaining balance. First, we demonstrated that flamingo cadavers could passively support body weight on one leg without any muscle activity while adopting a stable, unchanging, joint posture resembling that seen in live flamingos. By contrast, the cadaveric flamingo could not be stably held in a two-legged pose, suggesting a greater necessity for active muscle force to stabilize two-legged versus one-legged postures. Our results suggest that flamingos engage a passively engaged gravitational stay apparatus (proximally located) for weight support during one-legged standing. Second, we discovered that live flamingos standing on one leg have markedly reduced body sway during quiescent versus alert behaviours, with the point of force application directly under the distal joint, reducing the need for muscular joint torque. Taken together, our results highlight the possibility that flamingos stand for long durations on one leg without exacting high muscular forces and, thus, with little energetic expenditure. © 2017 The Author(s).

  14. Device for installing rocket engines

    NASA Technical Reports Server (NTRS)

    George, T. R., Jr. (Inventor)

    1976-01-01

    A device for installing rocket engines is reported that is supported at a cant relative to vertical by an axially extensible, tiltable pedestal. A lifting platform supports the rocket engine at its thrust chamber exit, including a mount having a concentric base characterized by a concave bearing surface, a plurality of uniformly spaced legs extended radially from the base, and an annular receiver coaxially aligned with the base and affixed to the distal ends of said legs for receiving the thrust chamber exit. The lifting platform rests on a seat concentrically related to the pedestal and affixed to an extended end portion thereof having a convex bearing surface mated in sliding engagement with the concave bearing surface of the annular base for accommodating a rocking motion of the platform.

  15. Three-dimensional topographies of water surface dimples formed by superhydrophobic water strider legs

    NASA Astrophysics Data System (ADS)

    Yin, W.; Zheng, Y. L.; Lu, H. Y.; Zhang, X. J.; Tian, Y.

    2016-10-01

    A water strider has a remarkable capability to stand and walk freely on water. Supporting forces of a water strider and a bionic robot have been calculated from the side view of pressed depth of legs to reconstruct the water surface dimples. However, in situ measurements of the multiple leg forces and significantly small leg/water contact dimples have not been realized yet. In this study, a shadow method was proposed to reconstruct the in situ three-dimensional topographies of leg/water contact dimples and their corresponding supporting forces. Results indicated that the supporting forces were affected by the depth, width, and length of the dimple, and that the maximum dimple depth was not proportional to the supporting forces. The shadow method also has advantages in disclosing tiny supporting force of legs in their subtle actions. These results are helpful for understanding the locomotion principles of water-walking insects and the design of biomimetic aquatic devices.

  16. Using NetMeeting for remote configuration of the Otto Bock C-Leg: technical considerations.

    PubMed

    Lemaire, E D; Fawcett, J A

    2002-08-01

    Telehealth has the potential to be a valuable tool for technical and clinical support of computer controlled prosthetic devices. This pilot study examined the use of Internet-based, desktop video conferencing for remote configuration of the Otto Bock C-Leg. Laboratory tests involved connecting two computers running Microsoft NetMeeting over a local area network (IP protocol). Over 56 Kbs(-1), DSL/Cable, and 10 Mbs(-1) LAN speeds, a prosthetist remotely configured a user's C-Leg by using Application Sharing, Live Video, and Live Audio. A similar test between sites in Ottawa and Toronto, Canada was limited by the notebook computer's 28 Kbs(-1) modem. At the 28 Kbs(-1) Internet-connection speed, NetMeeting's application sharing feature was not able to update the remote Sliders window fast enough to display peak toe loads and peak knee angles. These results support the use of NetMeeting as an accessible and cost-effective tool for remote C-Leg configuration, provided that sufficient Internet data transfer speed is available.

  17. Passive zero-gravity leg restraint

    NASA Technical Reports Server (NTRS)

    Miller, Christopher R. (Inventor)

    1989-01-01

    A passive zero or microgravity leg restraint is described which includes a central support post with a top and a bottom. Extending from the central support post are a calf pad tab, to which calf pad is attached, and a foot pad tab, to which foot tab is attached. Also extending from central support post are knee pads. When the restraint is in use the user's legs are forced between pads by a user imposed scissors action of the legs. The user's body is then supported in a zero or microgravity neutral body posture by the leg restraint. The calf pad has semi-ridig elastic padding material covering structural stiffener. The foot pad has padding material and a structural stiffener. Knee pads have s structural tube stiffener at their core.

  18. Walk and roll robot

    NASA Technical Reports Server (NTRS)

    Wilson, Andrew (Inventor); Punnoose, Andrew (Inventor); Strausser, Katherine (Inventor); Parikh, Neil (Inventor)

    2011-01-01

    A mobile robotic unit features a main body, a plurality of legs for supporting the main body on and moving the main body in forward and reverse directions about a base surface, and a drive assembly. According to an exemplary embodiment each leg includes a respective pivotal hip joint, a pivotal knee joint, and a wheeled foot adapted to roll along the base surface. Also according to an exemplary embodiments the drive assembly includes a motor operatively associated with the hip and knee joints and the wheeled foot for independently driving pivotal movement of the hip joint and the knee joint and rolling motion of the wheeled foot. The hip joint may include a ball-and-socket-type joint interconnecting top portion of the leg to the main body, such that the hip joint is adapted to pivot said leg in a direction transverse to a forward-and-reverse direction.

  19. "Four legs instead of two"--perspectives on a Nordic walking-based walking programme among people with arthritis.

    PubMed

    O'Donovan, Rhona; Kennedy, Norelee

    2015-01-01

    Nordic Walking (NW) is growing in popularity among people with arthritis. The aim of this study was to explore the perspectives of participants with arthritis on a NW-based walking programme including factors contributing to sustained participation in the programme. Three semi-structured focus groups were conducted with a total of 27 participants with various types of arthritis. The groups consisted of participants who completed a NW-based walking programme in the previous 4 years. Only participants who had sustained involvement in the walking group were included. Groups were audio-recorded, transcribed verbatim and thematic analysis was performed. Participants reported that the walking programme offered numerous benefits. Two distinct themes emerged: (1) "four legs instead of two legs" and (2) "a support group". Theme 1 incorporates the physical, psychological and educational benefits that stem from involvement in a walking group while Theme 2 incorporates the benefits of social support in group-based activity. Several benefits of a NW-based walking programme from the perspectives of individuals with arthritis who engage in group-based walking programmes were identified. The benefits may encourage sustained participation and justify the promotion of NW as an intervention for people with arthritis. Considering how to sustain exercise participation is important to ensure continued benefits from physical activity participation. A community-based Nordic walking-based walking programme for people with arthritis improved exercise knowledge and confidence to exercise. Group exercise is valuable in providing support and motivation to continue exercising.

  20. ODYSSEUS autonomous walking robot: The leg/arm design

    NASA Technical Reports Server (NTRS)

    Bourbakis, N. G.; Maas, M.; Tascillo, A.; Vandewinckel, C.

    1994-01-01

    ODYSSEUS is an autonomous walking robot, which makes use of three wheels and three legs for its movement in the free navigation space. More specifically, it makes use of its autonomous wheels to move around in an environment where the surface is smooth and not uneven. However, in the case that there are small height obstacles, stairs, or small height unevenness in the navigation environment, the robot makes use of both wheels and legs to travel efficiently. In this paper we present the detailed hardware design and the simulated behavior of the extended leg/arm part of the robot, since it plays a very significant role in the robot actions (movements, selection of objects, etc.). In particular, the leg/arm consists of three major parts: The first part is a pipe attached to the robot base with a flexible 3-D joint. This pipe has a rotated bar as an extended part, which terminates in a 3-D flexible joint. The second part of the leg/arm is also a pipe similar to the first. The extended bar of the second part ends at a 2-D joint. The last part of the leg/arm is a clip-hand. It is used for selecting several small weight and size objects, and when it is in a 'closed' mode, it is used as a supporting part of the robot leg. The entire leg/arm part is controlled and synchronized by a microcontroller (68CH11) attached to the robot base.

  1. Increasing the Mobility of Dismounted Marines. Small Unit Mobility Enhancement Technologies: Unmanned Ground Vehicles Market Survey

    DTIC Science & Technology

    2009-10-01

    DARPA) Legged Squad Support System (LS3) Program. DARPA’s LS3 Program is an effort to develop a walking platform, preferably a quadruped, which...top-scoring UGV’s are track- or wheel-based; only the BigDog is a leg -based system. This presented BigDog with certain advantages (particularly...Technologies, Inc.’s ( DTI ) first location in Ranlo, North Carolina) – is a system capable of wheeled or tracked locomotion and was recently

  2. Absence of center of mass control for leg abduction in long-term weightlessness in humans.

    PubMed

    Pedrocchi, Alessandra; Baroni, Guido; Mouchnino, Laurence; Ferrigno, Giancarlo; Pedotti, Antonio; Massion, Jean

    2002-02-22

    The present investigation describes for the first time leg lateral abduction performance during long-term microgravity exposure. Two astronauts took part in the experiments, starting 2 weeks into the mission and lasting for 5 months. Results on joint angles kinematics confirm previous investigations on parabolic flights, showing good task fulfillment for both subjects. Special interest was focused on whole body center of mass (CM) positioning. As in short-term microgravity, no initial CM lateral shift toward the 'supporting' leg was observed. In contrast with short-term microgravity and ground-based experiments, no stabilization of the CM medio-lateral position was found but a significant shift of CM toward the moving leg was observed. This suggests that the adaptation to sustained weightlessness might have led to a microgravity-specific motor strategy for leg abduction, which was not focused on CM strategy.

  3. Modification of Impulse Generation During Pirouette Turns With Increased Rotational Demands.

    PubMed

    Zaferiou, Antonia M; Wilcox, Rand R; McNitt-Gray, Jill L

    2016-10-01

    This study determined how dancers regulated angular and linear impulse during the initiation of pirouettes of increased rotation. Skilled dancers (n = 11) performed single and double pirouette turns with each foot supported by a force plate. Linear and angular impulses generated by each leg were quantified and compared between turn types using probability-based statistical methods. As rotational demands increased, dancers increased the net angular impulse generated. The contribution of each leg to net angular impulse in both single and double pirouettes was influenced by stance configuration strategies. Dancers who generated more angular impulse with the push leg than with the turn leg initiated the turn with the center of mass positioned closer to the turn leg than did other dancers. As rotational demands increased, dancers tended to increase the horizontal reaction force magnitude at one or both feet; however, they used subject-specific mechanisms. By coordinating the generation of reaction forces between legs, changes in net horizontal impulse remained minimal, despite impulse regulation at each leg used to achieve more rotations. Knowledge gained regarding how an individual coordinates the generation of linear and angular impulse between both legs as rotational demand increased can help design tools to improve that individual's performance.

  4. Continuous leg dyskinesia assessment in Parkinson's disease -clinical validity and ecological effect.

    PubMed

    Ramsperger, Robert; Meckler, Stefan; Heger, Tanja; van Uem, Janet; Hucker, Svenja; Braatz, Ulrike; Graessner, Holm; Berg, Daniela; Manoli, Yiannos; Serrano, J Artur; Ferreira, Joaquim J; Hobert, Markus A; Maetzler, Walter

    2016-05-01

    Dyskinesias in Parkinson's disease (PD) patients are a common side effect of long-term dopaminergic therapy and are associated with motor dysfunctions, including gait and balance deficits. Although promising compounds have been developed to treat these symptoms, clinical trials have failed. This failure may, at least partly, be explained by the lack of objective and continuous assessment strategies. This study tested the clinical validity and ecological effect of an algorithm that detects and quantifies dyskinesias of the legs using a single ankle-worn sensor. Twenty-three PD patients (seven with leg dyskinesias) and 13 control subjects were investigated in the lab. Participants performed purposeful daily activity-like tasks while being video-taped. Clinical evaluation was performed using the leg dyskinesia item of the Unified Dyskinesia Rating Scale. The ecological effect of the developed algorithm was investigated in a multi-center, 12-week, home-based sub-study that included three patients with and seven without dyskinesias. In the lab-based sub-study, the sensor-based algorithm exhibited a specificity of 98%, a sensitivity of 85%, and an accuracy of 0.96 for the detection of dyskinesias and a correlation level of 0.61 (p < 0.001) with the clinical severity score. In the home-based sub-study, all patients could be correctly classified regarding the presence or absence of leg dyskinesias, supporting the ecological relevance of the algorithm. This study provides evidence of clinical validity and ecological effect of an algorithm derived from a single sensor on the ankle for detecting leg dyskinesias in PD patients. These results should motivate the investigation of leg dyskinesias in larger studies using wearable sensors. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Supporting adherence and healthy lifestyles in leg ulcer patients: systematic development of the Lively Legs program for dermatology outpatient clinics.

    PubMed

    Heinen, Maud M; Bartholomew, L Kay; Wensing, Michel; van de Kerkhof, Peter; van Achterberg, Theo

    2006-05-01

    The objective of our project was to develop a lifestyle program for leg ulcer patients at outpatient clinics for dermatology. We used the intervention-mapping (IM) framework for systematically developing theory and evidence based health promotion programs. We started with a needs-assessment. A multidisciplinary project group of health care workers and patients was involved in all five IM steps; formulating proximal program objectives, selecting methods and strategies, producing program components, planning for adoption and implementation and planning for evaluation. Several systematic literature reviews and original studies were performed to support this process. Social Cognitive Theory was selected as the main theory behind the program 'Lively Legs' and was combined with elements of Goal-Setting Theory, the precaution adoption model and motivational interviewing. The program is conducted through health counseling by dermatology nurses and was successfully pre-tested. Also, an implementation and evaluation plan were made. Intervention mapping helped us to succeed in developing a lifestyle program with clear goals and methods, operational strategies and materials and clear procedures. Coaching leg ulcer patients towards adherence with compression therapy and healthy lifestyles should be taken on without delay. Systematic development of lifestyle programs for other patient groups should be encouraged.

  6. A comparison of ballet dancers with different level of experience in performing single-leg stance on retiré position.

    PubMed

    Lin, Chia-Wei; Lin, Cheng-Feng; Hsue, Bih-Jen; Su, Fong-Chin

    2014-04-01

    The purpose of the current study was to evaluate the postural stability of single-leg standing on the retiré position in ballet dancers having three different levels of skill. Nine superior experienced female ballet dancers, 9 experienced, and 12 novice dancers performed single-leg standing in the retiré position. The parameters of center of pressure (COP) in the anterior-posterior and medial-lateral directions and the maximum distance between COP and the center of mass (COM) were measured. The inclination angles of body segments (head, torso, and supporting leg) in the frontal plane were also calculated. The findings showed that the novice dancers had a trend of greater torso inclination angles than the experienced dancers but that the superior experienced dancers had greater maximum COM-COP distance in the anterior-posterior direction. Furthermore, both experienced and novice dancers had better balance when standing on the nondominant leg, whereas the superior experienced dancers had similar postural stability between legs. Based on the findings, ballet training should put equal focus on both legs and frontal plane control (medial-lateral direction) should be integrated to ballet training program.

  7. The moon illusion: a different view through the legs.

    PubMed

    Coren, S

    1992-12-01

    The fact that the overestimation of the horizon moon is reduced when individuals bend over and view it through their legs has been used as support for theories of the moon illusion based upon angle of regard and vestibular inputs. Inversion of the visual scene, however, can also reduce the salience of depth cue, so illusion reduction might be consistent with size constancy explanations. A sample of 70 subjects viewed normal and inverted pictorial arrays. The moon illusion was reduced in the inverted arrays, suggesting that the "through the legs" reduction of the moon illusion may reflect the alteration in perceived depth associated with scene inversion rather than angle of regard or vestibular effects.

  8. Rosidal K: a short-stretch compression bandage system.

    PubMed

    Williams, C

    Management of venous leg ulcers account for a large proportion of the work of healthcare professionals, especially for those who are community based. Multilayer and long-stretch bandage systems have been used successfully for many years in venous leg ulcer management. Rosidal K, a short-stretch bandage, is now also becoming more widely accepted in this country as an effective and cost-effective bandage system. This product focus looks at bandage systems and examines the research supporting the use of short-stretch bandages and Rosidal K.

  9. Inverse dynamic investigation of voluntary leg lateral movements in weightlessness: a new microgravity-specific strategy.

    PubMed

    Pedrocchi, Alessandra; Baroni, Guido; Pedotti, Antonio; Massion, Jean; Ferrigno, Giancarlo

    2005-04-01

    This study deals with the quantitative assessment of exchanged forces and torques at the restraint point during whole body posture perturbation movements in long-term microgravity. The work was based on the results of a previous study focused on trunk bending protocol, which suggested that the minimization of the torques exchanged at the restraint point could be a strategy for movement planning in microgravity (J. Biomech. 36(11) (2003) 1691). Torques minimization would lead to the optimization of muscles activity, to the minimization of energy expenditure and, ultimately, to higher movement control capabilities. Here, we focus on leg lateral abduction from anchored stance. The analysis was based on inverse dynamic modelling, leading to the estimation of the total angular momentum at the supporting ankle joint. Results agree with those obtained for trunk bending movements and point out a consistent minimization of the torques exchanged at the restraint point in weightlessness. Given the kinematic features of the examined motor task, this strategy was interpreted as a way to master the rotational dynamic effects on the frontal plane produced by leg lateral abduction. This postural stabilizing effects was the result of a multi-segmental compensation strategy, consisting of the counter rotation of the supporting limb and trunk accompanying the leg raising. The observed consistency of movement-posture co-ordination patterns among lateral leg raising and trunk bending is put forward as a novel interpretative issue of the adaptation mechanisms of the motor system to sustained microgravity, especially if one considers the completely different kinematics of the centre of mass, which was observed in weightlessness for these two motor tasks.

  10. New Circuit QED system based on Triple-leg Stripline Resonator.

    NASA Astrophysics Data System (ADS)

    Kim, Dongmin; Moon, Kyungsun

    Conventional circuit QED system consists of a qubit located inside a linear stripline resonator, which has successfully demonstrated a strong coupling between a single photon and a qubit. Here we present a new circuit QED system, where the qubit is coupled to triple-leg stripline resonator (TSR). We have shown that TSR supports two-fold degenerate photon modes among others. By coupling them to a single qubit, we have obtained the dressed states of a coupled system of a single qubit and two-fold degenerate photon modes. By locating two qubits at two legs of TSR, we have studied a potential two-bit gate operation (e.g., CNOT gate) of the system. We will discuss the main advantage of utilizing two-fold degenerate photon modes This work is partially supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (NRF-2016R1D1A1B01013756).

  11. Leg length, skull circumference, and the incidence of dementia in Latin America and China: A 10/66 population-based cohort study.

    PubMed

    Prince, Martin J; Acosta, Daisy; Guerra, Mariella; Huang, Yueqin; Jimenez-Velazquez, Ivonne Z; Llibre Rodriguez, Juan J; Salas, Aquiles; Sosa, Ana Luisa; Dewey, Michael E; Guerchet, Maelenn M; Liu, Zhaorui; Llibre Guerra, Jorge J; Prina, A Matthew

    2018-01-01

    Adult leg length is influenced by nutrition in the first few years of life. Adult head circumference is an indicator of brain growth. Cross-sectional studies indicate inverse associations with dementia risk, but there have been few prospective studies. Population-based cohort studies in urban sites in Cuba, Dominican Republic Puerto Rico and Venezuela, and rural and urban sites in Peru, Mexico and China. Sociodemographic and risk factor questionnaires were administered to all participants, and anthropometric measures taken, with ascertainment of incident dementia, and mortality, three to five years later. Of the original at risk cohort of 13,587 persons aged 65 years and over, 2,443 (18.0%) were lost to follow-up; 10,540 persons with skull circumference assessments were followed up for 40,466 person years, and 10,400 with leg length assessments were followed up for 39,954 person years. There were 1,009 cases of incident dementia, and 1,605 dementia free deaths. The fixed effect pooled meta-analysed adjusted subhazard ratio (ASHR) for leg length (highest vs. lowest quarter) was 0.80 (95% CI, 0.66-0.97) and for skull circumference was 1.02 (95% CI, 0.84-1.25), with no heterogeneity of effect between sites (I2 = 0%). Leg length measurements tended to be shorter at follow-up, particularly for those with baseline cognitive impairment and dementia. However, leg length change was not associated with dementia incidence (ASHR, per cm 1.006, 95% CI 0.992-1.020), and the effect of leg length was little altered after adjusting for baseline frailty (ASHR 0.82, 95% CI 0.67-0.99). A priori hypotheses regarding effect modification by gender or educational level were not supported. However, the effect of skull circumference was modified by gender (M vs F ASHR 0.86, 95% CI 0.75-0.98), but in the opposite direction to that hypothesized with a greater protective effect of larger skull dimensions in men. Consistent findings across settings provide quite strong support for an association between adult leg length and dementia incidence in late-life. Leg length is a relatively stable marker of early life nutritional programming, which may confer brain reserve and protect against neurodegeneration in later life through mitigation of cardiometabolic risk. Further clarification of these associations could inform predictive models for future dementia incidence in the context of secular trends in adult height, and invigorate global efforts to improve childhood nutrition, growth and development.

  12. Continuity through best practice: design and implementation of a nurse-led community leg-ulcer service.

    PubMed

    Lorimer, Karen

    2004-06-01

    The design of the new service was intended to facilitate continuity. The results after the first year of the new service revealed that care was both more effective and more efficient for all types of leg ulcers (Harrison, Graham, Friedberg, & Lorimer, 2003). Healing rates had dramatically improved, the frequency of nursing visits decreased, and supply costs declined. With the new service, comprehensive standardized assessments are made at baseline on all new admissions for home leg-ulcer care, and reassessments are regularly scheduled if the condition does not improve. With the evidence-based protocol, all providers and sectors of care are "working from the same script." Specific information is obtained on the client's health history, leg-ulcer history, preferences, and social context. Continuity is further facilitated through implementation of the primary nurse model, whereby one provider is responsible for developing the care plan and for subsequent evaluation and revision. Management continuity is advanced through health-care reorganization, with the development of an expert, dedicated nursing team, a consistent approach to training and skill development, improved coordination, an interdisciplinary approach for referral and consultation, and continuous quality improvement measures for education and practice audit. A number of strategies tailored to the new service have been highly effective. Strategic alliances among the researchers, home-care authority, nursing agency, nurses, and physicians are essential to the success of both design and implementation. Ongoing interdisciplinary and intersectoral communication expedites the referral process and helps to resolve issues as they develop. The majority of physicians have been very supportive of the use of the protocol and the evidence-based service. Surveys of care recipients have been mostly positive. Nurses who have been surveyed concerning the supports to implementation of the evidence-based service have indicated the following supports: ongoing education, nursing knowledge, a supportive clinical leader, support from two specialist physicians (a dermatologist and a vascular surgeon), a dedicated nursing team, positive outcomes (improved healing rates), and regional home care and agency support. The greatest challenge has been establishing and maintaining the dedicated nursing team. Continuity is served when nurses are assigned exclusively to the leg-ulcer team, where they can continue to build expertise and skills. The nursing agency was initially reluctant to embrace the concept of a dedicated team, as it viewed wound care as a general function of all nurses. Many of the nurses trained in leg-ulcer care fulfilled a number of other specialized nursing functions. This had resource implications for the nursing agency, as other nurses needed training in various other specialized skills. There should be a balance between the size of the population being served and the size of the team, in order to maintain efficiency and sufficient exposure to skilful assessment and management of leg-ulcer care. During the first year of the leg-ulcer service a number of nurses were lost from the team for various reasons, including: outside opportunities for career advancement, the physical demands of this type of care, retirement, moving from the area, and lack of job security. In addition, the volume of nursing visits was decreased because of Ontario government cutbacks in the area of home-care services. New staff members on the team were laid off in the context of a unionized environment. The lack of long-term security and the reality of lower wages in the community sector have played havoc with recruitment and retention. A recently formed committee at the nursing agency on continuity of care, with representation from nursing, management, and administration, has identified a number of further barriers to continuity. These include fluctuating caseloads, difficulty attracting nurses to the community sector, and a unionized environment in which senior nurses displace junior nurses on low-caseload days. Strategies aimed at overcoming the barriers to continuity have been identified and are being implemented. Our experience confirms the need for evidence-based planning in order to understand the needs of the population with leg ulcers, current practices, and the organization of care prior to the restructuring of service delivery. The extensive needs assessment indicated the need for broad system changes in addition to adjustments in clinical care in order to meet best-practice guidelines. Despite ongoing barriers, the service model has improved continuity and dramatically increased the effectiveness and efficiency of leg-ulcer care in one community.

  13. Centre of pressure correlates with pyramid performance in acrobatic gymnastics.

    PubMed

    Floría, Pablo; Gómez-Landero, Luis Arturo; Harrison, Andrew J

    2015-01-01

    Acrobatic gymnasts need excellent balance control to execute pyramids where one gymnast is supported by another. The objectives of this study were: (1) to describe balance performance by assessing the centre of pressure displacement in a group of acrobatic gymnasts executing pyramids; (2) to determine the relationship between the parameters describing the centre of pressure oscillations and pyramid score; and (3) to examine the role of each foot in providing a solid base of support to maintain the balance of the pyramid. Sixteen acrobatic gymnasts grouped in pairs performed a Half pyramid and a Straddle pyramid held for 7 s on two force platforms. Path length, variance, range trajectory, and surface area of the centre of pressure of each foot were examined to analyse the balance of the pyramid. The path length was correlated with the pyramid score (Straddle: p = 0.692 [large]; Half: p = 0.407 [moderate]). There were differences in the functions of each leg to maintain balance, with the non-preferred leg supporting a higher weight of the pyramid while the preferred leg performed control movements to maintain balance. The results suggested that quantitative analysis of balance can provide important information on pyramid performance.

  14. [Effect of vibratory stimulation of foot support areas in rats on the functional state of leg muscles and the content of N2A titin isoforms in gravity relief].

    PubMed

    Baltina, Y V; Kuznetsov, M V; Yeremeev, A A; Baltin, M E

    2014-01-01

    In this work, we studied the effect of vibratory stimulation of the foot support zones on the functional state of the leg muscles and the content of N2A titin isoforms in rats under simulated microgravity (hanging model). The results of this study showed that vibratory support zones of the rat foot in a gravity discharge may reduce the incidence in amplitude of the leg muscle motor response and undesirable reduction of the titin content.

  15. Fabrication of Low-Noise TES Arrays for the SAFARI Instrument on SPICA

    NASA Astrophysics Data System (ADS)

    Ridder, M. L.; Khosropanah, P.; Hijmering, R. A.; Suzuki, T.; Bruijn, M. P.; Hoevers, H. F. C.; Gao, J. R.; Zuiddam, M. R.

    2016-07-01

    Ultra-low-noise transition edge sensors (TES) with noise equivalent power lower than 2 × 10^{-19} W/Hz^{1/2 } have been fabricated by SRON, which meet the sensitivity requirements for the far-infrared SAFARI instrument on space infrared telescope for cosmology and astrophysics. Our TES detector is based on a titanium/gold (Ti/Au) thermistor on a silicon nitride (SiN) island. The island is thermally linked with SiN legs to a silicon support structure at the bath temperature. The SiN legs are very thin (250 nm), narrow (500 nm), and long (above 300 {\\upmu } m); these dimensions are needed in leg-isolated bolometers to achieve the required level of sensitivity. In this paper, we describe the latest fabrication process for our TES bolometers with improved sensitivity.

  16. An investigation of lower-extremity functional asymmetry for non-preferred able-bodied walking speeds

    PubMed Central

    RICE, JOHN; SEELEY, MATTHEW K.

    2010-01-01

    Functional asymmetry is an idea that is often used to explain documented bilateral asymmetries during able-bodied gait. Within this context, this idea suggests that the non-dominant and dominant legs, considered as whole entities, contribute asymmetrically to support and propulsion during walking. The degree of functional asymmetry may depend upon walking speed. The purpose of this study was to better understand the potential relationship between functional asymmetry and walking speed. Bilateral ground reaction forces (GRF) were measured for 20 healthy subjects who walked at nine different speeds: preferred, +10%, +20%, +30%, +40, −10%, −20%, −30%, and −40%. Contribution to support was determined to be the support impulse: the time integral of the vertical GRF during stance. Contribution to propulsion was determined to be the propulsion impulse: the time integral of the anterior-posterior GRF, while this force was directed forward. Repeated measures ANOVA (α = 0.05) revealed leg × speed interactions for normalized support (p = 0.001) and propulsion (p = 0.001) impulse, indicating that speed does affect the degree of functional asymmetry during gait. Post hoc comparisons (α = 0.05) showed that support impulse was approximately 2% greater for the dominant leg, relative to the non-dominant leg, for the −10%, −20%, and −40% speeds. Propulsion impulse was 12% greater for the dominant leg than for the non-dominant leg at the +20% speed. Speed does appear to affect the magnitude of bilateral asymmetry during walking, however, only the bilateral difference for propulsion impulse at one fast speed (+20%) was supportive of the functional asymmetry idea. PMID:27182346

  17. Development of single leg version of HAL for hemiplegia.

    PubMed

    Kawamoto, Hiroaki; Hayashi, Tomohiro; Sakurai, Takeru; Eguchi, Kiyoshi; Sankai, Yoshiyuki

    2009-01-01

    Our goal is to try to enhance the QoL of persons with hemiplegia by the mean of an active motion support system based on the HAL's technology. The HAL (Hybrid Assistive Limb) in its standard version is an exoskeleton-based robot suit to support and enhance the human motor functions. The purpose of the research presented in this paper is the development of a new version of the HAL to be used as an assistive device providing walking motion support to persons with hemiplegia. It includes the realization of the single leg version of the HAL and the redesign of the original HAL's Autonomous Controller to execute human-like walking motions in an autonomous way. Clinical trials were conducted in order to assess the effectiveness of the developed system. The first stage of the trials described in this paper involved the participation of one hemiplegic patient who has difficulties to flex his right knee. As a result, the knee flexion support for walking provided by the HAL appeared to improve the subject's walking (longer stride and faster steps). The first evaluation of the system with one subject showed promising results for the future developments.

  18. Leg size and muscle functions associated with leg compliance

    NASA Technical Reports Server (NTRS)

    Convertino, Victor A.; Doerr, Donald F.; Flores, Jose F.; Hoffler, G. Wyckliffe; Buchanan, Paul

    1988-01-01

    The relationship between the leg compliance and factors related to the size of leg muscle and to physical fitness was investigated in ten healthy subjects. Vascular compliance of the leg, as determined by a mercury strain gauge, was found to be not significantly correlated with any variables associated with physical fitness per se (e.g., peak O2 uptake, calf strength, age, body weight, or body composition. On the other hand, leg compliance correlated with the calf cross-sectional area (CSA) and the calculated calf volume, with the CSA of calf muscle being the most dominant contributing factor (while fat and bone were poor predicators). It is suggested that leg compliance can be lowered by increasing calf muscle mass, thus providing structural support to limit the expansion of leg veins.

  19. Differences of Ballet Turns ("Pirouette") Performance between Experienced and Novice Ballet Dancers

    ERIC Educational Resources Information Center

    Lin, Chia-Wei; Chen, Shing-Jye; Su, Fong-Chin; Wu, Hong-Wen; Lin, Cheng-Feng

    2014-01-01

    Purpose: This study investigated the different postural control strategies exhibited by experienced and novice dancers in ballet turns ("pirouettes"). Method: Thirteen novice and 13 experienced dancers performed ballet turns with dominant-leg support. The peak push force was measured in the double-leg support phase. The inclination…

  20. Sensitivity of sensor-based sit-to-stand peak power to the effects of training leg strength, leg power and balance in older adults.

    PubMed

    Regterschot, G Ruben H; Folkersma, Marjanne; Zhang, Wei; Baldus, Heribert; Stevens, Martin; Zijlstra, Wiebren

    2014-01-01

    Increasing leg strength, leg power and overall balance can improve mobility and reduce fall risk. Sensor-based assessment of peak power during the sit-to-stand (STS) transfer may be useful for detecting changes in mobility and fall risk. Therefore, this study investigated whether sensor-based STS peak power and related measures are sensitive to the effects of increasing leg strength, leg power and overall balance in older adults. A further aim was to compare sensitivity between sensor-based STS measures and standard clinical measures of leg strength, leg power, balance, mobility and fall risk, following an exercise-based intervention. To achieve these aims, 26 older adults (age: 70-84 years) participated in an eight-week exercise program aimed at improving leg strength, leg power and balance. Before and after the intervention, performance on normal and fast STS transfers was evaluated with a hybrid motion sensor worn on the hip. In addition, standard clinical tests (isometric quadriceps strength, Timed Up and Go test, Berg Balance Scale) were performed. Standard clinical tests as well as sensor-based measures of peak power, maximal velocity and duration of normal and fast STS showed significant improvements. Sensor-based measurement of peak power, maximal velocity and duration of normal STS demonstrated a higher sensitivity (absolute standardized response mean (SRM): ≥ 0.69) to the effects of training leg strength, leg power and balance than standard clinical measures (absolute SRM: ≤ 0.61). Therefore, the presented sensor-based method appears to be useful for detecting changes in mobility and fall risk. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Why a mosquito leg possesses superior load-bearing capacity on water: Experimentals

    NASA Astrophysics Data System (ADS)

    Kong, Xiang-Qing; Liu, Jian-Lin; Wu, Cheng-Wei

    2016-04-01

    Mosquitoes possess the striking ability to walk on water because each of their legs has a huge water supporting force (WSF) that is 23 times their body weight. Aiming at a full understanding of the origins of this extremely large force, in this study, we concentrate on two aspects of it: the intrinsic properties of the leg surface and the active control of the initial stepping angle of the whole leg. Using a measurement system that we developed ourselves, the WSFs for the original leg samples are compared with those whose surface wax and microstructures have been removed and with those of a different stiffness. The results show that leg flexibility plays a dominant role over surface wax and microstructures on the leg surface in creating the supporting force. Moreover, we discuss the dependence relationship between the maximum WSF and the initial stepping angle, which indicates that the mosquito can regulate this angle to increase or decrease the WSF during landing or takeoff. These findings are helpful for uncovering the locomotion mechanism of aquatic insects and for providing inspiration for the design of microfluids, miniature boats, biomimetic robots, and microsensors.

  2. A load-based mechanism for inter-leg coordination in insects

    PubMed Central

    2017-01-01

    Animals rely on an adaptive coordination of legs during walking. However, which specific mechanisms underlie coordination during natural locomotion remains largely unknown. One hypothesis is that legs can be coordinated mechanically based on a transfer of body load from one leg to another. To test this hypothesis, we simultaneously recorded leg kinematics, ground reaction forces and muscle activity in freely walking stick insects (Carausius morosus). Based on torque calculations, we show that load sensors (campaniform sensilla) at the proximal leg joints are well suited to encode the unloading of the leg in individual steps. The unloading coincides with a switch from stance to swing muscle activity, consistent with a load reflex promoting the stance-to-swing transition. Moreover, a mechanical simulation reveals that the unloading can be ascribed to the loading of a specific neighbouring leg, making it exploitable for inter-leg coordination. We propose that mechanically mediated load-based coordination is used across insects analogously to mammals. PMID:29187626

  3. Gas turbine sealing apparatus

    DOEpatents

    Marra, John Joseph; Wessell, Brian J.; Liang, George

    2013-03-05

    A sealing apparatus in a gas turbine. The sealing apparatus includes a seal housing apparatus coupled to a disc/rotor assembly so as to be rotatable therewith during operation of the gas turbine. The seal housing apparatus comprises a base member, a first leg portion, a second leg portion, and spanning structure. The base member extends generally axially between forward and aft rows of rotatable blades and is positioned adjacent to a row of stationary vanes. The first leg portion extends radially inwardly from the base member and is coupled to the disc/rotor assembly. The second leg portion is axially spaced from the first leg portion, extends radially inwardly from the base member, and is coupled to the disc/rotor assembly. The spanning structure extends between and is rigidly coupled to each of the base member, the first leg portion, and the second leg portion.

  4. The psychosocial impact of leg ulcers in patients with sickle cell disease: I don't want them to know my little secret.

    PubMed

    Umeh, Nkeiruka I; Ajegba, Brittany; Buscetta, Ashley J; Abdallah, Khadijah E; Minniti, Caterina P; Bonham, Vence L

    2017-01-01

    Sickle cell disease (SCD) impacts millions of individuals worldwide and more than 100,000 people in the United States. Leg ulcers are the most common cutaneous manifestation of SCD. The health status of individuals living with chronic leg ulcers is not only influenced by clinical manifestations such as pain duration and intensity, but also by psychosocial factors. Garnering insights into the psychosocial impact can provide a more holistic view of their influence on quality of life. Semi-structured interviews were conducted with participants living with active SCD-associated leg ulcers or with a history of ulcers. Subjects were recruited from an ongoing study (INSIGHTS, Clin Trial.Gov NCT02156102) and consented to this qualitative phase of the study. Five areas were explored: leg ulcer pain, physical function, social-isolation, social relationships and religious support. Data was collected from 20 individuals during these interviews and a thematic analysis was performed and reported. Twenty participants with a mean age of 42.4 (SD ± 11.1years) were included in the study. Major themes identified included:1) pain (acute and chronic); 2) compromised physical function as demonstrated by decreased ability to walk, run, and play sports; 3) social isolation from activities either by others or self-induced as a means of avoiding certain emotions, such as embarrassment; 4) social relationships (family support and social network); 5) support and comfort through their religion or spirituality. SCD patients with leg ulcers expressed that they experience social isolation, intense and frequent ulcer pain, and difficulty in physical function. SCD-associated leg ulcers have been studied from a clinical approach, but the psychosocial factors investigated in this study informs how quality of life is impacted by the leg ulcers.

  5. EMG synchrony to assess impaired corticomotor control of locomotion after stroke.

    PubMed

    Lodha, Neha; Chen, Yen-Ting; McGuirk, Theresa E; Fox, Emily J; Kautz, Steven A; Christou, Evangelos A; Clark, David J

    2017-12-01

    Adapting one's gait pattern requires a contribution from cortical motor commands. Evidence suggests that frequency-based analysis of electromyography (EMG) can be used to detect this cortical contribution. Specifically, increased EMG synchrony between synergistic muscles in the Piper frequency band has been linked to heightened corticomotor contribution to EMG. Stroke-related damage to cerebral motor pathways would be expected to diminish EMG Piper synchrony. The objective of this study is therefore to test the hypothesis that EMG Piper synchrony is diminished in the paretic leg relative to nonparetic and control legs, particularly during a long-step task of walking adaptability. Twenty adults with post-stroke hemiparesis and seventeen healthy controls participated in this study. EMG Piper synchrony increased more for the control legs compare to the paretic legs when taking a non-paretic long step (5.02±3.22% versus 0.86±2.62%), p<0.01) and when taking a paretic long step (2.04±1.98% versus 0.70±2.34%, p<0.05). A similar but non-significant trend was evident when comparing non-paretic and paretic legs. No statistically significant differences in EMG Piper synchrony were found between legs for typical walking. EMG Piper synchrony was positively associated with walking speed and step length within the stroke group. These findings support the assertion that EMG Piper synchrony indicates corticomotor contribution to walking. Published by Elsevier Ltd.

  6. Compliant Walker

    NASA Technical Reports Server (NTRS)

    Kerley, James J.; Eklund, Wayne; Crane, Alan

    1992-01-01

    Walker supports person with limited use of legs and back. Enables person to stand upright, move with minimum load, and rest at will taking weight off legs. Consists of wheeled frame with body harness connected compliantly to side structures. Harness supports wearer upright when wearer relaxes and takes weight off lower extremities. Assumes partial to full body weight at user's discretion.

  7. Effects of Mobile Phone Usage in Supporting Leg Lymphedema Self-care

    PubMed Central

    Okutsu, Ayako; Koiyabashi, Kikuyo

    2014-01-01

    Objective: The aim of this study was to implement self-care support for leg lymphedema patients using mobile phones and to investigate the effects thereof. Patients and Methods: A total of 30 patients with lymphedema following female genital cancer surgery (stages I to II) who were referred from a nearby gynecologist were randomly divided into groups for routine self-care support (control group) and mobile telephone-assisted support (intervention group) and received the self-care support appropriate to their group. The (total) circumference of the leg with edema, FACT-G (cancer patient QOL), MHP (mental health status), and self-care self-assessment were comparatively investigated at three months after the initial interview. Results: No significant reduction in the (total) circumferences of legs with edema was confirmed in either the control or intervention group. The intervention group was significantly better than the control group in terms of the activity circumstances and FACT-G mental status at three months after the initial interview. The intervention group was also significantly better in psychological, social, and physical items in the MHP. The intervention group was significantly better than the control group in terms of circumstances of self-care implementation at three months after the initial interview. Additionally, comparison of the circumstances of implementation for different aspects of self-care content showed that the intervention group was significantly better at selecting shoes, observing edema, moisturizing, self-drainage, wearing compression garments, and implementing bandaging. Conclusion: Compared with routine self-care support, mobile telephone-assisted support is suggested to be effective for leg lymphedema patients’ QOL and mental health status as well as their self-care behaviors. PMID:25648778

  8. Mechanism And Control Of The Quadruped Walking Robot

    NASA Astrophysics Data System (ADS)

    Adachi, Hironori; Nakano, Eiji; Koyachi, Noriho

    1987-10-01

    This paper provides a description of the quadruped walking robot "TURTLE-1". A new link mechanism named ASTBALLEM is used for the legs of this robot. With this mechanism highly rigid and easily controllable legs are constructed. Each leg has two degrees of freedom and is driven by two DC servo motors. The motion of the legs is controlled by a micro computer and various gaits are generated. Static stability is maintained as the robot walks. Moreover, its walk is quasi-dynamic; that is, it has a manner of walking that has a two legged supporting period.

  9. Array-based comparative genomic hybridization analysis reveals recurrent chromosomal alterations and prognostic parameters in primary cutaneous large B-cell lymphoma.

    PubMed

    Dijkman, Remco; Tensen, Cornelis P; Jordanova, Ekaterina S; Knijnenburg, Jeroen; Hoefnagel, Juliette J; Mulder, Aat A; Rosenberg, Carla; Raap, Anton K; Willemze, Rein; Szuhai, Károly; Vermeer, Maarten H

    2006-01-10

    To evaluate the clinical relevance of genomic aberrations in primary cutaneous large B-cell lymphoma (PCLBCL). Skin biopsy samples of 31 patients with a PCLBCL classified as either primary cutaneous follicle center lymphoma (PCFCL; n = 19) or PCLBCL, leg type (n = 12), according to the WHO-European Organisation for Research and Treatment of Cancer (EORTC) classification, were investigated using array-based comparative genomic hybridization, fluorescence in situ hybridization (FISH), and examination of promoter hypermethylation. The most recurrent alterations in PCFCL were high-level DNA amplifications at 2p16.1 (63%) and deletion of chromosome 14q32.33 (68%). FISH analysis confirmed c-REL amplification in patients with gains at 2p16.1. In PCLBCL, leg type, most prominent aberrations were a high-level DNA amplification of 18q21.31-q21.33 (67%), including the BCL-2 and MALT1 genes as confirmed by FISH, and deletions of a small region within 9p21.3 containing the CDKN2A, CDKN2B, and NSG-x genes. Homozygous deletion of 9p21.3 was detected in five of 12 patients with PCLBCL, leg type, but in zero of 19 patients with PCFCL. Complete methylation of the promoter region of the CDKN2A gene was demonstrated in one PCLBCL, leg type, patient with hemizygous deletion, in one patient without deletion, but in zero of 19 patients with PCFCL. Seven of seven PCLBCL, leg type, patients with deletion of 9p21.3 and/or complete methylation of CDKN2A died as a result of their lymphoma. Our results demonstrate prominent differences in chromosomal alterations between PCFCL and PCLBCL, leg type, that support their classification as separate entities within the WHO-EORTC scheme. Inactivation of CDKN2A by either deletion or methylation of its promoter could be an important prognostic parameter for the group of PCLBCL, leg type.

  10. Classification of patients with low back-related leg pain: a systematic review.

    PubMed

    Stynes, Siobhán; Konstantinou, Kika; Dunn, Kate M

    2016-05-23

    The identification of clinically relevant subgroups of low back pain (LBP) is considered the number one LBP research priority in primary care. One subgroup of LBP patients are those with back related leg pain. Leg pain frequently accompanies LBP and is associated with increased levels of disability and higher health costs than simple low back pain. Distinguishing between different types of low back-related leg pain (LBLP) is important for clinical management and research applications, but there is currently no clear agreement on how to define and identify LBLP due to nerve root involvement. The aim of this systematic review was to identify, describe and appraise papers that classify or subgroup populations with LBLP, and summarise how leg pain due to nerve root involvement is described and diagnosed in the various systems. The search strategy involved nine electronic databases including Medline and Embase, reference lists of eligible studies and relevant reviews. Selected papers were appraised independently by two reviewers using a standardised scoring tool. Of 13,358 initial potential eligible citations, 50 relevant papers were identified that reported on 22 classification systems. Papers were grouped according to purpose and criteria of the classification systems. Five themes emerged: (i) clinical features (ii) pathoanatomy (iii) treatment-based approach (iv) screening tools and prediction rules and (v) pain mechanisms. Three of the twenty two systems focused specifically on LBLP populations. Systems that scored highest following quality appraisal were ones where authors generally included statistical methods to develop their classifications, and supporting work had been published on the systems' validity, reliability and generalisability. There was lack of consistency in how LBLP due to nerve root involvement was described and diagnosed within the systems. Numerous classification systems exist that include patients with leg pain, a minority of them focus specifically on distinguishing between different presentations of leg pain. Further work is needed to identify clinically meaningful subgroups of LBLP patients, ideally based on large primary care cohort populations and using recommended methods for classification system development.

  11. [The Activation of Interlimb Interactions Increase the Motor Output in Legs in Healthy Subjects under the Conditions of Arm and Leg Unloading].

    PubMed

    Selionov, V A; Solopova, I A; Zhvansky, D S

    2016-01-01

    We studied the effect of arm movements and movements of separate arm joints on the electrophysiological and kinematic characteristics of voluntary and vibration-triggered stepping-like leg movements under the conditions of horizontal support of upper and lower limbs. The horizontal support of arms provided a significantly increase in the rate of activation of locomotor automatism by non-invasive impact on tonic sensory inputs. The addition of active arm movements during involuntary rhytmic stepping-like leg movements led to an increase in EMG activity of hip muscles and was accompanied by an increase in the amplitude of hip and shin movements. Passive arm movements had the same effect on induced leg movements. The movement of the shoulder joints led to an increase in the activity of hip muscles and an increase in the amplitude of movements of the knee and hip joints. At the same time, the movement of forearms. and wrists had similar facilitating effect on electrophysiological and kinematic characteristics of rhytmic stepping-like movements, but influenced the distal segments of legs to a greater extent. Under the conditions of sub-threshold vibration of leg muscles, voluntary arm movements led to the activation of involuntary rhytmic stepping movements. During voluntary leg movements, the addition of arm movements had a significantly smaller impact on the parameters of rhytmic stepping than during involuntary leg movements. Thus, the simultaneous movements of upper and lower limbs are an effective method of activation of neural networks connecting the rhythm generators of arms and legs. Under the conditions of arm and leg unloading, the interactions between the cervical and lumbosacral segments of the spinal cord seem to play the major role in the impact of arm movements on the patterns of leg movements. The described methods of activation of interlimb interactions can be used in the rehabilitation of post-stroke patients and patients with spinal cord injuries, Parkinson's disease and other neurological diseases.

  12. A fault tolerant gait for a hexapod robot over uneven terrain.

    PubMed

    Yang, J M; Kim, J H

    2000-01-01

    The fault tolerant gait of legged robots in static walking is a gait which maintains its stability against a fault event preventing a leg from having the support state. In this paper, a fault tolerant quadruped gait is proposed for a hexapod traversing uneven terrain with forbidden regions, which do not offer viable footholds but can be stepped over. By comparing performance of straight-line motion and crab walking over even terrain, it is shown that the proposed gait has better mobility and terrain adaptability than previously developed gaits. Based on the proposed gait, we present a method for the generation of the fault tolerant locomotion of a hexapod over uneven terrain with forbidden regions. The proposed method minimizes the number of legs on the ground during walking, and foot adjustment algorithm is used for avoiding steps on forbidden regions. The effectiveness of the proposed strategy over uneven terrain is demonstrated with a computer simulation.

  13. Periodic gaits for the CMU ambler

    NASA Technical Reports Server (NTRS)

    Mahalingam, Swaminathan; Dwivedi, Suren N.

    1989-01-01

    The configuration of the Carnegie Mellon University Ambler, a six legged autonomous walking vehicle for exploring Mars, enables the recovery of a trailing leg past the leading leg to reduce the energy expenditure in terrain interactions. Gaits developed for this unprecedented configuration are described. A stability criterion was developed which ensures stability of the vehicle in the event of failure of any one of the supporting legs. Periodic gaits developed for the Ambler utilize the Ambler's unique abilities, and continuously satisfy the stability criterion.

  14. Periodic gaits for the CMU Ambler

    NASA Astrophysics Data System (ADS)

    Dwivedi, Suren N.; Mahalingam, Swaminathan

    1992-02-01

    The configuration of the Carnegie-Mellon University Ambler, a six-legged autonomous walking vehicle for exploring Mars, enables the recovery of a trailing leg past the leading leg to reduce the energy expenditure in terrain interactions. In this article, gaits developed for this unprecedented configuration are described. A stability criterion has been developed that ensures stability of the vehicle in the event of failure of any one of the supporting legs. Periodic gaits developed for the Ambler utilize the Ambler's unique abilities and continuously satisfy the stability criterion.

  15. Trans-tibial amputee gait: time-distance parameters and EMG activity.

    PubMed

    Isakov, E; Keren, O; Benjuya, N

    2000-12-01

    Gait analysis of trans-tibial (TT) amputees discloses asymmetries in gait parameters between the amputated and sound legs. The present study aimed at outlining differences between both legs with regard to kinematic parameters and activity of the muscles controlling the knees. The gait of 14 traumatic TT amputees, walking at a mean speed of 74.96 m/min, was analysed by means of an electronic walkway, video camera, and portable electromyography system. Results showed differences in kinematic parameters. Step length, step time and swing time were significantly longer, while stance time and single support time were significantly shorter on the amputated side. A significant difference was also found between knee angle in both legs at heel strike. The biceps femoris/vastus medialis ratio in the amputated leg, during the first half of stance phase, was significantly higher when compared to the same muscle ratio in the sound leg. This difference was due to the higher activity of the biceps femoris, almost four times higher than the vastus medialis in the amputated leg. The observed differences in time-distance parameters are due to stiffness of the prosthesis ankle (the SACH foot) that impedes the normal forward advance of the amputated leg during the first half of stance. The higher knee flexion at heel strike is due to the necessary socket alignment. Unlike in the sound leg, the biceps femoris in the amputated leg reaches maximal activity during the first half of stance, cocontracting with the vastus medialis, to support body weight on the amputated leg. The obtained data can serve as a future reference for evaluating the influence of new prosthetic components on the quality of TT amputee's gait.

  16. The effect of leg preference on postural stability in healthy athletes.

    PubMed

    Huurnink, Arnold; Fransz, Duncan P; Kingma, Idsart; Hupperets, Maarten D W; van Dieën, Jaap H

    2014-01-03

    In research regarding postural stability, leg preference is often tested and controlled for. However, leg preference may vary between tasks. As athletes are a group of interest for postural stability testing, we evaluated the effect of five leg preference tasks categorization (step up, hop, ball kick, balance, pick up) on single-leg postural stability of 16 field hockey athletes. The 'center of pressure speed' was calculated as the primary outcome variable of single-leg postural stability. Secondary variables were 'mean length of the GRF vector in the horizontal plane', 'mean length of the ankle angular velocity vector', and 'mean length of the hip angular velocity vector', as well as the separate outcomes per degree of freedom. Results showed that leg preference was inconsistent between leg preference tasks. Moreover, the primary and secondary variables yielded no significant difference between the preferred and non-preferred legs, regardless of the applied leg preference task categorization (p>0.05). The present findings do not support the usability of leg preference tasks in controlling for bias of postural stability. In conclusion, none of the applied leg preference tasks revealed a significant effect on postural stability in healthy field hockey athletes. © 2013 Published by Elsevier Ltd.

  17. Quantifying Learning in Young Infants: Tracking Leg Actions During a Discovery-learning Task.

    PubMed

    Sargent, Barbara; Reimann, Hendrik; Kubo, Masayoshi; Fetters, Linda

    2015-06-01

    Task-specific actions emerge from spontaneous movement during infancy. It has been proposed that task-specific actions emerge through a discovery-learning process. Here a method is described in which 3-4 month old infants learn a task by discovery and their leg movements are captured to quantify the learning process. This discovery-learning task uses an infant activated mobile that rotates and plays music based on specified leg action of infants. Supine infants activate the mobile by moving their feet vertically across a virtual threshold. This paradigm is unique in that as infants independently discover that their leg actions activate the mobile, the infants' leg movements are tracked using a motion capture system allowing for the quantification of the learning process. Specifically, learning is quantified in terms of the duration of mobile activation, the position variance of the end effectors (feet) that activate the mobile, changes in hip-knee coordination patterns, and changes in hip and knee muscle torque. This information describes infant exploration and exploitation at the interplay of person and environmental constraints that support task-specific action. Subsequent research using this method can investigate how specific impairments of different populations of infants at risk for movement disorders influence the discovery-learning process for task-specific action.

  18. Design of a Single Motor Based Leg Structure with the Consideration of Inherent Mechanical Stability

    NASA Astrophysics Data System (ADS)

    Taha Manzoor, Muhammad; Sohail, Umer; Noor-e-Mustafa; Nizami, Muhammad Hamza Asif; Ayaz, Yasar

    2017-07-01

    The fundamental aspect of designing a legged robot is constructing a leg design that is robust and presents a simple control problem. In this paper, we have successfully designed a robotic leg based on a unique four bar mechanism with only one motor per leg. The leg design parameters used in our platform are extracted from design principles used in biological systems, multiple iterations and previous research findings. These principles guide a robotic leg to have minimal mechanical passive impedance, low leg mass and inertia, a suitable foot trajectory utilizing a practical balance between leg kinematics and robot usage, and the resultant inherent mechanical stability. The designed platform also exhibits the key feature of self-locking. Theoretical tools and software iterations were used to derive these practical features and yield an intuitive sense of the required leg design parameters.

  19. Differences of ballet turns (pirouette) performance between experienced and novice ballet dancers.

    PubMed

    Lin, Chia-Wei; Chen, Shing-Jye; Su, Fong-Chin; Wu, Hong-Wen; Lin, Cheng-Feng

    2014-09-01

    This study investigated the different postural control strategies exhibited by experienced and novice dancers in ballet turns (pirouettes). Thirteen novice and 13 experienced dancers performed ballet turns with dominant-leg support. The peak push force was measured in the double-leg support phase. The inclination angles of rotation axis with respect to vertical axis were calculated in the early single-leg support phase as well as the initiation sequence of ankle, knee, and hip joints on the supporting leg. Moreover, the anchoring index of the head was computed in the transverse plane during turning. The novice dancers applied a greater push force, an increased inclination angle of rotation axis, and an insufficient proximal-to-distal extension sequence pattern. The novice dancers also had a smaller head-anchoring index compared with experienced dancers, which meant novice dancers were not using a space target as a stability reference. A poorer performance in novice dancers could result from higher push force in propulsion, lack of a "proximal-to-distal extension sequence" pattern, and lack of visual spotting for postural stability. Training on sequential initiation of lower-extremity joints and rehearsal of visual spotting are essential for novice dancers to obtain better performance on ballet turns.

  20. Compliant leg behaviour explains basic dynamics of walking and running

    PubMed Central

    Geyer, Hartmut; Seyfarth, Andre; Blickhan, Reinhard

    2006-01-01

    The basic mechanics of human locomotion are associated with vaulting over stiff legs in walking and rebounding on compliant legs in running. However, while rebounding legs well explain the stance dynamics of running, stiff legs cannot reproduce that of walking. With a simple bipedal spring–mass model, we show that not stiff but compliant legs are essential to obtain the basic walking mechanics; incorporating the double support as an essential part of the walking motion, the model reproduces the characteristic stance dynamics that result in the observed small vertical oscillation of the body and the observed out-of-phase changes in forward kinetic and gravitational potential energies. Exploring the parameter space of this model, we further show that it not only combines the basic dynamics of walking and running in one mechanical system, but also reveals these gaits to be just two out of the many solutions to legged locomotion offered by compliant leg behaviour and accessed by energy or speed. PMID:17015312

  1. Voluntary Movement Frequencies in Submaximal One- and Two-Legged Knee Extension Exercise and Pedaling

    PubMed Central

    Stang, Julie; Wiig, Håvard; Hermansen, Marte; Hansen, Ernst Albin

    2016-01-01

    Understanding of behavior and control of human voluntary rhythmic stereotyped leg movements is useful in work to improve performance, function, and rehabilitation of exercising, healthy, and injured humans. The present study aimed at adding to the existing understanding within this field. To pursue the aim, correlations between freely chosen movement frequencies in relatively simple, single-joint, one- and two-legged knee extension exercise were investigated. The same was done for more complex, multiple-joint, one- and two-legged pedaling. These particular activities were chosen because they could be considered related to some extent, as they shared a key aspect of knee extension, and because they at the same time were different. The activities were performed at submaximal intensities, by healthy individuals (n = 16, thereof eight women; 23.4 ± 2.7 years; 1.70 ± 0.11 m; 68.6 ± 11.2 kg). High and fair correlations (R-values of 0.99 and 0.75) occurred between frequencies generated with the dominant leg and the nondominant leg during knee extension exercise and pedaling, respectively. Fair to high correlations (R-values between 0.71 and 0.95) occurred between frequencies performed with each of the two legs in an activity, and the two-legged frequency performed in the same type of activity. In general, the correlations were higher for knee extension exercise than for pedaling. Correlations between knee extension and pedaling frequencies were of modest occurrence. The correlations between movement frequencies generated separately by each of the legs might be interpreted to support the following working hypothesis, which was based on existing literature. It is likely that involved central pattern generators (CPGs) of the two legs share a common frequency generator or that separate frequency generators of each leg are attuned via interneuronal connections. Further, activity type appeared to be relevant. Thus, the apparent common rhythmogenesis for the two legs appeared to be stronger for the relatively simple single-joint activity of knee extension exercise as compared to the more complex multi-joint activity of pedaling. Finally, it appeared that the shared aspect of knee extension in the related types of activities of knee extension exercise and pedaling was insufficient to cause obvious correlations between generated movement frequencies in the two types of activities. PMID:26973486

  2. Photovoltaic array with minimally penetrating rooftop support system

    DOEpatents

    Lenox, Carl J.S.

    2012-10-23

    A photovoltaic array including a plurality of photovoltaic assemblies and a plurality of mounting units. The mounting units each include an elongate rail and a plurality of leg assemblies. The rail is sized and configured to maintain a portion of at least two of the photovoltaic assemblies, with the leg assemblies extending from the rail in a spaced-apart fashion and terminating in a foot for placement against a rooftop structure for minimally penetration installation. Further, at least one of the leg assemblies can include a retractable leg. When the photovoltaic array is installed to a rooftop structure including a membrane intermittently secured to a rooftop deck, the retractable leg accommodates upward billowing of the membrane under windy conditions.

  3. Piping inspection carriage having axially displaceable sensor

    DOEpatents

    Zollinger, W.T.; Treanor, R.C.

    1994-12-06

    A pipe inspection instrument carriage is described for use with a pipe crawler for performing internal inspections of piping surfaces. The carriage has a front leg assembly, a rear leg assembly and a central support connecting the two assemblies and for mounting an instrument arm having inspection instruments. The instrument arm has a Y-arm mounted distally thereon for axially aligning the inspection instrumentation and a mounting block, a linear actuator and axial movement arm for extending the inspection instruments radially outward to operably position the inspection instruments on the piping interior. Also, the carriage has a rotation motor and gear assembly for rotating the central support and the front leg assembly with respect to the rear leg assembly so that the inspection instruments azimuthally scan the piping interior. The instrument carriage allows performance of all piping inspection operations with a minimum of moving parts, thus decreasing the likelihood of performance failure. 4 figures.

  4. Piping inspection carriage having axially displaceable sensor

    DOEpatents

    Zollinger, William T.; Treanor, Richard C.

    1994-01-01

    A pipe inspection instrument carriage for use with a pipe crawler for performing internal inspections of piping surfaces. The carriage has a front leg assembly, a rear leg assembly and a central support connecting the two assemblies and for mounting an instrument arm having inspection instruments. The instrument arm has a y-arm mounted distally thereon for axially aligning the inspection instrumentation and a mounting block, a linear actuator and axial movement arm for extending the inspection instruments radially outward to operably position the inspection instruments on the piping interior. Also, the carriage has a rotation motor and gear assembly for rotating the central support and the front leg assembly with respect to the rear leg assembly so that the inspection instruments azimuthally scan the piping interior. The instrument carriage allows performance of all piping inspection operations with a minimum of moving parts, thus decreasing the likelihood of performance failure.

  5. Strengthening Sustainability and Resiliency of a Future Force, Phase 1. FY2010-2011 Summer Study

    DTIC Science & Technology

    2011-03-01

    Resiliency of a Future Force: Phase I Interim Report - 48 Please Enter Custom Water factor adjustments below: m Unit Level* (Gat/Ptisan/ Dti ...cost of mov- ing the consumables in terms of the assets required to move the commodity and the security Intra Theater Resupply: 4 Legs Army...Expeditionary Force-Logistics ResupplyDetails Legl Leg 2 Leg 3 Leg 4 Resupply Trip Legs Super FOB (Div)to Base Camp (bde) Base Camp (Bde) to FOB (Bn

  6. Deriving neural network controllers from neuro-biological data: implementation of a single-leg stick insect controller.

    PubMed

    von Twickel, Arndt; Büschges, Ansgar; Pasemann, Frank

    2011-02-01

    This article presents modular recurrent neural network controllers for single legs of a biomimetic six-legged robot equipped with standard DC motors. Following arguments of Ekeberg et al. (Arthropod Struct Dev 33:287-300, 2004), completely decentralized and sensori-driven neuro-controllers were derived from neuro-biological data of stick-insects. Parameters of the controllers were either hand-tuned or optimized by an evolutionary algorithm. Employing identical controller structures, qualitatively similar behaviors were achieved for robot and for stick insect simulations. For a wide range of perturbing conditions, as for instance changing ground height or up- and downhill walking, swing as well as stance control were shown to be robust. Behavioral adaptations, like varying locomotion speeds, could be achieved by changes in neural parameters as well as by a mechanical coupling to the environment. To a large extent the simulated walking behavior matched biological data. For example, this was the case for body support force profiles and swing trajectories under varying ground heights. The results suggest that the single-leg controllers are suitable as modules for hexapod controllers, and they might therefore bridge morphological- and behavioral-based approaches to stick insect locomotion control.

  7. Distinct types of primary cutaneous large B-cell lymphoma identified by gene expression profiling.

    PubMed

    Hoefnagel, Juliette J; Dijkman, Remco; Basso, Katia; Jansen, Patty M; Hallermann, Christian; Willemze, Rein; Tensen, Cornelis P; Vermeer, Maarten H

    2005-05-01

    In the European Organization for Research and Treatment of Cancer (EORTC) classification 2 types of primary cutaneous large B-cell lymphoma (PCLBCL) are distinguished: primary cutaneous follicle center cell lymphomas (PCFCCL) and PCLBCL of the leg (PCLBCL-leg). Distinction between both groups is considered important because of differences in prognosis (5-year survival > 95% and 52%, respectively) and the first choice of treatment (radiotherapy or systemic chemotherapy, respectively), but is not generally accepted. To establish a molecular basis for this subdivision in the EORTC classification, we investigated the gene expression profiles of 21 PCLBCLs by oligonucleotide microarray analysis. Hierarchical clustering based on a B-cell signature (7450 genes) classified PCLBCL into 2 distinct subgroups consisting of, respectively, 8 PCFCCLs and 13 PCLBCLsleg. PCLBCLs-leg showed increased expression of genes associated with cell proliferation; the proto-oncogenes Pim-1, Pim-2, and c-Myc; and the transcription factors Mum1/IRF4 and Oct-2. In the group of PCFCCL high expression of SPINK2 was observed. Further analysis suggested that PCFCCLs and PCLBCLs-leg have expression profiles similar to that of germinal center B-cell-like and activated B-cell-like diffuse large B-cell lymphoma, respectively. The results of this study suggest that different pathogenetic mechanisms are involved in the development of PCFCCLs and PCLBCLs-leg and provide molecular support for the subdivision used in the EORTC classification.

  8. Behavioural laterality as a predictor of health in captive Caribbean flamingos (Phoenicopterus ruber): an exploratory analysis.

    PubMed

    Anderson, Matthew J; Ialeggio, Donna M

    2014-01-01

    The present study sought to explore the possibility that lateral behaviour in captive Caribbean flamingos (Phoenicopterus ruber) housed at the Philadelphia Zoo (Philadelphia, PA) could be used to predict a variety of physiological measures of health obtained via complete blood counts (CBC) and plasma biochemistry analyses that were performed as part of the flock's annual physical examination. Consistent with previous research, evidence of rightward lateral neck-resting preferences were obtained, no evidence was found for the existence of leg stance preferences, and neck-resting and leg stance preferences were shown to be unrelated. Both lateral neck-resting preferences and lateral support leg preference were shown to be related to a variety of measures from the CBC and plasma biochemistry analyses. While several general trends emerged in regards to the CBC variables, the relationships between the lateral behaviours and those variables generated via plasma biochemistry analyses proved to be fewer and somewhat less consistent. Birds with rightward neck-resting preferences and birds with leftward support leg preferences generally appeared to be healthier and less stressed according to the CBC measures; however, the validity of lateral leg stance preference as a predictor of health and wellbeing is questionable given the lack of statistically significant leg stance preferences.

  9. Strain-Gauge Measurement of Weight of Fluid in a Tank

    NASA Technical Reports Server (NTRS)

    Figueroa, Jorge; SaintCyr, William; Rahman, Shamim; McVay, Gregory; VanDyke, David; Mitchell, William; Langford, Lester

    2003-01-01

    A method of determining the amount of fluid in a tank is based on measurement of strains induced in tank supports by the weight of the fluid. Unlike most prior methods, this method is nonintrusive: there is no need to insert instrumentation in the tank and, hence, no need to run wires, cables, or tubes through the tank wall. Also unlike most prior methods, this method is applicable even if the fluid in the tank is at supercritical pressure and temperature, because it does not depend on the presence of a liquid/gas interface (as in liquid-level-measuring methods). The strain gauges used in this method are of two types: foil and fiber-optic. Four foil gauges and one or more fiber-optic gauges are mounted on each of the tank-supporting legs. An additional fiber-optic gauge is mounted on an object, made of the same material as that of the tank-supporting legs, that is not subjected to any mechanical load. The reading obtained by the additional fiber-optic gauge is used to compensate for apparent strains caused by changes in temperature. The signals from the foil and fiber-optic gauges are conditioned, then digitized for input to a computer. As the tank is filled or emptied, the deformation in each leg increases or decreases, respectively. Measured deformations of all legs are added to obtain a composite deformation indicative of the change in weight of the tank plus fluid. An initial calibration is performed by recording data at two points (usually, empty and full) for which the mass or weight of fluid is known. It is assumed that the deformations are elastic, so that the line passing through the two points can be used as a calibration curve of mass (or weight) of fluid versus deformation. At the time of reporting the information for this article, a set of foil gauges had been tested on the supports of a 500-gallon (1,900-liter) tank. The gauges were found to be capable of measuring the deformations (up to 22 microstrain) that occurred during filling and emptying the tank. The fluid masses calculated from the gauge readings were found to be accurate within 4.5 percent. It has been estimated that once the fiber-optic gauges are put into operation, it should be possible to determine fluid masses with 3 percent or less. It may be possible to increase accuracy further by increasing the signal-to-noise ratio through the use of more deformable tank supporting legs.

  10. Partitioning the Metabolic Cost of Human Running: A Task-by-Task Approach

    PubMed Central

    Arellano, Christopher J.; Kram, Rodger

    2014-01-01

    Compared with other species, humans can be very tractable and thus an ideal “model system” for investigating the metabolic cost of locomotion. Here, we review the biomechanical basis for the metabolic cost of running. Running has been historically modeled as a simple spring-mass system whereby the leg acts as a linear spring, storing, and returning elastic potential energy during stance. However, if running can be modeled as a simple spring-mass system with the underlying assumption of perfect elastic energy storage and return, why does running incur a metabolic cost at all? In 1980, Taylor et al. proposed the “cost of generating force” hypothesis, which was based on the idea that elastic structures allow the muscles to transform metabolic energy into force, and not necessarily mechanical work. In 1990, Kram and Taylor then provided a more explicit and quantitative explanation by demonstrating that the rate of metabolic energy consumption is proportional to body weight and inversely proportional to the time of foot-ground contact for a variety of animals ranging in size and running speed. With a focus on humans, Kram and his colleagues then adopted a task-by-task approach and initially found that the metabolic cost of running could be “individually” partitioned into body weight support (74%), propulsion (37%), and leg-swing (20%). Summing all these biomechanical tasks leads to a paradoxical overestimation of 131%. To further elucidate the possible interactions between these tasks, later studies quantified the reductions in metabolic cost in response to synergistic combinations of body weight support, aiding horizontal forces, and leg-swing-assist forces. This synergistic approach revealed that the interactive nature of body weight support and forward propulsion comprises ∼80% of the net metabolic cost of running. The task of leg-swing at most comprises ∼7% of the net metabolic cost of running and is independent of body weight support and forward propulsion. In our recent experiments, we have continued to refine this task-by-task approach, demonstrating that maintaining lateral balance comprises only 2% of the net metabolic cost of running. In contrast, arm-swing reduces the cost by ∼3%, indicating a net metabolic benefit. Thus, by considering the synergistic nature of body weight support and forward propulsion, as well as the tasks of leg-swing and lateral balance, we can account for 89% of the net metabolic cost of human running. PMID:24838747

  11. Partitioning the metabolic cost of human running: a task-by-task approach.

    PubMed

    Arellano, Christopher J; Kram, Rodger

    2014-12-01

    Compared with other species, humans can be very tractable and thus an ideal "model system" for investigating the metabolic cost of locomotion. Here, we review the biomechanical basis for the metabolic cost of running. Running has been historically modeled as a simple spring-mass system whereby the leg acts as a linear spring, storing, and returning elastic potential energy during stance. However, if running can be modeled as a simple spring-mass system with the underlying assumption of perfect elastic energy storage and return, why does running incur a metabolic cost at all? In 1980, Taylor et al. proposed the "cost of generating force" hypothesis, which was based on the idea that elastic structures allow the muscles to transform metabolic energy into force, and not necessarily mechanical work. In 1990, Kram and Taylor then provided a more explicit and quantitative explanation by demonstrating that the rate of metabolic energy consumption is proportional to body weight and inversely proportional to the time of foot-ground contact for a variety of animals ranging in size and running speed. With a focus on humans, Kram and his colleagues then adopted a task-by-task approach and initially found that the metabolic cost of running could be "individually" partitioned into body weight support (74%), propulsion (37%), and leg-swing (20%). Summing all these biomechanical tasks leads to a paradoxical overestimation of 131%. To further elucidate the possible interactions between these tasks, later studies quantified the reductions in metabolic cost in response to synergistic combinations of body weight support, aiding horizontal forces, and leg-swing-assist forces. This synergistic approach revealed that the interactive nature of body weight support and forward propulsion comprises ∼80% of the net metabolic cost of running. The task of leg-swing at most comprises ∼7% of the net metabolic cost of running and is independent of body weight support and forward propulsion. In our recent experiments, we have continued to refine this task-by-task approach, demonstrating that maintaining lateral balance comprises only 2% of the net metabolic cost of running. In contrast, arm-swing reduces the cost by ∼3%, indicating a net metabolic benefit. Thus, by considering the synergistic nature of body weight support and forward propulsion, as well as the tasks of leg-swing and lateral balance, we can account for 89% of the net metabolic cost of human running. © The Author 2014. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  12. Muscular strength profile in Tunisian male national judo team.

    PubMed

    Ghrairi, Mourad; Hammouda, Omar; Malliaropoulos, Nikos

    2014-04-01

    it is well established that muscle strength is a determinant factor in judo. However, little data are available for African athletes. Therefore, the aim of this study was to provide reference data of the muscular strength profile (MSP) for an African team, Tunisian judo team. the study was conducted among ten international judo athletes from Tunisia. To determine their MSP, we used an isokinetic dynamometer to assess Hamstrings, Quadriceps of both knees and external, internal rotators of both shoulders. The angular velocities of the assessments were; 90, 180, 240°/s for the knees and 60, 120°/s for the shoulders. MSP was determined based on two parameters; the maximum peak torque (PT) of each muscle and the ratio agonistic/antagonistic muscles (R). The knee extensors and flexors in the "supporting leg" had higher PT than in the "attacking leg"; respectively, 245N.m versus 237 (p<0.05) and 147 N.m versus 145 (p>0.05). R was normal for both legs. Furthermore, both rotators of the dominant shoulder had higher PT; 84 N.m versus 71 for the internal rotators (p<0.05) and 34,7 N.m versus 29,0 for the lateral rotators (p<0.05). Inversely, R was higher in the non-dominant side; 45% versus 35, p<0.05). the MSP of the selected elites Tunisian judo athletes was characterized by 3 major features; a strength of the quadriceps in the standing leg significantly higher than in the attacking leg, a normal muscular balance Hamstrings/quadriceps in both legs and a strength of the shoulder' rotators higher in the dominant side.

  13. Neuro-Mechanics of Recumbent Leg Cycling in Post-Acute Stroke Patients.

    PubMed

    Ambrosini, Emilia; De Marchis, Cristiano; Pedrocchi, Alessandra; Ferrigno, Giancarlo; Monticone, Marco; Schmid, Maurizio; D'Alessio, Tommaso; Conforto, Silvia; Ferrante, Simona

    2016-11-01

    Cycling training is strongly applied in post-stroke rehabilitation, but how its modular control is altered soon after stroke has been not analyzed yet. EMG signals from 9 leg muscles and pedal forces were measured bilaterally during recumbent pedaling in 16 post-acute stroke patients and 12 age-matched healthy controls. Patients were asked to walk over a GaitRite mat and standard gait parameters were computed. Four muscle synergies were extracted through nonnegative matrix factorization in healthy subjects and patients unaffected legs. Two to four synergies were identified in the affected sides and the number of synergies significantly correlated with the Motricity Index (Spearman's coefficient = 0.521). The reduced coordination complexity resulted in a reduced biomechanical performance, with the two-module sub-group showing the lowest work production and mechanical effectiveness in the affected side. These patients also exhibited locomotor impairments (reduced gait speed, asymmetrical stance time, prolonged double support time). Significant correlations were found between cycling-based metrics and gait parameters, suggesting that neuro-mechanical quantities of pedaling can inform on walking dysfunctions. Our findings support the use of pedaling as a rehabilitation method and an assessment tool after stroke, mainly in the early phase, when patients can be unable to perform a safe and active gait training.

  14. Surface Electromyographic Activity of the Abdominal Muscles During Pelvic-Tilt and Abdominal-Hollowing Exercises

    PubMed Central

    Drysdale, Cheri L.; Earl, Jennifer E.

    2004-01-01

    Objective: To investigate surface electromyographic (EMG) activity of the rectus abdominus and external oblique abdominus muscles during pelvic-tilt and abdominal-hollowing exercises performed in different positions. Design and Setting: 2 × 3 (exercise by position) within-subjects design with repeated measures on both factors. All testing was performed in a university laboratory. Subjects: Twenty-six healthy, active young adult females. Measurements: Surface EMG activity was recorded from the left and right rectus abdominus and external oblique muscles while the 2 exercises (pelvic tilt and abdominal hollowing) were performed in different positions (standard, legs supported, and legs unsupported). The standard position was supine in the crook-lying position, the supported position was with hips and knees flexed to 90° and legs supported on a platform, and the unsupported position was with hips and knees flexed to 90° without external support. Peak EMG activity was normalized to a maximum voluntary isometric contraction for each muscle. Results: For the rectus abdominus, there was an interaction between position and activity. Abdominal hollowing produced significantly less activity than the pelvic tilt in all positions. The difference between the 2 exercises with the legs unsupported was of a greater magnitude than the other 2 positions. For the external obliques, there was significantly lower activity during the abdominal hollowing compared with the pelvic tilting. The greatest muscle activity occurred with the legs-unsupported position during both exercises. Conclusions: Abdominal-hollowing exercises produced less rectus abdominus and external oblique activity than pelvic-tilting exercises. Abdominal hollowing may be performed with minimal activation of the large global abdominal muscles. PMID:15085209

  15. Surface Electromyographic Activity of the Abdominal Muscles During Pelvic-Tilt and Abdominal-Hollowing Exercises.

    PubMed

    Drysdale, Cheri L.; Earl, Jennifer E.; Hertel, Jay

    2004-03-01

    OBJECTIVE: To investigate surface electromyographic (EMG) activity of the rectus abdominus and external oblique abdominus muscles during pelvic-tilt and abdominal-hollowing exercises performed in different positions. DESIGN AND SETTING: 2 x 3 (exercise by position) within-subjects design with repeated measures on both factors. All testing was performed in a university laboratory. SUBJECTS: Twenty-six healthy, active young adult females. MEASUREMENTS: Surface EMG activity was recorded from the left and right rectus abdominus and external oblique muscles while the 2 exercises (pelvic tilt and abdominal hollowing) were performed in different positions (standard, legs supported, and legs unsupported). The standard position was supine in the crook-lying position, the supported position was with hips and knees flexed to 90 degrees and legs supported on a platform, and the unsupported position was with hips and knees flexed to 90 degrees without external support. Peak EMG activity was normalized to a maximum voluntary isometric contraction for each muscle. RESULTS: For the rectus abdominus, there was an interaction between position and activity. Abdominal hollowing produced significantly less activity than the pelvic tilt in all positions. The difference between the 2 exercises with the legs unsupported was of a greater magnitude than the other 2 positions. For the external obliques, there was significantly lower activity during the abdominal hollowing compared with the pelvic tilting. The greatest muscle activity occurred with the legs-unsupported position during both exercises. CONCLUSIONS: Abdominal-hollowing exercises produced less rectus abdominus and external oblique activity than pelvic-tilting exercises. Abdominal hollowing may be performed with minimal activation of the large global abdominal muscles.

  16. A new tardigrade, Mutaparadoxipus duodigifinis gen. nov., sp. nov. (Heterotardigrada: Arthrotardigrada), from the Southeastern United States.

    PubMed

    Gross, Vladimir; Miller, William R; Hochberg, Rick

    2014-07-10

    A new genus and species of Arthrotardigrada is described from Florida, USA based on its unique adhesive pad/claw combinations. Mutaparadoxipus duodigifinis gen. nov., sp. nov., is characterized by well-developed, ventral secondary clavae that are adjacent to the mouth, pointed lateral and caudal alae, seminal receptacles with coiled ducts opening lateral to the gonopore, and all legs with digits bearing proximal adhesive pads. Distal claws are present on digits I-III of legs I-III, but are missing from digit IV. On leg IV, distal claws are present only on digits II & III. A single accessory point is present on claws II & III only. This is the fourth species discovered to date with proximal adhesive pads, increasing support for a clade of adhesive-padded arthrotardigrades, and is likely the sister taxon of Paradoxipus orzeliscoides. The incomplete set of claws may represent an evolutionary step in a progressive loss of claws hypothesized to have occurred within the Halechiniscidae. The subfamily Orzeliscinae is amended as a result.

  17. Visual tuning and metrical perception of realistic point-light dance movements.

    PubMed

    Su, Yi-Huang

    2016-03-07

    Humans move to music spontaneously, and this sensorimotor coupling underlies musical rhythm perception. The present research proposed that, based on common action representation, different metrical levels as in auditory rhythms could emerge visually when observing structured dance movements. Participants watched a point-light figure performing basic steps of Swing dance cyclically in different tempi, whereby the trunk bounced vertically at every beat and the limbs moved laterally at every second beat, yielding two possible metrical periodicities. In Experiment 1, participants freely identified a tempo of the movement and tapped along. While some observers only tuned to the bounce and some only to the limbs, the majority tuned to one level or the other depending on the movement tempo, which was also associated with individuals' preferred tempo. In Experiment 2, participants reproduced the tempo of leg movements by four regular taps, and showed a slower perceived leg tempo with than without the trunk bouncing simultaneously in the stimuli. This mirrors previous findings of an auditory 'subdivision effect', suggesting the leg movements were perceived as beat while the bounce as subdivisions. Together these results support visual metrical perception of dance movements, which may employ similar action-based mechanisms to those underpinning auditory rhythm perception.

  18. Coordination of planar cell polarity pathways through Spiny-legs

    PubMed Central

    Ambegaonkar, Abhijit A; Irvine, Kenneth D

    2015-01-01

    Morphogenesis and physiology of tissues and organs requires planar cell polarity (PCP) systems that orient and coordinate cells and their behaviors, but the relationship between PCP systems has been controversial. We have characterized how the Frizzled and Dachsous-Fat PCP systems are connected through the Spiny-legs isoform of the Prickle-Spiny-legs locus. Two different components of the Dachsous-Fat system, Dachsous and Dachs, can each independently interact with Spiny-legs and direct its localization in vivo. Through characterization of the contributions of Prickle, Spiny-legs, Dachsous, Fat, and Dachs to PCP in the Drosophila wing, eye, and abdomen, we define where Dachs-Spiny-legs and Dachsous-Spiny-legs interactions contribute to PCP, and provide a new understanding of the orientation of polarity and the basis of PCP phenotypes. Our results support the direct linkage of PCP systems through Sple in specific locales, while emphasizing that cells can be subject to and must ultimately resolve distinct, competing PCP signals. DOI: http://dx.doi.org/10.7554/eLife.09946.001 PMID:26505959

  19. Tube support for moisture separator reheater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sabatino, R.A.

    1987-08-11

    In combination with a moisture separator reheater for a nuclear steam generating power plant, a reheater is described comprising: a sealed elongated substantially horizontal tubular shell member, a cycle fluid inlet passing through the shell member in predetermined position, mositure separator means positioned within the shell member proximate the bottom portion thereof, heat exchanger means comprising a plurality of elongated metallic U-shaped members disposed substantially within the shell member, a tube sheet member supporing the U-shaped tube members at one end thereof. The improvement consists of: the tube support member means proximate the U-bend portion of the U-shaped tube membersmore » each comprising an upper movable tube support member and a lower immovable tube support member, the remainder of the tube support means being immovable, the upper movable tube support member spacing and supporting the top leg portions of the U-shaped tube members, the lower immovable tube support member spacing and supporting the bottom leg portions of the U-shaped tube members, whereby the top leg portions of the U-shaped tube members proximate the U-bend are permitted to move to compensate for any increase in radius in the U-bend portion of the U-shaped tube member due to thermal expansion.« less

  20. Rembrandt's 'Beggar with a wooden leg' and other comparable prints.

    PubMed

    ten Kate, J J; Jennekens, F G I; Vos-Niël, J M E

    2009-02-01

    Rembrandt's etching of a beggar with a wooden leg is notable because the two lower limbs of the presumed beggar are present and not deformed. Using the facilities of four specialised Dutch art institutes, we carried out a systematic investigation to find other etchings and engravings of subjects with artificial legs supporting non-amputated limbs, from the period 1500 to 1700 AD. We discovered 28 prints produced by at least 18 artists. Several offered clues to a disorder of a knee, the lower leg or the foot. All individuals were adult males, suggesting the probability of traumatic lesions. We conclude that in this period artificial legs were not only used in the case of absence of part of a lower limb, but also for other reasons, notably disorders of the knee, lower leg or foot. They may also have been used to attract compassion.

  1. Effect of Pressure Support Ventilation on Carboxyhemoglobin Toxicokinetic after Acute Carbon Monoxide Intoxication: a Swine Model.

    PubMed

    Delvau, N; Penaloza, A; Liistro, G; Thys, F; Delattre, I K; Hantson, Philippe; Gianello, P; Roy, P M

    2018-06-01

    In an experimental study on carbon monoxide (CO) exposure in swine, we aimed to compare the influence of oxygen therapy using a non-rebreathing mask (NRM) to continuous positive airway pressure (CPAP) and two pressure support ventilation (PSV) devices on the decrease of the terminal elimination half-life of carboxyhemoglobin (COHb t 1/2 ). This was the primary outcome. Eight spontaneously breathing pigs were sedated by propofol and exposed to 940 ppm CO several times (n = 25) to obtain COHb levels of 30%. CPAPb (high flow open system, CPAP Boussignac® [7.5 cmH 2 O]), PSV-Vy (open system, Vylife Boussignac®), and PSV-Leg (closed system, Legendair® [inspiratory/expiratory airway pressure 12/4 cmH 2 O]) devices were used in a randomized order and compared to NRM (O 2 at 15 l min -1 ) and atmospheric air (AA). The primary outcome was COHb t 1/2 . Multiple comparisons were performed using Dunn's tests. Median FiO 2 and minute ventilation were significantly higher in the PSV-Leg group than the NRM group (p < 0.05). Median COHb t 1/2 was 251, 85, 82, 93, and 58 min for AA, NRM, CPAPb, PSV-Vy, and PSV-Leg, respectively. All the interventions were superior to AA in terms of CO elimination (p < 0.001), but there was no statistically significant difference between CPAP or PSV and NRM. There was only a trend between PSV-Leg and NRM (p = 0.18). The median AUCs for ln (COHb) × time (h) were 170, 79, 83, 100, and 64 for AA, NRM, CPAPb, PSV-Vy, and PSV-Leg respectively, with a statistically significant difference only between AA and PSV-Leg (p = 0.002). In conclusion, in our study on CO intoxication in swine, the use of the closed PSV-Leg system led to the shortest COHb t 1/2 . These results suggest that PSV-Leg can be more efficient than NRM in eliminating CO and support the design of a clinical study to assess this hypothesis.

  2. Lumbopelvic muscle activation patterns in three stances under graded loading conditions: Proposing a tensegrity model for load transfer through the sacroiliac joints.

    PubMed

    Pardehshenas, Hamed; Maroufi, Nader; Sanjari, Mohammad Ali; Parnianpour, Mohamad; Levin, Stephen M

    2014-10-01

    According to the conventional arch model of the pelvis, stability of the sacroiliac joints may require a predominance of form and force closure mechanisms: the greater the vertical shear force at the sacroiliac joints, the greater the reliance on self-bracing by horizontally or obliquely oriented muscles (such as the internal oblique). But what happens to the arch model when a person stands on one leg? In such cases, the pelvis no longer has imposts, leaving both the arch, and the arch model theory, without support. Do lumbopelvic muscle activation patterns in one-legged stances under load suggest compatibility with a different model? This study compares lumbopelvic muscle activation patterns in two-legged and one-legged stances in response to four levels of graded trunk loading in order to further our understanding the stabilization of the sacroiliac joints. Thirty male subjects experienced four levels of trunk loading (0%, 5%, 10% and 15% of body weight) by holding a bucket at one side, at three conditions: 1) two-legged standing with the bucket in the dominant hand, 2) ipsilateral loading: one-legged standing with the bucket in the dominant hand while using the same-side leg, and 3) contralateral loading: one-legged standing using the same leg used in condition 2, but with the bucket in the non-dominant hand. During these tasks, EMG signals from eight lumbopelvic muscles were collected. ANOVA with repeated design was performed on normalized EMG's to test the main effect of load and condition, and interaction effects of load by condition. Latissimus dorsi and erector spinae muscles showed an antagonistic pattern of activity toward the direction of load which may suggest these muscles as lateral trunk stabilizers. Internal oblique muscles showed a co-activation pattern with increasing task demand, which may function to increase lumbopelvic stability (P < 0.05). No unilateral pattern of the internal obliques was observed during all trials. Our results suggest that the lumbopelvic region uses a similar strategy for load transfer in both double and single leg support positions which is not compatible with the arch analogy. Our findings are more consistent with a suspensory system (wire-spoke wheel model). If our proposed model holds true, the pelvic ring can only be integrated by adjusting tension in the spokes and by preserving rim integrity or continuity. Thus, we propose that in order to restore tension integrity throughout the pelvic ring, efforts to unlock restrictions, muscular correction of positional faults and lumbopelvic or even respiratory exercises following sacroiliac joint dysfunctions must be taken into consideration. Our hypothetical model may initiate thinking and act as a guide to future work based on a biomechanical approach to the problem of sacroiliac joint dysfunction. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Comparative morphology of the prothoracic leg in heliconian butterflies: Tracing size allometry, podite fusions and losses in ontogeny and phylogeny.

    PubMed

    Moreira, Gilson R P; Silva, Denis S; Gonçalves, Gislene L

    2017-07-01

    Prothoracic legs of heliconian butterflies (Nymphalidae, Heliconiinae, Heliconiini) are reduced in size compared to mesothoracic and metathoracic legs. They have no apparent function in males, but are used by females for drumming on host plants, a behavior related to oviposition site selection. Here, taking into account all recognized lineages of heliconian butterflies, we described their tarsi using optical and scanning electron microscopy and searched for podite fusions and losses, and analyzed allometry at the static, ontogenetic and phylogenetic levels. Female tarsi were similar, club-shaped, showing from four to five tarsomeres, each bearing sensilla chaetica and trichodea. Male tarsi were cylindrical, formed from five (early diverging lineages) to one (descendant lineages) either partially or totally fused tarsomeres, all deprived of sensilla. Pretarsi were reduced in both sexes, in some species being either vestigial or absent. Tarsal lengths were smaller for males in almost all species. An abrupt decrease in size was detected for the prothoracic legs during molting to the last larval instar at both histological and morphometric levels. In both sexes, most allometric coefficients found at the population level for the prothoracic legs were negative compared to the mesothoracic leg and also to wings. Prothoracic tarsi decreased proportionally in size over evolutionary time; the largest and smallest values being found for nodes of the oldest and youngest lineages, respectively. Our results demonstrate that evolution of the prothoracic leg in heliconian butterflies has been based on losses and fusions of podites, in association with negative size allometry at static, ontogenetic and phylogenetic levels. These processes have been more pronounced in males. Our study provided further support to the hypothesis that evolution of these leg structures is driven by females, by changing their use from walking to drumming during oviposition site selection. In males the leg would have been selected against due to absence of function and thus progressively reduced in size, in association with podites fusions and lost. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Are the hamstrings from the drive leg or landing leg more active in baseball pitchers? An electromyographic study.

    PubMed

    Erickson, Brandon J; Zaferiou, Antonia; Chalmers, Peter N; Ruby, Deana; Malloy, Phillip; Luchetti, Timothy J; Verma, Nikhil N; Romeo, Anthony A

    2017-11-01

    Ulnar collateral ligament reconstruction (UCLR) has become a common procedure among baseball players of all levels. There are several graft choices in performing UCLR, one of which is a hamstring (gracilis or semitendinosus) autograft. It is unclear whether the hamstring muscle from a pitcher's drive leg (ipsilateral side of the UCLR) or landing leg (contralateral side of the UCLR) is more active during the pitching motion. We hypothesized that the landing leg semitendinosus will be more electromyographically active than the drive leg. Healthy, elite male pitchers aged 16-21 years were recruited. Sixteen pitchers (average age, 17.6 ± 1.6 years; 67% threw right handed) underwent electromyographic analysis. Pitchers threw 5 fastballs at 100% effort from the wind-up with electromyographic analysis of every pitch. Activation of the semitendinosus and biceps femoris in both legs was compared within pitchers and between pitchers. Hamstring activity was higher in the drive leg than in the landing leg during each phase and in sum, although the difference was significant only during the double support phase (P = .021). On within-pitcher analysis, 10 of 16 pitchers had significantly more sum hamstring activity in the drive leg than in the landing leg, while only 4 of 16 had more activity in the landing leg (P = .043). During the baseball pitch, muscle activity of the semitendinosus was higher in the drive leg than in the landing leg in most pitchers. Surgeons performing UCLR using hamstring autograft should consider harvesting the graft from the pitcher's landing leg to minimize disruption to the athlete's pitching motion. Copyright © 2017 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  5. Load-bearing ability of the mosquito tarsus on water surfaces arising from its flexibility

    NASA Astrophysics Data System (ADS)

    Kong, X. Q.; Liu, J. L.; Zhang, W. J.; Qu, Y. D.

    2015-03-01

    Mosquitoes possess a remarkable ability to stand effortlessly and walk freely on water surfaces because their six legs provide a large force to support the body weight. This study is focused on the role of the tarsus (the distal segment of the mosquito leg) because it was observed that normally only the tarsi make contact with water. The maximum value of the supporting force of the tarsus (6 mm long) in contact with water is estimated as 492 ± 5 μN, nearly 20 times the body weight of the mosquito, whereas the value for the whole leg (11 mm) is about 23 times the body weight. We demonstrate that the huge force provided by the tarsus originates from its flexibility, which ensures that the leg does not easily pierce the water. Adjustment of the initial stepping angle of the tarsus assists the mosquito to control the supporting force. These findings help to illustrate how mosquitoes stand or walk on water with only their tarsi in nearly horizontal contact with the water surface. Besides enhancing our understanding of mechanisms underlying "walking on water" by semi-aquatic insects, these investigations could provide inspiration for the biomimetic design of miniature robotics.

  6. University of Maryland walking robot: A design project for undergraduate students

    NASA Technical Reports Server (NTRS)

    Olsen, Bob; Bielec, Jim; Hartsig, Dave; Oliva, Mani; Grotheer, Phil; Hekmat, Morad; Russell, David; Tavakoli, Hossein; Young, Gary; Nave, Tom

    1990-01-01

    The design and construction required that the walking robot machine be capable of completing a number of tasks including walking in a straight line, turning to change direction, and maneuvering over an obstable such as a set of stairs. The machine consists of two sets of four telescoping legs that alternately support the entire structure. A gear-box and crank-arm assembly is connected to the leg sets to provide the power required for the translational motion of the machine. By retracting all eight legs, the robot comes to rest on a central Bigfoot support. Turning is accomplished by rotating the machine about this support. The machine can be controlled by using either a user operated remote tether or the on-board computer for the execution of control commands. Absolute encoders are attached to all motors (leg, main drive, and Bigfoot) to provide the control computer with information regarding the status of the motors (up-down motion, forward or reverse rotation). Long and short range infrared sensors provide the computer with feedback information regarding the machine's relative position to a series of stripes and reflectors. These infrared sensors simulate how the robot might sense and gain information about the environment of Mars.

  7. Floating seal system for rotary devices

    DOEpatents

    Banasiuk, Hubert A.

    1983-01-01

    This invention relates to a floating seal system for rotary devices to reduce gas leakage around the rotary device in a duct and across the face of the rotary device to an adjacent duct. The peripheral seal bodies are made of resilient material having a generally U-shaped cross section wherein one of the legs is secured to a support member and the other of the legs forms a contacting seal against the rotary device. The legs of the peripheral seal form an extended angle of intersection of about 10.degree. to about 30.degree. in the unloaded condition to provide even sealing forces around the periphery of the rotary device. The peripheral seal extends around the periphery of the support member except where intersected by radial seals which reduce gas leakage across the face of the rotary device and between adjacent duct portions. The radial seal assembly is fabricated from channel bars, the smaller channel bar being secured to the divider of the support member and a larger inverted rigid floating channel bar having its legs freely movable over the legs of the smaller channel bar forming therewith a tubular channel. A resilient flexible tube is positioned within the tubular channel for substantially its full length to reduce gas leakage across the tubular channel. A spacer extends beyond the face of the floating channel near each end of the floating channel a distance to provide desired clearance between the floating channel and the face of the rotary device.

  8. Floating seal system for rotary devices

    DOEpatents

    Banasiuk, H.A.

    1983-08-23

    This invention relates to a floating seal system for rotary devices to reduce gas leakage around the rotary device in a duct and across the face of the rotary device to an adjacent duct. The peripheral seal bodies are made of resilient material having a generally U-shaped cross section wherein one of the legs is secured to a support member and the other of the legs forms a contacting seal against the rotary device. The legs of the peripheral seal form an extended angle of intersection of about 10[degree] to about 30[degree] in the unloaded condition to provide even sealing forces around the periphery of the rotary device. The peripheral seal extends around the periphery of the support member except where intersected by radial seals which reduce gas leakage across the face of the rotary device and between adjacent duct portions. The radial seal assembly is fabricated from channel bars, the smaller channel bar being secured to the divider of the support member and a larger inverted rigid floating channel bar having its legs freely movable over the legs of the smaller channel bar forming therewith a tubular channel. A resilient flexible tube is positioned within the tubular channel for substantially its full length to reduce gas leakage across the tubular channel. A spacer extends beyond the face of the floating channel near each end of the floating channel a distance to provide desired clearance between the floating channel and the face of the rotary device. 5 figs.

  9. Altered control strategy between leading and trailing leg increases knee adduction moment in the elderly while descending stairs.

    PubMed

    Karamanidis, Kiros; Arampatzis, Adamantios

    2011-02-24

    The aim of the study was to examine the external knee adduction moments in a group of older and younger adults while descending stairs and thus the possibility of an increased risk of knee osteoarthritis due to altered knee joint loading in the elderly. Twenty-seven older and 16 younger adults descended a purpose-built staircase. A motion capture system and a force plate were used to determine the subjects' 3D kinematics and ground reaction forces (GRF) during locomotion. Calculation of the leg kinematics and kinetics was done by means of a rigid, three-segment, 3D leg model. In the initial portion of the support phase, older adults showed a more medio-posterior GRF vector relative to the ankle joint, leading to lower ankle joint moments (P<0.05). At the knee, the older adults demonstrated a more medio-posterior directed GRF vector, increasing in knee flexion and adduction in the second part of the single support phase (P<0.05). Further, GRF magnitude was lower in the initial and higher in the mid-portions of the support phase for the elderly (P<0.05). The results show that older adults descend stairs by using the trailing leg before the initiation of the double support phase more compared to the younger ones. The consequence of this altered control strategy while stepping down is a more medially directed GRF vector increasing the magnitude of external knee adduction moment in the elderly. The observed changes between leading and trailing leg in the elderly may cause a redistribution of the mechanical load at the tibiofemoral joint, affecting the initiation and progression of knee osteoarthritis in the elderly. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. Comparison of Static and Dynamic Balance in Female Collegiate Soccer, Basketball, and Gymnastics Athletes

    PubMed Central

    Bressel, Eadric; Yonker, Joshua C; Kras, John; Heath, Edward M

    2007-01-01

    Context: How athletes from different sports perform on balance tests is not well understood. When prescribing balance exercises to athletes in different sports, it may be important to recognize performance variations. Objective: To compare static and dynamic balance among collegiate athletes competing or training in soccer, basketball, and gymnastics. Design: A quasi-experimental, between-groups design. Independent variables included limb (dominant and nondominant) and sport played. Setting: A university athletic training facility. Patients or Other Participants: Thirty-four female volunteers who competed in National Collegiate Athletic Association Division I soccer (n = 11), basketball (n = 11), or gymnastics (n = 12). Intervention(s): To assess static balance, participants performed 3 stance variations (double leg, single leg, and tandem leg) on 2 surfaces (stiff and compliant). For assessment of dynamic balance, participants performed multidirectional maximal single-leg reaches from a unilateral base of support. Main Outcome Measure(s): Errors from the Balance Error Scoring System and normalized leg reach distances from the Star Excursion Balance Test were used to assess static and dynamic balance, respectively. Results: Balance Error Scoring System error scores for the gymnastics group were 55% lower than for the basketball group (P = .01), and Star Excursion Balance Test scores were 7% higher in the soccer group than the basketball group (P = .04). Conclusions: Gymnasts and soccer players did not differ in terms of static and dynamic balance. In contrast, basketball players displayed inferior static balance compared with gymnasts and inferior dynamic balance compared with soccer players. PMID:17597942

  11. Anatomy and histochemistry of hindlimb flight posture in birds. I. The extended hindlimb posture of shorebirds.

    PubMed

    McFarland, Joshua C; Meyers, Ron A

    2008-08-01

    Birds utilize one of two hindlimb postures during flight: an extended posture (with the hip and knee joints flexed, while the ankle joint is extended caudally) or a flexed posture (with the hip, knee, and ankle joints flexed beneath the body). American Avocets (Recurvirostra americana) and Black-necked Stilts (Himantopus mexicanus) extend their legs caudally during flight and support them for extended periods. Slow tonic and slow twitch muscle fibers are typically found in muscles functioning in postural support due to the fatigue resistance of these fibers. We hypothesized that a set of small muscles composed of high percentages of slow fibers and thus dedicated to postural support would function in securing the legs in the extended posture during flight. This study examined the anatomy and histochemical profile of eleven hindlimb muscles to gain insight into their functional roles during flight. Contrary to our hypothesis, all muscles possessed both fast twitch and slow twitch or slow tonic fibers. We believe this finding is due to the versatility of dynamic and postural functions the leg muscles must facilitate, including standing, walking, running, swimming, and hindlimb support during flight. Whether birds use an extended or flexed hindlimb flight posture may be related to the aerodynamic effect of leg position or may reflect evolutionary history. (c) 2008 Wiley-Liss, Inc.

  12. Improved Leg Tracking Considering Gait Phase and Spline-Based Interpolation during Turning Motion in Walk Tests.

    PubMed

    Yorozu, Ayanori; Moriguchi, Toshiki; Takahashi, Masaki

    2015-09-04

    Falling is a common problem in the growing elderly population, and fall-risk assessment systems are needed for community-based fall prevention programs. In particular, the timed up and go test (TUG) is the clinical test most often used to evaluate elderly individual ambulatory ability in many clinical institutions or local communities. This study presents an improved leg tracking method using a laser range sensor (LRS) for a gait measurement system to evaluate the motor function in walk tests, such as the TUG. The system tracks both legs and measures the trajectory of both legs. However, both legs might be close to each other, and one leg might be hidden from the sensor. This is especially the case during the turning motion in the TUG, where the time that a leg is hidden from the LRS is longer than that during straight walking and the moving direction rapidly changes. These situations are likely to lead to false tracking and deteriorate the measurement accuracy of the leg positions. To solve these problems, a novel data association considering gait phase and a Catmull-Rom spline-based interpolation during the occlusion are proposed. From the experimental results with young people, we confirm   that the proposed methods can reduce the chances of false tracking. In addition, we verify the measurement accuracy of the leg trajectory compared to a three-dimensional motion analysis system (VICON).

  13. Effects of myofascial release leg pull and sagittal plane isometric contract-relax techniques on passive straight-leg raise angle.

    PubMed

    Hanten, W P; Chandler, S D

    1994-09-01

    Experimental evidence does not currently exist to support the claims of clinical effectiveness for myofascial release techniques. This presents an obvious need to document the effects of myofascial release. The purpose of this study was to compare the effects of two techniques, sagittal plane isometric contract-relax and myofascial release leg pull for increasing hip flexion range of motion (ROM) as measured by the angle of passive straight-leg raise. Seventy-five nondisabled, female subjects 18-29 years of age were randomly assigned to contract-relax, leg pull, or control groups. Pretest hip flexion ROM was measured for each subject's right hip with a passive straight-leg raise test using a fluid-filled goniometer. Subjects in the treatment groups received either contract-relax or leg pull treatment applied to the right lower extremity; subjects in the control group remained supine quietly for 5 minutes. Following treatment, posttest straight-leg raise measurements were performed. A one-way analysis of variance followed by a Newman-Keuls post hoc comparison of mean gain scores showed that subjects receiving contract-relax treatment increased their ROM significantly more than those who received leg pull treatment, and the increase in ROM of subjects in both treatment groups was significantly higher than those of the control group. The results suggest that while both contract-relax and leg pull techniques can significantly increase hip flexion ROM in normal subjects, contract-relax treatment may be more effective and efficient than leg pull treatment.

  14. A three-degree-of-freedom thin-film PZT-actuated microactuator with large out-of-plane displacement.

    PubMed

    Choi, Jongsoo; Qiu, Zhen; Rhee, Choong-Ho; Wang, Thomas; Oldham, Kenn

    2014-07-01

    A novel three degree-of-freedom microactuator based on thin-film lead-zirconate-titanate (PZT) is described with its detailed structural model. Its central rectangular-shaped mirror platform, also referred to as the stage, is actuated by four symmetric PZT bending legs such that each leg provides vertical translation for one corner of the stage. It has been developed to support real-time in vivo vertical cross-sectional imaging with a dual axes confocal endomicroscope for early cancer detection, having large displacements in three axes (z, θ x , θ y ) and a relatively high bandwidth in the z-axis direction. Prototype microactuators closely meet the performance requirements for this application; in the out-of-plane (z-axis) direction, it has shown more than 177 μ m of displacement and about 84 Hz of structural natural frequency, when two diagonal legs are actuated at 14V. With all four legs, another prototype of the same design with lighter stage mass has achieved more than 430 μ m of out-of-plane displacement at 15V and about 200 Hz of bandwidth. The former design has shown approximately 6.4° and 2.9° of stage tilting about the x-axis and y-axis, respectively, at 14V. This paper also presents a modeling technique that uses experimental data to account for the effects of fabrication uncertainties in residual stress and structural dimensions. The presented model predicts the static motion of the stage within an average absolute error of 14.6 μ m, which approaches the desired imaging resolution, 5 μ m, and also reasonably anticipates the structural dynamic behavior of the stage. The refined model will support development of a future trajectory tracking controller for the system.

  15. A three-degree-of-freedom thin-film PZT-actuated microactuator with large out-of-plane displacement

    PubMed Central

    Choi, Jongsoo; Qiu, Zhen; Rhee, Choong-Ho; Wang, Thomas; Oldham, Kenn

    2014-01-01

    A novel three degree-of-freedom microactuator based on thin-film lead-zirconate-titanate (PZT) is described with its detailed structural model. Its central rectangular-shaped mirror platform, also referred to as the stage, is actuated by four symmetric PZT bending legs such that each leg provides vertical translation for one corner of the stage. It has been developed to support real-time in vivo vertical cross-sectional imaging with a dual axes confocal endomicroscope for early cancer detection, having large displacements in three axes (z, θx, θy) and a relatively high bandwidth in the z-axis direction. Prototype microactuators closely meet the performance requirements for this application; in the out-of-plane (z-axis) direction, it has shown more than 177 μm of displacement and about 84 Hz of structural natural frequency, when two diagonal legs are actuated at 14V. With all four legs, another prototype of the same design with lighter stage mass has achieved more than 430 μm of out-of-plane displacement at 15V and about 200 Hz of bandwidth. The former design has shown approximately 6.4° and 2.9° of stage tilting about the x-axis and y-axis, respectively, at 14V. This paper also presents a modeling technique that uses experimental data to account for the effects of fabrication uncertainties in residual stress and structural dimensions. The presented model predicts the static motion of the stage within an average absolute error of 14.6 μm, which approaches the desired imaging resolution, 5 μm, and also reasonably anticipates the structural dynamic behavior of the stage. The refined model will support development of a future trajectory tracking controller for the system. PMID:25506131

  16. Rule-Based Motion Coordination for the Adaptive Suspension Vehicle on Ternary-Type Terrain

    DTIC Science & Technology

    1990-12-01

    robot-window-array* nil) (defvar *robot..window..width* nil) (defvar * rebot -.window..heig)ht* nil) (defvar *terrain-buffer* nil) (defvar *terrain...cond ((momrber leg lift-able-leg. -test #’equal) log) (t nil)) .(dafmethod (test-overlap- rebot ipltcable-leg) (log) (nond ((and (member leg place-able

  17. The walking robot project

    NASA Technical Reports Server (NTRS)

    Williams, P.; Sagraniching, E.; Bennett, M.; Singh, R.

    1991-01-01

    A walking robot was designed, analyzed, and tested as an intelligent, mobile, and a terrain adaptive system. The robot's design was an application of existing technologies. The design of the six legs modified and combines well understood mechanisms and was optimized for performance, flexibility, and simplicity. The body design incorporated two tripods for walking stability and ease of turning. The electrical hardware design used modularity and distributed processing to drive the motors. The software design used feedback to coordinate the system and simple keystrokes to give commands. The walking machine can be easily adapted to hostile environments such as high radiation zones and alien terrain. The primary goal of the leg design was to create a leg capable of supporting a robot's body and electrical hardware while walking or performing desired tasks, namely those required for planetary exploration. The leg designers intent was to study the maximum amount of flexibility and maneuverability achievable by the simplest and lightest leg design. The main constraints for the leg design were leg kinematics, ease of assembly, degrees of freedom, number of motors, overall size, and weight.

  18. Method for six-legged robot stepping on obstacles by indirect force estimation

    NASA Astrophysics Data System (ADS)

    Xu, Yilin; Gao, Feng; Pan, Yang; Chai, Xun

    2016-07-01

    Adaptive gaits for legged robots often requires force sensors installed on foot-tips, however impact, temperature or humidity can affect or even damage those sensors. Efforts have been made to realize indirect force estimation on the legged robots using leg structures based on planar mechanisms. Robot Octopus III is a six-legged robot using spatial parallel mechanism(UP-2UPS) legs. This paper proposed a novel method to realize indirect force estimation on walking robot based on a spatial parallel mechanism. The direct kinematics model and the inverse kinematics model are established. The force Jacobian matrix is derived based on the kinematics model. Thus, the indirect force estimation model is established. Then, the relation between the output torques of the three motors installed on one leg to the external force exerted on the foot tip is described. Furthermore, an adaptive tripod static gait is designed. The robot alters its leg trajectory to step on obstacles by using the proposed adaptive gait. Both the indirect force estimation model and the adaptive gait are implemented and optimized in a real time control system. An experiment is carried out to validate the indirect force estimation model. The adaptive gait is tested in another experiment. Experiment results show that the robot can successfully step on a 0.2 m-high obstacle. This paper proposes a novel method to overcome obstacles for the six-legged robot using spatial parallel mechanism legs and to avoid installing the electric force sensors in harsh environment of the robot's foot tips.

  19. Asymmetric balance control between legs for quiet but not for perturbed stance.

    PubMed

    Vieira, Osvaldo; Coelho, Daniel Boari; Teixeira, Luis Augusto

    2014-10-01

    Interlateral performance asymmetry in upright balance control was evaluated in this investigation by comparing unipedal stance on the right versus the left leg. Participants were healthy young adults, hand-foot congruent preference for the right body side. Balance performance was evaluated in unperturbed quiet stance and in the recovery of balance stability following a mechanical perturbation induced by unexpected load release. Evaluation was made under availability of full sensory information, and under deprivation of vision combined with distortion of sensory inputs from the feet soles. Results from perturbed posture revealed that muscular response latency and postural sway were symmetric between the legs. Unipedal stance was more stable when the body was supported on the right as compared with the left leg. No interaction was found between leg and sensory condition. Our findings are interpreted as resulting from specialization of the sensorimotor system controlling the right leg for continuous low-magnitude postural adjustments, while corrections to large-scale stance sway are symmetrically controlled between body sides.

  20. A simple rule for quadrupedal gait generation determined by leg loading feedback: a modeling study

    PubMed Central

    Fukuoka, Yasuhiro; Habu, Yasushi; Fukui, Takahiro

    2015-01-01

    We discovered a specific rule for generating typical quadrupedal gaits (the order of the movement of four legs) through a simulated quadrupedal locomotion, in which unprogrammed gaits (diagonal/lateral sequence walks, left/right-lead canters, and left/right-lead transverse gallops) spontaneously emerged because of leg loading feedbacks to the CPGs hard-wired to produce a default trot. Additionally, all gaits transitioned according to speed, as seen in animals. We have therefore hypothesized that various gaits derive from a trot because of posture control through leg loading feedback. The body tilt on the two support legs of each diagonal pair during trotting was classified into three types (level, tilted up, or tilted down) according to speed. The load difference between the two legs led to the phase difference between their CPGs via the loading feedbacks, resulting in nine gaits (32: three tilts to the power of two diagonal pairs) including the aforementioned. PMID:25639661

  1. Internet-based learning programme to increase nurses' knowledge level about venous leg ulcer care in home health care.

    PubMed

    Ylönen, Minna; Viljamaa, Jaakko; Isoaho, Hannu; Junttila, Kristiina; Leino-Kilpi, Helena; Suhonen, Riitta

    2017-11-01

    To test the effectiveness of an Internet-based education programme about venous leg ulcer nursing care on perceived and theoretical knowledge levels and attitudes among nurses working in home health care. Nurses have been shown to have knowledge gaps in venous leg ulcer nursing care. Internet-based learning could offer a means for flexible continuing education for home healthcare environment. Quasi-experimental study with pre- and postmeasurements and nonequivalent intervention and comparison groups. Nurses (n = 946) in home health care in two Finnish municipalities were invited to participate in the study and divided into intervention and comparison groups. The intervention group received education programme about venous leg ulcer nursing care, while the comparison group did not. Data were collected at baseline, at six weeks and at 10 weeks to test the hypotheses: nurses using education programme about venous leg ulcer nursing care will have higher level of knowledge and more positive attitudes than those not using education programme about venous leg ulcer nursing care. An analysis of variance and mixed models with repeated measures were used to test differences in knowledge and attitudes between and within the groups. There were statistically significant increases in knowledge levels in the intervention group from baseline to the first and second follow-up measurements. In the comparison group, the knowledge levels remained unchanged during the study. Attitude levels remained unchanged in both groups. Nurses' perceived and theoretical knowledge levels of venous leg ulcer nursing care can be increased with Internet-based education. However, this increase in knowledge levels is short-lived, which emphasises the need for continuous education. Internet-based education about venous leg ulcer nursing care is recommended for home healthcare nurses. Education programme about venous leg ulcer nursing care provides flexible method for nurses' learning with feasible and cost-effective access to evidence-based education. Education programme about venous leg ulcer nursing care material can be used in all nursing environments where Internet is available. © 2017 John Wiley & Sons Ltd.

  2. Trajectory Correction and Locomotion Analysis of a Hexapod Walking Robot with Semi-Round Rigid Feet

    PubMed Central

    Zhu, Yaguang; Jin, Bo; Wu, Yongsheng; Guo, Tong; Zhao, Xiangmo

    2016-01-01

    Aimed at solving the misplaced body trajectory problem caused by the rolling of semi-round rigid feet when a robot is walking, a legged kinematic trajectory correction methodology based on the Least Squares Support Vector Machine (LS-SVM) is proposed. The concept of ideal foothold is put forward for the three-dimensional kinematic model modification of a robot leg, and the deviation value between the ideal foothold and real foothold is analyzed. The forward/inverse kinematic solutions between the ideal foothold and joint angular vectors are formulated and the problem of direct/inverse kinematic nonlinear mapping is solved by using the LS-SVM. Compared with the previous approximation method, this correction methodology has better accuracy and faster calculation speed with regards to inverse kinematics solutions. Experiments on a leg platform and a hexapod walking robot are conducted with multi-sensors for the analysis of foot tip trajectory, base joint vibration, contact force impact, direction deviation, and power consumption, respectively. The comparative analysis shows that the trajectory correction methodology can effectively correct the joint trajectory, thus eliminating the contact force influence of semi-round rigid feet, significantly improving the locomotion of the walking robot and reducing the total power consumption of the system. PMID:27589766

  3. Visual tuning and metrical perception of realistic point-light dance movements

    PubMed Central

    Su, Yi-Huang

    2016-01-01

    Humans move to music spontaneously, and this sensorimotor coupling underlies musical rhythm perception. The present research proposed that, based on common action representation, different metrical levels as in auditory rhythms could emerge visually when observing structured dance movements. Participants watched a point-light figure performing basic steps of Swing dance cyclically in different tempi, whereby the trunk bounced vertically at every beat and the limbs moved laterally at every second beat, yielding two possible metrical periodicities. In Experiment 1, participants freely identified a tempo of the movement and tapped along. While some observers only tuned to the bounce and some only to the limbs, the majority tuned to one level or the other depending on the movement tempo, which was also associated with individuals’ preferred tempo. In Experiment 2, participants reproduced the tempo of leg movements by four regular taps, and showed a slower perceived leg tempo with than without the trunk bouncing simultaneously in the stimuli. This mirrors previous findings of an auditory ‘subdivision effect’, suggesting the leg movements were perceived as beat while the bounce as subdivisions. Together these results support visual metrical perception of dance movements, which may employ similar action-based mechanisms to those underpinning auditory rhythm perception. PMID:26947252

  4. A neural circuitry that emphasizes spinal feedback generates diverse behaviours of human locomotion

    PubMed Central

    Song, Seungmoon; Geyer, Hartmut

    2015-01-01

    Neural networks along the spinal cord contribute substantially to generating locomotion behaviours in humans and other legged animals. However, the neural circuitry involved in this spinal control remains unclear. We here propose a specific circuitry that emphasizes feedback integration over central pattern generation. The circuitry is based on neurophysiologically plausible muscle-reflex pathways that are organized in 10 spinal modules realizing limb functions essential to legged systems in stance and swing. These modules are combined with a supraspinal control layer that adjusts the desired foot placements and selects the leg that is to transition into swing control during double support. Using physics-based simulation, we test the proposed circuitry in a neuromuscular human model that includes neural transmission delays, musculotendon dynamics and compliant foot–ground contacts. We find that the control network is sufficient to compose steady and transitional 3-D locomotion behaviours including walking and running, acceleration and deceleration, slope and stair negotiation, turning, and deliberate obstacle avoidance. The results suggest feedback integration to be functionally more important than central pattern generation in human locomotion across behaviours. In addition, the proposed control architecture may serve as a guide in the search for the neurophysiological origin and circuitry of spinal control in humans. PMID:25920414

  5. Optimization of prosthetic foot stiffness to reduce metabolic cost and intact knee loading during below-knee amputee walking: a theoretical study.

    PubMed

    Fey, Nicholas P; Klute, Glenn K; Neptune, Richard R

    2012-11-01

    Unilateral below-knee amputees develop abnormal gait characteristics that include bilateral asymmetries and an elevated metabolic cost relative to non-amputees. In addition, long-term prosthesis use has been linked to an increased prevalence of joint pain and osteoarthritis in the intact leg knee. To improve amputee mobility, prosthetic feet that utilize elastic energy storage and return (ESAR) have been designed, which perform important biomechanical functions such as providing body support and forward propulsion. However, the prescription of appropriate design characteristics (e.g., stiffness) is not well-defined since its influence on foot function and important in vivo biomechanical quantities such as metabolic cost and joint loading remain unclear. The design of feet that improve these quantities could provide considerable advancements in amputee care. Therefore, the purpose of this study was to couple design optimization with dynamic simulations of amputee walking to identify the optimal foot stiffness that minimizes metabolic cost and intact knee joint loading. A musculoskeletal model and distributed stiffness ESAR prosthetic foot model were developed to generate muscle-actuated forward dynamics simulations of amputee walking. Dynamic optimization was used to solve for the optimal muscle excitation patterns and foot stiffness profile that produced simulations that tracked experimental amputee walking data while minimizing metabolic cost and intact leg internal knee contact forces. Muscle and foot function were evaluated by calculating their contributions to the important walking subtasks of body support, forward propulsion and leg swing. The analyses showed that altering a nominal prosthetic foot stiffness distribution by stiffening the toe and mid-foot while making the ankle and heel less stiff improved ESAR foot performance by offloading the intact knee during early to mid-stance of the intact leg and reducing metabolic cost. The optimal design also provided moderate braking and body support during the first half of residual leg stance, while increasing the prosthesis contributions to forward propulsion and body support during the second half of residual leg stance. Future work will be directed at experimentally validating these results, which have important implications for future designs of prosthetic feet that could significantly improve amputee care.

  6. Characterization of Low Noise TES Detectors Fabricated by D-RIE Process for SAFARI Short-Wavelength Band

    NASA Astrophysics Data System (ADS)

    Khosropanah, P.; Suzuki, T.; Hijmering, R. A.; Ridder, M. L.; Lindeman, M. A.; Gao, J.-R.; Hoevers, H.

    2014-08-01

    SRON is developing TES detectors based on a superconducting Ti/Au bilayer on a suspended SiN membrane for the short-wavelength band of the SAFARI instrument on SPICA mission. We have recently replaced the wet KOH etching of the Si substrate by deep reactive ion etching. The new process enables us to fabricate the detectors on the substrate and release the membrane at the very last step. Therefore the production of SAFARI large arrays (4343) on thin SiN membrane (250 nm) is feasible. It also makes it possible to realize narrow supporting SiN legs of 1 m, which are needed to meet SAFARI NEP requirements. Here we report the current-voltage characteristics, noise performance and impedance measurement of these devices. The measured results are then compared with the distributed leg model that takes into account the thermal fluctuation noise due to the SiN legs. We measured a dark NEP of 0.7 aW/, which is 1.6 times higher than the theoretically expected phonon noise.

  7. Contact-force distribution optimization and control for quadruped robots using both gradient and adaptive neural networks.

    PubMed

    Li, Zhijun; Ge, Shuzhi Sam; Liu, Sibang

    2014-08-01

    This paper investigates optimal feet forces' distribution and control of quadruped robots under external disturbance forces. First, we formulate a constrained dynamics of quadruped robots and derive a reduced-order dynamical model of motion/force. Consider an external wrench on quadruped robots; the distribution of required forces and moments on the supporting legs of a quadruped robot is handled as a tip-point force distribution and used to equilibrate the external wrench. Then, a gradient neural network is adopted to deal with the optimized objective function formulated as to minimize this quadratic objective function subjected to linear equality and inequality constraints. For the obtained optimized tip-point force and the motion of legs, we propose the hybrid motion/force control based on an adaptive neural network to compensate for the perturbations in the environment and approximate feedforward force and impedance of the leg joints. The proposed control can confront the uncertainties including approximation error and external perturbation. The verification of the proposed control is conducted using a simulation.

  8. Three-Dimensional Finite-Element Simulation for a Thermoelectric Generator Module

    NASA Astrophysics Data System (ADS)

    Hu, Xiaokai; Takazawa, Hiroyuki; Nagase, Kazuo; Ohta, Michihiro; Yamamoto, Atsushi

    2015-10-01

    A three-dimensional closed-circuit numerical model of a thermoelectric generator (TEG) module has been constructed with COMSOL® Multiphysics to verify a module test system. The Seebeck, Peltier, and Thomson effects and Joule heating are included in the thermoelectric conversion model. The TEG model is employed to simulate the operation of a 16-leg TEG module based on bismuth telluride with temperature-dependent material properties. The module is mounted on a test platform, and simulated by combining the heat conduction process and thermoelectric conversion process. Simulation results are obtained for the terminal voltage, output power, heat flow, and efficiency as functions of the electric current; the results are compared with measurement data. The Joule and Thomson heats in all the thermoelectric legs, as functions of the electric current, are calculated by finite-element volume integration over the entire legs. The Peltier heat being pumped at the hot side and released at the cold side of the module are also presented in relation to the electric current. The energy balance relations between heat and electricity are verified to support the simulation.

  9. [Exoskeleton robot system based on real-time gait analysis for walking assist].

    PubMed

    Xie, Zheng; Wang, Mingjiang; Huang, Wulong; Yong, Shanshan; Wang, Xin'an

    2017-04-01

    This paper presents a wearable exoskeleton robot system to realize walking assist function, which oriented toward the patients or the elderly with the mild impairment of leg movement function, due to illness or natural aging. It reduces the loads of hip, knee, ankle and leg muscles during walking by way of weight support. In consideration of the characteristics of the psychological demands and the disease, unlike the weight loss system in the fixed or followed rehabilitation robot, the structure of the proposed exoskeleton robot is artistic, lightweight and portable. The exoskeleton system analyzes the user's gait real-timely by the plantar pressure sensors to divide gait phases, and present different control strategies for each gait phase. The pressure sensors in the seat of the exoskeleton system provide real-time monitoring of the support efforts. And the drive control uses proportion-integral-derivative (PID) control technology for torque control. The total weight of the robot system is about 12.5 kg. The average of the auxiliary support is about 10 kg during standing, and it is about 3 kg during walking. The system showed, in the experiments, a certain effect of weight support, and reduction of the pressure on the lower limbs to walk and stand.

  10. Numerical Estimation of Balanced and Falling States for Constrained Legged Systems

    NASA Astrophysics Data System (ADS)

    Mummolo, Carlotta; Mangialardi, Luigi; Kim, Joo H.

    2017-08-01

    Instability and risk of fall during standing and walking are common challenges for biped robots. While existing criteria from state-space dynamical systems approach or ground reference points are useful in some applications, complete system models and constraints have not been taken into account for prediction and indication of fall for general legged robots. In this study, a general numerical framework that estimates the balanced and falling states of legged systems is introduced. The overall approach is based on the integration of joint-space and Cartesian-space dynamics of a legged system model. The full-body constrained joint-space dynamics includes the contact forces and moments term due to current foot (or feet) support and another term due to altered contact configuration. According to the refined notions of balanced, falling, and fallen, the system parameters, physical constraints, and initial/final/boundary conditions for balancing are incorporated into constrained nonlinear optimization problems to solve for the velocity extrema (representing the maximum perturbation allowed to maintain balance without changing contacts) in the Cartesian space at each center-of-mass (COM) position within its workspace. The iterative algorithm constructs the stability boundary as a COM state-space partition between balanced and falling states. Inclusion in the resulting six-dimensional manifold is a necessary condition for a state of the given system to be balanced under the given contact configuration, while exclusion is a sufficient condition for falling. The framework is used to analyze the balance stability of example systems with various degrees of complexities. The manifold for a 1-degree-of-freedom (DOF) legged system is consistent with the experimental and simulation results in the existing studies for specific controller designs. The results for a 2-DOF system demonstrate the dependency of the COM state-space partition upon joint-space configuration (elbow-up vs. elbow-down). For both 1- and 2-DOF systems, the results are validated in simulation environments. Finally, the manifold for a biped walking robot is constructed and illustrated against its single-support walking trajectories. The manifold identified by the proposed framework for any given legged system can be evaluated beforehand as a system property and serves as a map for either a specified state or a specific controller's performance.

  11. Don't break a leg: running birds from quail to ostrich prioritise leg safety and economy on uneven terrain.

    PubMed

    Birn-Jeffery, Aleksandra V; Hubicki, Christian M; Blum, Yvonne; Renjewski, Daniel; Hurst, Jonathan W; Daley, Monica A

    2014-11-01

    Cursorial ground birds are paragons of bipedal running that span a 500-fold mass range from quail to ostrich. Here we investigate the task-level control priorities of cursorial birds by analysing how they negotiate single-step obstacles that create a conflict between body stability (attenuating deviations in body motion) and consistent leg force-length dynamics (for economy and leg safety). We also test the hypothesis that control priorities shift between body stability and leg safety with increasing body size, reflecting use of active control to overcome size-related challenges. Weight-support demands lead to a shift towards straighter legs and stiffer steady gait with increasing body size, but it remains unknown whether non-steady locomotor priorities diverge with size. We found that all measured species used a consistent obstacle negotiation strategy, involving unsteady body dynamics to minimise fluctuations in leg posture and loading across multiple steps, not directly prioritising body stability. Peak leg forces remained remarkably consistent across obstacle terrain, within 0.35 body weights of level running for obstacle heights from 0.1 to 0.5 times leg length. All species used similar stance leg actuation patterns, involving asymmetric force-length trajectories and posture-dependent actuation to add or remove energy depending on landing conditions. We present a simple stance leg model that explains key features of avian bipedal locomotion, and suggests economy as a key priority on both level and uneven terrain. We suggest that running ground birds target the closely coupled priorities of economy and leg safety as the direct imperatives of control, with adequate stability achieved through appropriately tuned intrinsic dynamics. © 2014. Published by The Company of Biologists Ltd.

  12. Don't break a leg: running birds from quail to ostrich prioritise leg safety and economy on uneven terrain

    PubMed Central

    Birn-Jeffery, Aleksandra V.; Hubicki, Christian M.; Blum, Yvonne; Renjewski, Daniel; Hurst, Jonathan W.; Daley, Monica A.

    2014-01-01

    Cursorial ground birds are paragons of bipedal running that span a 500-fold mass range from quail to ostrich. Here we investigate the task-level control priorities of cursorial birds by analysing how they negotiate single-step obstacles that create a conflict between body stability (attenuating deviations in body motion) and consistent leg force–length dynamics (for economy and leg safety). We also test the hypothesis that control priorities shift between body stability and leg safety with increasing body size, reflecting use of active control to overcome size-related challenges. Weight-support demands lead to a shift towards straighter legs and stiffer steady gait with increasing body size, but it remains unknown whether non-steady locomotor priorities diverge with size. We found that all measured species used a consistent obstacle negotiation strategy, involving unsteady body dynamics to minimise fluctuations in leg posture and loading across multiple steps, not directly prioritising body stability. Peak leg forces remained remarkably consistent across obstacle terrain, within 0.35 body weights of level running for obstacle heights from 0.1 to 0.5 times leg length. All species used similar stance leg actuation patterns, involving asymmetric force–length trajectories and posture-dependent actuation to add or remove energy depending on landing conditions. We present a simple stance leg model that explains key features of avian bipedal locomotion, and suggests economy as a key priority on both level and uneven terrain. We suggest that running ground birds target the closely coupled priorities of economy and leg safety as the direct imperatives of control, with adequate stability achieved through appropriately tuned intrinsic dynamics. PMID:25355848

  13. Foot loading characteristics during three fencing-specific movements.

    PubMed

    Trautmann, Caroline; Martinelli, Nicolo; Rosenbaum, Dieter

    2011-12-01

    Plantar pressure characteristics during fencing movements may provide more specific information about the influence of foot loading on overload injury patterns. Twenty-nine experienced fencers participated in the study. Three fencing-specific movements (lunge, advance, retreat) and normal running were performed with three different shoe models: Ballestra (Nike, USA), Adistar Fencing Lo (Adidas, Germany), and the fencers' own shoes. The Pedar system (Novel, Munich, Germany) was used to collect plantar pressures at 50 Hz. Peak pressures, force-time integrals and contact times for five foot regions were compared between four athletic tasks in the lunge leg and supporting leg. Plantar pressure analysis revealed characteristic pressure distribution patterns for the fencing movements. For the lunge leg, during the lunge and advance movements the heel is predominantly loaded; during retreat, it is the hallux. For the supporting leg, during the lunge and advance movements the forefoot is predominantly loaded; during retreat, it is the hallux. Fencing-specific movements load the plantar surface in a distinct way compared with running. An effective cushioning in the heel and hallux region would help to minimize foot loading during fencing-specific movements.

  14. Safety Evaluation of Soy Leghemoglobin Protein Preparation Derived From Pichia pastoris, Intended for Use as a Flavor Catalyst in Plant-Based Meat.

    PubMed

    Fraser, Rachel Z; Shitut, Mithila; Agrawal, Puja; Mendes, Odete; Klapholz, Sue

    The leghemoglobin protein (LegH) from soy ( Glycine max) expressed in Pichia pastoris (LegH preparation, LegH Prep) imparts a meat-like flavor profile onto plant-based food products. The safety of LegH Prep was evaluated through a series of in vitro and in vivo tests. The genotoxic potential of LegH Prep was assessed using the bacterial reverse mutation assay (Ames test) and the in vitro chromosome aberration test. LegH Prep was nonmutagenic and nonclastogenic in each test, respectively. Systemic toxicity was assessed in a 28-day dietary study in male and female Sprague Dawley rats. There were no mortalities associated with the administration of LegH Prep. There were no clinical observations, body weight, ophthalmological, clinical pathology, or histopathological changes attributable to LegH Prep administration. There were no observed effects on male reproduction in this study, but the suggestion of a potential estrous cycle distribution effect in female rats prompted a second comprehensive 28-day dietary study in female Sprague Dawley rats. This study demonstrated that female reproductive parameters were comparable between rats treated with LegH Prep and concurrent control rats. These studies establish a no observed adverse effect level of 750 mg/kg/d LegH, which is over 100 times greater than the 90th percentile estimated daily intake. Collectively, the results of the studies presented raise no issues of toxicological concern with regard to LegH Prep under the conditions tested.

  15. On the Biomimetic Design of Agile-Robot Legs

    PubMed Central

    Garcia, Elena; Arevalo, Juan Carlos; Muñoz, Gustavo; Gonzalez-de-Santos, Pablo

    2011-01-01

    The development of functional legged robots has encountered its limits in human-made actuation technology. This paper describes research on the biomimetic design of legs for agile quadrupeds. A biomimetic leg concept that extracts key principles from horse legs which are responsible for the agile and powerful locomotion of these animals is presented. The proposed biomimetic leg model defines the effective leg length, leg kinematics, limb mass distribution, actuator power, and elastic energy recovery as determinants of agile locomotion, and values for these five key elements are given. The transfer of the extracted principles to technological instantiations is analyzed in detail, considering the availability of current materials, structures and actuators. A real leg prototype has been developed following the biomimetic leg concept proposed. The actuation system is based on the hybrid use of series elasticity and magneto-rheological dampers which provides variable compliance for natural motion. From the experimental evaluation of this prototype, conclusions on the current technological barriers to achieve real functional legged robots to walk dynamically in agile locomotion are presented. PMID:22247667

  16. On the biomimetic design of agile-robot legs.

    PubMed

    Garcia, Elena; Arevalo, Juan Carlos; Muñoz, Gustavo; Gonzalez-de-Santos, Pablo

    2011-01-01

    The development of functional legged robots has encountered its limits in human-made actuation technology. This paper describes research on the biomimetic design of legs for agile quadrupeds. A biomimetic leg concept that extracts key principles from horse legs which are responsible for the agile and powerful locomotion of these animals is presented. The proposed biomimetic leg model defines the effective leg length, leg kinematics, limb mass distribution, actuator power, and elastic energy recovery as determinants of agile locomotion, and values for these five key elements are given. The transfer of the extracted principles to technological instantiations is analyzed in detail, considering the availability of current materials, structures and actuators. A real leg prototype has been developed following the biomimetic leg concept proposed. The actuation system is based on the hybrid use of series elasticity and magneto-rheological dampers which provides variable compliance for natural motion. From the experimental evaluation of this prototype, conclusions on the current technological barriers to achieve real functional legged robots to walk dynamically in agile locomotion are presented.

  17. [Design and application of medical electric leg-raising machine].

    PubMed

    Liang, Jintang; Chen, Jinyuan; Zhao, Zixian; Lin, Jinfeng; Li, Juanhong; Zhong, Jingliang

    2017-08-01

    Passive leg raising is widely used in clinic, but it lacks of specialized mechanical raise equipment. It requires medical staff to raise leg by hand or requires a multi-functional bed to raise leg, which takes time and effort. Therefore we have developed a new medical electric leg-raising machine. The equipment has the following characteristics: simple structure, stable performance, easy operation, fast and effective, safe and comfortable. The height range of the lifter is 50-120 cm, the range of the angle of raising leg is 10degree angle-80degree angle, the maximum supporting weight is 40 kg. Because of raising the height of the lower limbs and making precise angle, this equipment can completely replace the traditional manner of lifting leg by hand with multi-functional bed to lift patients' leg and can reduce the physical exhaustion and time consumption of medical staff. It can change the settings at any time to meet the needs of the patient; can be applied to the testing of PLR and dynamically assessing the hemodynamics; can prevent deep vein thrombosis and some related complications of staying in bed; and the machine is easy to be cleaned and disinfected, which can effectively avoid hospital acquired infection and cross infection; and can also be applied to emergency rescue of various disasters and emergencies.

  18. The control of mono-articular muscles in multijoint leg extensions in man.

    PubMed Central

    van Ingen Schenau, G J; Dorssers, W M; Welter, T G; Beelen, A; de Groot, G; Jacobs, R

    1995-01-01

    1. Movements often require control of direction and a magnitude of force exerted externally on the environment. Bi-articular upper leg muscles appear to play a unique role in the regulation of the net torques about the hip and knee joints, necessary for the control of this external force. 2. The aim of this study was to test the hypothesis that the mono-articular muscles act as work generators in powerful dynamic leg extensions, which means that they should be activated primarily in the phases during which they can contribute to work, irrespective of the net joint torques required to control the external force. 3. Cycling movements of six trained subjects were analysed by means of inverse dynamics, yielding net joint torques as well as activity patterns and shortening velocities of four mono- and four bi-articular leg muscles. 4. The results show that the mono-articular muscles exert force only in the phase in which these muscles shorten, whereas this appears not to be the case for the bi-articular muscles. 5. Reciprocal patterns of activation of the rectus femoris and hamstring muscles appear to tune the distribution of net joint torques about the hip and knee joints, necessary to control the (changing) direction of the force on the pedal. 6. An analysis of running in man and additional related literature based on animal studies appears to provide further support for the hypothesis that mono- and bi-articular muscles have essentially different roles in these powerful multijoint leg extension tasks. PMID:7602524

  19. The influence of lower limb impairments on RaceRunning performance in athletes with hypertonia, ataxia or athetosis.

    PubMed

    van der Linden, Marietta L; Jahed, Sadaf; Tennant, Nicola; Verheul, Martine H G

    2018-03-01

    RaceRunning enables athletes with limited or no walking ability to propel themselves independently using a three-wheeled running bike that has a saddle and a chest plate for support but no pedals. For RaceRunning to be included as a Para athletics event, an evidence-based classification system is required. Therefore, the aim of this study was to assess the association between a range of impairment measures and RaceRunning performance. The following impairment measures were recorded: lower limb muscle strength assessed using Manual Muscle Testing (MMT), selective voluntary motor control assessed using the Selective Control Assessment of the Lower Extremity (SCALE), spasticity recorded using both the Australian Spasticity Assessment Score (ASAS) and Modified Ashworth Scale (MAS), passive range of motion (ROM) of the lower extremities and the maximum static step length achieved on a stationary bike (MSSL). Associations between impairment measures and 100-meter race speed were assessed using Spearman's correlation coefficients. Sixteen male and fifteen female athletes (27 with cerebral palsy), aged 23 (SD = 7) years, Gross Motor Function Classification System levels ranging from II to V, participated. The MSSL averaged over both legs and the ASAS, MAS, SCALE, and MMT summed over all joints and both legs, significantly correlated with 100 m race performance (rho: 0.40-0.54). Passive knee extension was the only ROM measure that was significantly associated with race speed (rho = 0.48). These results suggest that lower limb spasticity, isometric leg strength, selective voluntary motor control and passive knee extension impact performance in RaceRunning athletes. This supports the potential use of these measures in a future evidence-based classification system. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Human and avian running on uneven ground: a model-based comparison

    PubMed Central

    Birn-Jeffery, A. V.; Blum, Y.

    2016-01-01

    Birds and humans are successful bipedal runners, who have individually evolved bipedalism, but the extent of the similarities and differences of their bipedal locomotion is unknown. In turn, the anatomical differences of their locomotor systems complicate direct comparisons. However, a simplifying mechanical model, such as the conservative spring–mass model, can be used to describe both avian and human running and thus, provides a way to compare the locomotor strategies that birds and humans use when running on level and uneven ground. Although humans run with significantly steeper leg angles at touchdown and stiffer legs when compared with cursorial ground birds, swing-leg adaptations (leg angle and leg length kinematics) used by birds and humans while running appear similar across all types of uneven ground. Nevertheless, owing to morphological restrictions, the crouched avian leg has a greater range of leg angle and leg length adaptations when coping with drops and downward steps than the straight human leg. On the other hand, the straight human leg seems to use leg stiffness adaptation when coping with obstacles and upward steps unlike the crouched avian leg posture. PMID:27655670

  1. Comparative Analysis of Hybrid Models for Prediction of BP Reactivity to Crossed Legs.

    PubMed

    Kaur, Gurmanik; Arora, Ajat Shatru; Jain, Vijender Kumar

    2017-01-01

    Crossing the legs at the knees, during BP measurement, is one of the several physiological stimuli that considerably influence the accuracy of BP measurements. Therefore, it is paramount to develop an appropriate prediction model for interpreting influence of crossed legs on BP. This research work described the use of principal component analysis- (PCA-) fused forward stepwise regression (FSWR), artificial neural network (ANN), adaptive neuro fuzzy inference system (ANFIS), and least squares support vector machine (LS-SVM) models for prediction of BP reactivity to crossed legs among the normotensive and hypertensive participants. The evaluation of the performance of the proposed prediction models using appropriate statistical indices showed that the PCA-based LS-SVM (PCA-LS-SVM) model has the highest prediction accuracy with coefficient of determination ( R 2 ) = 93.16%, root mean square error (RMSE) = 0.27, and mean absolute percentage error (MAPE) = 5.71 for SBP prediction in normotensive subjects. Furthermore, R 2  = 96.46%, RMSE = 0.19, and MAPE = 1.76 for SBP prediction and R 2  = 95.44%, RMSE = 0.21, and MAPE = 2.78 for DBP prediction in hypertensive subjects using the PCA-LSSVM model. This assessment presents the importance and advantages posed by hybrid computing models for the prediction of variables in biomedical research studies.

  2. Anatomic and functional leg-length inequality: A review and recommendation for clinical decision-making. Part II, the functional or unloaded leg-length asymmetry

    PubMed Central

    Knutson, Gary A

    2005-01-01

    Background Part II of this review examines the functional "short leg" or unloaded leg length alignment asymmetry, including the relationship between an anatomic and functional leg-length inequality. Based on the reviewed evidence, an outline for clinical decision making regarding functional and anatomic leg-length inequality will be provided. Methods Online databases: Medline, CINAHL and Mantis. Plus library searches for the time frame of 1970–2005 were done using the term "leg-length inequality". Results and Discussion The evidence suggests that an unloaded leg-length asymmetry is a different phenomenon than an anatomic leg-length inequality, and may be due to suprapelvic muscle hypertonicity. Anatomic leg-length inequality and unloaded functional or leg-length alignment asymmetry may interact in a loaded (standing) posture, but not in an unloaded (prone/supine) posture. Conclusion The unloaded, functional leg-length alignment asymmetry is a likely phenomenon, although more research regarding reliability of the measurement procedure and validity relative to spinal dysfunction is needed. Functional leg-length alignment asymmetry should be eliminated before any necessary treatment of anatomic LLI. PMID:16080787

  3. Bilateral differences in muscle fascicle architecture are not related to the preferred leg in jumping athletes.

    PubMed

    Aeles, Jeroen; Lenchant, Sietske; Vanlommel, Liesbeth; Vanwanseele, Benedicte

    2017-07-01

    In many sports, athletes have a preferred leg for sport-specific tasks, such as jumping, which leads to strength differences between both legs, yet the underlying changes in force-generating mechanical properties of the muscle remain unknown. The purpose of this study was to investigate whether the muscle architecture of the medial gastrocnemius (MG) is different between both legs in well-trained jumping athletes and untrained individuals. In addition, we investigated the effect of two ankle joint positions on ultrasound muscle architecture measurements. Muscle architecture of both legs was measured in 16 athletes and 11 untrained individuals at two ankle joint angles: one with the ankle joint in a tendon slack length (TSL) angle and one in a 90° angle. Fascicle lengths and pennation angles at TSL were not different between the preferred and non-preferred legs in either group. The comparison between groups showed no difference in fascicle length, but greater pennation angles were found in the athletes (21.7° ± 0.5°) compared to the untrained individuals (19.8° ± 0.6°). Analyses of the muscle architecture at a 90° angle yielded different results, mainly in the comparison between groups. These results provide only partial support for the notion of training-induced changes in muscle architecture as only differences in pennation angles were found between athletes and untrained individuals. Furthermore, our results provide support to the recommendation to take into account the tension-length relationship and to measure muscle architecture at individually determined tendon slack joint angles.

  4. Quadrupedal gaits in hexapod animals - inter-leg coordination in free-walking adult stick insects.

    PubMed

    Grabowska, Martyna; Godlewska, Elzbieta; Schmidt, Joachim; Daun-Gruhn, Silvia

    2012-12-15

    The analysis of inter-leg coordination in insect walking is generally a study of six-legged locomotion. For decades, the stick insect Carausius morosus has been instrumental for unravelling the rules and mechanisms that control leg coordination in hexapeds. We analysed inter-leg coordination in C. morosus that freely walked on straight paths on plane surfaces with different slopes. Consecutive 1.7 s sections were assigned inter-leg coordination patterns (which we call gaits) based on footfall patterns. Regular gaits, i.e. wave, tetrapod or tripod gaits, occurred in different proportions depending on surface slopes. Tetrapod gaits were observed most frequently, wave gaits only occurred on 90 deg inclining slopes and tripod gaits occurred most often on 15 deg declining slopes, i.e. in 40% of the sections. Depending on the slope, 36-66% of the sections were assigned irregular gaits. Irregular gaits were mostly due to multiple stepping by the front legs, which is perhaps probing behaviour, not phase coupled to the middle legs' cycles. In irregular gaits, middle leg and hindleg coordination was regular, related to quadrupedal walk and wave gaits. Apparently, front legs uncouple from and couple to the walking system without compromising middle leg and hindleg coordination. In front leg amputees, the remaining legs were strictly coordinated. In hindleg and middle leg amputees, the front legs continued multiple stepping. The coordination of middle leg amputees was maladapted, with front legs and hindlegs performing multiple steps or ipsilateral legs being in simultaneous swing. Thus, afferent information from middle legs might be necessary for a regular hindleg stepping pattern.

  5. Muscular strategy shift in human running: dependence of running speed on hip and ankle muscle performance.

    PubMed

    Dorn, Tim W; Schache, Anthony G; Pandy, Marcus G

    2012-06-01

    Humans run faster by increasing a combination of stride length and stride frequency. In slow and medium-paced running, stride length is increased by exerting larger support forces during ground contact, whereas in fast running and sprinting, stride frequency is increased by swinging the legs more rapidly through the air. Many studies have investigated the mechanics of human running, yet little is known about how the individual leg muscles accelerate the joints and centre of mass during this task. The aim of this study was to describe and explain the synergistic actions of the individual leg muscles over a wide range of running speeds, from slow running to maximal sprinting. Experimental gait data from nine subjects were combined with a detailed computer model of the musculoskeletal system to determine the forces developed by the leg muscles at different running speeds. For speeds up to 7 m s(-1), the ankle plantarflexors, soleus and gastrocnemius, contributed most significantly to vertical support forces and hence increases in stride length. At speeds greater than 7 m s(-1), these muscles shortened at relatively high velocities and had less time to generate the forces needed for support. Thus, above 7 m s(-1), the strategy used to increase running speed shifted to the goal of increasing stride frequency. The hip muscles, primarily the iliopsoas, gluteus maximus and hamstrings, achieved this goal by accelerating the hip and knee joints more vigorously during swing. These findings provide insight into the strategies used by the leg muscles to maximise running performance and have implications for the design of athletic training programs.

  6. Asymmetry in gait pattern following bicondylar tibial plateau fractures-A prospective one-year cohort study.

    PubMed

    Elsoe, Rasmus; Larsen, Peter

    2017-07-01

    Despite the high number of studies evaluating outcomes following tibial plateau fractures, the literature lacks studies including the objective assessment of gait pattern. The purpose of the present study was to evaluate asymmetry in gait patterns at 12 months after frame removal following ring fixation of a tibial plateau fracture. The study design was a prospective cohort study. The primary outcome measurement was the gait patterns 12 months after frame removal measured with a pressure-sensitive mat. The mat registers footprints and present gait speed, cadence, as well as temporal and spatial parameters of the gait cycle. Gait patterns were compared to a healthy reference population. Twenty-three patients were included with a mean age of 54.4 years (32-78 years). Patients presented with a shorter step-length of the injured leg compared to the non-injured leg (asymmetry of 11.3%). Analysis of single-support showed shorter support time of the injured leg compared to the non-injured leg (asymmetry of 8.7%). Moreover, analysis of swing-time showed increased swing-time of the injured leg (asymmetry of 8.9%). Compared to a healthy reference population, increased asymmetry in all gait patterns was observed. The association between asymmetry and health-related quality of life (HRQOL) showed moderate associations (single-support: R=0.50, P=0.03; step-length: R=0.43, P=0.07; swing-time: R=0.46, P=0.05). Compared to a healthy reference population, gait asymmetry is common 12 months after frame removal in patients treated with external ring fixation following a tibial plateau fracture of the tibia. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Two biomechanical strategies for locomotor adaptation to split-belt treadmill walking in subjects with and without transtibial amputation.

    PubMed

    Selgrade, Brian P; Toney, Megan E; Chang, Young-Hui

    2017-02-28

    Locomotor adaptation is commonly studied using split-belt treadmill walking, in which each foot is placed on a belt moving at a different speed. As subjects adapt to split-belt walking, they reduce metabolic power, but the biomechanical mechanism behind this improved efficiency is unknown. Analyzing mechanical work performed by the legs and joints during split-belt adaptation could reveal this mechanism. Because ankle work in the step-to-step transition is more efficient than hip work, we hypothesized that control subjects would reduce hip work on the fast belt and increase ankle work during the step-to-step transition as they adapted. We further hypothesized that subjects with unilateral, trans-tibial amputation would instead increase propulsive work from their intact leg on the slow belt. Control subjects reduced hip work and shifted more ankle work to the step-to-step transition, supporting our hypothesis. Contrary to our second hypothesis, intact leg work, ankle work and hip work in amputees were unchanged during adaptation. Furthermore, all subjects increased collisional energy loss on the fast belt, but did not increase propulsive work. This was possible because subjects moved further backward during fast leg single support in late adaptation than in early adaptation, compensating by reducing backward movement in slow leg single support. In summary, subjects used two strategies to improve mechanical efficiency in split-belt walking adaptation: a CoM displacement strategy that allows for less forward propulsion on the fast belt; and, an ankle timing strategy that allows efficient ankle work in the step-to-step transition to increase while reducing inefficient hip work. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peter H. Titus and Ali Zolfaghari

    A critical design feature of any tokamak is the space taken up by the inner leg of the toroidal field (TF) coil. The radial build needed for the TF inner leg, along with shield thickness , size of the central solenoid and plasma minor radius set the major radius of the machine. The cost of the tokamak core roughly scales with the cube of the major radius. Small reductions in the TF build can have a big impact on the overall cost of the reactor. The cross section of the TF inner leg must structurally support the centering force andmore » that portion of the vertical separating force that is not supported by the outer structures. In this paper, the TF inner leg equatorial plane cross sections are considered. Out-of- Plane (OOP) forces must also be supported, but these are largest away from the equatorial plane, in the inner upper and lower corners and outboard sections of the TF coil. OOP forces are taken by structures that are not closely coupled with the radial build of the central column at the equatorial plane. The "Vertical Access AT Pilot Plant" currently under consideration at PPPL is used as a starting point for the structural, field and current requirements. Other TF structural concepts are considered. Most are drawn from existing designs such as ITER's circular conduits in radial plates bearing on a heavy nose section, and TPX's square conduits in a case, Each of these concepts can rely on full wedging, or partial wedging. Vaulted TF coils are considered as are those with some component of bucking against a central solenoid or bucking post. With the expectation that the pilot plant will be a steady state machine, a static stress criteria is used for all the concepts. The coils are assumed to be superconducting, with the superconductor not contributing to the structural strength. Limit analysis is employed to assess the degree of conservatism in the static criteria as it is applied to a linear elastic stress analysis. TF concepts, and in particular the PPPL AT PILOT plate concept are evaluated based on amount of space needed for structure and the amount of space left for superconductor.« less

  9. Normalized knee-extension strength or leg-press power after fast-track total knee arthroplasty: which measure is most closely associated with performance-based and self-reported function?

    PubMed

    Aalund, Peter K; Larsen, Kristian; Hansen, Torben B; Bandholm, Thomas

    2013-02-01

    To investigate which of the 2 muscle-impairment measures for the operated leg, normalized knee extension strength or leg press power, was most closely associated with performance-based and self-reported measures of function shortly after total knee arthroplasty (TKA). Cross-sectional, exploratory study. Laboratory at a regional hospital. Individuals (N=39) with an average age ± SD of 65.5±10.3 years, who all had unilateral TKA 28 days prior. None. The patients performed maximal isometric knee extensions and dynamic leg presses to determine their body-mass normalized knee extension strength and leg press power, respectively. The 10-meter fast speed walking- and 30-second chair stand tests were used to determine performance-based function, while the Western Ontario and McMaster Universities Osteoarthritis Index and Oxford Knee Scores were used to determine self-reported function. Normalized leg press power was more closely associated with both performance-based (r=.82, P<.001) and self-reported (r=.48, P=.002) measures of function compared with normalized knee extension strength (r=.51, P=.001 and r=.39, P=.015, respectively). Normalized leg press power was more closely associated with both performance-based and self-reported function early after TKA than normalized knee extension strength. It may be explained by the fact that performance-based measures of function are typically closed kinetic chain tasks, such as walking or rising from a chair, and self-reported measures of function typically include questions that address perceived difficulty with performing these same tasks. Copyright © 2013 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  10. Does a crouched leg posture enhance running stability and robustness?

    PubMed

    Blum, Yvonne; Birn-Jeffery, Aleksandra; Daley, Monica A; Seyfarth, Andre

    2011-07-21

    Humans and birds both walk and run bipedally on compliant legs. However, differences in leg architecture may result in species-specific leg control strategies as indicated by the observed gait patterns. In this work, control strategies for stable running are derived based on a conceptual model and compared with experimental data on running humans and pheasants (Phasianus colchicus). From a model perspective, running with compliant legs can be represented by the planar spring mass model and stabilized by applying swing leg control. Here, linear adaptations of the three leg parameters, leg angle, leg length and leg stiffness during late swing phase are assumed. Experimentally observed kinematic control parameters (leg rotation and leg length change) of human and avian running are compared, and interpreted within the context of this model, with specific focus on stability and robustness characteristics. The results suggest differences in stability characteristics and applied control strategies of human and avian running, which may relate to differences in leg posture (straight leg posture in humans, and crouched leg posture in birds). It has been suggested that crouched leg postures may improve stability. However, as the system of control strategies is overdetermined, our model findings suggest that a crouched leg posture does not necessarily enhance running stability. The model also predicts different leg stiffness adaptation rates for human and avian running, and suggests that a crouched avian leg posture, which is capable of both leg shortening and lengthening, allows for stable running without adjusting leg stiffness. In contrast, in straight-legged human running, the preparation of the ground contact seems to be more critical, requiring leg stiffness adjustment to remain stable. Finally, analysis of a simple robustness measure, the normalized maximum drop, suggests that the crouched leg posture may provide greater robustness to changes in terrain height. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Safety harness

    DOEpatents

    Gunter, Larry W.

    1993-01-01

    A safety harness to be worn by a worker, especially a worker wearing a plastic suit thereunder for protection in a radioactive or chemically hostile environment, which safety harness comprises a torso surrounding portion with at least one horizontal strap for adjustably securing the harness about the torso, two vertical shoulder straps with rings just forward of the of the peak of the shoulders for attaching a life-line and a pair of adjustable leg supporting straps releasibly attachable to the torso surrounding portion. In the event of a fall, the weight of the worker, when his fall is broken and he is suspended from the rings with his body angled slightly back and chest up, will be borne by the portion of the leg straps behind his buttocks rather than between his legs. Furthermore, the supporting straps do not restrict the air supplied through hoses into his suit when so suspended.

  12. Chronic leg ulceration in homozygous sickle cell disease: the role of venous incompetence.

    PubMed

    Clare, Andrea; FitzHenley, Michael; Harris, June; Hambleton, Ian; Serjeant, Graham R

    2002-11-01

    Chronic leg ulceration is a common cause of morbidity in Jamaican patients with homozygous sickle cell (SS) disease. Ulcers heal more rapidly on bed rest and deteriorate on prolonged standing, suggesting a role of venous hypertension in their persistence. This hypothesis has been tested by Doppler detection of venous competence in SS patients and in matched controls with a normal haemoglobin (AA) genotype in the Jamaican Cohort Study. Venous incompetence was significantly more frequent in SS disease [137/183 (75%)] than in non-pregnant AA controls [53/137 (39%)]. Past or present ulceration occurred in 78 (43%) SS patients, with a highly significant association between leg ulceration and venous incompetence in the same leg (P < 0.001). Prominence and/or varicosities of the veins and spontaneous leg ulcers were more common among patients with multiple sites of incompetence. The association of venous incompetence with chronic leg ulceration identifies a further pathological mechanism contributing to the morbidity of SS disease. The cause of venous incompetence is unknown but the sluggish circulation associated with dependency, turbidity and impaired linear flow at venous valves, hypoxia-induced sickling, the rheological effects of high white cell counts, and activation of components of the coagulation system may all contribute. Venous hypertension in SS patients with leg ulceration suggests that firm elastic supportive dressings might promote healing of chronic leg ulcers.

  13. A Goniometry Paradigm Shift to Measure Burn Scar Contracture in Burn Patients

    DTIC Science & Technology

    2015-10-01

    is based on an integumentary or  cutaneous model; the hallmark difference being that  natural  skin is a single, continuous piece of  tissue without...Position: Subject lying supine, hip flexed to 90  degrees, ankle  relaxed , opposite leg extended and supported.  Stabilization: Stabilize the femur in 90...clearance when knee is flexed), hip flexed  to 55 degrees and stabilized with foam wedge (may secure with strap), ankle  relaxed , opposite leg extended

  14. Swing-leg trajectory of running guinea fowl suggests task-level priority of force regulation rather than disturbance rejection.

    PubMed

    Blum, Yvonne; Vejdani, Hamid R; Birn-Jeffery, Aleksandra V; Hubicki, Christian M; Hurst, Jonathan W; Daley, Monica A

    2014-01-01

    To achieve robust and stable legged locomotion in uneven terrain, animals must effectively coordinate limb swing and stance phases, which involve distinct yet coupled dynamics. Recent theoretical studies have highlighted the critical influence of swing-leg trajectory on stability, disturbance rejection, leg loading and economy of walking and running. Yet, simulations suggest that not all these factors can be simultaneously optimized. A potential trade-off arises between the optimal swing-leg trajectory for disturbance rejection (to maintain steady gait) versus regulation of leg loading (for injury avoidance and economy). Here we investigate how running guinea fowl manage this potential trade-off by comparing experimental data to predictions of hypothesis-based simulations of running over a terrain drop perturbation. We use a simple model to predict swing-leg trajectory and running dynamics. In simulations, we generate optimized swing-leg trajectories based upon specific hypotheses for task-level control priorities. We optimized swing trajectories to achieve i) constant peak force, ii) constant axial impulse, or iii) perfect disturbance rejection (steady gait) in the stance following a terrain drop. We compare simulation predictions to experimental data on guinea fowl running over a visible step down. Swing and stance dynamics of running guinea fowl closely match simulations optimized to regulate leg loading (priorities i and ii), and do not match the simulations optimized for disturbance rejection (priority iii). The simulations reinforce previous findings that swing-leg trajectory targeting disturbance rejection demands large increases in stance leg force following a terrain drop. Guinea fowl negotiate a downward step using unsteady dynamics with forward acceleration, and recover to steady gait in subsequent steps. Our results suggest that guinea fowl use swing-leg trajectory consistent with priority for load regulation, and not for steadiness of gait. Swing-leg trajectory optimized for load regulation may facilitate economy and injury avoidance in uneven terrain.

  15. Swing-Leg Trajectory of Running Guinea Fowl Suggests Task-Level Priority of Force Regulation Rather than Disturbance Rejection

    PubMed Central

    Blum, Yvonne; Vejdani, Hamid R.; Birn-Jeffery, Aleksandra V.; Hubicki, Christian M.; Hurst, Jonathan W.; Daley, Monica A.

    2014-01-01

    To achieve robust and stable legged locomotion in uneven terrain, animals must effectively coordinate limb swing and stance phases, which involve distinct yet coupled dynamics. Recent theoretical studies have highlighted the critical influence of swing-leg trajectory on stability, disturbance rejection, leg loading and economy of walking and running. Yet, simulations suggest that not all these factors can be simultaneously optimized. A potential trade-off arises between the optimal swing-leg trajectory for disturbance rejection (to maintain steady gait) versus regulation of leg loading (for injury avoidance and economy). Here we investigate how running guinea fowl manage this potential trade-off by comparing experimental data to predictions of hypothesis-based simulations of running over a terrain drop perturbation. We use a simple model to predict swing-leg trajectory and running dynamics. In simulations, we generate optimized swing-leg trajectories based upon specific hypotheses for task-level control priorities. We optimized swing trajectories to achieve i) constant peak force, ii) constant axial impulse, or iii) perfect disturbance rejection (steady gait) in the stance following a terrain drop. We compare simulation predictions to experimental data on guinea fowl running over a visible step down. Swing and stance dynamics of running guinea fowl closely match simulations optimized to regulate leg loading (priorities i and ii), and do not match the simulations optimized for disturbance rejection (priority iii). The simulations reinforce previous findings that swing-leg trajectory targeting disturbance rejection demands large increases in stance leg force following a terrain drop. Guinea fowl negotiate a downward step using unsteady dynamics with forward acceleration, and recover to steady gait in subsequent steps. Our results suggest that guinea fowl use swing-leg trajectory consistent with priority for load regulation, and not for steadiness of gait. Swing-leg trajectory optimized for load regulation may facilitate economy and injury avoidance in uneven terrain. PMID:24979750

  16. A tracked robot with novel bio-inspired passive "legs".

    PubMed

    Sun, Bo; Jing, Xingjian

    2017-01-01

    For track-based robots, an important aspect is the suppression design, which determines the trafficability and comfort of the whole system. The trafficability limits the robot's working capability, and the riding comfort limits the robot's working effectiveness, especially with some sensitive instruments mounted on or operated. To these aims, a track-based robot equipped with a novel passive bio-inspired suspension is designed and studied systematically in this paper. Animal or insects have very special leg or limb structures which are good for motion control and adaptable to different environments. Inspired by this, a new track-based robot is designed with novel "legs" for connecting the loading wheels to the robot body. Each leg is designed with passive structures and can achieve very high loading capacity but low dynamic stiffness such that the robot can move on rough ground similar to a multi-leg animal or insect. Therefore, the trafficability and riding comfort can be significantly improved without losing loading capacity. The new track-based robot can be well applied to various engineering tasks for providing a stable moving platform of high mobility, better trafficability and excellent loading capacity.

  17. Stride length: the impact on propulsion and bracing ground reaction force in overhand throwing.

    PubMed

    Ramsey, Dan K; Crotin, Ryan L

    2018-03-26

    Propulsion and bracing ground reaction force (GRF) in overhand throwing are integral in propagating joint reaction kinetics and ball velocity, yet how stride length effects drive (hind) and stride (lead) leg GRF profiles remain unknown. Using a randomised crossover design, 19 pitchers (15 collegiate and 4 high school) were assigned to throw 2 simulated 80-pitch games at ±25% of their desired stride length. An integrated motion capture system with two force plates and radar gun tracked each throw. Vertical and anterior-posterior GRF was normalised then impulse was derived. Paired t-tests identified whether differences between conditions were significant. Late in single leg support, peak propulsion GRF was statistically greater for the drive leg with increased stride. Stride leg peak vertical GRF in braking occurred before acceleration with longer strides, but near ball release with shorter strides. Greater posterior shear GRF involving both legs demonstrated increased braking with longer strides. Conversely, decreased drive leg propulsion reduced both legs' braking effects with shorter strides. Results suggest an interconnection between normalised stride length and GRF application in propulsion and bracing. This work has shown stride length to be an important kinematic factor affecting the magnitude and timing of external forces acting upon the body.

  18. Healthcare utilisation of pregnant women who experience sciatica, leg cramps and/or varicose veins: A cross-sectional survey of 1835 pregnant women.

    PubMed

    Hall, Helen; Lauche, Romy; Adams, Jon; Steel, Amie; Broom, Alex; Sibbritt, David

    2016-02-01

    Common discomforts of pregnancy experienced in the lower extremity include sciatica, leg cramps and varicose veins. Whilst research attention has focused on aetiology and outcomes, the health service utilisation of pregnant women suffering from these complaints has been largely overlooked. To examine the health status and health service utilisation profile of pregnant women experiencing sciatica, leg cramps or varicose veins. Linear and logistic regression was applied to a cross-sectional survey of a pregnant women drawn from the 1973 to 1978 cohort (aged 31-36 years in 2009), of the Australian Longitudinal Study on Women's Health (n=1835). Participant's demographics, health status and health service utilisation were compared for all three complaints based upon three subgroups (yes, sought help; yes, did not seek help; no). A number of women experienced sciatica (22.1%), leg cramps (18.2%) or varicose veins (9.4%). Of these, a greater proportion of women with sciatica (79.3%) or varicose veins (71.5%) sought help for their condition compared with women with leg cramps (46.7%). Comparisons between women with the conditions of interest who did seek help and those who did not only found that women with a university degree were 0.29 (95% CI: 0.10, 0.85) times less likely to seek help for their condition compared to women with a school only education. Further research examining all health seeking behaviour and treatment use of pregnant women who experience lower extremity problems is required in order to facilitate safe, effective and coordinated maternity care to further support these women during pregnancy. Copyright © 2015 Australian College of Midwives. Published by Elsevier Ltd. All rights reserved.

  19. Deflection-Compensating Beam for use inside a Cylinder

    NASA Technical Reports Server (NTRS)

    Goodman, Dwight; Myers, Neill; Herren, Kenneth

    2008-01-01

    A design concept for a beam for a specific application permits variations and options for satisfying competing requirements to minimize certain deflections under load and to minimize the weight of the beam. In the specific application, the beam is required to serve as a motion-controlled structure for supporting a mirror for optical testing in the lower third portion of a horizontal, cylindrical vacuum chamber. The cylindrical shape of the chamber is fortuitous in that it can be (and is) utilized as an essential element of the deflection-minimizing design concept. The beam is, more precisely, a table-like structure comprising a nominally flat, horizontal portion with vertical legs at its ends. The weights of the beam and whatever components it supports are reacted by the contact forces between the lower ends of the legs and the inner cylindrical chamber wall. Whereas the bending moments arising from the weights contribute to a beam deflection that is concave with its lowest point at midlength, the bending moments generated by the contact forces acting on the legs contribute to a beam deflection that is convex with its highest point at midlength. In addition, the bending of the legs in response to the weights causes the lower ends of the legs to slide downward on the cylindrical wall. By taking the standard beam-deflection equations, combining them with the geometric relationships among the legs and the horizontal portion of the beam, and treating the sliding as a component of deflection, it is possible to write an equation for the net vertical deflection as a function of the load and of position along the beam. A summary of major conclusions drawn from the equation characterization is included.

  20. Restoration of gait for spinal cord injury patients using HAL with intention estimator for preferable swing speed.

    PubMed

    Tsukahara, Atsushi; Hasegawa, Yasuhisa; Eguchi, Kiyoshi; Sankai, Yoshiyuki

    2015-03-01

    This paper proposes a novel gait intention estimator for an exoskeleton-wearer who needs gait support owing to walking impairment. The gait intention estimator not only detects the intention related to the start of the swing leg based on the behavior of the center of ground reaction force (CoGRF), but also infers the swing speed depending on the walking velocity. The preliminary experiments categorized into two stages were performed on a mannequin equipped with the exoskeleton robot [Hybrid Assistive Limb: (HAL)] including the proposed estimator. The first experiment verified that the gait support system allowed the mannequin to walk properly and safely. In the second experiment, we confirmed the differences in gait characteristics attributed to the presence or absence of the proposed swing speed profile. As a feasibility study, we evaluated the walking capability of a severe spinal cord injury patient supported by the system during a 10-m walk test. The results showed that the system enabled the patient to accomplish a symmetrical walk from both spatial and temporal standpoints while adjusting the speed of the swing leg. Furthermore, the critical differences of gait between our system and a knee-ankle-foot orthosis were obtained from the CoGRF distribution and the walking time. Through the tests, we demonstrated the effectiveness and practical feasibility of the gait support algorithms.

  1. Fuel cell integral bundle assembly including ceramic open end seal and vertical and horizontal thermal expansion control

    DOEpatents

    Zafred, Paolo R [Murrysville, PA; Gillett, James E [Greensburg, PA

    2012-04-24

    A plurality of integral bundle assemblies contain a top portion with an inlet fuel plenum and a bottom portion containing a base support, the base supports a dense, ceramic air exhaust manifold having four supporting legs, the manifold is below and connects to air feed tubes located in a recuperator zone, the air feed tubes passing into the center of inverted, tubular, elongated, hollow electrically connected solid oxide fuel cells having an open end above a combustion zone into which the air feed tubes pass and a closed end near the inlet fuel plenum, where the open end of the fuel cells rest upon and within a separate combination ceramic seal and bundle support contained in a ceramic support casting, where at least one flexible cushion ceramic band seal located between the recuperator and fuel cells protects and controls horizontal thermal expansion, and where the fuel cells operate in the fuel cell mode and where the base support and bottom ceramic air exhaust manifolds carry from 85% to all of the weight of the generator.

  2. An Adaptive Security Construct: Insurgency in Sudan

    DTIC Science & Technology

    2007-12-01

    and “External Actors” existing as both foundational and supporting relatives. The “ Legs ” between cornerpoints, in addition to defining the tactical...directly. In a simplified mirror-image, the same progression of legs underlies each side’s connection with international or non-governmental external...Technologies ( DTI ), March 21, 2007). 45 Ghazal, Lakes, and Warab), and Upper Nile (Junqali, Wahdah, and Upper Nile).94 Allegations of corruption persist

  3. The relationship with restless legs syndrome, fibromyalgia, and depressive symptoms in migraine patients.

    PubMed

    Akdag Uzun, Zehra; Kurt, Semiha; Karaer Unaldi, Hatice

    2018-05-18

    In this study, we aimed to investigate restless legs syndrome, depression, frequency of fibromyalgia and possible causes of its frequencies, and the relationships among these synergies and migraine's prodrome, aura, pain, and postdrome symptoms in patients with migraine. The study group included 200 patients previously or recently diagnosed with definite migraine and according to International Headache Society criteria and 200 healthy volunteers. All subjects underwent a medical interview to confirm restless legs syndrome and fibromyalgia, and they were asked to complete Beck Depression and Anxiety Inventory and "severity of restless legs syndrome inventory." The frequencies of depressive symptoms and fibromyalgia in the patients with migraine were higher than those of the control group. The mean age of the migraine patients with restless legs syndrome was also higher, and this group had migraine headache for a longer time. There was a statistically significant difference with regard to only generalized anxiety and traveler's distress, which were features of the migraine, between migraine patients with and without restless legs syndrome. Restless legs syndrome was more common in migraine patients with and without aura and in those with nonspecific white matter lesions in the cranial MRI. In our study, the greater frequency of restless legs syndrome, depressive symptoms, and fibromyalgia in the patients with migraine supports the role of dopamine, which is common to all three disorders. Interviews focused on these problems among migraine patients may help to decide on the best available treatment modality.

  4. Development of anticipatory postural adjustments during locomotion in children.

    PubMed

    Hirschfeld, H; Forssberg, H

    1992-08-01

    1. Anticipatory postural adjustments were studied in children (6-14 yr of age) walking on a treadmill while pulling a handle. Electromyographs (EMGs) and movements were recorded from the left arm and leg. 2. Postural activity in the leg muscles preceded voluntary arm muscle activity in all age groups, including the youngest children (6 yr of age). The latency to both leg and arm muscle activity, from a triggering audio signal, decreased with age. 3. In older children the latency to both voluntary and postural activity was influenced by the phase of the step cycle. The shortest latency to the first activated postural muscle occurred during single support phase in combination with a long latency to arm muscle activity. 4. In the youngest children, there was no phase-dependent modulation of the latency to the activation of the postural muscles. The voluntary activity was delayed during the beginning of the support phase resulting in a long delay between leg and arm muscle activity. 5. The postural muscle activation pattern was modified in a phase-dependent manner in all children. Lateral gastrocnemius (LG) and hamstring muscles (HAM) were activated during the early support phase, whereas tibialis anterior (TA) and quadriceps (Q) muscles were activated during the late support phase and during the swing phase. However, in the 6-yr-old children, LG was also activated in the swing phase. LG was activated before the HAM activity in the youngest children but after HAM in 14-yr-old children and adults. 6. The occurrence of LG activity in postural responses before heel strike suggests an immature (nonplantigrade) gating of postural activity.(ABSTRACT TRUNCATED AT 250 WORDS)

  5. Effect of ice massage on lower extremity functional performance and weight discrimination ability in collegiate footballers.

    PubMed

    Sharma, Geeta; Noohu, Majumi Mohamad

    2014-09-01

    Cryotherapy, in the form of ice massge is used to reduce inflammation after acute musculoskeletal injury or trauma. The potential negative effects of ice massage on proprioception are unknown, despite equivocal evidence supporting its effectiveness. The purpose of the study was to test the influence of cooling on weight discrimination ability and hence the performance in footballers. The study was of same subject experimental design (pretest-posttest design). Thirty male collegiate football players, whose mean age was 21.07 years, participated in the study. The participants were assessed for two functional performance tests, single leg hop test and crossed over hop test and weight discrimination ability before and after ice massage for 5 minutes on hamstrings muscle tendon. Pre cooling scores of Single Leg Hop Test of the dominant leg in the subjects was 166.65 (± 10.16) cm and post cooling scores of the dominant leg was 167.25 (± 11.77) cm. Pre cooling scores of Crossed Over Hop Test of the dominant leg in the subjects was 174.14 (± 8.60) cm and post cooling scores of the dominant leg was 174.45 (± 9.28) cm. Pre cooling scores of Weight Discrimination Differential Threshold of the dominant leg in the subjects was 1.625 ± 1.179 kg compared with post cooling scores of the dominant leg 1.85 (± 1.91) kg. Pre cooling scores of single leg hop and crossed over hop test of the dominant leg in the subjects compared with post cooling scores of the dominant leg showed no significant differences and it was also noted that the weight discrimination ability (weight discrimination differential threshold) didn't show any significant difference. All the values are reported as mean ± SD. This study provides additional evidence that proprioceptive acuity in the hamstring muscles (biceps femoris) remains largely unaffected after ice application to the hamstrings tendon (biceps femoris).

  6. Effects of combined high intensity arm and leg training on performance and cardio-respiratory measures.

    PubMed

    Zinner, Christoph; Sperlich, Billy; Born, Dennis-Peter; Michels, Guido

    2017-01-01

    The purpose of this study was to investigate the effects of combined arm and leg high-intensity low-volume interval training (HIITarm+leg) on maximal oxygen uptake, myocardial measures (i.e. stroke volume, cardiac output, ejection fraction), Tissue Oxygenation Index (TOI) of the vastus lateralis and triceps brachii, as well as power output in comparison to leg HIIT (HIITleg) only. The 20 healthy, male and female volunteers completed six sessions of either HIITleg on a cycle ergometer or HIITarm+leg on an arm and leg cycle ergometer. During pre- and post-testing, the volunteers completed a submaximal and incremental test to exhaustion on a cycle ergometer. Magnitude based interference revealed likely to very likely beneficial effects for HIITarm+leg compared to HIITleg in maximal oxygen uptake, cardiac measures as well peak power output. The TOI following HIITarm+leg demonstrated likely to very likely increased oxygenation in the triceps brachii or the vastus lateralis when compared to HIITleg. The results suggest that six sessions of HIITarm+leg may likely to very likely improve maximal oxygen uptake, some inotropy-related cardiac measures with improved tissue oxygenation of the triceps brachii and vastus lateralis muscles resulting in greater leg peak power output.

  7. Instructional Simulation Integrates Research, Education, and Practice.

    PubMed

    Teasdale, Thomas A; Mapes, Sheryl A; Henley, Omolara; Lindsey, Jeanene; Dillard, Della

    2016-01-01

    Instructional simulation is widely used in clinical education. Examples include the use of inanimate models meant to imitate humans, standardized patients who are actors portraying patients with certain conditions, and role-play where learners experience the disease through props and circumstances. These modalities are briefly described, and then case examples are provided of simulation curricula in use that integrate research findings and clinical practice expertise to guide development and implementation steps. The cases illustrate how formative and summative feedback from two legs of the "three-legged stool" can be potent integrating forces in development of simulation curricula. In these examples, the educational outputs benefit from purposeful inclusion of research and practice inputs. Costs are outlined for instructor and learner time commitments, space considerations, and expendables. The authors' data and experience suggest that instructional simulation that is supported by a solid scientific base and clinical expertise is appreciated by teachers and learners.

  8. 21 CFR 880.5780 - Medical support stocking.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Devices § 880.5780 Medical support stocking. (a) Medical support stocking to prevent the pooling of blood in the legs—(1) Identification. A medical support stocking to prevent the pooling of blood in the legs is a device that is constructed of elastic material and designed to apply controlled pressure to...

  9. 21 CFR 880.5780 - Medical support stocking.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Devices § 880.5780 Medical support stocking. (a) Medical support stocking to prevent the pooling of blood in the legs—(1) Identification. A medical support stocking to prevent the pooling of blood in the legs is a device that is constructed of elastic material and designed to apply controlled pressure to...

  10. 21 CFR 880.5780 - Medical support stocking.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Devices § 880.5780 Medical support stocking. (a) Medical support stocking to prevent the pooling of blood in the legs—(1) Identification. A medical support stocking to prevent the pooling of blood in the legs is a device that is constructed of elastic material and designed to apply controlled pressure to...

  11. 21 CFR 880.5780 - Medical support stocking.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Devices § 880.5780 Medical support stocking. (a) Medical support stocking to prevent the pooling of blood in the legs—(1) Identification. A medical support stocking to prevent the pooling of blood in the legs is a device that is constructed of elastic material and designed to apply controlled pressure to...

  12. 21 CFR 880.5780 - Medical support stocking.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Devices § 880.5780 Medical support stocking. (a) Medical support stocking to prevent the pooling of blood in the legs—(1) Identification. A medical support stocking to prevent the pooling of blood in the legs is a device that is constructed of elastic material and designed to apply controlled pressure to...

  13. The Leg Club model: a survey of staff and members' perceptions of this model of care.

    PubMed

    Stephen-Haynes, J

    2010-09-01

    To determine the Leg Club members' perceptions of the Leg Club as a model for delivery of service. An explorative qualitative approach was used. All members and staff at two Leg Clubs in the UK were invited to participate. They were asked to nominate five key words that described their views of the Leg Club model of care. The researcher and a research supervisor then counted them and decided on categories. Members' themes were verified by 10 randomly chosen Leg Club members and staff themes by five randomly chosen staff. All of the 85 Leg Club members and 15 staff approached agreed to take part. Categories identified for the Leg Club members were: sociability, enabling, knowledge and experience, interpersonal relationships, caring and quality. Categories identified for Leg Club staff were: camaraderie, education, empowerment, sociability and tiredness. These results indicate that the community Leg Club environment provides benefits in addition to those of guidelines, wound care expertise and evidence-based care. While the small sample size limits the generalisability of these exploratory data, the results identify the positive views of Leg Club members and highlights the need for further research. Similar data is not available for other health care delivery methods, so this also warrants further exploration.

  14. Evaluation of arm-leg coordination in flat breaststroke.

    PubMed

    Chollet, D; Seifert, L; Leblanc, H; Boulesteix, L; Carter, M

    2004-10-01

    This study proposes a new method to evaluate arm-leg coordination in flat breaststroke. Five arm and leg stroke phases were defined with a velocity-video system. Five time gaps quantified the time between arm and leg actions during three paces of a race (200 m, 100 m and 50 m) in 16 top level swimmers. Based on these time gaps, effective glide, effective propulsion, effective leg insweep and effective recovery were used to identify the different stroke phases of the body. A faster pace corresponded to increased stroke rate, decreased stroke length, increased propulsive phases, shorter glide phases, and a shorter T1 time gap, which measured the effective body glide. The top level swimmers showed short time gaps (T2, T3, T4, measuring the timing of arm-leg recoveries), which reflected the continuity in arm and leg actions. The measurement of these time gaps thus provides a pertinent evaluation of swimmers' skill in adapting their arm-leg coordination to biomechanical constraints.

  15. Angle and Base of Gait Long Leg Axial and Intraoperative Simulated Weightbearing Long Leg Axial Imaging to Capture True Frontal Plane Tibia to Calcaneus Alignment in Valgus and Varus Deformities of the Rearfoot and Ankle.

    PubMed

    Boffeli, Troy J; Waverly, Brett J

    2016-01-01

    The long leg axial view is primarily used to evaluate the frontal plane alignment of the calcaneus in relation to the long axis of the tibia when standing. This view allows both angular measurement and assessment for the apex of varus and valgus deformity of the rearfoot and ankle with clinical utility in the preoperative, intraoperative, and postoperative settings. The frontal plane alignment of the calcaneus to the long axis of the tibia is rarely fixed in the varus or valgus position because of the inherent flexibility of the foot and ankle, which makes patient positioning critical to obtain accurate and reproducible images. Inconsistent patient positioning and imaging techniques are commonly encountered with the long leg axial view for a variety of reasons, including the lack of a standardized or validated protocol. This angle and base of gait imaging protocol involves positioning the patient to align the tibia with the long axis of the foot, which is represented by the second metatarsal. Non-weightbearing long leg axial imaging is commonly performed intraoperatively, which requires a modified patient positioning technique to capture simulated weightbearing long leg axial images. A case series is presented to demonstrate our angle and base of gait long leg axial and intraoperative simulated weightbearing long leg axial imaging protocols that can be applied throughout all phases of patient care for various foot and ankle conditions. Copyright © 2015 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  16. Real-time PCR to supplement gold-standard culture-based detection of Legionella in environmental samples.

    PubMed

    Collins, S; Jorgensen, F; Willis, C; Walker, J

    2015-10-01

    Culture remains the gold-standard for the enumeration of environmental Legionella. However, it has several drawbacks including long incubation and poor sensitivity, causing delays in response times to outbreaks of Legionnaires' disease. This study aimed to validate real-time PCR assays to quantify Legionella species (ssrA gene), Legionella pneumophila (mip gene) and Leg. pneumophila serogroup-1 (wzm gene) to support culture-based detection in a frontline public health laboratory. Each qPCR assay had 100% specificity, excellent sensitivity (5 GU/reaction) and reproducibility. Comparison of the assays to culture-based enumeration of Legionella from 200 environmental samples showed that they had a negative predictive value of 100%. Thirty eight samples were positive for Legionella species by culture and qPCR. One hundred samples were negative by both methods, whereas 62 samples were negative by culture but positive by qPCR. The average log10 increase between culture and qPCR for Legionella spp. and Leg. pneumophila was 0·72 (P = 0·0002) and 0·51 (P = 0·006), respectively. The qPCR assays can be conducted on the same 1 l water sample as culture thus can be used as a supplementary technique to screen out negative samples and allow more rapid indication of positive samples. The assay could prove informative in public health investigations to identify or rule out sources of Legionella as well as to specifically identify Leg. pneumophila serogroup 1 in a timely manner not possible with culture. © 2015 The Society for Applied Microbiology.

  17. Nurse clinic versus home delivery of evidence-based community leg ulcer care: A randomized health services trial

    PubMed Central

    Harrison, Margaret B; Graham, Ian D; Lorimer, Karen; VandenKerkhof, Elizabeth; Buchanan, Maureen; Wells, Phil S; Brandys, Tim; Pierscianowski, Tadeusz

    2008-01-01

    Background International studies report that nurse clinics improve healing rates for the leg ulcer population. However, these studies did not necessarily deliver similar standards of care based on evidence in the treatment venues (home and clinic). A rigorous evaluation of home versus clinic care is required to determine healing rates with equivalent care and establish the acceptability of clinic-delivered care. Methods Health Services RCT was conducted where mobile individuals were allocated to either home or nurse clinic for leg ulcer management. In both arms, care was delivered by specially trained nurses, following an evidence protocol. Primary outcome: 3-month healing rates. Secondary outcomes: durability of healing (recurrence), time free of ulcers, HRQL, satisfaction, resource use. Data were collected at base-line, every 3 months until healing occurred, with 1 year follow-up. Analysis was by intention to treat. Results 126 participants, 65 randomized to receive care in their homes, 61 to nurse-run clinics. No differences found between groups at baseline on socio-demographic, HRQL or clinical characteristics. mean age 69 years, 68% females, 84% English-speaking, half with previous episode of ulceration, 60% ulcers at inclusion < 5 cm2 for < 6 months. No differences in 3-month healing rates: clinic 58.3% compared to home care at 56.7% (p = 0.5) or in secondary outcomes. Conclusion Our findings indicate that organization of care not the setting where care is delivered influences healing rates. Key factors are a system that supports delivery of evidence-based recommendations with care being provided by a trained nursing team resulting in equivalent healing rates, HRQL whether care is delivered in the home or in a community nurse-led clinic. Trial registration ClinicalTrials.gov Protocol Registration System: NCT00656383 PMID:19036149

  18. Age-related differences in postural adjustments in connection with different tasks involving weight transfer while standing.

    PubMed

    Jonsson, Erika; Henriksson, Marketta; Hirschfeld, Helga

    2007-10-01

    Weight transfer designed to change the area of the supportive base during the performance of three different motor tasks (one-leg stance, tandem stance and gait initiation) was examined both in healthy, physically active elderly people and younger adults. The former two tasks are balance tests used clinically. Our hypothesis was that the elderly subjects would demonstrate age-related changes in their postural adjustments that could be detected by analysis of the ground reaction forces. While 24 healthy elderly adults (65-77 years of age) and 26 younger adults (24-40 years of age) performed these three tasks, the ground reaction forces were recorded from two force plates. Prior to the onset of all three tasks, the elderly placed significantly more weight on the leg that was to provide support (the stance leg), than did the younger individuals. The analyses revealed two distinct phases of weight transfer, i.e., an initial thrust and a subsequent unloading phase. The elderly individuals exhibited a significantly longer unloading phase, as well as a higher frequency of peaks of vertical and lateral forces during this phase. Moreover, the maximal force rate during this phase was achieved at an earlier time point by the elderly. However, both groups generated forces of similar magnitudes and force rates. In conclusion, our findings indicate the presence of age-related differences in the temporal phasing of the ground reaction forces in all three of these tasks involving weight transfer, whereas the magnitude and rates of change of these forces are independent of age.

  19. Physical properties of the martian surface from the viking 1 lander: preliminary results.

    PubMed

    Shorthill, R W; Hutton, R E; Moore, H J; Scott, R F; Spitzer, C R

    1976-08-27

    The purpose of the physical properties experiment is to determine the characteristics of the martian "soil" based on the use of the Viking lander imaging system, the surface sampler, and engineering sensors. Viking 1 lander made physical contact with the surface of Mars at 11:53:07.1 hours on 20 July 1976 G.M.T. Twenty-five seconds later a high-resolution image sequence of the area around a footpad was started which contained the first information about surface conditions on Mars. The next image is a survey of the martian landscape in front of the lander, including a view of the top support of two of the landing legs. Each leg has a stroke gauge which extends from the top of the leg support an amount equal to the crushing experienced by the shock absorbers during touchdown. Subsequent images provided views of all three stroke gauges which, together with the knowledge of the impact velocity, allow determination of "soil" properties. In the images there is evidence of surface erosion from the engines. Several laboratory tests were carried out prior to the mission with a descent engine to determine what surface alterations might occur during a Mars landing. On sol 2 the shroud, which protected the surface sampler collector head from biological contamination, was ejected onto the surface. Later a cylindrical pin which dropped from the boom housing of the surface sampler during the modified unlatching sequence produced a crater (the second Mars penetrometer experiment). These two experiments provided further insight into the physical properties of the martian surface.

  20. Physical properties of the martian surface from the Viking 1 lander: preliminary results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shorthill, R.W.; Hutton, R.E.; Moore, H.J. II

    1976-08-27

    The purpose of the physical properties experiment is to determine the characteristics of the martian ''soil'' based on the use of the Viking lander imaging system, the surface sampler, and engineering sensors. Viking 1 lander made physical contact with the surface of Mars at 11:53:07.1 hours on 20 July 1976 G.M.T. Twenty-five seconds later a high-resolution image sequence of the area around a footpad was started which contained the first information about surface conditions on Mars. The next image is a survey of the martian landscape in front of the lander, including a view of the top support of twomore » of the landing legs. Each leg has a stroke gauge which extends from the top of the leg support an amount equal to the crushing experienced by the shock absorbers during touchdown. Subsequent images provided views of all three stroke gauges which, together with the knowledge of the impact velocity, allow determination of ''soil'' properties. In the images there is evidence of surface erosion from the engines. Several laboratory tests were carried out prior to the mission with a descent engine to determine what surface alterations might occur during a Mars landing. On sol 2 the shroud, which protected the surface sampler collector head from biological contamination, was ejected onto the surface. Later a cylindrical pin which dropped from the boom housing of the surface sampler during the modified unlatching sequence produced a crater (the second Mars penetrometer experiment). These two experiments provided further insight into the physical properties of the martian surface.« less

  1. Energy Efficient Legged Robotics at Sandia Labs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buerger, Steve

    Sandia is developing energy efficient actuation and drive train technologies to dramatically improve the charge life of legged robots. The work is supported by DARPA, and Sandia will demonstrate an energy efficient bipedal robot at the technology exposition section of the DARPA Robotics Challenge Finals in June, 2015. This video, the first in a series, describes early development and initial integration of the Sandia Transmission Efficient Prototype Promoting Research (STEPPR) robot.

  2. Energy Efficient Legged Robotics at Sandia Labs

    ScienceCinema

    Buerger, Steve

    2018-05-07

    Sandia is developing energy efficient actuation and drive train technologies to dramatically improve the charge life of legged robots. The work is supported by DARPA, and Sandia will demonstrate an energy efficient bipedal robot at the technology exposition section of the DARPA Robotics Challenge Finals in June, 2015. This video, the first in a series, describes early development and initial integration of the Sandia Transmission Efficient Prototype Promoting Research (STEPPR) robot.

  3. ESR modes in a Strong-Leg Ladder in the Tomonaga-Luttinger Liquid Phase

    NASA Astrophysics Data System (ADS)

    Zvyagin, S.; Ozerov, M.; Maksymenko, M.; Wosnitza, J.; Honecker, A.; Landee, C. P.; Turnbull, M.; Furuya, S. C.; Giamarchi, T.

    Magnetic excitations in the strong-leg quantum spin ladder compound (C7H10N)2CuBr4 (known as DIMPY) in the field-induced Tomonaga-Luttinger spin liquid phase are studied by means of high-field electron spin resonance (ESR) spectroscopy. The presence of a gapped ESR mode with unusual non-linear frequency-field dependence is revealed experimentally. Using a combination of analytic and exact diagonalization methods, we compute the dynamical structure factor and identify this mode with longitudinal excitations in the antisymmetric channel. We argue that these excitations constitute a fingerprint of the spin dynamics in a strong-leg spin-1/2 Heisenberg antiferromagnetic ladder and owe its ESR observability to the uniform Dzyaloshinskii-Moriya interaction. This work was partially supported by the DFG and Helmholtz Gemeinschaft (Germany), Swiss SNF under Division II, and ERC synergy UQUAM project. We acknowledge the support of the HLD at HZDR, member of the European Magnetic Field Laboratory (EMFL).

  4. Coactivation of lower leg muscles during body weight-supported treadmill walking decreases with age in adolescents.

    PubMed

    Deffeyes, Joan E; Karst, Gregory M; Stuberg, Wayne A; Kurz, Max J

    2012-08-01

    The kinematics of children's walking are nearly adult-like by about age 3-4 years, but metabolic efficiency of walking does not reach adult values until late in adolescence or early adulthood, perhaps due to higher coactivation of agonist/antagonist muscle pairs in adolescents. Additionally, it is unknown how use of a body weight-supported treadmill device affects coactivation, but because unloading will alter the activity of anti-gravity muscles, it was hypothesized that muscle coactivation will be altered as well. Muscle coactivation during treadmill walking was evaluated for adolescents (ages 10 to 17 years, M = 13.2, SD = 2.2) and adults (ages 22 to 35 years, M = 25.2, SD = 4.3), for thigh muscles (vastus lateralis/biceps femoris) and lower leg muscles (tibialis anterior/gastrocnemius). Conditions included body weight unloadings from nearly 0% to 80% of body weight, while walking at a preferred speed (self-selected, overground speed) or a reduced speed. Unloading was accomplished using a lower body positive pressure support system. Coactivation was found to be higher in adolescents than in adults, but only for the lower leg muscles.

  5. Walking robot: A design project for undergraduate students

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The design and construction of the University of Maryland walking machine was completed during the 1989 to 1990 academic year. It was required that the machine be capable of completing a number of tasks including walking a straight line, turning to change direction, and manuevering over an obstacle such as a set of stairs. The machine consists of two sets of four telescoping legs that alternately support the entire structure. A gear box and crank arm assembly is connected to the leg sets to provide the power required for the translational motion of the machine. By retracting all eight legs, the robot comes to rest on a central Bigfoot support. Turning is accomplished by rotating this machine about this support. The machine can be controlled by using either a user-operated remote tether or the onboard computer for the execution of control commands. Absolute encoders are attached to all motors to provide the control computer with information regarding the status of the motors. Long and short range infrared sensors provide the computer with feedback information regarding the machine's position relative to a series of stripes and reflectors. These infrared sensors simulate how the robot might sense and gain information about the environment of Mars.

  6. Dimensional synthesis of a leg mechanism

    NASA Astrophysics Data System (ADS)

    Pop, F.; Lovasz, E.-Ch; Pop, C.; Dolga, V.

    2016-08-01

    An eight bar leg mechanism dimensional synthesis is presented. The mathematical model regarding the synthesis is described and the results obtained after computation are verified with help of 2D mechanism simulation in Matlab. This mechanism, inspired from proposed solution of Theo Jansen, is integrated into the structure of a 2 DOF quadruped robot. With help of the kinematic synthesis method described, it is tried to determine new dimensions for the mechanism, based on a set of initial conditions. These are established by taking into account the movement of the end point of the leg mechanism, which enters in contact with the ground, during walking. An optimization process based on the results obtained can be conducted further in order to find a better solution for the leg mechanism.

  7. THE RELATIONSHIP BETWEEN VARIOUS MODES OF SINGLE LEG POSTURAL CONTROL ASSESSMENT

    PubMed Central

    Schmitz, Randy

    2012-01-01

    Purpose/Background: While various techniques have been developed to assess the postural control system, little is known about the relationship between single leg static and functional balance. The purpose of the current study was to determine the relationship between the performance measures of several single leg postural stability tests. Methods: Forty six recreationally active college students (17 males, 29 females, 21±3 yrs, 173±10 cm) performed six single leg tests in a counterbalanced order: 1) Firm Surface-Eyes Open, 2) Firm Surface-Eyes Closed, 3) Multiaxial Surface-Eyes Open, 4) Multiaxial Surface-Eyes Closed, 5) Star Excursion Balance Test (posterior medial reach), 6) Single leg Hop-Stabilization Test. Bivariate correlations were conducted between the six outcome variables. Results: Mild to moderate correlations existed between the static tests. No significant correlations existed involving either of the functional tests. Conclusions: The results indicate that while performance of static balance tasks are mildly to moderately related, they appear to be unrelated to functional reaching or hopping movements, supporting the utilization of a battery of tests to determine overall postural control performance. Level of Evidence: 3b PMID:22666640

  8. The susceptibility of the knee extensors to eccentric exercise-induced muscle damage is not affected by leg dominance but by exercise order.

    PubMed

    Hody, S; Rogister, B; Leprince, P; Laglaine, T; Croisier, J-L

    2013-09-01

    The aims of this study were first to compare the response of dominant and non-dominant legs to eccentric exercise and second, to examine whether there is an effect of exercise order on the magnitude of symptoms associated with intense eccentric protocols. Eighteen young men performed three sets of 30 maximal eccentric isokinetic (60° s(-1)) contractions of the knee extensors (range of motion, ROM: 0°-100°, 0 = full extension) using either dominant or non-dominant leg. They repeated a similar eccentric bout using the contralateral leg 6 weeks later. The sequence of leg's use was allocated to create equally balanced groups. Four indirect markers of muscle damage including subjective pain intensity, maximal isometric strength, muscle stiffness and plasma creatine kinase (CK) activity were measured before and 24 h after exercise. All markers changed significantly following the eccentric bout performed either by dominant or non-dominant legs, but no significant difference was observed between legs. Interestingly, the comparison between the first and second eccentric bouts revealed that muscle soreness (-42%, P<0.001), CK activity (-62%, P<0.05) and strength loss (-54%, P<0.01) were significantly lower after the second bout. This study suggests that leg dominance does not influence the magnitude of exercise-induced muscle damage and supports for the first time the existence of a contralateral protection against exercise-induced muscle damage in the lower limbs. © 2013 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  9. Adaptive Problem Solving by Analogy

    DTIC Science & Technology

    2013-07-01

    spread activation.  Animal  Cow   Legs  Ears  Associative link  ISA link Part‐of link  Milk   Distribution A: Approved for public release; distribution...mappings support each other by positively  weighted  associative  links  and  inconsistent  hypothesis  inhibit  each  other  (Figure  2.4).  Thus  the  Cow ...nodes  is  implemented  by  a  process  of  Spot  Dog  Lucky  Pet  Cat  Tom  0 Cow ‐1  Legs  Ears  Muffle  Horns  Eats grass  TARGET SITUATION  Legs

  10. Reliability of Single-Leg Balance and Landing Tests in Rugby Union; Prospect of Using Postural Control to Monitor Fatigue

    PubMed Central

    Troester, Jordan C.; Jasmin, Jason G.; Duffield, Rob

    2018-01-01

    The present study examined the inter-trial (within test) and inter-test (between test) reliability of single-leg balance and single-leg landing measures performed on a force plate in professional rugby union players using commercially available software (SpartaMARS, Menlo Park, USA). Twenty-four players undertook test – re-test measures on two occasions (7 days apart) on the first training day of two respective pre-season weeks following 48h rest and similar weekly training loads. Two 20s single-leg balance trials were performed on a force plate with eyes closed. Three single-leg landing trials were performed by jumping off two feet and landing on one foot in the middle of a force plate 1m from the starting position. Single-leg balance results demonstrated acceptable inter-trial reliability (ICC = 0.60-0.81, CV = 11-13%) for sway velocity, anterior-posterior sway velocity, and mediolateral sway velocity variables. Acceptable inter-test reliability (ICC = 0.61-0.89, CV = 7-13%) was evident for all variables except mediolateral sway velocity on the dominant leg (ICC = 0.41, CV = 15%). Single-leg landing results only demonstrated acceptable inter-trial reliability for force based measures of relative peak landing force and impulse (ICC = 0.54-0.72, CV = 9-15%). Inter-test results indicate improved reliability through the averaging of three trials with force based measures again demonstrating acceptable reliability (ICC = 0.58-0.71, CV = 7-14%). Of the variables investigated here, total sway velocity and relative landing impulse are the most reliable measures of single-leg balance and landing performance, respectively. These measures should be considered for monitoring potential changes in postural control in professional rugby union. Key points Single-leg balance demonstrated acceptable inter-trial and inter-test reliability. Single-leg landing demonstrated good inter-trial and inter-test reliability for measures of relative peak landing force and relative impulse, but not time to stabilization. Of the variables investigated, sway velocity and relative landing impulse are the most reliable measures of single-leg balance and landing respectively, and should considered for monitoring changes in postural control. PMID:29769817

  11. The desert ant odometer: a stride integrator that accounts for stride length and walking speed.

    PubMed

    Wittlinger, Matthias; Wehner, Rüdiger; Wolf, Harald

    2007-01-01

    Desert ants, Cataglyphis, use path integration as a major means of navigation. Path integration requires measurement of two parameters, namely, direction and distance of travel. Directional information is provided by a celestial compass, whereas distance measurement is accomplished by a stride integrator, or pedometer. Here we examine the recently demonstrated pedometer function in more detail. By manipulating leg lengths in foraging desert ants we could also change their stride lengths. Ants with elongated legs ('stilts') or shortened legs ('stumps') take larger or shorter strides, respectively, and misgauge travel distance. Travel distance is overestimated by experimental animals walking on stilts, and underestimated by animals walking on stumps - strongly indicative of stride integrator function in distance measurement. High-speed video analysis was used to examine the actual changes in stride length, stride frequency and walking speed caused by the manipulations of leg length. Unexpectedly, quantitative characteristics of walking behaviour remained almost unaffected by imposed changes in leg length, demonstrating remarkable robustness of leg coordination and walking performance. These data further allowed normalisation of homing distances displayed by manipulated animals with regard to scaling and speed effects. The predicted changes in homing distance are in quantitative agreement with the experimental data, further supporting the pedometer hypothesis.

  12. Energy Efficient Legged Robotics at Sandia Labs, Part 2

    ScienceCinema

    Buerger, Steve; Mazumdar, Ani; Spencer, Steve

    2018-01-16

    Sandia is developing energy efficient actuation and drive train technologies to dramatically improve the charge life of legged robots. The work is supported by DARPA, and Sandia will demonstrate an energy efficient bipedal robot at the technology exposition section of the DARPA Robotics Challenge Finals in June, 2015. This video, the second in a series, describes the continued development and integration of the Sandia Transmission Efficient Prototype Promoting Research (STEPPR) robot.

  13. Energy Efficient Legged Robotics at Sandia Labs, Part 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buerger, Steve; Mazumdar, Ani; Spencer, Steve

    Sandia is developing energy efficient actuation and drive train technologies to dramatically improve the charge life of legged robots. The work is supported by DARPA, and Sandia will demonstrate an energy efficient bipedal robot at the technology exposition section of the DARPA Robotics Challenge Finals in June, 2015. This video, the second in a series, describes the continued development and integration of the Sandia Transmission Efficient Prototype Promoting Research (STEPPR) robot.

  14. Monolithic Silicon Microbolometer Materials for Uncooled Infrared Detectors

    DTIC Science & Technology

    2015-05-21

    covered by an active sensing material, and G is the thermal conductance of the supporting legs. Another important figure of merit is the noise...have a low thermal conductance to maximize thermal isolation from the environment. The legs also have a thin film of metal which serve as...fabricated array, glass substrates (≈ 2 mm thick) were used due to their low thermal conductivity and therefore a lower ability to transport heat away

  15. Reliability of Single-Leg Balance and Landing Tests in Rugby Union; Prospect of Using Postural Control to Monitor Fatigue.

    PubMed

    Troester, Jordan C; Jasmin, Jason G; Duffield, Rob

    2018-06-01

    The present study examined the inter-trial (within test) and inter-test (between test) reliability of single-leg balance and single-leg landing measures performed on a force plate in professional rugby union players using commercially available software (SpartaMARS, Menlo Park, USA). Twenty-four players undertook test - re-test measures on two occasions (7 days apart) on the first training day of two respective pre-season weeks following 48h rest and similar weekly training loads. Two 20s single-leg balance trials were performed on a force plate with eyes closed. Three single-leg landing trials were performed by jumping off two feet and landing on one foot in the middle of a force plate 1m from the starting position. Single-leg balance results demonstrated acceptable inter-trial reliability (ICC = 0.60-0.81, CV = 11-13%) for sway velocity, anterior-posterior sway velocity, and mediolateral sway velocity variables. Acceptable inter-test reliability (ICC = 0.61-0.89, CV = 7-13%) was evident for all variables except mediolateral sway velocity on the dominant leg (ICC = 0.41, CV = 15%). Single-leg landing results only demonstrated acceptable inter-trial reliability for force based measures of relative peak landing force and impulse (ICC = 0.54-0.72, CV = 9-15%). Inter-test results indicate improved reliability through the averaging of three trials with force based measures again demonstrating acceptable reliability (ICC = 0.58-0.71, CV = 7-14%). Of the variables investigated here, total sway velocity and relative landing impulse are the most reliable measures of single-leg balance and landing performance, respectively. These measures should be considered for monitoring potential changes in postural control in professional rugby union.

  16. Comparison of kinematic and dynamic leg trajectory optimization techniques for biped robot locomotion

    NASA Astrophysics Data System (ADS)

    Khusainov, R.; Klimchik, A.; Magid, E.

    2017-01-01

    The paper presents comparison analysis of two approaches in defining leg trajectories for biped locomotion. The first one operates only with kinematic limitations of leg joints and finds the maximum possible locomotion speed for given limits. The second approach defines leg trajectories from the dynamic stability point of view and utilizes ZMP criteria. We show that two methods give different trajectories and demonstrate that trajectories based on pure dynamic optimization cannot be realized due to joint limits. Kinematic optimization provides unstable solution which can be balanced by upper body movement.

  17. Contributions of muscles and passive dynamics to swing initiation over a range of walking speeds.

    PubMed

    Fox, Melanie D; Delp, Scott L

    2010-05-28

    Stiff-knee gait is a common walking problem in cerebral palsy characterized by insufficient knee flexion during swing. To identify factors that may limit knee flexion in swing, it is necessary to understand how unimpaired subjects successfully coordinate muscles and passive dynamics (gravity and velocity-related forces) to accelerate the knee into flexion during double support, a critical phase just prior to swing that establishes the conditions for achieving sufficient knee flexion during swing. It is also necessary to understand how contributions to swing initiation change with walking speed, since patients with stiff-knee gait often walk slowly. We analyzed muscle-driven dynamic simulations of eight unimpaired subjects walking at four speeds to quantify the contributions of muscles, gravity, and velocity-related forces (i.e. Coriolis and centrifugal forces) to preswing knee flexion acceleration during double support at each speed. Analysis of the simulations revealed contributions from muscles and passive dynamics varied systematically with walking speed. Preswing knee flexion acceleration was achieved primarily by hip flexor muscles on the preswing leg with assistance from biceps femoris short head. Hip flexors on the preswing leg were primarily responsible for the increase in preswing knee flexion acceleration during double support with faster walking speed. The hip extensors and abductors on the contralateral leg and velocity-related forces opposed preswing knee flexion acceleration during double support. Copyright 2010 Elsevier Ltd. All rights reserved.

  18. Contributions of muscles and passive dynamics to swing initiation over a range of walking speeds

    PubMed Central

    Fox, Melanie D.; Delp, Scott L.

    2010-01-01

    Stiff-knee gait is a common walking problem in cerebral palsy characterized by insufficient knee flexion during swing. To identify factors that may limit knee flexion in swing, it is necessary to understand how unimpaired subjects successfully coordinate muscles and passive dynamics (gravity and velocity-related forces) to accelerate the knee into flexion during double support, a critical phase just prior to swing that establishes the conditions for achieving sufficient knee flexion during swing. It is also necessary to understand how contributions to swing initiation change with walking speed, since patients with stiff-knee gait often walk slowly. We analyzed muscle-driven dynamic simulations of eight unimpaired subjects walking at four speeds to quantify the contributions of muscles, gravity, and velocity-related forces (i.e. Coriolis and centrifugal forces) to preswing knee flexion acceleration during double support at each speed. Analysis of the simulations revealed contributions from muscles and passive dynamics varied systematically with walking speed. Preswing knee flexion acceleration was achieved primarily by hip flexor muscles on the preswing leg with assistance from biceps femoris short head. Hip flexors on the preswing leg were primarily responsible for the increase in preswing knee flexion acceleration during double support with faster walking speed. The hip extensors and abductors on the contralateral leg and velocity-related forces opposed preswing knee flexion acceleration during double support. PMID:20236644

  19. Effects of Changing Body Weight Distribution on Mediolateral Stability Control during Gait Initiation

    PubMed Central

    Caderby, Teddy; Yiou, Eric; Peyrot, Nicolas; de Viviés, Xavier; Bonazzi, Bruno; Dalleau, Georges

    2017-01-01

    During gait initiation, anticipatory postural adjustments (APA) precede the execution of the first step. It is generally acknowledged that these APA contribute to forward progression but also serve to stabilize the whole body in the mediolateral direction during step execution. Although previous studies have shown that changes in the distribution of body weight between both legs influence motor performance during gait initiation, it is not known whether and how such changes affect a person’s postural stability during this task. The aim of this study was to investigate the effects of changing initial body weight distribution between legs on mediolateral postural stability during gait initiation. Changes in body weight distribution were induced under experimental conditions by modifying the frontal plane distribution of an external load located at the participants’ waists. Fifteen healthy adults performed a gait initiation series at a similar speed under three conditions: with the overload evenly distributed over both legs; with the overload strictly distributed over the swing-limb side; and with the overload strictly distributed over the stance-leg side. Our results showed that the mediolateral location of center-of-mass (CoM) during the initial upright posture differed between the experimental conditions, indicating modifications in the initial distribution of body weight between the legs according to the load distribution. While the parameters related to the forward progression remained unchanged, the alterations in body weight distribution elicited adaptive changes in the amplitude of APA in the mediolateral direction (i.e., maximal mediolateral shift of the center of pressure (CoP)), without variation in their duration. Specifically, it was observed that the amplitude of APA was modulated in such a way that mediolateral dynamic stability at swing foot-contact, quantified by the margin of stability (i.e., the distance between the base of support boundary and the extrapolated CoM position), did not vary between the conditions. These findings suggest that APA seem to be scaled as a function of the initial body weight distribution between both legs so as to maintain optimal conditions of stability during gait initiation. PMID:28396629

  20. Impulsive ankle push-off powers leg swing in human walking.

    PubMed

    Lipfert, Susanne W; Günther, Michael; Renjewski, Daniel; Seyfarth, Andre

    2014-04-15

    Rapid unloading and a peak in power output of the ankle joint have been widely observed during push-off in human walking. Model-based studies hypothesize that this push-off causes redirection of the body center of mass just before touch-down of the leading leg. Other research suggests that work done by the ankle extensors provides kinetic energy for the initiation of swing. Also, muscle work is suggested to power a catapult-like action in late stance of human walking. However, there is a lack of knowledge about the biomechanical process leading to this widely observed high power output of the ankle extensors. In our study, we use kinematic and dynamic data of human walking collected at speeds between 0.5 and 2.5 m s(-1) for a comprehensive analysis of push-off mechanics. We identify two distinct phases, which divide the push-off: first, starting with positive ankle power output, an alleviation phase, where the trailing leg is alleviated from supporting the body mass, and second, a launching phase, where stored energy in the ankle joint is released. Our results show a release of just a small part of the energy stored in the ankle joint during the alleviation phase. A larger impulse for the trailing leg than for the remaining body is observed during the launching phase. Here, the buckling knee joint inhibits transfer of power from the ankle to the remaining body. It appears that swing initiation profits from an impulsive ankle push-off resulting from a catapult without escapement.

  1. The Benslimane's Artistic Model for Leg Beauty.

    PubMed

    Benslimane, Fahd

    2012-08-01

    In 2000, the author started observing legs considered to be attractive. The goal was to have an ideal aesthetic model and compare the disparity between this model and a patient's reality. This could prove helpful during leg sculpturing to get closer to this ideal. Postoperatively, the result could then be compared to the ideal curves of the model legs and any remaining deviations from the ideal curves could be pointed out and eventually corrected in a second session. The lack of anthropometric studies of legs from the knee to the ankle led the author to select and study attractive legs to find out the common denominators of their beauty. The study consisted in analyzing the features that make legs look attractive. The legs of models in magazines were scanned and inserted into a PowerPoint program. The legs of live models, Barbie dolls, and athletes were photographed. Artistic drawings by Leonardo da Vinci were reviewed and Greek sculptures studied. Sculptures from the National Archaeological Museum of Athens were photographed and included in the PowerPoint program. This study shows that the first criterion for beautiful legs is the straightness of the leg column. Not a single attractive leg was found to deviate from the vertical, and each was in absolute continuity with the thigh. The second criterion is the similarity of curve distribution and progression from knee to ankle. This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors at www.springer.com/00266.

  2. The Future of the Ballistic Missile Submarine Force in the Russian Nuclear Triad

    DTIC Science & Technology

    2008-09-01

    based forces are the more economical leg of the triad.61 An estimate made in 1995 by B.I. Pustovit , then the expert for the Committee for Military...Theodore Gerber, a professor of sociology at the University of Wisconsin–Madison, and Sarah Mendelson, a senior fellow in the Russia and Eurasia... Sarah Mendelson, “Strong Public Support for Military Reform in Russia” Program on New Approaches to Russian Security, Policy memo 288 (2003), 3. 45 In

  3. AORN Ergonomic Tool 4: Solutions for Prolonged Standing in Perioperative Settings.

    PubMed

    Hughes, Nancy L; Nelson, Audrey; Matz, Mary W; Lloyd, John

    2011-06-01

    Prolonged standing during surgical procedures poses a high risk of causing musculoskeletal disorders, including back, leg, and foot pain, which can be chronic or acute in nature. Ergonomic Tool 4: Solutions for Prolonged Standing in Perioperative Settings provides recommendations for relieving the strain of prolonged standing, including the use of antifatigue mats, supportive footwear, and sit/stand stools, that are based on well-accepted ergonomic safety concepts, current research, and access to new and emerging technology. Published by Elsevier Inc.

  4. Leg length, body proportion, and health: a review with a note on beauty.

    PubMed

    Bogin, Barry; Varela-Silva, Maria Inês

    2010-03-01

    Decomposing stature into its major components is proving to be a useful strategy to assess the antecedents of disease, morbidity and death in adulthood. Human leg length (femur + tibia), sitting height (trunk length + head length) and their proportions, for example, (leg length/stature), or the sitting height ratio (sitting height/stature x 100), among others) are associated with epidemiological risk for overweight (fatness), coronary heart disease, diabetes, liver dysfunction and certain cancers. There is also wide support for the use of relative leg length as an indicator of the quality of the environment for growth during infancy, childhood and the juvenile years of development. Human beings follow a cephalo-caudal gradient of growth, the pattern of growth common to all mammals. A special feature of the human pattern is that between birth and puberty the legs grow relatively faster than other post-cranial body segments. For groups of children and youth, short stature due to relatively short legs (i.e., a high sitting height ratio) is generally a marker of an adverse environment. The development of human body proportions is the product of environmental x genomic interactions, although few if any specific genes are known. The HOXd and the short stature homeobox-containing gene (SHOX) are genomic regions that may be relevant to human body proportions. For example, one of the SHOX related disorders is Turner syndrome. However, research with non-pathological populations indicates that the environment is a more powerful force influencing leg length and body proportions than genes. Leg length and proportion are important in the perception of human beauty, which is often considered a sign of health and fertility.

  5. The role of active muscle mass in determining the magnitude of peripheral fatigue during dynamic exercise.

    PubMed

    Rossman, Matthew J; Garten, Ryan S; Venturelli, Massimo; Amann, Markus; Richardson, Russell S

    2014-06-15

    Greater peripheral quadriceps fatigue at the voluntary termination of single-leg knee-extensor exercise (KE), compared with whole-body cycling, has been attributed to confining group III and IV skeletal muscle afferent feedback to a small muscle mass, enabling the central nervous system (CNS) to tolerate greater peripheral fatigue. However, as task specificity and vastly differing systemic challenges may have complicated this interpretation, eight males were studied during constant workload trials to exhaustion at 85% of peak workload during single-leg and double-leg KE. It was hypothesized that because of the smaller muscle mass engaged during single-leg KE, a greater magnitude of peripheral quadriceps fatigue would be present at exhaustion. Vastus lateralis integrated electromyogram (iEMG) signal relative to the first minute of exercise, preexercise to postexercise maximal voluntary contractions (MVCs) of the quadriceps, and twitch-force evoked by supramaximal magnetic femoral nerve stimulation (Qtw,pot) quantified peripheral quadriceps fatigue. Trials performed with single-leg KE (8.1 ± 1.2 min; 45 ± 4 W) resulted in significantly greater peripheral quadriceps fatigue than double-leg KE (10 ± 1.3 min; 83 ± 7 W), as documented by changes in the iEMG signal (147 ± 24 vs. 85 ± 13%), MVC (-25 ± 3 vs. -12 ± 3%), and Qtw,pot (-44 ± 6 vs. -33 ± 7%), for single-leg and double-leg KE, respectively. Therefore, avoiding concerns over task specificity and cardiorespiratory limitations, this study reveals that a reduction in muscle mass permits the development of greater peripheral muscle fatigue and supports the concept that the CNS tolerates a greater magnitude of peripheral fatigue when the source of group III/IV afferent feedback is limited to a small muscle mass.

  6. Leg Length, Body Proportion, and Health: A Review with a Note on Beauty

    PubMed Central

    Bogin, Barry; Varela-Silva, Maria Inês

    2010-01-01

    Decomposing stature into its major components is proving to be a useful strategy to assess the antecedents of disease, morbidity and death in adulthood. Human leg length (femur + tibia), sitting height (trunk length + head length) and their proportions, for example, (leg length/stature), or the sitting height ratio (sitting height/stature × 100), among others) are associated with epidemiological risk for overweight (fatness), coronary heart disease, diabetes, liver dysfunction and certain cancers. There is also wide support for the use of relative leg length as an indicator of the quality of the environment for growth during infancy, childhood and the juvenile years of development. Human beings follow a cephalo-caudal gradient of growth, the pattern of growth common to all mammals. A special feature of the human pattern is that between birth and puberty the legs grow relatively faster than other post-cranial body segments. For groups of children and youth, short stature due to relatively short legs (i.e., a high sitting height ratio) is generally a marker of an adverse environment. The development of human body proportions is the product of environmental x genomic interactions, although few if any specific genes are known. The HOXd and the short stature homeobox-containing gene (SHOX) are genomic regions that may be relevant to human body proportions. For example, one of the SHOX related disorders is Turner syndrome. However, research with non-pathological populations indicates that the environment is a more powerful force influencing leg length and body proportions than genes. Leg length and proportion are important in the perception of human beauty, which is often considered a sign of health and fertility. PMID:20617018

  7. [Leg ulcers of venous origin and their development around the year 1955].

    PubMed

    Marmasse, J

    1984-01-01

    "Eventual sclerosis of varicose veins, elastic support, methodical ambulation": the teachings of R. Tournay remains the golden rule for healing leg ulcers of venous origin. Their frequent relapse has been perceptibly reduced by the therapeutic developments of the "Sixties", and notably the phlebosurgical routine collaboration in many cases of varicose ulcers Conference on Stripping, Paris, 1960); and the use of stockings calculated scientifically to benefit healed phlebitic ulcers (Van der Molen, Passien).

  8. Investigation of Aircrew Protection During Emergency Escape at Dynamic Pressures up to 1600 Q.

    DTIC Science & Technology

    1982-05-01

    Speed Ejections 14 4 Torso Airflow Stagnation Fence Arm Restraints 16 5 Upper Torso Support Restraint Garment 21 6 Multiaxial Pelvis Restraint 22 7...aircraft. Designs, such as the pelvis and leg elevating (PALE) seats, fixed reclined seats, or pressurized vests, are viable concepts for high sustained...final comment on direct energy transfer from the lower legs to the ai rmass involves aerodynamic asymmetry of the booted foot. Such asymmetry could lead

  9. Swimming with stiff legs at low Reynolds number.

    PubMed

    Takagi, Daisuke

    2015-08-01

    Locomotion at low Reynolds number is not possible with cycles of reciprocal motion, an example being the oscillation of a single pair of rigid paddles or legs. Here, I demonstrate the possibility of swimming with two or more pairs of legs. They are assumed to oscillate collectively in a metachronal wave pattern in a minimal model based on slender-body theory for Stokes flow. The model predicts locomotion in the direction of the traveling wave, as commonly observed along the body of free-swimming crustaceans. The displacement of the body and the swimming efficiency depend on the number of legs, the amplitude, and the phase of oscillations. This study shows that paddling legs with distinct orientations and phases offers a simple mechanism for driving flow.

  10. Evaluation of a smartphone-based assessment system in subjects with chronic ankle instability.

    PubMed

    Chiu, Ya-Lan; Tsai, Yi-Ju; Lin, Chueh-Ho; Hou, You-Ruei; Sung, Wen-Hsu

    2017-02-01

    Ankle sprain is the most common sports-related injury, and approximately 80% of patients studied suffered recurrent sprains. These repeated ankle injuries could cause chronic ankle instability, a decrease in sports performance, and a decrease in postural control ability. At the present time, smartphones have become very popular and powerful devices, and smartphone applications (apps) that have been shown to have good validity have been designed to measure human body motion. However, the app focusing on ankle function assessment and rehabilitation is still not widely used and has very limited functions. The purpose of this study is to evaluate the feasibility of smartphone-based systems in the assessment of postural control ability for patients with chronic ankle instability. Fifteen physically active adults (6 male, 9 female; aged = 23.4 ± 5.28 years; height = 167.13 ± 7.3 cm; weight = 62.06 ± 10.82 kg; BMI = 22.08 ± 2.57 kg/ m 2 ) were recruited, and these participants had at least one leg that was evaluated as scoring lower than 27 points according to the Cumberland Ankle Instability Tool (CAIT). The smartphone used in the study was ASUS Zenfone 2, and an app developed using MIT App Inventor was used to record built-in accelerometer data during the assessment process. Subjects were asked to perform single leg stance for 20 s in eyes-open and eyes-closed conditions with each leg. The smartphone was fixed in an upright position on the middle of the shin, using an exercise armband, with the screen facing forward. The average of recorded acceleration data was used to represent the postural control performance, and higher values indicated more instability. Data were analyzed with a paired t-test with SPSS 17.0, and the statistical significance was set as alpha <0.05. A significant difference was found between CAIT scores from the healthier leg and injured leg (healthier leg 23.07 ± 3.80 vs. injured leg 18.27 ± 3.92, p < 0.001). Significant differences were also found between the scores for the healthier leg and injured leg during both eyes-open and eyes-closed conditions (eyes-open: healthier leg 0.051 ± 0.018 vs. injured leg 0.072 ± 0.034, p = 0.027; eyes-closed: healthier leg 0.100 ± 0.031 vs. injured leg 0.123 ± 0.038, p = 0.001, unit: m/s 2 ). Significant differences were also found between eyes-open and eyes-closed conditions during both single leg standing with healthier leg and injured leg (healthier leg: eyes-open 0.051 ± 0.018 vs. eyes-closed 0.100 ± 0.031, p < 0.001; injured leg: eyes-open 0.072 ± 0.034 vs. eyes-closed 0.123 ± 0.038, p = 0.001, unit: m/s 2 ). The results demonstrate that the smartphone software can be used to discriminate between the different performances of the healthier leg and injured leg, and also between eyes-open and eyes-closed conditions. The smartphone may have the potential to be a convenient, easy-to-use, and feasible tool for the assessment of postural control ability on subjects with chronic ankle instability. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. Autonomous planetary rover at Carnegie Mellon

    NASA Technical Reports Server (NTRS)

    Whittaker, William; Kanade, Takeo; Mitchell, Tom

    1990-01-01

    This report describes progress in research on an autonomous robot for planetary exploration. In 1989, the year covered by this report, a six-legged walking robot, the Ambler, was configured, designed, and constructed. This configuration was used to overcome shortcomings exhibited by existing wheeled and walking robot mechanisms. The fundamental advantage of the Ambler is that the actuators for body support are independent of those for propulsion; a subset of the planar joints propel the body, and the vertical actuators support and level the body over terrain. Models of the Ambler's dynamics were developed and the leveling control was studied. An integrated system capable of walking with a single leg over rugged terrain was implemented and tested. A prototype of an Ambler leg is suspended below a carriage that slides along rails. To walk, the system uses a laser scanner to find a clear, flat foothold, positions the leg above the foothold, contacts the terrain with the foot, and applies force enough to advance the carriage along the rails. Walking both forward and backward, the system has traversed hundreds of meters of rugged terrain including obstacles too tall to step over, trenches too deep to step in, closely spaced rocks, and sand hills. In addition, preliminary experiments were conducted with concurrent planning and execution, and a leg recovery planner that generates time and power efficient 3D trajectories using 2D search was developed. A Hero robot was used to demonstrate mobile manipulation. Indoor tasks include collecting cups from the lab floor, retrieving printer output, and recharging when its battery gets low. The robot monitors its environment, and handles exceptional conditions in a robust fashion, using vision to track the appearance and disappearance of cups, onboard sonars to detect imminent collisions, and monitors to detect the battery level.

  12. Dynamic balance ability in young elite soccer players: implication of isometric strength.

    PubMed

    Chtara, Moktar; Rouissi, Mehdi; Bragazzi, Nicola L; Owen, Adam L; Haddad, Monoem; Chamari, Karim

    2018-04-01

    Soccer requires maintaining unilateral balance when executing movement with the contralateral leg. Despite the fact that balance requires standing with maintaining isometric posture with the support leg, currently there is a lack of studies regarding the implication of isometric strength on dynamic balance's performance among young soccer players. Therefore, the aim of this study was to examine the relationship between the Y-Balance Test and 12 lower limbs isometric strength tests. Twenty-six right footed soccer players (mean±SD, age=16.2±1.6 years, height=175±4.2 cm, body mass=68.8±6.1 kg) performed a dynamic balance test (star excursion balance-test with dominant- (DL) and nondominant-legs (NDL). Furthermore, maximal isometric contraction tests of 12 lower limb muscle groups were assessed in DL and NDL. Correlations analysis reported a significant positive relationship between some of isometric strength tests (with DL and NDL) and the Y-Balance Test. Furthermore, stepwise multiple regression analysis showed that maximal isometric strength explained between 21.9% and 49.4% of the variance of the Y-Balance Test. Moreover, maximal isometric strength was dependent upon the reaching angle of the Y-Balance Test and the leg used to support body weight. This study showed a significant implication of maximal isometric strength of the lower limb and the Y-Balance Test. Moreover, the present investigation suggests the implementation of specific lower limb strengthening exercises depending on players' deficit in each reaching direction and leg. This result suggests that further studies should experiment if increasing lower limbs isometric strength could improve dynamic balance ability among young soccer players.

  13. Changes in running kinematics, kinetics, and spring-mass behavior over a 24-h run.

    PubMed

    Morin, Jean-Benoît; Samozino, Pierre; Millet, Guillaume Y

    2011-05-01

    This study investigated the changes in running mechanics and spring-mass behavior over a 24-h treadmill run (24TR). Kinematics, kinetics, and spring-mass characteristics of the running step were assessed in 10 experienced ultralong-distance runners before, every 2 h, and after a 24TR using an instrumented treadmill dynamometer. These measurements were performed at 10 km·h, and mechanical parameters were sampled at 1000 Hz for 10 consecutive steps. Contact and aerial times were determined from ground reaction force (GRF) signals and used to compute step frequency. Maximal GRF, loading rate, downward displacement of the center of mass, and leg length change during the support phase were determined and used to compute both vertical and leg stiffness. Subjects' running pattern and spring-mass behavior significantly changed over the 24TR with a 4.9% higher step frequency on average (because of a significantly 4.5% shorter contact time), a lower maximal GRF (by 4.4% on average), a 13.0% lower leg length change during contact, and an increase in both leg and vertical stiffness (+9.9% and +8.6% on average, respectively). Most of these changes were significant from the early phase of the 24TR (fourth to sixth hour of running) and could be speculated as contributing to an overall limitation of the potentially harmful consequences of such a long-duration run on subjects' musculoskeletal system. During a 24TR, the changes in running mechanics and spring-mass behavior show a clear shift toward a higher oscillating frequency and stiffness, along with lower GRF and leg length change (hence a reduced overall eccentric load) during the support phase of running. © 2011 by the American College of Sports Medicine

  14. Modifying the anti-wetting property of butterfly wings and water strider legs by atomic layer deposition coating: surface materials versus geometry.

    PubMed

    Ding, Yong; Xu, Sheng; Zhang, Yue; Wang, Aurelia C; Wang, Melissa H; Xiu, Yonghao; Wong, Ching Ping; Wang, Zhong Lin

    2008-09-03

    Although butterfly wings and water strider legs have an anti-wetting property, their working conditions are quite different. Water striders, for example, live in a wet environment and their legs need to support their weight and bear the high pressure during motion. In this work, we have focused on the importance of the surface geometrical structures in determining their performance. We have applied an atomic layer deposition technique to coat the surfaces of both butterfly wings and water strider legs with a uniform 30 nm thick hydrophilic Al(2)O(3) film. By keeping the surface material the same, we have studied the effect of different surface roughness/structure on their hydrophobic property. After the surface coating, the butterfly wings changed to become hydrophilic, while the water strider legs still remained super-hydrophobic. We suggest that the super-hydrophobic property of the water strider is due to the special shape of the long inclining spindly cone-shaped setae at the surface. The roughness in the surface can enhance the natural tendency to be hydrophobic or hydrophilic, while the roughness in the normal direction of the surface is favorable for forming a composite interface.

  15. Effects of neck and circumoesophageal connective lesions on posture and locomotion in the cockroach.

    PubMed

    Ridgel, Angela L; Ritzmann, Roy E

    2005-06-01

    Few studies in arthropods have documented to what extent local control centers in the thorax can support locomotion in absence of inputs from head ganglia. Posture, walking, and leg motor activity was examined in cockroaches with lesions of neck or circumoesophageal connectives. Early in recovery, cockroaches with neck lesions had hyper-extended postures and did not walk. After recovery, posture was less hyper-extended and animals initiated slow leg movements for multiple cycles. Neck lesioned individuals showed an increase in walking after injection of either octopamine or pilocarpine. The phase of leg movement between segments was reduced in neck lesioned cockroaches from that seen in intact animals, while phases in the same segment remained constant. Neither octopamine nor pilocarpine initiated changes in coordination between segments in neck lesioned individuals. Animals with lesions of the circumoesophageal connectives had postures similar to intact individuals but walked in a tripod gait for extended periods of time. Changes in activity of slow tibial extensor and coxal depressor motor neurons and concomitant changes in leg joint angles were present after the lesions. This suggests that thoracic circuits are sufficient to produce leg movements but coordinated walking with normal motor patterns requires descending input from head ganglia.

  16. Quality improvement and practice-based research in neurology using the electronic medical record

    PubMed Central

    Frigerio, Roberta; Kazmi, Nazia; Meyers, Steven L.; Sefa, Meredith; Walters, Shaun A.; Silverstein, Jonathan C.

    2015-01-01

    Abstract We describe quality improvement and practice-based research using the electronic medical record (EMR) in a community health system–based department of neurology. Our care transformation initiative targets 10 neurologic disorders (brain tumors, epilepsy, migraine, memory disorders, mild traumatic brain injury, multiple sclerosis, neuropathy, Parkinson disease, restless legs syndrome, and stroke) and brain health (risk assessments and interventions to prevent Alzheimer disease and related disorders in targeted populations). Our informatics methods include building and implementing structured clinical documentation support tools in the EMR; electronic data capture; enrollment, data quality, and descriptive reports; quality improvement projects; clinical decision support tools; subgroup-based adaptive assignments and pragmatic trials; and DNA biobanking. We are sharing EMR tools and deidentified data with other departments toward the creation of a Neurology Practice-Based Research Network. We discuss practical points to assist other clinical practices to make quality improvements and practice-based research in neurology using the EMR a reality. PMID:26576324

  17. Quantifying Leg Movement Activity During Sleep.

    PubMed

    Ferri, Raffaele; Fulda, Stephany

    2016-12-01

    Currently, 2 sets of similar rules for recording and scoring leg movement (LM) exist, including periodic LM during sleep (PLMS) and periodic LM during wakefulness. The former were published in 2006 by a task force of the International Restless Legs Syndrome Study Group, and the second in 2007 by the American Academy of Sleep Medicine. This article reviews the basic recording methods, scoring rules, and computer-based programs for PLMS. Less frequent LM activities, such as alternating leg muscle activation, hypnagogic foot tremor, high-frequency LMs, and excessive fragmentary myoclonus are briefly described. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Impact of stance phase microprocessor-controlled knee prosthesis on ramp negotiation and community walking function in K2 level transfemoral amputees.

    PubMed

    Burnfield, Judith M; Eberly, Valerie J; Gronely, Joanne K; Perry, Jacquelin; Yule, William Jared; Mulroy, Sara J

    2012-03-01

    Microprocessor controlled prosthetic knees (MPK) offer opportunities for improved walking stability and function, but some devices' swing phase features may exceed needs of users with invariable cadence. One MPK offers computerized control of only stance (C-Leg Compact). To assess Medicare Functional Classification Level K2 walkers' ramp negotiation performance, function and balance while using a non-MPK (NMPK) compared to the C-Leg Compact. Crossover. Gait while ascending and descending a ramp (stride characteristics, kinematics, electromyography) and function were assessed in participant's existing NMPK and again in the C-Leg Compact following accommodation. Ramp ascent and descent were markedly faster in the C-Leg Compact compared to the NMPK (p ≤ 0.006), owing to increases in stride length (p ≤ 0.020) and cadence (p ≤ 0.020). Residual limb peak knee flexion and ankle dorsiflexion were significantly greater (12.9° and 4.9° more, respectively) during single limb support while using the C-Leg Compact to descend ramps. Electromyography (mean, peak) did not differ significantly between prosthesis. Function improved in the C-Leg Compact as evidenced by a significantly faster Timed Up and Go and higher functional questionnaire scores. Transfemoral K2 walkers exhibited significantly improved function and balance while using the stance-phase only MPK compared to their traditional NMPK.

  19. Full pillar extraction at the Kathleen Mine with mobile roof supports

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grimm, E.S.

    1994-12-31

    The Voest Alpine Breaker Line Supports (ABLS) resemble self-propelled longwall shields. Each individual unit consists of four hydraulic legs extending from the base of the unit, pressing a solid flat canopy against the mine roof. Each support unit is capable of exerting 606 tons of force against the roof. A chain curtain on the sides and rear protects the interior of the support from falling rock. The internal scissoring lemniscate design allows for parallel movement of the canopy as it is raised or lowered. Each ABLS has 750 feet of 4 AWG trailing cable to supply 480 volts AC tomore » a permissible controller and a 40 hp explosion-proof electrical motor. The hydraulic pump and reservoir are self-contained and protected with an automatic fire suppression system.« less

  20. Pulmonary and leg VO2 during submaximal exercise: implications for muscular efficiency

    NASA Technical Reports Server (NTRS)

    Poole, D. C.; Gaesser, G. A.; Hogan, M. C.; Knight, D. R.; Wagner, P. D.

    1992-01-01

    Insights into muscle energetics during exercise (e.g., muscular efficiency) are often inferred from measurements of pulmonary gas exchange. This procedure presupposes that changes of pulmonary O2 (VO2) associated with increases of external work reflect accurately the increased muscle VO2. The present investigation addressed this issue directly by making simultaneous determinations of pulmonary and leg VO2 over a range of work rates calculated to elicit 20-90% of maximum VO2 on the basis of prior incremental (25 or 30 W/min) cycle ergometry. VO2 for both legs was calculated as the product of twice one-leg blood flow (constant-infusion thermodilution) and arteriovenous O2 content difference across the leg. Measurements were made 3-5 min after each work rate imposition to avoid incorporation of the VO2 slow component above the lactate threshold. For all 17 subjects, the slope of pulmonary VO2 (9.9 +/- 0.2 ml O2.W-1.min-1) was not different (P greater than 0.05) from that for leg VO2 (9.2 +/- 0.6 ml O2.W-1.min-1). Estimation of "delta" efficiency (i.e., delta work accomplished divided by delta energy expended, calculated from slope of VO2 vs. work rate and a caloric equivalent for O2 of 4.985 cal/ml) using pulmonary VO2 measurements (29.1 +/- 0.6%) was likewise not significantly different (P greater than 0.05) from that made using leg VO2 measurements (33.7 +/- 2.4%). These data suggest that the net VO2 cost of metabolic "support" processes outside the exercising legs changes little over a relatively broad range of exercise intensities. Thus, under the conditions of this investigation, changes of VO2 measured from expired gas reflected closely those occurring within the exercising legs.

  1. Paraparetic Guillain-Barré syndrome: Nondemyelinating reversible conduction failure restricted to the lower limbs.

    PubMed

    Kimachi, Takeshi; Yuki, Nobuhiro; Kokubun, Norito; Yamaguchi, Shuhei; Wakerley, Benjamin R

    2017-02-01

    Paraparetic Guillain-Barré syndrome (GBS) is a rare subtype of GBS characterized by leg weakness and areflexia in the absence of neurological involvement of the arms, cranial nerves, or respiratory muscles. Onset is characterized by lower back, buttock, or leg pain, followed by development of symmetric flaccid limb weakness in the absence of sensory disturbance. We describe an elderly woman who developed postinfectious symmetric flaccid leg weakness in the absence of sensory disturbance. Serial nerve conduction studies were carried out over 5 months. Antecedent infection, a monophasic disease course, and the presence of cerebrospinal fluid albuminocytological dissociation suggested a diagnosis of paraparetic GBS. Serial nerve conduction studies demonstrated nondemyelinating reversible conduction failure, which was restricted to the legs. Axonal neuropathy was supported by the presence of anti-GM1 IgG antibodies. These findings suggest that patients with paraparetic GBS have axonal neuropathy, which is restricted to the lower limbs. Muscle Nerve 55: 281-285, 2017. © 2016 Wiley Periodicals, Inc.

  2. Effect of cognitive challenge on the postural control of patients with ACL reconstruction under visual and surface perturbations.

    PubMed

    Lion, Alexis; Gette, Paul; Meyer, Christophe; Seil, Romain; Theisen, Daniel

    2018-02-01

    Our study aimed to evaluate the effect of cognitive challenge on double-leg postural control under visual and surface perturbations of patients with anterior cruciate ligament reconstruction (ACLR) cleared to return to sport. Double-leg stance postural control of 19 rehabilitated patients with ACLR (age: 24.8 ± 6.7 years, time since surgery: 9.2 ± 1.6 months) and 21 controls (age: 24.9 ± 3.7 years) was evaluated in eight randomized situations combining two cognitive (with and without silent backward counting in steps of seven), two visual (eyes open, eyes closed) and two surface (stable support, foam support) conditions. Sway area and sway path of the centre of foot pressure were measured during three 20-s recordings for each situation. Higher values indicated poorer postural control. Generally, postural control of patients with ACLR and controls was similar for sway area and sway path (p > 0.05). The lack of visual anchorage and the disturbance of the plantar input by the foam support increased sway area and sway path (p < 0.001) similarly in both groups. The addition of the cognitive task decreased sway area and sway path (p < 0.001) similarly in both groups. Patients with ACLR who recently completed their rehabilitation have normalized postural control during double-leg stance tests. The use of a dual task paradigm under increased task complexity modified postural control, but in a similar way in patients with ACLR than in healthy controls. Double-leg stance tests, even under challenging conditions, are not sensitive enough to reveal postural control differences between rehabilitated patients with ACLR and controls. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Reverse pedicle-based greater saphenous neuro-veno-fasciocutaneous flap for reconstruction of lower leg and foot.

    PubMed

    Kansal, Sandeep; Goil, Pradeep; Agarwal, Vijay; Agarwal, Swarnima; Mishra, Shashank; Agarwal, Deepak; Singh, Pranay

    2014-01-01

    Paucity of soft tissue available locally for reconstruction of defects in leg and foot presents a challenge for reconstructive surgeon. The use of reverse pedicle-based greater saphenous neuro-veno-fasciocutaneous flap in reconstruction of lower leg and foot presents a viable alternative to free flap and cross-leg flap reconstruction. The vascular axis of the flap is formed by the vessels accompanying the saphenous nerve and the greater saphenous vein. We present here our experience with reverse saphenous neurocutaneous flap which provides a stable cover without the need to sacrifice any important vessel of leg. The study is conducted from March 2003 through Dec 2009 and included a total of 96 patients with defects in lower two-thirds of leg and foot. There are 74 males and 22 females. Distal pivot point was kept approximately 5-6 cm from tip of medial malleolus, thus preserving the distal most perforator, and the flap is turned and inserted into the defect. Donor site is covered with a split thickness skin graft. Postoperative follow-up period was 6 weeks to 6 months. The procedure is uneventful in 77 cases. Infection is observed in 14 cases. Partial flap necrosis occurs in 2 cases. Total flap necrosis is noted in 3 cases. Reverse pedicle saphenous flap can be used to reconstruct defects of lower one-third leg and foot with a reliable blood supply with a large arc of rotation while having minimal donor site morbidity.

  4. On Design and Implementation of Neural-Machine Interface for Artificial Legs

    PubMed Central

    Zhang, Xiaorong; Liu, Yuhong; Zhang, Fan; Ren, Jin; Sun, Yan (Lindsay); Yang, Qing

    2011-01-01

    The quality of life of leg amputees can be improved dramatically by using a cyber physical system (CPS) that controls artificial legs based on neural signals representing amputees’ intended movements. The key to the CPS is the neural-machine interface (NMI) that senses electromyographic (EMG) signals to make control decisions. This paper presents a design and implementation of a novel NMI using an embedded computer system to collect neural signals from a physical system - a leg amputee, provide adequate computational capability to interpret such signals, and make decisions to identify user’s intent for prostheses control in real time. A new deciphering algorithm, composed of an EMG pattern classifier and a post-processing scheme, was developed to identify the user’s intended lower limb movements. To deal with environmental uncertainty, a trust management mechanism was designed to handle unexpected sensor failures and signal disturbances. Integrating the neural deciphering algorithm with the trust management mechanism resulted in a highly accurate and reliable software system for neural control of artificial legs. The software was then embedded in a newly designed hardware platform based on an embedded microcontroller and a graphic processing unit (GPU) to form a complete NMI for real time testing. Real time experiments on a leg amputee subject and an able-bodied subject have been carried out to test the control accuracy of the new NMI. Our extensive experiments have shown promising results on both subjects, paving the way for clinical feasibility of neural controlled artificial legs. PMID:22389637

  5. Integrated system for single leg walking

    NASA Astrophysics Data System (ADS)

    Simmons, Reid; Krotkov, Eric; Roston, Gerry

    1990-07-01

    The Carnegie Mellon University Planetary Rover project is developing a six-legged walking robot capable of autonomously navigating, exploring, and acquiring samples in rugged, unknown environments. This report describes an integrated software system capable of navigating a single leg of the robot over rugged terrain. The leg, based on an early design of the Ambler Planetary Rover, is suspended below a carriage that slides along rails. To walk, the system creates an elevation map of the terrain from laser scanner images, plans an appropriate foothold based on terrain and geometric constraints, weaves the leg through the terrain to position it above the foothold, contacts the terrain with the foot, and applies force enough to advance the carriage along the rails. Walking both forward and backward, the system has traversed hundreds of meters of rugged terrain including obstacles too tall to step over, trenches too deep to step in, closely spaced obstacles, and sand hills. The implemented system consists of a number of task-specific processes (two for planning, two for perception, one for real-time control) and a central control process that directs the flow of communication between processes.

  6. Locomotion on the water surface: hydrodynamic constraints on rowing velocity require a gait change

    PubMed

    Suter; Wildman

    1999-10-01

    Fishing spiders, Dolomedes triton (Araneae, Pisauridae), propel themselves across the water surface using two gaits: they row with four legs at sustained velocities below 0.2 m s(-)(1) and they gallop with six legs at sustained velocities above 0.3 m s(-)(1). Because, during rowing, most of the horizontal thrust is provided by the drag of the leg and its associated dimple as both move across the water surface, the integrity of the dimple is crucial. We used a balance, incorporating a biaxial clinometer as the transducer, to measure the horizontal thrust forces on a leg segment subjected to water moving past it in non-turbulent flow. Changes in the horizontal forces reflected changes in the status of the dimple and showed that a stable dimple could exist only under conditions that combined low flow velocity, shallow leg-segment depth and a long perimeter of the interface between the leg segment and the water. Once the dimple disintegrated, leaving the leg segment submerged, less drag was generated. Therefore, the disintegration of the dimple imposes a limit on the efficacy of rowing with four legs. The limited degrees of freedom in the leg joints (the patellar joints move freely in the vertical plane but allow only limited flexion in other planes) impose a further constraint on rowing by restricting the maximum leg-tip velocity (to approximately 33 % of that attained by the same legs during galloping). This confines leg-tip velocities to a range at which maintenance of the dimple is particularly important. The weight of the spider also imposes constraints on the efficacy of rowing: because the drag encountered by the leg-cum-dimple is proportional to the depth of the dimple and because dimple depth is proportional to the supported weight, only spiders with a mass exceeding 0.48 g can have access to the full range of hydrodynamically possible dimple depths during rowing. Finally, the maximum velocity attainable during rowing is constrained by the substantial drag experienced by the spider during the glide interval between power strokes, drag that is negligible for a galloping spider because, for most of each inter-stroke interval, the spider is airborne. We conclude that both hydrodynamic and anatomical constraints confine rowing spiders to sustained velocities lower than 0.3 m s(-)(1), and that galloping allows spiders to move considerably faster because galloping is free of these constraints.

  7. A fault-tolerant strategy based on SMC for current-controlled converters

    NASA Astrophysics Data System (ADS)

    Azer, Peter M.; Marei, Mostafa I.; Sattar, Ahmed A.

    2018-05-01

    The sliding mode control (SMC) is used to control variable structure systems such as power electronics converters. This paper presents a fault-tolerant strategy based on the SMC for current-controlled AC-DC converters. The proposed SMC is based on three sliding surfaces for the three legs of the AC-DC converter. Two sliding surfaces are assigned to control the phase currents since the input three-phase currents are balanced. Hence, the third sliding surface is considered as an extra degree of freedom which is utilised to control the neutral voltage. This action is utilised to enhance the performance of the converter during open-switch faults. The proposed fault-tolerant strategy is based on allocating the sliding surface of the faulty leg to control the neutral voltage. Consequently, the current waveform is improved. The behaviour of the current-controlled converter during different types of open-switch faults is analysed. Double switch faults include three cases: two upper switch fault; upper and lower switch fault at different legs; and two switches of the same leg. The dynamic performance of the proposed system is evaluated during healthy and open-switch fault operations. Simulation results exhibit the various merits of the proposed SMC-based fault-tolerant strategy.

  8. Use of results of microbiological analyses for risk-based control of Listeria monocytogenes in marinated broiler legs.

    PubMed

    Aarnisalo, Kaarina; Vihavainen, Elina; Rantala, Leila; Maijala, Riitta; Suihko, Maija-Liisa; Hielm, Sebastian; Tuominen, Pirkko; Ranta, Jukka; Raaska, Laura

    2008-02-10

    Microbial risk assessment provides a means of estimating consumer risks associated with food products. The methods can also be applied at the plant level. In this study results of microbiological analyses were used to develop a robust single plant level risk assessment. Furthermore, the prevalence and numbers of Listeria monocytogenes in marinated broiler legs in Finland were estimated. These estimates were based on information on the prevalence, numbers and genotypes of L. monocytogenes in 186 marinated broiler legs from 41 retail stores. The products were from three main Finnish producers, which produce 90% of all marinated broiler legs sold in Finland. The prevalence and numbers of L. monocytogenes were estimated by Monte Carlo simulation using WinBUGS, but the model is applicable to any software featuring standard probability distributions. The estimated mean annual number of L. monocytogenes-positive broiler legs sold in Finland was 7.2x10(6) with a 95% credible interval (CI) 6.7x10(6)-7.7x10(6). That would be 34%+/-1% of the marinated broiler legs sold in Finland. The mean number of L. monocytogenes in marinated broiler legs estimated at the sell-by-date was 2 CFU/g, with a 95% CI of 0-14 CFU/g. Producer-specific L. monocytogenes strains were recovered from the products throughout the year, which emphasizes the importance of characterizing the isolates and identifying strains that may cause problems as part of risk assessment studies. As the levels of L. monocytogenes were low, the risk of acquiring listeriosis from these products proved to be insignificant. Consequently there was no need for a thorough national level risk assessment. However, an approach using worst-case and average point estimates was applied to produce an example of single producer level risk assessment based on limited data. This assessment also indicated that the risk from these products was low. The risk-based approach presented in this work can provide estimation of public health risk on which control measures at the plant level can be based.

  9. FE Mastracchio prepares Robonaut for Taskboard Operations

    NASA Image and Video Library

    2013-12-09

    ISS038-E-013708 (9 Dec. 2013) --- In the International Space Station's Destiny laboratory, NASA astronaut Rick Mastracchio, Expedition 38 flight engineer, prepares Robonaut 2 for an upcoming ground-commanded firmware update that will support the installation of a pair of legs for the humanoid robot. R2 was designed to test out the capability of a robot to perform tasks deemed too dangerous or mundane for astronauts. Robonaut's legs are scheduled to arrive to the station aboard the SpaceX-3 commercial cargo mission in February 2014.

  10. Mastracchio prepares Robonaut for Taskboard Operations

    NASA Image and Video Library

    2013-12-09

    ISS038-E-013710 (9 Dec. 2013) --- In the International Space Station's Destiny laboratory, NASA astronaut Rick Mastracchio, Expedition 38 flight engineer, prepares Robonaut 2 for an upcoming ground-commanded firmware update that will support the installation of a pair of legs for the humanoid robot. R2 was designed to test out the capability of a robot to perform tasks deemed too dangerous or mundane for astronauts. Robonaut's legs are scheduled to arrive to the station aboard the SpaceX-3 commercial cargo mission in February 2014.

  11. Mastracchio prepares Robonaut for Taskboard Operations

    NASA Image and Video Library

    2013-12-09

    ISS038-E-013714 (9 Dec. 2013) --- In the International Space Station's Destiny laboratory, NASA astronaut Rick Mastracchio, Expedition 38 flight engineer, prepares Robonaut 2 for an upcoming ground-commanded firmware update that will support the installation of a pair of legs for the humanoid robot. R2 was designed to test out the capability of a robot to perform tasks deemed too dangerous or mundane for astronauts. Robonaut's legs are scheduled to arrive to the station aboard the SpaceX-3 commercial cargo mission in February 2014.

  12. Mastracchio prepares Robonaut for Taskboard Operations

    NASA Image and Video Library

    2013-12-09

    ISS038-E-013712 (9 Dec. 2013) --- In the International Space Station's Destiny laboratory, NASA astronaut Rick Mastracchio, Expedition 38 flight engineer, prepares Robonaut 2 for an upcoming ground-commanded firmware update that will support the installation of a pair of legs for the humanoid robot. R2 was designed to test out the capability of a robot to perform tasks deemed too dangerous or mundane for astronauts. Robonaut's legs are scheduled to arrive to the station aboard the SpaceX-3 commercial cargo mission in February 2014.

  13. Self-Care-Based Treatment Using Ordinary Elastic Bandages for Venous Leg Ulcers

    PubMed Central

    Suehiro, Kotaro; Morikage, Noriyasu; Harada, Takasuke; Samura, Makoto; Takeuchi, Yuriko; Mizoguchi, Takahiro; Hamano, Kimikazu

    2017-01-01

    Objective: We aimed to study venous leg ulcer (VLU) healing and recurrence rates of VLU using a self-care-based treatment strategy. Methods: The study included 36 patients (43 legs) who visited our clinic between April 2009 and June 2015 because of non-healing VLUs and who had been treated by us for more than a year (until June 2016). Patients or their caregivers were first provided instructions for performing the “no-intentional-stretch” bandaging technique using ordinary elastic bandages. Wounds were cleansed with tepid water daily, and bandages were re-applied by patients or their caregivers; this was continued until VLUs were healed. Compression was discontinued after healing, but was restarted if persistent swelling and/or dermatitis was noticed on their legs. Results: The median ulcer size was 6.5 cm2 (range, 1–105 cm2). The median number of clinic visits until healing was six (range, 3–35). The 6- and 12-month healing rates were 67% and 86%, respectively. Twenty (44%) legs required compression therapy after VLU healing. The cumulative recurrence-free rate at 60 months was 86%. Conclusion: Reasonable healing and recurrence rates were achieved by applying a self-care-based VLU treatment strategy. PMID:29147163

  14. Two new tardigrade species from Sicily.

    PubMed

    Pilato, Giovanni; Sabella, Giorgio; Lisi, Oscar

    2014-01-14

    Two new species of tardigrades are described from Sicilian moss samples: Macrobiotus insuetus sp. nov. and Diphascon (Diphascon) procerum sp. nov.        Macrobiotus insuetus sp. nov. is a species of the harmsworthi-group characterized by both posterior and anterior claws of the hind legs, which are different in shape from those of the first three leg pairs. The IV claws have extended basal tract where the branches are joined and the secondary branch breaks at near right angle to the primary branch and is clearly shorter than the main branch and the secondary branch of claws I-III. The eggs are not areolated and have conical processes with a reticular ornamentation.        Diphascon (D.) procerum sp. nov. has a delicate cuticular ornamentation of very small tubercles, almost dots; two macroplacoids and septulum are present; thin accessory points are present on the main branches of the slender claws; lunules are absent but the base of the external claws of the hind legs are enlarged and slightly indented; a cuticular bar is present near the internal claw of the first three leg pairs and two cuticular bars are present on the hind legs between the base of the claws and near the base of the anterior claw. 

  15. Decentralized control mechanism underlying interlimb coordination of millipedes.

    PubMed

    Kano, Takeshi; Sakai, Kazuhiko; Yasui, Kotaro; Owaki, Dai; Ishiguro, Akio

    2017-04-04

    Legged animals exhibit adaptive and resilient locomotion through interlimb coordination. The long-term goal of this study is to clarify the relationship between the number of legs and the inherent decentralized control mechanism for interlimb coordination. As a preliminary step, the study focuses on millipedes as they represent the species with the greatest number of legs among various animal species. A decentralized control mechanism involving local force feedback was proposed based on the qualitative findings of behavioural experiments in which responses to the removal of part of the terrain and leg amputation were observed. The proposed mechanism was implemented in a developed millipede-like robot to demonstrate that the robot can adapt to the removal of the part of the terrain and leg amputation in a manner similar to that in behavioural experiments.

  16. Calf restoration with asymmetric fat injection in polio sequelae.

    PubMed

    Yazar, Memet; Kurt Yazar, Sevgi; Kozanoğlu, Erol

    2016-09-01

    Many things cause leg asymmetry and sequelae seen after poliomyelitis infections are still a cause of leg deformities. In this study, lipofilling and liposuction combinations are performed on patients with poliomyelitis sequelae. Volume deficiency is not the only leg problem with polio sequelae, leg length is also a problem. For this reason, the length deficiency must be addressed in order to achieve the desired symmetry. The aim of this study is correcting limb asymmetry by a method addressing both limb length deficiency by heel raise and volume deficiency by injection of fat based on corrected limb length. From 2011 through 2013, 10 female patients who had unilateral leg atrophy as a result of paediatric polio infections were included in our study. All of the patients were treated with liposuction and lipofilling combinations. During planning, a ridge was placed under the affected leg in order to equalize the lengths of both legs. The fat injection sites on the affected leg were marked to mimic the unaffected leg. All the patients stated that they were satisfied with the results. Transient hypoesthesia was seen in only one patient, but this was spontaneously resolved six months later. The study results indicate that the asymmetric fat injection procedure can be a good technique to use with patients who have polio sequelae, both with short legs and volume deformities. 4. Copyright © 2016 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  17. Frontal sled tests comparing rear and forward facing child restraints with 1-3 year old dummies.

    PubMed

    Sherwood, C P; Crandall, J R

    2007-01-01

    Although most countries recommend transitioning children from rear facing (RF) to forward facing (FF) child restraints at one year of age, Swedish data suggests that RF restraints are more effective. The objective of this study was to compare RF and FF orientations in frontal sled tests. Four dummies (CRABI 12 mo, Q1.5, Hybrid III 3 yr, and Q3) were used to represent children from 1 to 3 years of age. Restraint systems tested included both 1) LATCH and 2) rigid ISOFIX with support leg designs. Rear facing restraints with support legs provided the best results for all injury measures, while RF restraints in general provided the lowest chest displacements and neck loads.

  18. Host-associated differences in morphometric traits of parasitic larvae Hirsutiella zachvatkini (Actinotrichida: Trombiculidae).

    PubMed

    Moniuszko, Hanna; Zaleśny, Grzegorz; Mąkol, Joanna

    2015-09-01

    Examination of host-associated variation in the chigger mite Hirsutiella zachvatkini (Schluger) revealed morphological differences among larvae infesting sympatric hosts: Apodemus agrarius, Apodemus flavicollis and Myodes glareolus. The analysis included 61 variables of larvae obtained from their gnathosoma, idiosoma and legs (measurements and counts). Statistically significant differences were observed for metric characters of the legs as opposed to the scutum. In view of the conspecificity of the mites, supported by comparison of COI gene products obtained from larvae and laboratory-reared deutonymphs, the observed variation is attributed to phenotypic plasticity. The knowledge of larval morphology, including intraspecific variation of metric characters, supported by molecular and host range data, places H. zachvatkini among the most comprehensively defined members of Trombiculidae.

  19. "You're naked, you're vulnerable": Sexual well-being and body image of women with lower limb lymphedema.

    PubMed

    Winch, Caleb J; Sherman, Kerry A; Smith, Katriona M; Koelmeyer, Louise A; Mackie, Helen; Boyages, John

    2016-09-01

    Lower-limb lymphedema is an incurable illness manifesting as visible swelling enlarging the leg(s) and/or feet, buttocks, and genitals. This study used semi-structured interviews and thematic analysis to explore sexual well-being among women with primary (congenital) lymphedema (n=11) or secondary lymphedema associated with gynecological cancer (n=8). Five themes (subthemes) summarized women's responses, with Attractiveness and Confidence (Publicly Unattractive, Privately Unconfident, Lymphedema or Aging?) describing women's central concern. These body image-related concerns accounted for sexual well-being in association with Partner Support (Availability of Support, Languages of Support, Fears About Support) and the degree of Functional Interruptions (Lymphedema in Context, Enduring Impacts, Overcoming Interruptions). Successful Lymphedema Coping (Control, Acceptance) and self-perceived ability to fulfill a valued Sexual Role also affected sexual well-being. Few differences between women with primary versus secondary lymphedema were evident. Lymphedema clinicians should screen for sexual concerns and have referral options available. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Nutritional status of Maya children, their mothers, and their grandmothers residing in the City of Merida, Mexico: revisiting the leg-length hypothesis.

    PubMed

    Azcorra, Hugo; Varela-Silva, Maria Inês; Rodriguez, Luis; Bogin, Barry; Dickinson, Federico

    2013-01-01

    To test the hypothesis that leg length-relative-to-stature is a more sensitive indicator of nutrition and health than is total height (HT) or sitting height (SH) in a sample of 109 triads of urban Maya children (6.0-8.99 years), their mothers, and maternal grandmothers from Merida, Mexico. From September 2011 to June 2012, the following factors were obtained from all participants: (1) HT, SH, and leg length (LL); (2) the sitting height ratio (SHR = [SH × 100]/HT), relative leg length index (RLLI = [LL × 100]/height), and percentiles and z-scores of HT, SH, and LL were calculated; and (3) the percentages of stunting for children or very short ZHT for the adults, short ZSH, and short ZLL: HT-for-age, SH-for-age, or LL-for-age below the 5th percentile of the reference were calculated. Correlations were performed to examine the association between z-scores of HT, SH, and LL among three generations. Stunting in children was 11% (short ZLL = 29%, short ZSH = 7%). Short ZHT was present in 71% of mothers (short ZLL = 54%, short ZSH = 50%) and 90% of grandmothers (short ZLL = 69%, short ZSH = 83%). Significant correlations in ZHT, ZSH, and ZLL were found in mother-to-child and grandmother-to-mother, with the strongest correlations for ZLL. These findings support the hypothesis for children and mothers. Based on ZLL, there is evidence that childhood and nutrition have improved somewhat for each younger generation. Persistent environmental adversity during growth resulted in growth deficits for LL and SH for the mothers and grandmothers. Copyright © 2013 Wiley Periodicals, Inc.

  1. Muscular strength profile in Tunisian male national judo team

    PubMed Central

    Ghrairi, Mourad; Hammouda, Omar; Malliaropoulos, Nikos

    2014-01-01

    Summary Background: it is well established that muscle strength is a determinant factor in judo. However, little data are available for African athletes. Therefore, the aim of this study was to provide reference data of the muscular strength profile (MSP) for an African team, Tunisian judo team. Methods: the study was conducted among ten international judo athletes from Tunisia. To determine their MSP, we used an isokinetic dynamometer to assess Hamstrings, Quadriceps of both knees and external, internal rotators of both shoulders. The angular velocities of the assessments were; 90, 180, 240°/s for the knees and 60, 120°/s for the shoulders. Results: MSP was determined based on two parameters; the maximum peak torque (PT) of each muscle and the ratio agonistic/antagonistic muscles (R). The knee extensors and flexors in the “supporting leg” had higher PT than in the “attacking leg”; respectively, 245N.m versus 237 (p<0.05) and 147 N.m versus 145 (p>0.05). R was normal for both legs. Furthermore, both rotators of the dominant shoulder had higher PT; 84 N.m versus 71 for the internal rotators (p<0.05) and 34,7 N.m versus 29,0 for the lateral rotators (p<0.05). Inversely, R was higher in the non-dominant side; 45% versus 35, p<0.05). Conclusion: the MSP of the selected elites Tunisian judo athletes was characterized by 3 major features; a strength of the quadriceps in the standing leg significantly higher than in the attacking leg, a normal muscular balance Hamstrings/quadriceps in both legs and a strength of the shoulder’ rotators higher in the dominant side. PMID:25332926

  2. VenUS I: a randomised controlled trial of two types of bandage for treating venous leg ulcers.

    PubMed

    Iglesias, C; Nelson, E A; Cullum, N A; Torgerson, D J

    2004-07-01

    To compare the clinical and cost-effectiveness of two different compression bandages for the healing of venous leg ulcers. A pragmatic, randomised controlled trial with an economic evaluation. Community, district nurse-led services; community leg ulcer clinics; hospital leg ulcer clinics with community outreach. A range of urban and rural settings in England and Scotland. Patients with a venous leg ulcer of at least 1-week's duration, at least 1 cm in length or width and an ankle:brachial pressure index of at least 0.8. The four-layer bandage (4LB) (which is multilayer elastic compression) compared with the short-stretch bandage (SSB) (multilayer, inelastic compression). The primary end-point was complete healing of all the ulcers on the trial leg. Secondary outcomes were the proportion of patients healed at 12 and 24 weeks, rate of recurrence, costs of leg ulcer treatment and quality of life. Between April 1999 and December 2000 the trial recruited 387 people aged from 23 to 97 years at trial entry. The majority of patients in this trial (82%; 316/387) had a reference ulcer of area

  3. INTRA-RATER RELIABILITY OF THE MULTIPLE SINGLE-LEG HOP-STABILIZATION TEST AND RELATIONSHIPS WITH AGE, LEG DOMINANCE AND TRAINING.

    PubMed

    Sawle, Leanne; Freeman, Jennifer; Marsden, Jonathan

    2017-04-01

    Balance is a complex construct, affected by multiple components such as strength and co-ordination. However, whilst assessing an athlete's dynamic balance is an important part of clinical examination, there is no gold standard measure. The multiple single-leg hop-stabilization test is a functional test which may offer a method of evaluating the dynamic attributes of balance, but it needs to show adequate intra-tester reliability. The purpose of this study was to assess the intra-rater reliability of a dynamic balance test, the multiple single-leg hop-stabilization test on the dominant and non-dominant legs. Intra-rater reliability study. Fifteen active participants were tested twice with a 10-minute break between tests. The outcome measure was the multiple single-leg hop-stabilization test score, based on a clinically assessed numerical scoring system. Results were analysed using an Intraclass Correlations Coefficient (ICC 2,1 ) and Bland-Altman plots. Regression analyses explored relationships between test scores, leg dominance, age and training (an alpha level of p = 0.05 was selected). ICCs for intra-rater reliability were 0.85 for the dominant and non-dominant legs (confidence intervals = 0.62-0.95 and 0.61-0.95 respectively). Bland-Altman plots showed scores within two standard deviations. A significant correlation was observed between the dominant and non-dominant leg on balance scores (R 2 =0.49, p<0.05), and better balance was associated with younger participants in their non-dominant leg (R 2 =0.28, p<0.05) and their dominant leg (R 2 =0.39, p<0.05), and a higher number of hours spent training for the non-dominant leg R 2 =0.37, p<0.05). The multiple single-leg hop-stabilisation test demonstrated strong intra-tester reliability with active participants. Younger participants who trained more, have better balance scores. This test may be a useful measure for evaluating the dynamic attributes of balance. 3.

  4. Leg ulceration as a long-term complication of deep vein thrombosis.

    PubMed

    Walker, Natalie; Rodgers, Anthony; Birchall, Nicholas; Norton, Robyn; MacMahon, Stephen

    2003-12-01

    To evaluate the role of deep vein thrombosis as a cause of leg ulcers. A population-based, case-control study was conducted in Central and North Auckland, New Zealand. Cases comprised 241 people aged 40 to 99 years and on the electoral roll, with current leg ulcers (all types). Cases were identified by means of notification from health professionals and by self-referral. Controls were 224 people in the same age group, without leg ulcers, who were selected from the electoral roll by using a stratified random sampling process. The occurrence of leg ulceration as a consequence of exposure to deep vein thrombosis or being at high risk of deep vein thrombosis (that is, people with a family history of deep vein thrombosis, and/or a history of leg fracture and/or hip, leg, or foot surgery). After adjustment for age, sex, and other potential confounding factors, people who had a diagnosed thromboembolism were at almost three times higher risk of having a leg ulcer (odds ratio, 2.92; 95% confidence interval (CI), 1.47 to 6.08). In addition, people who had been at high risk of a venous thrombosis but were not diagnosed with this condition (eg, people with a history of major leg surgery) were also at increased risk of ulceration (odds ratio, 2.25; 95% CI, 1.49-3.42). Overall, 56% (95% CI, 33% - 71%) of leg ulcers were attributed to being at high risk of deep vein thrombosis. Deep vein thrombosis and factors that place people at high risk of deep vein thrombosis are an important cause of leg ulcers in older people. This finding strengthens the rationale for the routine and long-term use of thromboprophylaxis, particularly in high-risk patients.

  5. Learning gait of quadruped robot without prior knowledge of the environment

    NASA Astrophysics Data System (ADS)

    Xu, Tao; Chen, Qijun

    2012-09-01

    Walking is the basic skill of a legged robot, and one of the promising ways to improve the walking performance and its adaptation to environment changes is to let the robot learn its walking by itself. Currently, most of the walking learning methods are based on robot vision system or some external sensing equipment to estimate the walking performance of certain walking parameters, and therefore are usually only applicable under laboratory condition, where environment can be pre-defined. Inspired by the rhythmic swing movement during walking of legged animals and the behavior of their adjusting their walking gait on different walking surfaces, a concept of walking rhythmic pattern(WRP) is proposed to evaluate the walking specialty of legged robot, which is just based on the walking dynamics of the robot. Based on the onboard acceleration sensor data, a method to calculate WRP using power spectrum in frequency domain and diverse smooth filters is also presented. Since the evaluation of WRP is only based on the walking dynamics data of the robot's body, the proposed method doesn't require prior knowledge of environment and thus can be applied in unknown environment. A gait learning approach of legged robots based on WRP and evolution algorithm(EA) is introduced. By using the proposed approach, a quadruped robot can learn its locomotion by its onboard sensing in an unknown environment, where the robot has no prior knowledge about this place. The experimental result proves proportional relationship exits between WRP match score and walking performance of legged robot, which can be used to evaluate the walking performance in walking optimization under unknown environment.

  6. Monocoque structure for the SKITTER three-legged walker

    NASA Technical Reports Server (NTRS)

    Bansek, Robert N.; Booth, Andrew J.; Daneman, Steven A.; Dresser, James A.; Haney, Todd G.; Johnson, Gregory R.; Lindzen, Eric C.; Montgomery, Robert C.; Warren, Andrew L.

    1988-01-01

    The SKITTER 2 design is a monocoque version of the proposed lunar three-legged walker. By the definition of monocoque, the body and legs are a shell with no internal ribbing or supports added for absorbing stresses. The purpose of the monocoque is to encase the elements used for power transmission, power supply, and control of the motion. The material for the structure is a vinyl ester resin, Derakane 8084. This material is easily formable and locally obtainable. The body consists of a hexagonally shaped cylinder with truncated hexagonal pyramids on the top and botton. The legs are eight inch diameter cylinders. The legs are comprised of a tibia section and a femur section. The SKITTER 2 is powered by six actuators which provide linear forces that are transformed into rotary torques by a series of chains and sprockets. The joints connect the femur to the body and the tibia to the femur. Surrounding the joints are flexible rubber hoses that fully encase the chains and sprockets. The SKITTER 2 is capable of walking upside down, righting itself after being overturned, and has the ability to perform in many environments. Applications for this walker include lunar transport or drilling, undersea exploration, and operation in severe surroundings such as arctic temperatures or high radiation.

  7. Balance ability measured with the Berg balance scale: a determinant of fall history in community-dwelling adults with leg amputation.

    PubMed

    Wong, Christopher Kevin; Chen, Christine C; Blackwell, Wren M; Rahal, Rana T; Benoy, Stephany A

    2015-01-01

    Falls are common among adults with leg amputations and associated with balance confidence. But subjective confidence is not equivalent with physical ability. This multivariate analyses of community-dwelling adults with leg amputations examined relationships among individual characteristics, falls, balance ability and balance confidence. Cross-sectional study. Community-dwelling adults with leg amputations recruited from a support group and prosthetic clinic. Subjects provided self-reported medical/fall history, prosthetic functional use, and Activities-specific Balance Confidence (ABC) questionnaire data. Balance ability was assessed with the Berg Balance Scale (BBS). Fall incidence was categorized as any fall (one or more) and recurrent falls (more than one). Multivariate logistic regression analyzed relationships within the two fall categories. Cross tabulations and ANOVA analyzed differences among subcategories. Fifty-four subjects (mean age 56.8) with various etiologies, amputation levels, and balance abilities participated. 53.7% had any fall; 25.9% had recurrent falls. Models for both fall categories correctly classified fall history in > 70% of subjects with combinations of the variables ABC, BBS, body-mass-index, and amputation level. Falls occurred regardless of clinical characteristics. Total BBS and select item scores were independent determinants of fall history. Unlike other balance-impaired populations, adults with leg amputation and better balance ability had greater odds of falling.

  8. Monocoque structure for the SKITTER three-legged walker

    NASA Astrophysics Data System (ADS)

    Bansek, Robert N.; Booth, Andrew J.; Daneman, Steven A.; Dresser, James A.; Haney, Todd G.; Johnson, Gregory R.; Lindzen, Eric C.; Montgomery, Robert C.; Warren, Andrew L.

    1988-06-01

    The SKITTER 2 design is a monocoque version of the proposed lunar three-legged walker. By the definition of monocoque, the body and legs are a shell with no internal ribbing or supports added for absorbing stresses. The purpose of the monocoque is to encase the elements used for power transmission, power supply, and control of the motion. The material for the structure is a vinyl ester resin, Derakane 8084. This material is easily formable and locally obtainable. The body consists of a hexagonally shaped cylinder with truncated hexagonal pyramids on the top and botton. The legs are eight inch diameter cylinders. The legs are comprised of a tibia section and a femur section. The SKITTER 2 is powered by six actuators which provide linear forces that are transformed into rotary torques by a series of chains and sprockets. The joints connect the femur to the body and the tibia to the femur. Surrounding the joints are flexible rubber hoses that fully encase the chains and sprockets. The SKITTER 2 is capable of walking upside down, righting itself after being overturned, and has the ability to perform in many environments. Applications for this walker include lunar transport or drilling, undersea exploration, and operation in severe surroundings such as arctic temperatures or high radiation.

  9. Robust hopping based on virtual pendulum posture control.

    PubMed

    Sharbafi, Maziar A; Maufroy, Christophe; Ahmadabadi, Majid Nili; Yazdanpanah, Mohammad J; Seyfarth, Andre

    2013-09-01

    A new control approach to achieve robust hopping against perturbations in the sagittal plane is presented in this paper. In perturbed hopping, vertical body alignment has a significant role for stability. Our approach is based on the virtual pendulum concept, recently proposed, based on experimental findings in human and animal locomotion. In this concept, the ground reaction forces are pointed to a virtual support point, named virtual pivot point (VPP), during motion. This concept is employed in designing the controller to balance the trunk during the stance phase. New strategies for leg angle and length adjustment besides the virtual pendulum posture control are proposed as a unified controller. This method is investigated by applying it on an extension of the spring loaded inverted pendulum (SLIP) model. Trunk, leg mass and damping are added to the SLIP model in order to make the model more realistic. The stability is analyzed by Poincaré map analysis. With fixed VPP position, stability, disturbance rejection and moderate robustness are achieved, but with a low convergence speed. To improve the performance and attain higher robustness, an event-based control of the VPP position is introduced, using feedback of the system states at apexes. Discrete linear quartic regulator is used to design the feedback controller. Considerable enhancements with respect to stability, convergence speed and robustness against perturbations and parameter changes are achieved.

  10. Strength Training for Skeletal Muscle Endurance after Stroke

    PubMed Central

    Ivey, Frederick M.; Prior, Steven J.; Hafer-Macko, Charlene E.; Katzel, Leslie I.; Macko, Richard F.; Ryan, Alice S.

    2018-01-01

    Background and Purpose Initial studies support the use of strength training (ST) as a safe and effective intervention after stroke. Our previous work shows that relatively aggressive, higher intensity ST translates into large effect sizes for paretic and non-paretic leg muscle volume, myostatin expression, and maximum strength post-stroke. An unanswered question pertains to how our unique ST model for stroke impacts skeletal muscle endurance (SME). Thus, we now report on ST-induced adaptation in the ability to sustain isotonic muscle contraction. Methods Following screening and baseline testing, hemiparetic stroke participants were randomized to either ST or an attention-matched stretch control group (SC). Those in the ST group trained each leg individually to muscle failure (20 repetition sets, 3× per week for 3 months) on each of three pneumatic resistance machines (leg press, leg extension, and leg curl). Our primary outcome measure was SME, quantified as the number of submaximal weight leg press repetitions possible at a specified cadence. The secondary measures included one-repetition maximum strength, 6-minute walk distance (6MWD), 10-meter walk speeds, and peak aerobic capacity (VO2 peak). Results ST participants (N = 14) had significantly greater SME gains compared with SC participants (N = 16) in both the paretic (178% versus 12%, P < .01) and non-paretic legs (161% versus 12%, P < .01). These gains were accompanied by group differences for 6MWD (P < .05) and VO2 peak (P < .05). Conclusion Our ST regimen had a large impact on the capacity to sustain submaximal muscle contraction, a metric that may carry more practical significance for stroke than the often reported measures of maximum strength. PMID:27865696

  11. Bed rest attenuates sympathetic and pressor responses to isometric exercise in antigravity leg muscles in humans.

    PubMed

    Kamiya, Atsunori; Michikami, Daisaku; Shiozawa, Tomoki; Iwase, Satoshi; Hayano, Junichiro; Kawada, Toru; Sunagawa, Kenji; Mano, Tadaaki

    2004-05-01

    Although spaceflight and bed rest are known to cause muscular atrophy in the antigravity muscles of the legs, the changes in sympathetic and cardiovascular responses to exercises using the atrophied muscles remain unknown. We hypothesized that bed rest would augment sympathetic responses to isometric exercise using antigravity leg muscles in humans. Ten healthy male volunteers were subjected to 14-day 6 degrees head-down bed rest. Before and after bed rest, they performed isometric exercises using leg (plantar flexion) and forearm (handgrip) muscles, followed by 2-min postexercise muscle ischemia (PEMI) that continues to stimulate the muscle metaboreflex. These exercises were sustained to fatigue. We measured muscle sympathetic nerve activity (MSNA) in the contralateral resting leg by microneurography. In both pre- and post-bed-rest exercise tests, exercise intensities were set at 30 and 70% of the maximum voluntary force measured before bed rest. Bed rest attenuated the increase in MSNA in response to fatiguing plantar flexion by approximately 70% at both exercise intensities (both P < 0.05 vs. before bed rest) and reduced the maximal voluntary force of plantar flexion by 15%. In contrast, bed rest did not alter the increase in MSNA response to fatiguing handgrip and had no effects on the maximal voluntary force of handgrip. Although PEMI sustained MSNA activation before bed rest in all trials, bed rest entirely eliminated the PEMI-induced increase in MSNA in leg exercises but partially attenuated it in forearm exercises. These results do not support our hypothesis but indicate that bed rest causes a reduction in isometric exercise-induced sympathetic activation in (probably atrophied) antigravity leg muscles.

  12. Gender differences in active musculoskeletal stiffness. Part II. Quantification of leg stiffness during functional hopping tasks.

    PubMed

    Granata, K P; Padua, D A; Wilson, S E

    2002-04-01

    Leg stiffness was compared between age-matched males and females during hopping at preferred and controlled frequencies. Stiffness was defined as the linear regression slope between the vertical center of mass (COM) displacement and ground-reaction forces recorded from a force plate during the stance phase of the hopping task. Results demonstrate that subjects modulated the vertical displacement of the COM during ground contact in relation to the square of hopping frequency. This supports the accuracy of the spring-mass oscillator as a representative model of hopping. It also maintained peak vertical ground-reaction load at approximately three times body weight. Leg stiffness values in males (33.9+/-8.7 kN/m) were significantly (p<0.01) greater than in females (26.3+/-6.5 kN/m) at each of three hopping frequencies, 3.0, 2.5 Hz, and a preferred hopping rate. In the spring-mass oscillator model leg stiffness and body mass are related to the frequency of motion. Thus male subjects necessarily recruited greater leg stiffness to drive their heavier body mass at the same frequency as the lighter female subjects during the controlled frequency trials. However, in the preferred hopping condition the stiffness was not constrained by the task because frequency was self-selected. Nonetheless, both male and female subjects hopped at statistically similar preferred frequencies (2.34+/-0.22 Hz), therefore, the females continued to demonstrate less leg stiffness. Recognizing the active muscle stiffness contributes to biomechanical stability as well as leg stiffness, these results may provide insight into the gender bias in risk of musculoskeletal knee injury.

  13. Robotic Powered Transfer Mechanism modeling on Human Muscle Structure

    NASA Astrophysics Data System (ADS)

    Saito, Yukio

    It is considered in engineering that one power source can operate one joint. However, support movement mechanism of living organism is multi joint movement mechanism. Considerably different from mechanical movement mechanism, two pairs of uni-articular muscles and a pair of bi-articular muscles are involved in it. In leg, movements observed in short run including leg idling, heel contact and toeing are operated by bi-articular muscles of the thigh showing strong legs to support body weight. Pursuit of versatility in welfare robot brings its comparison with conventional machinery or industrial robot to the fore. Request for safety and technology allowing elderly people to operate the robot is getting stronger in the society. The robot must be safe when it is used together with other welfare equipment and simpler system avoiding difficult operation has to be constructed. Appearance of recent care and assistance robot is getting similar to human arm in comparison with industrial robot. Being easily able to imagine from industrial robot, mid-heavyweight articulated robot to support 60-70kgf combined with large output motor and reduction gears is next to impossible to be installed in the bath room. This research indicated that upper limb arm and lower limb thigh of human and animals are holding coalitional muscles and movement of uni-artcular muscle and bi-articular muscle conjure the image of new actuators.

  14. Arterial bypass leg - slideshow

    MedlinePlus

    ... Duplication for commercial use must be authorized in writing by ADAM Health Solutions. About MedlinePlus Site Map FAQs Customer Support Get email updates Subscribe to RSS Follow us Disclaimers Copyright ...

  15. Aircast walking boot and below-knee walking cast for avulsion fractures of the base of the fifth metatarsal: a comparative cohort study.

    PubMed

    Shahid, Mohammad Kamran; Punwar, Shahid; Boulind, Caroline; Bannister, Gordon

    2013-01-01

    Acute avulsion fractures of the base of the fifth metatarsal are common and are treated in a variety of ways. The aims of this study were to compare pain, functional outcome, and time taken off work after treatment with a walking boot or a short-leg cast. Of 39 patients with acute avulsion fractures of the base of the fifth metatarsal, 23 were treated with a short-leg cast and 16 with a walking boot, according to the preference of the consultant present at outpatient clinic. Functional outcome was assessed by the Visual Analogue Scale Foot and Ankle Questionnaire (VAS FA), pain, and other complaints on presentation and at 3, 6, 9, and 12 weeks after injury. The VAS FA scores were compared between the 2 groups by a paired Student t test. The mean time to return to the level of pain and function before injury was approximately 9 weeks after treatment in the walking boot group and 12 weeks with a short-leg cast. Patients with walking boots reported less pain between 3 and 12 weeks than did those with short-leg casts after 6 (P = .06), 9 (P = .020), and 12 weeks (P = .33). Function was significantly better with Aircast walking boots after 3 (P = .006), 6 (P = .002), and 9 weeks (P = .002) but not after 12 weeks (P = .09). Patients returned to their preinjury level of driving after 6 weeks with walking boots and 12 weeks with short-leg casts (P = .006). Employed patients took a mean of 35.8 days off work (range, 28-42 days), fewer with boots (31.5 days) than with short-leg casts (39.2 days). The walking boot was better treatment than a short-leg cast for avulsion fractures of the base of the fifth metatarsal. Patients had an improved combined level of pain and function 3 weeks earlier, at 9 weeks post injury, when managed in a walking boot. Level II, prospective comparative series.

  16. Lower extremity control during turns initiated with and without hip external rotation.

    PubMed

    Zaferiou, Antonia M; Flashner, Henryk; Wilcox, Rand R; McNitt-Gray, Jill L

    2017-02-08

    The pirouette turn is often initiated in neutral and externally rotated hip positions by dancers. This provides an opportunity to investigate how dancers satisfy the same mechanical objectives at the whole-body level when using different leg kinematics. The purpose of this study was to compare lower extremity control strategies during the turn initiation phase of pirouettes performed with and without hip external rotation. Skilled dancers (n=5) performed pirouette turns with and without hip external rotation. Joint kinetics during turn initiation were determined for both legs using ground reaction forces (GRFs) and segment kinematics. Hip muscle activations were monitored using electromyography. Using probability-based statistical methods, variables were compared across turn conditions as a group and within-dancer. Despite differences in GRFs and impulse generation between turn conditions, at least 90% of each GRF was aligned with the respective leg plane. A majority of the net joint moments at the ankle, knee, and hip acted about an axis perpendicular to the leg plane. However, differences in shank alignment relative to the leg plane affected the distribution of the knee net joint moment when represented with respect to the shank versus the thigh. During the initiation of both turns, most participants used ankle plantar flexor moments, knee extensor moments, flexor and abductor moments at the push leg׳s hip, and extensor and abductor moments at the turn leg׳s hip. Representation of joint kinetics using multiple reference systems assisted in understanding control priorities. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. The D1 family dopamine receptor, DopR, potentiates hind leg grooming behavior in Drosophila

    PubMed Central

    Pitmon, E.; Stephens, G.; Parkhurst, S. J.; Wolf, F. W.; Kehne, G.; Taylor, M.

    2016-01-01

    Drosophila groom away debris and pathogens from the body using their legs in a stereotyped sequence of innate motor behaviors. Here, we investigated one aspect of the grooming repertoire by characterizing the D1 family dopamine receptor, DopR. Removal of DopR results in decreased hind leg grooming, as substantiated by quantitation of dye remaining on mutant and RNAi animals vs. controls and direct scoring of behavioral events. These data are also supported by pharmacological results that D1 receptor agonists fail to potentiate grooming behaviors in headless DopR flies. DopR protein is broadly expressed in the neuropil of the thoracic ganglion and overlaps with TH‐positive dopaminergic neurons. Broad neuronal expression of dopamine receptor in mutant animals restored normal grooming behaviors. These data provide evidence for the role of DopR in potentiating hind leg grooming behaviors in the thoracic ganglion of adult Drosophila. This is a remarkable juxtaposition to the considerable role of D1 family dopamine receptors in rodent grooming, and future investigations of evolutionary relationships of circuitry may be warranted. PMID:26749475

  18. Natural tibialization of fibula in non-union tibia: Two cases.

    PubMed

    Prabhat, Vinay; Vargaonkar, Gauresh S; Mallojwar, Sunil R; Kumar, Ramesh

    2016-01-01

    Non-union of tibia is known to be a common complication after fracture both bones of leg treated conservatively. During the course of natural healing, fibula usually unites early as it had more soft tissue attachment and vascular supply. Due to early union of fibula and absence of axial force across the tibia, it undergoes non-union. Two cases, a 32-year-old male and 65-year-old female treated conservatively for fracture both bones of leg long years back, presented to us with mild calf pain on and off. On radiological examination, there was non-union of tibia along with compensatory fibular hypertrophy to the extent that fibula became main weight bearing bone. In both the cases, we observed gross fibular hypertrophy in presence of non-union of tibia. In conservatively treated cases of fracture, both bones of leg, non-union of tibia may coexist with compensatory hypertrophy of fibula to the extent that, it becomes main weight bearing bone of the leg. We are presenting here two cases of natural tibialization of fibula along with nonunion tibia. Our article supports the theory of Wolff's law.

  19. NASA Technology Benefits Orthotics

    NASA Technical Reports Server (NTRS)

    Myers, Neill; Shadoan, Michael

    1998-01-01

    Engineers at NASA's Marshall Space Flight Center (MSFC) in Huntsville, Alabama have designed a knee brace to aid in the rehabilitation of medical patients. The device, called the Selectively Lockable Knee Brace, was designed for knee injury and stroke patients but may potentially serve in many more patient applications. Individuals with sports related injuries, spinal cord injuries and birth defects, such as spina bifida, may also benefit from the device. The Selectively Lockable Knee Brace is designed to provide secure support to the patient when weight is applied to the leg; however; when the leg is not supporting weight, the device allows free motion of the knee joint. Braces currently on the market lock the knee in a rigid, straight or bent position, or by manually pulling a pin, allow continuous free joint motion.

  20. Walk-Startup of a Two-Legged Walking Mechanism

    NASA Astrophysics Data System (ADS)

    Babković, Kalman; Nagy, László; Krklješ, Damir; Borovac, Branislav

    There is a growing interest towards humanoid robots. One of their most important characteristic is the two-legged motion - walk. Starting and stopping of humanoid robots introduce substantial delays. In this paper, the goal is to explore the possibility of using a short unbalanced state of the biped robot to quickly gain speed and achieve the steady state velocity during a period shorter than half of the single support phase. The proposed method is verified by simulation. Maintainig a steady state, balanced gait is not considered in this paper.

  1. Computer Supported Indexing: A History and Evaluation of NASA's MAI System. Supplement 24

    NASA Technical Reports Server (NTRS)

    Silvester, June P.

    1997-01-01

    Computer supported indexing systems may be categorized in several ways. One classification scheme refers to them as statistical, syntactic, semantic or knowledge-based. While a system may emphasize one of these aspects, most systems actually combine two or more of these mechanisms to maximize system efficiency. Statistical systems can be based on counts of words or word stems, statistical association, and correlation techniques that assign weights to word locations or provide lexical disambiguation, calculations regarding the likelihood of word co-occurrences, clustering of word stems and transformations, or any other computational method used to identify pertinent terms. If words are counted, the ones of median frequency become candidate index terms. Syntactical systems stress grammar and identify parts of speech. Concepts found in designated grammatical combinations, such as noun phrases, generate the suggested terms. Semantic systems are concerned with the context sensitivity of words in text. The primary goal of this type of indexing is to identify without regard to syntax the subject matter and the context-bearing words in the text being indexed. Knowledge-based systems provide a conceptual network that goes past thesaurus or equivalent relationships to knowing (e.g., in the National Library of Medicine (NLM) system) that because the tibia is part of the leg, a document relating to injuries to the tibia should he indexed to LEG INJURIES, not the broader MeSH term INJURIES, or knowing that the term FEMALE should automatically be added when the term PREGNANCY is assigned, and also that the indexer should be prompted to add either HUMAN or ANIMAL. Another way of categorizing indexing systems is to identify them as producing either assigned- or derived-term indexes.

  2. ORTHOPEDIC LEG BRACE

    NASA Technical Reports Server (NTRS)

    Myers, William Neil (Inventor)

    2005-01-01

    Knee braces generally have been rigid in both the knee bending direction and in the knee straightening direction unless a manually operated release is incorporated in them to allow the knee to bend. Desirably a braced knee joint should effectively duplicate the compound, complex, actions of a normal knee. The key to knee braces is the knee joint housing. The housing herein carries a number of cam action pawls. with teeth adapted to engage the internal teeth of a ratchet ring mounted in the housing. Cam action return springs and the shape of the cam action pawl teeth allow rotation of the ratchet ring in a leg straightening direction while still supporting a load. The leg can then be extended during walking while at the same time being prevented by the cam action pawls from buckling in the knee bending direction.

  3. Performance of Four-Leg VSC based DSTATCOM using Single Phase P-Q Theory

    NASA Astrophysics Data System (ADS)

    Jampana, Bangarraju; Veramalla, Rajagopal; Askani, Jayalaxmi

    2017-02-01

    This paper presents single-phase P-Q theory for four-leg VSC based distributed static compensator (DSTATCOM) in the distribution system. The proposed DSTATCOM maintains unity power factor at source, zero voltage regulation, eliminates current harmonics, load balancing and neutral current compensation. The advantage of using four-leg VSC based DSTATCOM is to eliminate isolated/non-isolated transformer connection at point of common coupling (PCC) for neutral current compensation. The elimination of transformer connection at PCC with proposed topology will reduce cost of DSTATCOM. The single-phase P-Q theory control algorithm is used to extract fundamental component of active and reactive currents for generation of reference source currents which is based on indirect current control method. The proposed DSTATCOM is modelled and the results are validated with various consumer loads under unity power factor and zero voltage regulation modes in the MATLAB R2013a environment using simpower system toolbox.

  4. Development of a new CARD-FISH protocol for quantification of Legionella pneumophila and its application in two hospital cooling towers.

    PubMed

    Kirschner, A K T; Rameder, A; Schrammel, B; Indra, A; Farnleitner, A H; Sommer, R

    2012-06-01

    Open cooling towers are frequent sources of infections with Legionella pneumophila. The gold standard for the detection of Leg. pneumophila is based on cultivation lasting up to 10 days and detecting only culturable cells. Alternative fluorescence in situ hybridization (FISH) protocols have been proposed, but they result in faint fluorescence signals and lack specificity because of cross-hybridization with other Legionella species. Our aim was thus to develop a new FISH protocol for rapid and specific detection of Leg. pneumophila in water samples. A novel catalysed reporter deposition FISH (CARD-FISH) protocol for the detection of Leg. pneumophila was developed, which significantly enhanced signal intensity as well as specificity of the probe through the use of a novel competitor probe. The developed protocol was compared with the culture method for monitoring the seasonal development of culturable and nonculturable Leg. pneumophila in two hospital cooling tower systems. Seasonal fluctuations of Leg. pneumophila concentrations detected via CARD-FISH were related to the development of the total bacterial community in both cooling towers, with temperature and biocide as the main factors controlling this development. Our results clearly showed that the majority of the Leg. pneumophila cells were in a nonculturable state. Thus, detection of Leg. pneumophila with culture methods may underestimate the total numbers of Leg. pneumophila present. Rapid, sensitive and specific detection and quantification of Leg. pneumophila in water systems is prerequisite for reliable risk estimation. The new protocol significantly improves current methodology and can be used to monitor and screen for Leg. pneumophila concentrations in cooling towers or other water systems. © 2012 The Authors. Journal of Applied Microbiology © 2012 The Society for Applied Microbiology.

  5. Management of venous leg ulcers in general practice - a practical guideline.

    PubMed

    Sinha, Sankar; Sreedharan, Sadhishaan

    2014-09-01

    Chronic venous leg ulcers are the most common wounds seen in general practice. Their management can be both challenging and time-consuming. To produce a short practical guideline incorporating the TIME concept and A2BC2D approach to help general practitioners and their practice nurses in delivering evidence-based initial care to patients with chronic venous leg ulcers. Most chronic venous leg ulcers can be managed effectively in the general practice setting by following the simple, evidence-based approach described in this article. Figure 1 provides a flow chart to aid in this process. Figure 2 illustrates the principles of management in general practice. Effective management of chronic ulcers involves the assessment of both the ulcer and the patient. The essential requirements of management are to debride the ulcer with appropriate precautions, choose dressings that maintain adequate moisture balance, apply graduated compression bandage after evaluation of the arterial circulation and address the patient's concerns, such as pain and offensive wound discharge.

  6. Effect of office-based brief high-impact exercise on bone mineral density in healthy premenopausal women: the Sendai Bone Health Concept Study.

    PubMed

    Niu, Kaijun; Ahola, Riikka; Guo, Hui; Korpelainen, Raija; Uchimaru, Jin; Vainionpää, Aki; Sato, Kyoko; Sakai, Aiko; Salo, Sinikka; Kishimoto, Koshi; Itoi, Eiji; Komatsu, Shoko; Jämsä, Timo; Nagatomi, Ryoichi

    2010-09-01

    Although there is ample evidence supporting the effectiveness of physical activity in the prevention and treatment of osteoporosis, there are no previous studies to examine the effect of office-based brief high-impact exercise (HIE) on bone mineral density (BMD) in healthy premenopausal women. This study evaluated the effects of office-based HIE on BMD in healthy premenopausal Japanese women. Ninety-one healthy premenopausal women were randomized to receive stretching exercise (SE) or HIE (stretching, along with up to 5 × 10 vertical and versatile jumps) for 12 months. The BMD of the lumbar spine and proximal femur was measured using dual-energy X-ray absorptiometry. Several cardiovascular risk factors and leg strength also were assessed. An accelerometer-based recorder was used to measure daily impact loading in four 1-week samples. The progression of the HIE program was ensured by the accelerometer. Thirty-three women (71.7%) in the SE group and 34 (75.6%) in the HIE group completed the study. There was a significant difference in the change in the femoral neck BMD between the groups in favor of the HIE group [0.6% (95% CI: -0.4, 1.7) vs. -1.0% (95% CI: -2.2, 0.2)]. Adiponectin, LDL, HDL, and the leg strength of participants in both the groups improved during the intervention. These finding suggested that office-based brief HIE can be recommended for premenopausal women for preventing bone mineral loss.

  7. Comparison of postural stability between injured and uninjured ballet dancers.

    PubMed

    Lin, Cheng-Feng; Lee, I-Jung; Liao, Jung-Hsien; Wu, Hong-Wen; Su, Fong-Chin

    2011-06-01

    Ballet movements require a limited base of support; thus, ballet dancers require a high level of postural control. However, postural stability in ballet dancers is still unclear and needs to be understood. To evaluate ballet dancers' postural stability in performing single-leg standing, the en pointe task, and the first and fifth positions and to determine differences in task performance among healthy nondancers, healthy dancers, and dancers with ankle sprains. Controlled laboratory study. Injured dancers, uninjured dancers, and nondancers were recruited for this study (N = 33 age-matched participants; n= 11 per group). The tasks tested were single-leg standing with eyes open and closed, first position, fifth position, and en pointe. Center of pressure parameters were calculated from the ground-reaction force collected with 1 force plate. Analysis of variance was used to assess the differences of center of pressure parameters among 3 groups in single-leg standing; independent t test was used to examine the differences of center of pressure parameters between injured and uninjured dancers. During single-leg standing, injured dancers had significantly greater maximum displacement in the medial-lateral direction and total trajectory of center of pressure, compared with the uninjured dancers and nondancers. During the first and fifth positions, the injured dancers demonstrated significantly greater standard deviation of center of pressure position in the medial-lateral and anterior-posterior directions, compared with the uninjured dancers. During en pointe, the injured dancers had significantly greater maximum displacement in the medial-lateral direction and the anterior-posterior direction, compared with the uninjured dancers. The injured and uninjured dancers demonstrated differences in postural stability in the medial-lateral direction during single-leg standing and the ballet postures. Although the injured dancers received ballet training, their postural stability may still be inferior to that of the nondancers. This study is a first step in understanding that injured ballet dancers do not have the same postural stability as uninjured dancers and that it is even inferior to that of nondancers, which is important to understand for further study on rehabilitation. The future development of effective balance training programs for ballet dancers with ankle injuries should emphasize improvements in medial-lateral directional balance.

  8. Dominant side in single-leg stance stability during floor oscillations at various frequencies

    PubMed Central

    2014-01-01

    Background We investigated lateral dominance in the postural stability of single-leg stance with anteroposterior floor oscillations at various frequencies. Methods Thirty adults maintained a single-leg stance on a force platform for 20 seconds per trial. Trials were performed with no oscillation (static condition) and with anteroposterior floor oscillations (2.5-cm amplitude) at six frequencies: 0.25, 0.5, 0.75, 1.0, 1.25 and 1.5 Hz (dynamic condition). A set of three trials was performed on each leg in each oscillation frequency in random order. The mean speed of the center of pressure in the anteroposterior direction (CoPap) was calculated as an index of postural stability, and frequency analysis of CoPap sway was performed. Footedness for carrying out mobilizing activities was assessed with a questionnaire. Results CoPap speed exponentially increased as oscillation frequency increased in both legs. The frequency analysis of CoPap showed a peak <0.3 Hz at no oscillation. The frequency components at 0.25-Hz oscillation included common components with no oscillation and those at 1.5-Hz oscillation showed the maximum amplitude among all conditions. Postural stability showed no significant difference between left- and right-leg stance at no oscillation and oscillations ≤1.25 Hz, but at 1.5-Hz oscillation was significantly higher in the right-leg stance than in the left-leg stance. For the lateral dominance of postural stability at individual levels, the lateral difference in postural stability at no oscillation was positively correlated with that at 0.25-Hz oscillation (r = 0.51) and negatively correlated with that at 1.5-Hz oscillation (r = -0.53). For 70% of subjects, the dominant side of postural stability was different at no oscillation and 1.5-Hz oscillation. In the subjects with left- or right-side dominance at no oscillation, 94% or 38% changed their dominant side at 1.5-Hz oscillation, with a significant difference between these percentages. In the 1.5-Hz oscillation, 73% of subjects had concordance between the dominant side of postural stability and that of mobilizing footedness. Conclusion In static conditions, there was no lateral dominance of stability during single-leg stance. At 1.5-Hz oscillation, the highest frequency, right-side dominance of postural stability was recognized. Functional role in supporting leg may be divided between left and right legs according to the change of balance condition from static to dynamic. PMID:25127541

  9. Phase-dependent organization of postural adjustments associated with arm movements while walking.

    PubMed

    Nashner, L M; Forssberg, H

    1986-06-01

    This study examines the interactions between anteroposterior postural responses and the control of walking in human subjects. In the experimental paradigm, subjects walked upon a treadmill, gripping a rigid handle with one hand. Postural responses at different phases of stepping were elicited by rapid arm pulls or pushes against the handle. During arm movements, EMG's recorded the activity of representative arm, ankle, and thigh segment muscles. Strain gauges in the handle measured the force of the arm movement. A Selspot II system measured kinematics of the stepping movements. The duration of support and swing phases were marked by heel and toe switches in the soles of the subjects' shoes. In the first experiment, subjects were instructed to pull on the handle at their own pace. In these trials all subjects preferred to initiate pulls near heel strikes. Next, when instructed to pull as rapidly as possible in response to tone stimuli, reaction times were similar for all phases of the step cycle. Leg muscle responses associated with arm pulls and pushes, referred to as "postural activations," were directionally specific and preceded arm muscle activity. The temporal order and spatial distribution of postural activations in the muscles of the support leg were similar when arm pull movements occurred while the subject was standing in place and after heel strike while walking. Activations began in the ankle and radiated proximally to the thigh and then the arm. Activations of swing leg muscles were also directionally specific and involved flexion and forward or backward thrust of the limb. When arm movements were initiated during transitions from support by one leg to the other, patterns of postural activations were altered. Alterations usually occurred 10-20 ms before hell strikes and involved changes in the timing and sometimes the spatial structure of postural activations. Postural activation patterns are similar during in-place standing and during the support phase of locomotion. Walking and posture control appear to be separately organized but interrelated activities. Our results also suggest that the stepping generators, not peripheral feedback time locked to heel strikes, modulate postural activation patterns.

  10. Novel Door-opening Method for Six-legged Robots Based on Only Force Sensing

    NASA Astrophysics Data System (ADS)

    Chen, Zhi-Jun; Gao, Feng; Pan, Yang

    2017-09-01

    Current door-opening methods are mainly developed on tracked, wheeled and biped robots by applying multi-DOF manipulators and vision systems. However, door-opening methods for six-legged robots are seldom studied, especially using 0-DOF tools to operate and only force sensing to detect. A novel door-opening method for six-legged robots is developed and implemented to the six-parallel-legged robot. The kinematic model of the six-parallel-legged robot is established and the model of measuring the positional relationship between the robot and the door is proposed. The measurement model is completely based on only force sensing. The real-time trajectory planning method and the control strategy are designed. The trajectory planning method allows the maximum angle between the sagittal axis of the robot body and the normal line of the door plane to be 45º. A 0-DOF tool mounted to the robot body is applied to operate. By integrating with the body, the tool has 6 DOFs and enough workspace to operate. The loose grasp achieved by the tool helps release the inner force in the tool. Experiments are carried out to validate the method. The results show that the method is effective and robust in opening doors wider than 1 m. This paper proposes a novel door-opening method for six-legged robots, which notably uses a 0-DOF tool and only force sensing to detect and open the door.

  11. Alternate rhythmic vibratory stimulation of trunk muscles affects walking cadence and velocity in Parkinson's disease.

    PubMed

    De Nunzio, Alessandro M; Grasso, Margherita; Nardone, Antonio; Godi, Marco; Schieppati, Marco

    2010-02-01

    During the administration of timed bilateral alternate vibration to homonymous leg or trunk muscles during quiet upright stance, Parkinsonian (PD) patients undergo cyclic antero-posterior and medio-lateral transfers of the centre of foot pressure. This event might be potentially exploited for improving gait in these patients. Here, we tested this hypothesis by applying alternate muscle vibration during walking in PD. Fifteen patients and 15 healthy subjects walked on an instrumented walkway under four conditions: no vibration (no-Vib), and vibration of tibialis anterior (TA-Vib), soleus (Sol-Vib) and erector spinae (ES-Vib) muscles of both sides. Trains of vibration (internal frequency 100 Hz) were delivered to right and left side at alternating frequency of 10% above preferred step cadence. During vibration, stride length, cadence and velocity increased in both patients and healthy subjects, significantly so for ES-Vib. Stance and swing time tended to decrease. Width of support base increased with Sol-Vib or TA-Vib, but was unaffected by ES-Vib. Alternate ES vibration enhances gait velocity in PD. The stronger effect of ES over leg muscle vibration might depend on the relevance of the proprioceptive inflow from the trunk muscles and on the absence of adverse effects on the support base width. Trunk control is defective in PD. The effect of timed vibratory stimulation on gait suggests the potential use of trunk proprioceptive stimulation for tuning the central pattern generators for locomotion in PD. Copyright (c) 2009 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  12. Selection on male size, leg length and condition during mate search in a sexually highly dimorphic orb-weaving spider.

    PubMed

    Foellmer, Matthias W; Fairbairn, Daphne J

    2005-02-01

    Mate search plays a central role in hypotheses for the adaptive significance of extreme female-biased sexual size dimorphism (SSD) in animals. Spiders (Araneae) are the only free-living terrestrial taxon where extreme SSD is common. The "gravity hypothesis" states that small body size in males is favoured during mate search in species where males have to climb to reach females, because body length is inversely proportional to achievable speed on vertical structures. However, locomotive performance of males may also depend on relative leg length. Here we examine selection on male body size and leg length during mate search in the highly dimorphic orb-weaving spider Argiope aurantia, using a multivariate approach to distinguish selection targeted at different components of size. Further, we investigate the scaling relationships between male size and energy reserves, and the differential loss of reserves. Adult males do not feed while roving, and a size-dependent differential energy storage capacity may thus affect male performance during mate search. Contrary to predictions, large body size was favoured in one of two populations, and this was due to selection for longer legs. Male size was not under selection in the second population, but we detected direct selection for longer third legs. Males lost energy reserves during mate search, but this was independent of male size and storage capacity scaled isometrically with size. Thus, mate search is unlikely to lead to selection for small male size, but the hypothesis that relatively longer legs in male spiders reflect a search-adapted morphology is supported.

  13. Minimalistic Dynamic Climbing

    DTIC Science & Technology

    2010-11-01

    connected. On this same disk, a servo motor is connected to a light weight leg. An Arduino 77 Body Weight Markers Leg Disk Servo Motor Front View Top View...this control enables more dynamic and fast walking, the control is based on precise joint-angle control. The main consequence of such a control is that... based climbing strategies. Specifically, the four-limbed free-climbing LEMUR robot goes up climbing walls by choosing a sequence of handholds

  14. Comparison of crossover and jab step start techniques for base stealing in baseball.

    PubMed

    Miyanishi, Tomohisa; Endo, So; Nagahara, Ryu

    2017-11-01

    Base stealing is an important tactic for increasing the chance of scoring in baseball. This study aimed to compare the crossover step (CS) and jab step (JS) starts for base stealing start performance and to clarify the differences between CS and JS starts in terms of three-dimensional lower extremity joint kinetics. Twelve male baseball players performed CS and JS starts, during which their motion and the force they applied to the ground were simultaneously recorded using a motion-capture system and two force platforms. The results showed that the normalised average forward external power, the average forward-backward force exerted by the left leg, and the forward velocities of the whole body centre of gravity generated by both legs and the left leg were significantly higher for the JS start than for the CS start. Moreover, the positive work done by hip extension during the left leg push-off was two-times greater for the JS start than the CS start. In conclusion, this study has demonstrated that the jab step start may be the better technique for a base stealing start and that greater positive work produced by left hip extension is probably responsible for producing its larger forward ground reaction force.

  15. Using squat repetition maximum testing to determine hamstring resistance training exercise loads.

    PubMed

    Ebben, William P; Long, Nicholas J; Pawlowski, Zach D; Chmielewski, Lauren M; Clewien, Rustin W; Jensen, Randall L

    2010-02-01

    The purpose of this study was to determine whether there is a linear relationship between the squat and a variety of hamstring resistance training exercises, and whether this relationship differs on the basis of sex. This study also sought to create prediction equations for the determination of hamstring exercise load based on the squat load. Repetition maximums of the squat, as well as 4 common hamstring resistance training exercises including the seated leg curl, stiff leg dead lift, single leg dead lift, and good morning exercise, were determined for each subject. Subjects included 21 men and 13 women collegiate athletes. Data were evaluated using linear regression analysis to predict hamstring exercise loads from 6 repetition maximum squat data. Results of the analysis of all subjects indicated that squat load was a significant predictor of loads for each of the hamstring exercises. However, separate analysis of women revealed that squat load was not a significant predictor of loads for any of the hamstring exercises. Analysis of the men revealed that squat was a significant predictor of load for the seated leg curl (R = 0.58, p < 0.001), stiff leg dead lift (R = 0.82, p < 0.001), single leg stiff leg dead lift (R = 0.80, p < 0.001), and good morning (R = 0.79, p < 0.001) exercises. On the basis of the analysis of the men, the following prediction equations were devised for each exercise: (1) seated leg curl load = squat load (0.186) + 10.935 kg, (2) stiff leg deadlift load = squat load (1.133) - 86.331 kg, (3) single leg stiff leg deadlift load = squat load (0.443) - 3.425 kg, and (4) good morning load = squat load (0.961) - 105.505 kg. Thus, results from testing core exercises such as the squat can provide useful data for the assignment of loads for assistance exercises.

  16. Compliant walking appears metabolically advantageous at extreme step lengths.

    PubMed

    Kim, Jaehoon; Bertram, John E A

    2018-05-19

    Humans alter gait in response to unusual gait circumstances to accomplish the task of walking. For instance, subjects spontaneously increase leg compliance at a step length threshold as step length increases. Here we test the hypothesis that this transition occurs based on the level of energy expenditure, where compliant walking becomes less energetically demanding at long step lengths. To map and compare the metabolic cost of normal and compliant walking as step length increases. 10 healthy individuals walked on a treadmill using progressively increasing step lengths (100%, 120%, 140% and 160% of preferred step length), in both normal and compliant leg walking as energy expenditure was recorded via indirect calorimetry. Leg compliance was controlled by lowering the center-of-mass trajectory during stance, forcing the leg to flex and extend as the body moved over the foot contact. For normal step lengths, compliant leg walking was more costly than normal walking gait, but compliant leg walking energetic cost did not increase as rapidly for longer step lengths. This led to an intersection between normal and compliant walking cost curves at 114% relative step length (regression analysis; r 2  = 0.92 for normal walking; r 2  = 0.65 for compliant walking). Compliant leg walking is less energetically demanding at longer step lengths where a spontaneous shift to compliant walking has been observed, suggesting the human motor control system is sensitive to energetic requirements and will employ alternate movement patterns if advantageous strategies are available. The transition could be attributed to the interplay between (i) leg work controlling body travel during single stance and (ii) leg work to control energy loss in the step-to-step transition. Compliant leg walking requires more stance leg work at normal step lengths, but involves less energy loss at the step-to-step transition for very long steps. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Comparison between the C-leg microprocessor-controlled prosthetic knee and non-microprocessor control prosthetic knees: a preliminary study of energy expenditure, obstacle course performance, and quality of life survey.

    PubMed

    Seymour, Ron; Engbretson, Brenda; Kott, Karen; Ordway, Nathaniel; Brooks, Gary; Crannell, Jessica; Hickernell, Elise; Wheeler, Katie

    2007-03-01

    This study investigated energy expenditure and obstacle course negotiation between the C-leg and various non-microprocessor control (NMC) prosthetic knees and compared a quality of life survey (SF-36v2) of use of the C-leg to national norms. Thirteen subjects with unilateral limb loss (12 with trans-femoral and one with a knee disarticulation amputation) participated in the study. The mean age was 46 years, range 30-75. Energy expenditure using both the NMC and C-leg prostheses was measured at self-selected typical and fast walking paces on a motorized treadmill. Subjects were also asked to walk through a standardized walking obstacle course carrying a 4.5 kg (10 lb) basket and with hands free. Finally, the SF-36v2 was completed for subjects while using the C-leg. Statistically significant differences were found in oxygen consumption between prostheses at both typical and fast paces with the C-leg showing decreased values. Use of the C-leg resulted in a statistically significant decrease in the number of steps and time to complete the obstacle course. Scores on a quality of life index for subjects using the C-leg were above the mean for norms for limitation in the use of an arm or leg, equal to the mean for the general United States population for the physical component score and were above this mean for the mental component score. Based on oxygen consumption and obstacle course findings, the C-leg when compared to the NMC prostheses may provide increased functional mobility and ease of performance in the home and community environment. Questionnaire results suggest a minimal quality of life impairment when using a C-leg for this cohort of individuals with amputation.

  18. A new species of Ergasilus Nordmann, 1832 (Copepoda: Cyclopoida: Ergasilidae) from Bryconops giacopinii Fernández-Yépez (Characidae) in the Vichada River Basin, Colombia.

    PubMed

    Muriel-Hoyos, Felipe; Santana-Piñeros, Ana María; Cruz-Quintana, Yanis; Suárez-Morales, Eduardo

    2015-11-01

    A new copepod species, Ergasilus curticrus n. sp. is described based on 14 female specimens collected from the gills of the characid teleost Bryconops giacopinii Fernández-Yépez, captured in the Vichada River Basin in Colombia. The new species has a unique combination of characters including: (i) 2-segmented endopods in legs 1 and 4; (ii) a semi-pinnate, falciform seta on the terminal segment of the first leg exopod; (iii) a 1-segmented fourth leg exopod; (iv) a reduced fifth leg with a single seta; and (v) a circular structure fused to a groove near the lateral margins of the second pedigerous tergite. Only two other known congeners have a 1-segmented leg 4 exopod, E. coatiarus Araujo & Varella, 1998 and E. iheringi Tidd, 1942. Among other characters, they differ from the new species by the lack of a semi-pinnate, falciform seta on the terminal exopodal segment of leg 1 and in the structure and armature of the fifth leg. The prevalence of E. curticrus n. sp. was 13.6% and its mean abundance was 0.4 specimens per host. This is the first new species of Ergasilus Nordmann, 1832 described from the Orinoco River Basin.

  19. Compatibility between Co-Metallized PbTe Thermoelectric Legs and an Ag-Cu-In Brazing Alloy.

    PubMed

    Ben-Ayoun, Dana; Sadia, Yatir; Gelbstein, Yaniv

    2018-01-10

    In thermoelectric (TE) generators, maximizing the efficiency of conversion of direct heat to electricity requires the reduction of any thermal and electrical contact resistances between the TE legs and the metallic contacts. This requirement is especially challenging in the development of intermediate to high-temperature TE generators. PbTe-based TE materials are known to be highly efficient up to temperatures of around 500 °C; however, only a few practical TE generators based on these materials are currently commercially available. One reason for that is the insufficient bonding techniques between the TE legs and the hot-side metallic contacts. The current research is focused on the interaction between cobalt-metallized n -type 9.104 × 10 -3 mol % PbI₂-doped PbTe TE legs and the Ag 0.32 Cu 0.43 In 0.25 brazing alloy, which is free of volatile species. Clear and fine interfaces without any noticeable formation of adverse brittle intermetallic compounds were observed following prolonged thermal treatment testing. Moreover, a reasonable electrical contact resistance of ~2.25 mΩmm² was observed upon brazing at 600 °C, highlighting the potential of such contacts while developing practical PbTe-based TE generators.

  20. The impact of previous knee injury on force plate and field-based measures of balance.

    PubMed

    Baltich, Jennifer; Whittaker, Jackie; Von Tscharner, Vinzenz; Nettel-Aguirre, Alberto; Nigg, Benno M; Emery, Carolyn

    2015-10-01

    Individuals with post-traumatic osteoarthritis demonstrate increased sway during quiet stance. The prospective association between balance and disease onset is unknown. Improved understanding of balance in the period between joint injury and disease onset could inform secondary prevention strategies to prevent or delay the disease. This study examines the association between youth sport-related knee injury and balance, 3-10years post-injury. Participants included 50 individuals (ages 15-26years) with a sport-related intra-articular knee injury sustained 3-10years previously and 50 uninjured age-, sex- and sport-matched controls. Force-plate measures during single-limb stance (center-of-pressure 95% ellipse-area, path length, excursion, entropic half-life) and field-based balance scores (triple single-leg hop, star-excursion, unipedal dynamic balance) were collected. Descriptive statistics (mean within-pair difference; 95% confidence intervals) were used to compare groups. Linear regression (adjusted for injury history) was used to assess the relationship between ellipse-area and field-based scores. Injured participants on average demonstrated greater medio-lateral excursion [mean within-pair difference (95% confidence interval); 2.8mm (1.0, 4.5)], more regular medio-lateral position [10ms (2, 18)], and shorter triple single-leg hop distances [-30.9% (-8.1, -53.7)] than controls, while no between group differences existed for the remaining outcomes. After taking into consideration injury history, triple single leg hop scores demonstrated a linear association with ellipse area (β=0.52, 95% confidence interval 0.01, 1.01). On average the injured participants adjusted their position less frequently and demonstrated a larger magnitude of movement during single-limb stance compared to controls. These findings support the evaluation of balance outcomes in the period between knee injury and post-traumatic osteoarthritis onset. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Discriminating Talent Identified Junior Australian Footballers Using a Fundamental Gross Athletic Movement Assessment.

    PubMed

    Woods, Carl T; Banyard, Harry G; McKeown, Ian; Fransen, Job; Robertson, Sam

    2016-09-01

    Talent identification (TID) is a pertinent component of the sports sciences, affording practitioners the opportunity to target developmental interventions to a select few; optimising financial investments. However, TID is multi-componential, requiring the recognition of immediate and prospective performance. The measurement of athletic movement skill may afford practitioners insight into the latter component given its augmented relationship with functional sport specific qualities. It is currently unknown whether athletic movement skill is a discriminant quality in junior Australian football (AF). This study aimed to discriminate talent identified junior AF players from their non-talent identified counterparts using a fundamental gross athletic movement assessment. From a total of 50 under 18 (U18) AF players; two groups were classified a priori based on selection level; talent identified (n = 25; state academy representatives) and non-talent identified (n = 25; state-based competition representatives). Players performed a fundamental gross athletic movement assessment based on the Athletic Ability Assessment (AAA), consisting of an overhead squat, double lunge (left and right legs), single leg Romanian deadlift (left and right legs), and a push up (six movement criterions). Movements were scored across three assessment points using a three-point scale (resulting in a possible score of nine for each movement). A multivariate analysis of variance revealed significant between group effects on four of the six movement criterions (d = 0.56 - 0.87; p = 0.01 - 0.02). Binary logistic regression models and a receiver operating characteristic curve inspection revealed that the overhead squat score provided the greatest group discrimination (β(SE) = -0.89(0.44); p < 0.05), with a score of 4.5 classifying 64% and 88% of the talent identified and non-talent identified groups, respectively. Results support the integration of this assessment into contemporary talent identification approaches in junior AF, as it may provide coaches with insight into a juniors developmental potential.

  2. Topological phases in frustrated synthetic ladders with an odd number of legs

    NASA Astrophysics Data System (ADS)

    Barbarino, Simone; Dalmonte, Marcello; Fazio, Rosario; Santoro, Giuseppe E.

    2018-01-01

    The realization of the Hofstadter model in a strongly anisotropic ladder geometry has now become possible in one-dimensional optical lattices with a synthetic dimension. In this work, we show how the Hofstadter Hamiltonian in such ladder configurations hosts a topological phase of matter which is radically different from its two-dimensional counterpart. This topological phase stems directly from the hybrid nature of the ladder geometry and is protected by a properly defined inversion symmetry. We start our analysis by considering the paradigmatic case of a three-leg ladder which supports a topological phase exhibiting the typical features of topological states in one dimension: robust fermionic edge modes, a degenerate entanglement spectrum, and a nonzero Zak phase; then, we generalize our findings—addressable in the state-of-the-art cold-atom experiments—to ladders with a higher number of legs.

  3. Milnesium minutum and Milnesium sandrae, two new species of Milnesiidae (Tardigrada, Eutardigrada, Apochela).

    PubMed

    Pilato, Giovanni; Lisi, Oscar

    2016-01-01

    Two new species of Milnesium are described, Milnesium minutum sp. n. from Sicily and Milnesium sandrae sp. n. from the Hawaiian Archipelago. The body size of Milnesium minutum is the smallest of the known species of the genus. The stylet supports are inserted on the buccal tube at 63-66% of its length and the claws have a [3-3]-[3-3] configuration. Milnesium sandrae has stylet supports inserted on the buccal tube at 58-60.5% of its length, a [3-3]-[3-3] claw configuration, and the percent ratio between the secondary claw and primary claw length on legs I-III (78.6%-85.5%) clearly higher than on legs IV (70.5%-71.4%). With the description of these two new species, the number of species in the genus is increased to 31.

  4. Navigable windows of the Northwest Passage

    NASA Astrophysics Data System (ADS)

    Liu, Xing-he; Ma, Long; Wang, Jia-yue; Wang, Ye; Wang, Li-na

    2017-09-01

    Artic sea ice loss trends support a greater potential for Arctic shipping. The information of sea ice conditions is important for utilizing Arctic passages. Based on the shipping routes given by ;Arctic Marine Shipping Assessment 2009 Report;, the navigable windows of these routes and the constituent legs were calculated by using sea ice concentration product data from 2006 to 2015, by which a comprehensive knowledge of the sea ice condition of the Northwest Passage was achieved. The results showed that Route 4 (Lancaster Sound - Barrow Strait - Prince Regent Inlet and Bellot Strait - Franklin Strait - Larsen Sound - Victoria Strait - Queen Maud Gulf - Dease Strait - Coronation Gulf - Dolphin and Union Strait - Amundsen Gulf) had the best navigable expectation, Route 2 (Parry Channel - M'Clure Strait) had the worst, and the critical legs affecting the navigation of Northwest Passage were Viscount Melville Sound, Franklin Strait, Victoria Strait, Bellot Strait, M'Clure Strait and Prince of Wales Strait. The shortest navigable period of the routes of Northwest Passage was up to 69 days. The methods used and the results of the study can help the selection and evaluation of Arctic commercial routes.

  5. Colour Cues That Are Not Directly Attached to the Body of Males Do Not Influence the Mate Choice of Zebra Finches.

    PubMed

    Krause, E Tobias

    2016-01-01

    Mate choice decisions of female zebra finches are generally thought to rely on the assessment of male quality, which includes the specific ornamentation of males. A commonly used paradigm to experimentally manipulate a male's attractiveness is to add a coloured leg ring to the bird. Some studies have shown that female zebra finches prefer or alter their investment in males that have an additional red leg ring compared with males with green leg rings. Whether the coloured artificial ornaments need to be attached to the male's body or whether environmental colouration could have a similar effect on male attractiveness remains unclear. Here, I investigated this novel context to determine whether female choice between males is affected by environmental colour cues that are not directly attached to the male's body in four experiments involving 220 zebra finches (Taeniopygia guttata). A first experiment revealed that females chose males with red colour cues in the environmental background over males with green cues in the background. Based on this finding, I conducted follow-up experiments to obtain a deeper understanding of how environmental colour cues affect mate choice. Therefore, I examined whether female choice behaviour or male behaviour was altered in two additional experiments. Both experiments failed to show any effects of environmental colour cues on female choice or on male behaviour. Therefore, I replicated the initial experiment in a fourth experiment. Again replication failed; thus, the initial results indicating that environmental colouration affects mate choice behaviour of female zebra finches were not supported by the three subsequent experiments; thus, the outcome of the first experiment seems to be a false positive. Taking my results together, I found no robust support for the idea that environmental colour cues that are not directly attached to the body of male zebra finches affect female mate choice decisions.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, Junjia; Ade, P. A. R.; Anderson, A. J.

    In this paper, we describe the optimization of transition-edge-sensor (TES) detector arrays for the third-generation camera for the South PoleTelescope. The camera, which contains similar to 16 000 detectors, will make high-angular-resolution maps of the temperature and polarization of the cosmic microwave background. Our key results are scatter in the transition temperature of Ti/Au TESs is reduced by fabricating the TESs on a thin Ti(5 nm)/Au(5 nm) buffer layer and the thermal conductivity of the legs that support our detector islands is dominated by the SiOx dielectric in the microstrip transmission lines that run along the legs.

  7. The efficacy of early initiated, supervised, progressive resistance training compared to unsupervised, home-based exercise after unicompartmental knee arthroplasty: a single-blinded randomized controlled trial.

    PubMed

    Jørgensen, Peter B; Bogh, Søren B; Kierkegaard, Signe; Sørensen, Henrik; Odgaard, Anders; Søballe, Kjeld; Mechlenburg, Inger

    2017-01-01

    To examine if supervised progressive resistance training was superior to home-based exercise in rehabilitation after unicompartmental knee arthroplasty. Single blinded, randomized clinical trial. Surgery, progressive resistance training and testing was carried out at Aarhus University Hospital and home-based exercise was carried out in the home of the patient. Fifty five patients were randomized to either progressive resistance training or home-based exercise. Patients were randomized to either progressive resistance training (home based exercise five days/week and progressive resistance training two days/week) or control group (home based exercise seven days/week). Preoperative assessment, 10-week (primary endpoint) and one-year follow-up were performed for leg extension power, spatiotemporal gait parameters and knee injury and osteoarthritis outcome score (KOOS). Forty patients (73%) completed 1-year follow-up. Patients in the progressive resistance training group participated in average 11 of 16 training sessions. Leg extension power increased from baseline to 10-week follow-up in progressive resistance training group (progressive resistance training: 0.28 W/kg, P= 0.01, control group: 0.01 W/kg, P=0.93) with no between-group difference. Walking speed and KOOS scores increased from baseline to 10-week follow-up in both groups with no between-group difference (six minutes walk test P=0.63, KOOS P>0.29). Progressive resistance training two days/week combined with home based exercise five days/week was not superior to home based exercise seven days/week in improving leg extension power of the operated leg.

  8. LCP method for a planar passive dynamic walker based on an event-driven scheme

    NASA Astrophysics Data System (ADS)

    Zheng, Xu-Dong; Wang, Qi

    2018-06-01

    The main purpose of this paper is to present a linear complementarity problem (LCP) method for a planar passive dynamic walker with round feet based on an event-driven scheme. The passive dynamic walker is treated as a planar multi-rigid-body system. The dynamic equations of the passive dynamic walker are obtained by using Lagrange's equations of the second kind. The normal forces and frictional forces acting on the feet of the passive walker are described based on a modified Hertz contact model and Coulomb's law of dry friction. The state transition problem of stick-slip between feet and floor is formulated as an LCP, which is solved with an event-driven scheme. Finally, to validate the methodology, four gaits of the walker are simulated: the stance leg neither slips nor bounces; the stance leg slips without bouncing; the stance leg bounces without slipping; the walker stands after walking several steps.

  9. LCP method for a planar passive dynamic walker based on an event-driven scheme

    NASA Astrophysics Data System (ADS)

    Zheng, Xu-Dong; Wang, Qi

    2018-02-01

    The main purpose of this paper is to present a linear complementarity problem (LCP) method for a planar passive dynamic walker with round feet based on an event-driven scheme. The passive dynamic walker is treated as a planar multi-rigid-body system. The dynamic equations of the passive dynamic walker are obtained by using Lagrange's equations of the second kind. The normal forces and frictional forces acting on the feet of the passive walker are described based on a modified Hertz contact model and Coulomb's law of dry friction. The state transition problem of stick-slip between feet and floor is formulated as an LCP, which is solved with an event-driven scheme. Finally, to validate the methodology, four gaits of the walker are simulated: the stance leg neither slips nor bounces; the stance leg slips without bouncing; the stance leg bounces without slipping; the walker stands after walking several steps.

  10. A Novel Perforator Flap Training Model Using a Chicken Leg.

    PubMed

    Cifuentes, Ignacio J; Yañez, Ricardo A; Salisbury, Maria C; Rodriguez, José R; Varas, Julian E; Dagnino, Bruno L

    2016-04-01

    Living animal models are frequently used for perforator flap dissection training, but no ex vivo models have been described. The aim of this study is to present a novel nonliving model for perforator flap training based on a constant perforator in the chicken leg. A total of 15 chicken legs were used in this study. Anatomical dissection of the perforator was performed after its identification using ink injection, and in four of these specimens a perforator-based flap was raised. The anatomical dissection revealed a constant intramuscular perforator with a median length of 5.7 cm. Median proximal and distal vessel diameters were 0.93 and 0.4 mm, respectively. The median dissection time was 77.5 minutes. This study introduces a novel, affordable, and reproducible model for the intramuscular dissection of a perforator-based flap using an ex vivo animal model. Its consistent perforator and appropriate-sized vessels make it useful for training.

  11. Climbing favours the tripod gait over alternative faster insect gaits

    NASA Astrophysics Data System (ADS)

    Ramdya, Pavan; Thandiackal, Robin; Cherney, Raphael; Asselborn, Thibault; Benton, Richard; Ijspeert, Auke Jan; Floreano, Dario

    2017-02-01

    To escape danger or catch prey, running vertebrates rely on dynamic gaits with minimal ground contact. By contrast, most insects use a tripod gait that maintains at least three legs on the ground at any given time. One prevailing hypothesis for this difference in fast locomotor strategies is that tripod locomotion allows insects to rapidly navigate three-dimensional terrain. To test this, we computationally discovered fast locomotor gaits for a model based on Drosophila melanogaster. Indeed, the tripod gait emerges to the exclusion of many other possible gaits when optimizing fast upward climbing with leg adhesion. By contrast, novel two-legged bipod gaits are fastest on flat terrain without adhesion in the model and in a hexapod robot. Intriguingly, when adhesive leg structures in real Drosophila are covered, animals exhibit atypical bipod-like leg coordination. We propose that the requirement to climb vertical terrain may drive the prevalence of the tripod gait over faster alternative gaits with minimal ground contact.

  12. Chronic Lower Leg Pain in Athletes

    PubMed Central

    Brewer, Rachel Biber; Gregory, Andrew J. M.

    2012-01-01

    Context: Chronic lower leg pain in athletes can be a frustrating problem for patients and a difficult diagnosis for clinicians. Myriad approaches have been suggested to evaluate these conditions. With the continued evolution of diagnostic studies, evidence-based guidance for a standard approach is unfortunately sparse. Evidence Acquisition: PubMed was searched from January 1980 to May 2011 to identify publications regarding chronic lower leg pain in athletes (excluding conditions related to the foot), including differential diagnosis, clinical presentation, physical examination, history, diagnostic workup, and treatment. Results: Leg pain in athletes can be caused by many conditions, with the most frequent being medial tibial stress syndrome; chronic exertional compartment syndrome, stress fracture, nerve entrapment, and popliteal artery entrapment syndrome are also considerations. Conservative management is the mainstay of care for the majority of causes of chronic lower leg pain; however, surgical intervention may be necessary. Conclusion: Chronic lower extremity pain in athletes includes a wide differential and can pose diagnostic dilemmas for clinicians. PMID:23016078

  13. Climbing favours the tripod gait over alternative faster insect gaits

    PubMed Central

    Ramdya, Pavan; Thandiackal, Robin; Cherney, Raphael; Asselborn, Thibault; Benton, Richard; Ijspeert, Auke Jan; Floreano, Dario

    2017-01-01

    To escape danger or catch prey, running vertebrates rely on dynamic gaits with minimal ground contact. By contrast, most insects use a tripod gait that maintains at least three legs on the ground at any given time. One prevailing hypothesis for this difference in fast locomotor strategies is that tripod locomotion allows insects to rapidly navigate three-dimensional terrain. To test this, we computationally discovered fast locomotor gaits for a model based on Drosophila melanogaster. Indeed, the tripod gait emerges to the exclusion of many other possible gaits when optimizing fast upward climbing with leg adhesion. By contrast, novel two-legged bipod gaits are fastest on flat terrain without adhesion in the model and in a hexapod robot. Intriguingly, when adhesive leg structures in real Drosophila are covered, animals exhibit atypical bipod-like leg coordination. We propose that the requirement to climb vertical terrain may drive the prevalence of the tripod gait over faster alternative gaits with minimal ground contact. PMID:28211509

  14. Effects of body-weight supported treadmill training on kinetic symmetry in persons with chronic stroke.

    PubMed

    Combs, Stephanie A; Dugan, Eric L; Ozimek, Elicia N; Curtis, Amy B

    2012-11-01

    The purpose was to examine changes in kinetic symmetry in persons with chronic stroke immediately and 6-months after body-weight supported treadmill training. Fifteen participants at least six-months post stroke and able to ambulate between 0.4 and 0.8m/s and 20 participants without neurological conditions completed all phases of the study and were included in the analysis. The non-disabled group served as a comparison for describing changes in kinetic symmetry. The stroke group completed 24 sessions of body-weight supported treadmill training over 8-weeks with 20 minutes of total walking per session. Bilateral 3-dimensional motion analysis and gait speed were assessed 1-week before training (pre-test), 1-week after training (post-test) and 6-months after training (retention) in a repeated measures design. Relative propulsion of the paretic leg and relative positive work of the hip, knee and ankle joints of both legs were calculated to evaluate symmetry of kinetic forces. Statistically significant differences in relative propulsion and positive joint work within the paretic and non-paretic legs were not found over time. The stroke group significantly improved gait speed from pre- to post-test (p=.001) and pre-test to retention (p=.008). In comparison to the non-disabled group, forces produced by the stroke group were asymmetrical demonstrating compensatory adaptation. Although the participants with chronic stroke walked faster after body-weight supported treadmill training, the relative percentages of propulsion and positive work remained unchanged. These findings suggest that the increase in speed was likely due to strengthening existing compensatory strategies rather than through recovery of normal kinetic symmetry. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Swing- and support-related muscle actions differentially trigger human walk-run and run-walk transitions.

    PubMed

    Prilutsky, B I; Gregor, R J

    2001-07-01

    There has been no consistent explanation as to why humans prefer changing their gait from walking to running and from running to walking at increasing and decreasing speeds, respectively. This study examined muscle activation as a possible determinant of these gait transitions. Seven subjects walked and ran on a motor-driven treadmill for 40s at speeds of 55, 70, 85, 100, 115, 130 and 145% of the preferred transition speed. The movements of subjects were videotaped, and surface electromyographic activity was recorded from seven major leg muscles. Resultant moments at the leg joints during the swing phase were calculated. During the swing phase of locomotion at preferred running speeds (115, 130, 145%), swing-related activation of the ankle, knee and hip flexors and peaks of flexion moments were typically lower (P<0.05) during running than during walking. At preferred walking speeds (55, 70, 85%), support-related activation of the ankle and knee extensors was typically lower during stance of walking than during stance of running (P<0.05). These results support the hypothesis that the preferred walk-run transition might be triggered by the increased sense of effort due to the exaggerated swing-related activation of the tibialis anterior, rectus femoris and hamstrings; this increased activation is necessary to meet the higher joint moment demands to move the swing leg during fast walking. The preferred run-walk transition might be similarly triggered by the sense of effort due to the higher support-related activation of the soleus, gastrocnemius and vastii that must generate higher forces during slow running than during walking at the same speed.

  16. The D1 family dopamine receptor, DopR, potentiates hind leg grooming behavior in Drosophila.

    PubMed

    Pitmon, E; Stephens, G; Parkhurst, S J; Wolf, F W; Kehne, G; Taylor, M; Lebestky, T

    2016-03-01

    Drosophila groom away debris and pathogens from the body using their legs in a stereotyped sequence of innate motor behaviors. Here, we investigated one aspect of the grooming repertoire by characterizing the D1 family dopamine receptor, DopR. Removal of DopR results in decreased hind leg grooming, as substantiated by quantitation of dye remaining on mutant and RNAi animals vs. controls and direct scoring of behavioral events. These data are also supported by pharmacological results that D1 receptor agonists fail to potentiate grooming behaviors in headless DopR flies. DopR protein is broadly expressed in the neuropil of the thoracic ganglion and overlaps with TH-positive dopaminergic neurons. Broad neuronal expression of dopamine receptor in mutant animals restored normal grooming behaviors. These data provide evidence for the role of DopR in potentiating hind leg grooming behaviors in the thoracic ganglion of adult Drosophila. This is a remarkable juxtaposition to the considerable role of D1 family dopamine receptors in rodent grooming, and future investigations of evolutionary relationships of circuitry may be warranted. © 2016 The Authors. Genes, Brain and Behavior published by International Behavioural and Neural Genetics Society and John Wiley & Sons Ltd.

  17. Running With an Elastic Lower Limb Exoskeleton.

    PubMed

    Cherry, Michael S; Kota, Sridhar; Young, Aaron; Ferris, Daniel P

    2016-06-01

    Although there have been many lower limb robotic exoskeletons that have been tested for human walking, few devices have been tested for assisting running. It is possible that a pseudo-passive elastic exoskeleton could benefit human running without the addition of electrical motors due to the spring-like behavior of the human leg. We developed an elastic lower limb exoskeleton that added stiffness in parallel with the entire lower limb. Six healthy, young subjects ran on a treadmill at 2.3 m/s with and without the exoskeleton. Although the exoskeleton was designed to provide ~50% of normal leg stiffness during running, it only provided 24% of leg stiffness during testing. The difference in added leg stiffness was primarily due to soft tissue compression and harness compliance decreasing exoskeleton displacement during stance. As a result, the exoskeleton only supported about 7% of the peak vertical ground reaction force. There was a significant increase in metabolic cost when running with the exoskeleton compared with running without the exoskeleton (ANOVA, P < .01). We conclude that 2 major roadblocks to designing successful lower limb robotic exoskeletons for human running are human-machine interface compliance and the extra lower limb inertia from the exoskeleton.

  18. Analog Exercise Hardware to Implement a High Intensity Exercise Program During Bed Rest

    NASA Technical Reports Server (NTRS)

    Loerch, Linda; Newby, Nate; Ploutz-Snyder, Lori

    2012-01-01

    Background: In order to evaluate novel countermeasure protocols in a space flight analog prior to validation on the International Space Station (ISS), NASA's Human Research Program (HRP) is sponsoring a multi-investigator bedrest campaign that utilizes a combination of commercial and custom-made exercise training hardware to conduct daily resistive and aerobic exercise protocols. This paper will describe these pieces of hardware and how they are used to support current bedrest studies at NASA's Flight Analog Research Unit in Galveston, TX. Discussion: To implement candidate exercise countermeasure studies during extended bed rest studies the following analog hardware are being utilized: Stand alone Zero-Gravity Locomotion Simulator (sZLS) -- a custom built device by NASA, the sZLS allows bedrest subjects to remain supine as they run on a vertically-oriented treadmill (0-15 miles/hour). The treadmill includes a pneumatic subject loading device to provide variable body loading (0-100%) and a harness to keep the subject in contact with the motorized treadmill to provide a ground reaction force at their feet that is quantified by a Kistler Force Plate. Supine Cycle Ergometer -- a commercially available supine cycle ergometer (Lode, Groningen, Netherlands) is used for all cycle ergometer sessions. The ergometer has adjustable shoulder supports and handgrips to help stabilize the subject during exercise. Horizontal Squat Device (HSD) -- a custom built device by Quantum Fitness Corp (Stafford, TX), the HSD allows for squat exercises to be performed while lying in a supine position. The HSD can provide 0 to 600 pounds of force in selectable 5 lb increments, and allows hip translation in both the vertical and horizontal planes. Prone Leg Curl -- a commercially available prone leg curl machine (Cybex International Inc., Medway, MA) is used to complete leg curl exercises. Horizontal Leg Press -- a commercially available horizontal leg press (Quantum Fitness Corporation) is used for leg press and heel raise exercises. Minor modifications were made to the device including adding 200 lbs to the weight stack, raising the frame by 12 inches, making the footplate adjustable, and providing removable handles. Conclusion: A combination of novel and commercial exercise hardware are used to mimic the exercise hardware capabilities aboard the ISS, allowing scientific investigation of new countermeasure protocols in a space flight analog prior to flight validation

  19. Bioinspired legged-robot based on large deformation of flexible skeleton.

    PubMed

    Mayyas, Mohammad

    2014-11-11

    In this article we present STARbot, a bioinspired legged robot capable of multiple locomotion modalities by using large deformation of its skeleton. We construct STARbot by using origami-style folding of flexible laminates. The long-term goal is to provide a robotic platform with maximum mobility on multiple surfaces. This paper particularly studies the quasistatic model of STARbot's leg under different conditions. We describe the large elastic deformation of a leg under external force, payload, and friction by using a set of non-dimensional, nonlinear approximate equations. We developed a test mechanism that models the motion of a leg in STARbot. We augmented several foot shapes and then tested them on soft to rough grounds. Both simulation and experimental findings were in good agreement. We utilized the model to develop several scales of tri and quad STARbot. We demonstrated the capability of these robots to locomote by combining their leg deformations with their foot motions. The combination provided a design platform for an active suspension STARbot with controlled foot locomotion. This included the ability of STARbot to change size, run over obstacles, walk and slide. Furthermore, in this paper we discuss a cost effective manufacturing and production method for manufacturing STARbot.

  20. The prognosis of self-reported paresthesia and weakness in disc-related sciatica.

    PubMed

    Grøvle, L; Haugen, A J; Natvig, B; Brox, J I; Grotle, M

    2013-11-01

    To explore how patients with sciatica rate the 'bothersomeness' of paresthesia (tingling and numbness) and weakness as compared with leg pain during 2 years of follow-up. Observational cohort study including 380 patients with sciatica and lumbar disc herniation referred to secondary care. Using the Sciatica Bothersomeness Index paresthesia, weakness and leg pain were rated on a scale from 0 to 6. A symptom score of 4-6 was defined as bothersome. Along with leg pain, the bothersomeness of paresthesia and weakness both improved during follow-up. Those who received surgery (n = 121) reported larger improvements in both symptoms than did those who were treated without surgery. At 2 years, 18.2% of the patients reported bothersome paresthesia, 16.6% reported bothersome leg pain, and 11.5% reported bothersome weakness. Among patients with no or little leg pain, 6.7% reported bothersome paresthesia and 5.1% bothersome weakness. During 2 years of follow-up, patients considered paresthesia more bothersome than weakness. At 2 years, the percentage of patients who reported bothersome paresthesia was similar to the percentage who reported bothersome leg pain. Based on patients' self-report, paresthesia and weakness are relevant aspects of disc-related sciatica.

  1. Leg edema quantification for heart failure patients via 3D imaging.

    PubMed

    Hayn, Dieter; Fruhwald, Friedrich; Riedel, Arthur; Falgenhauer, Markus; Schreier, Günter

    2013-08-14

    Heart failure is a common cardiac disease in elderly patients. After discharge, approximately 50% of all patients are readmitted to a hospital within six months. Recent studies show that home monitoring of heart failure patients can reduce the number of readmissions. Still, a large number of false positive alarms as well as underdiagnoses in other cases require more accurate alarm generation algorithms. New low-cost sensors for leg edema detection could be the missing link to help home monitoring to its breakthrough. We evaluated a 3D camera-based measurement setup in order to geometrically detect and quantify leg edemas. 3D images of legs were taken and geometric parameters were extracted semi-automatically from the images. Intra-subject variability for five healthy subjects was evaluated. Thereafter, correlation of 3D parameters with body weight and leg circumference was assessed during a clinical study at the Medical University of Graz. Strong correlation was found in between both reference values and instep height, while correlation in between curvature of the lower leg and references was very low. We conclude that 3D imaging might be a useful and cost-effective extension of home monitoring for heart failure patients, though further (prospective) studies are needed.

  2. Genetics Home Reference: hypomyelination and congenital cataract

    MedlinePlus

    ... have reduced sensation in their arms and legs (peripheral neuropathy). In addition, affected individuals typically have speech difficulties ( ... need support, and they usually do not have peripheral neuropathy. Learn more about the gene associated with hypomyelination ...

  3. Posterior tibial slope as a risk factor for anterior cruciate ligament rupture in soccer players.

    PubMed

    Senişik, Seçkin; Ozgürbüz, Cengizhan; Ergün, Metin; Yüksel, Oğuz; Taskiran, Emin; Işlegen, Cetin; Ertat, Ahmet

    2011-01-01

    Anterior cruciate ligament (ACL) is the primary stabilizer of the knee. An impairment of any of the dynamic or static stability providing factors can lead to overload on the other factors and ultimately to deterioration of knee stability. This can result in anterior tibial translation and rupture of the ACL. The purpose of this study was to examine the influence of tibial slope on ACL injury risk on soccer players. A total of 64 elite soccer players and 45 sedentary controls were included in this longitudinal and controlled study. The angle between the tibial mid-diaphysis line and the line between the anterior and posterior edges of the medial tibial plateau was measured as the tibial slope via lateral radiographs. Individual player exposure, and injuries sustained by the participants were prospectively recorded. Eleven ACL injuries were documented during the study period. Tibial slope was not different between soccer players and sedentary controls. Tibial slope in the dominant and non-dominant legs was greater for the injured players compared to the uninjured players. The difference reached a significant level only for the dominant legs (p < 0.001). While the tibial slopes of the dominant and non-dominant legs were not different on uninjured players (p > 0.05), a higher tibial slope was observed in dominant legs of injured players (p < 0.05). Higher tibial slope on injured soccer players compared to the uninjured ones supports the idea that the tibial slope degree might be an important risk factor for ACL injury. Key pointsDominant legs' tibial slopes of the injured players were significantly higher compared to the uninjured players (p < 0.001).Higher tibial slope was determined in dominant legs compared to the non-dominant side, for the injured players (p = 0.042). Different tibial slope measures in dominant and non-dominant legs might be the result of different loading and/or adaptation patterns in soccer.

  4. Knee joint moments during high flexion movements: Timing of peak moments and the effect of safety footwear.

    PubMed

    Chong, Helen C; Tennant, Liana M; Kingston, David C; Acker, Stacey M

    2017-03-01

    (1) Characterize knee joint moments and peak knee flexion moment timing during kneeling transitions, with the intent of identifying high-risk postures. (2) Determine whether safety footwear worn by kneeling workers (construction workers, tile setters, masons, roofers) alters high flexion kneeling mechanics. Fifteen males performed high flexion kneeling transitions. Kinetics and kinematics were analyzed for differences in ascent and descent in the lead and trail legs. Mean±standard deviation peak external knee adduction and flexion moments during transitions ranged from 1.01±0.31 to 2.04±0.66% body weight times height (BW∗Ht) and from 3.33 to 12.6% BW∗Ht respectively. The lead leg experienced significantly higher adduction moments compared to the trail leg during descent, when work boots were worn (interaction, p=0.005). There was a main effect of leg (higher lead vs. trail) on the internal rotation moment in both descent (p=0.0119) and ascent (p=0.0129) phases. Peak external knee adduction moments during transitions did not exceed those exhibited during level walking, thus increased knee adduction moment magnitude is likely not a main factor in the development of knee OA in occupational kneelers. Additionally, work boots only significantly increased the adduction moment in the lead leg during descent. In cases where one knee is painful, diseased, or injured, the unaffected knee should be used as the lead leg during asymmetric bilateral kneeling. Peak flexion moments occurred at flexion angles above the maximum flexion angle exhibited during walking (approximately 60°), supporting the theory that the loading of atypical surfaces may aid disease development or progression. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Muscle quality, aerobic fitness and fat mass predict lower-extremity physical function in community-dwelling older adults.

    PubMed

    Misic, Mark M; Rosengren, Karl S; Woods, Jeffrey A; Evans, Ellen M

    2007-01-01

    Muscle mass, strength and fitness play a role in lower-extremity physical function (LEPF) in older adults; however, the relationships remain inadequately characterized. This study aimed to examine the relationships between leg mineral free lean mass (MFLM(LEG)), leg muscle quality (leg strength normalized for MFLM(LEG)), adiposity, aerobic fitness and LEPF in community-dwelling healthy elderly subjects. Fifty-five older adults (69.3 +/- 5.5 years, 36 females, 19 males) were assessed for leg strength using an isokinetic dynamometer, body composition by dual energy X-ray absorptiometry and aerobic fitness via a treadmill maximal oxygen consumption test. LEPF was assessed using computerized dynamic posturography and stair ascent/descent, a timed up-and-go task and a 7-meter walk with and without an obstacle. Muscle strength, muscle quality and aerobic fitness were similarly correlated with static LEPF tests (r range 0.27-0.40, p < 0.05); however, the strength of the independent predictors was not robust with explained variance ranging from 9 to 16%. Muscle quality was the strongest correlate of all dynamic LEPF tests (r range 0.54-0.65, p < 0.001). Using stepwise linear regression analysis, muscle quality was the strongest independent predictor of dynamic physical function explaining 29-42% of the variance (p < 0.001), whereas aerobic fitness or body fat mass explained 5-6% of the variance (p < 0.05) depending on performance measure. Muscle quality is the most important predictor, and aerobic fitness and fat mass are secondary predictors of LEPF in community-dwelling older adults. These findings support the importance of exercise, especially strength training, for optimal body composition, and maintenance of strength and physical function in older adults.

  6. The relationship between leg preference and knee mechanics during sidestepping in collegiate female footballers.

    PubMed

    Brown, Scott R; Wang, Henry; Dickin, D Clark; Weiss, Kaitlyn J

    2014-11-01

    This study examined the relationship between leg preference and knee mechanics in females during sidestepping. Three-dimensional data were recorded on 16 female collegiate footballers during a planned 45° sidestep manoeuvre with their preferred and non-preferred kicking leg. Knee kinematics and kinetics during initial contact, weight acceptance, peak push-off, and final push-off phases of sidestepping were analysed in both legs. The preferred leg showed trivial to small increases (ES = 0.19-0.36) in knee flexion angle at initial contact, weight acceptance, and peak push-off, and small increases (ES = 0.21-0.34) in peak power production and peak knee extension velocity. The non-preferred leg showed a trivial increase (ES = 0.10) in knee abduction angle during weight acceptance; small to moderate increases (ES = 0.22-0.64) in knee internal rotation angle at weight acceptance, peak push-off, and final push-off; a small increase (ES = 0.22) in knee abductor moment; and trivial increases (ES = 0.09-0.14) in peak power absorption and peak knee flexion velocity. The results of this study show that differences do exist between the preferred and non-preferred leg in females. The findings of this study will increase the knowledge base of anterior cruciate ligament injury in females and can aid in the design of more appropriate neuromuscular, plyometric, and strength training protocols for injury prevention.

  7. Acute Hip Abduction Fatigue on Lumbopelvic-Hip Complex Stability in Softball Players.

    PubMed

    Washington, Jessica; Gilmer, Gabrielle; Oliver, Gretchen

    2018-05-14

    During an overhead throw, the gluteal muscle group stabilizes the lumbopelvic-hip complex (LPHC), leading to efficient energy transfer from the lower to upper extremity. It has been shown that LPHC instability can lead to throwing pathomechanics. The single leg squat has become a common assessment for LPHC stability, and could be used to determine the effects of fatigue on throwing athletes. The purpose of this study was to determine the effects of an acute abduction fatigue protocol on the LPHC of collegiate softball players via the single leg squat assessment of the leg ipsilateral to the throwing arm. Eighteen National Collegiate Athletic Association Division I softball players volunteered (20.5±1.9 years; 169.4±10.0 cm; 72.9±11.5 kg). Each participant performed a single leg squat on the leg ipsilateral to the throwing arm prior to and post side-lying hip abduction fatigue. LPHC and lower extremity kinematics were examined to determine potential effects of fatigue on LPHC stability. There were no significant main effects or interactions of LPHC or lower extremity kinematics during the single leg squat assessments across the fatigue protocol. Based on the current study, an acute bout of fatigue to the hip abductors does not affect LPHC stability in single leg squat execution. © Georg Thieme Verlag KG Stuttgart · New York.

  8. Strength, body composition, and functional outcomes in the squat versus leg press exercises.

    PubMed

    Rossi, Fabrício E; Schoenfeld, Brad J; Ocetnik, Skyler; Young, Jonathan; Vigotsky, Andrew; Contreras, Bret; Krieger, James W; Miller, Michael G; Cholewa, Jason

    2018-03-01

    The purpose of this study was to compare strength, body composition, and functional outcome measures following performance of the back squat, leg press, or a combination of the two exercises. Subjects were pair-matched based on initial strength levels and then randomly assigned to 1 of 3 groups: a squat-only group (SQ) that solely performed squats for the lower body; a leg press-only group (LP) that solely performed leg presses for the lower body, or a combined squat and leg press group (SQ-LP) that performed both squats and leg presses for the lower body. All other RT variables were held constant. The study period lasted 10 weeks with subjects performing 2 lower body workouts per week comprising 6 sets per session at loads corresponding to 8-12 RM with 90- to 120-second rest intervals. Results showed that SQ had greater transfer to maximal squat strength compared to the leg press. Effect sizes favored SQ and SQ-LP versus LP with respect to countermovement jump while greater effect sizes for dynamic balance were noted for SQ-LP and LP compared to SQ, although no statistical differences were noted between conditions. These findings suggest that both free weights and machines can improve functional outcomes, and that the extent of transfer may be specific to the given task.

  9. Muscle power is an independent determinant of pain and quality of life in knee osteoarthritis

    USDA-ARS?s Scientific Manuscript database

    OBJECTIVE: This study examined the relationships between leg muscle strength, power, and perceived disease severity in subjects with knee osteoarthritis (OA) in order to determine whether dynamic leg extensor muscle power would be associated with pain and quality of life in knee OA. METHODS: Baseli...

  10. Measuring Clearance Mechanics Based on Dynamic Leg Length

    ERIC Educational Resources Information Center

    Khamis, Sam; Danino, Barry; Hayek, Shlomo; Carmeli, Eli

    2018-01-01

    The aim of this study was to quantify clearance mechanics during gait. Seventeen children diagnosed with hemiplegic cerebral palsy underwent a three-dimensional gait analysis evaluation. Dynamic leg lengths were measured from the hip joint center to the heel, to the ankle joint center and to the forefoot throughout the gait cycle. Significant…

  11. Optimization of a shorter variable-acquisition time for legs to achieve true whole-body PET/CT images.

    PubMed

    Umeda, Takuro; Miwa, Kenta; Murata, Taisuke; Miyaji, Noriaki; Wagatsuma, Kei; Motegi, Kazuki; Terauchi, Takashi; Koizumi, Mitsuru

    2017-12-01

    The present study aimed to qualitatively and quantitatively evaluate PET images as a function of acquisition time for various leg sizes, and to optimize a shorter variable-acquisition time protocol for legs to achieve better qualitative and quantitative accuracy of true whole-body PET/CT images. The diameters of legs to be modeled as phantoms were defined based on data derived from 53 patients. This study analyzed PET images of a NEMA phantom and three plastic bottle phantoms (diameter, 5.68, 8.54 and 10.7 cm) that simulated the human body and legs, respectively. The phantoms comprised two spheres (diameters, 10 and 17 mm) containing fluorine-18 fluorodeoxyglucose solution with sphere-to-background ratios of 4 at a background radioactivity level of 2.65 kBq/mL. All PET data were reconstructed with acquisition times ranging from 10 to 180, and 1200 s. We visually evaluated image quality and determined the coefficient of variance (CV) of the background, contrast and the quantitative %error of the hot spheres, and then determined two shorter variable-acquisition protocols for legs. Lesion detectability and quantitative accuracy determined based on maximum standardized uptake values (SUV max ) in PET images of a patient using the proposed protocols were also evaluated. A larger phantom and a shorter acquisition time resulted in increased background noise on images and decreased the contrast in hot spheres. A visual score of ≥ 1.5 was obtained when the acquisition time was ≥ 30 s for three leg phantoms, and ≥ 120 s for the NEMA phantom. The quantitative %errors of the 10- and 17-mm spheres in the leg phantoms were ± 15 and ± 10%, respectively, in PET images with a high CV (scan < 30 s). The mean SUV max of three lesions using the current fixed-acquisition and two proposed variable-acquisition time protocols in the clinical study were 3.1, 3.1 and 3.2, respectively, which did not significantly differ. Leg acquisition time per bed position of even 30-90 s allows axial equalization, uniform image noise and a maximum ± 15% quantitative accuracy for the smallest lesion. The overall acquisition time was reduced by 23-42% using the proposed shorter variable than the current fixed-acquisition time for imaging legs, indicating that this is a useful and practical protocol for routine qualitative and quantitative PET/CT assessment in the clinical setting.

  12. Electrical, Thermal, and Mechanical Characterization of Novel Segmented-Leg Thermoelectric Modules

    NASA Astrophysics Data System (ADS)

    D'Angelo, Jonathan; Case, Eldon D.; Matchanov, Nuraddin; Wu, Chun-I.; Hogan, Timothy P.; Barnard, James; Cauchy, Charles; Hendricks, Terry; Kanatzidis, Mercouri G.

    2011-10-01

    In this paper we report on the electrical, thermal, and mechanical characterization of segmented-leg PbTe-based thermoelectric modules. This work featured a thermoelectric module measurement system that was constructed and used to measure 47-couple segmented thermoelectric power generation modules fabricated by Tellurex Corporation using n-type Bi2Te3- x Se x to Ag0.86Pb19+ x SbTe20 legs and p-type Bi x Sb2- x Te3 to Ag0.9Pb9Sn9Sb0.6Te20 legs. The modules were measured under vacuum with hot-side and cold-side temperatures of approximately 670 K and 312 K, respectively. In addition, the measurements on the PbTe-based materials are compared with measurements performed on Bi2Te3 reference modules. Efficiency values as high as 6.56% were measured on these modules. In addition to the measurement system description and the measurement results on these modules, infrared images of the modules that were used to help identify nonuniformities are also presented.

  13. Performance Test Results of a Skutterudite-Based Unicouple with a Metallic Coating

    NASA Astrophysics Data System (ADS)

    Saber, Hamed H.; El-Genk, Mohamed S.; Caillat, Thierry

    2005-02-01

    A performance test of a Skutterudite-based unicouple (MAY-04) with a metallic coating to suppress the sublimation of antimony from the legs near the hot junction is performed in vacuum (˜ 9 ×10-7 torr) for ˜ 2,000 hours at hot and cold junction temperatures of 892.1 ± 11.9 K and 316.1 ± 5.5 K, respectively. The p-leg is made of CeFe3.5Co0.5Sb12 and the n-leg is made of CoSb3. Presented are the measured voltage-current characteristics, electrical power, open-circuit voltage, and the Seebeck coefficients of the legs as functions of cumulative test time. Also presented is the estimate of the conversion efficiency, ˜ 96 hrs after the start of test. To demonstrate the effectiveness of the metallic coating, the measurements for MAY-04 are compared with those of two uncoated unicouples of the same leg materials (MAR-03 and JUN-03), which had been tested earlier. The cross-sectional areas of the legs in MAY-04 are larger than those in MAR-03 and JUN-03, tested in argon cover gas at ˜ 0.051-0.068 MPa for 450 and 1200 hours, respectively. The open circuit voltage, Voc (204 mV) of MAY-04 at Beginning-Of-Test (BOT) is almost the same as that of MAR-03, but higher than that of JUN-03 (˜180 mV). Although the argon gas effectively decreased antimony loss from legs of MAR-03 and JUN-03, marked degradations in performance occurred with time in these tests. Conversely, the metallic coating in MAY-04 effectively reduced the performance degradation with cumulative test time. The estimated peak efficiency of MAY-04, shortly after BOT (10.65%) is only ˜ 0.37 percentage point lower than the theoretical value, assuming zero side heat losses and zero contact resistance per leg. The peak power of MAY-04 decreased by only ˜12%, from its BOT value of ˜1.6 We to ˜1.4 We after ˜2,000 of cumulative testing.

  14. Quantifying kinematic differences between land and water during squats, split squats, and single-leg squats in a healthy population.

    PubMed

    Severin, Anna C; Burkett, Brendan J; McKean, Mark R; Wiegand, Aaron N; Sayers, Mark G L

    2017-01-01

    Aquatic exercises can be used in clinical and sporting disciplines for both rehabilitation and sports training. However, there is limited knowledge on the influence of water immersion on the kinematics of exercises commonly used in rehabilitation and fitness programs. The aim of this study was to use inertial sensors to quantify differences in kinematics and movement variability of bodyweight squats, split squats, and single-leg squats performed on dry land and whilst immersed to the level of the greater trochanter. During two separate testing sessions, 25 active healthy university students (22.3±2.9 yr.) performed ten repetitions of each exercise, whilst tri-axial inertial sensors (100 Hz) recorded their trunk and lower body kinematics. Repeated-measures statistics tested for differences in segment orientation and speed, movement variability, and waveform patterns between environments, while coefficient of variance was used to assess differences in movement variability. Between-environment differences in segment orientation and speed were portrayed by plotting the mean difference ±95% confidence intervals (CI) throughout the tasks. The results showed that the depth of the squat and split squat were unaffected by the changed environment while water immersion allowed for a deeper single leg squat. The different environments had significant effects on the sagittal plane orientations and speeds for all segments. Water immersion increased the degree of movement variability of the segments in all exercises, except for the shank in the frontal plane, which showed more variability on land. Without compromising movement depth, the aquatic environment induces more upright trunk and shank postures during squats and split squats. The aquatic environment allows for increased squat depth during the single-leg squat, and increased shank motions in the frontal plane. Our observations therefore support the use of water-based squat tasks for rehabilitation as they appear to improve the technique without compromising movement depth.

  15. Quantifying kinematic differences between land and water during squats, split squats, and single-leg squats in a healthy population

    PubMed Central

    2017-01-01

    Aquatic exercises can be used in clinical and sporting disciplines for both rehabilitation and sports training. However, there is limited knowledge on the influence of water immersion on the kinematics of exercises commonly used in rehabilitation and fitness programs. The aim of this study was to use inertial sensors to quantify differences in kinematics and movement variability of bodyweight squats, split squats, and single-leg squats performed on dry land and whilst immersed to the level of the greater trochanter. During two separate testing sessions, 25 active healthy university students (22.3±2.9 yr.) performed ten repetitions of each exercise, whilst tri-axial inertial sensors (100 Hz) recorded their trunk and lower body kinematics. Repeated-measures statistics tested for differences in segment orientation and speed, movement variability, and waveform patterns between environments, while coefficient of variance was used to assess differences in movement variability. Between-environment differences in segment orientation and speed were portrayed by plotting the mean difference ±95% confidence intervals (CI) throughout the tasks. The results showed that the depth of the squat and split squat were unaffected by the changed environment while water immersion allowed for a deeper single leg squat. The different environments had significant effects on the sagittal plane orientations and speeds for all segments. Water immersion increased the degree of movement variability of the segments in all exercises, except for the shank in the frontal plane, which showed more variability on land. Without compromising movement depth, the aquatic environment induces more upright trunk and shank postures during squats and split squats. The aquatic environment allows for increased squat depth during the single-leg squat, and increased shank motions in the frontal plane. Our observations therefore support the use of water-based squat tasks for rehabilitation as they appear to improve the technique without compromising movement depth. PMID:28767683

  16. Experimental Evidence of the Tonic Vibration Reflex during Whole-Body Vibration of the Loaded and Unloaded Leg

    PubMed Central

    Zaidell, Lisa N.; Mileva, Katya N.; Sumners, David P.; Bowtell, Joanna L.

    2013-01-01

    Increased muscle activation during whole-body vibration (WBV) is mainly ascribed to a complex spinal and supraspinal neurophysiological mechanism termed the tonic vibration reflex (TVR). However, TVR has not been experimentally demonstrated during low-frequency WBV, therefore this investigation aimed to determine the expression of TVR during WBV.  Whilst seated, eight healthy males were exposed to either vertical WBV applied to the leg via the plantar-surface of the foot, or Achilles tendon vibration (ATV) at 25Hz and 50Hzfor 70s. Ankle plantar-flexion force, tri-axial accelerations at the shank and vibration source, and surface EMG activity of m. soleus (SOL) and m. tibialis anterior (TA) were recorded from the unloaded and passively loaded leg to simulate body mass supported during standing.  Plantar flexion force was similarly augmented by WBV and ATV and increased over time in a load- and frequency dependent fashion. SOL and TA EMG amplitudes increased over time in all conditions independently of vibration mode. 50Hz WBV and ATV resulted in greater muscle activation than 25Hz in SOL when the shank was loaded and in TA when the shank was unloaded despite the greater transmission of vertical acceleration from source to shank with 25Hz and WBV, especially during loading. Low-amplitude WBV of the unloaded and passively loaded leg produced slow tonic muscle contraction and plantar-flexion force increase of similar magnitudes to those induced by Achilles tendon vibration at the same frequencies. This study provides the first experimental evidence supporting the TVR as a plausible mechanism underlying the neuromuscular response to whole-body vibration. PMID:24386466

  17. Gulf of Mexico Gas Hydrate Joint Industry Project Leg II logging-while-drilling data acquisition and anaylsis

    USGS Publications Warehouse

    Collett, Timothy S.; Lee, Myung W.; Zyrianova, Margarita V.; Mrozewski, Stefan A.; Guerin, Gilles; Cook, Ann E.; Goldberg, Dave S.

    2012-01-01

    One of the objectives of the Gulf of MexicoGasHydrateJointIndustryProjectLegII (GOM JIP LegII) was the collection of a comprehensive suite of logging-while-drilling (LWD) data within gas-hydrate-bearing sand reservoirs in order to make accurate estimates of the concentration of gashydrates under various geologic conditions and to understand the geologic controls on the occurrence of gashydrate at each of the sites drilled during this expedition. The LWD sensors just above the drill bit provided important information on the nature of the sediments and the occurrence of gashydrate. There has been significant advancements in the use of downhole well-logging tools to acquire detailed information on the occurrence of gashydrate in nature: From using electrical resistivity and acoustic logs to identify gashydrate occurrences in wells to where wireline and advanced logging-while-drilling tools are routinely used to examine the petrophysical nature of gashydrate reservoirs and the distribution and concentration of gashydrates within various complex reservoir systems. Recent integrated sediment coring and well-log studies have confirmed that electrical resistivity and acoustic velocity data can yield accurate gashydrate saturations in sediment grain supported (isotropic) systems such as sand reservoirs, but more advanced log analysis models are required to characterize gashydrate in fractured (anisotropic) reservoir systems. In support of the GOM JIP LegII effort, well-log data montages have been compiled and presented in this report which includes downhole logs obtained from all seven wells drilled during this expedition with a focus on identifying and characterizing the potential gas-hydrate-bearing sedimentary section in each of the wells. Also presented and reviewed in this report are the gas-hydrate saturation and sediment porosity logs for each of the wells as calculated from available downhole well logs.

  18. A metabolic basis for impaired muscle force production and neuromuscular compensation during sprint cycling.

    PubMed

    Bundle, Matthew W; Ernst, Carrie L; Bellizzi, Matthew J; Wright, Seth; Weyand, Peter G

    2006-11-01

    For both different individuals and modes of locomotion, the external forces determining all-out sprinting performances fall predictably with effort duration from the burst maximums attained for 3 s to those that can be supported aerobically as trial durations extend to roughly 300 s. The common time course of this relationship suggests a metabolic basis for the decrements in the force applied to the environment. However, the mechanical and neuromuscular responses to impaired force production (i.e., muscle fatigue) are generally considered in relation to fractions of the maximum force available, or the maximum voluntary contraction (MVC). We hypothesized that these duration-dependent decrements in external force application result from a reliance on anaerobic metabolism for force production rather than the absolute force produced. We tested this idea by examining neuromuscular activity during two modes of sprint cycling with similar external force requirements but differing aerobic and anaerobic contributions to force production: one- and two-legged cycling. In agreement with previous studies, we found greater peak per leg aerobic metabolic rates [59% (+/-6 SD)] and pedal forces at VO2 peak [30% (+/-9)] during one- vs. two-legged cycling. We also determined downstroke pedal forces and neuromuscular activity by surface electromyography during 15 to 19 all-out constant load sprints lasting from 12 to 400 s for both modes of cycling. In support of our hypothesis, we found that the greater reliance on anaerobic metabolism for force production induced compensatory muscle recruitment at lower pedal forces during two- vs. one-legged sprint cycling. We conclude that impaired muscle force production and compensatory neuromuscular activity during sprinting are triggered by a reliance on anaerobic metabolism for force production.

  19. Male sex, height, weight, and body mass index can increase external pressure to calf region using knee-crutch-type leg holder system in lithotomy position.

    PubMed

    Mizuno, Ju; Takahashi, Toru

    2016-01-01

    Well-leg compartment syndrome (WLCS) is one of the catastrophic complications related to prolonged surgical procedures performed in the lithotomy position, using a knee-crutch-type leg holder (KCLH) system, to support the popliteal fossae and calf regions. Obesity has been implicated as a risk factor in the lithotomy position-related WLCS during surgery. In the present study, we investigated the relationship between the external pressure (EP) applied to the calf region using a KCLH system in the lithotomy position and selected physical characteristics. Twenty-one young, healthy volunteers (21.4±0.5 years of age, eleven males and ten females) participated in this study. The KCLH system used was Knee Crutch(®). We assessed four types of EPs applied to the calf region: box pressure, peak box pressure, contact pressure, and peak contact pressure, using pressure-distribution measurement system (BIG-MAT(®)). Relationships between these four EPs to the calf regions of both lower legs and a series of physical characteristics (sex, height, weight, and body mass index [BMI]) were analyzed. All four EPs applied to the bilateral calf regions were higher in males than in females. For all subjects, significant positive correlations were observed between all four EPs and height, weight, and BMI. EP applied to the calf region is higher in males than in females when the subject is supported by a KCLH system in the lithotomy position. In addition, EP increases with the increase in height, weight, and BMI. Therefore, male sex, height, weight, and BMI may contribute to the risk of inducing WLCS.

  20. Multi-pedal DNA walker biosensors based on catalyzed hairpin assembly and isothermal strand-displacement polymerase reaction for the chemiluminescent detection of proteins.

    PubMed

    Li, Ningxing; Du, Mingyuan; Liu, Yucheng; Ji, Xinghu; He, Zhike

    2018-06-25

    Two kinds of sensitive biosensors based on multi-pedal DNA walker along a 3-D DNA functional magnet particles track for the chemiluminescent detection of streptavidin are constructed and compared in this study. In the presence of SA, multi-pedal DNA walker has been constructed by biotin-modified catalyst as a result of the terminal protection for avoiding the digestion by exonuclease I. Then a toehold of CHA-H1 conjugated with magnetic microparticles (MMPs) could interact with a 'leg' of multi-pedal DNA walker to open the hairpin via toehold-mediated strand exchange catalysis. A newly exposed DNA segment in CHA-H1 would be hybridized with a toehold of biotin-labeled H2. Via the strand displacement process, H2 displaces one 'leg' of multi-pedal DNA walker, and the other 'leg' could still hybridize with neighboring H1 to initiate the next cycle. In order to solve the high background caused by the hybridization between CHA-H1 and H2 without CHA-catalyst, the other model has been designed. The principle of the other model (ISDPR DNA walker) is similar to the above one. After the terminal protection of SA, a 'leg' of multi-pedal DNA walker triggers the opening of the hairpin of ISDPR-H1 conjugated with MMPs. Then the biotin-modified primer could hybridize with the open stem, triggering the polymerization reaction in the presence of dNTPs/polymerase. As the extension of the primer, the 'leg' of multi-pedal DNA walker is displaced so that the other 'leg' could trigger proximal H1 to go on the next cycle. Due to its lower background and stronger signal, multi-pedal DNA walker based on ISDPR has a lower limit of detection for SA. The limit of detection (LOD) for SA is 6.5 pM. What's more, these DNA walker methods have been applied in complex samples successfully.

  1. Laboratory- and field-based testing as predictors of skating performance in competitive-level female ice hockey.

    PubMed

    Henriksson, Tommy; Vescovi, Jason D; Fjellman-Wiklund, Anncristine; Gilenstam, Kajsa

    2016-01-01

    The purpose of this study was to examine whether field-based and/or laboratory-based assessments are valid tools for predicting key performance characteristics of skating in competitive-level female hockey players. Cross-sectional study. Twenty-three female ice hockey players aged 15-25 years (body mass: 66.1±6.3 kg; height: 169.5±5.5 cm), with 10.6±3.2 years playing experience volunteered to participate in the study. The field-based assessments included 20 m sprint, squat jump, countermovement jump, 30-second repeated jump test, standing long jump, single-leg standing long jump, 20 m shuttle run test, isometric leg pull, one-repetition maximum bench press, and one-repetition maximum squats. The laboratory-based assessments included body composition (dual energy X-ray absorptiometry), maximal aerobic power, and isokinetic strength (Biodex). The on-ice tests included agility cornering s-turn, cone agility skate, transition agility skate, and modified repeat skate sprint. Data were analyzed using stepwise multivariate linear regression analysis. Linear regression analysis was used to establish the relationship between key performance characteristics of skating and the predictor variables. Regression models (adj R (2)) for the on-ice variables ranged from 0.244 to 0.663 for the field-based assessments and from 0.136 to 0.420 for the laboratory-based assessments. Single-leg tests were the strongest predictors for key performance characteristics of skating. Single leg standing long jump alone explained 57.1%, 38.1%, and 29.1% of the variance in skating time during transition agility skate, agility cornering s-turn, and modified repeat skate sprint, respectively. Isokinetic peak torque in the quadriceps at 90° explained 42.0% and 32.2% of the variance in skating time during agility cornering s-turn and modified repeat skate sprint, respectively. Field-based assessments, particularly single-leg tests, are an adequate substitute to more expensive and time-consuming laboratory assessments if the purpose is to gain knowledge about key performance characteristics of skating.

  2. Laboratory- and field-based testing as predictors of skating performance in competitive-level female ice hockey

    PubMed Central

    Henriksson, Tommy; Vescovi, Jason D; Fjellman-Wiklund, Anncristine; Gilenstam, Kajsa

    2016-01-01

    Objectives The purpose of this study was to examine whether field-based and/or laboratory-based assessments are valid tools for predicting key performance characteristics of skating in competitive-level female hockey players. Design Cross-sectional study. Methods Twenty-three female ice hockey players aged 15–25 years (body mass: 66.1±6.3 kg; height: 169.5±5.5 cm), with 10.6±3.2 years playing experience volunteered to participate in the study. The field-based assessments included 20 m sprint, squat jump, countermovement jump, 30-second repeated jump test, standing long jump, single-leg standing long jump, 20 m shuttle run test, isometric leg pull, one-repetition maximum bench press, and one-repetition maximum squats. The laboratory-based assessments included body composition (dual energy X-ray absorptiometry), maximal aerobic power, and isokinetic strength (Biodex). The on-ice tests included agility cornering s-turn, cone agility skate, transition agility skate, and modified repeat skate sprint. Data were analyzed using stepwise multivariate linear regression analysis. Linear regression analysis was used to establish the relationship between key performance characteristics of skating and the predictor variables. Results Regression models (adj R2) for the on-ice variables ranged from 0.244 to 0.663 for the field-based assessments and from 0.136 to 0.420 for the laboratory-based assessments. Single-leg tests were the strongest predictors for key performance characteristics of skating. Single leg standing long jump alone explained 57.1%, 38.1%, and 29.1% of the variance in skating time during transition agility skate, agility cornering s-turn, and modified repeat skate sprint, respectively. Isokinetic peak torque in the quadriceps at 90° explained 42.0% and 32.2% of the variance in skating time during agility cornering s-turn and modified repeat skate sprint, respectively. Conclusion Field-based assessments, particularly single-leg tests, are an adequate substitute to more expensive and time-consuming laboratory assessments if the purpose is to gain knowledge about key performance characteristics of skating. PMID:27574474

  3. Conservative management of distal leg necrosis in lung transplant recipients.

    PubMed

    Aigner, F; Husmann, M; Huber, L C; Benden, C; Schuurmans, M M

    2017-05-01

    Critical limb ischemia (CLI) with distal leg necrosis in lung transplant recipients (LTR) is associated with a high risk for systemic infection and sepsis. Optimal management of CLI has not been defined so far in LTR. In immunocompetent individuals with leg necrosis, surgical amputation would be indicated and standard care. We report on the outcome of four conservatively managed LTR with distal leg necrosis due to peripheral arterial disease (PAD) with medial calcification of the distal limb vessels. Time interval from lung transplantation to CLI ranged from four years (n = 1) to more than a decade (n = 3). In all cases a multimodal therapy with heparin, acetylsalicylic acid, iloprost and antibiotic therapy was performed, in addition to a trial of catheter-based revascularization. Surgical amputation of necrosis was not undertaken due to fear of wound healing difficulties under long-term immunosuppression and impaired tissue perfusion. Intensive wound care and selective debridement were performed. Two patients developed progressive gangrene followed by auto-amputation during a follow-up of 43 and 49 months with continued ambulation and two patients died of unrelated causes 9 and 12 months after diagnosis of CLI. In conclusion, we report a conservative treatment strategy for distal leg necrosis in LTR without surgical amputation and recommend this approach based on our experience. Copyright © 2017 Tissue Viability Society. Published by Elsevier Ltd. All rights reserved.

  4. Postural Stability is Altered by Blood Shift

    NASA Astrophysics Data System (ADS)

    Marais, M.; Denise, P.; Guincetre, J. Y.; Normand, H.

    2008-06-01

    Non-vestibular influences as shift in blood volume changed perception of body posture. Then, factors affecting blood shift may alter postural control. The purpose of our study was to investigate the effects of leg venous contention on postural stability. Twelve subjects were studied on a balance plate for 5 minutes with the eyes closed, in 3 conditions: with no leg venous contention or grade 1 and 3 support stockings. Standard deviation of x and y position was calculated before and after the closure of the eyes. Strong venous contention altered postural stability, after the eyes were closed, during the first 10 s of standing. As support stockings prevent blood shift induced by upright posture, this result is in line with the hypothesis that blood shifts influence the perception of body orientation and postural control among others factors as vision, vestibular inputs... This strong venous contention could induce an increase of fall.

  5. Milnesium minutum and Milnesium sandrae, two new species of Milnesiidae (Tardigrada, Eutardigrada, Apochela)

    PubMed Central

    Pilato, Giovanni; Lisi, Oscar

    2016-01-01

    Abstract Two new species of Milnesium are described, Milnesium minutum sp. n. from Sicily and Milnesium sandrae sp. n. from the Hawaiian Archipelago. The body size of Milnesium minutum is the smallest of the known species of the genus. The stylet supports are inserted on the buccal tube at 63–66% of its length and the claws have a [3-3]-[3-3] configuration. Milnesium sandrae has stylet supports inserted on the buccal tube at 58–60.5% of its length, a [3-3]-[3-3] claw configuration, and the percent ratio between the secondary claw and primary claw length on legs I–III (78.6%–85.5%) clearly higher than on legs IV (70.5%–71.4%). With the description of these two new species, the number of species in the genus is increased to 31. PMID:27110205

  6. Comparative study on the mechanical mechanism of confined concrete supporting arches in underground engineering.

    PubMed

    Lv, Zhijin; Qin, Qian; Jiang, Bei; Luan, Yingcheng; Yu, Hengchang

    2018-01-01

    In order to solve the supporting problem in underground engineering with high stress, square steel confined concrete (SQCC) supporting method is adopted to enhance the control on surrounding rocks, and the control effect is remarkable. The commonly used cross section shapes of confined concrete arch are square and circular. At present, designers have no consensus on which kind is more proper. To search for the answer, this paper makes an analysis on the mechanical properties of the two shapes of the cross-sections. A full-scale indoor comparative test was carried out on the commonly used straight-wall semi-circular SQCC arch and circular steel confined concrete arch (CCC arch). This test is based on self-developed full-scale test system for confined concrete arch. Our research, combining with the numerical analysis, shows: (1) SQCC arch is consistent with CCC arch in the deformation and failure mode. The largest damages parts are at the legs of both of them. (2) The SQCC arch's bearing capability is 1286.9 kN, and the CCC arch's ultimate bearing capability is 1072.4kN. Thus, the SQCC arch's bearing capability is 1.2 times that of the CCC arch. (3) The arches are subjected to combined compression and bending, bending moment is the main reason for the arch failure. The section moment of inertia of SQCC arch is 1.26 times of that of CCC arch, and the former is better than the latter in bending performance. The ultimate bearing capacity is positively correlated with the size of the moment of inertia. Based on the above research, the engineering suggestions are as follows: (1) To improve the bearing capacity of the arch, the cross-sectional shape of the chamber should be optimized and the arch bearing mode changed accordingly. (2) The key damaged positions, such as the arch leg, should be reinforced, optimizing the state of force on the arch. SQCC arches should be used for supporting in underground engineering, which is under stronger influence of the bending moment and non-uniform load on the supporting arches. The research results could provide a theoretical basis for the design of confined concrete support in underground engineering.

  7. Comparative study on the mechanical mechanism of confined concrete supporting arches in underground engineering

    PubMed Central

    Qin, Qian; Jiang, Bei; Luan, Yingcheng; Yu, Hengchang

    2018-01-01

    In order to solve the supporting problem in underground engineering with high stress, square steel confined concrete (SQCC) supporting method is adopted to enhance the control on surrounding rocks, and the control effect is remarkable. The commonly used cross section shapes of confined concrete arch are square and circular. At present, designers have no consensus on which kind is more proper. To search for the answer, this paper makes an analysis on the mechanical properties of the two shapes of the cross-sections. A full-scale indoor comparative test was carried out on the commonly used straight-wall semi-circular SQCC arch and circular steel confined concrete arch (CCC arch). This test is based on self-developed full-scale test system for confined concrete arch. Our research, combining with the numerical analysis, shows: (1) SQCC arch is consistent with CCC arch in the deformation and failure mode. The largest damages parts are at the legs of both of them. (2) The SQCC arch’s bearing capability is 1286.9 kN, and the CCC arch’s ultimate bearing capability is 1072.4kN. Thus, the SQCC arch’s bearing capability is 1.2 times that of the CCC arch. (3) The arches are subjected to combined compression and bending, bending moment is the main reason for the arch failure. The section moment of inertia of SQCC arch is 1.26 times of that of CCC arch, and the former is better than the latter in bending performance. The ultimate bearing capacity is positively correlated with the size of the moment of inertia. Based on the above research, the engineering suggestions are as follows: (1) To improve the bearing capacity of the arch, the cross-sectional shape of the chamber should be optimized and the arch bearing mode changed accordingly. (2) The key damaged positions, such as the arch leg, should be reinforced, optimizing the state of force on the arch. SQCC arches should be used for supporting in underground engineering, which is under stronger influence of the bending moment and non-uniform load on the supporting arches. The research results could provide a theoretical basis for the design of confined concrete support in underground engineering. PMID:29447187

  8. Multi-channel electrical impedance tomography for regional tissue hydration monitoring.

    PubMed

    Chen, Xiaohui; Kao, Tzu-Jen; Ashe, Jeffrey M; Boverman, Gregory; Sabatini, James E; Davenport, David M

    2014-06-01

    Poor assessment of hydration status during hemodialysis can lead to under- or over-hydration in patients with consequences of increased morbidity and mortality. In current practice, fluid management is largely based on clinical assessments to estimate dry weight (normal hydration body weight). However, hemodialysis patients usually have co-morbidities that can make the signs of fluid status ambiguous. Therefore, achieving normal hydration status remains a major challenge for hemodialysis therapy. Electrical impedance technology has emerged as a promising method for hydration monitoring due to its non-invasive nature, low cost and ease-of-use. Conventional electrical impedance-based hydration monitoring systems employ single-channel current excitation (either 2-electrode or 4-electrode methods) to perturb and extract averaged impedance from bulk tissue and use generalized models from large populations to derive hydration estimates. In the present study, a prototype, single-frequency electrical impedance tomography (EIT) system with simultaneous multi-channel current excitation was used to enable regional hydration change detection. We demonstrated the capability to detect a difference in daily impedance change between left leg and right leg in healthy human subjects, who wore a compression sock only on one leg to reduce daily gravitational fluid accumulation. The impedance difference corresponded well with the difference of lower leg volume change between left leg and right leg measured by volumetry, which on average is ~35 ml, accounting for 0.7% of the lower leg volume. We have demonstrated the feasibility of using multi-channel EIT to extract hydration information in different tissue layers with minimal skin interference. Our simultaneous, multi-channel current excitation approach provides an effective method to separate electrode contact impedance and skin condition artifacts from hydration signals. The prototype system has the potential to be used in clinical settings for helping optimize patient fluid management during hemodialysis as well as for home monitoring of patients with congestive heart failure, chronic kidney disease, diabetes and other diseases with peripheral edema symptoms.

  9. Kinematics of an in-parallel actuated manipulator based on the Stewart platform mechanism

    NASA Technical Reports Server (NTRS)

    Williams, Robert L., II

    1992-01-01

    This paper presents kinematic equations and solutions for an in-parallel actuated robotic mechanism based on Stewart's platform. These equations are required for inverse position and resolved rate (inverse velocity) platform control. NASA LaRC has a Vehicle Emulator System (VES) platform designed by MIT which is based on Stewart's platform. The inverse position solution is straight-forward and computationally inexpensive. Given the desired position and orientation of the moving platform with respect to the base, the lengths of the prismatic leg actuators are calculated. The forward position solution is more complicated and theoretically has 16 solutions. The position and orientation of the moving platform with respect to the base is calculated given the leg actuator lengths. Two methods are pursued in this paper to solve this problem. The resolved rate (inverse velocity) solution is derived. Given the desired Cartesian velocity of the end-effector, the required leg actuator rates are calculated. The Newton-Raphson Jacobian matrix resulting from the second forward position kinematics solution is a modified inverse Jacobian matrix. Examples and simulations are given for the VES.

  10. Divertor-localized fluctuations in NSTX-U L-mode discharges

    NASA Astrophysics Data System (ADS)

    Scotti, Filippo; Soukhanovskii, V. A.; Zweben, S.; Myra, J.; Baver, D.; Sabbagh, S. A.

    2017-10-01

    The 3-D structure of divertor turbulence is characterized in NSTX-U by means of fast camera imaging. Edge and divertor turbulence can be important in determining the heat flux width in fusion devices. Field-aligned filaments are found on the divertor legs via imaging of C III and D- α emission in NBI-heated diverted L-mode discharges, similar to observations in Alcator C-Mod and MAST. These flute-like fluctuations of up to 10-20% in RMS/mean are radially localized around the separatrix and limited to the region below the X-point. Poloidal and parallel correlation lengths are a few cm (10-50ρi) and several meters, respectively. For the outer leg filaments, poloidal correlation lengths decrease along the leg away from the strike point and typical effective toroidal mode numbers are in the range of 10-20. Opposite toroidal rotation is observed for inner (co-current rotation) and outer leg (counter-current rotation) filaments with apparent poloidal propagation of 1 km/s. The poloidal motion of outer leg filaments is opposite to the one typically observed for NSTX upstream blobs in the scrape-off layer. The shape, dynamics and absence of correlation with upstream turbulence suggest that these fluctuations are generated and localized in the divertor region. Supported by US DOE DE-AC52-07NA27344, DE-AC02-09CH11466, DE-FG02- 02ER54678, DE-FG02-99ER54524.

  11. Bilateral and Unilateral Asymmetries of Isokinetic Strength and Flexibility in Male Young Professional Soccer Players

    PubMed Central

    Daneshjoo, Abdolhamid; Rahnama, Nader; Mokhtar, Abdul Halim; Yusof, Ashril

    2013-01-01

    This study investigated bilateral and unilateral asymmetries of strength and flexibility in male young professional soccer players. Thirty-six soccer players (age: 18.9 ± 1.4 years) participated in this study. A Biodex Isokinetic Dynamometer was used to assess the hamstring and quadriceps strength at selected speeds of 60°/s, 180°/s and 300°/s. Hip joint flexibility was measured using a goniometer. No difference was observed in conventional strength ratio, dynamic control ratio and fast/slow speed ratio between the dominant and non-dominant legs (p>0.05). All but one of the players (97.2%) had musculoskeletal abnormality (bilateral imbalance > 10%) in one or more specific muscle groups. The dominant leg had greater hip joint flexibility compared with the non-dominant leg (108.8 ± 10.7° versus 104.6 ± 9.8°, respectively). The findings support the hypothesis that physical performance and movement pattern experienced during soccer playing may negatively change the balance of strength in both legs (bilateral strength balance), but not on the same leg of the young male professional soccer players. The results can be helpful for trainers and coaches to decide whether the players need to improve their balance and strength which in turn may prevent injury. It is suggested that in professional soccer training, quadriceps and hamstrings muscle strength, as well as hip joint flexibility should not be overlooked. PMID:23717354

  12. Influence of fear of falling on anticipatory postural control of medio-lateral stability during rapid leg flexion.

    PubMed

    Yiou, E; Deroche, T; Do, M C; Woodman, T

    2011-04-01

    During leg flexion from erect posture, postural stability is organized in advance during "anticipatory postural adjustments" (APA). During these APA, inertial forces are generated that propel the centre of gravity (CoG) laterally towards stance leg side. This study examined how fear of falling (FoF) may influence this anticipatory postural control of medio-lateral (ML) stability. Ten young healthy participants performed a series of leg flexions at maximal velocity from low and high surface heights (6 and 66 cm above ground, respectively). In this latter condition with increased FoF, stance foot was placed at the lateral edge of the support surface to induce maximal postural threat. Results showed that the amplitude of ML inertial forces generated during APA decreased with FoF; this decrease was compensated by an increase in APA duration so that the CoG position at time of swing foot-off was located further towards stance leg side. With these changes in ML APA, the CoG was propelled in the same final (unipodal) position above stance foot as in condition with low FoF. These results contrast with those obtained in the literature during quiet standing which showed that FoF did not have any influence on the ML component of postural control. It is proposed that ML APA are modified with increased FoF, in such a way that the risk of a sideway fall induced by the large CoG motion is attenuated.

  13. Compatibility between Co-Metallized PbTe Thermoelectric Legs and an Ag–Cu–In Brazing Alloy

    PubMed Central

    Ben-Ayoun, Dana; Sadia, Yatir; Gelbstein, Yaniv

    2018-01-01

    In thermoelectric (TE) generators, maximizing the efficiency of conversion of direct heat to electricity requires the reduction of any thermal and electrical contact resistances between the TE legs and the metallic contacts. This requirement is especially challenging in the development of intermediate to high-temperature TE generators. PbTe-based TE materials are known to be highly efficient up to temperatures of around 500 °C; however, only a few practical TE generators based on these materials are currently commercially available. One reason for that is the insufficient bonding techniques between the TE legs and the hot-side metallic contacts. The current research is focused on the interaction between cobalt-metallized n-type 9.104 × 10−3 mol % PbI2-doped PbTe TE legs and the Ag0.32Cu0.43In0.25 brazing alloy, which is free of volatile species. Clear and fine interfaces without any noticeable formation of adverse brittle intermetallic compounds were observed following prolonged thermal treatment testing. Moreover, a reasonable electrical contact resistance of ~2.25 mΩmm2 was observed upon brazing at 600 °C, highlighting the potential of such contacts while developing practical PbTe-based TE generators. PMID:29320430

  14. Adaptive Control Strategies for Interlimb Coordination in Legged Robots: A Review

    PubMed Central

    Aoi, Shinya; Manoonpong, Poramate; Ambe, Yuichi; Matsuno, Fumitoshi; Wörgötter, Florentin

    2017-01-01

    Walking animals produce adaptive interlimb coordination during locomotion in accordance with their situation. Interlimb coordination is generated through the dynamic interactions of the neural system, the musculoskeletal system, and the environment, although the underlying mechanisms remain unclear. Recently, investigations of the adaptation mechanisms of living beings have attracted attention, and bio-inspired control systems based on neurophysiological findings regarding sensorimotor interactions are being developed for legged robots. In this review, we introduce adaptive interlimb coordination for legged robots induced by various factors (locomotion speed, environmental situation, body properties, and task). In addition, we show characteristic properties of adaptive interlimb coordination, such as gait hysteresis and different time-scale adaptations. We also discuss the underlying mechanisms and control strategies to achieve adaptive interlimb coordination and the design principle for the control system of legged robots. PMID:28878645

  15. Mechanical design and driving mechanism of an isokinetic functional electrical stimulation-based leg stepping trainer.

    PubMed

    Hamzaid, N A; Fornusek, C; Ruys, A; Davis, G M

    2007-12-01

    The mechanical design of a constant velocity (isokinetic) leg stepping trainer driven by functional electrical stimulation-evoked muscle contractions was the focus of this paper. The system was conceived for training the leg muscles of neurologically-impaired patients. A commercially available slider crank mechanism for elliptical stepping exercise was adapted to a motorized isokinetic driving mechanism. The exercise system permits constant-velocity pedalling at cadences of 1-60 rev x min(-1). The variable-velocity feature allows low pedalling forces for individuals with very weak leg muscles, yet provides resistance to higher pedalling effort in stronger patients. In the future, the system will be integrated with a computer-controlled neuromuscular stimulator and a feedback control unit to monitor training responses of spinal cord-injured, stroke and head injury patients.

  16. The modified 747 carrier aircraft carrying the Space Shuttle Endeavour soars aloft from Edwards AFB on the first leg of its ferry flight back to Florida

    NASA Image and Video Library

    2008-12-10

    The Space Shuttle Endeavour atop its modified Boeing 747 carrier aircraft lifts off from Edwards Air Force Base on the first leg of its ferry flight back to the Kennedy Space Center just after sunrise on Dec. 10, 2008.

  17. The modified 747 carrier aircraft carrying the Space Shuttle Endeavour soars aloft from Edwards AFB on the first leg of its ferry flight back to Florida

    NASA Image and Video Library

    2008-12-10

    The modified Boeing 747 carrier aircraft carrying the Space Shuttle Endeavour soars aloft from Edwards Air Force Base on the first leg of its ferry flight back to the Kennedy Space Center just after sunrise on Dec. 10, 2008.

  18. Moments after sunrise, the modified 747 carrier aircraft carrying the Endeavour lifts off from Edwards AFB on the first leg of its ferry flight back to KSC

    NASA Image and Video Library

    2008-12-10

    Moments after sunrise, the modified Boeing 747 carrier aircraft carrying the Space Shuttle Endeavour lifts off from Edwards Air Force Base on the first leg of its ferry flight back to the Kennedy Space Center on Dec. 10, 2008.

  19. Adaptive Control of Four-Leg VSC Based DSTATCOM in Distribution System

    NASA Astrophysics Data System (ADS)

    Singh, Bhim; Arya, Sabha Raj

    2014-01-01

    This work discusses an experimental performance of a four-leg Distribution Static Compensator (DSTATCOM) using an adaptive filter based approach. It is used for estimation of reference supply currents through extracting the fundamental active power components of three-phase distorted load currents. This control algorithm is implemented on an assembled DSTATCOM for harmonics elimination, neutral current compensation and load balancing, under nonlinear loads. Experimental results are discussed, and it is noticed that DSTATCOM is effective solution to perform satisfactory performance under load dynamics.

  20. Bracket for photovoltaic modules

    DOEpatents

    Ciasulli, John; Jones, Jason

    2014-06-24

    Brackets for photovoltaic ("PV") modules are described. In one embodiment, a saddle bracket has a mounting surface to support one or more PV modules over a tube, a gusset coupled to the mounting surface, and a mounting feature coupled to the gusset to couple to the tube. The gusset can have a first leg and a second leg extending at an angle relative to the mounting surface. Saddle brackets can be coupled to a torque tube at predetermined locations. PV modules can be coupled to the saddle brackets. The mounting feature can be coupled to the first gusset and configured to stand the one or more PV modules off the tube.

  1. 1. OBLIQUE VIEW, NORTH AND EAST SIDES. VIEW SHOWS POSITION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. OBLIQUE VIEW, NORTH AND EAST SIDES. VIEW SHOWS POSITION OF BUILDING UNDER LEG OF TOWER 33. - Chollas Heights Naval Radio Transmitting Facility, PERS Support Storage Building, 6410 Zero Road, San Diego, San Diego County, CA

  2. Limb neurovascular control during altered otolithic input in humans

    NASA Technical Reports Server (NTRS)

    Monahan, Kevin D.; Ray, Chester A.

    2002-01-01

    Head-down rotation (HDR), which activates the vestibulosympathetic reflex, increases leg muscle sympathetic nerve activity (MSNA) and produces calf vasoconstriction with no change in either cardiac output or arterial blood pressure. Based on animal studies, it was hypothesized that differential control of arm and leg MSNA explains why HDR does not alter arterial blood pressure. Fifteen healthy subjects were studied. Heart rate, arterial blood pressure, forearm and calf blood flow, and leg MSNA responses were measured during HDR in these subjects. Simultaneous recordings of arm and leg MSNA were obtained from five of the subjects. Forearm and calf blood flow, vascular conductances, and vascular resistances were similar before HDR, as were arm and leg MSNA. HDR elicited similar significant increases in leg (Delta 6 +/- 1 bursts min(-1); 59 +/- 16 % from baseline) and arm MSNA (Delta 5 +/- 1 bursts min(-1); 80 +/- 28 % from baseline). HDR significantly decreased calf (-19 +/- 2 %) and forearm vascular conductance (-12 +/- 2 %) and significantly increased calf (25 +/- 4 %) and forearm vascular resistance (15 +/- 2 %), with 60 % greater vasoconstriction in the calf than in the forearm. Arterial blood pressure and heart rate were not altered by HDR. These results indicate that there is no differential control of MSNA in the arm and leg during altered feedback from the otolith organs in humans, but that greater vasoconstriction occurs in the calf than in the forearm. These findings indicate that vasodilatation occurs in other vascular bed(s) to account for the lack of increase in arterial blood pressure during HDR.

  3. A torsional MRE joint for a C-shaped robotic leg

    NASA Astrophysics Data System (ADS)

    Christie, M. D.; Sun, S. S.; Ning, D. H.; Du, H.; Zhang, S. W.; Li, W. H.

    2017-01-01

    Serving to improve stability and energy efficiency during locomotion, in nature, animals modulate their leg stiffness to adapt to their terrain. Now incorporated into many locomotive robot designs, such compliance control can enable disturbance rejection and improved transition between changing ground conditions. This paper presents a novel design of a variable stiffness leg utilizing a magnetorheological elastomer joint in a literal rolling spring loaded inverted pendulum (R-SLIP) morphology. Through the semi-active control of this hybrid permanent-magnet and coil design, variable stiffness is realized, offering a design which is capable of both softening and stiffening in an adaptive sort of way, with a maximum stiffness change of 48.0%. Experimental characterization first serves to assess the stiffness variation capacity of the torsional joint, and through later comparison with force testing of the leg, the linear stiffness is characterized with the R-SLIP-like behavior of the leg being demonstrated. Through the force relationships applied, a generalized relationship for determining linear stiffness based on joint rotation angle is also proposed, further aiding experimental validation.

  4. Periodic limb movements of sleep: empirical and theoretical evidence supporting objective at-home monitoring

    PubMed Central

    Moro, Marilyn; Goparaju, Balaji; Castillo, Jelina; Alameddine, Yvonne; Bianchi, Matt T

    2016-01-01

    Introduction Periodic limb movements of sleep (PLMS) may increase cardiovascular and cerebrovascular morbidity. However, most people with PLMS are either asymptomatic or have nonspecific symptoms. Therefore, predicting elevated PLMS in the absence of restless legs syndrome remains an important clinical challenge. Methods We undertook a retrospective analysis of demographic data, subjective symptoms, and objective polysomnography (PSG) findings in a clinical cohort with or without obstructive sleep apnea (OSA) from our laboratory (n=443 with OSA, n=209 without OSA). Correlation analysis and regression modeling were performed to determine predictors of periodic limb movement index (PLMI). Markov decision analysis with TreeAge software compared strategies to detect PLMS: in-laboratory PSG, at-home testing, and a clinical prediction tool based on the regression analysis. Results Elevated PLMI values (>15 per hour) were observed in >25% of patients. PLMI values in No-OSA patients correlated with age, sex, self-reported nocturnal leg jerks, restless legs syndrome symptoms, and hypertension. In OSA patients, PLMI correlated only with age and self-reported psychiatric medications. Regression models indicated only a modest predictive value of demographics, symptoms, and clinical history. Decision modeling suggests that at-home testing is favored as the pretest probability of PLMS increases, given plausible assumptions regarding PLMS morbidity, costs, and assumed benefits of pharmacological therapy. Conclusion Although elevated PLMI values were commonly observed, routinely acquired clinical information had only weak predictive utility. As the clinical importance of elevated PLMI continues to evolve, it is likely that objective measures such as PSG or at-home PLMS monitors will prove increasingly important for clinical and research endeavors. PMID:27540316

  5. Low back related leg pain: an investigation of construct validity of a new classification system.

    PubMed

    Schäfer, Axel G M; Hall, Toby M; Rolke, Roman; Treede, Rolf-Detlef; Lüdtke, Kerstin; Mallwitz, Joachim; Briffa, Kathryn N

    2014-01-01

    Leg pain is associated with back pain in 25-65% of all cases and classified as somatic referred pain or radicular pain. However, distinction between the two may be difficult as different pathomechanisms may cause similar patterns of pain. Therefore a pathomechanism based classification system was proposed, with four distinct hierarchical and mutually exclusive categories: Neuropathic Sensitization (NS) comprising major features of neuropathic pain with sensory sensitization; Denervation (D) arising from significant axonal compromise; Peripheral Nerve Sensitization (PNS) with marked nerve trunk mechanosensitivity; and Musculoskeletal (M) with pain referred from musculoskeletal structures. To investigate construct validity of the classification system. Construct validity was investigated by determining the relationship of nerve functioning with subgroups of patients and asymptomatic controls. Thus somatosensory profiles of subgroups of patients with low back related leg pain (LBRLP) and healthy controls were determined by a comprehensive quantitative sensory test (QST) protocol. It was hypothesized that subgroups of patients and healthy controls would show differences in QST profiles relating to underlying pathomechanisms. 77 subjects with LBRLP were recruited and classified in one of the four groups. Additionally, 18 age and gender matched asymptomatic controls were measured. QST revealed signs of pain hypersensitivity in group NS and sensory deficits in group D whereas Groups PNS and M showed no significant differences when compared to the asymptomatic group. These findings support construct validity for two of the categories of the new classification system, however further research is warranted to achieve construct validation of the classification system as a whole.

  6. Reference trajectory generation for rehabilitation robots: complementary limb motion estimation.

    PubMed

    Vallery, Heike; van Asseldonk, Edwin H F; Buss, Martin; van der Kooij, Herman

    2009-02-01

    For gait rehabilitation robots, an important question is how to ensure stable gait, while avoiding any interaction forces between robot and human in case the patient walks correctly. To achieve this, the definition of "correct" gait needs to adapted both to the individual patient and to the situation. Recently, we proposed a method for online trajectory generation that can be applied for hemiparetic subjects. Desired states for one (disabled) leg are generated online based on the movements of the other (sound) leg. An instantaneous mapping between legs is performed by exploiting physiological interjoint couplings. This way, the patient generates the reference motion for the affected leg autonomously. The approach, called Complementary Limb Motion Estimation (CLME), is implemented on the LOPES gait rehabilitation robot and evaluated with healthy subjects in two different experiments. In a previously described study, subjects walk only with one leg, while the robot's other leg acts as a fake prosthesis, to simulate complete loss of function in one leg. This study showed that CLME ensures stable gait. In a second study, to be presented in this paper, healthy subjects walk with both their own legs to assess the interference with self-determined walking. Evaluation criteria are: Power delivered to the joints by the robot, electromyography (EMG) distortions, and kinematic distortions, all compared to zero torque control, which is the baseline of minimum achievable interference. Results indicate that interference of the robot is lower with CLME than with a fixed reference trajectory, mainly in terms of lowered exchanged power and less alteration of EMG. This implies that subjects can walk more naturally with CLME, and they are assisted less by the robot when it is not needed. Future studies with patients are yet to show whether these properties of CLME transfer to the clinical domain.

  7. Intrarater and interrater reliability of the Anteromedial Reach Test in healthy participants

    PubMed Central

    Bent, Nicholas P; Rushton, Alison B; Wright, Chris C; Petherick, Emma-Jane; Batt, Mark E

    2014-01-01

    Background The Anteromedial Reach Test is a performance-based outcome measure for evaluating dynamic knee stability in patients with anterior cruciate ligament injury. No previously published study has adequately evaluated intrarater or interrater reliability of the Anteromedial Reach Test, so the purpose of this study was to assess these measurement properties in healthy participants prior to their investigation in patients with anterior cruciate ligament injury. Methods Two raters (A and B) tested 39 healthy university staff and students (20 men, 19 women). For the intrarater reliability investigation, rater A tested participants on three separate test occasions (days 1, 2, and 3) at the same time of day. For the interrater reliability investigation, raters A and B independently tested participants on the same test occasion (day 3). Results There was no significant systematic bias between test occasions or raters. Values of the intraclass correlation coefficient (2,1) were 0.96 for intrarater reliability of both the dominant leg and nondominant leg and 0.97 (dominant leg) and 0.98 (nondominant leg) for interrater reliability. Values for the standard error of measurement were 1.46 (dominant leg) and 1.62 (nondominant leg) for the intrarater investigation, and 1.26 (dominant leg) and 1.04 (nondominant leg) for the interrater investigation. At the 90% confidence level, the minimum detectable change was 3.8% and the error in an individual’s score at a given point in time was ±2.7%. Conclusion The Anteromedial Reach Test demonstrated excellent intrarater and interrater reliability in healthy participants. This provides a basis for future investigation of the measurement properties of the Anteromedial Reach Test in patients with anterior cruciate ligament injury. PMID:24648776

  8. Leg length, skull circumference, and the prevalence of dementia in low and middle income countries; a 10/66 population-based cross sectional survey

    PubMed Central

    Prince, Martin; Acosta, Daisy; Dangour, Alan D; Uauy, Ricardo; Guerra, Mariella; Huang, Yueqin; Jacob, KS; Llibre Rodriguez, Juan J.; Salas, Aquiles; Sosa, Ana Luisa; Williams, Joseph D.; Acosta, Isaac; Albanese, Emiliano; Dewey, Michael E.; Ferri, Cleusa P.; Stewart, Robert; Gaona, Ciro; Jotheeswaran, AT.; Senthil Kumar, P; Li, Shuran; Llibre Guerra, Juan C.; Rodriguez, Diana; Rodriguez, Guillermina

    2017-01-01

    Background Adult leg length is influenced by nutrition in the first few years of life. Adult head circumference is an indicator of brain growth. There is a limited literature linking short legs and small skulls to an increased risk for cognitive impairment and dementia in late life. Methods One phase cross-sectional surveys of all over 65 year old residents (n=14,960) in 11 catchment areas in China, India, Cuba, Dominican Republic, Venezuela, Mexico and Peru. The cross-culturally validated 10/66 dementia diagnosis, and a sociodemographic and risk factor questionnaire were administered to all participants, and anthropometric measures taken. Poisson regression was used to calculate prevalence ratios for the effect of leg length and skull circumference upon 10/66 Dementia, controlling for age, gender, education and family history of dementia. Results The pooled meta-analysed fixed effect for leg length (highest vs. lowest quarter) was 0.82 (95% CI, 0.68-0.98) and for skull circumference 0.75 (95% CI, 0.63-0.89). While point estimates varied between sites, the proportion of the variability attributable to heterogeneity between studies as opposed to sampling error (I2) was 0% for leg length and 22% for skull circumference. The effects were independent and not mediated by family history of dementia. The effect of skull circumference was not modified by educational level or gender, and the effect of leg length was not modified by gender. Conclusions Since leg length and skull circumference are said to remain stable throughout adulthood into old age, reverse causality is an unlikely explanation for the findings. Early life nutritional programming, as well as neurodevelopment may protect against neurodegeneration. PMID:20701817

  9. Pelvic movement strategies and leg extension power in patients with end-stage medial compartment knee osteoarthritis: a cross-sectional study.

    PubMed

    Kierkegaard, Signe; Jørgensen, Peter Bo; Dalgas, Ulrik; Søballe, Kjeld; Mechlenburg, Inger

    2015-09-01

    During movement tasks, patients with medial compartment knee osteoarthritis use compensatory strategies to minimise the joint load of the affected leg. Movement strategies of the knees and trunk have been investigated, but less is known about movement strategies of the pelvis during advancing functional tasks, and how these strategies are associated with leg extension power. The aim of the study was to investigate pelvic movement strategies and leg extension power in patients with end-stage medial compartment knee osteoarthritis compared with controls. 57 patients (mean age 65.6 years) scheduled for medial uni-compartmental knee arthroplasty, and 29 age and gender matched controls were included in this cross-sectional study. Leg extension power was tested with the Nottingham Leg Extension Power-Rig. Pelvic range of motion was derived from an inertia-based measurement unit placed over the sacrum bone during walking, stair climbing and stepping. Patients had lower leg extension power than controls (20-39 %, P < 0.01) and used greater pelvic range of motion during stair and step ascending and descending (P ≤ 0.03, except for pelvic range of motion in the frontal plane during ascending, P > 0.06). Furthermore, an inverse association (coefficient: -0.03 to -0.04; R (2) = 13-22 %) between leg extension power and pelvic range of motion during stair and step descending was found in the patients. Compared to controls, patients with medial compartment knee osteoarthritis use greater pelvic movements during advanced functional performance tests, particularly when these involve descending tasks. Further studies should investigate if it is possible to alter these movement strategies by an intervention aimed at increasing strength and power for the patients.

  10. Effects of 12-wk eccentric calf muscle training on muscle-tendon glucose uptake and SEMG in patients with chronic Achilles tendon pain.

    PubMed

    Masood, Tahir; Kalliokoski, Kari; Magnusson, S Peter; Bojsen-Møller, Jens; Finni, Taija

    2014-07-15

    High-load eccentric exercises have been a key component in the conservative management of chronic Achilles tendinopathy. This study investigated the effects of a 12-wk progressive, home-based eccentric rehabilitation program on ankle plantar flexors' glucose uptake (GU) and myoelectric activity and Achilles tendon GU. A longitudinal study design with control (n = 10) and patient (n = 10) groups was used. Surface electromyography (SEMG) from four ankle plantar flexors and GU from the same muscles and the Achilles tendon were measured during submaximal intermittent isometric plantar flexion task. The results indicated that the symptomatic leg was weaker (P < 0.05) than the asymptomatic leg at baseline, but improved (P < 0.001) with eccentric rehabilitation. Additionally, the rehabilitation resulted in greater GU in both soleus (P < 0.01) and lateral gastrocnemius (P < 0.001) in the symptomatic leg, while the asymptomatic leg displayed higher uptake for medial gastrocnemius and flexor hallucis longus (P < 0.05). While both patient legs had higher tendon GU than the controls (P < 0.05), there was no rehabilitation effect on the tendon GU. Concerning SEMG, at baseline, soleus showed more relative activity in the symptomatic leg compared with both the asymptomatic and control legs (P < 0.05), probably reflecting an effort to compensate for the decreased force potential. The rehabilitation resulted in greater SEMG activity in the lateral gastrocnemius (P < 0.01) of the symptomatic leg with no other within- or between-group differences. Eccentric rehabilitation was effective in decreasing subjective severity of Achilles tendinopathy. It also resulted in redistribution of relative electrical activity, but not metabolic activity, within the triceps surae muscle. Copyright © 2014 the American Physiological Society.

  11. A Novel Perforator Flap Training Model Using a Chicken Leg

    PubMed Central

    Cifuentes, Ignacio J.; Yañez, Ricardo A.; Salisbury, Maria C.; Rodriguez, José R.; Varas, Julian E.; Dagnino, Bruno L.

    2016-01-01

    Introduction  Living animal models are frequently used for perforator flap dissection training, but no ex vivo models have been described. The aim of this study is to present a novel nonliving model for perforator flap training based on a constant perforator in the chicken leg. Methods  A total of 15 chicken legs were used in this study. Anatomical dissection of the perforator was performed after its identification using ink injection, and in four of these specimens a perforator-based flap was raised. Results  The anatomical dissection revealed a constant intramuscular perforator with a median length of 5.7 cm. Median proximal and distal vessel diameters were 0.93 and 0.4 mm, respectively. The median dissection time was 77.5 minutes. Conclusion  This study introduces a novel, affordable, and reproducible model for the intramuscular dissection of a perforator-based flap using an ex vivo animal model. Its consistent perforator and appropriate-sized vessels make it useful for training. PMID:27616823

  12. Propeller Flap for Complex Distal Leg Reconstruction: A Versatile Alternative when Reverse Sural Artery Flap is Not Feasible.

    PubMed

    Ademola, Samuel A; Michael, Afieharo I; Oladeji, Femi J; Mbaya, Kefas M; Oyewole, O

    2015-01-01

    Reverse sural artery fasciocutaneous flap has become a workhorse for the reconstruction of distal leg soft tissue defects. When its use is not feasible, perforator-based propeller flap offers a better, easier, faster, and cheaper alternative to free flap. We present our experience with two men both aged 34 years who sustained Gustilo 3B injuries from gunshot. The donor area for reversed sural artery flap was involved in the injuries. They had early debridement, external fixation, and wound coverage with perforator-based propeller flaps. The donor sites were covered with skin graft. All flaps survived. There were minor wound edge ulcers due to the pressure of positioning that did not affect flap survival and the ulcers healed with conservative management. Perforator-based propeller flap is a versatile armamentarium for reconstruction of soft tissue defects of the distal leg in resource-constrained settings, especially when the donor area for a reverse flow sural flap artery is involved in the injury.

  13. Three-phase Four-leg Inverter LabVIEW FPGA Control Code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    In the area of power electronics control, Field Programmable Gate Arrays (FPGAs) have the capability to outperform their Digital Signal Processor (DSP) counterparts due to the FPGA’s ability to implement true parallel processing and therefore facilitate higher switching frequencies, higher control bandwidth, and/or enhanced functionality. National Instruments (NI) has developed two platforms, Compact RIO (cRIO) and Single Board RIO (sbRIO), which combine a real-time processor with an FPGA. The FPGA can be programmed with a subset of the well-known LabVIEW graphical programming language. The use of cRIO and sbRIO for power electronics control has developed over the last few yearsmore » to include control of three-phase inverters. Most three-phase inverter topologies include three switching legs. The addition of a fourth-leg to natively generate the neutral connection allows the inverter to serve single-phase loads in a microgrid or stand-alone power system and to balance the three-phase voltages in the presence of significant load imbalance. However, the control of a four-leg inverter is much more complex. In particular, instead of standard two-dimensional space vector modulation (SVM), the inverter requires three-dimensional space vector modulation (3D-SVM). The candidate software implements complete control algorithms in LabVIEW FPGA for a three-phase four-leg inverter. The software includes feedback control loops, three-dimensional space vector modulation gate-drive algorithms, advanced alarm handling capabilities, contactor control, power measurements, and debugging and tuning tools. The feedback control loops allow inverter operation in AC voltage control, AC current control, or DC bus voltage control modes based on external mode selection by a user or supervisory controller. The software includes the ability to synchronize its AC output to the grid or other voltage-source before connection. The software also includes provisions to allow inverter operation in parallel with other voltage regulating devices on the AC or DC buses. This flexibility allows the Inverter to operate as a stand-alone voltage source, connected to the grid, or in parallel with other controllable voltage sources as part of a microgrid or remote power system. In addition, as the inverter is expected to operate under severe unbalanced conditions, the software includes algorithms to accurately compute real and reactive power for each phase based on definitions provided in the IEEE Standard 1459: IEEE Standard Definitions for the Measurement of Electric Power Quantities Under Sinusoidal, Nonsinusoidal, Balanced, or Unbalanced Conditions. Finally, the software includes code to output analog signals for debugging and for tuning of control loops. The software fits on the Xilinx Virtex V LX110 FPGA embedded in the NI cRIO-9118 FPGA chassis, and with a 40 MHz base clock, supports a modulation update rate of 40 MHz, user-settable switching frequencies and synchronized control loop update rates of tens of kHz, and reference waveform generation, including Phase Lock Loop (PLL), update rate of 100 kHz.« less

  14. Obstacle stepping involves spinal anticipatory activity associated with quadrupedal limb coordination.

    PubMed

    Michel, J; van Hedel, H J A; Dietz, V

    2008-04-01

    Obstacle avoidance steps are associated with a facilitation of spinal reflexes in leg muscles. Here we have examined the involvement of both leg and arm muscles. Subjects walking with reduced vision on a treadmill were acoustically informed about an approaching obstacle and received feedback about task performance. Reflex responses evoked by tibial nerve stimulation were observed in all arm and leg muscles examined in this study. They were enhanced before the execution of obstacle avoidance compared with normal steps and showed an exponential adaptation in contralateral arm flexor muscles corresponding to the improvement of task performance. This enhancement was absent when the body was partially supported during the task. During the execution of obstacle steps, electromyographic activity in the arm muscles mimicked the preceding reflex behaviour with respect to enhancement and adaptation. Our results demonstrate an anticipatory quadrupedal limb coordination with an involvement of proximal arm muscles in the acquisition and performance of this precision locomotor task. This is presumably achieved by an up-regulated activity of coupled cervico-thoracal interneuronal circuits.

  15. Body weight-supported training in Becker and limb girdle 2I muscular dystrophy.

    PubMed

    Jensen, Bente R; Berthelsen, Martin P; Husu, Edith; Christensen, Sofie B; Prahm, Kira P; Vissing, John

    2016-08-01

    We studied the functional effects of combined strength and aerobic anti-gravity training in severely affected patients with Becker and Limb-Girdle muscular dystrophies. Eight patients performed 10-week progressive combined strength (squats, calf raises, lunges) and aerobic (walk/run, jogging in place or high knee-lift) training 3 times/week in a lower-body positive pressure environment. Closed-kinetic-chain leg muscle strength, isometric knee strength, rate of force development (RFD), and reaction time were evaluated. Baseline data indicated an intact neural activation pattern but showed compromised muscle contractile properties. Training (compliance 91%) improved functional leg muscle strength. Squat series performance increased 30%, calf raises 45%, and lunges 23%. Anti-gravity training improved closed-kinetic-chain leg muscle strength despite no changes in isometric knee extension strength and absolute RFD. The improved closed-kinetic-chain performance may relate to neural adaptation involving motor learning and/or improved muscle strength of other muscles than the weak knee extensors. Muscle Nerve 54: 239-243, 2016. © 2016 Wiley Periodicals, Inc.

  16. Ocean Drilling Program Contributions to the Understanding of the Deep Subsurface Biosphere

    NASA Astrophysics Data System (ADS)

    Fisk, M. R.

    2003-12-01

    Tantalizing evidence for microbes in oceanic basalts has been reported for a few decades, but it was from rocks cored on Ocean Drilling Program (ODP) Leg 148 in 1993 that the first clear-cut evidence of microbial invasion of ocean basalts was obtained. (Work on ODP legs, starting with Leg 112 in 1986, had already revealed the presence of significant microbial biomass in sediments.) In 1997 ODP created the Deep Biosphere Program Planning Group to promote the investigation of the microbiology of the ocean crust. In 1999 ODP built a microbiology lab on the JOIDES Resolution, and used the lab that year (Legs 185 and 187) to test the amount of microbial contamination introduced into rocks during drilling and to establish cultures from cored basalts. These experiments have been repeated on several legs since then. The development of CORKs has permitted long-term sampling of subseafloor fluids, and microorganisms have been recovered from CORKed holes. Thus, ODP made it possible for the scientific community to address major questions about the biology of the igneous crust, such as, (1) What microbes are present? (2) How abundant are they? (3) How are they distributed? DNA from basalts and subseafloor fluids reveal what types of organisms are present. Cell abundance and biomass have been estimated based on cell counts and on organic content of basalts. Surveys of basalts in DSDP/ODP repositories indicate that microorganisms are ubiquitous in the igneous crust. Microorganisms are found in rocks that are close to 100° C. They are found as deep as 1500 m below the sea floor, and in rocks as young as a few years and as old as 170 million years. Because of the vast size of the habitat, microorganism, even if present in small numbers, could be a significant fraction of the Earth's biomass. In a short time ODP contributed to advances in our understanding of the oceanic subsurface biosphere. Answers to other significant questions such as: (1) How do the microorganisms live?, (2) What impact do subsurface microorganisms have on the surface biosphere? (3) And, what roles do the subsurface biosphere play in element cycling? will be answered by future drilling. The International Ocean Drilling Program (IODP) is in the enviable position of providing support to address these key questions about the Earth's subsurface biosphere.

  17. A flight-phase terrain following control strategy for stable and robust hopping of a one-legged robot under large terrain variations.

    PubMed

    Shemer, Natan; Degani, Amir

    2017-08-04

    This work demonstrates a simple, once per step, flight-control method for robots running on a planar unknown rough-terrain environment. The robot used to exemplify these control strategies is the ParkourBot, a spring loaded inverted pendulum (SLIP)-based robot. The SLIP model is widely used for the description of humans and animals running motion and has been the basis for many robots. A known control scheme for increasing robustness of the conservative, SLIP model is the swing leg retraction (SLR) method. Despite of the SLR's popularity, it is not intended to be used on the more realistic, non-conservative damped SLIP model. On the damped SLIP model, the SLR controller failed to provide adequate results, therefore, we have derived a new simple, flight-phase control method called polynomial energy insertion (PEI). The new PEI method is based on the dead-beat solution of the damped simplified instantaneous SLIP (iSLIP) model, which assumes an infinitely stiff spring. Unlike the SLR which, starting from apex, changes the leg angle monotonically during flight, the PEI requires the leg length (hence, energy insertion) to change monotonically throughout the flight phase. Interestingly, the leg angle remains nearly constant. In simulations and experiments, we have compared the newly developed PEI to the previous SLR method. We have found that since the SLR does not control the horizontal velocity, it looses its stability under rough terrain. The PEI method was able to control the horizontal velocity and height from ground and hence showed great improvement in robustness to rough terrain. Moreover, in both simulations and experiments the PEI methods showed an increase in the mean jumps to failure of more than 30% compared to SLR-based controllers.

  18. Using near infrared light to manage symptoms associated with restless legs syndrome.

    PubMed

    Guffey, J Stephen; Motts, Susan; Barymon, Deanna; Wooten, Amber; Clough, Tim; Payne, Emily; Henderson, McCall; Tice, Neal

    2016-01-01

    The purpose of this study was to determine whether the application of near infrared (NIR) light could positively modulate symptoms associated with restless legs syndrome (RLS). Twenty-one subjects with RLS were treated with NIR three times weekly for four weeks. Baseline measures of: (1) international restless legs syndrome rating scale (IRLSRS) score; (2) Semmes Weinstein monofilament (SWM) test; (3) visual analog pain scale (VAS); (4) ankle-brachial index (ABI); and (5) sonographic imaging of the popliteal and posterior tibial arteries were compared to post-treatment values. NIR (850 nm) was delivered transcutaneously at 8 J/cm(2) to four locations on each leg and the plantar surface of each foot. A pre-test-post-test one group design was employed. Baseline and post-treatment measures were compared using either a dependent t-test when data were normal or the Wilcoxon signed rank test in the absence of normality. A significant improvement in IRLSRS scores was observed. Sensation improved from less than protective in 16.6% of sites tested at the baseline to 13.4% post-intervention. There was a significant improvement in ABI scores. VAS and sonographic imaging measures other than ABI remained unchanged. The use of NIR to modulate symptoms associated with RLS was supported by the data.

  19. In-situ soil sensing for planetary micro-rovers with hybrid wheel-leg systems

    NASA Astrophysics Data System (ADS)

    Comin Cabrera, Francisco Jose

    Rover missions exploring other planets are tightly constrained regarding the trade-off between safety and traversal speed. Detecting and avoiding hazards during navigation is capital to preserve the mobility of a rover. Low traversal speeds are often enforced to assure that wheeled rovers do not become stuck in challenging terrain, hindering the performance and scientific return of the mission. Even such precautions do not guarantee safe navigation due to non-geometric hazards hidden in the terrain, such as sand traps beneath thin duricrusts. These issues motivate the research of the interaction with rough and sandy planetary terrains of conventional and innovative robot locomotion concepts. Hybrid wheel-legs combine the mechanical and control simplicity of wheeled locomotion with the enhanced mobility of legged locomotion. This concept has been rarely proposed for planetary exploration and the study of its interaction with granular terrains is at a very early stage. This research focuses on advancing the state-of-the-art of wheel-leg-soil interaction analysis and applying it through in-situ sensing to simultaneously improve the speed and safety of planetary rover missions. The semi-empirical approach used combines both theoretical modelling and experimental analysis of data obtained in laboratory and field analogues. A novel light-weight, low-power sensor system, capable of reliably detecting wheel-leg sinkage and slippage phenomena on-the-fly, is designed, implemented and tested both as part of a simplified single-wheel-leg test bed and integrated in a fully mobile micro-rover. Moreover, existing analytical models for the interaction between deformable terrain and heavily-loaded wheels or lightly-loaded legs are adapted to the generalised medium-loaded multi-legged wheel-leg case and combined into hybrid approaches for better accuracy, as validated against experimental data. Finally, the soil sensor system and analytical models proposed are used to develop and prove the effectiveness of different solutions for soil characterisation, trafficability assessment and terrain classification based on non-geometric physical properties.

  20. Leg Stiffness in Female Soccer Players: Intersession Reliability and the Fatiguing Effects of Soccer-Specific Exercise.

    PubMed

    De Ste Croix, Mark B A; Hughes, Jonathan D; Lloyd, Rhodri S; Oliver, Jon L; Read, Paul J

    2017-11-01

    De Ste Croix, MBA, Hughes, JD, Lloyd, RS, Oliver, JL, and Read, PJ. Leg stiffness in female soccer players: intersession reliability and the fatiguing effects of soccer-specific exercise. J Strength Cond Res 31(11): 3052-3058, 2016-Low levels of leg stiffness and reduced leg stiffness when fatigue is present compromise physical performance and increase injury risk. The purpose of this study was to (a) determine the reliability of leg stiffness measures obtained from contact mat data and (b) explore age-related differences in leg stiffness after exposure to a soccer-specific fatigue protocol in young female soccer players. Thirty-seven uninjured female youth soccer players divided into 3 subgroups based on chronological age (under 13 [U13], under 15 [U15], and under 17 [U17] year-olds) volunteered to participate in the study. After baseline data collection, during which relative leg stiffness, contact time, and flight time were collected, participants completed an age-appropriate soccer-specific fatigue protocol (SAFT). Upon completion of the fatigue protocol, subjects were immediately retested. Intersession reliability was acceptable and could be considered capable of detecting worthwhile changes in performance. Results showed that leg stiffness decreased in the U13 year-olds, was maintained in the U15 age group, and increased in the U17 players. Contact times and flight times did not change in the U13 and U15 year-olds, but significantly decreased and increased, respectively, in the U17 age group. The data suggest that age-related changes in the neuromuscular control of leg stiffness are present in youth female soccer players. Practitioners should be aware of these discrepancies in neuromuscular responses to soccer-specific fatigue, and should tailor training programs to meet the needs of individuals, which may subsequently enhance performance and reduce injury risk.

  1. Aesthetic refinements in reconstructive microsurgery of the lower leg.

    PubMed

    Rainer, Christian; Schwabegger, Anton H; Gardetto, Alexander; Schoeller, Thomas; Hussl, Heribert; Ninkovic, Milomir M

    2004-02-01

    Even if a surgical procedure is performed for reconstructive and functional reasons, a plastic surgeon must be responsible for the visible result of the work and for the social reintegration of the patient; therefore, the aesthetic appearance of a microsurgically reconstructed lower leg must be considered. Based on the experience of 124 free-tissue transfers to the lower leg performed in 112 patients between January 1994 and March 2001 (110 [88.7 percent] were transferred successfully), three cases are presented. Considerations concerning flap selection and technical refinements in designing and tailoring microvascular flaps to improve the quality of reconstruction, also according to the aesthetic appearance, are discussed.

  2. Managing chronic oedema and wet legs in the community: a service evaluation.

    PubMed

    Thomas, Melanie; Morgan, Karen; Humphreys, Ioan; Jehu, Diane; Jenkins, Linda

    2017-11-08

    Patients with chronic oedema and 'wet legs' are frequently seen in the community setting, with research indicating that more than half of community nurses' caseloads are patients with chronic oedema. However, a lack of nurse education and standardised care pathways for this condition has been identified. In June 2016, the Welsh Government supported the development of the On the Ground Education Project (OGEP), which aimed to raise community nurses' awareness and recognition of chronic oedema and wet legs, to improve the management of these conditions, and to support the efficient use of community nurses' time and resources. To investigate the potential economic benefits of the OGEP and its effects on patients' quality of life. The OGEP was implemented between June 2016 and March 2017. During this time, 725 patients were assessed and chronic oedema was diagnosed in 426 (59%) of them. Of these, 100 patients were purposively recruited and 97 completed the pilot service evaluation. Data were collected observationally before and after the OGEP was implemented. Baseline measurements of resources, costs and outcomes were captured at the time the patients were initially identified and at a follow-up review three months later. The EQ-5D-5L tool was used to measure patients' health-related quality of life before and after the OGEP was implemented. Data were analysed using Microsoft Excel and SPSS Version 22. Following implementation of the OGEP, there was a significant decrease in the number of district nurse home visits, (P=<0.001), GP surgery appointments (P=0.003) and episodes of cellulitis (P=<0.001). The EQ-5D-5L utility scores showed that patients' quality of life improved after the OGEP was implemented, from a baseline of 0.401 (SD 0.254) to 0.537 (SD 0.231) at the three-month follow-up review. The OGEP may support the efficient use of community nurses' time and resources, reduce costs to the NHS, and improve the quality of life of patients with chronic oedema and wet legs. ©2017 RCN Publishing Company Ltd. All rights reserved. Not to be copied, transmitted or recorded in any way, in whole or part, without prior permission of the publishers.

  3. Examining the feasibility of a Microsoft Kinect ™ based game intervention for individuals with anterior cruciate ligament injury risk.

    PubMed

    Zhiyu Huo; Griffin, Joseph; Babiuch, Ryan; Gray, Aaron; Willis, Bradley; Marjorie, Skubic; Shining Sun

    2015-01-01

    We describe a feasibility study in which the Microsoft Kinect is used for a game-based exercise to strengthen posterior chain muscles which are often weak in those at high risk of anterior cruciate ligament (ACL) injury. In the game, subjects perform a single posterior chain strengthening exercise. The game uses a side-scrolling video display driven by a hip abduction exercise while a player lies down on the floor. Leg lifts beyond a predetermined angle trigger the jumping action of an animated tiger. We describe the scene and game control, which uses depth images from the Kinect. Although Kinect-based skeletal data are used for many games, the skeletal model does not yield good estimates for positions on the floor. Our proposed system uses multiple leg angle estimators for different angle regions to recognize the player lying down and capture the angle between two legs. We conducted an experiment that validates our system with marker-based Vicon ground truth data. We also present results of an end-to-end test using the game, showing feasibility.

  4. Elegant Shadow Making Tiny Force Visible for Water-Walking Arthropods and Updated Archimedes' Principle.

    PubMed

    Zheng, Yelong; Lu, Hongyu; Yin, Wei; Tao, Dashuai; Shi, Lichun; Tian, Yu

    2016-10-07

    Forces acted on legs of water-walking arthropods with weights in dynes are of great interest for entomologist, physicists, and engineers. While their floating mechanism has been recognized, the in vivo leg forces stationary have not yet been simultaneously achieved. In this study, their elegant bright-edged leg shadows are used to make the tiny forces visible and measurable based on the updated Archimedes' principle. The force was approximately proportional to the shadow area with a resolution from nanonewton to piconewton/pixel. The sum of leg forces agreed well with the body weight measured with an accurate electronic balance, which verified updated Archimedes' principle at the arthropod level. The slight changes of vertical body weight focus position and the body pitch angle have also been revealed for the first time. The visualization of tiny force by shadow is cost-effective and very sensitive and could be used in many other applications.

  5. Effectiveness of an Internet-based learning program on venous leg ulcer nursing care in home health care--study protocol.

    PubMed

    Ylönen, Minna; Viljamaa, Jaakko; Isoaho, Hannu; Junttila, Kristiina; Leino-Kilpi, Helena; Suhonen, Riitta

    2015-10-01

    To describe the study protocol for a study of the effectiveness of an internet-based learning program on venous leg ulcer nursing care (eVLU) in home health care. The prevalence of venous leg ulcers is increasing as population age. The majority of these patients are treated in a municipal home healthcare setting. However, studies show nurses' lack of knowledge of ulcer nursing care. Quasi-experimental study with pre- and postmeasurements and non-equivalent intervention and comparison groups. During the study, nurses taking care of patients with a chronic leg ulcer in home health care in one Finnish municipality will use the eVLU. Nurses working in home health care in another Finnish municipality will not use it providing standard care. Nurses will complete three questionnaires during the study and they will also be observed three times at patients' homes. Nurses' perceived and theoretical knowledge is the primary outcome of the study. Funding for this study was received from the Finnish Foundation for Nursing Education in 2014. Data from this study will provide information about the effectiveness of an internet-based educational program. After completing the program nurses will be accustomed to using internet-based resources that can aid them in the nursing care of patients with a VLU. Nurses will also have better knowledge of VLU nursing care. This study is registered with the International Clinical Trials Registry, identifier NCT02224300. © 2015 John Wiley & Sons Ltd.

  6. Petrographic Analyses of Lonestones from ODP Drill Sites Leg 188 Prydz Bay, Antarctica

    NASA Astrophysics Data System (ADS)

    Detterman, K.; Warnke, D. A.; Richter, C.

    2006-12-01

    ODP Leg 188 was drilled in 2000 to sample the first advances of the Antarctic ice sheet and to document further cryospheric development. Continental shelf Site 1166 documented the earliest stages of glaciation during the Eocene-Oligocene and continental slope Site 1167 documented rapid deposition by debris flows during the Pliocene-Pleistocene and a subtle change in onshore erosion areas. Site 1165, located on the continental rise, documented long-term transition from wet-based lower Miocene glaciers to dry-based upper Miocene glaciers, including short-term fluctuations starting in the early Miocene. Source areas for all drill sites are the Lambert Glacier-Amery Ice Shelf drainage area, encompassing the Northern and Southern Prince Charles Mountains, the Gamburtsev Sub-glacial Mountains, and the Grove Mountains. Lonestones occur in most of the cores from all sites of Leg 188 prompting research for potential source areas and transportation modes of the lonestones. One-hundred and seventeen thin sections of lonestones were prepared from Sites 1166, 1167, and 1165 for petrographic analyses. Metamorphic lonestones outnumber igneous and sedimentary lonestones at all three sites. Sedimentary lonestones were not found in the thin sections of Site 1166. Extrusive igneous lonestones were found only at Site 1165 and comprised 5.1 percent of Leg 188's lithology. The anorthite content of igneous and metamorphic lonestones represented at all three sites was albite-oligoclase plagioclase. Albite oligoclase plagioclase has been documented in the Southern Prince Charles Mountains. The results of this study of a selection of lonestones from Site 1167 supports a hypothesis first proposed by the Shipboard Scientific Party in 2001 that as time elapsed, the source area for Site 1167 lonestones shifted slightly from a largely sandstone source to a largely granitic source within the drainage area. One potential source area for the Site 1167 sandstone lonestones is the Permian to Triassic Amery Group in the Beaver Lake area of the Northern Prince Charles Mountains. We hypothesize that more easily eroded portions of the sandstone outcrops were planed off first while ubiquitous gneiss and granite outcrops provided the source material for the younger debris flows at Site 1167 in the Pliocene-Pleistocene. None of all the available lonestones suggest sources other than the drainage area of the Lambert Glacier- Amery Ice Shelf complex.

  7. Leg-ulcer care in the community, before and after implementation of an evidence-based service

    PubMed Central

    Harrison, Margaret B.; Graham, Ian D.; Lorimer, Karen; Friedberg, Elaine; Pierscianowski, Tadeusz; Brandys, Tim

    2005-01-01

    Background Leg ulcers usually occur in older patients, a growing population for which increasing health care resources are required. Treatment is mainly provided in patients' homes; however, patients often receive poorly integrated services in multiple settings. We report the results of a prospective study of a community-based care strategy for leg ulcers. Methods International practice recommendations and guidelines were adapted to make a new clinical protocol. The new model, for a dedicated service staffed by specially trained registered nurses, established initial and ongoing assessment time frames and provided enhanced linkages to medical specialists. Data were collected for 1 year before and after implementation; outcome measures included 3-month healing rates, quality of life and resource usage. Results Three-month healing rates more than doubled between the year before implementation (23% [18/78]) and the year afterward (56% [100/180]). The number of nursing visits per case declined, from a median of 37 to 25 (p = 0.041); the median supply cost per case was reduced from $1923 to $406 (p = 0.005). Interpretation Reorganization of care for people with leg ulcers was associated with improved healing and a more efficient use of nursing visits. PMID:15911859

  8. RESTRAINING SYSTEM FOR PLETHYSMOGRAPHY IN SMALL ANIMALS

    EPA Science Inventory

    A restraining technique for immobilizing awake guinea pigs and rats during physiological measurements is described. The basic device consists of an adjustable acrylic holder that supports the animal in a standing position while restricting movement of the four legs. The holder al...

  9. Kinematics of walking in the hermit crab, Pagurus pollicarus.

    PubMed

    Chapple, William

    2012-03-01

    Hermit crabs are decapod crustaceans that have adapted to life in gastropod shells. Among their adaptations are modifications to their thoracic appendages or pereopods. The 4th and 5th pairs are adapted for shell support; walking is performed with the 2nd and 3rd pereopods, with an alternation of diagonal pairs. During stance, the walking legs are rotated backwards in the pitch plane. Two patterns of walking were studied to compare them with walking patterns described for other decapods, a lateral gait, similar to that in many brachyurans, and a forward gait resembling macruran walking. Video sequences of free walking and restrained animals were used to obtain leg segment positions from which joint angles were calculated. Leading legs in a lateral walk generated a power stroke by flexion of MC and PD joints; CB angles often did not change during slow walks. Trailing legs exhibited extension of MC and PD with a slight levation of CB. The two joints, B/IM and CP, are aligned at 90° angles to CB, MC and PD, moving dorso-anteriorly during swing and ventro-posteriorly during stance. A forward step was more complex; during swing the leg was rotated forward (yaw) and vertically (pitch), due to the action of TC. At the beginning of stance, TC started to rotate posteriorly and laterally, CB was depressed, and MC flexed. As stance progressed and the leg was directed laterally, PD and MC extended, so that at the end of stance the dactyl tip was quite posterior. During walks of the animal out of its shell, the legs were extended more anterior-laterally and the animal often toppled over, indicating that during walking in a shell its weight stabilized the animal. An open chain kinematic model in which each segment was approximated as a rectangular solid, the dimensions of which were derived from measurements on animals, was developed to estimate the CM of the animal under different load conditions. CM was normally quite anterior; removal of the chelipeds shifted it caudally. Application of forces simulating the weight of the shell on the 5th pereopods moved CM just anterior to the thoracic-abdominal junction. However, lateral and vertical coordinates were not altered under these different load conditions. The interaction of the shell aperture with proximal leg joints and with the CM indicates that the oblique angles of the legs, due primarily to the rotation of the TC joints, is an adaptation that confers stability during walking. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Effect of filtration of signals of brain activity on quality of recognition of brain activity patterns using artificial intelligence methods

    NASA Astrophysics Data System (ADS)

    Hramov, Alexander E.; Frolov, Nikita S.; Musatov, Vyachaslav Yu.

    2018-02-01

    In present work we studied features of the human brain states classification, corresponding to the real movements of hands and legs. For this purpose we used supervised learning algorithm based on feed-forward artificial neural networks (ANNs) with error back-propagation along with the support vector machine (SVM) method. We compared the quality of operator movements classification by means of EEG signals obtained experimentally in the absence of preliminary processing and after filtration in different ranges up to 25 Hz. It was shown that low-frequency filtering of multichannel EEG data significantly improved accuracy of operator movements classification.

  11. Nonspiking local interneurons in insect leg motor control. I. Common layout and species-specific response properties of femur-tibia joint control pathways in stick insect and locust.

    PubMed

    Büschges, A; Wolf, H

    1995-05-01

    1. Locusts (Locusta migratoria) and stick insects (Carausius morosus) exhibit different strategies for predator avoidance. Locusts rely primarily on walking and jumping to evade predators, whereas stick insects become cataleptic, catalepsy forming a major component of the twig mimesis exhibited by this species. The neuronal networks that control postural leg movements in locusts and stick insects are tuned differently to their specific behavioral tasks. An important prerequisite for the production of catalepsy in the stick insect is the marked velocity dependency of the control network, which appears to be generated at the level of nonspiking local interneurons. We examined interneuronal pathways in the network controlling the femur-tibia joint of the locust middle leg and compared its properties with those described for the stick insect middle leg. It was our aim to identify possible neural correlates of the species-specific behavior with regard to postural leg motor control. 2. We obtained evidence that the neuronal networks that control the femur-tibia joints in the two species consist of morphologically and physiologically similar--and thus probably homologous--interneurons. Qualitatively, these interneurons receive the same input from the femoral chordotonal organ receptors and they drive the same pools of leg motoneurons in both species. 3. Pathways that contribute to the control of the femur-tibia joint include interneurons that support both "resisting" and "assisting" responses with respect to the motoneuron activity that is actually elicited during reflex movements. Signal processing via parallel, antagonistic pathways therefore appears to be a common principle in insect leg motor control. 4. Differences between the two insect species were found with regard to the processing of velocity information provided by the femoral chordotonal organ. Interneuronal pathways are sensitive to stimulus velocity in both species. However, in the locust there is no marked velocity dependency of the interneuronal responses, whereas in the same interneurons of the stick insect it is pronounced. This characteristic was maintained at the level of the motoneurons controlling the femur-tibia joint. Pathways for postural leg motor control in the locust thus lack an important prerequisite for the generation of catalepsy, that is, a marked velocity dependency.

  12. Which screening tools can predict injury to the lower extremities in team sports?: a systematic review.

    PubMed

    Dallinga, Joan M; Benjaminse, Anne; Lemmink, Koen A P M

    2012-09-01

    Injuries to lower extremities are common in team sports such as soccer, basketball, volleyball, football and field hockey. Considering personal grief, disabling consequences and high costs caused by injuries to lower extremities, the importance for the prevention of these injuries is evident. From this point of view it is important to know which screening tools can identify athletes who are at risk of injury to their lower extremities. The aim of this article is to determine the predictive values of anthropometric and/or physical screening tests for injuries to the leg, anterior cruciate ligament (ACL), knee, hamstring, groin and ankle in team sports. A systematic review was conducted in MEDLINE (1966 to September 2011), EMBASE (1989 to September 2011) and CINAHL (1982 to September 2011). Based on inclusion criteria defined a priori, titles, abstracts and full texts were analysed to find relevant studies. The analysis showed that different screening tools can be predictive for injuries to the knee, ACL, hamstring, groin and ankle. For injuries in general there is some support in the literature to suggest that general joint laxity is a predictive measure for leg injuries. The anterior right/left reach distance >4 cm and the composite reach distance <4.0% of limb length in girls measured with the star excursion balance test (SEBT) may predict leg injuries. Furthermore, an increasing age, a lower hamstring/quadriceps (H : Q) ratio and a decreased range of motion (ROM) of hip abduction may predict the occurrence of leg injuries. Hyperextension of the knee, side-to-side differences in anterior-posterior knee laxity and differences in knee abduction moment between both legs are suggested to be predictive tests for sustaining an ACL injury and height was a predictive screening tool for knee ligament injuries. There is some evidence that when age increases, the probability of sustaining a hamstring injury increases. Debate exists in the analysed literature regarding measurement of the flexibility of the hamstring as a predictive screening tool, as well as using the H : Q ratio. Hip-adduction-to-abduction strength is a predictive test for hip adductor muscle strain. Studies do not agree on whether ROM of the hamstring is a predictive screening tool for groin injury. Body mass index and the age of an athlete could contribute to an ankle sprain. There is support in the literature to suggest that greater strength of the plantar flexors may be a predictive measure for sustaining an ankle injury. Furthermore, there is some agreement that the measurement of postural sway is a predictive test for an ankle injury. The screening tools mentioned above can be recommended to medical staff and coaches for screening their athletes. Future research should focus on prospective studies in larger groups and should follow athletes over several seasons.

  13. Contrasting population trends of piscivorous seabirds in the Pribilof Islands: A 30-year perspective

    USGS Publications Warehouse

    Byrd, G.V.; Schmutz, J.A.; Renner, H.M.

    2008-01-01

    The Pribilof Islands provide nesting habitat for one of the largest concentrations of piscivorous seabirds in the North Pacific region. Pribilof breeding populations of black-legged and red-legged kittiwakes (Rissa tridactyla and Rissa brevirostris), and common and thick-billed murres (Uria aalge and Uria lomvia) are supported by a highly productive marine food web. Productivity and temperature in this area are influenced by winter sea ice that frequently reaches its maximum extent near the Pribilofs. Although St. George and St. Paul islands, the two largest of the Pribilof group, are situated only 60 km apart, St. George is within 25 km of the shelf break, but St. Paul is approximately 90 km away. In contrast, the local contribution of sea ice-edge productivity in the spring is frequently closer to St. Paul than to St. George. Central place foraging piscivorous seabirds nesting at St. Paul and St. George are likely differentially affected by the relative contributions of the shelf break and ice-edge environments based on juxtaposition. Within the past decade or so, sea ice in the Bering Sea has failed to reach the vicinity of the Pribilofs in some years, and predictions of warming in the future suggest the possibility that direct effects of the ice on the immediate Pribilof environment will be reduced. To evaluate the response of kittiwakes and murres on the two islands to conditions in their foraging environments, we examined population trends over the past 30 years based on data from the seabird monitoring program conducted by the Alaska Maritime National Wildlife Refuge and others. Spatial differences in trends have been more consistent than differences among species, with populations at St. Paul having more enduring declines than those at St. George. At St. George, black-legged kittiwakes and common murres have remained stable. Red-legged kittiwakes and thick-billed murres both declined, but began to rebound in the late 1980s, such that in 2005 population numbers for all four species at St. George were approximately equivalent to those observed in 1976. In contrast, at St. Paul Island, all four species have declined for most of this 30-year time series, with only black-legged kittiwakes showing increases in the past decade but still remaining far below 1976 numbers. Interestingly, rates of productivity for kittiwakes and for murres were similar between the two islands, suggesting similar responses to summer conditions and implicating differential mortality of post-fledging juveniles or adults from the two islands (i.e., if summer food stress was insufficient to cause differences in productivity, but sufficient to cause physiological consequences that reduced survival. Another possibility is immigration from St. Paul to St. George, probably by juveniles. ?? 2008 Elsevier Ltd.

  14. First record of the African-Indian centipede genus Digitipes Attems, 1930 (Scolopendromorpha: Otostigminae) from Myanmar, and the systematic position of a new species based on molecular phylogenetics.

    PubMed

    Siriwut, Warut; Edgecombe, Gregory D; Sutcharit, Chirasak; Tongkerd, Piyoros; Panha, Somsak

    2015-03-11

    The first Southeast Asian record of the scolopendrid centipede Digitipes Attems, 1930, has been collected and analyzed based on a new species from Myanmar, males possessing a distomedial process on the ultimate leg femur that is diagnostic of the genus. Digitipes kalewaensis n. sp., described herein, is distinguished from other members of Digitipes by its 2.5 to 2.7 dorsally glabrous antennal articles, an unusually long basal suture on the tooth-plates, absence of a lateral spine on the coxopleural process, and a lack of median and dorso-median spines on the ultimate leg prefemur. Maximum likelihood and Bayesian analyses of two molecular markers (mitochondrial COI and 16S rRNA) supported the proposal of a new species from Myanmar. The phylogenetic tree identifies Digitipes barnabasi from the Western Ghats, India, in a polytomy with members of other genera of Otostigminae (Otostigmus, Ethmostigmus and Rhysida) and a robust Indian-Burmese Digitipes clade in which D. kalewaensis n. sp. is resolved as sister group to a clade composed of most Indian species. Available molecular dates for the diversification of Indian Digitipes are consistent with introduction of the genus into SE Asia when the Indian subcontinent made contact with Myanmar in the early Palaeogene.

  15. Phylogenetic position of the enigmatic clawless eutardigrade genus Apodibius Dastych, 1983 (Tardigrada), based on 18S and 28S rRNA sequence data from its type species A. confusus.

    PubMed

    Dabert, Miroslawa; Dastych, Hieronymus; Hohberg, Karin; Dabert, Jacek

    2014-01-01

    The systematics of Eutardigrada, the largest lineage among the three classes of the phylum Tardigrada, is based mainly on the morphology of the leg claws and of the buccal apparatus. However, three members of the rarely recorded and poorly known limno-terrestrial eutardigrade genus Apodibius have no claws on their strongly reduced legs, a unique character among all tardigrades. This absence of all claws makes the systematic position of Apodibius one of the most enigmatic among the whole class. Until now all known associates of the genus Apodibius have been located in the incertae sedis species group or, quite recently, included into the Necopinatidae family. In the present study, phylogenetic analyses of 18S and 28S rRNA sequence data from 31 tardigrade species representing four parachelan superfamilies (Isohypsibioidea, Hypsibioidea, Macrobiotoidea, Eohypsibioidea), the apochelan Milnesium tardigradum, and the type species of the genus Apodibius, A. confusus, indicated close relationship of the Apodibius with tardigrade species recently included in the superfamily Isohypsibioidea. This result was well-supported and consistent across all markers (separate 18S rRNA, 28S rRNA, and combined 18S rRNA+28S rRNA datasets) and methods (MP, ML) applied. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Detection of Hand and Leg Motor Tract Injury Using Novel Diffusion Tensor MRI Tractography in Children with Central Motor Dysfunction

    PubMed Central

    Jeong, Jeong-Won; Lee, Jessica; Kamson, David O.; Chugani, Harry T.; JuhÁsz, Csaba

    2015-01-01

    Purpose To examine whether an objective segmenation of corticospinal tract (CST) associated with hand and leg movements can be used to detect central motor weakness in the corresponding extremities in a pediatric population. Material and Methods This retrospective study included diffusion tensor imaging (DTI) of 25 children with central paresis affecting at least one limb (age: 9.0±4.2 years, 15 boys, 5/13/7 children with left/right/both hemispheric lesions including ischemia, cyst, and gliosis), as well as 42 pediatric control subjects with no motor dysfunction (age: 9.0±5.5 years, 21 boys, 31 healthy/11 non-lesional epilepsy children). Leg- and hand-related CST pathways were segmented using DTI-maximum a posteriori (DTI-MAP) classification. The resulting CST volumes were then divided by total supratentorial white matter volume, resulting in a marker called “normalized streamline volume ratio (NSVR)” to quantify the degree of axonal loss in separate CST pathways associated with leg and hand motor functions. A receiver operating characteristic curve was applied to measure the accuracy of this marker to identify extremities with motor weakness. Results NSVR values of hand/leg CST selectively achieved the following values of accuracy/sensitivity/specificity: 0.84/0.84/0.57, 0.82/0.81/0.55, 0.78/0.75/0.55, 0.79/0.81/0.54 at a cut-off of 0.03/0.03/0.03/0.02 for right hand CST, left hand CST, right leg CST, and left leg CST, respectively. Motor weakness of hand and leg was most likely present at the cut-off values of hand and leg NSVR (i.e., 0.029/0.028/0.025/0.020 for left-hand/right-hand/left-leg/right-leg). The control group showed a moderate age-related increase in absolute CST volumes and a biphasic age-related variation of the normalized CST volumes, which were lacking in the paretic children. Conclusions This study demonstrates that DTI-MAP classification may provide a new imaging tool to quantify axonal loss in children with central motor dysfunction. Using this technique, we found that early-life brain lesions affect the maturational trajectory of the primary motor pathway which may be used as an effective marker to facilitate evidence-based treatment of paretic children. PMID:25959649

  17. Detection of hand and leg motor tract injury using novel diffusion tensor MRI tractography in children with central motor dysfunction.

    PubMed

    Jeong, Jeong-Won; Lee, Jessica; Kamson, David O; Chugani, Harry T; Juhász, Csaba

    2015-09-01

    To examine whether an objective segmenation of corticospinal tract (CST) associated with hand and leg movements can be used to detect central motor weakness in the corresponding extremities in a pediatric population. This retrospective study included diffusion tensor imaging (DTI) of 25 children with central paresis affecting at least one limb (age: 9.0±4.2years, 15 boys, 5/13/7 children with left/right/both hemispheric lesions including ischemia, cyst, and gliosis), as well as 42 pediatric control subjects with no motor dysfunction (age: 9.0±5.5years, 21 boys, 31 healthy/11 non-lesional epilepsy children). Leg- and hand-related CST pathways were segmented using DTI-maximum a posteriori (DTI-MAP) classification. The resulting CST volumes were then divided by total supratentorial white matter volume, resulting in a marker called "normalized streamline volume ratio (NSVR)" to quantify the degree of axonal loss in separate CST pathways associated with leg and hand motor functions. A receiver operating characteristic curve was applied to measure the accuracy of this marker to identify extremities with motor weakness. NSVR values of hand/leg CST selectively achieved the following values of accuracy/sensitivity/specificity: 0.84/0.84/0.57, 0.82/0.81/0.55, 0.78/0.75/0.55, 0.79/0.81/0.54 at a cut-off of 0.03/0.03/0.03/0.02 for right hand CST, left hand CST, right leg CST, and left leg CST, respectively. Motor weakness of hand and leg was most likely present at the cut-off values of hand and leg NSVR (i.e., 0.029/0.028/0.025/0.020 for left-hand/right-hand/left-leg/right-leg). The control group showed a moderate age-related increase in absolute CST volumes and a biphasic age-related variation of the normalized CST volumes, which were lacking in the paretic children. This study demonstrates that DTI-MAP classification may provide a new imaging tool to quantify axonal loss in children with central motor dysfunction. Using this technique, we found that early-life brain lesions affect the maturational trajectory of the primary motor pathway which may be used as an effective marker to facilitate evidence-based treatment of paretic children. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Combined magnetic resonance imaging approach for the assessment of in vivo knee joint kinematics under full weight-bearing conditions.

    PubMed

    Al Hares, Ghaith; Eschweiler, Jörg; Radermacher, Klaus

    2015-06-01

    The development of detailed and specific knowledge on the biomechanical behavior of loaded knee structures has received increased attention in recent years. Stress magnetic resonance imaging techniques have been introduced in previous work to study knee kinematics under load conditions. Previous studies captured the knee movement either in atypical loading supine positions, or in upright positions with help of inclined supporting backrests being insufficient for movement capture under full-body weight-bearing conditions. In this work, we used a combined magnetic resonance imaging approach for measurement and assessment in knee kinematics under full-body weight-bearing in single legged stance. The proposed method is based on registration of high-resolution static magnetic resonance imaging data acquired in supine position with low-resolution data, quasi-static upright-magnetic resonance imaging data acquired in loaded positions for different degrees of knee flexion. The proposed method was applied for the measurement of tibiofemoral kinematics in 10 healthy volunteers. The combined magnetic resonance imaging approach allows the non-invasive measurement of knee kinematics in single legged stance and under physiological loading conditions. We believe that this method can provide enhanced understanding of the loaded knee kinematics. © IMechE 2015.

  19. Spiral Antenna-Coupled Microbridge Structures for THz Application.

    PubMed

    Gou, Jun; Zhang, Tian; Wang, Jun; Jiang, Yadong

    2017-12-01

    Bolometer sensor is a good candidate for THz imaging due to its compact system, low cost, and wideband operation. Based on infrared microbolometer structures, two kinds of antenna-coupled microbridge structures are proposed with different spiral antennas: spiral antenna on support layer and spiral antenna with extended legs. Aiming at applications in detection and imaging, simulations are carried out mainly for optimized absorption at 2.52 THz, which is the radiation frequency of far-infrared CO 2 lasers. The effects of rotation angle, line width, and spacing of the spiral antenna on THz wave absorption of microbridge structures are discussed. Spiral antenna, with extended legs, is a good solution for high absorption rate at low absorption frequency and can be used as electrode lead simultaneously for simplified manufacturing process. A spiral antenna-coupled microbridge structure with an absorption rate of more than 75% at 2.52 THz is achieved by optimizing the structure parameters. This research demonstrates the use of different spiral antennas for enhanced and tunable THz absorption of microbridge structures and provides an effective way to fabricate THz microbolometer detectors with great potential in the application of real-time THz imaging.

  20. A 6DOF passive vibration isolator using X-shape supporting structures

    NASA Astrophysics Data System (ADS)

    Wu, Zhijing; Jing, Xingjian; Sun, Bo; Li, Fengming

    2016-10-01

    A novel 6 degree of freedom (6-DOF) passive vibration isolator is studied theoretically and validated with experiments. Based on the Stewart platform configuration, the 6-DOF isolator is constructed by 6 X-shape structures as legs, which can realize very good and tunable vibration isolation performance in all 6 directions with a passive manner. The mechanic model is established for static analysis of the working range, static stiffness and loading capacity. Thereafter, the equation of motion of the isolator is derived with the Hamilton principle. The equivalent stiffness and the displacement transmissibility in the six decoupled DOFs direction are then discussed with experimental results for validation. The results reveal that (a) by designing the structure parameters, the system can possess flexible stiffness such as negative, quasi-zero and positive stiffness, (b) due to the combination of the Stewart platform and the X-shape structure, the system can have very good vibration isolation performance in all the 6 directions and in a passive manner, and (c) compared with the simplified linear-stiffness legs, the nonlinearity of the X-shape structures enhance the passive isolator to have much better vibration isolation performance.

  1. A reliable unipedal stance test for the assessment of balance using a force platform.

    PubMed

    Ponce-González, J G; Sanchis-Moysi, J; González-Henriquez, J J; Arteaga-Ortiz, R; Calbet, J A L; Dorado, C

    2014-02-01

    The aim was to develop a unipedal stance test for the assessment of balance using a force platform. A single-leg balance test was conducted in 23 students (mean ± SD) age: 23 ± 3 years) in a standard position limiting the movement of the arms and non-supporting leg. Six attempts, with both the jumping (JL) and the contralateral leg (CL), were performed under 3 conditions: 1) eyes opened; 2) eyes closed; 3) eyes opened and executing a precision task. The same protocol was repeated two-week apart. The mean and the best result of the six attempts performed each day were taken as representative of balance. The speed of the centre of pressure (CP-Speed) showed excellent reliability for the "best result" analysis in all tests (ICCs 0.87-0.97), except in the test with the eyes closed performed on the CL (ICC<0.4). The CP-Speed had better reliability with the "best result" than with the "mean result" analysis (P<0.05), whilst no significant differences were observed between the JL and the CL (P=0.71 and P=0.96 for mean and best results analysis, respectively). A lower dispersion in the Bland and Altman graph was observed with the eyes opened than closed, and the dynamic test. The single-leg stance balance test proposed is a reliable method to assess balance, especially when performed in a static position, with the eyes opened and using the best result of six attempts as reference, independently of the stance leg.

  2. Detailed Modeling and Irreversible Transfer Process Analysis of a Multi-Element Thermoelectric Generator System

    NASA Astrophysics Data System (ADS)

    Xiao, Heng; Gou, Xiaolong; Yang, Suwen

    2011-05-01

    Thermoelectric (TE) power generation technology, due to its several advantages, is becoming a noteworthy research direction. Many researchers conduct their performance analysis and optimization of TE devices and related applications based on the generalized thermoelectric energy balance equations. These generalized TE equations involve the internal irreversibility of Joule heating inside the thermoelectric device and heat leakage through the thermoelectric couple leg. However, it is assumed that the thermoelectric generator (TEG) is thermally isolated from the surroundings except for the heat flows at the cold and hot junctions. Since the thermoelectric generator is a multi-element device in practice, being composed of many fundamental TE couple legs, the effect of heat transfer between the TE couple leg and the ambient environment is not negligible. In this paper, based on basic theories of thermoelectric power generation and thermal science, detailed modeling of a thermoelectric generator taking account of the phenomenon of energy loss from the TE couple leg is reported. The revised generalized thermoelectric energy balance equations considering the effect of heat transfer between the TE couple leg and the ambient environment have been derived. Furthermore, characteristics of a multi-element thermoelectric generator with irreversibility have been investigated on the basis of the new derived TE equations. In the present investigation, second-law-based thermodynamic analysis (exergy analysis) has been applied to the irreversible heat transfer process in particular. It is found that the existence of the irreversible heat convection process causes a large loss of heat exergy in the TEG system, and using thermoelectric generators for low-grade waste heat recovery has promising potential. The results of irreversibility analysis, especially irreversible effects on generator system performance, based on the system model established in detail have guiding significance for the development and application of thermoelectric generators, particularly for the design and optimization of TE modules.

  3. Generate an Optimum Lightweight Legs Structure Design Based on Critical Posture in A-FLoW Humanoid Robot

    NASA Astrophysics Data System (ADS)

    Luthfi, A.; Subhan, K. A.; Eko H, B.; Sanggar, D. R.; Pramadihanto, D.

    2018-04-01

    Lightweight construction and energy efficiency play an important role in humanoid robot development. The application of computer-aided engineering (CAE) in the development process is one of the possibilities to achieve the appropriate reduction of the weight. This paper describes a method to generate an optimum lightweight legs structure design based on critical posture during walking locomotion in A-FLoW Humanoid robot.The criticalposture can be obtained from the highest forces and moments in each joint of the robot body during walking locomotion. From the finite element analysis (FEA) result can be realized leg structure design of A-FLoW humanoid robot with a maximum displacement value of 0.05 mmand weight reduction about 0.598 Kg from the thigh structure and a maximum displacement value of 0,13 mmand weight reduction about 0.57 kg from the shin structure.

  4. Refrigerator with anti-sweat hot liquid loop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woolley, S.J.; Cushing, D.S.; Jenkins, T.E.

    A cabinet assembly for a refrigerator having a freezer compartment ontop with two top front corners, a fresh food compartment on the bottom, a mullion partition between the compartments and a hot liquid anti-sweat loop is described comprising; an outer sheet metal shell having a top panel, side panels and a front face, a brace located at each of the two top front corners of the cabinet and having two formed sections at right angles to each other and each section is formed as an inwardly open U-shaped channel having a base, a first leg and a second leg spacedmore » apart and integrally joined to the base, fastening means for rigidly attaching each of the second leg of the corner braces to the flange of the third wall of the front face, and means to secure a portion of the hot liquid anti-sweat loop to the braces.« less

  5. Impact of an absorbent silver-eluting dressing system on lower extremity revascularization wound complications.

    PubMed

    Childress, Beverly B; Berceli, Scott A; Nelson, Peter R; Lee, W Anthony; Ozaki, C Keith

    2007-09-01

    Surgical wounds for lower extremity revascularization are prone to infection and dehiscence. Acticoat Absorbent, an antimicrobial dressing, offers sustained release of ionic silver. We hypothesized that immediate application of Acticoat as a postoperative dressing would reduce wound complications in patients undergoing leg revascularization. All infrainguinal revascularization cases involving leg incisions at a single Veterans Administration Medical Center were identified from July 1, 2002, to September 30, 2005. The control group received conventional dressings, while the treatment group received an Acticoat dressing. Wound complication rates were captured via National Surgical Quality Improvement Program data. Patient characteristics and procedure distributions were similar between groups. The wound complication rate fell 64% with utilization of the Acticoat-based dressing (control 14% [17/118], treatment 5% [7/130]; P = 0.016). An Acticoat-based dressing system offers a potentially useful, cost-effective adjunct to reduce open surgical leg revascularization wound complications.

  6. VDLLA: A virtual daddy-long legs optimization

    NASA Astrophysics Data System (ADS)

    Yaakub, Abdul Razak; Ghathwan, Khalil I.

    2016-08-01

    Swarm intelligence is a strong optimization algorithm based on a biological behavior of insects or animals. The success of any optimization algorithm is depending on the balance between exploration and exploitation. In this paper, we present a new swarm intelligence algorithm, which is based on daddy long legs spider (VDLLA) as a new optimization algorithm with virtual behavior. In VDLLA, each agent (spider) has nine positions which represent the legs of spider and each position represent one solution. The proposed VDLLA is tested on four standard functions using average fitness, Medium fitness and standard deviation. The results of proposed VDLLA have been compared against Particle Swarm Optimization (PSO), Differential Evolution (DE) and Bat Inspired Algorithm (BA). Additionally, the T-Test has been conducted to show the significant deference between our proposed and other algorithms. VDLLA showed very promising results on benchmark test functions for unconstrained optimization problems and also significantly improved the original swarm algorithms.

  7. Stable isotope analyses-A method to distinguish intensively farmed from wild frogs.

    PubMed

    Dittrich, Carolin; Struck, Ulrich; Rödel, Mark-Oliver

    2017-04-01

    Consumption of frog legs is increasing worldwide, with potentially dramatic effects for ecosystems. More and more functioning frog farms are reported to exist. However, due to the lack of reliable methods to distinguish farmed from wild-caught individuals, the origin of frogs in the international trade is often uncertain. Here, we present a new methodological approach to this problem. We investigated the isotopic composition of legally traded frog legs from suppliers in Vietnam and Indonesia. Muscle and bone tissue samples were examined for δ 15 N, δ 13 C, and δ 18 O stable isotope compositions, to elucidate the conditions under which the frogs grew up. We used DNA barcoding (16S rRNA) to verify species identities. We identified three traded species ( Hoplobatrachus rugulosus, Fejervarya cancrivora and Limnonectes macrodon ); species identities were partly deviating from package labeling. Isotopic values of δ 15 N and δ 18 O showed significant differences between species and country of origin. Based on low δ 15 N composition and generally little variation in stable isotope values, our results imply that frogs from Vietnam were indeed farmed. In contrast, the frogs from the Indonesian supplier likely grew up under natural conditions, indicated by higher δ 15 N values and stronger variability in the stable isotope composition. Our results indicate that stable isotope analyses seem to be a useful tool to distinguish between naturally growing and intensively farmed frogs. We believe that this method can be used to improve the control in the international trade of frog legs, as well as for other biological products, thus supporting farming activities and decreasing pressure on wild populations. However, we examined different species from different countries and had no access to samples of individuals with confirmed origin and living conditions. Therefore, we suggest improving this method further with individuals of known origin and history, preferably including samples of the respective nutritive bases.

  8. Map_plot and bgg_plot: software for integration of geoscience datasets

    NASA Astrophysics Data System (ADS)

    Gaillot, Philippe; Punongbayan, Jane T.; Rea, Brice

    2004-02-01

    Since 1985, the Ocean Drilling Program (ODP) has been supporting multidisciplinary research in exploring the structure and history of Earth beneath the oceans. After more than 200 Legs, complementary datasets covering different geological environments, periods and space scales have been obtained and distributed world-wide using the ODP-Janus and Lamont Doherty Earth Observatory-Borehole Research Group (LDEO-BRG) database servers. In Earth Sciences, more than in any other science, the ensemble of these data is characterized by heterogeneous formats and graphical representation modes. In order to fully and quickly assess this information, a set of Unix/Linux and Generic Mapping Tool-based C programs has been designed to convert and integrate datasets acquired during the present ODP and the future Integrated ODP (IODP) Legs. Using ODP Leg 199 datasets, we show examples of the capabilities of the proposed programs. The program map_plot is used to easily display datasets onto 2-D maps. The program bgg_plot (borehole geology and geophysics plot) displays data with respect to depth and/or time. The latter program includes depth shifting, filtering and plotting of core summary information, continuous and discrete-sample core measurements (e.g. physical properties, geochemistry, etc.), in situ continuous logs, magneto- and bio-stratigraphies, specific sedimentological analyses (lithology, grain size, texture, porosity, etc.), as well as core and borehole wall images. Outputs from both programs are initially produced in PostScript format that can be easily converted to Portable Document Format (PDF) or standard image formats (GIF, JPEG, etc.) using widely distributed conversion programs. Based on command line operations and customization of parameter files, these programs can be included in other shell- or database-scripts, automating plotting procedures of data requests. As an open source software, these programs can be customized and interfaced to fulfill any specific plotting need of geoscientists using ODP-like datasets.

  9. What are the Main Physical Functioning Factors Associated With Falls Among Older People With Different Perceived Fall Risk?

    PubMed

    Moreira, Mirian N; Bilton, Tereza L; Dias, Rosangela C; Ferriolli, Eduardo; Perracini, Monica R

    2017-07-01

    Fall risk perceptions may influence the judgement over physical and functional competencies to avoid falls. However, few studies have explored the physical functioning characteristics associated with falls among older people with low perceived fall risk. This study aimed to identify the prevalence of falls and physical functioning factors associated with falling among community-dwelling older adults with low and high perceived fall risk. We conducted a cross-sectional population based study with 773 community-dwelling elders. Perceived fall risk was investigated using Falls Efficacy Scale International. We considered fallers those who reported at least one fall in the previous 12 months. Physical functioning measures used were grip strength, usual gait speed, sit-to-stand test, five step test, timed up and go test, one-legged stance test, anterior and lateral functional reach test. At least one fall was reported by 103 (30%) participants with low perceived fall risk and by 196 (46%) participants with high perceived fall risk. The odds of falling were lower among those with greater grip strength and with a greater stance time in one-legged test, and the odds of falling among elders with high perceived fall risk were higher among those who took more time in performing the five step test. We believe that our results highlight the need of not neglecting the risk of falls among active older adults with low perceived fall risk, particularly in those elders that show reduced stability in a small base of support and a lower leg strength. In addition, we suggest that elders with high perceived fall risk should be assessed using anticipatory postural adjustment tests. Particularly, our results may help physiotherapists to identify eligible elders with different perceptions of fall risk for tailored interventions aimed at reducing falls. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  10. Leg kinematics and kinetics in landing from a single-leg hop for distance. A comparison between dominant and non-dominant leg.

    PubMed

    van der Harst, J J; Gokeler, A; Hof, A L

    2007-07-01

    Anterior cruciate ligament (ACL) deficiency can be a major problem for athletes and subsequent reconstruction of the ACL may be indicated if a conservative regimen has failed. After ACL reconstruction signs of abnormality in the use of the leg remain for a long time. It is expected that the landing after a single-leg hop for distance (horizontal hop) might give insight in the differences in kinematics and kinetics between uninjured legs and ACL-reconstructed legs. Before the ACL-reconstructed leg can be compared with the contralateral leg, knowledge of differences between legs of uninjured subjects is needed. Kinematic and kinetic variables of both legs were measured with an optoelectronic system and a force plate and calculated by inverse dynamics. The dominant leg (the leg with biggest horizontal hop distance) and the contralateral leg of nine uninjured subjects were compared. No significant differences were found in most of the kinematic and kinetic variables between dominant leg and contralateral leg of uninjured subjects. Only hop distance and hip extension angles differed significantly. This study suggests that there are no important differences between dominant leg and contralateral leg in healthy subjects. As a consequence, the uninvolved leg of ACL-reconstructed patients can be used as a reference. The observed variables of this study can be used as a reference of normal values and normal differences between legs in healthy subjects.

  11. The exercise and environmental physiology of extravehicular activity

    NASA Technical Reports Server (NTRS)

    Cowell, Stephenie A.; Stocks, Jodie M.; Evans, David G.; Simonson, Shawn R.; Greenleaf, John E.

    2002-01-01

    Extravehicular activity (EVA), i.e., exercise performed under unique environmental conditions, is indispensable for supporting daily living in weightlessness and for further space exploration. From 1965-1996 an average of 20 h x yr(-1) were spent performing EVA. International Space Station (ISS) assembly will require 135 h x yr(-1) of EVA, and 138 h x yr(-1) is planned for post-construction maintenance. The extravehicular mobility unit (EMU), used to protect astronauts during EVA, has a decreased pressure of 4.3 psi that could increase astronauts' risk of decompression sickness (DCS). Exercise in and repeated exposure to this hypobaria may increase the incidence of DCS, although weightlessness may attenuate this risk. Exercise thermoregulation within the EMU is poorly understood; the liquid cooling garment (LCG), worn next to the skin and designed to handle thermal stress, is manually controlled. Astronauts may become dehydrated (by up to 2.6% of body weight) during a 5-h EVA, further exacerbating the thermoregulatory challenge. The EVA is performed mainly with upper body muscles; but astronauts usually exercise at only 26-32% of their upper body maximal oxygen uptake (VO2max). For a given ground-based work task in air (as opposed to water), the submaximal VO2 is greater while VO2max and metabolic efficiency are lower during ground-based arm exercise as compared with leg exercise, and cardiovascular responses to exercise and training are also different for arms and legs. Preflight testing and training, whether conducted in air or water, must account for these differences if ground-based data are extrapolated for flight requirements. Astronauts experience deconditioning during microgravity resulting in a 10-20% loss in arm strength, a 20-30% loss in thigh strength, and decreased lower-body aerobic exercise capacity. Data from ground-based simulations of weightlessness such as bed rest induce a 6-8% decrease in upper-body strength, a 10-16% loss in thigh extensor strength, and a 15-20% decrease in lower-body aerobic exercise capacity. Changes in EVA support systems and training based on a greater understanding of the physiological aspects of exercise in the EVA environment will help to insure the health, safety, and efficiency of working astronauts.

  12. The exercise and environmental physiology of extravehicular activity.

    PubMed

    Cowell, Stephenie A; Stocks, Jodie M; Evans, David G; Simonson, Shawn R; Greenleaf, John E

    2002-01-01

    Extravehicular activity (EVA), i.e., exercise performed under unique environmental conditions, is indispensable for supporting daily living in weightlessness and for further space exploration. From 1965-1996 an average of 20 h x yr(-1) were spent performing EVA. International Space Station (ISS) assembly will require 135 h x yr(-1) of EVA, and 138 h x yr(-1) is planned for post-construction maintenance. The extravehicular mobility unit (EMU), used to protect astronauts during EVA, has a decreased pressure of 4.3 psi that could increase astronauts' risk of decompression sickness (DCS). Exercise in and repeated exposure to this hypobaria may increase the incidence of DCS, although weightlessness may attenuate this risk. Exercise thermoregulation within the EMU is poorly understood; the liquid cooling garment (LCG), worn next to the skin and designed to handle thermal stress, is manually controlled. Astronauts may become dehydrated (by up to 2.6% of body weight) during a 5-h EVA, further exacerbating the thermoregulatory challenge. The EVA is performed mainly with upper body muscles; but astronauts usually exercise at only 26-32% of their upper body maximal oxygen uptake (VO2max). For a given ground-based work task in air (as opposed to water), the submaximal VO2 is greater while VO2max and metabolic efficiency are lower during ground-based arm exercise as compared with leg exercise, and cardiovascular responses to exercise and training are also different for arms and legs. Preflight testing and training, whether conducted in air or water, must account for these differences if ground-based data are extrapolated for flight requirements. Astronauts experience deconditioning during microgravity resulting in a 10-20% loss in arm strength, a 20-30% loss in thigh strength, and decreased lower-body aerobic exercise capacity. Data from ground-based simulations of weightlessness such as bed rest induce a 6-8% decrease in upper-body strength, a 10-16% loss in thigh extensor strength, and a 15-20% decrease in lower-body aerobic exercise capacity. Changes in EVA support systems and training based on a greater understanding of the physiological aspects of exercise in the EVA environment will help to insure the health, safety, and efficiency of working astronauts.

  13. Extendable pipe crawler

    DOEpatents

    Hapstack, Mark

    1991-01-01

    A pipe crawler having a front leg assembly and a back leg assembly connected together by two air cylinders, each leg assembly having four extendable legs and a pair of actuators for sliding the extendable legs radially outward to increase the range of the legs when the pipe crawler enters a section of a pipe having a larger diameter. The crawler crawls by "inchworm"-like motion, the front leg assembly and back leg assembly alternately engaging and disengaging the wall of the pipe to hold the pipe crawler as the air cylinders alternately advance the front leg assembly and bring up the rear leg assembly. The pair of actuators of each leg assembly are parallel, adjacent and opposing acting so that each slides two adjacent extendable legs radially outward.

  14. Toward Balance Recovery With Leg Prostheses Using Neuromuscular Model Control

    PubMed Central

    Geyer, Hartmut

    2016-01-01

    Objective Lower limb amputees are at high risk of falling as current prosthetic legs provide only limited functionality for recovering balance after unexpected disturbances. For instance, the most established control method used on powered leg prostheses tracks local joint impedance functions without taking the global function of the leg in balance recovery into account. Here we explore an alternative control policy for powered transfemoral prostheses that considers the global leg function and is based on a neuromuscular model of human locomotion. Methods We adapt this model to describe and simulate an amputee walking with a powered prosthesis using the proposed control, and evaluate the gait robustness when confronted with rough ground and swing leg disturbances. We then implement and partially evaluate the resulting controller on a leg prosthesis prototype worn by a non-amputee user. Results In simulation, the proposed prosthesis control leads to gaits that are more robust than those obtained by the impedance control method. The initial hardware experiments with the prosthesis prototype show that the proposed control reproduces normal walking patterns qualitatively and effectively responds to disturbances in early and late swing. However, the response to mid-swing disturbances neither replicates human responses nor averts falls. Conclusions The neuromuscular model control is a promising alternative to existing prosthesis controls, although further research will need to improve on the initial implementation and determine how well these results transfer to amputee gait. Significance This work provides a potential avenue for future development of control policies that help improve amputee balance recovery. PMID:26315935

  15. Determining of the Parking Manoeuvre and the Taxi Blockage Adjustment Factor for the Saturation Flow Rate at the Outlet Legs of Signalized Intersections: Case Study from Rasht City (Iran)

    NASA Astrophysics Data System (ADS)

    Behbahani, Hamid; Jahangir Samet, Mehdi; Najafi Moghaddam Gilani, Vahid; Amini, Amir

    2017-10-01

    The presence of taxi stops within the area of signalized intersections at the outlet legs due to unnatural behaviour of the taxis, sudden change of lanes, parking manoeuvres activities and stopping the vehicle to discharge or pick up the passengers have led to reduction of saturation flow rate at the outlet leg of signalized intersections and increased delay as well as affecting the performance of a crossing lane. So far, in term of evaluating effective adjustment factors on saturation flow rate at the inlet legs of the signalized intersections, various studies have been carried out, however; there has not been any studies on effective adjustment factors on saturation flow rate at the inlet legs. Hence, the evaluating of the traffic effects of unique behaviours on the saturation flow rate of the outlet leg is very important. In this research the parking manoeuvre time and taxi blockage time were evaluated and analyzed based on the available lane width as well as determining the effective adjustment factors on the saturation flow rate using recording related data at four signalized intersections in Rasht city. The results show that the average parking manoeuvre time is a function of the lane width and is increased as the lane width is reduced. Also, it is suggested to use the values of 7.37 and 11.31 seconds, respectively for the average parking manoeuvre time and the average blockage time of taxies at the outlet legs of signalized intersections for the traffic designing in Rasht city.

  16. Pilot study of the impact that bilateral sacroiliac joint manipulation using a drop table technique has on gait parameters in asymptomatic individuals with a leg length inequality.

    PubMed

    Ward, John; Sorrels, Ken; Coats, Jesse; Pourmoghaddam, Amir; Deleon, Carlos; Daigneault, Paige

    2014-03-01

    The purpose of this study was to pilot test our study procedures and estimate parameters for sample size calculations for a randomized controlled trial to determine if bilateral sacroiliac (SI) joint manipulation affects specific gait parameters in asymptomatic individuals with a leg length inequality (LLI). Twenty-one asymptomatic chiropractic students engaged in a baseline 90-second walking kinematic analysis using infrared Vicon® cameras. Following this, participants underwent a functional LLI test. Upon examination participants were classified as: left short leg, right short leg, or no short leg. Half of the participants in each short leg group were then randomized to receive bilateral corrective SI joint chiropractic manipulative therapy (CMT). All participants then underwent another 90-second gait analysis. Pre- versus post-intervention gait data were then analyzed within treatment groups by an individual who was blinded to participant group status. For the primary analysis, all p-values were corrected for multiple comparisons using the Bonferroni method. Within groups, no differences in measured gait parameters were statistically significant after correcting for multiple comparisons. The protocol of this study was acceptable to all subjects who were invited to participate. No participants refused randomization. Based on the data collected, we estimated that a larger main study would require 34 participants in each comparison group to detect a moderate effect size.

  17. Applying a pelvic corrective force induces forced use of the paretic leg and improves paretic leg EMG activities of individuals post-stroke during treadmill walking.

    PubMed

    Hsu, Chao-Jung; Kim, Janis; Tang, Rongnian; Roth, Elliot J; Rymer, William Z; Wu, Ming

    2017-10-01

    To determine whether applying a mediolateral corrective force to the pelvis during treadmill walking would enhance muscle activity of the paretic leg and improve gait symmetry in individuals with post-stroke hemiparesis. Fifteen subjects with post-stroke hemiparesis participated in this study. A customized cable-driven robotic system based over a treadmill generated a mediolateral corrective force to the pelvis toward the paretic side during early stance phase. Three different amounts of corrective force were applied. Electromyographic (EMG) activity of the paretic leg, spatiotemporal gait parameters and pelvis lateral displacement were collected. Significant increases in integrated EMG of hip abductor, medial hamstrings, soleus, rectus femoris, vastus medialis and tibialis anterior were observed when pelvic corrective force was applied, with pelvic corrective force at 9% of body weight inducing greater muscle activity than 3% or 6% of body weight. Pelvis lateral displacement was more symmetric with pelvic corrective force at 9% of body weight. Applying a mediolateral pelvic corrective force toward the paretic side may enhance muscle activity of the paretic leg and improve pelvis displacement symmetry in individuals post-stroke. Forceful weight shift to the paretic side could potentially force additional use of the paretic leg and improve the walking pattern. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  18. 33 CFR 147.837 - Marco Polo Tension Leg Platform safety zone.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Platform safety zone. (a) Description. Marco Polo Tension Leg Platform, Green Canyon 608 (GC 608), located at position 27°21′43.32″ N, 90°10′53.01″ W. The area within 500 meters (1640.4 feet) from each point on the structure's outer edge is a safety zone. These coordinates are based upon [NAD 83]. (b...

  19. Immediate effects of a single session of robot-assisted gait training using Hybrid Assistive Limb (HAL) for cerebral palsy

    PubMed Central

    Matsuda, Mayumi; Mataki, Yuki; Mutsuzaki, Hirotaka; Yoshikawa, Kenichi; Takahashi, Kazushi; Enomoto, Keiko; Sano, Kumiko; Mizukami, Masafumi; Tomita, Kazuhide; Ohguro, Haruka; Iwasaki, Nobuaki

    2018-01-01

    [Purpose] Robot-assisted gait training (RAGT) using Hybrid Assistive Limb (HAL, CYBERDYNE) was previously reported beneficial for stroke and spinal cord injury patients. Here, we investigate the immediate effect of a single session of RAGT using HAL on gait function for cerebral palsy (CP) patients. [Subjects and Methods] Twelve patients (average age: 16.2 ± 7.3 years) with CP received a single session of RAGT using HAL. Gait speed, step length, cadence, single-leg support per gait cycle, hip and knee joint angle in stance, and swing phase per gait cycle were assessed before, during, and immediately after HAL intervention. [Results] Compared to baseline values, single-leg support per gait cycle (64.5 ± 15.8% to 69.3 ± 12.1%), hip extension angle in mid-stance (149.2 ± 19.0° to 155.5 ± 20.1°), and knee extension angle in mid-stance (137.6 ± 20.2° to 143.1 ± 19.5°) were significantly increased immediately after intervention. Further, the knee flexion angle in mid-swing was significantly decreased immediately after treatment (112.0 ± 15.5° to 105.2 ± 17.1°). Hip flexion angle in mid-swing also decreased following intervention (137.2 ± 14.6° to 129.7 ± 16.6°), but not significantly. Conversely, gait speed, step length, and cadence were unchanged after intervention. [Conclusion] A single-time RAGT with HAL improved single-leg support per gait cycle and hip and knee joint angle during gait, therapeutically improving gait function in CP patients. PMID:29545679

  20. Mediolateral force distribution at the knee joint shifts across activities and is driven by tibiofemoral alignment.

    PubMed

    Kutzner, I; Bender, A; Dymke, J; Duda, G; von Roth, P; Bergmann, G

    2017-06-01

    Tibiofemoral alignment is important to determine the rate of progression of osteoarthritis and implant survival after total knee arthroplasty (TKA). Normally, surgeons aim for neutral tibiofemoral alignment following TKA, but this has been questioned in recent years. The aim of this study was to evaluate whether varus or valgus alignment indeed leads to increased medial or lateral tibiofemoral forces during static and dynamic weight-bearing activities. Tibiofemoral contact forces and moments were measured in nine patients with instrumented knee implants. Medial force ratios were analysed during nine daily activities, including activities with single-limb support (e.g. walking) and double-limb support (e.g. knee bend). Hip-knee-ankle angles in the frontal plane were analysed using full-leg coronal radiographs. The medial force ratio strongly correlated with the tibiofemoral alignment in the static condition of one-legged stance (R² = 0.88) and dynamic single-limb loading (R² = 0.59) with varus malalignment leading to increased medial force ratios of up to 88%. In contrast, the correlation between leg alignment and magnitude of medial compartment force was much less pronounced. A lateral shift of force occurred during activities with double-limb support and higher knee flexion angles. The medial force ratio depends on both the tibiofemoral alignment and the nature of the activity involved. It cannot be generalised to a single value. Higher medial ratios during single-limb loading are associated with varus malalignment in TKA. The current trend towards a 'constitutional varus' after joint replacement, in terms of overall tibiofemoral alignment, should be considered carefully with respect to the increased medial force ratio. Cite this article: Bone Joint J 2017;99-B:779-87. ©2017 The British Editorial Society of Bone & Joint Surgery.

  1. The influence of passive-dynamic ankle-foot orthosis bending axis location on gait performance in individuals with lower-limb impairments.

    PubMed

    Ranz, Ellyn C; Russell Esposito, Elizabeth; Wilken, Jason M; Neptune, Richard R

    2016-08-01

    Passive-dynamic ankle-foot orthoses are commonly prescribed to augment impaired ankle muscle function, however their design and prescription are largely qualitative. One design includes a footplate and cuff, and flexible strut connecting the two. During gait, deflection occurs along the strut, with the greatest deflection at a central bending axis. The vertical location of the axis can affect lower extremity biomechanics. The goal of this study was to investigate the influence of bending axis location on gait performance. For thirteen participants with unilateral ankle muscle weakness, an additive manufacturing framework was used to fabricate passive-dynamic ankle-foot orthosis struts with central and off-center bending axes. Participants walked overground while electromyographic, kinetic and kinematic data were collected for three different bending axes: proximal (high), central (middle) and distal (low), and the participants indicated their order of bending axis preference after testing. Gait measures and preference effect sizes were examined during six regions of the gait cycle. A few differences between bending axes were observed: in the first double-leg support peak plantarflexion angle, peak dorsiflexion moment and positive hip work, in the early single-leg support peak knee extension moment and positive ankle and knee work, and in the late single-leg support gastrocnemius activity and vertical ground reaction force impulse. In addition, preference was strongly related to various gait measures. Despite the observed statistical differences, altering bending axis location did not produce large and consistent changes in gait performance. Thus, individual preference and comfort may be more important factors guiding prescription. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Immediate effects of a single session of robot-assisted gait training using Hybrid Assistive Limb (HAL) for cerebral palsy.

    PubMed

    Matsuda, Mayumi; Mataki, Yuki; Mutsuzaki, Hirotaka; Yoshikawa, Kenichi; Takahashi, Kazushi; Enomoto, Keiko; Sano, Kumiko; Mizukami, Masafumi; Tomita, Kazuhide; Ohguro, Haruka; Iwasaki, Nobuaki

    2018-02-01

    [Purpose] Robot-assisted gait training (RAGT) using Hybrid Assistive Limb (HAL, CYBERDYNE) was previously reported beneficial for stroke and spinal cord injury patients. Here, we investigate the immediate effect of a single session of RAGT using HAL on gait function for cerebral palsy (CP) patients. [Subjects and Methods] Twelve patients (average age: 16.2 ± 7.3 years) with CP received a single session of RAGT using HAL. Gait speed, step length, cadence, single-leg support per gait cycle, hip and knee joint angle in stance, and swing phase per gait cycle were assessed before, during, and immediately after HAL intervention. [Results] Compared to baseline values, single-leg support per gait cycle (64.5 ± 15.8% to 69.3 ± 12.1%), hip extension angle in mid-stance (149.2 ± 19.0° to 155.5 ± 20.1°), and knee extension angle in mid-stance (137.6 ± 20.2° to 143.1 ± 19.5°) were significantly increased immediately after intervention. Further, the knee flexion angle in mid-swing was significantly decreased immediately after treatment (112.0 ± 15.5° to 105.2 ± 17.1°). Hip flexion angle in mid-swing also decreased following intervention (137.2 ± 14.6° to 129.7 ± 16.6°), but not significantly. Conversely, gait speed, step length, and cadence were unchanged after intervention. [Conclusion] A single-time RAGT with HAL improved single-leg support per gait cycle and hip and knee joint angle during gait, therapeutically improving gait function in CP patients.

  3. A microdynamic version of the tensile test machine

    NASA Technical Reports Server (NTRS)

    Glaser, R. J.

    1991-01-01

    Very large space structures require structural reactions to control forces associated with nanometer-level displacements; JPL has accordingly built a tensile test machine capable of mN-level force measurements and nm-level displacement measurements, with a view to the study of structural linear joining technology at the lower limit of its resolution. The tester is composed of a moving table that is supported by six flexured legs and a test specimen cantilevered off the table to ground. Three vertical legs contain piezoactuators allowing changes in length up to 200 microns while generating axial load and bending moments. Displacements between ground and table are measured by means of three laser-interferometric channels.

  4. Photovoltaic solar cell

    DOEpatents

    Nielson, Gregory N.; Gupta, Vipin P.; Okandan, Murat; Watts, Michael R.

    2015-09-08

    A photovoltaic solar concentrator is disclosed with one or more transverse-junction solar cells (also termed point contact solar cells) and a lens located above each solar cell to concentrate sunlight onto the solar cell to generate electricity. Piezoelectric actuators tilt or translate each lens to track the sun using a feedback-control circuit which senses the electricity generated by one or more of the solar cells. The piezoelectric actuators can be coupled through a displacement-multiplier linkage to provide an increased range of movement of each lens. Each lens in the solar concentrator can be supported on a frame (also termed a tilt plate) having three legs, with the movement of the legs being controlled by the piezoelectric actuators.

  5. Photovoltaic solar concentrator

    DOEpatents

    Nielson, Gregory N.; Gupta, Vipin P.; Okandan, Murat; Watts, Michael R.

    2016-03-15

    A photovoltaic solar concentrator is disclosed with one or more transverse-junction solar cells (also termed point contact solar cells) and a lens located above each solar cell to concentrate sunlight onto the solar cell to generate electricity. Piezoelectric actuators tilt or translate each lens to track the sun using a feedback-control circuit which senses the electricity generated by one or more of the solar cells. The piezoelectric actuators can be coupled through a displacement-multiplier linkage to provide an increased range of movement of each lens. Each lens in the solar concentrator can be supported on a frame (also termed a tilt plate) having three legs, with the movement of the legs being controlled by the piezoelectric actuators.

  6. Photovoltaic solar concentrator

    DOEpatents

    Nielson, Gregory N.; Okandan, Murat; Resnick, Paul J.; Cruz-Campa, Jose Luis

    2012-12-11

    A photovoltaic solar concentrator is disclosed with one or more transverse-junction solar cells (also termed point contact solar cells) and a lens located above each solar cell to concentrate sunlight onto the solar cell to generate electricity. Piezoelectric actuators tilt or translate each lens to track the sun using a feedback-control circuit which senses the electricity generated by one or more of the solar cells. The piezoelectric actuators can be coupled through a displacement-multiplier linkage to provide an increased range of movement of each lens. Each lens in the solar concentrator can be supported on a frame (also termed a tilt plate) having three legs, with the movement of the legs being controlled by the piezoelectric actuators.

  7. Quantitative rest activity in ambulatory monitoring as a physiological marker of restless legs syndrome: a controlled study.

    PubMed

    Tuisku, Katinka; Holi, Matti Mikael; Wahlbeck, Kristian; Ahlgren, Aulikki Johanna; Lauerma, Hannu

    2003-04-01

    An objective marker of restless legs syndrome (RLS) is needed for developing diagnostic tools and monitoring symptoms. Actometric ambulatory monitoring of 15 RLS patients and 15 healthy controls was undertaken in order to differentiate between RLS-related motor symptoms and normal motor activity. Nocturnal lower-limb activity per minute differentiated and discriminated between groups with no overlap, whereas the periodic limb movement index and the controlled rest activity during sitting showed less discriminative power. The naturalistic recording of nocturnal activity by actometry may prove useful for assessing the severity of RLS and for finding an objective marker to support the diagnosis of RLS. Copyright 2002 Movement Disorder Society

  8. Extendable pipe crawler

    DOEpatents

    Hapstack, M.

    1991-05-28

    A pipe crawler is described having a front leg assembly and a back leg assembly connected together by two air cylinders, each leg assembly having four extendable legs and a pair of actuators for sliding the extendable legs radially outward to increase the range of the legs when the pipe crawler enters a section of a pipe having a larger diameter. The crawler crawls by inchworm'-like motion, the front leg assembly and back leg assembly alternately engaging and disengaging the wall of the pipe to hold the pipe crawler as the air cylinders alternately advance the front leg assembly and bring up the rear leg assembly. The pair of actuators of each leg assembly are parallel, adjacent and opposing acting so that each slides two adjacent extendable legs radially outward. 5 figures.

  9. Extendable pipe crawler

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hapstack, M.

    1991-05-28

    A pipe crawler is described having a front leg assembly and a back leg assembly connected together by two air cylinders, each leg assembly having four extendable legs and a pair of actuators for sliding the extendable legs radially outward to increase the range of the legs when the pipe crawler enters a section of a pipe having a larger diameter. The crawler crawls by inchworm'-like motion, the front leg assembly and back leg assembly alternately engaging and disengaging the wall of the pipe to hold the pipe crawler as the air cylinders alternately advance the front leg assembly andmore » bring up the rear leg assembly. The pair of actuators of each leg assembly are parallel, adjacent and opposing acting so that each slides two adjacent extendable legs radially outward. 5 figures.« less

  10. Extendable pipe crawler

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hapstack, M.

    1990-05-01

    A pipe crawler having a front leg assembly and a back leg assembly connected together by two air cylinders, each leg assembly having four extendable legs and a pair of actuators for sliding the extendable legs radically outward to increase the range of the legs when the pipe crawler enters a section of pipe having a larger diameter. The crawler crawls by inchworm''-like motion, the front leg assembly and back leg assembly alternately engaging and disengaging the wall of the pipe to hold the pipe crawler as the air cylinders alternately advance the front leg assembly and bring up themore » rear leg assembly. The pair of actuators of each leg assembly are parallel, adjacent and opposing acting so that each slides two adjacent extendable legs radially outward. 5 figs.« less

  11. RSRM Nozzle-to-Case Joint J-leg Development

    NASA Technical Reports Server (NTRS)

    Albrechtsen, Kevin U.; Eddy, Norman F.; Ewing, Mark E.; McGuire, John R.

    2003-01-01

    Since the beginning of the Space Shuttle Reusable Solid Rocket Motor (RSRM) program, nozzle-to-case joint polysulfide adhesive gas paths have occurred on several flight motors. These gas paths have allowed hot motor gases to reach the wiper O-ring. Even though these motors continue to fly safely with this condition, a desire was to reduce such occurrences. The RSRM currently uses a J-leg joint configuration on case field joints and igniter inner and outer joints. The J-leg joint configuration has been successfully demonstrated on numerous RSRM flight and static test motors, eliminating hot gas intrusion to the critical O-ring seals on these joints. Using the proven technology demonstrated on the case field joints and igniter joints, a nozzle-to-case joint J-leg design was developed for implementation on RSRM flight motors. This configuration provides an interference fit with nozzle fixed housing phenolics at assembly, with a series of pressurization gaps incorporated outboard of the joint mating surface to aid in joint pressurization and to eliminate any circumferential flow in this region. The joint insulation is bonded to the nozzle phenolics using the same pressure sensitive adhesive used in the case field joints and igniter joints. An enhancement to the nozzle-to-case joint J-leg configuration is the implementation of a carbon rope thermal barrier. The thermal barrier is located downstream of the joint bondline and is positioned within the joint in a manner where any hot gas intrusion into the joint passes through the thermal barrier, reducing gas temperatures to a level that would not affect O-rings downstream of the thermal barrier. This paper discusses the processes used in reaching a final nozzle-to-case joint J-leg design, provides structural and thermal results in support of the design, and identifies fabrication techniques and demonstrations used in arriving at the final configuration.

  12. MID-VASTUS VS MEDIAL PARA-PATELLAR APPROACH IN TOTAL KNEE REPLACEMENT—TIME TO DISCHARGE

    PubMed Central

    Mukherjee, P.; Press, J.; Hockings, M.

    2009-01-01

    Background It has been shown before that when compared with the medial para-patellar approach, the mid-vastus approach for TKR results in less post-operative pain for patients and more rapid recovery of straight leg raise. As far as we are aware the post-operative length of stay of the two groups of patients has not been compared. We postulated that the reduced pain and more rapid recovery of straight leg raise would translate into an earlier, safe, discharge home for the mid-vastus patients compared with those who underwent a traditional medial para-patellar approach. Methods Twenty patients operated on by each of five established knee arthroplasty surgeons were evaluated prospectively with regard to their pre and post-operative range of movement, time to achieve straight leg raise post-operatively and length of post-operative hospital stay. Only one of the surgeons performed the mid-vastus approach, and the measurements were recorded by physiotherapists who were blinded as to the approach used on each patient. Results The results were analysed using a standard statistical software package, and although the mean length of stay was lower for the mid-vastus patients, the difference did not reach a level of significance (p = 0.13). The time taken to achieve straight leg raise post-operatively was significantly less in the mid-vastus group (p<0.001). Conclusion Although this study confirms previous findings that the mid-vastus approach reduces the time taken for patients to achieve straight leg raise, when compared with the medial para-patellar approach, on its own it does not translate into a significantly shorter length of hospital stay. In order to reduce the length of post-operative hospital stay with an accelerated rehabilitation program for TKR, a multi-disciplinary approach is required. Patient expectations, GP support, physiotherapists and nursing staff all have a role to play and the mid-vastus approach, in permitting earlier straight leg raising, significantly contributes to this. PMID:19742080

  13. Potential role of TBC1D4 in enhanced post-exercise insulin action in human skeletal muscle.

    PubMed

    Treebak, J T; Frøsig, C; Pehmøller, C; Chen, S; Maarbjerg, S J; Brandt, N; MacKintosh, C; Zierath, J R; Hardie, D G; Kiens, B; Richter, E A; Pilegaard, H; Wojtaszewski, J F P

    2009-05-01

    TBC1 domain family, member 4 (TBC1D4; also known as AS160) is a cellular signalling intermediate to glucose transport regulated by insulin-dependent and -independent mechanisms. Skeletal muscle insulin sensitivity is increased after acute exercise by an unknown mechanism that does not involve modulation at proximal insulin signalling intermediates. We hypothesised that signalling through TBC1D4 is involved in this effect of exercise as it is a common signalling element for insulin and exercise. Insulin-regulated glucose metabolism was evaluated in 12 healthy moderately trained young men 4 h after one-legged exercise at basal and during a euglycaemic-hyperinsulinaemic clamp. Vastus lateralis biopsies were taken before and immediately after the clamp. Insulin stimulation increased glucose uptake in both legs, with greater effects (approximately 80%, p < 0.01) in the previously exercised leg. TBC1D4 phosphorylation, assessed using the phospho-AKT (protein kinase B)substrate antibody and phospho- and site-specific antibodies targeting six phosphorylation sites on TBC1D4, increased at similar degrees to insulin stimulation in the previously exercised and rested legs (p < 0.01). However, TBC1D4 phosphorylation on Ser-318, Ser-341, Ser-588 and Ser-751 was higher in the previously exercised leg, both in the absence and in the presence of insulin (p < 0.01; Ser-588, p = 0.09; observed power = 0.39). 14-3-3 binding capacity for TBC1D4 increased equally (p < 0.01) in both legs during insulin stimulation. We provide evidence for site-specific phosphorylation of TBC1D4 in human skeletal muscle in response to physiological hyperinsulinaemia. The data support the idea that TBC1D4 is a nexus for insulin- and exercise-responsive signals that may mediate increased insulin action after exercise.

  14. Fabrication and testing of unileg oxide thermoelectric device

    NASA Astrophysics Data System (ADS)

    Sharma, Jyothi; Purohit, R. D.; Prakash, Deep; Sinha, P. K.

    2017-05-01

    A prototype of oxide thermoelectric unileg device was fabricated. This device was based on only n-legs made of La doped calcium manganate. The powder was synthesized, characterised and consolidated in rectangular thermoelements. A 3×3 device was fabricated by fitting 9 rectangular bars in alumina housing and connected by silver strips. The device has been tested under large temperature difference (ΔT=480°C) using an indegenous system. An open circuit voltage of 468 mV was obtained for a nine leg `unileg' device. The device exhibits a internal resistance of ˜1Ω. The maximum power output for this nine leg device reached upto 50 mW in these working condition.

  15. Results of investigations conducted in the LaRC 4-foot unitary plan wind tunnel leg no. 1 using the 0.010-scale 72-OTS model of the space shuttle integrated vehicle (IA94A)

    NASA Technical Reports Server (NTRS)

    Nichols, M. E.

    1976-01-01

    Aero-loads investigations were conducted on the updated configuration-5 space shuttle launch vehicle at Mach numbers 2.50, 3.50, and 4.50. Six-component vehicle forces and moments, base and sting-cavity pressures, elevon hinge moments, wing-root bending and torsion moments, and normal shear force data were obtained. Full simulation of updated vehicle protuberances and attach hardware was employed. Various elevon deflection angles were tested, with two different forward orbiter-to-external-tank attach-strut configurations. The entire vehicle model 72-OTS was supported by means of a balance mounted in the orbiter through its base and suspended from an appropriate sting for the specific tunnel.

  16. Modeling and simulation, and their validation of three-phase transformers with three legs under DC bias

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fuchs, E.F.; You, Y.; Roesler, D.J.

    This paper proposes a new model for three-phase transformers with three legs with and without tank under DC bias based on electric and magnetic circuit theory. For the calculation of the nonsinusoidal no-load currents, a combination of time and frequency domains is used. The analysis shows that (1) asymmetric three-phase transformers with three legs generate magnetizing currents with triplen harmonics not being of the zero-sequence type. (2) The wave shapes of the three magnetizing currents of (asymmetric) transformers are dependent on the phase sequence. (3) The magnetic history of transformer magnetization -- due to residual magnetization and hysteresis of themore » tank -- cannot be ignored if a DC bias is present and the magnetic influence of the tank is relatively strong, e.g., for oil-cooled transformers. (4) Symmetric three-phase transformers with three legs generate no-load currents without triplen harmonics. (5) The effects of DC bias currents (e.g., reactive power demand, harmonic distortion) can be suppressed employing symmetric three-phase transformers with three legs including tank. Measurements corroborate computational results; thus this nonlinear model is valid and accurate.« less

  17. Active and Inactive Leg Hemodynamics during Sequential Single-Leg Interval Cycling.

    PubMed

    Gordon, Nicole; Abbiss, Chris R; Ihsan, Mohammed; Maiorana, Andrew J; Peiffer, Jeremiah J

    2018-06-01

    Leg order during sequential single-leg cycling (i.e., exercising both legs independently within a single session) may affect local muscular responses potentially influencing adaptations. This study examined the cardiovascular and skeletal muscle hemodynamic responses during double-leg and sequential single-leg cycling. Ten young healthy adults (28 ± 6 yr) completed six 1-min double-leg intervals interspersed with 1 min of passive recovery and, on a separate occasion, 12 (six with one leg followed by six with the other leg) 1-min single-leg intervals interspersed with 1 min of passive recovery. Oxygen consumption, heart rate, blood pressure, muscle oxygenation, muscle blood volume, and power output were measured throughout each session. Oxygen consumption, heart rate, and power output were not different between sets of single-leg intervals, but the average of both sets was lower than the double-leg intervals. Mean arterial pressure was higher during double-leg compared with sequential single-leg intervals (115 ± 9 vs 104 ± 9 mm Hg, P < 0.05) and higher during the initial compared with second set of single-leg intervals (108 ± 10 vs 101 ± 10 mm Hg, P < 0.05). The increase in muscle blood volume from baseline was similar between the active single leg and the double leg (267 ± 150 vs 214 ± 169 μM·cm, P = 0.26). The pattern of change in muscle blood volume from the initial to second set of intervals was significantly different (P < 0.05) when the leg was active in the initial (-52.3% ± 111.6%) compared with second set (65.1% ± 152.9%). These data indicate that the order in which each leg performs sequential single-leg cycling influences the local hemodynamic responses, with the inactive muscle influencing the stimulus experienced by the contralateral leg.

  18. Biodynamic Assessment of the THOR-K Manikin

    DTIC Science & Technology

    2013-09-01

    finite element model, and for optimization of occupant seating systems and restraint system design for the MPCV and USAF aircraft ejection seats and...had the same rigid backrest, a rigid seat pan, a rigid footrest and leg support panel, but also provided side supports that restrict the motion of the... Ejection Seat (Technical Report AFRL-HE-WP-SR-2000-0002). Wright-Patterson AFB OH: Human Effectiveness Directorate, Air Force Research Laboratory

  19. What triggers the continuous muscle activity during upright standing?

    PubMed

    Masani, Kei; Sayenko, Dimitry G; Vette, Albert H

    2013-01-01

    The ankle extensors play a dominant role in controlling the equilibrium during bipedal quiet standing. Their primary role is to resist the gravity toppling torque that pulls the body forward. The purpose of this study was to investigate whether the continuous muscle activity of the anti-gravity muscles during standing is triggered by the joint torque requirement for opposing the gravity toppling torque, rather than by the vertical load on the lower limbs. Healthy adults subjects stood on a force plate. The ankle torque, ankle angle, and electromyograms from the right lower leg muscles were measured. A ground-fixed support device was used to support the subject at his/her knees, without changing the posture from the free standing one. During the supported condition, which eliminates the ankle torque requirement while maintaining both the vertical load on the lower limbs and the natural upright standing posture, the plantarflexor activity was attenuated to the resting level. Also, this attenuated plantarflexor activity was found only in one side when the ipsilateral leg was supported. Our results suggest that the vertical load on the lower limb is not determinant for inducing the continuous muscle activity in the anti-gravity muscles, but that it depends on the required joint torque to oppose the gravity toppling torque. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Interlimb Coordination in Body-Weight Supported Locomotion: A Pilot Study

    PubMed Central

    Seiterle, Stefan; Susko, Tyler; Artemiadis, Panagiotis K.; Riener, Robert; Krebs, Hermano Igo

    2015-01-01

    Locomotion involves complex neural networks responsible for automatic and volitional actions. During locomotion, motor strategies can rapidly compensate for any obstruction or perturbation that could interfere with forward progression. In this pilot study, we examined the contribution of interlimb pathways for evoking muscle activation patterns in the contralateral limb when a unilateral perturbation was applied and in the case where body weight was externally supported. In particular, the latency of neuromuscular responses was measured, while the stimulus to afferent feedback was limited. The pilot experiment was conducted with six healthy young subjects. It employed the MIT-Skywalker (beta-prototype), a novel device intended for gait therapy. Subjects were asked to walk on the split-belt treadmill, while a fast unilateral perturbation was applied mid-stance by unexpectedly lowering one side of the split-treadmill walking surfaces. Subject's weight was externally supported via the body-weight support system consisting of an underneath bicycle seat and the torso was stabilized via a loosely fitted chest harness. Both the weight support and the chest harness limited the afferent feedback. The unilateral perturbations evoked changes in the electromyographic activity of the non-perturbed contralateral leg. The latency of all muscle responses exceeded 100 ms, which precludes the conjecture that spinal cord alone is responsible for the perturbation response. It suggests the role of supraspinal or midbrain level pathways at the inter-leg coordination during gait. PMID:25990210

  1. Postural threat influences vestibular-evoked muscular responses.

    PubMed

    Lim, Shannon B; Cleworth, Taylor W; Horslen, Brian C; Blouin, Jean-Sébastien; Inglis, J Timothy; Carpenter, Mark G

    2017-02-01

    Standing balance is significantly influenced by postural threat. While this effect has been well established, the underlying mechanisms of the effect are less understood. The involvement of the vestibular system is under current debate, and recent studies that investigated the effects of height-induced postural threat on vestibular-evoked responses provide conflicting results based on kinetic (Horslen BC, Dakin CJ, Inglis JT, Blouin JS, Carpenter MG. J Physiol 592: 3671-3685, 2014) and kinematic (Osler CJ, Tersteeg MC, Reynolds RF, Loram ID. Eur J Neurosci 38: 3239-3247, 2013) data. We examined the effect of threat of perturbation, a different form of postural threat, on coupling (cross-correlation, coherence, and gain) of the vestibulo-muscular relationship in 25 participants who maintained standing balance. In the "No-Threat" conditions, participants stood quietly on a stable surface. In the "Threat" condition, participants' balance was threatened with unpredictable mediolateral support surface tilts. Quiet standing immediately before the surface tilts was compared to an equivalent time from the No-Threat conditions. Surface EMG was recorded from bilateral trunk, hip, and leg muscles. Hip and leg muscles exhibited significant increases in peak cross-correlation amplitudes, coherence, and gain (1.23-2.66×) in the Threat condition compared with No-Threat conditions, and significant correlations were observed between threat-related changes in physiological arousal and medium-latency peak cross-correlation amplitude in medial gastrocnemius (r = 0.408) muscles. These findings show a clear threat effect on vestibular-evoked responses in muscles in the lower body, with less robust effects of threat on trunk muscles. Combined with previous work, the present results can provide insight into observed changes during balance control in threatening situations. This is the first study to show increases in vestibular-evoked responses of the lower body muscles under conditions of increased threat of postural perturbation. While robust findings were observed in hip and leg muscles, less consistent results were found in muscles of the trunk. The present findings provide further support in the ongoing debate for arguments that vestibular-evoked balance responses are influenced by fear and anxiety and explain previous threat-related changes in balance. Copyright © 2017 the American Physiological Society.

  2. Contributions of individual domains to function of the HIV-1 Rev response element.

    PubMed

    O'Carroll, Ina P; Thappeta, Yashna; Fan, Lixin; Ramirez-Valdez, Edric A; Smith, Sean; Wang, Yun-Xing; Rein, Alan

    2017-08-16

    The HIV-1 Rev response element (RRE) is a 351-base element in unspliced and partially spliced viral RNA; binding of the RRE by the viral Rev protein induces nuclear export of RRE-containing RNAs, as required for virus replication. It contains one long, imperfect double helix (domain I), one branched domain (domain II) containing a high-affinity Rev-binding site, and two or three additional domains. We previously reported that the RRE assumes an "A" shape in solution and suggested that the location of the Rev binding sites in domains I and II, opposite each other on the two legs of the A, is optimal for Rev binding and explains Rev's specificity for RRE-containing RNAs. Using SAXS and a quantitative functional assay, we have now analyzed a panel of RRE mutants. All the results support the essential role of the A shape for RRE function. Moreover, they suggest that the distal portion of domain I and the three crowning domains all contribute to the maintenance of the A shape. Domains I and II are necessary and sufficient for substantial RRE function, provided they are joined by a flexible linker that allows the two domains to face each other. IMPORTANCE Retroviral replication requires that some of the viral RNAs transcribed in the cell nucleus be exported to the cytoplasm without being spliced. To achieve this, HIV-1 encodes a protein, Rev, which binds to a complex, highly structured element within viral RNA, the Rev Response Element (RRE), and escorts RRE-containing RNAs from the nucleus. We previously reported that the RRE is "A"-shaped and suggested that this architecture, with the 2 legs opposite one another, can explain the specificity of Rev for the RRE. We have analyzed the functional contributions of individual RRE domains, and now report that several domains contribute, with some redundancy, to maintenance of the overall RRE shape. The data strongly support the hypothesis that the opposed placement of the 2 legs is essential for RRE function. Copyright © 2017 American Society for Microbiology.

  3. Contributions of Individual Domains to Function of the HIV-1 Rev Response Element

    PubMed Central

    O'Carroll, Ina P.; Thappeta, Yashna; Fan, Lixin; Ramirez-Valdez, Edric A.; Smith, Sean; Wang, Yun-Xing

    2017-01-01

    ABSTRACT The HIV-1 Rev response element (RRE) is a 351-base element in unspliced and partially spliced viral RNA; binding of the RRE by the viral Rev protein induces nuclear export of RRE-containing RNAs, as required for virus replication. It contains one long, imperfect double helix (domain I), one branched domain (domain II) containing a high-affinity Rev-binding site, and two or three additional domains. We previously reported that the RRE assumes an “A” shape in solution and suggested that the location of the Rev binding sites in domains I and II, opposite each other on the two legs of the A, is optimal for Rev binding and explains Rev's specificity for RRE-containing RNAs. Using small-angle X-ray scattering (SAXS) and a quantitative functional assay, we have now analyzed a panel of RRE mutants. All the results support the essential role of the A shape for RRE function. Moreover, they suggest that the distal portion of domain I and the three crowning domains all contribute to the maintenance of the A shape. Domains I and II are necessary and sufficient for substantial RRE function, provided they are joined by a flexible linker that allows the two domains to face each other. IMPORTANCE Retroviral replication requires that some of the viral RNAs transcribed in the cell nucleus be exported to the cytoplasm without being spliced. To achieve this, HIV-1 encodes a protein, Rev, which binds to a complex, highly structured element within viral RNA, the Rev response element (RRE), and escorts RRE-containing RNAs from the nucleus. We previously reported that the RRE is “A” shaped and suggested that this architecture, with the 2 legs opposite one another, can explain the specificity of Rev for the RRE. We have analyzed the functional contributions of individual RRE domains and now report that several domains contribute, with some redundancy, to maintenance of the overall RRE shape. The data strongly support the hypothesis that the opposed placement of the 2 legs is essential for RRE function. PMID:28814520

  4. Lightweight, Economical Device Alleviates Drop Foot

    NASA Technical Reports Server (NTRS)

    Deis, B. C.

    1983-01-01

    Corrective apparatus alleviates difficulties in walking for victims of drop foot. Elastic line attached to legband provides flexible support to toe of shoe. Device used with flat (heelless) shoes, sneakers, crepe-soled shoes, canvas shoes, and many other types of shoes not usable with short leg brace.

  5. [Necrotizing fasciitis, myositis, arthritis, and streptococcal toxic shock syndrome caused by group G Streptococcus. Report of one case].

    PubMed

    Ayala-Gaytán, Juan Jacobo; Martínez-Vela, Ángel; Náñez-Terreros, Homero; Guajardo-Lara, Claudia Elena; Valdovinos-Chávez, Salvador Bruno

    2014-01-01

    Necrotizing fasciitis (NF), myositis, and streptococcal toxic shock syndrome (STSS) associated with group G ß-hemolytic streptococcus (GGS) occasionally coincide. We describe a case of GGS simultaneously occurring with NF, myositis, arthritis, and STSS in an 83-year-old woman with sequelae of cerebrovascular disease, hospitalized after two days of fever and with a painful swollen left foot. She was hypotensive, her foot had purplish discoloration, which showed blisters spreading to the lower third of the leg, and no crepitus was present. Fluid, vasopressive support, tigecyclin, and clindamycin were used. Debrided tissue and fluid aspirated from the knee joint revealed Gram-positive cocci. The patient developed renal and respiratory failure on the fifth day, requiring support. She underwent amputation above the knee of the left leg, after which her condition improved. She was discharged one month later. GGS can cause life-threatening infections such as NF, myositis, and/or STSS. GGS usually afflicts aging patients with comorbid states, and occasionally healthy subjects.

  6. Power generation from nanostructured PbTe-based thermoelectrics: comprehensive development from materials to modules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Xiaokai; Jood, Priyanka; Ohta, Michihiro

    2016-01-01

    In this work, we demonstrate the use of high performance nanostructured PbTe-based materials in high conversion efficiency thermoelectric modules. We fabricated the samples of PbTe-2% MgTe doped with 4% Na and PbTe doped with 0.2% PbI2 with high thermoelectric figure of merit (ZT) and sintered them with Co-Fe diffusion barriers for use as p- and n-type thermoelectric legs, respectively. Transmission electron microscopy of the PbTe legs reveals two shapes of nanostructures, disk-like and spherical. The reduction in lattice thermal conductivity through nanostructuring gives a ZT of similar to 1.8 at 810 K for p-type PbTe and similar to 1.4 atmore » 750 K for n-type PbTe. Nanostructured PbTe-based module and segmented-leg module using Bi2Te3 and nanostructured PbTe were fabricated and tested with hot-side temperatures up to 873 K in a vacuum. The maximum conversion efficiency of similar to 8.8% for a temperature difference (Delta T) of 570 K and B11% for a Delta T of 590 K have been demonstrated in the nanostructured PbTe-based module and segmented Bi2Te3/nanostructured PbTe module, respectively. Three-dimensional finite-element simulations predict that the maximum conversion efficiency of the nanostructured PbTe-based module and segmented Bi2Te3/nanostructured PbTe module reaches 12.2% for a Delta T of 570 K and 15.6% for a Delta T of 590 K respectively, which could be achieved if the electrical and thermal contact between the nanostructured PbTe legs and Cu interconnecting electrodes is further improved.« less

  7. Skipping on uneven ground: trailing leg adjustments simplify control and enhance robustness.

    PubMed

    Müller, Roy; Andrada, Emanuel

    2018-01-01

    It is known that humans intentionally choose skipping in special situations, e.g. when descending stairs or when moving in environments with lower gravity than on Earth. Although those situations involve uneven locomotion, the dynamics of human skipping on uneven ground have not yet been addressed. To find the reasons that may motivate this gait, we combined experimental data on humans with numerical simulations on a bipedal spring-loaded inverted pendulum model (BSLIP). To drive the model, the following parameters were estimated from nine subjects skipping across a single drop in ground level: leg lengths at touchdown, leg stiffness of both legs, aperture angle between legs, trailing leg angle at touchdown (leg landing first after flight phase), and trailing leg retraction speed. We found that leg adjustments in humans occur mostly in the trailing leg (low to moderate leg retraction during swing phase, reduced trailing leg stiffness, and flatter trailing leg angle at lowered touchdown). When transferring these leg adjustments to the BSLIP model, the capacity of the model to cope with sudden-drop perturbations increased.

  8. Multiple balance tests improve the assessment of postural stability in subjects with Parkinson's disease

    PubMed Central

    Jacobs, J V; Horak, F B; Tran, V K; Nutt, J G

    2006-01-01

    Objectives Clinicians often base the implementation of therapies on the presence of postural instability in subjects with Parkinson's disease (PD). These decisions are frequently based on the pull test from the Unified Parkinson's Disease Rating Scale (UPDRS). We sought to determine whether combining the pull test, the one‐leg stance test, the functional reach test, and UPDRS items 27–29 (arise from chair, posture, and gait) predicts balance confidence and falling better than any test alone. Methods The study included 67 subjects with PD. Subjects performed the one‐leg stance test, the functional reach test, and the UPDRS motor exam. Subjects also responded to the Activities‐specific Balance Confidence (ABC) scale and reported how many times they fell during the previous year. Regression models determined the combination of tests that optimally predicted mean ABC scores or categorised fall frequency. Results When all tests were included in a stepwise linear regression, only gait (UPDRS item 29), the pull test (UPDRS item 30), and the one‐leg stance test, in combination, represented significant predictor variables for mean ABC scores (r2 = 0.51). A multinomial logistic regression model including the one‐leg stance test and gait represented the model with the fewest significant predictor variables that correctly identified the most subjects as fallers or non‐fallers (85% of subjects were correctly identified). Conclusions Multiple balance tests (including the one‐leg stance test, and the gait and pull test items of the UPDRS) that assess different types of postural stress provide an optimal assessment of postural stability in subjects with PD. PMID:16484639

  9. The twelve-step recovery model of AA: a voluntary mutual help association.

    PubMed

    Borkman, Thomasina

    2008-01-01

    Alcoholism treatment has evolved to mean professionalized, scientifically based rehabilitation. Alcoholics Anonymous (AA) is not a treatment method; it is far better understood as a Twelve-Step Recovery Program within a voluntary self-help/mutual aid organization of self-defined alcoholics. The Twelve-Step Recovery Model is elaborated in three sections, patterned on the AA logo (a triangle within a circle): The triangle's legs represent recovery, service, and unity; the circle represents the reinforcing effect of the three legs upon each other as well as the "technology" of the sharing circle and the fellowship. The first leg of the triangle, recovery, refers to the journey of individuals to abstinence and a new "way of living." The second leg, service, refers to helping other alcoholics which also connects the participants into a fellowship. The third leg, unity, refers to the fellowship of recovering alcoholics, their groups, and organizations. The distinctive AA organizational structure of an inverted pyramid is one in which the members in autonomous local groups direct input to the national service bodies creating a democratic, egalitarian organization maximizing recovery. Analysts describe the AA recovery program as complex, implicitly grounded in sound psychological principles, and more sophisticated than is typically understood. AA provides a nonmedicalized and anonymous "way of living" in the community and should probably be referred to as the Twelve-Step/Twelve Tradition Recovery Model in order to clearly differentiate it from professionally based twelve-step treatments. There are additional self-help/mutual aid groups for alcoholics who prefer philosophies other than AA.

  10. Landing System Development- Design and Test Prediction of a Lander Leg Using Nonlinear Analysis

    NASA Astrophysics Data System (ADS)

    Destefanis, Stefano; Buchwald, Robert; Pellegrino, Pasquale; Schroder, Silvio

    2014-06-01

    Several mission studies have been performed focusing on a soft and precision landing using landing legs. Examples for such missions are Mars Sample Return scenarios (MSR), Lunar landing scenarios (MoonNEXT, Lunar Lander) and small body sample return studies (Marco Polo, MMSR, Phootprint). Such missions foresee a soft landing on the planet surface for delivering payload in a controlled manner and limiting the landing loads.To ensure a successful final landing phase, a landing system is needed, capable of absorbing the residual velocities (vertical, horizontal and angular) at touch- down, and insuring a controlled attitude after landing. Such requirements can be fulfilled by using landing legs with adequate damping.The Landing System Development (LSD) study, currently in its phase 2, foresees the design, analysis, verification, manufacturing and testing of a representative landing leg breadboard based on the Phase B design of the ESA Lunar Lander. Drop tests of a single leg will be performed both on rigid and soft ground, at several impact angles. The activity is covered under ESA contract with TAS-I as Prime Contractor, responsible for analysis and verification, Astrium GmbH for design and test and QinetiQ Space for manufacturing. Drop tests will be performed at the Institute of Space Systems of the German Aerospace Center (DLR-RY) in Bremen.This paper presents an overview of the analytical simulations (test predictions and design verification) performed, comparing the results produced by Astrium made multi body model (rigid bodies, nonlinearities accounted for in mechanical joints and force definitions, based on development tests) and TAS-I made nonlinear explicit model (fully deformable bodies).

  11. Multisensor-based human detection and tracking for mobile service robots.

    PubMed

    Bellotto, Nicola; Hu, Huosheng

    2009-02-01

    One of fundamental issues for service robots is human-robot interaction. In order to perform such a task and provide the desired services, these robots need to detect and track people in the surroundings. In this paper, we propose a solution for human tracking with a mobile robot that implements multisensor data fusion techniques. The system utilizes a new algorithm for laser-based leg detection using the onboard laser range finder (LRF). The approach is based on the recognition of typical leg patterns extracted from laser scans, which are shown to also be very discriminative in cluttered environments. These patterns can be used to localize both static and walking persons, even when the robot moves. Furthermore, faces are detected using the robot's camera, and the information is fused to the legs' position using a sequential implementation of unscented Kalman filter. The proposed solution is feasible for service robots with a similar device configuration and has been successfully implemented on two different mobile platforms. Several experiments illustrate the effectiveness of our approach, showing that robust human tracking can be performed within complex indoor environments.

  12. [Paraesthesia in the legs].

    PubMed

    Eisensehr, Ilonka

    2007-10-18

    Paraesthesia in the legs can have numerous causes. In addition to the restless legs syndrome, other primary causes include venous insufficiency in the leg, propriospinal myoclonus, nocturnal leg cramps, peripheral polyneuropathy that affects mostly the legs or neuroleptic drug-induced akathisia. Through detailed questioning of the patient, restless legs syndrome can be specifically distinguished from the other named differential diagnoses.

  13. Passive heat loading links lipolysis and regulation of fibroblast growth factor-21 in humans.

    PubMed

    Lee, Jeong-Beom; Kim, Tae-Wook

    2014-10-01

    There is relativley little information on the serum biomarkers of heat stress. Therefore, the goal of this study was to verify the effect of passive heat loading (PHL) on the expression of fibroblast growth factor-21 (FGF21) and free fatty acids (FFAs). Four PHL protocols based on intensity (39 °C vs. 43 °C, leg immersion, 30 min) and type (leg vs. half immersion, 42 °C, 30 min) were used. Each protocol was applied on a 2 day cycle to 12 healthy adult males (age, 22.4 ± 2.9 years; height, 174.1 ± 4.6 cm; weight, 71.3 ± 5.6 kg; body mass index, 23.1 ± 3.0). The subjects were categorized into two groups according to the study design (randomized, with a parallel trial). Body temperature, FGF21 and FFAs were determined prior to PH L, immediately and 60 min after PHL. Body temperature was significant higher (43 °C) than the 39 °C measured under identical PHL type (leg immersion). PHL was effective for the expression of FGF21 and for lipolysis. The quantitative levels of FGF21 and FFA increased with increasing temperature (39 °C<42 °C<43 °C). A significant difference in the quantitative levels of FGF21 and FFAs was also evident based on the type of PHL (leg

  14. Gulf of Mexico Gas Hydrate Joint Industry Project Leg II logging-while-drilling data acquisition and analysis

    USGS Publications Warehouse

    Collett, Timothy S.; Lee, Wyung W.; Zyrianova, Margarita V.; Mrozewski, Stefan A.; Guerin, Gilles; Cook, Ann E.; Goldberg, Dave S.

    2012-01-01

    One of the objectives of the Gulf of Mexico Gas Hydrate Joint Industry Project Leg II (GOM JIP Leg II) was the collection of a comprehensive suite of logging-while-drilling (LWD) data within gas-hydrate-bearing sand reservoirs in order to make accurate estimates of the concentration of gas hydrates under various geologic conditions and to understand the geologic controls on the occurrence of gas hydrate at each of the sites drilled during this expedition. The LWD sensors just above the drill bit provided important information on the nature of the sediments and the occurrence of gas hydrate. There has been significant advancements in the use of downhole well-logging tools to acquire detailed information on the occurrence of gas hydrate in nature: From using electrical resistivity and acoustic logs to identify gas hydrate occurrences in wells to where wireline and advanced logging-while-drilling tools are routinely used to examine the petrophysical nature of gas hydrate reservoirs and the distribution and concentration of gas hydrates within various complex reservoir systems. Recent integrated sediment coring and well-log studies have confirmed that electrical resistivity and acoustic velocity data can yield accurate gas hydrate saturations in sediment grain supported (isotropic) systems such as sand reservoirs, but more advanced log analysis models are required to characterize gas hydrate in fractured (anisotropic) reservoir systems. In support of the GOM JIP Leg II effort, well-log data montages have been compiled and presented in this report which includes downhole logs obtained from all seven wells drilled during this expedition with a focus on identifying and characterizing the potential gas-hydrate-bearing sedimentary section in each of the wells. Also presented and reviewed in this report are the gas-hydrate saturation and sediment porosity logs for each of the wells as calculated from available downhole well logs.

  15. Evaluation of the BOD POD and leg-to-leg bioelectrical impedance analysis for estimating percent body fat in National Collegiate Athletic Association Division III collegiate wrestlers.

    PubMed

    Dixon, Curt B; Deitrick, Ronald W; Pierce, Joseph R; Cutrufello, Paul T; Drapeau, Linda L

    2005-02-01

    The purpose of this study was to compare percent body fat (%BF) estimated by air displacement plethysmography (ADP) and leg-to-leg bioelectrical impedance analysis (LBIA) with hydrostatic weighing (HW) in a group (n = 25) of NCAA Division III collegiate wrestlers. Body composition was assessed during the preseason wrestling weight certification program (WCP) using the NCAA approved methods (HW, 3-site skinfold [SF], and ADP) and LBIA, which is currently an unaccepted method of assessment. A urine specific gravity less than 1.020, measured by refractometry, was required before all testing. Each subject had all of the assessments performed on the same day. LBIA measurements (Athletic mode) were determined using a Tanita body fat analyzer (model TBF-300A). Hydrostatic weighing, corrected for residual lung volume, was used as the criterion measurement. The %BF data (mean +/- SD) were LBIA (12.3 +/- 4.6), ADP (13.8 +/- 6.3), SF (14.2 +/- 5.3), and HW (14.5 +/- 6.0). %BF estimated by LBIA was significantly (p < 0.01) smaller than HW and SF. There were no significant differences in body density or %BF estimated by ADP, SF, and HW. All methods showed significant correlations (r = 0.80-0.96; p < 0.01) with HW. The standard errors of estimate (SEE) for %BF were 1.68, 1.87, and 3.60%; pure errors (PE) were 1.88, 1.94, and 4.16% (ADP, SF, and LBIA, respectively). Bland-Atman plots for %BF demonstrated no systematic bias for ADP, SF, and LBIA when compared with HW. These preliminary findings support the use of ADP and SF for estimating %BF during the NCAA WCP in Division III wrestlers. LBIA, which consistently underestimated %BF, is not supported by these data as a valid assessment method for this athletic group.

  16. Limb symmetry during double-leg squats and single-leg squats on land and in water in adults with long-standing unilateral anterior knee pain; a cross sectional study.

    PubMed

    Severin, Anna C; Burkett, Brendan J; McKean, Mark R; Wiegand, Aaron N; Sayers, Mark G L

    2017-01-01

    The presence of pain during movement typically results in changes in technique. However, the physical properties of water, such as flotation, means that water-based exercise may not only reduce compensatory movement patterns but also allow pain sufferers to complete exercises that they are unable to perform on land. The purpose of this study was to assess bilateral kinematics during double-leg squats and single-leg squats on land and in water in individuals with unilateral anterior knee pain. A secondary aim was to quantify bilateral asymmetry in both environments in affected and unaffected individuals using a symmetry index. Twenty individuals with unilateral knee pain and twenty healthy, matched controls performed body weight double- and single-leg squats in both environments while inertial sensors (100 Hz) recorded trunk and lower body kinematics. Repeated-measures statistics tested for environmental effects on movement depths and peak angles within the anterior knee pain group. Differences in their inter-limb symmetry in each environments was compared to the control group using analysis of variance tests. Water immersion allowed for greater movement depths during both exercises (double-leg squat: +7 cm, p  = 0.032, single-leg squat: +9 cm, p  = 0.002) for the knee pain group. The double-leg squat was symmetrical on land but water immersion revealed asymmetries in the lower body frontal plane movements. The single-leg squat revealed decreased hip flexion and frontal plane shank motions on the affected limb in both environments. Water immersion also affected the degree of lower limb asymmetry in both groups, with differences also showing between groups. Individuals with anterior knee pain achieved increased squat depth during both exercises whilst in water. Kinematic differences between the affected and unaffected limbs were often increased in water. Individuals with unilateral anterior knee pain appear to utilise different kinematics in the affected and unaffected limb in both environments.

  17. Neuromuscular Characteristics of Individuals Displaying Excessive Medial Knee Displacement

    PubMed Central

    Padua, Darin A.; Bell, David R.; Clark, Micheal A.

    2012-01-01

    Context Knee-valgus motion is a potential risk factor for certain lower extremity injuries, including anterior cruciate ligament injury and patellofemoral pain. Identifying neuromuscular characteristics associated with knee-valgus motion, such as hip and lower leg muscle activation, may improve our ability to prevent lower extremity injuries. Objective We hypothesized that hip and lower leg muscle-activation amplitude would differ among individuals displaying knee valgus (medial knee displacement) during a double-legged squat compared with those who did not display knee valgus. We further suggested that the use of a heel lift would alter lower leg muscle activation and frontal-plane knee motion in those demonstrating medial knee displacement. Design Descriptive laboratory study. Setting Research laboratory. Patients or Other Participants A total of 37 healthy participants were assigned to the control (n = 19) or medial-knee-displacement (n = 18) group based on their double-legged squat performance. Main Outcome Measure(s) Muscle-activation amplitude for the gluteus maximus, gluteus medius, adductor magnus, medial and lateral gastrocnemius, and tibialis anterior was measured during 2 double-legged squat tasks. The first task consisted of performing a double-legged squat without a heel lift; the second consisted of performing a double-legged squat task with a 2-in (5.08-cm) lift under the heels. Results Muscle-activation amplitude for the hip adductor, gastrocnemius, and tibialis anterior was greater in those who displayed knee valgus than in those who did not (P < .05). Also, use of heel lifts resulted in decreased activation of the gluteus maximus, hip adductor, gastrocnemius, and tibialis anterior muscles (P < .05). Use of heel lifts also eliminated medially directed frontal-plane knee motion in those displaying medial knee displacement. Conclusions Medial knee displacement during squatting tasks appears to be associated with increased hip-adductor activation and increased coactivation of the gastrocnemius and tibialis anterior muscles. PMID:23068590

  18. The effect of the stability threshold on time to stabilization and its reliability following a single leg drop jump landing.

    PubMed

    Fransz, Duncan P; Huurnink, Arnold; de Boode, Vosse A; Kingma, Idsart; van Dieën, Jaap H

    2016-02-08

    We aimed to provide insight in how threshold selection affects time to stabilization (TTS) and its reliability to support selection of methods to determine TTS. Eighty-two elite youth soccer players performed six single leg drop jump landings. The TTS was calculated based on four processed signals: raw ground reaction force (GRF) signal (RAW), moving root mean square window (RMS), sequential average (SA) or unbounded third order polynomial fit (TOP). For each trial and processing method a wide range of thresholds was applied. Per threshold, reliability of the TTS was assessed through intra-class correlation coefficients (ICC) for the vertical (V), anteroposterior (AP) and mediolateral (ML) direction of force. Low thresholds resulted in a sharp increase of TTS values and in the percentage of trials in which TTS exceeded trial duration. The TTS and ICC were essentially similar for RAW and RMS in all directions; ICC's were mostly 'insufficient' (<0.4) to 'fair' (0.4-0.6) for the entire range of thresholds. The SA signals resulted in the most stable ICC values across thresholds, being 'substantial' (>0.8) for V, and 'moderate' (0.6-0.8) for AP and ML. The ICC's for TOP were 'substantial' for V, 'moderate' for AP, and 'fair' for ML. The present findings did not reveal an optimal threshold to assess TTS in elite youth soccer players following a single leg drop jump landing. Irrespective of threshold selection, the SA and TOP methods yielded sufficiently reliable TTS values, while for RAW and RMS the reliability was insufficient to differentiate between players. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Training for improved neuro-muscular control of balance in middle aged females.

    PubMed

    Anderson, Gregory S; Deluigi, Fabio; Belli, Guido; Tentoni, Claudio; Gaetz, Michael B

    2016-01-01

    This study examined improvements in static balance and muscle electromyographic (EMG) activity following a four week progressive training program in 16 middle aged females (mean age = 46.9 ± 8.7 yrs; height 161.1 ± 6.0 cm; weight 65.4 ± 11.2 kg). Participants trained 3 times per week for 4 weeks, for 50 min per session, progressing base of support, stability, vision, resistance and torque in each of six basic exercises. Pre and post training measures of balance included feet together standing, a tandem stance and a one-leg stand (unsupported leg in the saggital plane) performed with the eyes closed, and a Stork Stand (unsupported leg in the frontal plane) with both eyes open and closed. In each position postural deviations were tallied for each individual while muscle recruitment was determined using root mean squared (RMS) EMG activity for the soleus, biceps femoris, erector spinae, rectus abdominis and internal oblique muscles of the dominant foot side. Balance scores were significantly improved post training in both the Balance Error Score System (p < 0.05) and stork stand positions (p < 0.01). Muscle activity was reduced post-training in all muscles in each condition except the soleus in the tandem position, although not all significantly. Reduced biceps femoris activity suggest that improved core stability allowed participants to move from a hip to an ankle postural control strategy through improved coordination of muscles involved in balance and reduced body sway. The core muscles were able to control body position with less activity post training suggesting improved muscle coordination and efficiency. These results suggest that short term progressive floor to BOSU™ balance training can improve standing balance in middle aged women. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Kinetic factors of vertical jumping for heading a ball in flexible flatfooted amateur soccer players with and without insole adoption.

    PubMed

    Arastoo, Ali Asghar; Aghdam, Esmaeil Moharrami; Habibi, Abdoul Hamid; Zahednejad, Shahla

    2014-06-01

    According to literature, little is known regarding the effects of orthotic management of flatfoot on kinetics of vertical jump. To compare the kinetic and temporal events of two-legged vertical jumping take-off from a force plate for heading a ball in normal and flexible flatfoot subjects with and without insole. A functional based interventional controlled study. Random sampling method was employed to draw a control group of 15 normal foot subjects to a group of 15 flatfoot subjects. A force platform was used to record kinetics of two-legged vertical jump shots. Results indicate that insole did not lead to a significant effect on kinetics regarding anterior-posterior and mediolateral directions (p > 0.05). Results of kinetics related to vertical direction for maximum force due to take-off and stance duration revealed significant differences between the normal and flexible flatfoot subjects without insole (p < 0.05) and no significant differences between the normal foot and flexible flatfoot subjects with insole adoption (p > 0.05). These results suggest that the use of an insole in the flexible flatfoot subjects led to improved stance time and decrease of magnitude of kinetics regarding vertical direction at take-off as the main feature of two-legged vertical jumping function. Adoption of the insole improved the design of the shoe-foot interface support for the flexible flatfoot athletes, enabling them to develop more effective take-off kinetics for vertical jumping in terms of ground reaction force and stance duration similar to that of normal foot subjects without insole. © The International Society for Prosthetics and Orthotics 2013.

  1. Aerobic Fitness Does Not Contribute to Prediction of Orthostatic Intolerance

    NASA Technical Reports Server (NTRS)

    Convertino, Victor A.; Sather, Tom M.; Goldwater, Danielle J.; Alford, William R.

    1986-01-01

    Several investigations have suggested that orthostatic tolerance may be inversely related to aerobic fitness (VO (sub 2max)). To test this hypothesis, 18 males (age 29 to 51 yr) underwent both treadmill VO(sub 2max) determination and graded lower body negative pressures (LBNP) exposure to tolerance. VO(2max) was measured during the last minute of a Bruce treadmill protocol. LBNP was terminated based on pre-syncopal symptoms and LBNP tolerance (peak LBNP) was expressed as the cumulative product of LBNP and time (torr-min). Changes in heart rate, stroke volume cardiac output, blood pressure and impedance rheographic indices of mid-thigh-leg initial accumulation were measured at rest and during the final minute of LBNP. For all 18 subjects, mean (plus or minus SE) fluid accumulation index and leg venous compliance index at peak LBNP were 139 plus or minus 3.9 plus or minus 0.4 ml-torr-min(exp -2) x 10(exp 3), respectively. Pearson product-moment correlations and step-wise linear regression were used to investigate relationships with peak LBNP. Variables associated with endurance training, such as VO(sub 2max) and percent body fat were not found to correlate significantly (P is less than 0.05) with peak LBNP and did not add sufficiently to the prediction of peak LBNP to be included in the step-wise regression model. The step-wise regression model included only fluid accumulation index leg venous compliance index, and blood volume and resulted in a squared multiple correlation coefficient of 0.978. These data do not support the hypothesis that orthostatic tolerance as measured by LBNP is lower in individuals with high aerobic fitness.

  2. The Motor and the Brake of the Trailing Leg in Human Walking: Leg Force Control Through Ankle Modulation and Knee Covariance

    PubMed Central

    Toney, Megan E.; Chang, Young-Hui

    2016-01-01

    Human walking is a complex task, and we lack a complete understanding of how the neuromuscular system organizes its numerous muscles and joints to achieve consistent and efficient walking mechanics. Focused control of select influential task-level variables may simplify the higher-level control of steady state walking and reduce demand on the neuromuscular system. As trailing leg power generation and force application can affect the mechanical efficiency of step-to-step transitions, we investigated how joint torques are organized to control leg force and leg power during human walking. We tested whether timing of trailing leg force control corresponded with timing of peak leg power generation. We also applied a modified uncontrolled manifold analysis to test whether individual or coordinated joint torque strategies most contributed to leg force control. We found that leg force magnitude was adjusted from step-to-step to maintain consistent leg power generation. Leg force modulation was primarily determined by adjustments in the timing of peak ankle plantar-flexion torque, while knee torque was simultaneously covaried to dampen the effect of ankle torque on leg force. We propose a coordinated joint torque control strategy in which the trailing leg ankle acts as a motor to drive leg power production while trailing leg knee torque acts as a brake to refine leg power production. PMID:27334888

  3. Frequency Domain Decomposition performed on the strain data obtained from the aluminium model of an offshore support structure

    NASA Astrophysics Data System (ADS)

    Mieloszyk, M.; Opoka, S.; Ostachowicz, W.

    2015-07-01

    This paper presents an application of Fibre Bragg Grating (FBG) sensors for Structural Health Monitoring (SHM) of offshore wind energy support structure model. The analysed structure is a tripod equipped with 16 FBG sensors. From a wide variety of Operational Modal Analysis (OMA) methods Frequency Domain Decomposition (FDD) technique is used in this paper under assumption that the input loading is similar to a white noise excitation. The FDD method can be applied using different sets of sensors, i.e. the one which contains all FBG sensors and the other set of sensors localised only on a particular tripod's leg. The cases considered during investigation were as follows: damaged and undamaged scenarios, different support conditions. The damage was simulated as an dismantled flange on an upper brace in one of the tripod legs. First the model was fixed to an antishaker table and investigated in the air under impulse excitations. Next the tripod was submerged into water basin in order to check the quality of the measurement set-up in different environmental condition. In this case the model was excited by regular waves.

  4. Suitability of Varicose Veins for Endovenous Treatments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goode, S. D., E-mail: s.goode@sheffield.ac.u; Kuhan, G.; Altaf, N.

    2009-09-15

    The aim of the study was to assess the suitability of radiofrequency ablation (RFA), endovenous laser ablation (EVLA), and foam sclerotherapy (FS) for patients with symptomatic varicose veins (VVs). The study comprised 403 consecutive patients with symptomatic VVs. Data on 577 legs from 403 consecutive patients with symptomatic VVs were collected for the year 2006. Median patient age was 55 years (interquartile range 45-66), and 62% patients were women. A set of criteria based on duplex ultrasonography was used to select patients for each procedure. Great saphenous vein (GSV) reflux was present in 77% (446 of 577) of legs. Overall,more » 328 (73%) of the legs were suitable for at least one of the endovenous options. Of the 114 legs with recurrent GSV reflux disease, 83 (73%) were suitable to receive endovenous therapy. Patients with increasing age were less likely to be suitable for endovenous therapy (P = 0.03). Seventy-three percent of patients with VVs caused by GSV incompetence are suitable for endovenous therapy.« less

  5. Isometric hip-rotator torque production at varying degrees of hip flexion.

    PubMed

    Johnson, Sam; Hoffman, Mark

    2010-02-01

    Hip torque production is associated with certain knee injuries. The hip rotators change function depending on hip angle. To compare hip-rotator torque production between 3 angles of hip flexion, limbs, and sexes. Descriptive. University sports medicine research laboratory. 15 men and 15 women, 19-39 y. Three 6-s maximal isometric contractions of the hip external and internal rotators at 10 degrees, 40 degrees, and 90 degrees of hip flexion on both legs. Average torque normalized to body mass. Internal-rotation torque was greatest at 90 degrees of hip flexion, followed by 40 degrees of hip flexion and finally 10 degrees of hip flexion. External-rotation torque was not different based on hip flexion. The nondominant leg's external rotators were stronger than the dominant leg's, but the reverse was true for internal rotators. Finally, the men had more overall rotator torque. Hip-rotation torque production varies between flexion angle, leg, and sex. Clinicians treating lower extremity problems need to be aware of these differences.

  6. Walking the talk--speech activates the leg motor cortex.

    PubMed

    Liuzzi, Gianpiero; Ellger, Tanja; Flöel, Agnes; Breitenstein, Caterina; Jansen, Andreas; Knecht, Stefan

    2008-09-01

    Speech may have evolved from earlier modes of communication based on gestures. Consistent with such a motor theory of speech, cortical orofacial and hand motor areas are activated by both speech production and speech perception. However, the extent of speech-related activation of the motor cortex remains unclear. Therefore, we examined if reading and listening to continuous prose also activates non-brachiofacial motor representations like the leg motor cortex. We found corticospinal excitability of bilateral leg muscle representations to be enhanced by speech production and silent reading. Control experiments showed that speech production yielded stronger facilitation of the leg motor system than non-verbal tongue-mouth mobilization and silent reading more than a visuo-attentional task thus indicating speech-specificity of the effect. In the frame of the motor theory of speech this finding suggests that the system of gestural communication, from which speech may have evolved, is not confined to the hand but includes gestural movements of other body parts as well.

  7. Leg deformation during imaginal ecdysis in the downy emerald, Cordulia aenea (Odonata, Corduliidae).

    PubMed

    Frantsevich, Leonid; Frantsevich, Ludmilla

    2018-04-01

    A dragonfly larva migrates from the water to the shore, perches on a plant stem and grasps it with strongly flexed legs. Adult legs inside the larval exoskeleton fit to the larval legs joint-to-joint. The adult emerges with stretched legs. During the molt, an imaginal leg must follow all the angles in exuvial joints. In turn, larval apodemes are withdrawn from imaginal legs. We visualized transient shapes of the imaginal legs by the instant fixation of insects at different moments of the molt, photographed isolated exuvial legs with the imaginal legs inside and then removed the exuvial sheath. Instant shapes of the imaginal tibia show sharp intrapodomere bends copying the angle in the larval femoro-tibial joint. The site of bending shifts distad during the molt. This is possible if the imaginal leg is pliable. The same problem of leg squeezing is also common in hemimetabolous insects as well as in other arthropods, whereas holometabolous insects overcome problems of a tight confinement either by using leg pliability in other ways but not squeezing (cyclorrhaphan flies, mosquitoes) or by pulling hardened legs out without change of their pupal zigzag configuration (moths, ants, honey bees). The pupal legs are not intended to grasp any external substrate. Copyright © 2018 Elsevier GmbH. All rights reserved.

  8. Escaping blood-fed malaria mosquitoes minimize tactile detection without compromising on take-off speed.

    PubMed

    Muijres, F T; Chang, S W; van Veen, W G; Spitzen, J; Biemans, B T; Koehl, M A R; Dudley, R

    2017-10-15

    To escape after taking a blood meal, a mosquito must exert forces sufficiently high to take off when carrying a load roughly equal to its body weight, while simultaneously avoiding detection by minimizing tactile signals exerted on the host's skin. We studied this trade-off between escape speed and stealth in the malaria mosquito Anopheles coluzzii using 3D motion analysis of high-speed stereoscopic videos of mosquito take-offs and aerodynamic modeling. We found that during the push-off phase, mosquitoes enhanced take-off speed using aerodynamic forces generated by the beating wings in addition to leg-based push-off forces, whereby wing forces contributed 61% of the total push-off force. Exchanging leg-derived push-off forces for wing-derived aerodynamic forces allows the animal to reduce peak force production on the host's skin. By slowly extending their long legs throughout the push-off, mosquitoes spread push-off forces over a longer time window than insects with short legs, thereby further reducing peak leg forces. Using this specialized take-off behavior, mosquitoes are capable of reaching take-off speeds comparable to those of similarly sized fruit flies, but with weight-normalized peak leg forces that were only 27% of those of the fruit flies. By limiting peak leg forces, mosquitoes possibly reduce the chance of being detected by the host. The resulting combination of high take-off speed and low tactile signals on the host might help increase the mosquito's success in escaping from blood-hosts, which consequently also increases the chance of transmitting vector-borne diseases, such as malaria, to future hosts. © 2017. Published by The Company of Biologists Ltd.

  9. Principles of appendage design in robots and animals determining terradynamic performance on flowable ground.

    PubMed

    Qian, Feifei; Zhang, Tingnan; Korff, Wyatt; Umbanhowar, Paul B; Full, Robert J; Goldman, Daniel I

    2015-10-08

    Natural substrates like sand, soil, leaf litter and snow vary widely in penetration resistance. To search for principles of appendage design in robots and animals that permit high performance on such flowable ground, we developed a ground control technique by which the penetration resistance of a dry granular substrate could be widely and rapidly varied. The approach was embodied in a device consisting of an air fluidized bed trackway in which a gentle upward flow of air through the granular material resulted in a decreased penetration resistance. As the volumetric air flow, Q, increased to the fluidization transition, the penetration resistance decreased to zero. Using a bio-inspired hexapedal robot as a physical model, we systematically studied how locomotor performance (average forward speed, v(x)) varied with ground penetration resistance and robot leg frequency. Average robot speed decreased with increasing Q, and decreased more rapidly for increasing leg frequency, ω. A universal scaling model revealed that the leg penetration ratio (foot pressure relative to penetration force per unit area per depth and leg length) determined v(x) for all ground penetration resistances and robot leg frequencies. To extend our result to include continuous variation of locomotor foot pressure, we used a resistive force theory based terradynamic approach to perform numerical simulations. The terradynamic model successfully predicted locomotor performance for low resistance granular states. Despite variation in morphology and gait, the performance of running lizards, geckos and crabs on flowable ground was also influenced by the leg penetration ratio. In summary, appendage designs which reduce foot pressure can passively maintain minimal leg penetration ratio as the ground weakens, and consequently permits maintenance of effective locomotion over a range of terradynamically challenging surfaces.

  10. CC130 pilot fatigue during re-supply missions to former Yugoslavia.

    PubMed

    Paul, M A; Pigeau, R A; Weinberg, H

    2001-11-01

    Deployment of troops in foreign theaters requires a massive airlift capability. The fatigue encountered in such operations can be severe enough to pose a flight safety hazard. The current study documents sleep and the effect of fatigue on aircrew performance during re-supply missions in support of Canadian troops in Bosnia in 1996. Ten routine re-supply missions from Trenton, Canada, to Zagreb, Croatia, were studied and involved 9 pilots and 9 co-pilots. To document their sleep hygiene, all pilots wore wrist actigraphs from approximately 5 d prior to the mission, until the mission was completed. Psychomotor performance was tested during the actual flights. Three psychomotor trials during the outbound transatlantic leg (Trenton to Lyneham, UK) were employed, one trial on the Lyneham-Zagreb-Lyneham leg, and three trials on the return transatlantic leg from Lyneham to Trenton. The amount of daily sleep during the 3-d period prior to the mission steadily decreased from an average of 8 h 40 min per day to 6 h 30 min (p < 0.001). During the missions, the worst night of sleep occurred during the second night overseas. During both transatlantic legs, there were significant decrements in the subjective ratings of alertness (p < 0.001), and increases in physical (p < 0.001) and mental fatigue (p < 0.001). Performance on the logical reasoning task as well as the multitask showed probable fatigue effects during the outbound leg of the missions. Our transport pilots showed a pattern of progressively decreasing sleep. Self-rated scores for alertness, mental and physical fatigue, indicate a deterioration of alertness, and an increase in fatigue throughout the long transatlantic flights.

  11. Effect of Leg Dominance on The Center-of-Mass Kinematics During an Inside-of-the-Foot Kick in Amateur Soccer Players.

    PubMed

    Zago, Matteo; Motta, Andrea Francesco; Mapelli, Andrea; Annoni, Isabella; Galvani, Christel; Sforza, Chiarella

    2014-09-29

    Soccer kicking kinematics has received wide interest in literature. However, while the instep-kick has been broadly studied, only few researchers investigated the inside-of-the-foot kick, which is one of the most frequently performed techniques during games. In particular, little knowledge is available about differences in kinematics when kicking with the preferred and non-preferred leg. A motion analysis system recorded the three-dimensional coordinates of reflective markers placed upon the body of nine amateur soccer players (23.0 ± 2.1 years, BMI 22.2 ± 2.6 kg/m2), who performed 30 pass-kicks each, 15 with the preferred and 15 with the non-preferred leg. We investigated skill kinematics while maintaining a perspective on the complete picture of movement, looking for laterality related differences. The main focus was laid on: anatomical angles, contribution of upper limbs in kick biomechanics, kinematics of the body Center of Mass (CoM), which describes the whole body movement and is related to balance and stability. When kicking with the preferred leg, CoM displacement during the ground-support phase was 13% higher (p<0.001), normalized CoM height was 1.3% lower (p<0.001) and CoM velocity 10% higher (p<0.01); foot and shank velocities were about 5% higher (p<0.01); arms were more abducted (p<0.01); shoulders were rotated more towards the target (p<0.01, 6° mean orientation difference). We concluded that differences in motor control between preferred and non-preferred leg kicks exist, particularly in the movement velocity and upper body kinematics. Coaches can use these results to provide effective instructions to players in the learning process, moving their focus on kicking speed and upper body behavior.

  12. Increased electroencephalographic high frequencies during the sleep onset period in patients with restless legs syndrome.

    PubMed

    Ferri, Raffaele; Cosentino, Filomena I I; Manconi, Mauro; Rundo, Francesco; Bruni, Oliviero; Zucconi, Marco

    2014-08-01

    To analyze the electroencephalographic (EEG) spectral content in untreated patients with restless legs syndrome (RLS) during the sleep onset period (SOP) and during the quiet wakefulness preceding sleep, in order to test the hypothesis that a state of hyperarousal might be present during the SOP with RLS. Sleep Research Centre. Twenty-seven untreated consecutive patients with RLS (mean age = 53.6 y), 11 untreated consecutive patients with primary insomnia (mean age = 58.9 y), and 14 normal controls (mean age = 50.3 y). SOP was defined as the 10-min period centered with the occurrence of the first sleep spindle in the EEG, and then subdivided into SOP-1 (period of 5 min before the first spindle) and SOP-2 (period of 5 min following). Leg movements occurring during SOP were counted and used as a covariate in the statistical analysis. Also, one period of 1 min of artifact-free quiet wakefulness after lights off was identified. EEG spectral analysis was run during these periods using the C3/A2 or C4/A1 channel. Increased EEG alpha and beta bands and/or beta/delta ratio in RLS versus normal controls, during both wakefulness preceding sleep and SOP (both parts SOP-1 and SOP-2) were found, which were, however, smaller than the increases found in patients with insomnia. The results of this study support the hypothesis of the presence of a state of hyperarousal in restless legs syndrome (RLS) during the sleep onset period. Treatment for RLS might need to take these findings into consideration. Ferri R, Cosentino FI, Manconi M, Rundo F, Bruni O, Zucconi M. Increased electroencephalographic high frequencies during the sleep onset period in patients with restless legs syndrome.

  13. Effects of training in minimalist shoes on the intrinsic and extrinsic foot muscle volume.

    PubMed

    Chen, Tony Lin-Wei; Sze, Louis K Y; Davis, Irene S; Cheung, Roy T H

    2016-07-01

    Minimalist shoes have gained popularity recently because it is speculated to strengthen the foot muscles and foot arches, which may help to resist injuries. However, previous studies provided limited evidence supporting the link between changes in muscle size and footwear transition. Therefore, this study sought to examine the effects of minimalist shoes on the intrinsic and extrinsic foot muscle volume in habitual shod runners. The relationship between participants' compliance with the minimalist shoes and changes in muscle õvolume was also evaluated. Twenty habitual shod runners underwent a 6-month self-monitoring training program designed for minimalist shoe transition. Another 18 characteristics-matched shod runners were also introduced with the same program but they maintained running practice with standard shoes. Runners were monitored using an online surveillance platform during the program. We measured overall intrinsic and extrinsic foot muscle volume before and after the program using MRI scans. Runners in the experimental group exhibited significantly larger leg (P=0.01, Cohen's d=0.62) and foot (P<0.01, Cohen's d=0.54) muscle after transition. Foot muscle growth was mainly contributed by the forefoot (P<0.01, Cohen's d=0.64) but not the rearfoot muscle (P=0.10, Cohen's d=0.30). Leg and foot muscle volume of runners in the control group remained similar after the program (P=0.33-0.95). A significant positive correlation was found between participants' compliance with the minimalist shoes and changes in leg muscle volume (r=0.51; P=0.02). Habitual shod runners who transitioned to minimalist shoes demonstrated significant increase in leg and foot muscle volume. Additionally, the increase in leg muscle volume was significantly correlated associated with the compliance of minimalist shoe use. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Postural set for balance control is normal in Alzheimer's but not in Parkinson's disease.

    PubMed

    Chong, R K; Jones, C L; Horak, F B

    1999-03-01

    It has been suggested that patients with dementia of the Alzheimer type have abnormalities in the basal ganglia, and thus, may have similar sensorimotor problems as patients with basal ganglia degeneration from Parkinson's disease. Whether the similarity extends to balance control is unknown. One distinguishing feature of balance disorder in Parkinson's disease is difficulty with changing postural set in terms of adapting the amplitude of leg muscle activity as a function of support condition. We, therefore, tested whether patients with Alzheimer's disease without extrapyramidal signs would show a similar problem in changing postural set as patients with Parkinson's disease. The ability to quickly change postural set was measured by comparing leg muscle activity under two conditions of support (free stance, versus grasping a frame, or sitting) during backward surface translations, during toes up surface rotations, and during voluntary rise to toes. Results were compared among 12 healthy adults, 8 nondemented Parkinson's patients on their usual dose of medication, and 11 Alzheimer patients without extrapyramidal signs. Subjects with Alzheimer's, but not Parkinson's, disease performed similarly to the healthy control subjects. They changed postural set immediately, by suppressing leg muscle activity to low levels when supported. Parkinson subjects did not change postural set immediately. They did not suppress the tibialis anterior in voluntary rise to toes when holding, nor the soleus in perturbed sitting as much as the healthy control and Alzheimer subjects in the first trial. Instead, the Parkinson subjects changed set more slowly, over repeated and consecutive trials in both protocols. The onset latencies of soleus responses to backward surface translations and perturbed sitting, as well as tibialis anterior responses to toes up rotations, were the same for all three groups. Alzheimer patients without extrapyramidal signs, unlike nondemented Parkinson's disease patients, have no difficulty in quickly changing postural set in response to altered support conditions. Our results, therefore, do not support the hypothesis that Parkinson's and uncomplicated Alzheimer's diseases share common postural set problems that may contribute to disordered balance control.

  15. Low dose aspirin as adjuvant treatment for venous leg ulceration: pragmatic, randomised, double blind, placebo controlled trial (Aspirin4VLU).

    PubMed

    Jull, Andrew; Wadham, Angela; Bullen, Chris; Parag, Varsha; Kerse, Ngaire; Waters, Jill

    2017-11-24

    Objective  To determine the effect of low dose aspirin on ulcer healing in patients with venous leg ulcers. Design  Pragmatic, community based, parallel group, double blind, randomised controlled trial. Setting  Five community nursing centres in New Zealand. Participants  251 adults with venous leg ulcers who could safely be treated with aspirin or placebo: 125 were randomised to aspirin and 126 to placebo. Interventions  150 mg oral aspirin daily or matching placebo for up to 24 weeks treatment, with compression therapy as standard background treatment. Main outcome measures  The primary outcome was time to complete healing of the reference ulcer (largest ulcer if more than one ulcer was present). Secondary outcomes included proportion of participants healed, change in ulcer area, change in health related quality of life, and adverse events. Analysis was by intention to treat. Results  The median number of days to healing of the reference ulcer was 77 in the aspirin group and 69 in the placebo group (hazard ratio 0.85, 95% confidence interval 0.64 to 1.13, P=0.25). The number of participants healed at the endpoint was 88 (70%) in the aspirin group and 101 (80%) in the placebo group (risk difference -9.8%, 95% confidence interval -20.4% to 0.9%, P=0.07). Estimated change in ulcer area was 4.1 cm 2 in the aspirin group and 4.8 cm 2 in the placebo group (mean difference -0.7 cm 2 , 95% confidence interval -1.9 to 0.5 cm 2 , P=0.25). 40 adverse events occurred among 29 participants in the aspirin group and 37 adverse events among 27 participants in the placebo group (incidence rate ratio 1.1, 95% confidence interval 0.7 to 1.7, P=0.71). Conclusion  Our findings do not support the use of low dose aspirin as adjuvant treatment for venous leg ulcers. Trial registration  ClinicalTrials.gov NCT02158806. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  16. Maneuvers during legged locomotion

    NASA Astrophysics Data System (ADS)

    Jindrich, Devin L.; Qiao, Mu

    2009-06-01

    Maneuverability is essential for locomotion. For animals in the environment, maneuverability is directly related to survival. For humans, maneuvers such as turning are associated with increased risk for injury, either directly through tissue loading or indirectly through destabilization. Consequently, understanding the mechanics and motor control of maneuverability is a critical part of locomotion research. We briefly review the literature on maneuvering during locomotion with a focus on turning in bipeds. Walking turns can use one of several different strategies. Anticipation can be important to adjust kinematics and dynamics for smooth and stable maneuvers. During running, turns may be substantially constrained by the requirement for body orientation to match movement direction at the end of a turn. A simple mathematical model based on the requirement for rotation to match direction can describe leg forces used by bipeds (humans and ostriches). During running turns, both humans and ostriches control body rotation by generating fore-aft forces. However, whereas humans must generate large braking forces to prevent body over-rotation, ostriches do not. For ostriches, generating the lateral forces necessary to change movement direction results in appropriate body rotation. Although ostriches required smaller braking forces due in part to increased rotational inertia relative to body mass, other movement parameters also played a role. Turning performance resulted from the coordinated behavior of an integrated biomechanical system. Results from preliminary experiments on horizontal-plane stabilization support the hypothesis that controlling body rotation is an important aspect of stable maneuvers. In humans, body orientation relative to movement direction is rapidly stabilized during running turns within the minimum of two steps theoretically required to complete analogous maneuvers. During straight running and cutting turns, humans exhibit spring-mass behavior in the horizontal plane. Changes in the horizontal projection of leg length were linearly related to changes in horizontal-plane leg forces. Consequently, the passive dynamic stabilization associated with spring-mass behavior may contribute to stability during maneuvers in bipeds. Understanding the mechanics of maneuverability will be important for understanding the motor control of maneuvers and also potentially be useful for understanding stability.

  17. Control of mediolateral stability during rapid step initiation with preferred and non-preferred leg: is it symmetrical?

    PubMed

    Yiou, E; Do, M C

    2010-05-01

    During voluntary stepping initiation, postural stability along the mediolateral direction is controlled via "anticipatory postural adjustment" (APA). This study tested the hypothesis that, in young healthy subjects, the biomechanical features of mediolateral APA depend on the leg that initiates stepping. Subjects (N=10) initiated a rapid single step with the preferred (P condition) and the non-preferred leg (NP condition) on a force-plate. Results showed that mediolateral APA duration (P=0.020) and amplitude were higher (as attested by the increase in maximal center-of-gravity velocity (P=0.003) and displacement (P<0.001) during APA), and that mediolateral stability was better (as attested by the attenuation in center-of-gravity velocity at time of swing-foot contact (P=0.007)) in P than in NP. These results support the view that stepping initiation in healthy subjects involves postural asymmetry. This statement may have relevant implications in clinical evaluation where postural asymmetry is generally considered as reflecting postural impairment. Copyright 2010 Elsevier B.V. All rights reserved.

  18. A knowledge-based expert system for scheduling of airborne astronomical observations

    NASA Technical Reports Server (NTRS)

    Nachtsheim, P. R.; Gevarter, W. B.; Stutz, J. C.; Banda, C. P.

    1985-01-01

    The Kuiper Airborne Observatory Scheduler (KAOS) is a knowledge-based expert system developed at NASA Ames Research Center to assist in route planning of a C-141 flying astronomical observatory. This program determines a sequence of flight legs that enables sequential observations of a set of heavenly bodies derived from a list of desirable objects. The possible flight legs are constrained by problems of observability, avoiding flyovers of warning and restricted military zones, and running out of fuel. A significant contribution of the KAOS program is that it couples computational capability with a reasoning system.

  19. Hypsibius vaskelae, a new species of Tardigrada (Eutardigrada, Hypsibiidae) from Russia.

    PubMed

    Tumanov, Denis V

    2018-03-21

    Hypsibius vaskelae sp. nov. (Tardigrada, Eutardigrada, Hypsibiidae) is described from a freshwater sample collected in the vicinity of Saint-Petersburg. The new species has wrinkled cuticle, bucco-pharyngeal apparatus with two elongate macroplacoids and septulum, and cuticular bars between the bases of inner and outer claw and near the base of the inner claw on legs I-IV. Hypsibius vaskelae sp. nov. is most similar to Hypsibius marcelli Pilato, 1990 and H. septulatus Pilato, Binda, Napolitano Moncada, 2004, but differs from both in having wrinkled dorsal cuticle, thinner claws, and presence of lunules on the claws of all legs.

  20. Effects of ipsilateral anterior thigh soft tissue stretching on passive unilateral straight-leg raise.

    PubMed

    Clark, S; Christiansen, A; Hellman, D F; Hugunin, J W; Hurst, K M

    1999-01-01

    Randomized 3-group pretest-posttest with blind assessment of outcome. The purpose of this study was to examine the effect of sagittal plane hold-relax exercise applied to the ipsilateral anterior thigh, and prone positioning on passive unilateral straight-leg raise measurements. Straight-leg raising has been viewed as a measurement for hamstring muscle length, but literature suggests that other structures may affect this measurement. Sixty subjects (45 men, 15 women) qualified for inclusion into the study based on a straight-leg raise measurement of < or = 65 degrees. Subjects were randomly assigned to one of three groups: control, static stretch, or sagittal plane hold-relax exercise. Pretest and posttest straight-leg raise measurements of the right lower extremity were performed for each subject. A 1-way ANOVA of the change scores showed a significant difference between groups. A Tukey post hoc analysis of the change scores showed that both treatment groups' means differed significantly from the control group and from each other, with the sagittal plane hold-relax group exhibiting the largest change (mean of 7.8 degrees +/- 2.8 degrees). The results of this study show that sagittal plane hold-relax exercise and passive prone results of this study show that sagittal plane hold-relax and passive prone positioning can significantly increase straight-leg raise range of motion, however the sagittal plane hold-relax stretching of the anterior thigh is more effective than passive prone positioning.

  1. Adaptations in single-leg hop biomechanics following anterior cruciate ligament reconstruction.

    PubMed

    Orishimo, Karl F; Kremenic, Ian J; Mullaney, Michael J; McHugh, Malachy P; Nicholas, Stephen J

    2010-11-01

    When a patient performs a clinically normal hop test based on distance, it cannot be assumed that the biomechanics are similar between limbs. The objective was to compare takeoff and landing biomechanics between legs in patients who have undergone anterior cruciate ligament reconstruction. Kinematics and ground reaction forces were recorded as 13 patients performed the single-leg hop on each leg. Distance hopped, joint range of motion, peak joint kinetics and the peak total extensor moment were compared between legs during both takeoff and landing. Average hop distance ratio (involved/noninvolved) was 93 ± 4%. Compared to the noninvolved side, knee motion during takeoff on the involved side was significantly reduced (P = 0.008). Peak moments and powers on the involved side were lower at the knee and higher at the ankle and hip compared with the noninvolved side (Side by Joint P = 0.011; P = 0.003, respectively). The peak total extensor moment was not different between legs (P = 0.305) despite a decrease in knee moment and increases in ankle and hip moments (Side by Joint P = 0.015). During landing, knee motion was reduced (P = 0.043), and peak power absorbed was decreased at the knee and hip and increased at the ankle on the involved side compared to the noninvolved side (P = 0.003). The compensations by other joints may indicate protective adaptations to avoid overloading the reconstructed knee.

  2. An Impact Study of the Design of Exergaming Parameters on Body Intensity from Objective and Gameplay-Based Player Experience Perspectives, Based on Balance Training Exergame

    PubMed Central

    2013-01-01

    Kinect-based exergames allow players to undertake physical exercise in an interactive manner with visual stimulation. Previous studies focused on investigating physical fitness based on calories or heart rate to ascertain the effectiveness of exergames. However, designing an exergame for specific training purposes, with intensity levels suited to the needs and skills of the players, requires the investigation of motion performance to study player experience. This study investigates how parameters of a Kinect-based exergame, combined with balance training exercises, influence the balance control ability and intensity level the player can tolerate, by analyzing both objective and gameplay-based player experience, and taking enjoyment and difficulty levels into account. The exergame tested required participants to maintain their balance standing on one leg within a posture frame (PF) while a force plate evaluated the player's balance control ability in both static and dynamic gaming modes. The number of collisions with the PF depended on the frame's travel time for static PFs, and the leg-raising rate and angle for dynamic PFs. In terms of center of pressure (COP) metrics, significant impacts were caused by the frame's travel time on MDIST-AP for static PFs, and the leg-raising rate on MDIST-ML and TOTEX for dynamic PFs. The best static PF balance control performance was observed with a larger frame offset by a travel time of 2 seconds, and the worst performance with a smaller frame and a travel time of 1 second. The best dynamic PF performance was with a leg-raising rate of 1 second at a 45-degree angle, while the worst performance was with a rate of 2 seconds at a 90-degree angle. The results demonstrated that different evaluation methods for player experience could result in different findings, making it harder to study the design of those exergames with training purposes based on player experience. PMID:23922716

  3. Specific physiological and biomechanical performance in elite, sub-elite and in non-elite male team handball players.

    PubMed

    Wagner, Herbert; Fuchs, Philip X; von Duvillard, Serge P

    2018-01-01

    Team handball is a dynamic sport game that is played professionally in numerous countries. However, knowledge about training and competition is based mostly on practical experience due to limited scientific studies. Consequently, the aims of our study were to compare specific physiological and biomechanical performance in elite, sub-elite and in non-elite male team handball players. Thirty-six elite, sub-elite and non-elite male team handball players performed a game based performance test, upper-body and lower-body strength tests, 30-m sprint test, counter movement jump test and an incremental treadmill running test. Significant differences (P<0.05) were found for the peak oxygen uptake, heart rate, offense and defense time, jump height and ball velocity during the jump throw in the game based performance test, maximal oxygen uptake in the incremental treadmill running test as well as in maximal leg strength and leg explosive strength in the isometric strength test. Elite male players have an enhanced specific agility, a better throwing performance, a higher team handball specific oxygen uptake and higher leg strength compared to sub-elite and non-elite players. Based on these results we recommend that training in team handball should focus on game based training methods to improve performance in specific agility, endurance and technique.

  4. Practice guideline summary: Treatment of restless legs syndrome in adults

    PubMed Central

    Winkelman, John W.; Armstrong, Melissa J.; Allen, Richard P.; Chaudhuri, K. Ray; Ondo, William; Trenkwalder, Claudia; Zee, Phyllis C.; Gronseth, Gary S.; Gloss, David; Zesiewicz, Theresa

    2016-01-01

    Objective: To make evidence-based recommendations regarding restless legs syndrome (RLS) management in adults. Methods: Articles were classified per the 2004 American Academy of Neurology evidence rating scheme. Recommendations were tied to evidence strength. Results and recommendations: In moderate to severe primary RLS, clinicians should consider prescribing medication to reduce RLS symptoms. Strong evidence supports pramipexole, rotigotine, cabergoline, and gabapentin enacarbil use (Level A); moderate evidence supports ropinirole, pregabalin, and IV ferric carboxymaltose use (Level B). Clinicians may consider prescribing levodopa (Level C). Few head-to-head comparisons exist to suggest agents preferentially. Cabergoline is rarely used (cardiac valvulopathy risks). Augmentation risks with dopaminergic agents should be considered. When treating periodic limb movements of sleep, clinicians should consider prescribing ropinirole (Level A) or pramipexole, rotigotine, cabergoline, or pregabalin (Level B). For subjective sleep measures, clinicians should consider prescribing cabergoline or gabapentin enacarbil (Level A), or ropinirole, pramipexole, rotigotine, or pregabalin (Level B). For patients failing other treatments for RLS symptoms, clinicians may consider prescribing prolonged-release oxycodone/naloxone where available (Level C). In patients with RLS with ferritin ≤75 μg/L, clinicians should consider prescribing ferrous sulfate with vitamin C (Level B). When nonpharmacologic approaches are desired, clinicians should consider prescribing pneumatic compression (Level B) and may consider prescribing near-infrared spectroscopy or transcranial magnetic stimulation (Level C). Clinicians may consider prescribing vibrating pads to improve subjective sleep (Level C). In patients on hemodialysis with secondary RLS, clinicians should consider prescribing vitamin C and E supplementation (Level B) and may consider prescribing ropinirole, levodopa, or exercise (Level C). PMID:27856776

  5. AORN Ergonomic Tool 3: lifting and holding the patient's legs, arms, and head while prepping.

    PubMed

    Waters, Thomas; Spera, Patrice; Petersen, Carol; Nelson, Audrey; Hernandez, Edward; Applegarth, Shawn

    2011-05-01

    Lifting the arms, legs, or head of a patient while prepping these areas for surgery can exert strong forces on the muscles and joints of the shoulders and backs of perioperative team members who perform this task, which may lead to work-related musculoskeletal disorders. AORN Ergonomic Tool 3: Lifting and Holding the Patient's Legs, Arms, and Head While Prepping provides scientifically based determinations of the amount of weight perioperative personnel can safely lift and hold manually for up to one, two, and three minutes using one hand or both. If these weight limits are exceeded, additional staff members or assistive devices are needed to help with the task. Published by Elsevier Inc.

  6. Differences in kinematics of single leg squatting between anterior cruciate ligament-injured patients and healthy controls.

    PubMed

    Yamazaki, J; Muneta, T; Ju, Y J; Sekiya, I

    2010-01-01

    Seventy to eighty percent of all anterior cruciate ligament (ACL) injuries are due to non-contact injury mechanisms. It has been reported that the majority of injuries due to single leg landing come from valgus positioning of the lower leg. Preventing valgus positioning during single leg landing is expected to help reduce the number of ACL injuries. We found that many ACL-deficient patients cannot perform stable single leg squatting. Therefore, we performed 3D motion analysis of the single-legged half squat for ACL-injured patients to evaluate its significance as a risk factor for ACL injuries. We evaluated the relative angles between the body, thigh, and lower leg using an electromagnetic device during single leg half squatting performed by 63 ACL-injured patients (32 males, 31 females) the day before ACL reconstruction and by 26 healthy control subjects with no knee problems. The uninjured leg of ACL-injured male subjects demonstrated significantly less external knee rotation than that of the dominant leg of the male control. The uninjured leg of ACL-injured female subjects demonstrated significantly more external hip rotation and knee flexion and less hip flexion than that of the dominant leg of the female control. Comparing injured and uninjured legs, the injured leg of male subjects demonstrated significantly less external knee and hip rotation, less knee flexion, and more knee varus than that of the uninjured leg of male subjects. The injured leg of female subjects demonstrated more knee varus than that of the uninjured leg of female subjects. Regarding gender differences, female subjects demonstrated significantly more external hip rotation and knee valgus than male subjects did in both the injured and uninjured legs (P < 0.05). The current kinematic study exhibited biomechanical characteristics of female ACL-injured subjects compared with that of control groups. Kinematic correction during single leg half squat would reduce ACL reinjury in female ACL-injured subjects.

  7. Inverse association between insulin resistance and gait speed in nondiabetic older men: results from the U.S. National Health and Nutrition Examination Survey (NHANES) 1999-2002

    PubMed Central

    2009-01-01

    Background Recent studies have revealed the associations between insulin resistance (IR) and geriatric conditions such as frailty and cognitive impairment. However, little is known about the relation of IR to physical impairment and limitation in the aging process, eg. slow gait speed and poor muscle strength. The aim of this study is to determine the effect of IR in performance-based physical function, specifically gait speed and leg strength, among nondiabetic older adults. Methods Cross-sectional data were from the population-based National Health and Nutrition Examination Survey (1999-2002). A total of 1168 nondiabetic adults (≥ 50 years) with nonmissing values in fasting measures of insulin and glucose, habitual gait speed (HGS), and leg strength were analyzed. IR was assessed by homeostasis model assessment (HOMA-IR), whereas HGS and peak leg strength by the 20-foot timed walk test and an isokinetic dynamometer, respectively. We used multiple linear regression to examine the association between IR and performance-based physical function. Results IR was inversely associated with gait speed among the men. After adjusting demographics, body mass index, alcohol consumption, smoking status, chronic co-morbidities, and markers of nutrition and cardiovascular risk, each increment of 1 standard deviation in the HOMA-IR level was associated with a 0.04 m/sec decrease (p = 0.003) in the HGS in men. We did not find such association among the women. The IR-HGS association was not changed after further adjustment of leg strength. Last, HOMA-IR was not demonstrated in association with peak leg strength. Conclusion IR is inversely associated with HGS among older men without diabetes. The results suggest that IR, an important indicator of gait function among men, could be further investigated as an intervenable target to prevent walking limitation. PMID:19922671

  8. Experience with peroneus brevis muscle flaps for reconstruction of distal leg and ankle defects

    PubMed Central

    Bajantri, Babu; Bharathi, Ravindra; Ramkumar, Sanjai; Latheef, Latheesh; Dhane, Smitha; Sabapathy, S. Raja

    2013-01-01

    Objective: Peroneus brevis is a muscle in the leg which is expendable without much functional deficit. The objective of this study was to find out its usefulness in coverage of the defects of the lower leg and ankle. Patients and Methods: A retrospective analysis of the use of 39 pedicled peroneus brevis muscle flaps used for coverage of defects of the lower leg and ankle between November 2010 and December 2012 was carried out. The flaps were proximally based for defects of the lower third of the leg in 12 patients and distally based for reconstruction of defects of the ankle in 26 patients, with one patient having flaps on both ankles. Results: Partial flap loss in critical areas was found in four patients requiring further flap cover and in non-critical areas in two patients, which were managed with a skin graft. Three of the four critical losses occurred when we used it for covering defects over the medial malleolus. There was no complete flap loss in any of the patients. Conclusion: This flap has a unique vascular pattern and fails to fit into the classification of the vasculature of muscles by Mathes and Nahai. The unusual feature is an axial vessel system running down the deep aspect of the muscle and linking the perforators from the peroneal artery and anterior tibial artery, which allows it to be raised proximally or distally on a single perforator. The flap is simple to raise and safe for the reconstruction of small-to moderate-sized skin defects of the distal third of the tibia and all parts of the ankle except the medial malleolus, which is too far from the pedicle of the distally based flap. The donor site can be closed primarily to provide a linear scar. The muscle flap thins with time to provide a good result aesthetically at the primary defect. PMID:23960305

  9. Intelligent Gate Drive for Fast Switching and Crosstalk Suppression of SiC Devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Zheyu; Dix, Jeffery; Wang, Fei Fred

    This study presents an intelligent gate drive for silicon carbide (SiC) devices to fully utilize their potential of high switching-speed capability in a phase-leg configuration. Based on the SiC device's intrinsic properties, a gate assist circuit consisting of two auxiliary transistors with two diodes is introduced to actively control gate voltages and gate loop impedances of both devices in a phase-leg configuration during different switching transients. Compared to conventional gate drives, the proposed circuit has the capability of accelerating the switching speed of the phase-leg power devices and suppressing the crosstalk to below device limits. Based on Wolfspeed 1200-V SiCmore » MOSFETs, the test results demonstrate the effectiveness of this intelligent gate drive under varying operating conditions. More importantly, the proposed intelligent gate assist circuitry is embedded into a gate drive integrated circuit, offering a simple, compact, and reliable solution for end-users to maximize benefits of SiC devices in actual power electronics applications.« less

  10. Intelligent Gate Drive for Fast Switching and Crosstalk Suppression of SiC Devices

    DOE PAGES

    Zhang, Zheyu; Dix, Jeffery; Wang, Fei Fred; ...

    2017-01-19

    This study presents an intelligent gate drive for silicon carbide (SiC) devices to fully utilize their potential of high switching-speed capability in a phase-leg configuration. Based on the SiC device's intrinsic properties, a gate assist circuit consisting of two auxiliary transistors with two diodes is introduced to actively control gate voltages and gate loop impedances of both devices in a phase-leg configuration during different switching transients. Compared to conventional gate drives, the proposed circuit has the capability of accelerating the switching speed of the phase-leg power devices and suppressing the crosstalk to below device limits. Based on Wolfspeed 1200-V SiCmore » MOSFETs, the test results demonstrate the effectiveness of this intelligent gate drive under varying operating conditions. More importantly, the proposed intelligent gate assist circuitry is embedded into a gate drive integrated circuit, offering a simple, compact, and reliable solution for end-users to maximize benefits of SiC devices in actual power electronics applications.« less

  11. Leg CT scan

    MedlinePlus

    CAT scan - leg; Computed axial tomography scan - leg; Computed tomography scan - leg; CT scan - leg ... CT scan makes detailed pictures of the body very quickly. The test may help look for: An abscess ...

  12. Development of the Dual Aerodynamic Nozzle Model for the NTF Semi-Span Model Support System

    NASA Technical Reports Server (NTRS)

    Jones, Greg S.; Milholen, William E., II; Goodliff, Scott L.

    2011-01-01

    The recent addition of a dual flow air delivery system to the NASA Langley National Transonic Facility was experimentally validated with a Dual Aerodynamic Nozzle semi-span model. This model utilized two Stratford calibration nozzles to characterize the weight flow system of the air delivery system. The weight flow boundaries for the air delivery system were identified at mildly cryogenic conditions to be 0.1 to 23 lbm/sec for the high flow leg and 0.1 to 9 lbm/sec for the low flow leg. Results from this test verified system performance and identified problems with the weight-flow metering system that required the vortex flow meters to be replaced at the end of the test.

  13. Pressing On

    ERIC Educational Resources Information Center

    Hoff, David J.

    2006-01-01

    Louisiana state schools Superintendent Cecil J. Picard is working to rebuild the New Orleans school system while battling Lou Gehrig's disease. Cecil J. Picard walks confidently and purposefully to his seat, using a cane to support his weakening right leg. The widow's peak and his graying hair are signs that he's lived 68 years, and the cane…

  14. The quadruped robot adaptive control in trotting gait walking on slopes

    NASA Astrophysics Data System (ADS)

    Zhang, Shulong; Ma, Hongxu; Yang, Yu; Wang, Jian

    2017-10-01

    The quadruped robot can be decomposed into a planar seven-link closed kinematic chain in the direction of supporting line and a linear inverted pendulum in normal direction of supporting line. The ground slope can be estimated by using the body attitude information and supporting legs length. The slope degree is used in feedback, to achieve the point of quadruped robot adaptive control walking on slopes. The simulation results verify that the quadruped robot can achieves steady locomotion on the slope with the control strategy proposed in this passage.

  15. A colored leg banding technique for Amazona parrots

    USGS Publications Warehouse

    Meyers, J.M.

    1995-01-01

    A technique for individual identification of Amazona was developed using plastic leg bands. Bands were made from 5- and 7-mm-wide strips of laminated PVC coiled 2.5 times with an inside diameter 4-5 mm gt the maximum diameter of the parrot's leg. Seventeen parrots were captured in Puerto Rico, marked with individual plastic leg bands, and observed for 204-658 d with only one lost or damaged plastic band. Plastic leg bands did not cause injury to or calluses on parrots' legs. The plastic material used for making leg bands was available in 18 colors in 1994, which would allow unique marking of 306 individuals using one plastic leg band on each leg.

  16. Evaluating Potential Risks of Food Allergy and Toxicity of Soy Leghemoglobin Expressed in Pichia pastoris

    PubMed Central

    Jin, Yuan; He, Xiaoyun; Andoh‐Kumi, Kwame; Fraser, Rachel Z.; Lu, Mei

    2017-01-01

    Scope The Soybean (Glycine max) leghemoglobin c2 (LegHb) gene was introduced into Pichia pastoris yeast for sustainable production of a heme‐carrying protein, for organoleptic use in plant‐based meat. The potential allergenicity and toxicity of LegHb and 17 Pichia host‐proteins each representing ≥1% of total protein in production batches are evaluated by literature review, bioinformatics sequence comparisons to known allergens or toxins, and in vitro pepsin digestion. Methods and results Literature searches found no evidence of allergenicity or toxicity for these proteins. There are no significant sequence matches of LegHb to known allergens or toxins. Eleven Pichia proteins have modest identity matches to minor environmental allergens and 13 Pichia proteins have significant matches to proteins from toxic sources. Yet the matched allergens and toxins have similar matches to proteins from the commonly consumed yeast Saccharomyces cerevisiae, without evidence of food allergy or toxicity. The demonstrated history of safe use indicates additional tests for allergenicity and toxicity are not needed. The LegHb and Pichia sp. proteins were rapidly digested by pepsin at pH 2. Conclusion These results demonstrate that foods containing recombinant soy LegHb produced in Pichia sp. are unlikely to present an unacceptable risk of allergenicity or toxicity to consumers. PMID:28921896

  17. Structure, composition and properties of naturally occurring non-calcified crustacean cuticle.

    PubMed

    Cribb, B W; Rathmell, A; Charters, R; Rasch, R; Huang, H; Tibbetts, I R

    2009-05-01

    Crustaceans are known for their hard, calcified exoskeleton; however some regions appear different in colour and opacity. These include leg and cheliped tips in the grapsid crab, Metopograpsus frontalis. The chelipeds and leg tips contain only trace levels of calcium but a significant mass of the halogens, chlorine (Cl) and bromine (Br). In contrast, the carapace is heavily calcified and contains only a trace mass of Cl and no Br. In transverse section across the non-calcified tip regions of cheliped and leg the mass percent of halogens varies with position. As such, the exoskeleton of M. frontalis provides a useful model to examine a possible correlation of halogen concentration with the physical properties of hardness (H) and reduced elastic modulus (E(r)), within a chitin-based matrix. Previously published work suggests a correlation exists between Cl concentration and hardness in similar tissues that contain a metal (e.g. zinc). However, in M. frontalis H and E(r) did not vary significantly across cheliped or leg tip despite differences in halogen concentration. The non-calcified regions of M. frontalis are less hard and less stiff than the carapace but equivalent to values found for insect cuticle lacking metals. Cheliped tips showed a complex morphological layering that differed from leg tips.

  18. [Repairing of soft tissue defect in leg by free vascularized thoracoumbilical flap with reversed flow].

    PubMed

    Xu, Y Q; Li, Z Y; Li, J

    2000-11-01

    To investigate the clinical effect of free vascularized thoracoumbilical flap with reversal flow in repairing the soft tissue defect in leg with tibia exposure. Forty-four casting mould specimens of leg arteries were studied firstly. Then 25 cases with soft tissue defect and tibia exposure in the proximal-middle segment of leg were adopted in this study. Among them, 18 cases had long distance thrombosis of the anterior tibial vessels or posterior tibial vessels due to traumatic lesion. The maximal size of defect was 28 cm x 11 cm and the minimal size of defect was 11 cm x 9 cm. In operation, the thoracoumbilical flap which was based on the inferior epigastric vessels was anastomosed to the distal end of the anterior tibial vessels or posterior tibial vessels. Anterior tibial artery, posterior tibial artery and fibular artery had rich communication branches in foot and ankle. All the flaps survived, the color and cosmetic result of them were good. The free vascularized thoracoumbilical flap with reversed flow is practical in repairing the soft tissue defect of leg with tibia exposure. Either the anterior tibial vessels or the posterior tibial vessels is normal, and the distal end of injured blood vessels is available, this technique can be adopted.

  19. Cost-effectiveness of wound management in France: pressure ulcers and venous leg ulcers.

    PubMed

    Meaume, S; Gemmen, E

    2002-06-01

    This study set out to define realistic protocols of care for the treatment of chronic venous leg ulcers and pressure ulcers in France and, by developing cost-effectiveness models, to compare the different protocols of care for the two ulcer groups, enabling a calculation of direct medical costs per ulcer healed in a typical French health insurance plan. Clinical outcomes and some treatment patterns were obtained from published literature. Validations of different treatment patterns were developed using an expert consensus panel similar to the Delphi approach. Costs were calculated based on national averages and estimates from the UK and Germany. The models were used to measure costs per healed ulcer over a 12-week period. For both the pressure ulcer and venous leg ulcer models, three protocols of care were identified. For pressure ulcers and venous leg ulcers, the hydrocolloid DuoDERM (ConvaTec, also known as Granuflex in the UK and Varihesive in Germany) was most cost-effective in France. The combination of published data and expert consensus opinion is a valid technique, and in this case suggests that treating pressure ulcers and venous leg ulcers with hydrocolloid dressings is more cost-effective than treating them with saline gauze, in spite of the lower unit cost of the latter.

  20. A wheelchair with lever propulsion control for climbing up and down stairs.

    PubMed

    Sasaki, Kai; Eguchi, Yosuke; Suzuki, Kenji

    2016-08-01

    This study proposes a novel stair-climbing wheelchair based on lever propulsion control using the human upper body. Wheelchairs are widely used as supporting locomotion devices for people with acquired lower limb disabilities. However, steps and stairs are critical obstacles to locomotion, which restrict their activities when using wheelchairs. Previous research focused on power-assisted, stair-climbing wheelchairs, which were large and heavy due to its large actuators and mechanisms. In the previous research, we proposed a wheelchair with lever propulsion mechanism and presented its feasibility of climbing up the stairs. The developed stair-climbing wheelchair consists of manual wheels with casters for planar locomotion and a rotary-leg mechanism based on lever propulsion that is capable of climbing up stairs. The wheelchair also has a passive mechanism powered by gas springs for posture transition to shift the user's center of gravity between the desired positions for planar locomotion and stair-climbing. In this paper, we present an advanced study on both climbing up and going down using lever propulsion control by the user's upper body motion. For climbing down the stairs, we reassembled one-way clutches used for the rotary-leg mechanism to help a user climb down the stairs through lever operation. We also equipped the wheelchair with sufficient torque dampers. The frontal wheels were fixed while climbing down the stairs to ensure safety. Relevant experiments were then performed to investigate its performance and verify that the wheelchair users can operate the proposed lever propulsion mechanism.

  1. Helicity and potential vorticity in the surface boundary layer turbulence

    NASA Astrophysics Data System (ADS)

    Chkhetiani, Otto; Kurgansky, Michael; Koprov, Boris; Koprov, Victor

    2016-04-01

    An experimental measurement of all three components of the velocity and vorticity vectors, as well as the temperature and its gradient, and potential vorticity, has been developed using four acoustic anemometers. Anemometers were placed at vertices of a tetrahedron, the horizontal base of which was a rectangular triangle with equal legs, and the upper point was exactly above the top of the right angle. The distance from the surface to the tetrahedron its base was 5.5 m, and the lengths of legs and a vertical edge were 5 m. The measurements were carried out of total duration near 100 hours both in stable and unstable stratification conditions (at the Tsimlyansk Scientific Station in a uniform area of virgin steppe 700 x 650 m, August 2012). A covariance-correlation matrix for turbulent variations in all measured values has been calculated. In the daytime horizontal and vertical components of the helicity are of the order of -0.03 and +0.01 m s-2, respectively. The nighttime signs remain unchanged, but the absolute values are several times smaller. It is confirmed also by statistics of a relative helicity. The cospectra and spectral correlation coefficients have been calculated for all helicity components. The time variations in the components of "instantaneous" relative helicity and potential vorticity are considered. Connections of helicity with Monin-Obukhov length and the wind vertical profile structure are discussed. This work was supported by the Russian Science Foundation (Project No 14-27-00134).

  2. The pattern of a specimen of Pycnogonum litorale (Arthropoda, Pycnogonida) with a supernumerary leg can be explained with the "boundary model" of appendage formation

    NASA Astrophysics Data System (ADS)

    Scholtz, Gerhard; Brenneis, Georg

    2016-02-01

    A malformed adult female specimen of Pycnogonum litorale (Pycnogonida) with a supernumerary leg in the right body half is described concerning external and internal structures. The specimen was maintained in our laboratory culture after an injury in the right trunk region during a late postembryonic stage. The supernumerary leg is located between the second and third walking legs. The lateral processes connecting to these walking legs are fused to one large structure. Likewise, the coxae 1 of the second and third walking legs and of the supernumerary leg are fused to different degrees. The supernumerary leg is a complete walking leg with mirror image symmetry as evidenced by the position of joints and muscles. It is slightly smaller than the normal legs, but internally, it contains a branch of the ovary and a gut diverticulum as the other legs. The causes for this malformation pattern found in the Pycnogonum individual are reconstructed in the light of extirpation experiments in insects, which led to supernumerary mirror image legs, and the "boundary model" for appendage differentiation.

  3. Return to play after anterior cruciate ligament reconstruction in major league baseball athletes.

    PubMed

    Fabricant, Peter D; Chin, Christopher S; Conte, Stan; Coleman, Struan H; Pearle, Andrew D; Dines, Joshua S

    2015-05-01

    The purpose of the study was to (1) investigate the rate of return to play among Major League Baseball (MLB) athletes after anterior cruciate ligament reconstruction (ACLR), (2) determine the impact of ACL injury on ability to perform baseball-specific planting and pivoting tasks (batting and stealing bases), and (3) to explore the effect of the injured side on these metrics. ACL injury data from 1999 to 2012 were compiled, along with player performance statistics recorded for players with at least 30 games before ACL injury. Predictor variables included side of injury and outcome variables focused on batting average, stolen bases, and number of times caught stealing before injury and after surgery. Twenty-three of 26 (88%) players were able to return to at least 30 games after ACLR, although they experienced a decline of 21.2% in number of games played (P = .004). Those who had a ACLR for a rear batting leg injury averaged a 12.3% decline in batting average, whereas those who had ACLR for a lead leg injury had a 6.4% increase in batting average (P = .04). Side of injury was not predictive of stolen base metrics. The overall rate of return to play among MLB position players after ACLR was 88%, although there was a 21.2% decline in the number of games played postoperatively. Injury to the rear batting leg resulted in a lower returning batting average compared with an injury to the lead batting leg. Side of injury had no effect on stolen bases or on the number of times a player was caught stealing. Level IV, therapeutic case series. Copyright © 2015 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  4. Pulmonary Function, Muscle Strength, and Incident Mobility Disability in Elders

    PubMed Central

    Buchman, Aron S.; Boyle, Patricia A.; Leurgans, Sue E.; Evans, Denis A.; Bennett, David A.

    2009-01-01

    Muscle strength, including leg strength and respiratory muscle strength, are relatively independently associated with mobility disability in elders. However, the factors linking muscle strength with mobility disability are unknown. To test the hypothesis that pulmonary function mediates the association of muscle strength with the development of mobility disability in elders, we used data from a longitudinal cohort study of 844 ambulatory elders without dementia participating in the Rush Memory and Aging Project with a mean follow-up of 4.0 years (SD = 1.39). A composite measure of pulmonary function was based on spirometric measures of forced vital capacity, forced expiratory volume, and peak expiratory flow. Respiratory muscle strength was based on maximal inspiratory pressure and expiratory pressure and leg strength based on hand-held dynamometry. Mobility disability was defined as a gait speed less than or equal to 0.55 m/s based on annual assessment of timed walk. Secondary analyses considered time to loss of the ability to ambulate. In separate proportional hazards models which controlled for age, sex, and education, composite measures of pulmonary function, respiratory muscle strength, and leg strength were each associated with incident mobility disability (all P values < 0.001). Further, all three were related to the development of incident mobility disability when considered together in a single model (pulmonary function: hazard ratio [HR], 0.721; 95% confidence interval [CI], 0.577, 0.902; respiratory muscle strength: HR, 0.732; 95% CI, 0.593, 0.905; leg strength: HR, 0.791; 95% CI, 0.640, 0.976). Secondary analyses examining incident loss of the ability to ambulate revealed similar findings. Overall, these findings suggest that lower levels of pulmonary function and muscle strength are relatively independently associated with the development of mobility disability in the elderly. PMID:19934353

  5. Management of Patients With Venous Leg Ulcers: Challenges and Current Best Practice.

    PubMed

    Franks, Peter J; Barker, Judith; Collier, Mark; Gethin, Georgina; Haesler, Emily; Jawien, Arkadiusz; Laeuchli, Severin; Mosti, Giovanni; Probst, Sebastian; Weller, Carolina

    2016-06-01

    Introduction It is well documented that the prevalence of venous leg ulcers (VLUs) is increasing, coinciding with an ageing population. Accurate global prevalence of VLUs is difficult to estimate due to the range of methodologies used in studies and accuracy of reporting. (1) Venous ulceration is the most common type of leg ulceration and a significant clinical problem, affecting approximately 1% of the population and 3% of people over 80 years of age (2) in westernised countries. Moreover, the global prevalence of VLUs is predicted to escalate dramatically, as people are living longer, often with multiple comorbidities. Recent figures on the prevalence of VLUs are based on a small number of studies, conducted in Western countries, and the evidence is weak. However, it is estimated that 93% of VLUs will heal in 12 months, and 7% remain unhealed after five years. (3) Furthermore, the recurrence rate within 3 months after wound closure is as high as 70%. (4) (-6) Thus, cost-effective adjunct evidence-based treatment strategies and services are needed to help prevent these ulcers, facilitate healing when they occur and prevent recurrence. The impact of a VLU represents social, personal, financial and psychological costs on the individual and further economic drain on the health-care system. This brings the challenge of providing a standardised leg ulcer service which delivers evidence-based treatment for the patient and their ulcer. It is recognised there are variations in practice and barriers preventing the implementation of best practice. There are patients not receiving appropriate and timely treatment in the initial development of VLUs, effective management of their VLU and preventing recurrence once the VLU has healed. Health-care professionals (HCPs) and organisations must have confidence in the development process of clinical practice guidelines and have ownership of these guidelines to ensure those of the highest quality guide their practice. These systematic judgments can assist in policy development, and decision making, improve communication, reduce errors and improve patient outcomes. There is an abundance of studies and guidelines that are available and regularly updated, however, there is still variation in the quality of the services offered to patients with a VLU. There are also variations in the evidence and some recommendations contradict each other, which can cause confusion and be a barrier to implementation. (7) The difference in health-care organisational structures, management support and the responsibility of VLU management can vary in different countries, often causing confusion and a barrier to seeking treatment. These factors further complicate the guideline implementation process, which is generally known to be a challenge with many diseases. (8).

  6. Intramuscular pressures beneath elastic and inelastic leggings

    NASA Technical Reports Server (NTRS)

    Murthy, G.; Ballard, R. E.; Breit, G. A.; Watenpaugh, D. E.; Hargens, A. R.

    1994-01-01

    Leg compression devices have been used extensively by patients to combat chronic venous insufficiency and by astronauts to counteract orthostatic intolerance following spaceflight. However, the effects of elastic and inelastic leggings on the calf muscle pump have not been compared. The purpose of this study was to compare in normal subjects the effects of elastic and inelastic compression on leg intramuscular pressure (IMP), an objective index of calf muscle pump function. IMP in soleus and tibialis anterior muscles was measured with transducer-tipped catheters. Surface compression between each legging and the skin was recorded with an air bladder. Subjects were studied under three conditions: (1) control (no legging), (2) elastic legging, and (3) inelastic legging. Pressure data were recorded for each condition during recumbency, sitting, standing, walking, and running. Elastic leggings applied significantly greater surface compression during recumbency (20 +/- 1 mm Hg, mean +/- SE) than inelastic leggings (13 +/- 2 mm Hg). During recumbency, elastic leggings produced significantly higher soleus IMP of 25 +/- 1 mm Hg and tibialis anterior IMP of 28 +/- 1 mm Hg compared to 17 +/- 1 mm Hg and 20 +/- 2 mm Hg, respectively, generated by inelastic leggings and 8 +/- 1 mm Hg and 11 +/- 1 mm Hg, respectively, without leggings. During sitting, walking, and running, however, peak IMPs generated in the muscular compartments by elastic and inelastic leggings were similar. Our results suggest that elastic leg compression applied over a long period in the recumbent posture may impede microcirculation and jeopardize tissue viability.(ABSTRACT TRUNCATED AT 250 WORDS).

  7. Treatment of restless legs syndrome: Evidence-based review and implications for clinical practice (Revised 2017)§.

    PubMed

    Winkelmann, Juliane; Allen, Richard P; Högl, Birgit; Inoue, Yuichi; Oertel, Wolfgang; Salminen, Aaro V; Winkelman, John W; Trenkwalder, Claudia; Sampaio, Cristina

    2018-05-14

    The objective of the current review was to update the previous evidence-based medicine review of treatments for restless legs syndrome published in 2008. All randomized, controlled trials (level I) with a high quality score published between January 2007 and January 2017 were reviewed. Forty new studies qualified for efficacy review. Pregabalin, gabapentin enacarbil, and oxycodone/naloxone, which did not appear in the previous review, have accrued data to be considered efficacious. Likewise, new data enable the modification of the level of efficacy for rotigotine from likely efficacious to efficacious. Intravenous ferric carboxymaltose and pneumatic compression devices are considered likely efficacious in idiopathic restless legs syndrome. Bupropion and clonidine were reviewed, but the lack of data determined a rating of insufficient evidence for efficacy. The following interventions continue to be considered efficacious as in 2008: levodopa, ropinirole, pramipexole, cabergoline, pergolide, and gabapentin. Bromocriptine, oxycodone, carbamazepine, and valproic acid are considered likely efficacious. Oral iron is nonefficacious in iron-sufficient subjects, but its benefit for patients with low peripheral iron status has not been adequately evaluated. Restless legs syndrome augmentation has been identified as a significant long-term treatment complication for pramipexole more than pregabalin and possibly for all dopaminergic agents more than α2δ ligands. Therefore, special monitoring for augmentation is required for all dopaminergic medications as well as tramadol. Other drugs also require special safety monitoring: cabergoline, pergolide, oxycodone, methadone, tramadol, carbamazepine, and valproic acid. Finally, we also highlighted gaps and needs for future clinical research and studies of restless legs syndrome. © 2018 International Parkinson and Movement Disorder Society. © 2018 International Parkinson and Movement Disorder Society.

  8. A biological micro actuator: graded and closed-loop control of insect leg motion by electrical stimulation of muscles.

    PubMed

    Cao, Feng; Zhang, Chao; Vo Doan, Tat Thang; Li, Yao; Sangi, Daniyal Haider; Koh, Jie Sheng; Huynh, Ngoc Anh; Bin Aziz, Mohamed Fareez; Choo, Hao Yu; Ikeda, Kazuo; Abbeel, Pieter; Maharbiz, Michel M; Sato, Hirotaka

    2014-01-01

    In this study, a biological microactuator was demonstrated by closed-loop motion control of the front leg of an insect (Mecynorrhina torquata, beetle) via electrical stimulation of the leg muscles. The three antagonistic pairs of muscle groups in the front leg enabled the actuator to have three degrees of freedom: protraction/retraction, levation/depression, and extension/flexion. We observed that the threshold amplitude (voltage) required to elicit leg motions was approximately 1.0 V; thus, we fixed the stimulation amplitude at 1.5 V to ensure a muscle response. The leg motions were finely graded by alternation of the stimulation frequencies: higher stimulation frequencies elicited larger leg angular displacement. A closed-loop control system was then developed, where the stimulation frequency was the manipulated variable for leg-muscle stimulation (output from the final control element to the leg muscle) and the angular displacement of the leg motion was the system response. This closed-loop control system, with an optimized proportional gain and update time, regulated the leg to set at predetermined angular positions. The average electrical stimulation power consumption per muscle group was 148 µW. These findings related to and demonstrations of the leg motion control offer promise for the future development of a reliable, low-power, biological legged machine (i.e., an insect-machine hybrid legged robot).

  9. Using Maximal Isometric Force to Determine the Optimal Load for Measuring Dynamic Muscle Power

    NASA Technical Reports Server (NTRS)

    Spiering, Barry A.; Lee, Stuart M. C.; Mulavara, Ajitkumar P.; Bentley, Jason R.; Nash, Roxanne E.; Sinka, Joseph; Bloomberg, Jacob J.

    2009-01-01

    Maximal power output occurs when subjects perform ballistic exercises using loads of 30-50% of one-repetition maximum (1-RM). However, performing 1-RM testing prior to power measurement requires considerable time, especially when testing involves multiple exercises. Maximal isometric force (MIF), which requires substantially less time to measure than 1-RM, might be an acceptable alternative for determining the optimal load for power testing. PURPOSE: To determine the optimal load based on MIF for maximizing dynamic power output during leg press and bench press exercises. METHODS: Twenty healthy volunteers (12 men and 8 women; mean +/- SD age: 31+/-6 y; body mass: 72 +/- 15 kg) performed isometric leg press and bench press movements, during which MIF was measured using force plates. Subsequently, subjects performed ballistic leg press and bench press exercises using loads corresponding to 20%, 30%, 40%, 50%, and 60% of MIF presented in randomized order. Maximal instantaneous power was calculated during the ballistic exercise tests using force plates and position transducers. Repeated-measures ANOVA and Fisher LSD post hoc tests were used to determine the load(s) that elicited maximal power output. RESULTS: For the leg press power test, six subjects were unable to be tested at 20% and 30% MIF because these loads were less than the lightest possible load (i.e., the weight of the unloaded leg press sled assembly [31.4 kg]). For the bench press power test, five subjects were unable to be tested at 20% MIF because these loads were less than the weight of the unloaded aluminum bar (i.e., 11.4 kg). Therefore, these loads were excluded from analysis. A trend (p = 0.07) for a main effect of load existed for the leg press exercise, indicating that the 40% MIF load tended to elicit greater power output than the 60% MIF load (effect size = 0.38). A significant (p . 0.05) main effect of load existed for the bench press exercise; post hoc analysis indicated that the effect of load on power output was: 30% > 40% > 50% = 60%. CONCLUSION: Loads of 40% and 30% of MIF elicit maximal power output during dynamic leg presses and bench presses, respectively. These findings are similar to those obtained when loading is based on 1-RM.

  10. Post Hoc Analysis of Data from Two Clinical Trials Evaluating the Minimal Clinically Important Change in International Restless Legs Syndrome Sum Score in Patients with Restless Legs Syndrome (Willis-Ekbom Disease)

    PubMed Central

    Ondo, William G.; Grieger, Frank; Moran, Kimberly; Kohnen, Ralf; Roth, Thomas

    2016-01-01

    Study Objectives: Determine the minimal clinically important change (MCIC), a measure determining the minimum change in scale score perceived as clinically beneficial, for the international restless legs syndrome (IRLS) and restless legs syndrome 6-item questionnaire (RLS-6) in patients with moderate to severe restless legs syndrome (RLS/Willis-Ekbom disease) treated with the rotigotine transdermal system. Methods: This post hoc analysis analyzed data from two 6-mo randomized, double-blind, placebo-controlled studies (SP790 [NCT00136045]; SP792 [NCT00135993]) individually and as a pooled analysis in rotigotine-treated patients, with baseline and end of maintenance IRLS and Clinical Global Impressions of change (CGI Item 2) scores available for analysis. An anchor-based approach and receiver operating characteristic (ROC) curves were used to determine the MCIC for the IRLS and RLS-6. We specifically compared “much improved vs minimally improved,” “much improved/very much improved vs minimally improved or worse,” and “minimally improved or better vs no change or worse” on the CGI-2 using the full analysis set (data as observed). Results: The MCIC IRLS cut-off scores for SP790 and SP792 were similar. Using the pooled SP790+SP792 analysis, the MCIC total IRLS cut-off score (sensitivity, specificity) for “much improved vs minimally improved” was −9 (0.69, 0.66), for “much improved/very much improved vs minimally improved or worse” was −11 (0.81, 0.84), and for “minimally improved or better vs no change or worse” was −9 (0.79, 0.88). MCIC ROC cut-offs were also calculated for each RLS-6 item. Conclusions: In patients with RLS, the MCIC values derived in the current analysis provide a basis for defining meaningful clinical improvement based on changes in the IRLS and RLS-6 following treatment with rotigotine. Citation: Ondo WG, Grieger F, Moran K, Kohnen R, Roth T. Post hoc analysis of data from two clinical trials evaluating the minimal clinically important change in international restless legs syndrome sum score in patients with restless legs syndrome (Willis-Ekbom Disease). J Clin Sleep Med 2016;12(1):63–70. PMID:26446245

  11. Innovative concepts for marginal fields (advanced monotower developments)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, M.T.; Marks, V.E.

    1995-12-01

    The braced monotower provides a safe, functional and cost effective solution for topsides up to 500 tonnes, with up to 8 wells and standing in water depths of up to 70 meters. It is both simple in concept and structurally efficient. The superstructure is supported by a single column which is stayed by three symmetrically orientated legs. A broad mudline base is also provided to limit pile loads. The final concept offers complete protection to the risers and conductors from ship impact, as all appurtenances are housed within the central column. The basic design philosophy of the low intervention platformmore » is to minimize the onboard equipment to that vitally needed to produce hydrocarbon. The concept eliminates the life support functions that on a normal North Sea platform can contribute up to 50% of the topside dry weight. A system of Zero Based Engineering is used that ensures each item of equipment contributes more to the NPV of the platform than the fully built-up through life cost. This effectively eliminates the operator preference factor and the ``culture`` cost.« less

  12. Knee Biomechanics During Jogging After Arthroscopic Partial Meniscectomy: A Longitudinal Study.

    PubMed

    Hall, Michelle; Wrigley, Tim V; Metcalf, Ben R; Hinman, Rana S; Cicuttini, Flavia M; Dempsey, Alasdair R; Lloyd, David G; Bennell, Kim L

    2017-07-01

    Altered knee joint biomechanics is thought to play a role in the pathogenesis of knee osteoarthritis and has been reported in patients after arthroscopic partial meniscectomy (APM) while performing various activities. Longitudinally, understanding knee joint biomechanics during jogging may assist future studies to assess the implications of jogging on knee joint health in this population. To investigate knee joint biomechanics during jogging in patients 3 months after APM and a healthy control group at baseline and 2 years later at follow-up. Controlled laboratory study. Seventy-eight patients who underwent medial APM and 38 healthy controls underwent a 3-dimensional motion analysis during barefoot overground jogging at baseline. Sixty-four patients who underwent APM and 23 controls returned at follow-up. External peak moments (flexion and adduction) and the peak knee flexion angle during stance were evaluated for the APM leg, non-APM leg (nonoperated leg), and control leg. At baseline, the peak knee flexion angle was 1.4° lower in the APM leg compared with the non-APM leg ( P = .03). No differences were found between the moments in the APM leg compared with the control leg (all P > .05). However, the normalized peak knee adduction moment was 35% higher in the non-APM leg compared with the control leg ( P = .008). In the non-APM leg, the normalized peak knee adduction and flexion moments were higher compared with the APM leg by 16% and 10%, respectively, at baseline ( P ≤ .004). Despite the increase in the peak knee flexion moment in the APM leg compared with the non-APM leg ( P < .001), there were no differences in the peak knee flexion moment or any other parameter assessed at 2-year follow-up between the legs ( P > .05). Comparing the APM leg and control leg, no differences in knee joint biomechanics during jogging for the variables assessed were observed. Higher knee moments in the non-APM leg may have clinical implications for the noninvolved leg. Kinematic differences were small (~1.4°) and therefore of questionable clinical relevance. These results may facilitate future clinical research regarding the implications of jogging on knee joint health in middle-aged, overweight patients after APM.

  13. Software Tools for Design and Performance Evaluation of Intelligent Systems

    DTIC Science & Technology

    2004-08-01

    Self-calibration of Three-Legged Modular Reconfigurable Parallel Robots Based on Leg-End Distance Errors,” Robotica , Vol. 19, pp. 187-198. [4...9] Lintott, A. B., and Dunlop, G. R., “Parallel Topology Robot Calibration,” Robotica . [10] Vischer, P., and Clavel, R., “Kinematic Calibration...of the Parallel Delta Robot,” Robotica , Vol. 16, pp.207- 218, 1998. [11] Joshi, S.A., and Surianarayan, A., “Calibration of a 6-DOF Cable Robot Using

  14. Leg loss in Lutzomyia longipalpis (Diptera: Psychodidae) due to pyrethroid exposure: Toxic effect or defense by autotomy?

    PubMed

    Santamaría, E; Cabrera, O L; Avendaño, J; Pardo, R H

    2016-01-01

    Phlebotomine sandflies lose their legs after exposure to pyrethroids. In some insects leg loss helps to defend them from intoxication and predation, a phenomenon known as autotomy. A field observation has shown that sandflies that have lost some legs are still able to blood-feed. The aims of the study were to determine whether leg loss in sandflies, after exposure to deltamethrin, is due to autotomy and to establish the effect of the leg loss on blood-feeding. Two experiments were carried out with Lutzomyia longipalpis: (i) Females were individually exposed to a sublethal time of deltamethrin and mortality and the number of leg loss were recorded; and (ii) Groups of females with complete legs or with 1-3 legs lost due to pyrethroid exposure were offered a blood meal and percentages of blood-fed and fully-fed females were recorded. Most females lost a median of 1 leg within 1-48 h post-exposure to deltamethrin. Mortality (after 24 h) was significantly higher for exposed females with lost legs (31.1%), compared to exposed females with complete legs (7.3%), and there were no differences in mortality between females with complete legs and the control (unexposed females). There were no differences between the three treatments in the percentages of blood-fed and fully-fed females. Leg loss in sandflies is a toxic effect of pyrethroids and there was no evidence of autotomy. The loss of up to three legs after exposure to pyrethroids does not affect blood-feeding behaviour in laboratory and probably also in wild conditions.

  15. Peroneal perforator pedicle propeller flap for lower leg soft tissue defect reconstruction: Clinical applications and treatment of venous congestion

    PubMed Central

    Liu, Yiyang; Zhang, Chun; Guo, Qiaofeng; Huang, Wenhua; Wong, Kelvin Kian Loong; Chang, Shimin

    2017-01-01

    Objective To describe the characteristics of the perforator vessel in the peroneal artery of the lower leg and to explore the use of perforator pedicle propeller flaps to repair soft tissue defects in the lower leg, heel and foot. Methods This retrospective study enrolled patients with soft tissue defects of the distal lower leg, heel and foot who underwent surgery using peroneal perforator-based propeller flaps. The peroneal artery perforators were identified preoperatively by colour duplex Doppler ultrasound. The flap was designed based on the preoperatively-identified perforator location, with the posterior border of the fibula employed as an axis, and the perforator vessel as the pivot point of rotation. Patients were followed-up to determine the outcomes. Results The study analysed 36 patients (mean age, 39.7 years). The majority of the soft tissue defects were on the heel (20; 55.6%). The donor-site of the flap was closed in 11 patients by direct suturing and skin grafting was undertaken in 25 patients. Postoperative complications included venous congestion (nine patients), which was managed with delayed wound coverage and bleeding therapy. All wounds were eventually cured and the flaps were cosmetically acceptable. Conclusions The peroneal perforator pedicle propeller flap is an appropriate choice to repair soft tissue defects of the distal limbs. PMID:28345420

  16. Peroneal perforator pedicle propeller flap for lower leg soft tissue defect reconstruction: Clinical applications and treatment of venous congestion.

    PubMed

    Shen, Lifeng; Liu, Yiyang; Zhang, Chun; Guo, Qiaofeng; Huang, Wenhua; Wong, Kelvin Kian Loong; Chang, Shimin

    2017-06-01

    Objective To describe the characteristics of the perforator vessel in the peroneal artery of the lower leg and to explore the use of perforator pedicle propeller flaps to repair soft tissue defects in the lower leg, heel and foot. Methods This retrospective study enrolled patients with soft tissue defects of the distal lower leg, heel and foot who underwent surgery using peroneal perforator-based propeller flaps. The peroneal artery perforators were identified preoperatively by colour duplex Doppler ultrasound. The flap was designed based on the preoperatively-identified perforator location, with the posterior border of the fibula employed as an axis, and the perforator vessel as the pivot point of rotation. Patients were followed-up to determine the outcomes. Results The study analysed 36 patients (mean age, 39.7 years). The majority of the soft tissue defects were on the heel (20; 55.6%). The donor-site of the flap was closed in 11 patients by direct suturing and skin grafting was undertaken in 25 patients. Postoperative complications included venous congestion (nine patients), which was managed with delayed wound coverage and bleeding therapy. All wounds were eventually cured and the flaps were cosmetically acceptable. Conclusions The peroneal perforator pedicle propeller flap is an appropriate choice to repair soft tissue defects of the distal limbs.

  17. The Effects of the Inertial Properties of Above-Knee Prostheses on Optimal Stiffness, Damping, and Engagement Parameters of Passive Prosthetic Knees.

    PubMed

    Narang, Yashraj S; Murthy Arelekatti, V N; Winter, Amos G

    2016-12-01

    Our research aims to design low-cost, high-performance, passive prosthetic knees for developing countries. In this study, we determine optimal stiffness, damping, and engagement parameters for a low-cost, passive prosthetic knee that consists of simple mechanical elements and may enable users to walk with the normative kinematics of able-bodied humans. Knee joint power was analyzed to divide gait into energy-based phases and select mechanical components for each phase. The behavior of each component was described with a polynomial function, and the coefficients and polynomial order of each function were optimized to reproduce the knee moments required for normative kinematics of able-bodied humans. Sensitivity of coefficients to prosthesis mass was also investigated. The knee moments required for prosthesis users to walk with able-bodied normative kinematics were accurately reproduced with a mechanical system consisting of a linear spring, two constant-friction dampers, and three clutches (R2=0.90 for a typical prosthetic leg). Alterations in upper leg, lower leg, and foot mass had a large influence on optimal coefficients, changing damping coefficients by up to 180%. Critical results are reported through parametric illustrations that can be used by designers of prostheses to select optimal components for a prosthetic knee based on the inertial properties of the amputee and his or her prosthetic leg.

  18. Comparison of usual and alternative methods to measure height in mechanically ventilated patients: potential impact on protective ventilation.

    PubMed

    Bojmehrani, Azadeh; Bergeron-Duchesne, Maude; Bouchard, Carmelle; Simard, Serge; Bouchard, Pierre-Alexandre; Vanderschuren, Abel; L'Her, Erwan; Lellouche, François

    2014-07-01

    Protective ventilation implementation requires the calculation of predicted body weight (PBW), determined by a formula based on gender and height. Consequently, height inaccuracy may be a limiting factor to correctly set tidal volumes. The objective of this study was to evaluate the accuracy of different methods in measuring heights in mechanically ventilated patients. Before cardiac surgery, actual height was measured with a height gauge while subjects were standing upright (reference method); the height was also estimated by alternative methods based on lower leg and forearm measurements. After cardiac surgery, upon ICU admission, a subject's height was visually estimated by a clinician and then measured with a tape measure while the subject was supine and undergoing mechanical ventilation. One hundred subjects (75 men, 25 women) were prospectively included. Mean PBW was 61.0 ± 9.7 kg, and mean actual weight was 30.3% higher. In comparison with the reference method, estimating the height visually and using the tape measure were less accurate than both lower leg and forearm measurements. Errors above 10% in calculating the PBW were present in 25 and 40 subjects when the tape measure or visual estimation of height was used in the formula, respectively. With lower leg and forearm measurements, 15 subjects had errors above 10% (P < .001). Our results demonstrate that significant variability exists between the different methods used to measure height in bedridden patients on mechanical ventilation. Alternative methods based on lower leg and forearm measurements are potentially interesting solutions to facilitate the accurate application of protective ventilation. Copyright © 2014 by Daedalus Enterprises.

  19. The Lower Extremity Biomechanics of Single- and Double-Leg Stop-Jump Tasks

    PubMed Central

    2011-01-01

    The anterior cruciate ligament (ACL) injury is a common occurrence in sports requiring stop-jump tasks. Single- and double-leg stop-jump techniques are frequently executed in sports. The higher risk of ACL injury in single-leg drop landing task compared to a double-leg drop landing task has been identified. However the injury bias between single- and double-leg landing techniques has not been investigated for stop-jump tasks. The purpose of this study was to determine the differences between single- and double-leg stop-jump tasks in knee kinetics that were influenced by the lower extremity kinematics during the landing phase. Ground reaction force, lower extremity kinematics, and knee kinetics data during the landing phase were obtained from 10 subjects performing single- and double-leg stop-jump tasks, using motion-capture system and force palates. Greater peak posterior and vertical ground reaction forces, and peak proximal tibia anterior and lateral shear forces (p < 0.05) during landing phase were observed of single-leg stop-jump. Single-leg stop-jump exhibited smaller hip and knee flexion angle, and knee flexion angular velocity at initial foot contact with the ground (p < 0.05). We found smaller peak hip and knee flexion angles (p < 0.05) during the landing phase of single-leg stop-jump. These results indicate that single-leg landing may have higher ACL injury risk than double-leg landing in stop-jump tasks that may be influenced by the lower extremity kinematics during the landing phase. Key points Non-contact ACL injuries are more likely to occur during the single-leg stop-jump task than during the double-leg stop-jump task. Single-leg stop-jump exhibited greater peak proximal tibia anterior and lateral shear forces, and peak posterior and vertical ground reaction forces during the landing phase than the double-leg stop-jump task. Single-leg stop-jump exhibited smaller hip flexion angle, knee flexion angle, and knee flexion angular velocity at initial foot contact with the ground. Single-leg stop-jump exhibited greater peak knee extension and valgus moment during the landing phase than the double-leg stop-jump task. Single-leg stop-jump extended the hip joint at initial foot contact with the ground. PMID:24149308

  20. Changes in neural resting state activity in primary and higher-order motor areas induced by a short sensorimotor intervention based on the Feldenkrais method

    PubMed Central

    Verrel, Julius; Almagor, Eilat; Schumann, Frank; Lindenberger, Ulman; Kühn, Simone

    2015-01-01

    We use functional magnetic resonance imaging to investigate short-term neural effects of a brief sensorimotor intervention adapted from the Feldenkrais method, a movement-based learning method. Twenty-one participants (10 men, 19–30 years) took part in the study. Participants were in a supine position in the scanner with extended legs while an experienced Feldenkrais practitioner used a planar board to touch and apply minimal force to different parts of the sole and toes of their left foot under two experimental conditions. In the local condition, the practitioner explored movement within foot and ankle. In the global condition, the practitioner focused on the connection and support from the foot to the rest of the body. Before (baseline) and after each intervention (post-local, post-global), we measured brain activity during intermittent pushing/releasing with the left leg and during resting state. Independent localizer tasks were used to identify regions of interest (ROI). Brain activity during left-foot pushing did not significantly differ between conditions in sensorimotor areas. Resting state activity (regional homogeneity, ReHo) increased from baseline to post-local in medial right motor cortex, and from baseline to post-global in the left supplementary/cingulate motor area. Contrasting post-global to post-local showed higher ReHo in right lateral motor cortex. ROI analyses showed significant increases in ReHo in pushing-related areas from baseline to both post-local and post-global, and this increase tended to be more pronounced post-local. The results of this exploratory study show that a short, non-intrusive sensorimotor intervention can have short-term effects on spontaneous cortical activity in functionally related brain regions. Increased resting state activity in higher-order motor areas supports the hypothesis that the global intervention engages action-related neural processes. PMID:25972804

  1. Case study: survey of patient satisfaction with prosthesis quality and design among below-knee prosthetic leg socket users.

    PubMed

    Mohd Hawari, Nurhanisah; Jawaid, Mohammad; Md Tahir, Paridah; Azmeer, Raja Ahmad

    2017-11-01

    The aim of this case study was to explore patient satisfaction with the quality of prosthetic leg sockets intended for persons with lower limb amputations. A qualitative study based on in-depth interviews, preceded by a questionnaire session, was carried out with patients from the Rehabilitation Center and Hospital in Malaysia. Twelve out-patient and in-patient amputees with lower limb amputations, specifically below-knee amputations, were chosen randomly. The analysis of patients' narratives aimed to identify the functional and esthetic characteristics of currently used prosthetic leg sockets and any problems related to them. The obtained results indicated that out of the 12 participants, 41.7% and 25% were satisfied and somewhat satisfied with their current prosthetic sockets. Durability and comfort were rated by the participants as the most important characteristics of prosthetic sockets, with 83.3%. As regards the esthetic appearance of the socket, 66.7% of the respondents considered that the most important feature was the material from which the socket was fabricated. Thus, we conclude that current satisfaction levels with the quality of prosthetic sockets among amputees in Malaysia are suitable, prosthesis being preferred by many amputees. The results can be used to direct future research on cosmesis and functionality of prosthetic socket design. Implications for Rehabilitation Case study will help participants to get cost effective prosthetic leg socket. Develop prosthetic leg socket comfortable as comparative to existing one. Help Malaysian government to make policy to develop local prosthetic leg socket at affordable price.

  2. Grounded running in quails: simulations indicate benefits of observed fixed aperture angle between legs before touch-down.

    PubMed

    Andrada, Emanuel; Rode, Christian; Blickhan, Reinhard

    2013-10-21

    Many birds use grounded running (running without aerial phases) in a wide range of speeds. Contrary to walking and running, numerical investigations of this gait based on the BSLIP (bipedal spring loaded inverted pendulum) template are rare. To obtain template related parameters of quails (e.g. leg stiffness) we used x-ray cinematography combined with ground reaction force measurements of quail grounded running. Interestingly, with speed the quails did not adjust the swing leg's angle of attack with respect to the ground but adapted the angle between legs (which we termed aperture angle), and fixed it about 30ms before touchdown. In simulations with the BSLIP we compared this swing leg alignment policy with the fixed angle of attack with respect to the ground typically used in the literature. We found symmetric periodic grounded running in a simply connected subset comprising one third of the investigated parameter space. The fixed aperture angle strategy revealed improved local stability and surprising tolerance with respect to large perturbations. Starting with the periodic solutions, after step-down step-up or step-up step-down perturbations of 10% leg rest length, in the vast majority of cases the bipedal SLIP could accomplish at least 50 steps to fall. The fixed angle of attack strategy was not feasible. We propose that, in small animals in particular, grounded running may be a common gait that allows highly compliant systems to exploit energy storage without the necessity of quick changes in the locomotor program when facing perturbations. © 2013 Elsevier Ltd. All rights reserved.

  3. A neuromechanical strategy for mediolateral foot placement in walking humans.

    PubMed

    Rankin, Bradford L; Buffo, Stephanie K; Dean, Jesse C

    2014-07-15

    Stability is an important concern during human walking and can limit mobility in clinical populations. Mediolateral stability can be efficiently controlled through appropriate foot placement, although the underlying neuromechanical strategy is unclear. We hypothesized that humans control mediolateral foot placement through swing leg muscle activity, basing this control on the mechanical state of the contralateral stance leg. Participants walked under Unperturbed and Perturbed conditions, in which foot placement was intermittently perturbed by moving the right leg medially or laterally during the swing phase (by ∼50-100 mm). We quantified mediolateral foot placement, electromyographic activity of frontal-plane hip muscles, and stance leg mechanical state. During Unperturbed walking, greater swing-phase gluteus medius (GM) activity was associated with more lateral foot placement. Increases in GM activity were most strongly predicted by increased mediolateral displacement between the center of mass (CoM) and the contralateral stance foot. The Perturbed walking results indicated a causal relationship between stance leg mechanics and swing-phase GM activity. Perturbations that reduced the mediolateral CoM displacement from the stance foot caused reductions in swing-phase GM activity and more medial foot placement. Conversely, increases in mediolateral CoM displacement caused increased swing-phase GM activity and more lateral foot placement. Under both Unperturbed and Perturbed conditions, humans controlled their mediolateral foot placement by modulating swing-phase muscle activity in response to the mechanical state of the contralateral leg. This strategy may be disrupted in clinical populations with a reduced ability to modulate muscle activity or sense their body's mechanical state.

  4. Development of a Vibration Based Countermeasure to Inhibit the Bone Erosion and Muscle Deterioration That Parallels Spaceflight

    NASA Technical Reports Server (NTRS)

    Kaplan, Tamara; Qin, Yi-Xian; Judex, Stefan; Rubin, Clinton

    2003-01-01

    The extent of bone and muscle loss in astronauts on missions longer than 30 days poses significant acute and chronic health risks. Recent work in a variety of species has revealed that low magnitude, high frequency (25-90 Hz) mechanical stimulation is anabolic and may inhibit hypothesis that short-term, low-intensi(y mechanical in the lower limb that parallels extended exposure to microgravity. If this experiment is selected for flight, 12 right leg serves as a contralateral control. Each astronaut will undergo treatment for 10 minutes per day, five days Pre- and post-flight bone and muscle testing will be used to assess efficacy as well as intra-subject comparison of the experimental leg to the control leg.

  5. A Quadruped Micro-Robot Based on Piezoelectric Driving

    PubMed Central

    Su, Qi; Quan, Qiquan; Deng, Jie; Yu, Hongpeng

    2018-01-01

    Inspired by a way of rowing, a new piezoelectric driving quadruped micro-robot operating in bending-bending hybrid vibration modes was proposed and tested in this work. The robot consisted of a steel base, four steel connecting pins and four similar driving legs, and all legs were bonded by four piezoelectric ceramic plates. The driving principle is discussed, which is based on the hybrid of first order vertical bending and first order horizontal bending vibrations. The bending-bending hybrid vibration modes motivated the driving foot to form an elliptical trajectory in space. The vibrations of four legs were used to provide the driving forces for robot motion. The proposed robot was fabricated and tested according to driving principle. The vibration characteristics and elliptical movements of the driving feet were simulated by FEM method. Experimental tests of vibration characteristics and mechanical output abilities were carried out. The tested resonance frequencies and vibration amplitudes agreed well with the FEM calculated results. The size of robot is 36 mm × 98 mm × 14 mm, its weight is only 49.8 g, but its maximum load capacity achieves 200 g. Furthermore, the robot can achieve a maximum speed of 33.45 mm/s. PMID:29518964

  6. A Quadruped Micro-Robot Based on Piezoelectric Driving.

    PubMed

    Su, Qi; Quan, Qiquan; Deng, Jie; Yu, Hongpeng

    2018-03-07

    Inspired by a way of rowing, a new piezoelectric driving quadruped micro-robot operating in bending-bending hybrid vibration modes was proposed and tested in this work. The robot consisted of a steel base, four steel connecting pins and four similar driving legs, and all legs were bonded by four piezoelectric ceramic plates. The driving principle is discussed, which is based on the hybrid of first order vertical bending and first order horizontal bending vibrations. The bending-bending hybrid vibration modes motivated the driving foot to form an elliptical trajectory in space. The vibrations of four legs were used to provide the driving forces for robot motion. The proposed robot was fabricated and tested according to driving principle. The vibration characteristics and elliptical movements of the driving feet were simulated by FEM method. Experimental tests of vibration characteristics and mechanical output abilities were carried out. The tested resonance frequencies and vibration amplitudes agreed well with the FEM calculated results. The size of robot is 36 mm × 98 mm × 14 mm, its weight is only 49.8 g, but its maximum load capacity achieves 200 g. Furthermore, the robot can achieve a maximum speed of 33.45 mm/s.

  7. Maintained peak leg and pulmonary VO2 despite substantial reduction in muscle mitochondrial capacity.

    PubMed

    Boushel, R; Gnaiger, E; Larsen, F J; Helge, J W; González-Alonso, J; Ara, I; Munch-Andersen, T; van Hall, G; Søndergaard, H; Saltin, B; Calbet, J A L

    2015-12-01

    We recently reported the circulatory and muscle oxidative capacities of the arm after prolonged low-intensity skiing in the arctic (Boushel et al., 2014). In the present study, leg VO2 was measured by the Fick method during leg cycling while muscle mitochondrial capacity was examined on a biopsy of the vastus lateralis in healthy volunteers (7 male, 2 female) before and after 42 days of skiing at 60% HR max. Peak pulmonary VO2 (3.52 ± 0.18 L.min(-1) pre vs 3.52 ± 0.19 post) and VO2 across the leg (2.8 ± 0.4L.min(-1) pre vs 3.0 ± 0.2 post) were unchanged after the ski journey. Peak leg O2 delivery (3.6 ± 0.2 L.min(-1) pre vs 3.8 ± 0.4 post), O2 extraction (82 ± 1% pre vs 83 ± 1 post), and muscle capillaries per mm(2) (576 ± 17 pre vs 612 ± 28 post) were also unchanged; however, leg muscle mitochondrial OXPHOS capacity was reduced (90 ± 3 pmol.sec(-1) .mg(-1) pre vs 70 ± 2 post, P < 0.05) as was citrate synthase activity (40 ± 3 μmol.min(-1) .g(-1) pre vs 34 ± 3 vs P < 0.05). These findings indicate that peak muscle VO2 can be sustained with a substantial reduction in mitochondrial OXPHOS capacity. This is achieved at a similar O2 delivery and a higher relative ADP-stimulated mitochondrial respiration at a higher mitochondrial p50. These findings support the concept that muscle mitochondrial respiration is submaximal at VO2max , and that mitochondrial volume can be downregulated by chronic energy demand. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Rigid Ankle Foot Orthosis Deteriorates Mediolateral Balance Control and Vertical Braking during Gait Initiation

    PubMed Central

    Delafontaine, Arnaud; Gagey, Olivier; Colnaghi, Silvia; Do, Manh-Cuong; Honeine, Jean-Louis

    2017-01-01

    Rigid ankle-foot orthoses (AFO) are commonly used for impeding foot drop during the swing phase of gait. They also reduce pain and improve gait kinematics in patients with weakness or loss of integrity of ankle-foot complex structures due to various pathological conditions. However, this comes at the price of constraining ankle joint mobility, which might affect propulsive force generation and balance control. The present study examined the effects of wearing an AFO on biomechanical variables and electromyographic activity of tibialis anterior (TA) and soleus muscles during gait initiation (GI). Nineteen healthy adults participated in the study. They initiated gait at a self-paced speed with no ankle constraint as well as wearing an AFO on the stance leg, or bilaterally. Constraining the stance leg ankle decreased TA activity ipsilaterally during the anticipatory postural adjustment (APA) of GI, and ipsilateral soleus activity during step execution. In the sagittal plane, the decrease in the stance leg TA activity reduced the backward displacement of the center of pressure (CoP) resulting in a reduction of the forward velocity of the center of mass (CoM) measured at foot contact (FC). In the frontal plane, wearing the AFO reduced the displacement of the CoP in the direction of the swing leg during the APA phase. The mediolateral velocity of the CoM increased during single-stance prompting a larger step width to recover balance. During step execution, the CoM vertical downward velocity is normally reduced in order to lessen the impact of the swing leg with the floor and facilitates the rise of the CoM that occurs during the subsequent double-support phase. The reduction in stance leg soleus activity caused by constraining the ankle weakened the vertical braking of the CoM during step execution. This caused the absolute instantaneous vertical velocity of the CoM at FC to be greater in the constrained conditions with respect to the control condition. From a rehabilitation perspective, passively- or actively-powered assistive AFOs could correct for the reduction in muscle activity and enhance balance control during GI of patients. PMID:28503144

  9. Endogenous pro-thrombotic biomarkers from the arm and leg may not have the same value.

    PubMed

    Lattimer, Christopher R; Kalodiki, Evi; Geroulakos, George; Hoppensteadt, Debra; Fareed, Jawed

    2016-05-01

    Assessments of endogenous pro-thrombotic biomarkers are performed invariably on arm blood. However, the commonest site for thrombosis is in the leg. A leg blood sample may reflect local pro-thrombotic processes more accurately than systemic arm blood. The aim was to determine whether pro-thrombotic biomarkers from standard venous arm samples differed significantly from leg samples. Concurrent blood samples were taken from an ankle/lower calf varicose vein and an ante-cubital vein in 24 patients awaiting laser treatment as well as age approximated and sex matched healthy controls without venous disease. The following assays were performed: thrombin-antithrombin (ng/ml), antithrombin (%) activity, microparticles (nM), fibrinogen (mg/dl), prothrombin fragment 1.2 (F1.2) (pM) and P-selectin (ng/ml). Expressed as median (inter-quartile range). Significant arm/leg differences were observed in thrombin-antithrombin, antithrombin, prothrombin fragment 1.2 and P-selectin. The legs of patients had significantly reduced antithrombin activity and P-selectin concentrations compared to their arms (leg: 101 (90-108) versus arm: 112 (99-126), P = 0.001 and leg: 42 (26-52) versus 45 (27-52), P = 0.044, respectively). Control leg samples had significantly increased thrombin-antithrombin and P-selectin compared to control arm samples (leg: 2.1 (0.9-3.2) versus arm: 0.8 (0.5-1.7), P = 0.015 and leg: 36 (24-50) versus arm: 30 (23-41), P = 0.007, respectively). However, the control legs had significantly reduced F1.2 (leg: 265 (230-333) versus arm: 299 (236-361), P = 0.028). No significant arm/leg differences were detected in the microparticle or fibrinogen levels. These findings indicate that venous arm blood is significantly different from venous leg blood in four out of six biomarkers studied. Recognition of local venous leg sampling as a site for investigation may unravel why the leg has a greater predisposition to thrombosis and lead the way towards an arm/leg differential test. © The Author(s) 2015.

  10. Regulation of step frequency in transtibial amputee endurance athletes using a running-specific prosthesis.

    PubMed

    Oudenhoven, Laura M; Boes, Judith M; Hak, Laura; Faber, Gert S; Houdijk, Han

    2017-01-25

    Running specific prostheses (RSP) are designed to replicate the spring-like behaviour of the human leg during running, by incorporating a real physical spring in the prosthesis. Leg stiffness is an important parameter in running as it is strongly related to step frequency and running economy. To be able to select a prosthesis that contributes to the required leg stiffness of the athlete, it needs to be known to what extent the behaviour of the prosthetic leg during running is dominated by the stiffness of the prosthesis or whether it can be regulated by adaptations of the residual joints. The aim of this study was to investigate whether and how athletes with an RSP could regulate leg stiffness during distance running at different step frequencies. Seven endurance runners with an unilateral transtibial amputation performed five running trials on a treadmill at a fixed speed, while different step frequencies were imposed (preferred step frequency (PSF) and -15%, -7.5%, +7.5% and +15% of PSF). Among others, step time, ground contact time, flight time, leg stiffness and joint kinetics were measured for both legs. In the intact leg, increasing step frequency was accompanied by a decrease in both contact and flight time, while in the prosthetic leg contact time remained constant and only flight time decreased. In accordance, leg stiffness increased in the intact leg, but not in the prosthetic leg. Although a substantial contribution of the residual leg to total leg stiffness was observed, this contribution did not change considerably with changing step frequency. Amputee athletes do not seem to be able to alter prosthetic leg stiffness to regulate step frequency during running. This invariant behaviour indicates that RSP stiffness has a large effect on total leg stiffness and therefore can have an important influence on running performance. Nevertheless, since prosthetic leg stiffness was considerably lower than stiffness of the RSP, compliance of the residual leg should not be ignored when selecting RSP stiffness. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Coordination of multiple appendages in drag-based swimming.

    PubMed

    Alben, Silas; Spears, Kevin; Garth, Stephen; Murphy, David; Yen, Jeannette

    2010-11-06

    Krill are aquatic crustaceans that engage in long distance migrations, either vertically in the water column or horizontally for 10 km (over 200,000 body lengths) per day. Hence efficient locomotory performance is crucial for their survival. We study the swimming kinematics of krill using a combination of experiment and analysis. We quantify the propulsor kinematics for tethered and freely swimming krill in experiments, and find kinematics that are very nearly metachronal. We then formulate a drag coefficient model which compares metachronal, synchronous and intermediate motions for a freely swimming body with two legs. With fixed leg velocity amplitude, metachronal kinematics give the highest average body speed for both linear and quadratic drag laws. The same result holds for five legs with the quadratic drag law. When metachronal kinematics is perturbed towards synchronous kinematics, an analysis shows that the velocity increase on the power stroke is outweighed by the velocity decrease on the recovery stroke. With fixed time-averaged work done by the legs, metachronal kinematics again gives the highest average body speed, although the advantage over synchronous kinematics is reduced.

  12. Influence of "J"-Curve Spring Stiffness on Running Speeds of Segmented Legs during High-Speed Locomotion.

    PubMed

    Wang, Runxiao; Zhao, Wentao; Li, Shujun; Zhang, Shunqi

    2016-01-01

    Both the linear leg spring model and the two-segment leg model with constant spring stiffness have been broadly used as template models to investigate bouncing gaits for legged robots with compliant legs. In addition to these two models, the other stiffness leg spring models developed using inspiration from biological characteristic have the potential to improve high-speed running capacity of spring-legged robots. In this paper, we investigate the effects of "J"-curve spring stiffness inspired by biological materials on running speeds of segmented legs during high-speed locomotion. Mathematical formulation of the relationship between the virtual leg force and the virtual leg compression is established. When the SLIP model and the two-segment leg model with constant spring stiffness and with "J"-curve spring stiffness have the same dimensionless reference stiffness, the two-segment leg model with "J"-curve spring stiffness reveals that (1) both the largest tolerated range of running speeds and the tolerated maximum running speed are found and (2) at fast running speed from 25 to 40/92 m s -1 both the tolerated range of landing angle and the stability region are the largest. It is suggested that the two-segment leg model with "J"-curve spring stiffness is more advantageous for high-speed running compared with the SLIP model and with constant spring stiffness.

  13. Influence of “J”-Curve Spring Stiffness on Running Speeds of Segmented Legs during High-Speed Locomotion

    PubMed Central

    2016-01-01

    Both the linear leg spring model and the two-segment leg model with constant spring stiffness have been broadly used as template models to investigate bouncing gaits for legged robots with compliant legs. In addition to these two models, the other stiffness leg spring models developed using inspiration from biological characteristic have the potential to improve high-speed running capacity of spring-legged robots. In this paper, we investigate the effects of “J”-curve spring stiffness inspired by biological materials on running speeds of segmented legs during high-speed locomotion. Mathematical formulation of the relationship between the virtual leg force and the virtual leg compression is established. When the SLIP model and the two-segment leg model with constant spring stiffness and with “J”-curve spring stiffness have the same dimensionless reference stiffness, the two-segment leg model with “J”-curve spring stiffness reveals that (1) both the largest tolerated range of running speeds and the tolerated maximum running speed are found and (2) at fast running speed from 25 to 40/92 m s−1 both the tolerated range of landing angle and the stability region are the largest. It is suggested that the two-segment leg model with “J”-curve spring stiffness is more advantageous for high-speed running compared with the SLIP model and with constant spring stiffness. PMID:28018127

  14. On the design of a DEA-based device to pot entially assist lower leg disorders: an analytical and FEM investigation accounting for nonlinearities of the leg and device deformations.

    PubMed

    Pourazadi, Shahram; Ahmadi, Sadegh; Menon, Carlo

    2015-11-05

    One of the recommended treatments for disorders associated with the lower extremity venous insufficiency is the application of external mechanical compression. Compression stockings and elastic bandages are widely used for the purpose of compression therapy and are usually designed to exert a specified value or range of compression on the leg. However, the leg deforms under external compression, which can lead to undesirable variations in the amount of compression applied by the compression bandages. In this paper, the use of an active compression bandage (ACB), whose compression can be regulated through an electrical signal, is investigated. The ACB is based on the use of dielectric elastomer actuators. This paper specifically investigates, via both analytical and non-linear numerical simulations, the potential pressure the ACB can apply when the compliancy of the human leg is taken into account. The work underpins the need to account for the compressibility of the leg when designing compression garments for lower extremity venous insufficiency. A mathematical model is used to simulate the volumetric change of a calf when compressed. Suitable parameters for this calf model are selected from the literature where the calf, from ankle to knee, is divided into six different regions. An analytical electromechanical model of the ACB, which considers its compliancy as a function of its pre-stretch and electricity applied, is used to predict the ACB's behavior. Based on these calf and ACB analytical models, a simulation is performed to investigate the interaction between the ACB and the human calf with and without an electrical stimulus applied to the ACB. This simulation is validated by non-linear analysis performed using a software based on the finite element method (FEM). In all simulations, the ACB's elastomer is stretched to a value in the range between 140 and 220 % of its initial length. Using data from the literature, the human calf model, which is examined in this work, has different compliancy in its different regions. For example, when a 28.5 mmHg (3.8 kPa) of external compression is applied to the entire calf, the ankle shows a 3.7 % of volume change whereas the knee region undergoes a 2.7 % of volume change. The paper presents the actual pressure in the different regions of the calf for different values of the ACB's stretch ratio when it is either electrically activated or not activated, and when compliancy of the leg is either considered or not considered. For example, results of the performed simulation show that about 10 % variation in compression in the ankle region is expected when the ACB initially applies 6 kPa and the compressibility of the calf is first considered and then not considered. Such a variation reduces to 5 % when the initial pressure applied by the ACB reduced by half. Comparison with non-linear FEM simulations show that the analytical models used in this work can closely estimate interaction between an active compression bandage and a human calf. In addition, compliancy of the leg should not be neglected when either designing a compression band or predicting the compressive force it can exert. The methodology proposed in this work can be extended to other types of elastic compression bandages and garments for biomedical applications.

  15. An Experimental Comparison of CLOS and C++ Implementations of An Object- Oriented Graphical Simulation of Walking Robot Kinematics

    DTIC Science & Technology

    1993-03-25

    attachment-angle :accessor leg-attachment-angle) (linkO :initform (make-instance ’linkO) :accessor linkO) ( linki :initform (make-instance ’ linki ...accessor linki ) (link2 :initform (make-instance ’link2) :accessor link2) (link3 :initform (make-instance ’link3) :accessor link3) (motion-complete-flag...inboard-link ( linki leg)) (linkO leg)) (setf (inboard-link (link2 leg)) ( linki leg)) (setf (inboard-link (link3 leg)) (link2 leg)) (rotate-link (linkO

  16. How to determine leg dominance: The agreement between self-reported and observed performance in healthy adults

    PubMed Central

    Meddeler, Bart M.; Hoogeboom, Thomas J.; Nijhuis-van der Sanden, Maria W. G.; van Cingel, Robert E. H.

    2017-01-01

    Context Since decades leg dominance is suggested to be important in rehabilitation and return to play in athletes with anterior cruciate ligament injuries. However, an ideal method to determine leg dominance in relation to task performance is still lacking. Objective To test the agreement between self-reported and observed leg dominance in bilateral mobilizing and unilateral stabilizing tasks, and to assess whether the dominant leg switches between bilateral mobilizing tasks and unilateral stabilizing tasks. Design Cross-sectional study. Participants Forty-one healthy adults: 21 men aged 36 ± 17 years old and 20 women aged 36 ±15 years old. Measurement and analysis Participants self-reported leg dominance in the Waterloo Footedness Questionnaire-Revised (WFQ-R), and leg dominance was observed during performance of four bilateral mobilizing tasks and two unilateral stabilizing tasks. Descriptive statistics and crosstabs were used to report the percentages of agreement. Results The leg used to kick a ball had 100% agreement between the self-reported and observed dominant leg for both men and women. The dominant leg in kicking a ball and standing on one leg was the same in 66.7% of the men and 85.0% of the women. The agreement with jumping with one leg was lower: 47.6% for men and 70.0% for women. Conclusions It is appropriate to ask healthy adults: “If you would shoot a ball on a target, which leg would you use to shoot the ball?” to determine leg dominance in bilateral mobilizing tasks. However, a considerable number of the participants switched the dominant leg in a unilateral stabilizing task. PMID:29287067

  17. A fatal case of necrotizing fasciitis caused by Serratia marcescens.

    PubMed

    Curtis, Christopher E; Chock, Stefan; Henderson, Terrance; Holman, Michael J

    2005-03-01

    A patient with a history of type II diabetes mellitus (DM), end stage renal disease (ESRD), and congestive heart failure (CHF) developed necrotizing fasciitis caused by Serratia marcescens after scraping his leg on rocks in a river while fishing. Aggressive management with surgical debridement, antibiotics, and pressure support was unsuccessful.

  18. Towards a general neural controller for quadrupedal locomotion.

    PubMed

    Maufroy, Christophe; Kimura, Hiroshi; Takase, Kunikatsu

    2008-05-01

    Our study aims at the design and implementation of a general controller for quadruped locomotion, allowing the robot to use the whole range of quadrupedal gaits (i.e. from low speed walking to fast running). A general legged locomotion controller must integrate both posture control and rhythmic motion control and have the ability to shift continuously from one control method to the other according to locomotion speed. We are developing such a general quadrupedal locomotion controller by using a neural model involving a CPG (Central Pattern Generator) utilizing ground reaction force sensory feedback. We used a biologically faithful musculoskeletal model with a spine and hind legs, and computationally simulated stable stepping motion at various speeds using the neuro-mechanical system combining the neural controller and the musculoskeletal model. We compared the changes of the most important locomotion characteristics (stepping period, duty ratio and support length) according to speed in our simulations with the data on real cat walking. We found similar tendencies for all of them. In particular, the swing period was approximately constant while the stance period decreased with speed, resulting in a decreasing stepping period and duty ratio. Moreover, the support length increased with speed due to the posterior extreme position that shifted progressively caudally, while the anterior extreme position was approximately constant. This indicates that we succeeded in reproducing to some extent the motion of a cat from the kinematical point of view, even though we used a 2D bipedal model. We expect that such computational models will become essential tools for legged locomotion neuroscience in the future.

  19. Preliminary design report for OTEC stationkeeping subsystems (SKSS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-12-12

    Lockheed Ocean Systems with IMODCO prepared these preliminary designs for OTEC Stationkeeping Subsystems (SKSS) under contract to NOAA in support of the Department of Energy OTEC program. The results of Tasks III, V, and VI are presented in this design report. The report consists of five sections: introduction, preliminary designs for the multiple anchor leg (MAL) and tension anchor leg (TAL), costs and schedule, and conclusions. Extensive appendixes provide detailed descriptions of design methodology and include backup calculations and data to support the results presented. The objective of this effort is to complete the preliminary designs for the barge-MAL andmore » Spar-TAL SKSS. A set of drawings is provided for each which show arrangements, configuration, component details, engineering description, and deployment plan. Loads analysis, performance assessment, and sensitivity to requirements are presented, together with the methodology employed to analyze the systems and to derive the results presented. Life cycle costs and schedule are prepared and compared on a common basis. Finally, recommendations for the Commercial Plant SKSS are presented for both platform types.« less

  20. Single-leg squats can predict leg alignment in dancers performing ballet movements in "turnout".

    PubMed

    Hopper, Luke S; Sato, Nahoko; Weidemann, Andries L

    2016-01-01

    The physical assessments used in dance injury surveillance programs are often adapted from the sports and exercise domain. Bespoke physical assessments may be required for dance, particularly when ballet movements involve "turning out" or external rotation of the legs beyond that typically used in sports. This study evaluated the ability of the traditional single-leg squat to predict the leg alignment of dancers performing ballet movements with turnout. Three-dimensional kinematic data of dancers performing the single-leg squat and five ballet movements were recorded and analyzed. Reduction of the three-dimensional data into a one-dimensional variable incorporating the ankle, knee, and hip joint center positions provided the strongest predictive model between the single-leg squat and the ballet movements. The single-leg squat can predict leg alignment in dancers performing ballet movements, even in "turned out" postures. Clinicians should pay careful attention to observational positioning and rating criteria when assessing dancers performing the single-leg squat.

Top