NASA Technical Reports Server (NTRS)
1972-01-01
Satellite tracking and earth dynamics research programs are discussed. Geodetic and geophysical investigations are reported along with atmospheric research using satellite drag data. Satellite tracking network functions and support groups which are discussed include: network operations, communications, data-services division, moonwatch, and programming group.
Satellite-tracking and earth-dynamics research programs
NASA Technical Reports Server (NTRS)
1975-01-01
The activities and progress in the satellite tracking and earth dynamics research during the first half of calendar year 1975 are described. Satellite tracking network operations, satellite geodesy and geophysics programs, GEOS 3 project support, and atmospheric research are covered.
NASA Technical Reports Server (NTRS)
1991-01-01
The NASA-developed Artificial Satellite Analysis Program (ASAP), was purchased from COSMIC and used to enhance OPNET, a program for developing simulations of communications satellite networks. OPNET's developer, MIL3, applied ASAP to support predictions of low Earth orbit, enabling the company to offer satellite modeling capability to customers earlier than if they had to actually develop the program.
A study program for geodetic satellite applications
NASA Technical Reports Server (NTRS)
Pearlman, M. R.
1972-01-01
The work is reported on support of the GEOS-C Program, National Geodetic Satellite program, and the Earth Physics Program. The statement of work, and a description of the GEOS-C are presented along with the trip reports, and the Earth and Ocean Physics Application program.
NASA Technical Reports Server (NTRS)
Hollansworth, James E.
1993-01-01
The NASA/VOA Direct Broadcast Satellite-Radio (DBS-R) Program will be using a NASA Tracking Data Relay Satellite (TDRS) satellite at 62 deg. West longitude to conduct live satellite S-band propagation experiments and demonstrations of satellite sound broadcasting over the next two years (1993-1994). The NASA/VOA DBS-R program has applied intensive effort to garner domestic and international support for the DBS-R concept. An S-band DBS-R allocation was achieved for Region 2 at WARC-92 held in Spain. With this allocation, the DBS-R program now needs to conduct S-band propagation experiments and systems demonstrations that will assist in the development of planning approaches for the use of Broadcast Satellite Service (Sound) frequency bands prior to the planning conference called for by WARC-92. These activities will also support receiver concept development applied to qualities ranging from AM to Monophonic FM, Stereophonic FM, Monophonic CD, and Stereophonic CD quality.
Education Via Satellite: A Trinational Perspective.
ERIC Educational Resources Information Center
Shaw, Willard D.
The Rural Satellite Program of the U.S. Agency for International Development was a 6-year effort (1981-87) to explore the potential uses of two way telecommunications facilities, particularly satellite-mediated, telephone-based technologies--to support Third World Development educational endeavors. This program created three audioconferencing…
NASA Technical Reports Server (NTRS)
1971-01-01
Individualized program direct costs for each satellite program are presented. This breakdown provides the activity level dependent costs for each satellite program. The activity level dependent costs, or, more simply, program direct costs, are comprised of the total payload costs (as these costs are strictly program dependent) and the direct launch vehicle costs. Only those incremental launch vehicle costs associated directly with the satellite program are considered. For expendable launch vehicles the direct costs include the vehicle investment hardware costs and the launch operations costs. For the reusable STS vehicles the direct costs include only the launch operations, recovery operations, command and control, vehicle maintenance, and propellant support. The costs associated with amortization of reusable vehicle investment, RDT&E range support, etc., are not included.
Proceedings of the International Meteorological Satellite Workshop
NASA Technical Reports Server (NTRS)
1962-01-01
International Meteorological Satellite Workshop, November 13-22, 1961, presented the results of the meteorological satellite program of the United States and the possibilities for the future, so that-- the weather services of other nations may acquire a working knowledge of meteorological satellite data for assistance in their future analysis programs both in research and in daily synoptic application and guidance in their national observational support efforts; the world meteorological community may become more familiar with the TIROS program.; and the present activity may be put in proper perspective relative to future operational programs.
Solar power satellite system definition study, phase 2. Volume 2: Reference system description
NASA Technical Reports Server (NTRS)
1979-01-01
System descriptions and cost estimates for the reference system of the solar power satellite program are presented. The reference system is divided into five principal elements: the solar power satellites; space construction and support; space and ground transportation; ground receiving stations; and operations control. The program scenario and non-recurring costs are briefly described.
The American mobile satellite system
NASA Technical Reports Server (NTRS)
Garner, William B.
1990-01-01
During 1989, the American Mobile Satellite Corporation (AMSC) was authorized to construct, launch, and operate satellites to provide mobile satellite services (MSS) to the U.S. and Puerto Rico. The AMSC has undertaken three major development programs to bring a full range of MSS services to the U.S. The first program is the space segment program that will result in the construction and launch of the satellites as well as the construction and installation of the supporting ground telemetry and command system. The second segment will result in the specification, design, development, construction, and installation of the Network Control System necessary for managing communications access to the satellites, and the specification and development of ground equipment for standard circuit switched and packet switched communications services. The third program is the Phase 1 program to provide low speed data services within the U.S. prior to availability of the AMSC satellites and ground segment. Described here are the present status and plans for these three programs as well as an update on related business arrangements and regulatory matters.
NASA Technical Reports Server (NTRS)
Mullins, N. E.
1972-01-01
The GEODYN Orbit Determination and Geodetic Parameter Estimation System consists of a set of computer programs designed to determine and analyze definitive satellite orbits and their associated geodetic and measurement parameters. This manual describes the Support Programs used by the GEODYN System. The mathematics and programming descriptions are detailed. The operational procedures of each program are presented. GEODYN ancillary analysis programs may be grouped into three different categories: (1) orbit comparison - DELTA (2) data analysis using reference orbits - GEORGE, and (3) pass geometry computations - GROUNDTRACK. All of the above three programs use one or more tapes written by the GEODYN program in either a data reduction or orbit generator run.
Spacecraft Orbit Design and Analysis (SODA). Version 2.0: User's guide
NASA Technical Reports Server (NTRS)
Stallcup, Scott S.; Davis, John S.; Zsoldos, Jeffrey S.
1991-01-01
The Spacecraft Orbit Design and Analysis (SODA) computer program, Version 2.0, is discussed. SODA is a spaceflight mission planning system that consists of six program modules integrated around a common database and user interface. SODA runs on a VAX/VMS computer with an Evans and Sutherland PS300 graphics workstation. In the current version, three program modules produce an interactive three dimensional animation of one or more satellites in planetary orbit. Satellite visibility and sensor coverage capabilities are also provided. Circular and rectangular, off nadir, fixed and scanning sensors are supported. One module produces an interactive three dimensional animation of the solar system. Another module calculates cumulative satellite sensor coverage and revisit time for one or more satellites. Currently, Earth, Moon, and Mars systems are supported for all modules except the solar system module.
NASA Technical Reports Server (NTRS)
1972-01-01
The program requirements and operations requirements for the IMP mission are presented. The satellite configuration is described and the missions are analyzed. The support equipment, logistics, range facilities, and responsibilities of the launching organizations are defined. The systems for telemetry, communications, satellite tracking, and satellite control are identified.
ISAGEX (International Satellite Geodesy Experiment) experience. 1: Data acquisition
NASA Technical Reports Server (NTRS)
Gaposchkin, E. M. (Editor)
1972-01-01
The contributions and methods of the Smithsonian Astrophysical Observatory to the International Satellite Geodesy program are described. The report provides data users with necessary supporting information.
Federal research and development for satellite communications
NASA Technical Reports Server (NTRS)
1977-01-01
A Committee on Satellite Communication (COSC) was formed under the auspices of the Space Applications Board (SAB) in order to study Federal research and development on satellite communications (SC). Discussion on whether to continue the research and development and the proper role of the Federal Government are addressed. Discussion focussed on six possible options for a Federal role in SC research and development: (1) the current NASA SC program; (2) an expanded NASA SC technology program; (3) a SC technology flight test support program; (4) an experimental SC technology flight program; (5) an experimental public service SC system program; and (6) an operational public service SC system program. Decision criteria and recommendations are presented.
Magnetic cleanliness verification approach on tethered satellite
NASA Technical Reports Server (NTRS)
Messidoro, Piero; Braghin, Massimo; Grande, Maurizio
1990-01-01
Magnetic cleanliness testing was performed on the Tethered Satellite as the last step of an articulated verification campaign aimed at demonstrating the capability of the satellite to support its TEMAG (TEthered MAgnetometer) experiment. Tests at unit level and analytical predictions/correlations using a dedicated mathematical model (GANEW program) are also part of the verification activities. Details of the tests are presented, and the results of the verification are described together with recommendations for later programs.
STS-44 Defense Support Program (DSP) / IUS during preflight operations
NASA Technical Reports Server (NTRS)
1991-01-01
STS-44 Defense Support Program (DSP) satellite atop the inertial upper stage (IUS) is prepared for transfer in a processing facility at Cape Canaveral Air Force Station. Clean-suited technicians overseeing the operation are dwarfed by the size of the 5,200-pound DSP satellite and the IUS. The underside of the IUS (bottom) mounted in the airborne support equipment (ASE) aft frame tilt actuator (AFTA) table and ASE forward frame is visible at the base. The umbilical boom between the two ASE frames and the forward frame keel trunnion are visible. DSP, a surveillance satellite that can detect missle and space launches as well as nuclear detonations will be boosted into geosynchronous Earth orbit by the IUS. View provided by KSC with alternate number KSC-91PC-1749.
NASA Astrophysics Data System (ADS)
McGinty, A. B.
1982-04-01
Contents: The Air Force Geophysics Laboratory; Aeronomy Division--Upper Atmosphere Composition, Middle Atmosphere Effects, Atmospheric UV Radiation, Satellite Accelerometer Density Measurement, Theoretical Density Studies, Chemical Transport Models, Turbulence and Forcing Functions, Atmospheric Ion Chemistry, Energy Budget Campaign, Kwajalein Reference Atmospheres, 1979, Satellite Studies of the Neutral Atmosphere, Satellite Studies of the Ionosphere, Aerospace Instrumentation Division--Sounding Rocket Program, Satellite Support, Rocket and Satellite Instrumentation; Space Physics Division--Solar Research, Solar Radio Research, Environmental Effects on Space Systems, Solar Proton Event Studies, Defense Meteorological Satellite Program, Ionospheric Effects Research, Spacecraft Charging Technology; Meteorology Division--Cloud Physics, Ground-Based Remote-Sensing Techniques, Mesoscale Observing and Forecasting, Design Climatology, Aircraft Icing Program, Atmospheric Dynamics; Terrestrial Sciences Division--Geodesy and Gravity, Geokinetics; Optical Physics Division--Atmospheric Transmission, Remote Sensing, INfrared Background; and Appendices.
Satellite power system: Concept development and evaluation program, reference system report
NASA Technical Reports Server (NTRS)
1979-01-01
The Satellite Power System (SPS) Reference System is discussed and the technical and operational information required in support of environmental, socioeconomic, and comparative assessment studies are emphasized. The reference System concept features a gallium-aluminum-arsenide, and silicon solar cell options. Other aspects of an SPS are the construction of bases in space, launch and mission control bases on earth, and fleets of various transportation vehicles to support the construction and maintenance operations of the satellites.
TDF-1, The French Broadcasting Satellite (TDF-1, Satellite Francais de Radiodiffusion),
1982-04-22
defines the general directions of the program and gives the necessary directives to a joint project directorate in Munich, Germany ( French projects ...AD-A117 961 NAVAL ZNTELIGENC SUPPORT CENTER WASHINGTON DC TRAN-(ITC F/0 17/2 TOF-Il, THE FRENCH BROADCASTING SATELLITE (TDP-I. SATELLITE PRAN-ETC(U...8201/80A UNCLASSIFIED TITLE: TDF-1, The French Broadcasting Satellite TDF 1, satellite francais de radiodiffusion AUTHOR(S) AND/OR EDITOR(S): C
Satellite Laser Ranging operations
NASA Technical Reports Server (NTRS)
Pearlman, Michael R.
1994-01-01
Satellite Laser Ranging (SLR) is currently providing precision orbit determination for measurements of: 1) Ocean surface topography from satellite borne radar altimetry, 2) Spatial and temporal variations of the gravity field, 3) Earth and ocean tides, 4) Plate tectonic and regional deformation, 5) Post-glacial uplift and subsidence, 6) Variations in the Earth's center-of-mass, and 7) Variations in Earth rotation. SLR also supports specialized programs in time transfer and classical geodetic positioning, and will soon provide precision ranging to support experiments in relativity.
Evolution of the JPSS Ground Project Calibration and Validation System
NASA Technical Reports Server (NTRS)
Purcell, Patrick; Chander, Gyanesh; Jain, Peyush
2016-01-01
The Joint Polar Satellite System (JPSS) is the National Oceanic and Atmospheric Administration's (NOAA) next-generation operational Earth observation Program that acquires and distributes global environmental data from multiple polar-orbiting satellites. The JPSS Program plays a critical role to NOAA's mission to understand and predict changes in weather, climate, oceans, coasts, and space environments, which supports the Nation's economy and protection of lives and property. The National Aeronautics and Space Administration (NASA) is acquiring and implementing the JPSS, comprised of flight and ground systems, on behalf of NOAA. The JPSS satellites are planned to fly in the afternoon orbit and will provide operational continuity of satellite-based observations and products for NOAA Polar-orbiting Operational Environmental Satellites (POES) and the Suomi National Polar-orbiting Partnership (SNPP) satellite. To support the JPSS Calibration and Validation (CalVal) node Government Resource for Algorithm Verification, Independent Test, and Evaluation (GRAVITE) services facilitate: Algorithm Integration and Checkout, Algorithm and Product Operational Tuning, Instrument Calibration, Product Validation, Algorithm Investigation, and Data Quality Support and Monitoring. GRAVITE is a mature, deployed system that currently supports the SNPP Mission and has been in operations since SNPP launch. This paper discusses the major re-architecture for Block 2.0 that incorporates SNPP lessons learned, architecture of the system, and demonstrates how GRAVITE has evolved as a system with increased performance. It is now a robust, stable, reliable, maintainable, scalable, and secure system that supports development, test, and production strings, replaces proprietary and custom software, uses open source software, and is compliant with NASA and NOAA standards.
Evolution of the JPSS Ground Project Calibration and Validation System
NASA Technical Reports Server (NTRS)
Chander, Gyanesh; Jain, Peyush
2014-01-01
The Joint Polar Satellite System (JPSS) is the National Oceanic and Atmospheric Administrations (NOAA) next-generation operational Earth observation Program that acquires and distributes global environmental data from multiple polar-orbiting satellites. The JPSS Program plays a critical role to NOAAs mission to understand and predict changes in weather, climate, oceans, coasts, and space environments, which supports the Nation’s economy and protection of lives and property. The National Aerospace and Atmospheric Administration (NASA) is acquiring and implementing the JPSS, comprised of flight and ground systems on behalf of NOAA. The JPSS satellites are planned to fly in the afternoon orbit and will provide operational continuity of satellite-based observations and products for NOAA Polar-orbiting Operational Environmental Satellites (POES) and the Suomi National Polar-orbiting Partnership (SNPP) satellite. To support the JPSS Calibration and Validation (CalVal) node Government Resource for Algorithm Verification, Independent Test, and Evaluation (GRAVITE) services facilitate: Algorithm Integration and Checkout, Algorithm and Product Operational Tuning, Instrument Calibration, Product Validation, Algorithm Investigation, and Data Quality Support and Monitoring. GRAVITE is a mature, deployed system that currently supports the SNPP Mission and has been in operations since SNPP launch. This paper discusses the major re-architecture for Block 2.0 that incorporates SNPP lessons learned, architecture of the system, and demonstrates how GRAVITE has evolved as a system with increased performance. It is now a robust, stable, reliable, maintainable, scalable, and secure system that supports development, test, and production strings, replaces proprietary and custom software, uses open source software, and is compliant with NASA and NOAA standards.
Development of a PC-based ground support system for a small satellite instrument
NASA Astrophysics Data System (ADS)
Deschambault, Robert L.; Gregory, Philip R.; Spenler, Stephen; Whalen, Brian A.
1993-11-01
The importance of effective ground support for the remote control and data retrieval of a satellite instrument cannot be understated. Problems with ground support may include the need to base personnel at a ground tracking station for extended periods, and the delay between the instrument observation and the processing of the data by the science team. Flexible solutions to such problems in the case of small satellite systems are provided by using low-cost, powerful personal computers and off-the-shelf software for data acquisition and processing, and by using Internet as a communication pathway to enable scientists to view and manipulate satellite data in real time at any ground location. The personal computer based ground support system is illustrated for the case of the cold plasma analyzer flown on the Freja satellite. Commercial software was used as building blocks for writing the ground support equipment software. Several levels of hardware support, including unit tests and development, functional tests, and integration were provided by portable and desktop personal computers. Satellite stations in Saskatchewan and Sweden were linked to the science team via phone lines and Internet, which provided remote control through a central point. These successful strategies will be used on future small satellite space programs.
Uses of tethered atmospheric research probes
NASA Technical Reports Server (NTRS)
Deloach, Richard
1991-01-01
In situ measurements in the lower thermosphere are rare because of the difficulty of reaching these altitudes with conventional instrument platforms. The emerging technology of tethered satellites as a means to probe these altitudes from above has matured to the point that a flight program is planned to verify the operational performance of a low-cost deployer mechanism for tethered satellites, and to demonstrate a basic understanding of the dynamics of tethered satellite deployment. With such operational developments at hand, it is appropriate to review some of the potential applications of tethered measurement platforms for acquiring in situ data in the upper atmosphere. This paper focuses on downward-deployed tethered satellite measurements of interest to atmospheric scientists and to hypersonic aerodynamicists, and discusses ways in which this technology may be able to support selected long-range research programs currently in progress or in various stages of pre-flight development. The intent is to illustrate for the potential user community some of the unique advantages of tethered measurement platform technology now under development, and to stimulate creative thinking about ways in which this new capability may be used in support of future research programs.
Studies of satellite support to weather modification in the western US region
NASA Technical Reports Server (NTRS)
Cotton, W. R.; Grant, L. O.; Vonderhaar, T. H.
1978-01-01
The applications of meteorological satellite data to both summer and winter weather modification programs are addressed. Appraisals of the capability of satellites to assess seedability, to provide real-time operational support, and to assist in the post-experiment analysis of a seeding experiment led to the incorporation of satellite observing systems as a major component in the Bureau of Reclamations weather modification activities. Satellite observations are an integral part of the South Park Area cumulus experiment (SPACE) which aims to formulate a quantitative hypothesis for enhancing precipitation from orographically induced summertime mesoscale convective systems (orogenic mesoscale systems). Progress is reported in using satellite observations to assist in classifying the important mesoscale systems, and in defining their frequency and coverage, and potential area of effect. Satellite studies of severe storms are also covered.
Reach the Unreached -IIRS Outreach program for enhanced learning to all
NASA Astrophysics Data System (ADS)
Krishna Murthy, Y. V. N.; Raju, P. L. N.; Srivastav, S. K.; Karnatak, H.; Gupta, P. Kumar; Mahadevaswamy, M.; Viswakarma, J.
2014-11-01
With the advent of Information and Communication Technology and improved broadband internet connectivity has enhanced the scope of learning any time anywhere, going beyond the traditional classroom approach. To support distance learning, Indian Space Research Organisation, Government of India has launched dedicated communication satellite called EDUSAT in 2004. The satellite is widely used for variety of applications like Tele-education, Tele-medicine, Village Resource Centres, mobile satellite services, disaster management support and television broadcasting educating farmers for agriculture and other purposes. One of the prime applications of EDUSAT satellite is tele-education at various levels (i.e. school level/UG /PG level) by different ministries / autonomous organizations / departments/institutions/universities in India effectively utilized the EDUSAT for Tele-education. The initial focus of IIRS was to use EDUSAT/INSAT 4CR satellite for distance learning but extended the scope to use broadband internet so that access to large number of institutions/universities /individuals with little cost the User. IIRS distance learning program initiated in 2007 and successfully conducted 12 programs in the last eight years. The first course was attended from twelve universities and the number of institutions /universities increased manifold. The thirteenth course is progress with more than 210 institutions /universities /departments /individuals with more than 3200 number of participants attending the program live and interactive. IIRS program is unique and interactive and demand is increasing not only universities but among research institutions, user departments and individuals.
German telecommunications satellite (Deutscher fernmelde satellit) (DFS-1 and -2)
NASA Technical Reports Server (NTRS)
Hiendlmeier, G.; Schmeller, H.
1991-01-01
The German Telecommunications Satellite (DFS) Program is to provide telecommunications service for high data rate transmission of text and video data to the Federal Republic of Germany within the 11-14 GHz and 20-30 GHz bands. The space segment of this program is composed of three satellites, DFS-1, DFS-2, and DFS-3, which will be located at 23.5 degrees E longitude of the geostationary orbit. The DFS will be launched from the Center Spatial Guyanis in French Giana on an Ariane launch vehicle. The mission follows the typical injection sequence: parking orbit, transfer orbit, and earth orbit. Attitude maneuvers will be performed to orient the spacecraft prior to Apogee Kick Motor (AKM) firing. After AKM firing, drift phase orbital and attitude maneuvers will be performed to place the spacecraft in its final geostationary position. The Deep Space Network (DSN) will support the transfer and drift orbit mission phases. Information is presented in tabular form for the following areas: DSN support, compatibility testing, frequency assignments, telemetry, command, and tracking support responsibilities.
NASA's mobile satellite development program
NASA Technical Reports Server (NTRS)
Rafferty, William; Dessouky, Khaled; Sue, Miles
1988-01-01
A Mobile Satellite System (MSS) will provide data and voice communications over a vast geographical area to a large population of mobile users. A technical overview is given of the extensive research and development studies and development performed under NASA's mobile satellite program (MSAT-X) in support of the introduction of a U.S. MSS. The critical technologies necessary to enable such a system are emphasized: vehicle antennas, modulation and coding, speech coders, networking and propagation characterization. Also proposed is a first, and future generation MSS architecture based upon realized ground segment equipment and advanced space segment studies.
Network Speech Systems Technology Program
NASA Astrophysics Data System (ADS)
Weinstein, C. J.
1980-09-01
This report documents work performed during FY 1980 on the DCA-sponsored Network Speech Systems Technology Program. The areas of work reported are: (1) communication systems studies in Demand-Assignment Multiple Access (DAMA), voice/data integration, and adaptive routing, in support of the evolving Defense Communications System (DCS) and Defense Switched Network (DSN); (2) a satellite/terrestrial integration design study including the functional design of voice and data interfaces to interconnect terrestrial and satellite network subsystems; and (3) voice-conferencing efforts dealing with support of the Secure Voice and Graphics Conferencing (SVGC) Test and Evaluation Program. Progress in definition and planning of experiments for the Experimental Integrated Switched Network (EISN) is detailed separately in an FY 80 Experiment Plan Supplement.
Benchmarking In-Flight Icing Detection Products for Future Upgrades
NASA Technical Reports Server (NTRS)
Politovich, M. K.; Minnis, P.; Johnson, D. B.; Wolff, C. A.; Chapman, M.; Heck, P. W.; Haggerty, J. A.
2004-01-01
This paper summarizes the results of a benchmarking exercise conducted as part of the NASA supported Advanced Satellite Aviation-Weather Products (ASAP) Program. The goal of ASAP is to increase and optimize the use of satellite data sets within the existing FAA Aviation Weather Research Program (AWRP) Product Development Team (PDT) structure and to transfer advanced satellite expertise to the PDTs. Currently, ASAP fosters collaborative efforts between NASA Laboratories, the University of Wisconsin Cooperative Institute for Meteorological Satellite Studies (UW-CIMSS), the University of Alabama in Huntsville (UAH), and the AWRP PDTs. This collaboration involves the testing and evaluation of existing satellite algorithms developed or proposed by AWRP teams, the introduction of new techniques and data sets to the PDTs from the satellite community, and enhanced access to new satellite data sets available through CIMSS and NASA Langley Research Center for evaluation and testing.
The Race Toward Becoming Operationally Responsive in Space
NASA Astrophysics Data System (ADS)
Nagy, J.; Hernandez, V.; Strunce, R.
The US Air Force Research Laboratory (AFRL) is currently supporting the joint Operationally Responsive Space (ORS) program with two aggressive research space programs. The goal of the ORS program is to improve the responsiveness of space capabilities to meet national security requirements. ORS systems aim to provide operational space capabilities as well as flexibility and responsiveness to the theater that do not exist today. ORS communication, navigation, and Intelligence, Surveillance and Reconnaissance (ISR) satellites are being designed to rapidly meet near term space needs of in-theater tactical forces by supporting contingency operations, such as increased communication bandwidth, and ISR imagery over the theater for a limited period to support air, ground, and naval force missions. This paper will discuss how AFRL/RHA is supporting the ORS effort and describe the hardware and software being developed with a particular focus on the Satellite Design Tool for plug-n-play satellites (SDT). AFRLs Space Vehicles Directorate together with the Scientific Simulation, Inc. was the first to create the Plug-and-play (PnP) satellite design for rapid construction through modular components that encompass the structural panels, as well as the guidance and health/status components. Expansion of the PnP technology is currently being led by AFRL's Human Effectiveness Directorate and Star Technologies Corp. by pushing the boundaries of mobile hardware and software technology through the development of the teams "Training and Tactical ORS Operations (TATOO) Laboratory located in Great Falls, VA. The TATOO Laboratory provides a computer-based simulation environment directed at improving Warfighters space capability responsiveness by delivering the means to create and exercise methods of in-theater tactical satellite tasking for and by the Warfighter. In an effort to further support the evolution of ORS technologies with Warfighters involvement, Star recently started coordinating the integration of the TATOO Laboratory with a satellite robotics test bed. Accessible via the TATOO Lab, the robotics test bed will be used to demonstrate and evaluate leading edge satellite technologies, such as Guidance Navigation and Control, attitude control, formation flying, and plug-and-play electronics. The test bed will consist of a Mission Control Center with wireless control and telemetry, an exceptionally flat and smooth floor area, and two robotic satellite simulators equipped with next generation plug-and-play hardware.
Mobile User Objective System (MUOS)
2015-12-01
the current UHF Follow-On ( UFO ) constellation. MUOS includes the satellite constellation, a ground control and network management system, and a new...MUOS CAI. Each MUOS satellite carries a legacy payload similar to that flown on UFO -11. These legacy payloads will continue to support legacy...Antecedent Information The antecedent system to MUOS was the Ultra High Frequency (UHF) Follow-on ( UFO ) satellite communications program. Comparisons
NASA Technical Reports Server (NTRS)
Rosecrance, Richard C.; Johnson, Lee; Soderstrom, Dominic
2016-01-01
Canopy light interception is a main driver of water use and crop yield in almond and walnut production. Fractional green canopy cover (Fc) is a good indicator of light interception and can be estimated remotely from satellite using the normalized difference vegetation index (NDVI) data. Satellite-based Fc estimates could be used to inform crop evapotranspiration models, and hence support improvements in irrigation evaluation and management capabilities. Satellite estimates of Fc in almond and walnut orchards, however, need to be verified before incorporating them into irrigation scheduling or other crop water management programs. In this study, Landsat-based NDVI and Fc from NASA's Satellite Irrigation Management Support (SIMS) were compared with four estimates of canopy cover: 1. light bar measurement, 2. in-situ and image-based dimensional tree-crown analyses, 3. high-resolution NDVI data from low flying aircraft, and 4. orchard photos obtained via Google Earth and processed by an Image J thresholding routine. Correlations between the various estimates are discussed.
NASA Astrophysics Data System (ADS)
Rosecrance, R. C.; Johnson, L.; Soderstrom, D.
2016-12-01
Canopy light interception is a main driver of water use and crop yield in almond and walnut production. Fractional green canopy cover (Fc) is a good indicator of light interception and can be estimated remotely from satellite using the normalized difference vegetation index (NDVI) data. Satellite-based Fc estimates could be used to inform crop evapotranspiration models, and hence support improvements in irrigation evaluation and management capabilities. Satellite estimates of Fc in almond and walnut orchards, however, need to be verified before incorporating them into irrigation scheduling or other crop water management programs. In this study, Landsat-based NDVI and Fc from NASA's Satellite Irrigation Management Support (SIMS) were compared with four estimates of canopy cover: 1. light bar measurement, 2. in-situ and image-based dimensional tree-crown analyses, 3. high-resolution NDVI data from low flying aircraft, and 4. orchard photos obtained via Google Earth and processed by an Image J thresholding routine. Correlations between the various estimates are discussed.
NASA Astrophysics Data System (ADS)
Schreiber-Abshire, W.; Dills, P.
2008-12-01
The COMET® Program (www.comet.ucar.edu) receives funding from NOAA NESDIS and the NPOESS Integrated Program Office (IPO), with additional contributions from the GOES-R Program Office and EUMETSAT, to directly support education and training efforts in the area of satellite meteorology. This partnership enables COMET to create educational materials of global interest on geostationary and polar- orbiting remote sensing platforms and their instruments, data, products, and operational applications. Over the last several years, COMET's satellite education programs have focused on the capabilities and applications of the upcoming next generation operational polar-orbiting NPP/NPOESS system and its relevance to operational forecasters and other user communities. COMET's activities have recently expanded to include education on the future Geostationary Operational Environmental Satellites (GOES-R). By partnering with experts from the Naval Research Laboratory, NOAA-NESDIS and various user communities, COMET stimulates greater utilization of both current and future satellite observations and products. In addition, COMET has broadened the scope of its online training to include materials on the EUMETSAT Polar-orbiting System (EPS) and Meteosat geostationary satellites. EPS represents an important contribution to the Initial Joint Polar System (IJPS) between NOAA and EUMETSAT, while Meteosat imaging capabilities provide an early look for the next generation GOES-R satellites. Also in collaboration with EUMETSAT, COMET is developing future modules on the joint NASA-CNES Jason altimetry mission and on satellite capabilities for monitoring the global climate. COMET also provides Spanish translations of relevant GOES materials in order to support the GEOSS (Global Earth Observation System of Systems) Americas effort, which is associated with the move of GOES-10 to provide routine satellite coverage over South America. This poster presentation provides an overview of COMET's recent satellite training efforts and publications, highlighting new materials relevant to both polar-orbiting and geostationary satellites. The presentation also showcases COMET's new community-drive Website, the Environmental Satellite Resource Center (ESRC), sponsored by the NPOESS IPO, NOAA, and NESDIS. The ESRC (www.meted.ucar.edu/ESRC) provides search capabilities and free access to a wide range of polar-orbiting and geostationary satellite information and training resources from multiple trusted sources, including MetEd (www.meted.ucar.edu).
Advanced ISDN satellite designs and experiments
NASA Technical Reports Server (NTRS)
Pepin, Gerard R.
1992-01-01
The research performed by GTE Government Systems and the University of Colorado in support of the NASA Satellite Communications Applications Research (SCAR) Program is summarized. Two levels of research were undertaken. The first dealt with providing interim services Integrated Services Digital Network (ISDN) satellite (ISIS) capabilities that accented basic rate ISDN with a ground control similar to that of the Advanced Communications Technology Satellite (ACTS). The ISIS Network Model development represents satellite systems like the ACTS orbiting switch. The ultimate aim is to move these ACTS ground control functions on-board the next generation of ISDN communications satellite to provide full-service ISDN satellite (FSIS) capabilities. The technical and operational parameters for the advanced ISDN communications satellite design are obtainable from the simulation of ISIS and FSIS engineering software models of the major subsystems of the ISDN communications satellite architecture. Discrete event simulation experiments would generate data for analysis against NASA SCAR performance measure and the data obtained from the ISDN satellite terminal adapter hardware (ISTA) experiments, also developed in the program. The Basic and Option 1 phases of the program are also described and include the following: literature search, traffic mode, network model, scenario specifications, performance measures definitions, hardware experiment design, hardware experiment development, simulator design, and simulator development.
Oceanographic Remote Sensing; A Position Paper,
1979-01-26
The purpose of a Navy R&D remote sensing plan should be to set forth the requirements and direction of basic and exploratory research in satellite... remote sensing which supports the overall Navy oceanographic research and operational programs. The aim of the plan would be to outline the established...addressed. The plan should help serve as a single technology and program reference for implementation and planning of Navy related satellite remote
Spacecraft Orbit Design and Analysis (SODA), version 1.0 user's guide
NASA Technical Reports Server (NTRS)
Stallcup, Scott S.; Davis, John S.
1989-01-01
The Spacecraft Orbit Design and Analysis (SODA) computer program, Version 1.0 is described. SODA is a spaceflight mission planning system which consists of five program modules integrated around a common database and user interface. SODA runs on a VAX/VMS computer with an EVANS & SUTHERLAND PS300 graphics workstation. BOEING RIM-Version 7 relational database management system performs transparent database services. In the current version three program modules produce an interactive three dimensional (3D) animation of one or more satellites in planetary orbit. Satellite visibility and sensor coverage capabilities are also provided. One module produces an interactive 3D animation of the solar system. Another module calculates cumulative satellite sensor coverage and revisit time for one or more satellites. Currently Earth, Moon, and Mars systems are supported for all modules except the solar system module.
Deep Space Network Radiometric Remote Sensing Program
NASA Technical Reports Server (NTRS)
Walter, Steven J.
1994-01-01
Planetary spacecraft are viewed through a troposphere that absorbs and delays radio signals propagating through it. Tropospheric water, in the form of vapor, cloud liquid, and precipitation, emits radio noise which limits satellite telemetry communication link performance. Even at X-band, rain storms have severely affected several satellite experiments including a planetary encounter. The problem will worsen with DSN implementation of Ka-band because communication link budgets will be dominated by tropospheric conditions. Troposphere-induced propagation delays currently limit VLBI accuracy and are significant sources of error for Doppler tracking. Additionally, the success of radio science programs such as satellite gravity wave experiments and atmospheric occultation experiments depends on minimizing the effect of water vapor-induced propagation delays. In order to overcome limitations imposed by the troposphere, the Deep Space Network has supported a program of radiometric remote sensing. Currently, water vapor radiometers (WVRs) and microwave temperature profilers (MTPs) support many aspects of the Deep Space Network operations and research and development programs. Their capability to sense atmospheric water, microwave sky brightness, and atmospheric temperature is critical to development of Ka-band telemetry systems, communication link models, VLBI, satellite gravity wave experiments, and radio science missions. During 1993, WVRs provided data for propagation model development, supported planetary missions, and demonstrated advanced tracking capability. Collection of atmospheric statistics is necessary to model and predict performance of Ka-band telemetry links, antenna arrays, and radio science experiments. Since the spectrum of weather variations has power at very long time scales, atmospheric measurements have been requested for periods ranging from one year to a decade at each DSN site. The resulting database would provide reliable statistics on daily, monthly, and seasonal variations. Only long-term monitoring will prevent biases from being introduced by an exceptionally wet or dry year. Support for planetary missions included tropospheric calibration for the recent Mars Observer gravity wave experiments and Ka-band link experiment (KaBLE). Additionally, several proposed radio science experiments such as profiling planetary atmospheres using satellite occultations and Ka-band gravitational wave searches require advanced radiometer technology development. Finally, there has been a consistent advanced technology program to advance satellite navigational and tracking capabilities. This year that included an experiment with radiometer based tropospheric calibration for a series of VLBI catalog measurements.
NASA Technical Reports Server (NTRS)
Dietz, R. H.; Arndt, G. D.; Seyl, J. W.; Leopold, L.; Kelley, J. S.
1981-01-01
Efforts in the DOE/NASA concept development and evaluation program are discussed for the solar power satellite power transmission and reception system. A technical summary is provided together with a summary of system assessment activities. System options and system definition drivers are described. Major system assessment activities were in support of the reference system definition, solid state system studies, critical technology supporting investigations, and various system and subsystem tradeoffs. These activities are described together with reference system updates and alternative concepts for each of the subsystem areas. Conclusions reached as a result of the numerous analytical and experimental evaluations are presented. Remaining issues for a possible follow-on program are identified.
Design description report for a photovoltaic power system for a remote satellite earth terminal
NASA Technical Reports Server (NTRS)
Marshall, N. A.; Naff, G. J.
1987-01-01
A photovoltaic (PV) power system has been installed as an adjunct to an agricultural school at Wawatobi on the large northern island of the Republic of Indonesia. Its purpose is to provide power for a satellite earth station and a classroom. The renewable energy developed supports the video and audio teleconferencing systems as well as the facility at large. The ground station may later be used to provide telephone service. The installation was made in support of the Agency for International Development's Rural Satellite Program, whose purpose is to demonstrate the use of satellite communications for rural development assistance applications. The objective of this particular PV power system is to demonstrate the suitability of a hybrid PV engine-generator configuration for remote satellite earth stations.
Network speech systems technology program
NASA Astrophysics Data System (ADS)
Weinstein, C. J.
1981-09-01
This report documents work performed during FY 1981 on the DCA-sponsored Network Speech Systems Technology Program. The two areas of work reported are: (1) communication system studies in support of the evolving Defense Switched Network (DSN) and (2) design and implementation of satellite/terrestrial interfaces for the Experimental Integrated Switched Network (EISN). The system studies focus on the development and evaluation of economical and endurable network routing procedures. Satellite/terrestrial interface development includes circuit-switched and packet-switched connections to the experimental wideband satellite network. Efforts in planning and coordination of EISN experiments are reported in detail in a separate EISN Experiment Plan.
NASA Astrophysics Data System (ADS)
Sjoberg, W.; McWilliams, G.
2017-12-01
This presentation will focus on the continuity of the NOAA Joint Polar Satellite System (JPSS) Program's Proving Ground and Risk Reduction (PGRR) and key activities of the PGRR Initiatives. The PGRR Program was established in 2012, following the launch of the Suomi National Polar Partnership (SNPP) satellite. The JPSS Program Office has used two PGRR Project Proposals to establish an effective approach to managing its science and algorithm teams in order to focus on key NOAA missions. The presenter will provide details of the Initiatives and the processes used by the initiatives that have proven so successful. Details of the new 2017 PGRR Call-for-Proposals and the status of project selections will be discussed.
Mobile User Objective System (MUOS)
2013-12-01
system capacity of the current UHF Follow-On ( UFO ) constellation. MUOS includes the satellite constellation, a ground control and network management...terminals able to support the MUOS CAI. Each MUOS satellite carries a legacy payload similar to that flown on UFO -11. These legacy payloads will...Antecedent Information: The antecedent system to MUOS was the Ultra High Frequency (UHF) Follow-on ( UFO ) satellite communications program. Comparisons of O
The NASA Earth Science Program and Small Satellites
NASA Technical Reports Server (NTRS)
Neeck, Steven P.
2015-01-01
Earth's changing environment impacts every aspect of life on our planet and climate change has profound implications on society. Studying Earth as a single complex system is essential to understanding the causes and consequences of climate change and other global environmental concerns. NASA's Earth Science Division (ESD) shapes an interdisciplinary view of Earth, exploring interactions among the atmosphere, oceans, ice sheets, land surface interior, and life itself. This enables scientists to measure global and climate changes and to inform decisions by Government, other organizations, and people in the United States and around the world. The data collected and results generated are accessible to other agencies and organizations to improve the products and services they provide, including air quality indices, disaster prediction and response, agricultural yield projections, and aviation safety. ESD's Flight Program provides the spacebased observing systems and supporting infrastructure for mission operations and scientific data processing and distribution that support NASA's Earth science research and modeling activities. The Flight Program currently has 21 operating Earth observing space missions, including the recently launched Global Precipitation Measurement (GPM) mission, the Orbiting Carbon Observatory-2 (OCO-2), the Soil Moisture Active Passive (SMAP) mission, and the International Space Station (ISS) RapidSCAT and Cloud-Aerosol Transport System (CATS) instruments. The ESD has 22 more missions and instruments planned for launch over the next decade. These include first and second tier missions from the 2007 Earth Science Decadal Survey, Climate Continuity missions to assure availability of key climate data sets, and small-sized competitively selected orbital missions and instrument missions of opportunity belonging to the Earth Venture (EV) Program. Small satellites (500 kg or less) are critical contributors to these current and future satellite missions. Some examples are the aforementioned Orbiting Carbon Observatory-2 (OCO-2), the Gravity Recovery and Climate Experiment Follow On (GRACE FO), and the Cyclone Global Navigation Satellite System (CYGNSS) microsatellite constellation. Small satellites also support ESD in space validation and risk reduction of enabling technologies (components and systems). The status of the ESD Flight Program and the role of small satellites will be discussed.
COMET Program Training Offerings to Support S-NPP and JPSS Utilization
NASA Astrophysics Data System (ADS)
Abshire, W. E.; Dills, P. N.; Weingroff, M.
2015-12-01
Are you up to speed on how to exploit new S-NPP capabilities and products? If not, don't worry, because UCAR's COMET program has self-paced online educational materials that highlight the capabilities and applications of current and next-generation operational polar-orbiting and geostationary satellites. The COMET® Program (www.comet.ucar.edu) has long received funding from NOAA NESDIS as well as EUMETSAT and the Meteorological Service of Canada to support education and training in satellite meteorology. By partnering with experts from NOAA-NESDIS and its Cooperative Institutes, Meteorological Service of Canada, EUMETSAT, the Naval Research Laboratory and others, COMET's self-paced training stimulates greater use of current and future satellite observations and products. Right now, over 70 satellite-focused, self-paced, online materials are freely available in English via the MetEd Web site at http://meted.ucar.edu/topics/satellite. Additionally, quite a few lessons are also available in Spanish and French making training more easily accessible to an international audience. This presentation will focus on COMET's latest satellite training and education offerings that are directly applicable to data and products from the S-NPP and JPSS satellite series. A recommended set of lessons for users who wish to learn more will be highlighted, including excerpts from the newest materials on the Suomi NPP VIIRS imager and its applications, as well as advances in nighttime visible observation with the VIIRS Day-Night Band. We'll show how the lessons introduce users to the advances these systems bring to forecasting, numerical weather prediction, and environmental monitoring. Finally, new relevant training initiatives will also be presented.
Satellite Data Support for the ARM Climate Research Facility, 8/01/2009 - 7/31/2015
DOE Office of Scientific and Technical Information (OSTI.GOV)
Minnis, Patrick; Khaiyer, Mandana M
This report summarizes the support provided by NASA Langley Research for the DOE ARM Program in the form of cloud and radiation products derived from satellite imager data for the period between 8/01/09 through 7/31/15. Cloud properties such as cloud amount, height, and optical depth as well as outgoing longwave and shortwave broadband radiative fluxes were derived from geostationary and low-earth orbiting satellite imager radiance measurements for domains encompassing ARM permanent sites and field campaigns during the performance period. Datasets provided and documents produced are listed.
Improving Societal Benefit Areas from Applications Enhanced by the Joint Polar Satellite System
NASA Astrophysics Data System (ADS)
Goldberg, M.
2016-12-01
Applications of satellite data are paramount to transform science and technology to product and services which are used in critical decision making for societal benefits. For the satellite community, good representations of technology are the satellite sensors, while science provides the instrument calibration and derived geophysical parameters. Weather forecasting is an application of the science and technology provided by remote sensing satellites. The Joint Polar Satellite System, which includes the Suomi National Polar-orbiting Partnership (S-NPP) provides formidable science and technology to support many applications and includes support to 1) weather forecasting - data from the JPSS Cross-track Infrared Sounder (CrIS) and the Advanced Technology Microwave Sounder (ATMS) are used to forecast weather events out to 7 days - nearly 85% of all data used in weather forecasting are from polar orbiting satellites; 2) environmental monitoring -data from the JPSS Visible Infrared Imager Radiometer Suite (VIIRS) are used to monitor the environment including the health of coastal ecosystems, drought conditions, fire, smoke, dust, snow and ice, and the state of oceans, including sea surface temperature and ocean color; and 3) climate monitoring - data from JPSS instruments, including OMPS and CERES will provide continuity to climate data records established using NOAA POES and NASA Earth Observing System (EOS) satellite observations. To bridge the gap between products and applications, the JPSS Program has established a proving ground program to optimize the use of JPSS data with other data sources to improve key products and services. A number of operational and research applications will be presented along with how the data and applications support a large number of societal benefit areas of the Global Earth Observation Systems of Systems (GEOSS).
Proceedings of the Thirteenth NASA Propagation Experimenters Meeting (NAPEX 13)
NASA Technical Reports Server (NTRS)
Davarian, Faramaz (Editor)
1989-01-01
The NASA Propagation Experimenters Meeting (NAPEX), supported by the NASA Propagation Program, is convened annually to discuss studies made on radio wave propagation by investigators from domestic and international organizations. The meeting was organized into three technical sessions: the first focused on mobile satellite propagation; the second examined the propagation effects for frequencies above 10 GHz; and the third addressed studies devoted exclusively to the Olympus/Advanced Communications Technology Satellite (ACTS) Program.
NASA Technical Reports Server (NTRS)
Reasoner, David L.; Mccook, Morgan W. (Editor); Vaughan, William W. (Editor)
1990-01-01
The Defense Department and NASA have joined in a program to study the space environment which surrounds the earth and the effects of space radiation on modern satellite electronic systems. The Combined Release and Radiation Effects Satellite (CRRES) will carry an array of active experiments including chemical releases and a complement of sophisticated scientific instruments to accomplish these objectives. Other chemical release active experiments will be performed with sub-orbital rocket probes. The chemical releases will 'paint' the magnetic and electric fields of earthspace with clouds of glowing ions. Earthspace will be a laboratory, and the releases will be studied with an extensive network of ground-, aircraft-, and satellite-based diagnostic instruments. Some of the topics discussed include the following: the effects of earthspace; the need for active experiments; types of chemical releases; the CRRES program schedule; international support and coordinated studies; photographing chemical releases; information on locating chemical releases for observation by the amateur; and CRRES as a program.
NASA Astrophysics Data System (ADS)
Reasoner, David L.; McCook, Morgan W.; Vaughan, William W.
The Defense Department and NASA have joined in a program to study the space environment which surrounds the earth and the effects of space radiation on modern satellite electronic systems. The Combined Release and Radiation Effects Satellite (CRRES) will carry an array of active experiments including chemical releases and a complement of sophisticated scientific instruments to accomplish these objectives. Other chemical release active experiments will be performed with sub-orbital rocket probes. The chemical releases will 'paint' the magnetic and electric fields of earthspace with clouds of glowing ions. Earthspace will be a laboratory, and the releases will be studied with an extensive network of ground-, aircraft-, and satellite-based diagnostic instruments. Some of the topics discussed include the following: the effects of earthspace; the need for active experiments; types of chemical releases; the CRRES program schedule; international support and coordinated studies; photographing chemical releases; information on locating chemical releases for observation by the amateur; and CRRES as a program.
Improving Water Management Decision Support Tools Using NASA Satellite and Modeling Data
NASA Astrophysics Data System (ADS)
Toll, D. L.; Arsenault, K.; Nigro, J.; Pinheiro, A.; Engman, E. T.; Triggs, J.; Cosgrove, B.; Alonge, C.; Boyle, D.; Allen, R.; Townsend, P.; Ni-Meister, W.
2006-05-01
One of twelve Applications of National priority within NASA's Applied Science Program, the Water Management Program Element addresses concerns and decision making related to water availability, water forecast and water quality. The goal of the Water Management Program Element is to encourage water management organizations to use NASA Earth science data, models products, technology and other capabilities in their decision support tools for problem solving. The Water Management Program Element partners with Federal agencies, academia, private firms, and may include international organizations. This paper further describes the Water Management Program with the objective of informing the applications community of the potential opportunities for using NASA science products for problem solving. We will illustrate some ongoing and application Water Management projects evaluating and benchmarking NASA data with partnering federal agencies and their decision support tools: 1) Environmental Protection Agency for water quality; 2) Bureau of Reclamation for water supply, demand and forecast; and 3) NOAA National Weather Service for improved weather prediction. Examples of the types of NASA contributions to the these agency decision support tools include: 1) satellite observations within models assist to estimate water storage, i.e., snow water equivalent, soil moisture, aquifer volumes, or reservoir storages; 2) model derived products, i.e., evapotranspiration, precipitation, runoff, ground water recharge, and other 4-dimensional data assimilation products; 3) improve water quality, assessments by using improved inputs from NASA models (precipitation, evaporation) and satellite observations (e.g., temperature, turbidity, land cover) to nonpoint source models; and 4) water (i.e., precipitation) and temperature predictions from days to decades over local, regional and global scales.
NASA Astrophysics Data System (ADS)
Monteleone, M.; Lanorte, A.; Lasaponara, R.
2009-04-01
Cyberpark 2000 is a project funded by the UE Regional Operating Program of the Apulia Region (2000-2006). The main objective of the Cyberpark 2000 project is to develop a new assessment model for the management and monitoring of protected areas in Foggia Province (Apulia Region) based on Information and Communication Technologies. The results herein described are placed inside the research activities finalized to develop an environmental monitoring system knowledge based on the use of satellite time series. This study include: - A- satellite time series of high spatial resolution data for supporting the analysis of fire static risk factors through land use mapping and spectral/quantitative characterization of vegetation fuels; - B- satellite time series of MODIS for supporting fire dynamic risk evaluation of study area - Integrated fire detection by using thermal imaging cameras placed on panoramic view-points; - C - integrated high spatial and high temporal satellite time series for supporting studies in change detection factors or anomalies in vegetation covers; - D - satellite time-series for monitoring: (i) post fire vegetation recovery and (ii) spatio/temporal vegetation dynamics in unburned and burned vegetation covers.
National aerospace meeting of the Institute of Navigation
NASA Astrophysics Data System (ADS)
Fell, Patrick
The program for this year's aerospace meeting of The Institute of Navigation addressed developments in the evolving Global Positioning System (GPS) of navigation satellites, inertial navigation systems, and other electronic navigation systems and their applications. Also included in the program were a limited number of papers addressing the geodetic use of the GPS system.The Global Positioning System is a constellation of 18 navigation satellites being developed by the Department of Defense to provide instantaneous worldwide navigation. The system will support a multitude of military applications. The first paper by Jacobson reviewed the engineering development of GPS navigation receivers stressing the use of common hardware and software modules. A later paper by Ould described the mechanization of a digital receiver for GPS applications designed for faster acquisition of the spread spectrum satellite transmissions than analog receivers. The paper by Brady discussed the worldwide coverage that is provided by the limited number of satellites that will constitute the GPS constellation through 1983. The capability provided by the satellites presently on orbit would support a variety of experiments at almost any location. Tables of multiple satellite availability are provided for numerous worldwide locations. For civil aviation applications, Vogel addressed the satellite geometry considerations for low cost GPS user equipment, Esposito described the Federal Aviation Administration acceptance tests of a GPS navigation receiver, and Hopkins discussed the design and capability of an integrated GPS strapdown attitude and heading reference system for avionics.
NASA Technical Reports Server (NTRS)
Griffin, Ashley
2017-01-01
The Joint Polar Satellite System (JPSS) Program Office is the supporting organization for the Suomi National Polar Orbiting Partnership (S-NPP) and JPSS-1 satellites. S-NPP carries the following sensors: VIIRS, CrIS, ATMS, OMPS, and CERES with instruments that ultimately produce over 25 data products that cover the Earths weather, oceans, and atmosphere. A team of scientists and engineers from all over the United States document, monitor and fix errors in operational software code or documentation with the algorithm change process (ACP) to ensure the success of the S-NPP and JPSS 1 missions by maintaining quality and accuracy of the data products the scientific community relies on. This poster will outline the programs algorithm change process (ACP), identify the various users and scientific applications of our operational data products and highlight changes that have been made to the ACP to accommodate operating system upgrades to the JPSS programs Interface Data Processing Segment (IDPS), so that the program is ready for the transition to the 2017 JPSS-1 satellite mission and beyond.
NASA Technical Reports Server (NTRS)
Golshan, Nasser (Editor)
1997-01-01
The NASA Propagation Experimenters (NAPEX) meeting is convened each year to discuss studies supported by the NASA Propagation Program. Representatives from the satellite communications industry, academia and government who have an interest in space-ground radio wave propagation are invited to NAPEX meetings for discussions and exchange of information. The reports delivered at this meeting by program managers and investigators present recent activities and future plans. This forum provides an opportunity for peer discussion of work in progress, timely dissemination of propagation results, and close interaction with the satellite communications industry.
SAO Participation in the GOME and SCIAMACHY Satellite Instrument Programs
NASA Technical Reports Server (NTRS)
Hilsenrath, Ernest (Technical Monitor); Chance, Kelly; Kurosu, Thomas
2004-01-01
This report summarizes the progress on our three-year program of research to refine the measurement capability for satellite-based instruments that monitor ozone and other trace species in the Earth's stratosphere and troposphere, to retrieve global distributions of these and other constituents h m the GOME and SCIAMACHY satellite instruments, and to conduct scientific studies for the ILAS instruments. This continues our involvements as a U.S. participant in GOME and SCIAMACHY since their inception, and as a member of the ILAS-II Science Team. These programs have led to the launch of the first satellite instrument specifically designed to measure height-resolved ozone, including the tropospheric component (GOME), and the development of the first satellite instrument that will measure tropospheric ozone simultaneously with NO2, CO, HCHO, N2O, H2O, and CH4 (SCIAMACHY). The GOME program now includes the GOME-2 instruments, to be launched on the Eumetsat Metop satellites, providing long-term continuity in European measurements of global ozone that complement the measurements of the TOMS, SBUV, OMI, OMPS instruments. The research primarily focuses on two areas: Data analysis, including algorithm development and validation studies that will improve the quality of retrieved data products, in support for future field campaigns (to complement in situ and airborne campaigns with satellite measurements), and scientific analyses to be interfaced to atmospheric modeling studies.
SAO Participation in the GOME and SCIAMACHY Satellite Instrument Programs
NASA Technical Reports Server (NTRS)
Chance, Kelly; Kurosu, Thomas
2003-01-01
This report summarizes the progress on our three-year program of research to refine the measurement capability for satellite-based instruments that monitor ozone and other trace species in the Earth's stratosphere and troposphere, to retrieve global distributions of these and other constituents from the GOME and SCIAMACHY satellite instruments, and to conduct scientific studies for the ILAS instruments. This continues our involvements as a U.S. participant in GOME and SCIAMACHY since their inception, and as a member of the ILAS-II Science Team. These programs have led to the launch of the first satellite instrument specifically designed to measure height-resolved ozone, including the tropospheric component (GOME), and the development of the first satellite instrument that will measure tropospheric ozone simultaneously with NO2, CO, HCHO, N2O, H2O, and CH4 (SCIAMACHY). The GOME program now includes the GOME-2 instruments, to be launched on the Eumetsat Metop satellites, providing long-term continuity in European measurements of global ozone that complement the measurements of the TOMS, SBW, OMI, OMPS instruments. The research primarily focuses on two areas: Data analysis, including algorithm development and validation studies that will improve the quality of retrieved data products, in support for future field campaigns (to complement in situ and airborne campaigns with satellite measurements), and scientific analyses to be interfaced to atmospheric modeling studies.
NASA Astrophysics Data System (ADS)
Goldberg, M.; Sjoberg, W.; Layns, A. L.
2017-12-01
Applications of satellite data are paramount to transform science and technology to product and services which are used in critical decision making. For the satellite community, good representations of technology are the satellite sensors, while science provides the instrument calibration and derived geophysical parameters. Weather forecasting is an application of the science and technology provided by remote sensing satellites. The Joint Polar Satellite System, which includes the Suomi National Polar-orbiting Partnership (S-NPP) provides formidable science and technology to support many applications and includes support to 1) weather forecasting - data from the JPSS Cross-track Infrared Sounder (CrIS) and the Advanced Technology Microwave Sounder (ATMS) are used to forecast weather events out to 7 days - nearly 85% of all data used in weather forecasting are from polar orbiting satellites; 2) environmental monitoring -data from the JPSS Visible Infrared Imager Radiometer Suite (VIIRS) are used to monitor the environment including the health of coastal ecosystems, drought conditions, fire, smoke, dust, snow and ice, and the state of oceans, including sea surface temperature and ocean color; and 3) climate monitoring - data from JPSS instruments, including OMPS and CERES will provide continuity to climate data records established using NOAA POES and NASA Earth Observing System (EOS) satellite observations. To bridge the gap between products and applications, the JPSS Program has established the Proving Ground and Risk Reduction (PGRR) Program to identify opportunities to maximize the operational application of current JPSS capabilities. The PGRR Program also helps identify and evaluate the use of JPSS capabilities for new operational missions. New PGRR initiatives focus on hydrological, Arctic, data assimilation, atmospheric chemistry, ocean ecosystem applications. At the conference, the benefits of JPSS data on societal benefits will be presented along with results from the PGRR initiatives.
Earth Observation Satellites and Chinese Applications
NASA Astrophysics Data System (ADS)
Li, D.
In this talk existing and future Earth observation satellites are briefly described These satellites include meteorological satellites ocean satellites land resources satellites cartographic satellites and gravimetric satellites The Chinese government has paid and will pay more attention to and put more effort into enhancing Chinese earth observation satellite programs in the next fifteen years The utilization of these satellites will effectively help human beings to solve problems it faces in areas such as population natural resources and environment and natural hazards The author will emphasize the originality of the scientific and application aspects of the Chinese program in the field of Earth observations The main applications include early warning and prevention of forest fires flooding and drought disaster water and ocean ice disasters monitoring of landslides and urban subsidence investigation of land cover change and urban expansion as well as urban and rural planning The author introduces the most up-to-date technology used by Chinese scientists including fusion and integration of multi-sensor multi-platform optical and SAR data of remote sensing Most applications in China have obtained much support from related international organizations and universities around the world These applications in China are helpful for economic construction and the efficient improvement of living quality
Communication satellites: Guidelines for a strategic plan
NASA Technical Reports Server (NTRS)
1987-01-01
To maintain and augment the leadership that the United States has enjoyed and to ensure that the nation is investing sufficiently and wisely to this purpose, a strategic plan for satellite communications research and development was prepared by NASA. Guidelines and recommendations for a NASA plan to support this objective and for the conduct of communication satellite research and development program over the next 25 years were generated. The guidelines are briefly summarized.
TDRSS multimode transponder program S-band modification
NASA Technical Reports Server (NTRS)
Mackey, J. E.
1975-01-01
The S-Band TDRS multimode transponder and its associated ground support equipment is described. The transponder demonstrates candidate modulation techniques to provide the required information for the design of an eventual S-band transponder suitable for installation in a user satellite, capable of operating as part of a Tracking and Data Relay Satellite (TDRS) system.
Landsat eyes help guard the world's forests
Campbell, Jon
2017-03-03
SummaryThe Landsat program is a joint effort between the U.S. Geological Survey (USGS) and the National Aeronautics and Space Administration (NASA), but the partner agencies have distinct roles. NASA develops remote-sensing instruments and spacecraft, launches satellites, and validates their performance in orbit. The USGS owns and operates Landsat satellites in space and manages their data transmissions, including ground reception, archiving, product generation, and public distribution. In 2008, with support from the U.S. Department of the Interior, the USGS made its Landsat data free to anyone in the world.The current satellites in the Landsat program, Landsat 7 (launched in 1999) and Landsat 8 (launched in 2013), provide complete coverage of the Earth every eight days. A Landsat 9 satellite is scheduled for launch in late 2020.
Establishing and maintaining a satellite campus connected by synchronous video conferencing.
Fox, Brent I; McDonough, Sharon L; McConatha, Barry J; Marlowe, Karen F
2011-06-10
Pharmacy education has experienced substantial growth in the number of new schools and existing schools establishing satellite campuses. Several models have previously been used to connect primary and satellite campuses. We describe the Auburn University Harrison School of Pharmacy's (AUHSOP's) experiences using synchronous video conferencing between the Auburn University campus in Auburn and a satellite campus in Mobile, Alabama. We focus on the technology considerations related to planning, construction, implementation, and continued use of the various resources that support our program. Students' perceptions of their experiences related to technology also are described.
NASA/MSFC FY90 Global Scale Atmospheric Processes Research Program Review
NASA Technical Reports Server (NTRS)
Leslie, Fred W. (Editor)
1990-01-01
Research supported by the Global Atmospheric Research Program at the Marshall Space Flight Center on atmospheric remote sensing, meteorology, numerical weather forecasting, satellite data analysis, cloud precipitation, atmospheric circulation, atmospheric models and related topics is discussed.
NASA Technical Reports Server (NTRS)
Weber, William J., III; Gray, Valerie W.; Jackson, Byron; Steele, Laura C.
1991-01-01
This paper discusss the systems approach taken by NASA and the Jet Propulsion Laboratory in the commercialization of land-mobile satellite services (LMSS) in the United States. As the lead center for NASA's Mobile Satellite Program, JPL was involved in identifying and addressing many of the key barriers to commercialization of mobile satellite communications, including technical, economic, regulatory and institutional risks, or uncertainties. The systems engineering approach described here was used to mitigate these risks. The result was the development and implementation of the JPL Mobile Satellite Experiment Project. This Project included not only technology development, but also studies to support NASA in the definition of the regulatory, market, and investment environments within which LMSS would evolve and eventually operate, as well as initiatives to mitigate their associated commercialization risks. The end result of these government-led endeavors was the acceleration of the introduction of commercial mobile satellite services, both nationally and internationally.
JPSS Support to the Arctic Testbed
NASA Astrophysics Data System (ADS)
Layns, A. L.
2017-12-01
The Joint Polar Satellite System (JPSS) Proving Ground and Risk Reduction (PGRR) program facilitates initiatives to increase or improve the use and value of JPSS data products in user products, services, and application or service areas. Building on the success of the Fire and Smoke, River Ice and Flooding, and Sounding initiatives, the JPSS Arctic Initiative is the latest endeavor of the JPSS PGRR program to increase of the use of JPSS atmospheric and cryosphere products to improve NOAA's products and services in the Arctic. The major participants in the Arctic Initiative to date are the JPSS program office, National Ice Center (NIC), National Weather Service (NWS) Alaska Sea Ice Program (ASIP), and the National Environmental Satellite, Data, and Information Service (NESDIS) Center for Satellite Applications and Research (STAR). This paper will outline the initiative, the potential benefits of the JPSS data products in the Arctic, and the plans for a product demonstration in 2018 within the NOAA Arctic Testbed.
NASA Technical Reports Server (NTRS)
McCain, Harry G. (Technical Monitor)
2000-01-01
The National Oceanic and Atmospheric Administration (NOAA) and the National Aeronautics and Space Administration (NASA) have jointly developed a valuable series of polar-orbiting Earth environmental observation satellites since 1978. These satellites provide global data to NOAA's short- and long-range weather forecasting systems. The system consists of two polar-orbiting satellites known as the Advanced Television Infrared Observation Satellites (TIROS-N) (ATN). Operating as a pair, these satellites ensure that environmental data, for any region of the Earth, is no more than six hours old. These polar-orbiting satellites have not only provided cost-effective data for very immediate and real needs but also for extensive climate and research programs. The weather data (including images seen on television news programs) has afforded both convenience and safety to viewers throughout the world. The satellites also support the SARSAT (Search and Rescue Satellite Aided Tracking) part of the COSPAS-SARSAT constellation. Russia provides the COSPAS (Russian for Space Systems for the Search of Vessels in Distress) satellites. The international COSPAS-SARSAT system provides for the detection and location of emergency beacons for ships, aircraft, and people in distress and has contributed to the saving of more than 10,000 lives since its inception in 1982.
NASA Technical Reports Server (NTRS)
Irwin, Daniel
2010-01-01
Goal 1: Enhance Applications Research Advance the use of NASA Earth science in policy making, resource management and planning, and disaster response. Key Actions: Identify priority needs, conduct applied research to generate innovative applications, and support projects that demonstrate uses of NASA Earth science. Goal 2: Increase Collaboration Establish a flexible program structure to meet diverse partner needs and applications objectives. Key Actions: Pursue partnerships to leverage resources and risks and extend the program s reach and impact. Goal 3:Accelerate Applications Ensure that NASA s flight missions plan for and support applications goals in conjunction with their science goals, starting with mission planning and extending through the mission life cycle. Key Actions: Enable identification of applications early in satellite mission lifecycle and facilitate effective ways to integrate end-user needs into satellite mission planning
(abstract) Deep Space Network Radiometric Remote Sensing Program
NASA Technical Reports Server (NTRS)
Walter, Steven J.
1994-01-01
Planetary spacecraft are viewed through a troposphere that absorbs and delays radio signals propagating through it. Tropospheric water, in the form of vapor, cloud liquid,and precipitation , emits radio noise which limits satellite telemetry communication link performance. Even at X-band, rain storms have severely affected several satellite experiments including a planetary encounter. The problem will worsen with DSN implementation of Ka-band becausecommunication link budgets will be dominated by tropospheric conditions. Troposphere-induced propagation delays currently limit VLBI accuracy and are significant sources of error for Doppler tracking. Additionally, the success of radio science programs such as satellite gravity wave experiments and atmospheric occultation experiments depends on minimizing the effect of watervapor-induced prop agation delays. In order to overcome limitations imposed by the troposphere, the Deep Space Network has supported a program of radiometric remote sensing. Currently, water vapor radiometers (WVRs) and microwave temperature profilers (MTPs) support many aspects of the Deep Space Network operations and research and development programs. Their capability to sense atmospheric water, microwave sky brightness, and atmospheric temperature is critical to development of Ka-band telemetry systems, communication link models, VLBI, satellite gravity waveexperiments, and r adio science missions. During 1993, WVRs provided data for propagation mode development, supp orted planetary missions, and demonstrated advanced tracking capability. Collection of atmospheric statistics is necessary to model and predict performance of Ka-band telemetry links, antenna arrays, and radio science experiments. Since the spectrum of weather variations has power at very long time scales, atmospheric measurements have been requested for periods ranging from one year to a decade at each DSN site. The resulting database would provide reliable statistics on daily, monthly, and seasonal variations. Only long-term monitoring will prevent biases from being introduced by an exceptionally wet or dry year. Support for planetary missions included tropospheric calibration for the recent Mars Observer gravity wave experiments and Ka-band link experiment (KaBLE). Additionally, several proposed radio science experiments such as profiling planetary atmospheres using satellite occultations and Ka-band gravitational wave searches require advanced radiometer technology development. Finally, there has been a consistent advanced technology program to advance satellite navigational and tracking capabilities. This year that included an experiment with radiometer based tropospheric calibration for a series of VLBI catalog measurements.
Research Supporting Satellite Communications Technology
NASA Technical Reports Server (NTRS)
Horan Stephen; Lyman, Raphael
2005-01-01
This report describes the second year of research effort under the grant Research Supporting Satellite Communications Technology. The research program consists of two major projects: Fault Tolerant Link Establishment and the design of an Auto-Configurable Receiver. The Fault Tolerant Link Establishment protocol is being developed to assist the designers of satellite clusters to manage the inter-satellite communications. During this second year, the basic protocol design was validated with an extensive testing program. After this testing was completed, a channel error model was added to the protocol to permit the effects of channel errors to be measured. This error generation was used to test the effects of channel errors on Heartbeat and Token message passing. The C-language source code for the protocol modules was delivered to Goddard Space Flight Center for integration with the GSFC testbed. The need for a receiver autoconfiguration capability arises when a satellite-to-ground transmission is interrupted due to an unexpected event, the satellite transponder may reset to an unknown state and begin transmitting in a new mode. During Year 2, we completed testing of these algorithms when noise-induced bit errors were introduced. We also developed and tested an algorithm for estimating the data rate, assuming an NRZ-formatted signal corrupted with additive white Gaussian noise, and we took initial steps in integrating both algorithms into the SDR test bed at GSFC.
NASA Astrophysics Data System (ADS)
Heyer, H.-V.; Föckersperger, S.; Lattner, K.; Moldenhauer, W.; Schmolke, J.; Turk, M.; Willemsen, P.; Schlicker, M.; Westerdorff, K.
2008-08-01
The technology verification satellite TET (Technologie ErprobungsTräger) is the core element of the German On-Orbit-Verification (OOV) program of new technologies and techniques. The goal of this program is the support of the German space industry and research facilities for on-orbit verification of satellite technologies. The TET satellite is a small satellite developed and built in Germany under leadership of Kayser-Threde. The satellite bus is based on the successfully operated satellite BIRD and the newly developed payload platform with the new payload handling system called NVS (Nutzlastversorgungs-system). The NVS can be detailed in three major parts: the power supply the processor boards and the I/O-interfaces. The NVS is realized via several PCBs in Europe format which are connected to each other via an integrated backplane. The payloads are connected by front connectors to the NVS. This paper describes the concept, architecture, and the hard-/software of the NVS. Phase B of this project was successfully finished last year.
ESA is preparing the most powerful telecommunications satellite
NASA Astrophysics Data System (ADS)
Langereux, P.
1982-01-01
The L-Sat Program is currently being undertaken by ESA with a goal towards providing a series of large telecommunications satellites for direct television broadcasting beginning in 1986. The basic satellite design is that of a multipurpose platform capable of supporting a variety of telecommunications and direct broadcasting missions with a payload mass greater than 500 kg and powers of over 2.5 kW in eclipse and 7 kW in sunlight. The satellite, intended for launch with Ariane 4, consists of a three-axis stabilized platform with a large flexible solar array and an integrated propulsion system. The first experimental satellite of the program, L-Sat 1, will be launched into geosynchronous orbit over 19 deg W carrying payloads for direct television broadcasting in Italy, business services, telecommunications between 20 and 30 GHz, and radio propagation experiments at 12, 20 and 30 GHz. Studies have shown L-Sat type satellites to have a market potential of up to 40 satellites by the year 2000, and have indicated potential missions in direct broadcasting to Canada, and Switzerland and Luxembourg.
Advanced Communications Technology Satellite (ACTS). Phase 1: Industrial/academic experimenters
NASA Technical Reports Server (NTRS)
Maisel, James E.; Nowlin, Robert W.
1992-01-01
This report presents the work done at Arizona State University under the ACTS Experimenters Program. The main thrust of the Program was to develop experiments to test, evaluate, and prove the commercial worthiness of the ACTS satellite which is scheduled for launch in 1993. To accomplish this goal, meetings were held with various governmental, industrial, and academic units to discuss the ACTS satellite and its technology and possible experiments that would generate industrial interest and support for ASU's efforts. Several local industries generated several experiments of their own. The investigators submitted several experiments of educational, medical, commercial, and technical value and interest. The disposition of these experimental proposals is discussed in this report.
NASA Near Earth Network (NEN) and Space Network (SN) Support of CubeSat Communications
NASA Technical Reports Server (NTRS)
Schaire, Scott H.; Shaw, Harry C.; Altunc, Serhat; Bussey, George; Celeste, Peter; Kegege, Obadiah; Wong, Yen; Zhang, Yuwen; Patel, Chitra; Raphael, David;
2016-01-01
There has been a historical trend to increase capability and drive down the Size, Weight and Power (SWAP) of satellites and that trend continues today. NASA scientists and engineers across many of NASAs Mission Directorates and Centers are developing exciting CubeSat concepts and welcome potential partnerships for CubeSat endeavors. From a Telemetry, Tracking and Command (TTC) Systems and Flight Operations for Small Satellites point of view, small satellites including CubeSats are a challenge to coordinate because of existing small spacecraft constraints, such as limited SWAP and attitude control, and the potential for high numbers of operational spacecraft. The NASA Space Communications and Navigation (SCaN) Programs Near Earth Network (NEN) and Space Network (SN) are customer driven organizations that provide comprehensive communications services for space assets including data transport between a missions orbiting satellite and its Mission Operations Center (MOC). This paper presents how well the SCaN networks, SN and NEN, are currently positioned to support the emerging small small satellite and CubeSat market as well as planned enhancements for future support.
Reusable Reentry Satellite (RRS) system design study: System cost estimates document
NASA Technical Reports Server (NTRS)
1991-01-01
The Reusable Reentry Satellite (RRS) program was initiated to provide life science investigators relatively inexpensive, frequent access to space for extended periods of time with eventual satellite recovery on earth. The RRS will provide an on-orbit laboratory for research on biological and material processes, be launched from a number of expendable launch vehicles, and operate in Low-Altitude Earth Orbit (LEO) as a free-flying unmanned laboratory. SAIC's design will provide independent atmospheric reentry and soft landing in the continental U.S., orbit for a maximum of 60 days, and will sustain three flights per year for 10 years. The Reusable Reentry Vehicle (RRV) will be 3-axis stabilized with artificial gravity up to 1.5g's, be rugged and easily maintainable, and have a modular design to accommodate a satellite bus and separate modular payloads (e.g., rodent module, general biological module, ESA microgravity botany facility, general botany module). The purpose of this System Cost Estimate Document is to provide a Life Cycle Cost Estimate (LCCE) for a NASA RRS Program using SAIC's RRS design. The estimate includes development, procurement, and 10 years of operations and support (O&S) costs for NASA's RRS program. The estimate does not include costs for other agencies which may track or interface with the RRS program (e.g., Air Force tracking agencies or individual RRS experimenters involved with special payload modules (PM's)). The life cycle cost estimate extends over the 10 year operation and support period FY99-2008.
NASA Technical Reports Server (NTRS)
Ledoux, F. N.
1973-01-01
A compilation of engineering design tests which were conducted in support of the Energetic Particle Satellite S-3, S-3A, and S-3b programs. The purpose for conducting the tests was to determine the adequacy and reliability of the Energetic Particles Series of satellites designs. The various tests consisted of: (1) moments of inertia, (2) functional reliability, (3) component and structural integrity, (4) initiators and explosives tests, and (5) acceptance tests.
The use of remotely sensed data for operational fisheries oceanography
NASA Technical Reports Server (NTRS)
Fiuza, Armando F. G.
1992-01-01
Satellite remote sensing data are used under two contexts in fisheries: as a tool for fisheries research and as a means to provide operational support to fishing activities. Fishing operations need synoptic data provided timely; fisheries research needs that type of data and, also, good short-term climatologies. A description is given of several experiences conducted around the world which have employed or are using satellite data for operational fisheries problems. An overview is included of the Portuguese program for fisheries support using remotely sensed data provided by satellites and in situ observations conducted by fishermen. Environmental products useful for fisheries necessarily combine satellite and in situ data. The role of fishermen as a source of good, near-real-time in situ environmental data is stressed; so far, this role seems to have been largely overlooked.
Space station automation study-satellite servicing. Volume 1: Executive summary
NASA Technical Reports Server (NTRS)
1984-01-01
A plan for advancing the state of automation and robotics technology as an integral part of the U.S. space station development effort was studied. This study was undertaken: (1) to determine the benefits that will accrue from using automated systems onboard the space station in support of satellite servicing; (2) to define methods for increasing the capacity for, and effectiveness of satellite servicing while reducing demands on crew time and effort and on ground support; (3) to find optimum combinations of men/machine activities in the performance of servicing functions; and (4) project the evolution of automation technology needed to enhance or enable satellite servicing capabilities to match the evolutionary growth of the space station. A secondary intent is to accelerate growth and utilization of robotics in terrestrial applications as a spin-off from the space station program.
Establishing and Maintaining a Satellite Campus Connected by Synchronous Video Conferencing
Fox, Brent I.; McDonough, Sharon L.; McConatha, Barry J.; Marlowe, Karen F.
2011-01-01
Pharmacy education has experienced substantial growth in the number of new schools and existing schools establishing satellite campuses. Several models have previously been used to connect primary and satellite campuses. We describe the Auburn University Harrison School of Pharmacy's (AUHSOP's) experiences using synchronous video conferencing between the Auburn University campus in Auburn and a satellite campus in Mobile, Alabama. We focus on the technology considerations related to planning, construction, implementation, and continued use of the various resources that support our program. Students’ perceptions of their experiences related to technology also are described. PMID:21829265
Advanced development of atmospheric models. [SEASAT Program support
NASA Technical Reports Server (NTRS)
Kesel, P. G.; Langland, R. A.; Stephens, P. L.; Welleck, R. E.; Wolff, P. M.
1979-01-01
A set of atmospheric analysis and prediction models was developed in support of the SEASAT Program existing objective analysis models which utilize a 125x125 polar stereographic grid of the Northern Hemisphere, which were modified in order to incorporate and assess the impact of (real or simulated) satellite data in the analysis of a two-day meteorological scenario in January 1979. Program/procedural changes included: (1) a provision to utilize winds in the sea level pressure and multi-level height analyses (1000-100 MBS); (2) The capability to perform a pre-analysis at two control levels (1000 MBS and 250 MBS); (3) a greater degree of wind- and mass-field coupling, especially at these controls levels; (4) an improved facility to bogus the analyses based on results of the preanalysis; and (5) a provision to utilize (SIRS) satellite thickness values and cloud motion vectors in the multi-level height analysis.
NASA Technical Reports Server (NTRS)
1974-01-01
An analysis of the requirements for the Earth Observatory Satellite (EOS) system specifications is presented. The analysis consists of requirements obtained from existing documentation and those derived from functional analysis. The requirements follow the hierarchy of program, mission, system, and subsystem. The code for designating specific requirements is explained. Among the subjects considered are the following: (1) the traffic model, (2) space shuttle related performance, (3) booster related performance, (4) the data collection system, (5) spacecraft structural tests, and (6) the ground support requirements.
NASA Technical Reports Server (NTRS)
Golshan, Nassar (Editor)
1996-01-01
The NASA Propagation Experimenters (NAPEX) Meeting and associated Advanced Communications Technology Satellite (ACTS) Propagation Studies Miniworkshop convene yearly to discuss studies supported by the NASA Propagation Program. Representatives from the satellite communications (satcom)industry, academia, and government with an interest in space-ground radio wave propagation have peer discussion of work in progress, disseminate propagation results, and interact with the satcom industry. NAPEX XX, in Fairbanks, Alaska, June 4-5, 1996, had three sessions: (1) "ACTS Propagation Study: Background, Objectives, and Outcomes," covered results from thirteen station-years of Ka-band experiments; (2) "Propagation Studies for Mobile and Personal Satellite Applications," provided the latest developments in measurement, modeling, and dissemination of propagation phenomena of interest to the mobile, personal, and aeronautical satcom industry; and (3)"Propagation Research Topics," covered a range of topics including space/ground optical propagation experiments, propagation databases, the NASA Propagation Web Site, and revision plans for the NASA propagation effects handbooks. The ACTS Miniworkshop, June 6, 1996, covered ACTS status, engineering support for ACTS propagation terminals, and the ACTS Propagation Data Center. A plenary session made specific recommendations for the future direction of the program.
NASA Technical Reports Server (NTRS)
1977-01-01
Current knowledge of Mercury, Venus, Mars, the Moon, asteroids, comets, and the Galilean satellites were reviewed along with related NASA programs and available mission concepts. Exploration plans for the 1980 to 1990 period are outlined and recommendations made. Topics discussed include: scientific objectives and goals, exploration strategy and recommended mission plans, supporting research and technology, Earth-based and Earth-orbital investigations, data analysis and synthesis, analysis of extraterrestrial materials, broadening the science support base, and international cooperation.
Autotracking from space - The TDRSS approach
NASA Astrophysics Data System (ADS)
Spearing, R. E.; Harper, W. R.
The TDRSS will provide telecommunications support to near-earth orbiting satellites through the 1980s and into the 1990s. The system incorporates two operational satellites at geostationary altitude and a single ground station at White Sands, NM. Of the many tasks facing the engineering team in development of this system, one of the most challenging was K-band autotrack. An approach not previously attempted placed the error detection, processing, and feedback elements for automatic control of the TDR satellite antennas on the ground. This approach offered several advantages to the designers but posed a number of interesting questions during the development program. The autotrack system design and its test program are described with emphasis given to areas of special interest in developing a working K-band service.
Autotracking from space - The TDRSS approach
NASA Technical Reports Server (NTRS)
Spearing, R. E.; Harper, W. R.
1984-01-01
The TDRSS will provide telecommunications support to near-earth orbiting satellites through the 1980s and into the 1990s. The system incorporates two operational satellites at geostationary altitude and a single ground station at White Sands, NM. Of the many tasks facing the engineering team in development of this system, one of the most challenging was K-band autotrack. An approach not previously attempted placed the error detection, processing, and feedback elements for automatic control of the TDR satellite antennas on the ground. This approach offered several advantages to the designers but posed a number of interesting questions during the development program. The autotrack system design and its test program are described with emphasis given to areas of special interest in developing a working K-band service.
Phillips Laboratory small satellite initiatives
NASA Astrophysics Data System (ADS)
Lutey, Mark K.; Imler, Thomas A.; Davis, Robert J.
1993-09-01
The Phillips Laboratory Space Experiments Directorate in conjunction with the Air Force Space Test Program (AF STP), Defense Advanced Research and Projects Agency (DARPA) and Strategic Defense Initiative Organization (SDIO), are managing five small satellite program initiatives: Lightweight Exo-Atmospheric Projectile (LEAP) sponsored by SDIO, Miniature Sensor Technology Integration (MSTI) sponsored by SDIO, Technology for Autonomous Operational Survivability (TAOS) sponsored by Phillips Laboratory, TechSat sponsored by SDIO, and the Advanced Technology Standard Satellite Bus (ATSSB) sponsored by DARPA. Each of these spacecraft fulfills a unique set of program requirements. These program requirements range from a short-lived `one-of-a-kind' mission to the robust multi- mission role. Because of these diverging requirements, each program is driven to use a different design philosophy. But regardless of their design, there is the underlying fact that small satellites do not always equate to small missions. These spacecraft with their use of or ability to insert new technologies provide more capabilities and services for their respective payloads which allows the expansion of their mission role. These varying program efforts culminate in an ATSSB spacecraft bus approach that will support moderate size payloads, up to 500 pounds, in a large set of orbits while satisfying the `cheaper, faster, better' method of doing business. This technical paper provides an overview of each of the five spacecraft, focusing on the objectives, payoffs, technologies demonstrated, and program status.
NASA Technical Reports Server (NTRS)
Golshan, Nasser (Editor)
1997-01-01
The NASA Propagation Experimenters (NAPEX) meeting is convened each year to discuss studies supported by the NASA Propagation Program. Representatives from the satellite communications industry, academia and government who have an interest in space-ground radio wave propagation are invited to NAPEX meetings for discussions and exchange of information. The reports delivered at this meeting by program managers and investigators present recent activities and future plans. This forum provides an opportunity for peer discussion of work in progress, timely dissemination of propagation results, and close interaction with the satellite communications industry. NAPEX XXI took place in El Segundo, California on June 11-12, 1997 and consisted of three sessions. Session 1, entitled "ACTS Propagation Study Results & Outcome " covered the results of 20 station-years of Ka-band radio-wave propagation experiments. Session 11, 'Ka-band Propagation Studies and Models,' provided the latest developments in modeling, and analysis of experimental results about radio wave propagation phenomena for design of Ka-band satellite communications systems. Session 111, 'Propagation Research Topics,' covered a diverse range of propagation topics of interest to the space community, including overviews of handbooks and databases on radio wave propagation. The ACTS Propagation Studies miniworkshop was held on June 13, 1997 and consisted of a technical session in the morning and a plenary session in the afternoon. The morning session covered updates on the status of the ACTS Project & Propagation Program, engineering support for ACTS Propagation Terminals, and the Data Center. The plenary session made specific recommendations for the future direction of the program.
Survey of Advanced Applications Over ACTS
NASA Technical Reports Server (NTRS)
Bauer, Robert; McMasters, Paul
2000-01-01
The Advanced Communications Technology Satellite (ACTS) system provided a national testbed that enabled advanced applications to be tested and demonstrated over a live satellite link. Of the applications that used ACTS. some offered unique advantages over current methods, while others simply could not be accommodated by conventional systems. The initial technical and experiments results of the program were reported at the 1995 ACTS Results Conference. in Cleveland, Ohio. Since then, the Experiments Program has involved 45 new experiments comprising 30 application experiments and 15 technology related experiments that took advantage of the advanced technologies and unique capabilities offered by ACTS. The experiments are categorized and quantified to show the organizational mix of the experiments program and relative usage of the satellite. Since paper length guidelines preclude each experiment from being individually reported, the application experiments and significant demonstrations are surveyed to show the breadth of the activities that have been supported. Experiments in a similar application category are collectively discussed, such as. telemedicine. or networking and protocol evaluation. Where available. experiment conclusions and impact are presented and references of results and experiment information are provided. The quantity and diversity of the experiments program demonstrated a variety of service areas for the next generation of commercially available, advanced satellite communications.
NASA Astrophysics Data System (ADS)
Zyelyk, Ya. I.; Semeniv, O. V.
2015-12-01
The state of the problem of the post-launch calibration of the satellite electro-optic remote sensors and its solutions in Ukraine is analyzed. The database is improved and dynamic services for user interaction with database from the environment of open geographical information system Quantum GIS for information support of calibration activities are created. A dynamic application under QGIS is developed, implementing these services in the direction of the possibility of data entering, editing and extraction from the database, using the technology of object-oriented programming and of modern complex program design patterns. The functional and algorithmic support of this dynamic software and its interface are developed.
Standardization and program effect analysis (Study 2.4). Volume 3: Design-to-cost analysis
NASA Technical Reports Server (NTRS)
Shiokari, T.
1975-01-01
The program procedures that were incorporated into an on-going "design-to-cost" spacecraft program are examined. Program procedures are the activities that support the development and operations of the flight unit: contract management, documents, integration meetings, engineering, and testing. This report is limited to the program procedures that were implemented, with emphasis on areas that may depart from normal satellite development practices.
Phinney, Jackie; Horsman, Amanda Rose
2018-01-01
Health sciences training programs have progressively expanded onto satellite campuses, allowing students the opportunity to learn in communities away from an academic institution's main campus. This expansion has encouraged a new role for librarians to assume, in that a subset of health sciences librarians identify as "satellite librarians" who are permanently located at a distance from the main campus. Due to the unique nature of this role and lack of existing data on the topic, the authors investigated the experiences and perceptions of this unique group of information professionals. An electronic survey was distributed to health sciences librarians via two prominent North American email discussion lists. Questions addressed the librarians' demographics, feelings of social inclusion, technological support, autonomy, professional support, and more. Eighteen surveys were analyzed. While several respondents stated that they had positive working relationships with colleagues, many cited issues with technology, scheduling, and lack of consideration as barriers to feeling socially included at both the parent and local campuses. Social inclusion, policy creation, and collection management issues were subject to their unique situations and their colleagues' perceptions of their roles as satellite librarians. The results from this survey suggest that the role of the academic health sciences librarian at the satellite campus needs to be clearly communicated and defined. This, in turn, will enhance the experience for the librarian and provide better service to the client.
Use of Remote Sensing Data to Enhance the National Weather Service (NWS) Storm Damage Toolkit
NASA Technical Reports Server (NTRS)
Jedlovec, Gary; Molthan, Andrew; White, Kris; Burks, Jason; Stellman, Keith; Smith, Matthew
2012-01-01
SPoRT is improving the use of near real-time satellite data in response to severe weather events and other diasters. Supported through NASA s Applied Sciences Program. Planned interagency collaboration to support NOAA s Damage Assessment Toolkit, with spinoff opportunities to support other entities such as USGS and FEMA.
2009-09-01
force air and space component commander (CFACC) should be des - ignated as the supported commander for counterspace operations. • To plan , execute, and...performing COMINT and/or FISINT activities. Figure 13-10. Poppy satellite with multiface de - sign. (Photo taken by the NRL and provided cour- tesy of the...SATCOM) Planning Information Network SPO special projects office; system programs office SPOT Satellite Pour L’Observation de la Terre SPS
NASA Astrophysics Data System (ADS)
Henderson, D. W.
Military users are becoming increasingly dependent on satellites for vital services related to communication, surveillance information, navigation, and meteorological data. The current military spacecraft, however, need the services of a ground support network which is vulnerable in connection with a variety of threats. It has, therefore, been proposed to decrease the dependence of the satellites on the ground segment by improving satellite autonomy, and the Satellite Autonomy Program at the recently created Air Force Space Technology Center is developing the Autonomous Redundancy and Maintenance Management Subsystem (ARMMS) for a near term generic autonomy solution. Attention is given to the implementation of autonomy and technological requirements for ensuring autonomy.
Provision of Academic Support Services to Adults in Distance Education Programs.
ERIC Educational Resources Information Center
Manzo, David A.
Demographic changes and economic need have driven higher education institutions to become more flexible in educational programming and to forge bonds with business and industry. Technological advancements such as satellite communications and computers have helped facilitate these partnerships between education and the business community. In many…
University Nanosatellite Program ION-F Constellation
NASA Technical Reports Server (NTRS)
Swenson, Charles; Fullmer, Rees; Redd, Frank
2002-01-01
The Space Engineering program at Utah State University has developed a small satellite, known as USUSat, under funding from AFOSR, AFRL, NASA and Utah State University's Space Dynamics Laboratory. This satellite was designed and significantly manufactured by students in the Mechanical and Aerospace Engineering and the Electrical and Computer Engineering Departments within the College of Engineering. USUSat is one of three spacecraft being designed for the Ionospheric Observation Nanosatellite Formation (ION- F). This formation comprises three 15 kg. spacecraft designed and built in cooperation by Utah State University, University of Washington, and Virginia Polytechnic Institute. The ION-F satellites are being designed and built by students at the three universities, with close coordination to insure compatibility for launch, deployment, and the formation flying mission. The JON-F mission is part of the U.S. Air Force Research Laboratory (AFRL) University Nanosatellite Program, which provides technology development and demonstrations for the TechSat2l Program. The University Nanosatellite Program involves 10 universities building nanosatellites for a launch in 2004 on two separate space shuttle missions. Additional support for the formation flying demonstration has been provided by NASA's Goddard Space Flight Center.
NASA's Advanced Communications Technology Satellite (ACTS)
NASA Technical Reports Server (NTRS)
Gedney, R. T.
1983-01-01
NASA recently restructured its Space Communications Program to emphasize the development of high risk communication technology useable in multiple frequency bands and to support a wide range of future communication needs. As part of this restructuring, the Advanced Communications Technology Satellite (ACTS) Project will develop and experimentally verify the technology associated with multiple fixed and scanning beam systems which will enable growth in communication satellite capacities and more effective utilization of the radio frequency spectrum. The ACTS requirements and operations as well as the technology significance for future systems are described.
Vehicle antenna development for mobile satellite applications
NASA Technical Reports Server (NTRS)
Woo, K.
1988-01-01
The paper summarizes results of a vehicle antenna program at JPL in support of a developing U.S. mobile satellite services (MSS) designed to provide telephone and data services for the continental United States. Two classes of circularly polarized vehicle antennas have been considered for the MSS: medium-gain, satellite-tracking antennas with 10-12-dBic gain; and low-gain, azimuthally omnidirectional antennas with 3-5-dBic gain. The design and performance of these antennas are described, and the two antennas are shown to have peculiar advantages and disadvantages.
NOAA's Satellite Climate Data Records: The Research to Operations Process and Current State
NASA Astrophysics Data System (ADS)
Privette, J. L.; Bates, J. J.; Kearns, E. J.; NOAA's Climate Data Record Program
2011-12-01
In support of NOAA's mandate to provide climate products and services to the Nation, the National Climatic Data Center initiated the satellite Climate Data Record (CDR) Program. The Program develops and sustains climate information products derived from satellite data that NOAA has collected over the past 30+ years. These are the longest sets of continuous global measurements in existence. Data from other satellite programs, including those in NASA, the Department of Defense, and foreign space agencies, are also used. NOAA is now applying advanced analysis techniques to these historic data. This process is unraveling underlying climate trend and variability information and returning new value from the data. However, the transition of complex data processing chains, voluminous data products and documentation into an systematic, configuration controlled context involves many challenges. In this presentation, we focus on the Program's process for research-to-operations transition and the evolving systems designed to ensure transparency, security, economy and authoritative value. The Program has adopted a two-phase process defined by an Initial Operational Capability (IOC) and a Full Operational Capability (FOC). The principles and procedures for IOC are described, as well as the process for moving CDRs from IOC to FOC. Finally, we will describe the state of the CDRs in all phases the Program, with an emphasis on the seven community-developed CDRs transitioned to NOAA in 2011. Details on CDR access and distribution will be provided.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-26
... transmitting, herewith, certification of a proposed manufacturing license agreement for the manufacture of... services to support the design, manufacture and delivery of the Es'Hail Satellite Program. The United... defense articles, including technical data, and defense services to support the design, manufacture...
NASA Technical Reports Server (NTRS)
Golshan, Nasser (Editor)
1996-01-01
The NASA Propagation Experimenters (NAPEX) Meeting is convened each year to discuss studies supported by the NASA Propagation Program. Representatives from the satellite communications (satcom) industry, academia, and government who have an interest in space-ground radio wave propagation are invited to NAPEX meetings for discussions and exchange of information. The reports delivered at these meetings by program managers and investigators present recent activities and future plans. This forum provides an opportunity for peer discussion of work in progress, timely dissemination of propagation results, and close interaction with the satcom industry.
NASA Astrophysics Data System (ADS)
Colton, Marie C.; Powell, Alfred M.; Jordan, Gretchen; Mote, Jonathon; Hage, Jerald; Frank, Donald
2004-10-01
The NESDIS Center for Satellite Applications and Research (STAR), formerly ORA, Office of Research and Applications, consists of three research and applications divisions that encompass satellite meteorology, oceanography, climatology, and cooperative research with academic institutions. With such a wide background of talent, and a charter to develop operational algorithms and applications, STAR scientists develop satellite-derived land, ice, ocean, and atmospheric environmental data products in support of all of NOAA"s mission goals. In addition, in close association with the Joint Center for Satellite Data Assimilation, STAR scientists actively work with the numerical modeling communities of NOAA, NASA, and DOD to support the development of new methods for assimilation of satellite data. In this new era of observations from many new satellite instruments, STAR aims to effectively integrate these data into multi-platform data products for utilization by the forecast and applications communities. Much of our work is conducted in close partnerships with other agencies, academic institutes, and industry. In order to support the nearly 400 current satellite-derived products for various users on a routine basis from our sister operations office, and to evolve to future systems requires an ongoing strategic planning approach that maps research and development activities from NOAA goals to user requirements. Since R&D accomplishments are not necessarily amenable to precise schedules, appropriate motivators and measures of scientific progress must be developed to assure that the product development cycle remains aligned with the other engineering segments of a satellite program. This article presents the status and results of this comprehensive effort to chart a course from the present set of operational satellites to the future.
NASA Technical Reports Server (NTRS)
Hilsenrath, E.; Schoeberl, M.; Douglass, A.; Anderson, J.; Bhartia, P. K. (Technical Monitor)
2002-01-01
The EOS-Aura Mission is designed to answer three basic questions concerning the Earth's atmosphere: 1) Is ozone recovering as predicted, 2) is air quality getting worse, and 3) how is climate changing? Aura's four instruments work synergistically and are dedicated to answering these questions. These questions relate to NASA Earth Science Enterprise's overall strategic questions, which seek to understand the consequences of climate change for human civilization and determine if these changes can be predicted. NASA supports an ongoing research and analysis program, which is conducted independently and in support of satellite missions. The research program conducts several on-going field campaigns employing aircraft, balloons, and ground based systems. These campaigns have focused on exploring processes in the tropics, high latitudes, and continental outflow to explain the chemistry and transport in the troposphere and stratosphere and how these regions interact. NASA is now studying how the Aura mission and requirements of the research and analysis program might be merged to achieve its strategic goals related to global atmospheric chemistry changes. In addition, NASA field campaign resources will be folded into Aura's validation requirements. Aura validation requires correlative measurements throughout the troposphere and stratosphere under a range of observing and geophysical conditions. Because of the recent launches of Envisat and other smaller international chemistry satellites, the NASA program plans to collaborate with European space agencies in developing a series of campaigns that will provide continuity between those satellites missions and Aura.
Earth observations satellite data policy: Process and outcome
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shaffer, L.R.
1994-12-31
The National Aeronautics and Space Administration (NASA) develops, launches, and operates satellites to observe and monitor the Earth and its environment. This study categorizes each program based on the relationship between NASA and external organizations. A program can be an autonomous mission undertaken for NASA`s own constituency, or it can involve a client agency or a partner. These relationships affect how data policy decisions are made and implemented, and how the valuable output of NASA`s Earth observations satellites is managed. The process in NASA for determining which programs will be approved is very informal. Ideas and concepts surface and reachmore » the consciousness of NASA management; if sufficient support is achieved, a proposal can move to the feasibility study phase and from there become an approved and funded mission. The handling of data can be an important consideration in generating political support for program approval. Autonomous programs tend to have decisions made at lower levels and documented informally or not at all. Data policy is part of routine implementation of programs and does not generally rise to the visibility of the agency head or congressional staff or the Executive Office of the President. Responsibility for data management for autonomous missions is retained at NASA centers. Client programs involve higher level decision makers, and are the subject of political interest because they cross agency boundaries. The data policy process includes presidential statements on data access. As part of the client relationship, NASA often provides resources to the client for data handling and analysis, and shares these responsibilities. Data policy for partner programs is the result of bargaining between the partners, either foreign government agencies or private companies.« less
Satellite Observations for Detecting and Tracking Changes in Atmospheric Composition
NASA Technical Reports Server (NTRS)
Neil, Doreen O.; Kondragunbta, Shobha; Osterman, Gregory; Pickering, Kenneth; Pinder, Robert W.; Prados, Ana I.; Szykman, James
2009-01-01
The satellite observations provide constraints on detailed atmospheric modeling, including emissions inventories, indications of transport, harmonized data over vast areas suitable for trends analysis, and a link between spatial scales ranging from local to global, and temporal scales from diurnal to interannual. 1 The National Oceanic and Atmospheric Administration's (NOAA) long-term commitments help provide these observations in cooperation with international meteorological organizations. NASA s long-term commitments will advance scientifically important observations as part of its Earth Science Program, and will assist the transition of the science measurements to applied analyses through the Applied Science Program. Both NASA and NOAA have begun to provide near realtime data and tools to visualize and analyze satellite data,2 while maintaining data quality, validation, and standards. Consequently, decision-makers can expect satellite data services to support air quality decision making now and in the future. The international scientific community's Integrated Global Atmosphere Chemistry Observation System Report3 outlined a plan for ground-based, airborne and satellite measurements and models to integrate the observations into a four-dimensional representation of the atmosphere (space and time) to support assessment and policy information needs. This plan is being carried out under the Global Earth Observation System of Systems (GEOSS). Demonstrations of such an integrated capability4 provide new understanding of the changing atmosphere and link policy decisions to benefits for society. In this article, we highlight the use of satellite data to constrain biomass burning emissions, to assess oxides of nitrogen (NO(x)) emission reductions, and to contribute to state implementation plans, as examples of the use of satellite observations for detecting and tracking changes in atmospheric composition.
Civil Applications of National Satellites
NASA Astrophysics Data System (ADS)
Killam, Dudley B.
2002-01-01
For over thirty years, the United States Air Force has employed infrared surveillance for missile warning purposes in support of peace. The Defense Support Program, currently employed in this way, consists of a constellation of satellites that provide civil-oriented, peace preserving infrared surveillance. Such civil applications include monitoring parched areas for wind-whipped brush fires or lightning-initiated forest fires that consume many acres of timber and threaten populated areas. Other applications include the similar monitoring of static, infrared-sensed heat sources including volcanoes and the plumes of acrid smoke produced when the volcanoes are active. This paper will address these important missions that can be performed by the national infrared surveillance satellite constellations, furthering the peace of the world in ways never envisioned by their creators 30 years ago.
Planetary geosciences, 1989-1990
NASA Technical Reports Server (NTRS)
Zuber, Maria T. (Editor); James, Odette B. (Editor); Lunine, Jonathan I. (Editor); Macpherson, Glenn J. (Editor); Phillips, Roger J. (Editor)
1992-01-01
NASA's Planetary Geosciences Programs (the Planetary Geology and Geophysics and the Planetary Material and Geochemistry Programs) provide support and an organizational framework for scientific research on solid bodies of the solar system. These research and analysis programs support scientific research aimed at increasing our understanding of the physical, chemical, and dynamic nature of the solid bodies of the solar system: the Moon, the terrestrial planets, the satellites of the outer planets, the rings, the asteroids, and the comets. This research is conducted using a variety of methods: laboratory experiments, theoretical approaches, data analysis, and Earth analog techniques. Through research supported by these programs, we are expanding our understanding of the origin and evolution of the solar system. This document is intended to provide an overview of the more significant scientific findings and discoveries made this year by scientists supported by the Planetary Geosciences Program. To a large degree, these results and discoveries are the measure of success of the programs.
NASA Technical Reports Server (NTRS)
1974-01-01
An analysis of the systems involved in the operation and support of the Earth Observatory Satellite (EOS) is presented. Among the systems considered are the following: (1) the data management system, (2) observatory to primary ground station communications links, (3) local user system, (4) techniques for recognizing ground control points, (5) the central data processing-implementation concept, and (6) program effectiveness analysis.
Make or Buy: A Systematic Approach to Department of Defense Sourcing Decisions
2013-07-30
Defense-Industrial Initiatives Group at CSIS, where he worked on projects related to U.S. and European technology and industrial bases supporting defense...Prior to joining CSIS, Mr. Ben-Ari was a research associate at George Washington University’s Center for International Science and Technology ...collaborative research and development programs for Gilat Satellite Networks Ltd., an Israeli high- technology company in the field of satellite
NASA Astrophysics Data System (ADS)
Lance, V. P.; DiGiacomo, P. M.; Ondrusek, M.; Stengel, E.; Soracco, M.; Wang, M.
2016-02-01
The NOAA/STAR ocean color program is focused on "end-to-end" production of high quality satellite ocean color products. In situ validation of satellite data is essential to produce the high quality, "fit for purpose" ocean color products that support users and applications in all NOAA line offices, as well as external (both applied and research) users. The first NOAA/OMAO (Office of Marine and Aviation Operations) sponsored research cruise dedicated to VIIRS SNPP validation was completed aboard the NOAA Ship Nancy Foster in November 2014. The goals and objectives of the 2014 cruise are highlighted in the recently published NOAA/NESDIS Technical Report. A second dedicated validation cruise is planned for December 2015 and will have been completed by the time of this meeting. The goals and objectives of the 2015 cruise will be discussed in the presentation. Participants and observations made will be reported. The NOAA Ocean Color Calibration/Validation (Cal/Val) team also works collaboratively with others programs. A recent collaboration with the NOAA Ocean Acidification program on the East Coast Ocean Acidification (ECOA) cruise during June-July 2015, where biogeochemical and optical measurements were made together, allows for the leveraging of in situ observations for satellite validation and for their use in the development of future ocean acidification satellite products. Datasets from these cruises will be formally archived at NOAA and Digital Object Identifier (DOI) numbers will be assigned. In addition, the NOAA Coast/OceanWatch Program is working to establish a searchable database. The beta version will begin with cruise data and additional in situ calibration/validation related data collected by the NOAA Ocean Color Cal/Val team members. A more comprehensive searchable NOAA database, with contributions from other NOAA ocean observation platforms and cruise collaborations is envisioned. Progress on these activities will be reported.
Flight Opportunities: Space Technology Mission Directorate
NASA Technical Reports Server (NTRS)
Van Dijk, Alexander
2016-01-01
Flight Opportunities enables maturation of new space technologies by funding access to commercially available space-relevant test environments. The program also supports capability development in the commercial suborbital and orbital small satellite launcher markets.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-22
... defined as training/ education transpiring between trainers and facilitators at one location and... NIC's distance learning administrator (DLA) on program design, program coordination, design and field... activities that support each broadcast. A minimum of one face-to-face planning session will be held for each...
Validation of the GCOM-W SCA and JAXA soil moisture algorithms
USDA-ARS?s Scientific Manuscript database
Satellite-based remote sensing of soil moisture has matured over the past decade as a result of the Global Climate Observing Mission-Water (GCOM-W) program of JAXA. This program has resulted in improved algorithms that have been supported by rigorous validation. Access to the products and the valida...
Cost benefit analysis of space communications technology: Volume 1: Executive summary
NASA Technical Reports Server (NTRS)
Holland, L. D.; Sassone, P. G.; Gallagher, J. J.; Robinette, S. L.; Vogler, F. H.; Zimmer, R. P.
1976-01-01
The questions of (1) whether or not NASA should support the further development of space communications technology, and, if so, (2) which technology's support should be given the highest priority are addressed. Insofar as the issues deal principally with resource allocation, an economics perspective is adopted. The resultant cost benefit methodology utilizes the net present value concept in three distinct analysis stages to evaluate and rank those technologies which pass a qualification test based upon probable (private sector) market failure. User-preference and technology state-of-the-art surveys were conducted (in 1975) to form a data base for the technology evaluation. The program encompassed near-future technologies in space communications earth stations and satellites, including the noncommunication subsystems of the satellite (station keeping, electrical power system, etc.). Results of the research program include confirmation of the applicability of the methodology as well as a list of space communications technologies ranked according to the estimated net present value of their support (development) by NASA.
Innovative approach for low-cost quick-access small payload missions
NASA Astrophysics Data System (ADS)
Friis, Jan W., Jr.
2000-11-01
A significant part of the burgeoning commercial space industry is placing an unprecedented number of satellites into low earth orbit for a variety of new applications and services. By some estimates the commercial space industry now exceeds that of government space activities. Yet the two markets remain largely separate, with each deploying dedicated satellites and infrastructure for their respective missions. One commercial space firm, Final Analysis, has created a new program wherein either government, scientific or new technology payloads can be integrated on a commercial spacecraft on commercial satellites for a variety of mission scenarios at a fraction of the cost of a dedicated mission. NASA has recognized the advantage of this approach, and has awarded the Quick Ride program to provide frequent, low cost flight opportunities for small independent payloads aboard the Final Analysis constellation, and investigators are rapidly developing science programs that conform to the proposed payload accommodations envelope. Missions that were not feasible using dedicated launches are now receiving approval under the lower cost Quick Ride approach. Final Analysis has dedicated ten out of its thirty-eight satellites in support of the Quick Ride efforts. The benefit of this type of space access extend beyond NASA science programs. Commercial space firms can now gain valuable flight heritage for new technology and satellite product offerings. Further, emerging international space programs can now place a payload in orbit enabling the country to allocate its resources against the payload and mission requirements rather htan increased launch costs of a dedicated spacecraft. Finally, the low cost nature provides University-based research educational opportunities previously out of the reach of most space-related budgets. This paper will describe the motivation, benefits, technical features, and program costs of the Final Analysis secondary payload program. Payloads can be accommodated on up to thirty-eight separate satellites. Since the secondary payloads will fly on satellites designed for global wireless data services, each user can utilize low cost communication system already in place for sending and retrieving digital information from its payload.
Advanced Communications Technology Satellite Now Operating in an Inclined Orbit
NASA Technical Reports Server (NTRS)
Bauer, Robert A.
1999-01-01
The Advanced Communications Technology Satellite (ACTS) system has been modified to support operation in an inclined orbit that is virtually transparent to users, and plans are to continue this final phase of its operation through September 2000. The next 2 years of ACTS will provide a new opportunity for using the technologies that this system brought online over 5 years ago and that are still being used to resolve the technical issues that face NASA and the satellite industry in the area of seamless networking and interoperability with terrestrial systems. New goals for ACTS have been defined that align the program with recent changes in NASA and industry. ACTS will be used as a testbed to: Show how NASA and other Government agencies can use commercial systems for 1. future support of their operations Test, characterize, and resolve technical issues in using advanced communications 2. protocols such as asynchronous transfer mode (ATM) and transmission control protocol/Internet protocol (TCP/IP) over long latency links as found when interoperating satellites with terrestrial systems Evaluate narrow-spot-beam Ka-band satellite operation in an inclined orbit 3. Verify Ka-band satellite technologies since no other Ka-band system is yet 4. available in the United States
NASA Near Earth Network (NEN) and Space Network (SN) CubeSat Communications
NASA Technical Reports Server (NTRS)
Schaire, Scott H.; Shaw, Harry; Altunc, Serhat; Bussey, George; Celeste, Peter; Kegege, Obadiah; Wong, Yen; Zhang, Yuwen; Patel, Chitra; Raphael, David;
2016-01-01
There has been a recent trend to increase capability and drive down the Size, Weight and Power (SWAP) of satellites. NASA scientists and engineers across many of NASA's Mission Directorates and Centers are developing exciting CubeSat concepts and welcome potential partnerships for CubeSat endeavors. From a "Telemetry, Tracking and Command (TT&C) Systems and Flight Operations for Small Satellites" point of view, small satellites including CubeSats are a challenge to coordinate because of existing small spacecraft constraints, such as limited SWAP and attitude control, and the potential for high numbers of operational spacecraft. The NASA Space Communications and Navigation (SCaN) Program's Near Earth Network (NEN) and Space Network (SN) are customer driven organizations that provide comprehensive communications services for space assets including data transport between a mission's orbiting satellite and its Mission Operations Center (MOC). This paper presents how well the SCaN networks, SN and NEN, are currently positioned to support the emerging small small satellite and CubeSat market as well as planned enhancements for future support.
Cloud Computing Applications in Support of Earth Science Activities at Marshall Space Flight Center
NASA Technical Reports Server (NTRS)
Molthan, Andrew L.; Limaye, Ashutosh S.; Srikishen, Jayanthi
2011-01-01
Currently, the NASA Nebula Cloud Computing Platform is available to Agency personnel in a pre-release status as the system undergoes a formal operational readiness review. Over the past year, two projects within the Earth Science Office at NASA Marshall Space Flight Center have been investigating the performance and value of Nebula s "Infrastructure as a Service", or "IaaS" concept and applying cloud computing concepts to advance their respective mission goals. The Short-term Prediction Research and Transition (SPoRT) Center focuses on the transition of unique NASA satellite observations and weather forecasting capabilities for use within the operational forecasting community through partnerships with NOAA s National Weather Service (NWS). SPoRT has evaluated the performance of the Weather Research and Forecasting (WRF) model on virtual machines deployed within Nebula and used Nebula instances to simulate local forecasts in support of regional forecast studies of interest to select NWS forecast offices. In addition to weather forecasting applications, rapidly deployable Nebula virtual machines have supported the processing of high resolution NASA satellite imagery to support disaster assessment following the historic severe weather and tornado outbreak of April 27, 2011. Other modeling and satellite analysis activities are underway in support of NASA s SERVIR program, which integrates satellite observations, ground-based data and forecast models to monitor environmental change and improve disaster response in Central America, the Caribbean, Africa, and the Himalayas. Leveraging SPoRT s experience, SERVIR is working to establish a real-time weather forecasting model for Central America. Other modeling efforts include hydrologic forecasts for Kenya, driven by NASA satellite observations and reanalysis data sets provided by the broader meteorological community. Forecast modeling efforts are supplemented by short-term forecasts of convective initiation, determined by geostationary satellite observations processed on virtual machines powered by Nebula.
Technicians listen to instructions during STS-44 DSP / IUS transfer operation
NASA Technical Reports Server (NTRS)
1991-01-01
Clean-suited technicians, wearing headsets, listen to instructions during Defense Support Program (DSP) satellite / inertial upper stage (IUS) transfer operations in a processing facility at Cape Canaveral Air Force Station. In the background, the DSP satellite atop an inertial upper stage (IUS) is readied for transfer to a payload canister transporter. DSP, a surveillance satellite that can detect missle and space launches as well as nuclear detonations will be boosted into geosynchronous Earth orbit by the IUS during STS-44 mission. View provided by the Kennedy Space Center (KSC) with alternate number KSC-91PC-1748.
NASA Astrophysics Data System (ADS)
Heckmann, G.; Route, G.
2009-12-01
The National Oceanic and Atmospheric Administration (NOAA), Department of Defense (DoD), and National Aeronautics and Space Administration (NASA) are jointly acquiring the next-generation weather and environmental satellite system; the National Polar-orbiting Operational Environmental Satellite System (NPOESS). NPOESS replaces the current Polar-orbiting Operational Environmental Satellites (POES) managed by NOAA and the Defense Meteorological Satellite Program (DMSP) managed by the DoD. The NPOESS satellites carry a suite of sensors that collect meteorological, oceanographic, climatological, and solar-geophysical observations of the earth, atmosphere, and space. The ground data processing segment for NPOESS is the Interface Data Processing Segment (IDPS), developed by Raytheon Intelligence and Information Systems. The IDPS processes NPOESS satellite data to provide environmental data products (aka, Environmental Data Records or EDRs) to NOAA and DoD processing centers operated by the United States government. The IDPS will process EDRs beginning with the NPOESS Preparatory Project (NPP) and continuing through the lifetime of the NPOESS system. IDPS also provides the software and requirements for the Field Terminal Segment (FTS). NPOESS provides support to deployed field terminals by providing mission data in the Low Rate and High Rate downlinks (LRD/HRD), mission support data needed to generate EDRs and decryption keys needed to decrypt mission data during Selective data Encryption (SDE). Mission support data consists of globally relevant data, geographically constrained data, and two line element sets. NPOESS provides these mission support data via the Internet accessible Mission Support Data Server and HRD/LRD downlinks. This presentation will illustrate and describe the NPOESS capabilities in support of Field Terminal users. This discussion will include the mission support data available to Field Terminal users, content of the direct broadcast HRD and LRD downlinks identifying differences between the direct broadcast downlinks including the variability of the LRD downlink and NPOESS management and distribution of decryption keys to approved field terminals using Public Key Infrastructure (PKI) AES standard with 256 bit encryption and elliptical curve cryptography.
NASA Technical Reports Server (NTRS)
Aller, R. O.
1985-01-01
The Tracking and Data Relay Satellite System (TDRSS) represents the principal element of a new space-based tracking and communication network which will support NASA spaceflight missions in low earth orbit. In its complete configuration, the TDRSS network will include a space segment consisting of three highly specialized communication satellites in geosynchronous orbit, a ground segment consisting of an earth terminal, and associated data handling and control facilities. The TDRSS network has the objective to provide communication and data relay services between the earth-orbiting spacecraft and their ground-based mission control and data handling centers. The first TDRSS spacecraft has been now in service for two years. The present paper is concerned with the TDRSS experience from the perspective of the various programmatic and economic considerations which relate to the program.
Carneggie, David M.; Metz, Gary G.; Draeger, William C.; Thompson, Ralph J.
1991-01-01
The U.S. Geological Survey's Earth Resources Observation Systems (EROS) Data Center, the national archive for Landsat data, has 20 years of experience in acquiring, archiving, processing, and distributing Landsat and earth science data. The Center is expanding its satellite and earth science data management activities to support the U.S. Global Change Research Program and the National Aeronautics and Space Administration (NASA) Earth Observing System Program. The Center's current and future data management activities focus on land data and include: satellite and earth science data set acquisition, development and archiving; data set preservation, maintenance and conversion to more durable and accessible archive medium; development of an advanced Land Data Information System; development of enhanced data packaging and distribution mechanisms; and data processing, reprocessing, and product generation systems.
NASA Technical Reports Server (NTRS)
Hanley, G. M.
1980-01-01
The latest technical and programmatic developments are considered as well as expansions of the Rockwell SPS cost model covering each phase of the program through the year 2030. Comparative cost/economic analyses cover elements of the satellite, construction system, space transportation vehicles and operations, and the ground receiving station. System plans to define time phased costs and planning requirements that support major milestones through the year 2000. A special analysis is included on natural resources required to build the SPS reference configuration. An appendix contains the SPS Work Breakdown Structure and dictionary along with detail cost data sheet on each system and main element of the program. Over 200 line items address DDT&E, theoretical first unit, investment cost per satellite, and operations charges for replacement capital and normal operations and maintenance costs.
Tunable far infrared studies of molecular parameters in support of stratospheric measurements
NASA Technical Reports Server (NTRS)
Chance, Kelly V.; Evenson, K. M.; Park, K.; Radostitz, J. V.; Jennings, D. A.; Nolt, I. G.; Vanek, M. D.
1991-01-01
Lab studies were made in support of far infrared spectroscopy of the stratosphere using the Tunable Far InfraRed (TuFIR) method of ultrahigh resolution spectroscopy and, more recently, spectroscopic and retrieval calculations performed in support of satellite-based atmospheric measurement programs: the Global Ozone Monitoring Experiment (GOME), and the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY).
The United States earth resources survey program and ERTS experiments benefit highlights
NASA Technical Reports Server (NTRS)
Jaffe, L.
1974-01-01
With the launch of the first Earth Resources Technology Satellite in July 1972 a major new tool has become available for decision making in the assessment, exploitation, and management of the earth's resources on a national and international basis. The current status of the earth resources survey program is discussed and the future potential is reviewed. The supportive roles of all stages of the system, including surface, aircraft, and satellite components are noted. Specific cases of application of ERTS data are presented together with a discussion of benefits that might accrue. Need for cooperative, coordinated efforts between participants is emphasized.
Use of NASA Near Real-Time and Archived Satellite Data to Support Disaster Assessment
NASA Technical Reports Server (NTRS)
McGrath, Kevin M.; Molthan, Andrew L.; Burks, Jason E.
2014-01-01
NASA's Short-term Prediction Research and Transition (SPoRT) Center partners with the NWS to provide near realtime data in support of a variety of weather applications, including disasters. SPoRT supports NASA's Applied Sciences Program: Disasters focus area by developing techniques that will aid the disaster monitoring, response, and assessment communities. SPoRT has explored a variety of techniques for utilizing archived and near real-time NASA satellite data. An increasing number of end-users - such as the NWS Damage Assessment Toolkit (DAT) - access geospatial data via a Web Mapping Service (WMS). SPoRT has begun developing open-standard Geographic Information Systems (GIS) data sets via WMS to respond to end-user needs.
A Rural Education Teacher Preparation Program: Course Design, Student Support and Engagement
ERIC Educational Resources Information Center
Eaton, Sarah Elaine; Gereluk, Dianne; Dressler, Roswita; Becker, Sandra
2017-01-01
Attracting and retaining teachers for rural and remote areas is a pervasive global problem. Currently, teacher education in Canada is primarily delivered in face-to-face formats located in urban centres or satellite campuses. There is a need for relevant and responsive teacher education programs for rural pre-service teachers. Recognizing this…
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-29
... support the HYLAS 2 Commercial Communication Satellite Program of the United Kingdom. The United States... (Transmittal No. 10-002) Hon. Nancy Pelosi, Speaker of the House of Representatives Dear Madam Speaker... the C-130 Air Crew Training Device Program for end use by the Royal Saudi Air Force. The United States...
Shuttle orbiter - IUS/DSP satellite interface contamination study
NASA Technical Reports Server (NTRS)
Rantanen, R. O.; Strange, D. A.
1978-01-01
The results of a contamination analysis on the Defense Support Program (DSP) satellite during launch and deployment by the Space Transportation System (STS) are presented. Predicted contaminant deposition was also included on critical DSP surfaces during the period soon after launch when the DSP is in the shuttle orbiter bay with the doors closed, the bay doors open, and during initial deployment. Additionally, a six sided box was placed at the spacecraft position to obtain directional contaminant flux information for a general payload while in the bay and during deployment. The analysis included contamination sources from the shuttle orbiter, IUS and cradle, the DSP sensor and the DSP support package.
Online Visualization and Analysis of Global Half-Hourly Infrared Satellite Data
NASA Technical Reports Server (NTRS)
Liu, Zhong; Ostrenga, Dana; Leptoukh, Gregory
2011-01-01
nfrared (IR) images (approximately 11-micron channel) recorded by satellite sensors have been widely used in weather forecasting, research, and classroom education since the Nimbus program. Unlike visible images, IR imagery can reveal cloud features without sunlight illumination; therefore, they can be used to monitor weather phenomena day and night. With geostationary satellites deployed around the globe, it is possible to monitor weather events 24/7 at a temporal resolution that polar-orbiting satellites cannot achieve at the present time. When IR data from multiple geostationary satellites are merged to form a single product--also known as a merged product--it allows for observing weather on a global scale. Its high temporal resolution (e.g., every half hour) also makes it an ideal ancillary dataset for supporting other satellite missions, such as the Tropical Rainfall Measuring Mission (TRMM), etc., by providing additional background information about weather system evolution.
Satellite Systems Design/Simulation Environment: A Systems Approach to Pre-Phase A Design
NASA Technical Reports Server (NTRS)
Ferebee, Melvin J., Jr.; Troutman, Patrick A.; Monell, Donald W.
1997-01-01
A toolset for the rapid development of small satellite systems has been created. The objective of this tool is to support the definition of spacecraft mission concepts to satisfy a given set of mission and instrument requirements. The objective of this report is to provide an introduction to understanding and using the SMALLSAT Model. SMALLSAT is a computer-aided Phase A design and technology evaluation tool for small satellites. SMALLSAT enables satellite designers, mission planners, and technology program managers to observe the likely consequences of their decisions in terms of satellite configuration, non-recurring and recurring cost, and mission life cycle costs and availability statistics. It was developed by Princeton Synergetic, Inc. and User Systems, Inc. as a revision of the previous TECHSAT Phase A design tool, which modeled medium-sized Earth observation satellites. Both TECHSAT and SMALLSAT were developed for NASA.
NASA Technical Reports Server (NTRS)
Bonavito, N. L.; Gordon, C. L.; Inguva, R.; Serafino, G. N.; Barnes, R. A.
1994-01-01
NASA's Mission to Planet Earth (MTPE) will address important interdisciplinary and environmental issues such as global warming, ozone depletion, deforestation, acid rain, and the like with its long term satellite observations of the Earth and with its comprehensive Data and Information System. Extensive sets of satellite observations supporting MTPE will be provided by the Earth Observing System (EOS), while more specific process related observations will be provided by smaller Earth Probes. MTPE will use data from ground and airborne scientific investigations to supplement and validate the global observations obtained from satellite imagery, while the EOS satellites will support interdisciplinary research and model development. This is important for understanding the processes that control the global environment and for improving the prediction of events. In this paper we illustrate the potential for powerful artificial intelligence (AI) techniques when used in the analysis of the formidable problems that exist in the NASA Earth Science programs and of those to be encountered in the future MTPE and EOS programs. These techniques, based on the logical and probabilistic reasoning aspects of plausible inference, strongly emphasize the synergetic relation between data and information. As such, they are ideally suited for the analysis of the massive data streams to be provided by both MTPE and EOS. To demonstrate this, we address both the satellite imagery and model enhancement issues for the problem of ozone profile retrieval through a method based on plausible scientific inferencing. Since in the retrieval problem, the atmospheric ozone profile that is consistent with a given set of measured radiances may not be unique, an optimum statistical method is used to estimate a 'best' profile solution from the radiances and from additional a priori information.
MetEd Resources for Embracing Advances with S-NPP and JPSS
NASA Astrophysics Data System (ADS)
Abshire, W. E.; Dills, P. N.; Weingroff, M.
2014-12-01
The COMET® Program (www.comet.ucar.edu), a part of the UCAR Community Programs (UCP) at UCAR, receives funding from NOAA NESDIS as well as EUMETSAT and the Meteorological Service of Canada to support education and training in satellite meteorology. For many years COMET's satellite education programs have focused on developing self-paced online educational materials that highlight the capabilities and applications of current and next-generation operational geostationary and polar-orbiting satellites and their relevance to operational forecasters and other user communities. By partnering with experts from the Naval Research Laboratory, NOAA-NESDIS and its Cooperative Institutes, Meteorological Service of Canada, EUMETSAT, and other user communities, COMET stimulates greater use of current and future satellite observations and products. This presentation provides a tour of COMET's satellite training and education offerings that are directly applicable to data and products from the S-NPP and JPSS satellite series. A recommended set of lessons for users who wish to learn more will be highlighted, including excerpts from the newest materials on the Suomi NPP VIIRS imager and its applications, as well as advances in nighttime visible observation with the VIIRS Day-Night Band. We'll show how the lessons introduce users to the advances these systems bring to forecasting, numerical weather prediction, and environmental monitoring. Over 90 satellite-focused, self-paced, online materials are freely available on the of the MetEd Web site (http://www.meted.ucar.edu) via the "Education & Training", "Satellite" topic area. Quite a few polar-orbiting-related lessons are available in both English, Spanish, and French. Additionally, S-NPP and JPSS relevant information can also be found on the the Environmental Satellite Resource Center (ESRC) Web site (www.meted.ucar.edu/esrc) that is maintained by COMET. The ESRC is a searchable, database-driven Web site that provides access to nearly 600 education, training, and informational resources on Earth-observing satellites.
NASA Technical Reports Server (NTRS)
Hanley, G.
1978-01-01
Three appendixes in support of Volume 7 are contained in this document. The three appendixes are: (1) Satellite Power System Work Breakdown Structure Dictionary; (2) SPS cost Estimating Relationships; and (3) Financial and Operational Concept. Other volumes of the final report that provide additional detail are: Executive Summary; SPS Systems Requirements; SPS Concept Evolution; SPS Point Design Definition; Transportation and Operations Analysis; and SPS Technology Requirements and Verification.
STS-44 DSP satellite and IUS during preflight processing at Cape Canaveral
1991-10-19
S91-50773 (19 Oct 1991) --- At a processing facility on Cape Canaveral Air Force Station, the Defense Support Program (DSP) satellite is being transferred into the payload canister transporter for shipment to Launch Pad 39A at KSC. The DSP will be deployed during Space Shuttle Mission STS-44 later this year. It is a surveillance satellite, developed for the Department of Defense, which can detect missile and space launches, as well as nuclear detonations. The Inertial Upper Stage which will boost the DSP satellite to its proper orbital position is the lower portion of the payload. DSP satellites have comprised the spaceborne segment of NORAD's (North American Air Defense Command) Tactical Warning and Attack Assessment System since 1970. STS- 44, carrying a crew of six, will be a ten-day flight.
Ground breaking at Astrotech for a new facility
NASA Technical Reports Server (NTRS)
1999-01-01
Dirt flies during a ground-breaking ceremony to kick off Astrotech Space Operations' construction of a new satellite preparation facility to support the Delta IV, Boeing's winning entrant in the Air Force Evolved Expendable Launch Vehicle (EELV) Program. Wielding shovels are (from left to right) Tom Alexico; Chet Lee, chairman, Astrotech Space Operations; Gen. Forrest McCartney, vice president, Launch Operations, Lockheed Martin; Richard Murphy, director, Delta Launch Operations, The Boeing Company; Keith Wendt; Toby Voltz; Loren Shriver, deputy director, Launch & Payload Processing, Kennedy Space Center; Truman Scarborough, Brevard County commissioner; U.S. Representative 15th Congressional District David Weldon; Ron Swank; and watching the action at right is George Baker, president, Astrotech Space Operations. Astrotech is located in Titusville, Fla. It is a wholly owned subsidiary of SPACEHAB, Inc., and has been awarded a 10-year contract to provide payload processing services for The Boeing Company. The facility will enable Astrotech to support the full range of satellite sizes planned for launch aboard Delta II, III and IV launch vehicles, as well as the Atlas V, Lockheed Martin's entrant in the EELV Program. The Atlas V will be used to launch satellites for government, including NASA, and commercial customers.
NASA Astrophysics Data System (ADS)
Berk, Josh; Straub, Jeremy; Whalen, David
Government supported nano-satellite launch programs and emerging commercial small satellite launch services are reducing the cost of access to space for educational and other CubeSat projects. The cost and complexity of designing and building these satellites remains a vexing complication for many would be CubeSat aspirants. The Open Prototype for Educational NanoSats (OPEN), a proposed nano-satellite development platform, is described in this paper. OPEN endeavors to reduce the costs and risks associated with educational, government and commercial nano-satellite development. OPEN provides free and publicly available plans for building, testing and operating a versatile, low-cost satellite, based on the standardized CubeSat form-factor. OPEN consists of public-domain educational reference plans, complete with engineering schematics, CAD files, construction and test instructions as well as ancillary reference materials relevant to satellite building and operation. By making the plan, to produce a small but capable spacecraft freely available, OPEN seeks to lower the barriers to access on the other side (non-launch costs) of the satellite cost equation.
Archiving Space Geodesy Data for 20+ Years at the CDDIS
NASA Technical Reports Server (NTRS)
Noll, Carey E.; Dube, M. P.
2004-01-01
Since 1982, the Crustal Dynamics Data Information System (CDDIS) has supported the archive and distribution of geodetic data products acquired by NASA programs. These data include GPS (Global Positioning System), GLONASS (GLObal NAvigation Satellite System), SLR (Satellite Laser Ranging), VLBI (Very Long Baseline Interferometry), and DORIS (Doppler Orbitography and Radiolocation Integrated by Satellite). The data archive supports NASA's space geodesy activities through the Solid Earth and Natural Hazards (SENH) program. The CDDIS data system and its archive have become increasingly important to many national and international programs, particularly several of the operational services within the International Association of Geodesy (IAG), including the International GPS Service (IGS), the International Laser Ranging Service (ILRS), the International VLBI Service for Geodesy and Astrometry (IVS), the International DORIS Service (IDS), and the International Earth Rotation Service (IERS). The CDDIS provides easy and ready access to a variety of data sets, products, and information about these data. The specialized nature of the CDDIS lends itself well to enhancement and thus can accommodate diverse data sets and user requirements. All data sets and metadata extracted from these data sets are accessible to scientists through ftp and the web; general information about each data set is accessible via the web. The CDDIS, including background information about the system and its user communities, the computer architecture, archive contents, available metadata, and future plans will be discussed.
NASA Astrophysics Data System (ADS)
Husar, R. B.; Hoijarvi, K.; Westphal, D. L.; Scheffe, R.; Keating, T.; Frank, N.; Poirot, R.; DuBois, D. W.; Bleiweiss, M. P.; Eberhard, W. L.; Menon, R.; Sethi, V.; Deshpande, A.
2012-12-01
Near-real-time (NRT) aerosol characterization, forecasting and decision support is now possible through the availability of (1) surface-based monitoring of regional PM concentrations, (2) global-scale columnar aerosol observations through satellites; (3) an aerosol model (NAAPS) that is capable of assimilating NRT satellite observations; and (4) an emerging cyber infrastructure for processing and distribution of data and model results (DataFed) for a wide range of users. This report describes the evolving NRT aerosol analysis and forecasting system and its applications at Federal and State and other AQ Agencies and groups. Through use cases and persistent real-world applications in the US and abroad, the report will show how satellite observations along with surface data and models are combined to aid decision support for AQ management, science and informing the public. NAAPS is the U.S. Navy's global aerosol and visibility forecast model that generates operational six-day global-scale forecasts for sulfate, dust, sea salt, and smoke aerosol. Through NAVDAS-AOD, NAAPS operationally assimilates filtered and corrected MODIS MOD04 aerosol optical depths and uses satellite-derived FLAMBÉ smoke emissions. Washington University's federated data system, DataFed, consist of a (1) data server which mediates the access to AQ datasets from distributed providers (NASA, NOAA, EPA, etc.,); (2) an AQ Data Catalog for finding and accessing data; and (3) a set of application programs/tools for browsing, exploring, comparing, aggregating, fusing data, evaluating models and delivering outputs through interactive visualization. NAAPS and DataFed are components of the Global Earth Observation System of Systems (GEOSS). Satellite data support the detection of long-range transported wind-blown dust and biomass smoke aerosols on hemispheric scales. The AQ management and analyst communities use the satellite/model data through DataFed and other channels as evidence for Exceptional Events (EE) as defined by EPA; i.e., Sahara dust impact on Texas and Florida, local dusts events in the Southwestern U.S. and Canadian smoke events over the Northeastern U.S. Recent applications include the impact analysis of a major Saudi Arabian dust event on Mumbai, India air quality. The NAAPS model and the DataFed tools can visualize the dynamic AQ events as they are manifested through the different sensors. Satellite-derived aerosol observations assimilated into NAAPS provide estimates of daily emission rates for dust and biomass fire sources. Tuning and reconciliation of the observations, emissions and models constitutes a key and novel contribution yielding a convergence toward the true five-dimensional (X, Y, Z, T, Composition) characterization of the atmospheric aerosol data space. This observation-emission-model reconciliation effort is aided by model evaluation tools and supports the international HTAP program. The report will also discuss some of the challenges facing multi-disciplinary, multi-agency, multi-national applications of integrated observation-modeling system of systems that impede the incorporation of satellite observations into AQ management decision support systems.
New Energetic Particle Data and Products from the GOES Program
NASA Astrophysics Data System (ADS)
Onsager, Terrance; Rodriguez, Juan
The NOAA Geostationary Operational Environmental Satellite (GOES) program has provided continuous, real-time measurements of the near-Earth space environment for decades. In addition to their scientific value, the GOES energetic particle measurements are the basis for a variety of space weather products and services, including the forecasting of elevated energetic particle levels, real-time knowledge of the satellite environment at geostationary orbit, and data to allow post-event analyses when satellite anomalies occur. The GOES satellites have traditionally provided measurements of high-energy electrons, protons, and alpha particles (100s of keV to 100s of MeV). Beginning with the launch of GOES-13 in 2006, the measurement capabilities were expanded to include medium-energy electrons and protons (10s to 100s of keV) with pitch angle resolution. The next generation of GOES satellites, starting with GOES-R in 2016, will include low-energy electrons and ions (10s of eV to 10s of keV) as well as energetic heavy ions. In this presentation, we will overview the GOES particle measurements available now and in the future and describe the space weather services and scientific investigations that these data support.
A strawman SLR program plan for the 1990s
NASA Technical Reports Server (NTRS)
Degnan, John J.
1994-01-01
A series of programmatic and technical goals for the satellite laser ranging (SLR) network are presented. They are: (1) standardize the performance of the global SLR network; (2) improve the geographic distribution of stations; (3) reduce costs of field operations and data processing; (4) expand the 24 hour temporal coverage to better serve the growing constellation of satellites; (5) improve absolute range accuracy to 2 mm at key stations; (6) improve satellite force, radiative propagation, and station motion models and investigate alternative geodetic analysis techniques; (7) support technical intercomparison and the Terrestrial Reference Frame through global collocations; (8) investigate potential synergisms between GPS and SLR.
Upper atmosphere research satellite program. [to study the chemistry energetics, and dynamics
NASA Technical Reports Server (NTRS)
Huntress, W. T., Jr.
1978-01-01
A satellite program to conduct research on the chemistry, energetics, and dynamics of the upper atmosphere was developed. The scientific goals of the Upper Atmospheric Research Program, the program requirements, and the approach toward meeting those requirements are outlined. An initial series of two overlapping spacecraft missions is described. Both spacecraft are launched and recovered by the STS, one in the winter of 1983 at a 56 deg inclination, and the other a year later at a 70 deg inclination. The duration of each mission is 18 months, and each carries instruments to make global measurements of the temperature, winds, composition, irradation, and radiance in the stratosphere, mesosphere, and lower thermosphere between the tropopause and 120 km altitude. The program requires a dedicated ground-based data system and a science team organization that leads to a strong interaction between the experiments and theory. The program includes supportive observations from other platforms such as rockets, balloons, and the Spacelab.
SEASAT A satellite scatterometer
NASA Technical Reports Server (NTRS)
Bianchi, R.; Heath, A.; Marsh, S.; Borusiewicz, J.
1978-01-01
The analyses performed in the early period of the program which formed the basis of the sensor design is reviewed, along with the sensor design. The test program is outlined, listing all tests performed and the environmental exposure (simulated) for each, as applicable. Ground support equipment designed and built for assembly integration and field testing is described. The software developed during the program and the algorithms/flow diagrams which formed the bases for the software are summarized.
Suborbital Science Program: Dryden Flight Research Center
NASA Technical Reports Server (NTRS)
DelFrate, John
2008-01-01
This viewgraph presentation reviews the suborbital science program at NASA Dryden Flight Research Center. The Program Objectives are given in various areas: (1) Satellite Calibration and Validation (Cal/val)--Provide methods to perform the cal/val requirements for Earth Observing System satellites; (2) New Sensor Development -- Provide methods to reduce risk for new sensor concepts and algorithm development prior to committing sensors to operations; (3) Process Studies -- Facilitate the acquisition of high spatial/temporal resolution focused measurements that are required to understand small atmospheric and surface structures which generate powerful Earth system effects; and (4) Airborne Networking -- Develop disruption-tolerant networking to enable integrated multiple scale measurements of critical environmental features. Dryden supports the NASA Airborne Science Program and the nation in several elements: ER-2, G-3, DC-8, Ikhana (Predator B) & Global Hawk and Reveal. These are reviewed in detail in the presentation.
2006-01-12
VANDENBERG AIR FORCE BASE, Calif. — In the Orbital Sciences Building 836 at Vandenberg Air Force Base in California, workers lower the second satellite onto the payload support structure. Three micro-satellites are being mounted on a payload support structure. The three satellites make up the Space Technology 5 spacecraft, called ST5, and will be launched by a Pegasus XL rocket. The satellites contain miniaturized redundant components and technologies. Each will validate New Millennium Program selected technologies, such as the Cold Gas Micro-Thruster and X-Band Transponder Communication System. After deployment from the Pegasus, the micro-satellites will be positioned in a “string of pearls” constellation that demonstrates the ability to position them to perform simultaneous multi-point measurements of the magnetic field using highly sensitive magnetometers. The data will help scientists understand and map the intensity and direction of the Earth’s magnetic field, its relation to space weather events, and affects on our planet. With such missions, NASA hopes to improve scientists’ ability to accurately forecast space weather and minimize its harmful effects on space- and ground-based systems. Launch of ST5 is scheduled for Feb. 28 from Vandenberg Air Force Base.
CASTOR: Cathode/Anode Satellite Thruster for Orbital Repositioning
NASA Technical Reports Server (NTRS)
Mruphy, Gloria A.
2010-01-01
The purpose of CASTOR (Cathode/Anode Satellite Thruster for Orbital Repositioning) satellite is to demonstrate in Low Earth Orbit (LEO) a nanosatellite that uses a Divergent Cusped Field Thruster (DCFT) to perform orbital maneuvers representative of an orbital transfer vehicle. Powered by semi-deployable solar arrays generating 165W of power, CASTOR will achieve nearly 1 km/s of velocity increment over one year. As a technology demonstration mission, success of CASTOR in LEO will pave the way for a low cost, high delta-V orbital transfer capability for small military and civilian payloads in support of Air Force and NASA missions. The educational objective is to engage graduate and undergraduate students in critical roles in the design, development, test, carrier integration and on-orbit operations of CASTOR as a supplement to their curricular activities. This program is laying the foundation for a long-term satellite construction program at MIT. The satellite is being designed as a part of AFRL's University Nanosatellite Program, which provides the funding and a framework in which student satellite teams compete for a launch to orbit. To this end, the satellite must fit within an envelope of 50cmx50cmx60cm, have a mass of less than 50kg, and meet stringent structural and other requirements. In this framework, the CASTOR team successfully completed PDR in August 2009 and CDR in April 2010 and will compete at FCR (Flight Competition Review) in January 2011. The complexity of the project requires implementation of many systems engineering techniques which allow for development of CASTOR from conception through FCR and encompass the full design, fabrication, and testing process.
SMAP validation of soil moisture products
USDA-ARS?s Scientific Manuscript database
The Soil Moisture Active Passive (SMAP) satellite will be launched by the National Aeronautics and Space Administration in October 2014. SMAP will also incorporate a rigorous calibration and validation program that will support algorithm refinement and provide users with information on the accuracy ...
NASA Technical Reports Server (NTRS)
Miller, George P.
1992-01-01
An agenda and the list of attendees at the Combined Release and Radiation Effects Satellite (CRRES) IWG meeting, held on 14-15 Dec. 1992, are presented. Short summaries of the work that has been completed to date, in support of the contract, are presented.
NASA Technical Reports Server (NTRS)
Jaegle, Lyatt
2005-01-01
This is the final report for "Using satellite observations to quantify biomass burning emissions of NOx and hydrocarbons in the Tropics", funded through the New Investigator Program between March 2001 and March 2005. This period includes a 1-year no-cost extension of the original award. This report summarizes our accomplishments during the duration of the grant. Section 2 focuses on the research component of this work, while section 3 describes the education component. The personnel supported under this project is given in section 4. Section 5 lists publications resulting from NASA support and section 6 provides a list of conferences and seminars where the results were presented.
NASA Technical Reports Server (NTRS)
1974-01-01
The Earth Observatory Satellite (EOS) data management system (DMS) is discussed. The DMS is composed of several subsystems or system elements which have basic purposes and are connected together so that the DMS can support the EOS program by providing the following: (1) payload data acquisition and recording, (2) data processing and product generation, (3) spacecraft and processing management and control, and (4) data user services. The configuration and purposes of the primary or high-data rate system and the secondary or local user system are explained. Diagrams of the systems are provided to support the systems analysis.
Supporting Energy-Related Societal Applications Using NASA's Satellite and Modeling Data
NASA Technical Reports Server (NTRS)
Stackhouse, Paul W., Jr.; Whitlock, C. H.; Chandler, W. S.; Hoell, J. M.; Zhang, T.; Mikovitz, J. C.; Leng, G. S.; Lilienthal, P.
2006-01-01
Improvements to NASA Surface Meteorology and Solar Energy (SSE) web site are now being made through the Prediction of Worldwide Energy Resource (POWER) project under NASA Science Mission Directorate Applied Science Energy Management Program. The purpose of this project is to tailor NASA Science Mission results for energy sector applications and decision support systems. The current status of SSE and research towards upgrading estimates of total, direct and diffuse solar irradiance from NASA satellite measurements and analysis are discussed. Part of this work involves collaborating with partners such as the National Renewable Energy Laboratory (NREL) and the Natural Resources Canada (NRCan). Energy Management and POWER plans including historic, near-term and forecast datasets are also overviewed.
Thermal Modeling in Support of the Edison Demonstration of Smallsat Networks Project
NASA Technical Reports Server (NTRS)
Coker, Robert
2013-01-01
NASA's Edison program is intending to launch a swarm of at least 8 small satellites in 2013. This swarm of 1.5U Cubesats, the Edison Demonstration of Smallsat Networks (EDSN) project, will demonstrate intra-swarm communications and multi-point in-situ space physics data acquisition. In support of the design and testing of the EDSN satellites, a geometrically accurate thermal model has been constructed. Due to the low duty cycle of most components, no significant overheating issues were found. The predicted mininum temperatures of the external antennas are low enough, however, that some mitigation may be in order. The development and application of the model will be discussed in detail.
Recent Simulations of the Late Stages Growth of Jupiter
NASA Technical Reports Server (NTRS)
Lissauer, Jack J.; D'Angelo, Gennaro; Hubickyj, Olenka
2012-01-01
Presented by Lissauer et al. (2009, Icarus 199, 338) are used to test the model of capture of Jupiter's irregular satellites within proto-Jupiter's distended and thermally-supported envelope. We find such capture highly unlikely, since the envelope shrinks too slowly for a large number of moons to be retained, and many of those that would be retained would orbit closer to the planet than do the observed Jovian irregulars. Our calculations do not address (and therefore do not exclude) the possibility that the irregular satellites were captured as a result of gas drag within a circumjovian disk. Support for this research from NASA Outer Planets Research Program is gratefully acknowledged.
Penn State University ground software support for X-ray missions.
NASA Astrophysics Data System (ADS)
Townsley, L. K.; Nousek, J. A.; Corbet, R. H. D.
1995-03-01
The X-ray group at Penn State is charged with two software development efforts in support of X-ray satellite missions. As part of the ACIS instrument team for AXAF, the authors are developing part of the ground software to support the instrument's calibration. They are also designing a translation program for Ginga data, to change it from the non-standard FRF format, which closely parallels the original telemetry format, to FITS.
Partnering to Change the Way NASA and the Nation Communicate Through Space
NASA Technical Reports Server (NTRS)
Vrotsos, Pete A.; Budinger, James M.; Bhasin, Kul; Ponchak, Denise S.
2000-01-01
For at least 20 years, the Space Communications Program at NASA Glenn Research Center (GRC) has focused on enhancing the capability and competitiveness of the U.S. commercial communications satellite industry. GRC has partnered with the industry on the development of enabling technologies to help maintain U.S. preeminence in the worldwide communications satellite marketplace. The Advanced Communications Technology Satellite (ACTS) has been the most significant space communications technology endeavor ever performed at GRC, and the centerpiece of GRC's communication technology program for the last decade. Under new sponsorship from NASA's Human Exploration and Development of Space Enterprise, GRC has transitioned the focus and direction of its program, from commercial relevance to NASA mission relevance. Instead of one major experimental spacecraft and one headquarters sponsor, GRC is now exploring opportunities for all of NASA's Enterprises to benefit from advances in space communications technologies, and accomplish their missions through the use of existing and emerging commercially provided services. A growing vision within NASA is to leverage the best commercial standards, technologies, and services as a starting point to satisfy NASA's unique needs. GRC's heritage of industry partnerships is closely aligned with this vision. NASA intends to leverage the explosive growth of the telecommunications industry through its impressive technology advancements and potential new commercial satellite systems. GRC's partnerships with the industry, academia, and other government agencies will directly support all four NASA's future mission needs, while advancing the state of the art of commercial practice. GRC now conducts applied research and develops and demonstrates advanced communications and network technologies in support of all four NASA Enterprises (Human Exploration and Development of Space, Space Science, Earth Science, and Aero-Space Technologies).
The Results of Complex Research of GSS "SBIRS-Geo 2" Behavior in the Orbit
NASA Astrophysics Data System (ADS)
Sukhov, P. P.; Epishev, V. P.; Sukhov, K. P.; Karpenko, G. F.; Motrunich, I. I.
2017-04-01
The new generation of geosynchronous satellites SBIRS of US Air Force early warning system series (Satellite Early Warning System) replaced the previous DSP-satellite series (Defense Support Program). Currently from the territory of Ukraine, several GSS of DSP series and one "SBIRS-Geo 2" are available to observation. During two years of observations, we have received and analyzed for two satellites more than 30 light curves in B, V, R photometric system. As a result of complex research, we propose a model of "SBIRS-Geo" 2 orbital behavior compared with the same one of the DSP-satellite. To control the entire surface of the Earth with 15-16 sec interval, including the polar regions, 4 SBIRS satellites located every 90 deg. along the equator are enough in GEO orbit. Since DSP-satellites provide the coverage of the Earth's surface to 83 deg. latitudes with a period of 50 sec, DSP-satellites should be 8. All the conclusions were made based on an analysis of photometric and coordinate observations using the simulation of the dynamics of their orbital behavior.
ACTS Ka-Band Earth Stations: Technology, Performance, and Lessons Learned
NASA Technical Reports Server (NTRS)
Reinhart, Richard C.; Struharik, Steven J.; Diamond, John J.; Stewart, David
2000-01-01
The Advanced Communications Technology Satellite (ACTS) Project invested heavily in prototype Ka-band satellite ground terminals to conduct an experiments program with the ACTS satellite. The ACTS experiment's program proposed to validate Ka-band satellite and ground station technology. demonstrate future telecommunication services. demonstrate commercial viability and market acceptability of these new services, evaluate system networking and processing technology, and characterize Ka-band propagation effects, including development of techniques to mitigate signal fading. This paper will present a summary of the fixed ground terminals developed by the NASA Glenn Research Center and its industry partners, emphasizing the technology and performance of the terminals (Part 1) and the lessons learned throughout their six year operation including the inclined orbit phase of operations (Full Report). An overview of the Ka-band technology and components developed for the ACTS ground stations is presented. Next. the performance of the ground station technology and its evolution during the ACTS campaign are discussed to illustrate the technical tradeoffs made during the program and highlight technical advances by industry to support the ACTS experiments program and terminal operations. Finally. lessons learned during development and operation of the user terminals are discussed for consideration of commercial adoption into future Ka-band systems. The fixed ground stations used for experiments by government, academic, and commercial entities used reflector based offset-fed antenna systems ranging in size from 0.35m to 3.4m antenna diameter. Gateway earth stations included two systems, referred to as the NASA Ground Station (NGS) and the Link Evaluation Terminal (LET). The NGS provides tracking, telemetry, and control (TT&C) and Time Division Multiple Access (TDMA) network control functions. The LET supports technology verification and high data rate experiments. The ground stations successfully demonstrated many services and applications at Ka-band in three different modes of operation: circuit switched TDMA using the satellite on-board processor, satellite switched SS-TDMA applications using the on-board Microwave Switch Matrix (MSM), and conventional transponder (bent-pipe) operation. Data rates ranged from 4.8 kbps up to 622 Mbps. Experiments included: 1) low rate (4.8- 1 00's kbps) remote data acquisition and control using small earth stations, 2) moderate rate (1-45 Mbps) experiments included full duplex voice and video conferencing and both full duplex and asymmetric data rate protocol and network evaluation using mid-size ground stations, and 3) link characterization experiments and high data rate (155-622 Mbps) terrestrial and satellite interoperability application experiments conducted by a consortium of experimenters using the large transportable ground stations.
Rural health care support mechanism. Final rule; denial of petition for reconsideration.
2003-12-24
In this document, the Commission modifies its rules to improve the effectiveness of the rural health care support mechanism, which provides discounts to rural health care providers to access modern telecommunications for medical and health maintenance purposes. Because participation in the rural health care support mechanism has not met the Commission's initial projections, the Commission amends its rules to improve the program, increase participation by rural health care providers, and ensure that the benefits of the program continue to be distributed in a fair and equitable manner. In addition, the Commission denies Mobile Satellite Ventures Subsidiary's petition for reconsideration of the 1997 Universal Service Order.
Characterizing the scientific potential of satellite sensors. [San Francisco, California
NASA Technical Reports Server (NTRS)
1984-01-01
Analytical and programming support is to be provided to characterize the potential of the LANDSAT thematic mapper (TM) digital imagery for scientific investigations in the Earth sciences and in terrestrial physics. In addition, technical support to define lower atmospheric and terrestrial surface experiments for the space station and technical support to the Research Optical Sensor (ROS) study scientist for advanced studies in remote sensing are to be provided. Eleven radiometric calibration and correction programs are described. Coherent noise and bright target saturation correction are discussed along with image processing on the LAS/VAX and Hp-300/IDIMS. An image of San Francisco, California from TM band 2 is presented.
Space Operations Center system analysis. Volume 3, book 2: SOC system definition report, revision A
NASA Technical Reports Server (NTRS)
1982-01-01
The Space Operations Center (SOC) orbital space station program operations are described. A work breakdown structure for the general purpose support equipment, construction and transportation support, and resupply and logistics support systems is given. The basis for the design of each element is presented, and a mass estimate for each element supplied. The SOC build-up operation, construction, flight support, and satellite servicing operations are described. Detailed programmatics and cost analysis are presented.
NASA Technical Reports Server (NTRS)
Stricker, L. T.
1975-01-01
The LOVES computer program was employed to analyze the geosynchronous portion of the NASA's 1973 automated satellite mission model from 1980 to 1990. The objectives of the analyses were: (1) to demonstrate the capability of the LOVES code to provide the depth and accuracy of data required to support the analyses; and (2) to tradeoff the concept of space servicing automated satellites composed of replaceable modules against the concept of replacing expendable satellites upon failure. The computer code proved to be an invaluable tool in analyzing the logistic requirements of the various test cases required in the tradeoff. It is indicated that the concept of space servicing offers the potential for substantial savings in the cost of operating automated satellite systems.
NASA Technical Reports Server (NTRS)
Dickey, Tommy; Dobeck, Laura; Sigurdson, David; Zedler, Sarah; Manov, Derek; Yu, Xuri
2001-01-01
It has been recognized that optical moorings are important platforms for the validation of Sea-Viewing Wide Field-of-view Sensor (SeaWiFS). It was recommended that optical moorings be maintained in order to: (1) provide long-term time series comparisons between in situ and SeaWIFS measurements of normalized water-leaving radiance; (2) develop and test algorithms for pigment biomass and phytoplankton primary productivity; and (3) provide long-term, virtually continuous in situ observations which can be used to determine and optimize the accuracy of derived satellite products. These applications require the use of in situ radiometers for long periods of time to evaluate and correct for inherent satellite undersampling (aliasing and biasing) and degradation of satellite color sensors (e.g., drifts as experienced by the Coastal Zone Color Scanner). The Bermuda Testbed Mooring (BTM) program was initiated in 1994 at a site located about 80km southeast of Bermuda in waters of about 4530 m depth. In August 1997, with NASA's support, we started to provide the Sensor Intercomparison and Merger for Biological and Interdisciplinary Oceanic Studies (SIMBIOS) program with large volumes of high frequency, long-term time-series bio-optical data from the BTM for SeaWiFS satellite ocean color groundtruthing and algorithm development. This NASA supported portion of the BTM activity spanned three years and covered five BTM deployments. During these three years, the quality of radiometric data has improved dramatically. Excellent agreement between BTM moored data and both SeaWiFS and nearby ship profile radiometric data demonstrate that technical advances in the moored optical observations have reduced the major difficulties that moored platforms face: biofouling and less frequent calibration.
NASA Technical Reports Server (NTRS)
Myers, H. L.
1973-01-01
The programmatic analyses conducted to achieve the objectives of the study are presented. The characteristics are examined of alternate geosynchronous programs based on servicing concepts, geosynchronous platform configurations, and equipment definitions which have evolved during the study. The logistics support necessary to carry out programs using these systems is defined considering alternate approaches for on-orbit servicing. The costs of the resultant programs are then determined and the alternate program approaches compared. Conventional programs with expendable satellites are also defined to the extent necessary to permit comparison with on-orbit serviced platform programs.
NASA Technical Reports Server (NTRS)
1974-01-01
The work breakdown structure (WBS) dictionary for the Earth Observatory Satellite (EOS) is defined. The various elements of the EOS program are examined to include the aggregate of hardware, computer software, services, and data required to develop, produce, test, support, and operate the space vehicle and the companion ground data management system. A functional analysis of the EOS mission is developed. The operations for three typical EOS missions, Delta, Titan, and Shuttle launched are considered. The functions were determined for the top program elements, and the mission operations, function 2.0, was expanded to level one functions. Selection of ten level one functions for further analysis to level two and three functions were based on concern for the EOS operations and associated interfaces.
JPSS Science Data Services for the Direct Readout Community
NASA Technical Reports Server (NTRS)
Chander, Gyanesh; Lutz, Bob
2014-01-01
The Suomi National Polar-orbiting Partnership (S-NPP) and Joint Polar Satellite System (JPSS) High Rate Data (HRD) link provides Direct Broadcast data to users in real-time, utilizing their own remote field terminals. The Field Terminal Support (FTS) provides the resources needed to support the Direct Readout communities by providing software, documentation, and periodic updates to enable them to produce data products from SNPP and JPSS. The FTS distribution server will also provide the necessary ancillary and auxiliary data needed for processing the broadcasts, as well as making orbital data available to assist in locating the satellites of interest. In addition, the FTS provides development support for the algorithm and software through GSFC Direct Readout Laboratory (DRL) International Polar Orbiter Processing Package (IPOPP) and University of Wisconsin (UWISC) Community Satellite Processing Package (CSPP), to enable users to integrate the algorithms into their remote terminals. The support the JPSS Program provides to the institutions developing and maintaining these two software packages, will demonstrate the ability to produce ready-to-use products from the HRD link and provide risk reduction effort at a minimal cost. This paper discusses the key functions and system architecture of FTS.
47 CFR 76.1002 - Specific unfair practices prohibited.
Code of Federal Regulations, 2013 CFR
2013-10-01
... MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Competitive Access to Cable Programming § 76.1002 Specific... interest in a satellite cable programming vendor or in a satellite broadcast programming vendor shall... such vendor's prices, terms and conditions for the sale of, satellite cable programming or satellite...
47 CFR 76.1002 - Specific unfair practices prohibited.
Code of Federal Regulations, 2011 CFR
2011-10-01
... MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Competitive Access to Cable Programming § 76.1002 Specific... interest in a satellite cable programming vendor or in a satellite broadcast programming vendor shall... such vendor's prices, terms and conditions for the sale of, satellite cable programming or satellite...
NASA Astrophysics Data System (ADS)
1984-08-01
The implementation of broadcasting satellite service for the Western Hemisphere was planned. Broadcasting satellites transmit television programs and other information services from Earth orbit to home or office antennas. At the request of the Senate Appropriations Subcommittee on Commerce, Justice, State and the Judiciary, GAO reviewed conference results as compared to established conference objectives and examined the interagency coordination of U.S. participation in this international conference. The United States basically achieved its two most important conference objectives: adopting a technically and procedurally flexible plan for broadcasting satellite service and obtaining a sufficient allocation of satellite orbit slots and frequencies to meet domestic needs. The U.S. was unable, however, to obtain agreement on adopting a maximum signal power level for satellites. The Department of State could improve its preparation, internal coordination, and administrative support for future international conferences and recommends actions to the Secretary of State to improve its international telecommunications activities.
2008-11-04
VANDENBERG AIR FORCE BASE, Calif. – The NOAA-N Prime spacecraft is positioned for movement into NASA's Hazardous Processing Facility on Vandenberg Air Force Base in California. NOAA-N Prime was built by Lockheed Martin Space Systems Company for its Advanced Television Infrared Observational Satellites -N series. It is the latest polar-orbiting operational environmental weather satellite developed by NASA for the National Oceanic and Atmospheric Administration. The satellite will provide a platform to support environmental monitoring instruments for imaging and measuring the Earth's atmosphere, its surface and cloud cover, including Earth radiation, atmospheric ozone, aerosol distribution, sea surface temperature and vertical temperature and water profiles in the troposphere and stratosphere. The satellite will assist in measuring proton and electron fluxes at orbit altitude, collecting data from remote platforms to assist the Search and Rescue Satellite-Aided Tracking system. The satellite will be launched from the Western Range at Vandenberg AFB by a United Launch Alliance two-stage Delta II rocket managed by NASA's Launch Service Program at Kennedy. Photo credit: NASA/Jerry Nagy, VAFB
2008-11-04
VANDENBERG AIR FORCE BASE, Calif. – The NOAA-N Prime spacecraft is offloaded from the transporter at NASA's Hazardous Processing Facility on Vandenberg Air Force Base in California. NOAA-N Prime was built by Lockheed Martin Space Systems Company for its Advanced Television Infrared Observational Satellites -N series. It is the latest polar-orbiting operational environmental weather satellite developed by NASA for the National Oceanic and Atmospheric Administration. The satellite will provide a platform to support environmental monitoring instruments for imaging and measuring the Earth's atmosphere, its surface and cloud cover, including Earth radiation, atmospheric ozone, aerosol distribution, sea surface temperature and vertical temperature and water profiles in the troposphere and stratosphere. The satellite will assist in measuring proton and electron fluxes at orbit altitude, collecting data from remote platforms to assist the Search and Rescue Satellite-Aided Tracking system. The satellite will be launched from the Western Range at Vandenberg AFB by a United Launch Alliance two-stage Delta II rocket managed by NASA's Launch Service Program at Kennedy. Photo credit: NASA/Jerry Nagy, VAFB
2008-11-04
VANDENBERG AIR FORCE BASE, Calif. – The NOAA-N Prime spacecraft arrives at NASA's Hazardous Processing Facility on Vandenberg Air Force Base in California. NOAA-N Prime was built by Lockheed Martin Space Systems Company for its Advanced Television Infrared Observational Satellites -N series. It is the latest polar-orbiting operational environmental weather satellite developed by NASA for the National Oceanic and Atmospheric Administration. The satellite will provide a platform to support environmental monitoring instruments for imaging and measuring the Earth's atmosphere, its surface and cloud cover, including Earth radiation, atmospheric ozone, aerosol distribution, sea surface temperature and vertical temperature and water profiles in the troposphere and stratosphere. The satellite will assist in measuring proton and electron fluxes at orbit altitude, collecting data from remote platforms to assist the Search and Rescue Satellite-Aided Tracking system. The satellite will be launched from the Western Range at Vandenberg AFB by a United Launch Alliance two-stage Delta II rocket managed by NASA's Launch Service Program at Kennedy. Photo credit: NASA/Jerry Nagy, VAFB
2008-11-04
VANDENBERG AIR FORCE BASE, Calif. – The NOAA-N Prime spacecraft is offloaded from a C-5 aircraft after arrival at Vandenberg Air Force Base Airfield in California. NOAA-N Prime was built by Lockheed Martin Space Systems Company for its Advanced Television Infrared Observational Satellites -N series. It is the latest polar-orbiting operational environmental weather satellite developed by NASA for the National Oceanic and Atmospheric Administration. The satellite will provide a platform to support environmental monitoring instruments for imaging and measuring the Earth's atmosphere, its surface and cloud cover, including Earth radiation, atmospheric ozone, aerosol distribution, sea surface temperature and vertical temperature and water profiles in the troposphere and stratosphere. The satellite will assist in measuring proton and electron fluxes at orbit altitude, collecting data from remote platforms to assist the Search and Rescue Satellite-Aided Tracking system. The satellite will be launched from the Western Range at Vandenberg AFB by a United Launch Alliance two-stage Delta II rocket managed by NASA's Launch Service Program at Kennedy. Photo credit: NASA/Jerry Nagy, VAFB
2008-11-04
VANDENBERG AIR FORCE BASE, Calif. – Workers move the NOAA-N Prime spacecraft into NASA's Hazardous Processing Facility on Vandenberg Air Force Base in California. NOAA-N Prime was built by Lockheed Martin Space Systems Company for its Advanced Television Infrared Observational Satellites -N series. It is the latest polar-orbiting operational environmental weather satellite developed by NASA for the National Oceanic and Atmospheric Administration. The satellite will provide a platform to support environmental monitoring instruments for imaging and measuring the Earth's atmosphere, its surface and cloud cover, including Earth radiation, atmospheric ozone, aerosol distribution, sea surface temperature and vertical temperature and water profiles in the troposphere and stratosphere. The satellite will assist in measuring proton and electron fluxes at orbit altitude, collecting data from remote platforms to assist the Search and Rescue Satellite-Aided Tracking system. The satellite will be launched from the Western Range at Vandenberg AFB by a United Launch Alliance two-stage Delta II rocket managed by NASA's Launch Service Program at Kennedy. Photo credit: NASA/Jerry Nagy, VAFB
2008-11-04
VANDENBERG AIR FORCE BASE, Calif. – The NOAA-N Prime spacecraft is offloaded from a C-5 aircraft after arrival at Vandenberg Air Force Base Airfield in California. NOAA-N Prime was built by Lockheed Martin Space Systems Company for its Advanced Television Infrared Observational Satellites -N series. It is the latest polar-orbiting operational environmental weather satellite developed by NASA for the National Oceanic and Atmospheric Administration. The satellite will provide a platform to support environmental monitoring instruments for imaging and measuring the Earth's atmosphere, its surface and cloud cover, including Earth radiation, atmospheric ozone, aerosol distribution, sea surface temperature and vertical temperature and water profiles in the troposphere and stratosphere. The satellite will assist in measuring proton and electron fluxes at orbit altitude, collecting data from remote platforms to assist the Search and Rescue Satellite-Aided Tracking system. The satellite will be launched from the Western Range at Vandenberg AFB by a United Launch Alliance two-stage Delta II rocket managed by NASA's Launch Service Program at Kennedy. Photo credit: NASA/Jerry Nagy, VAFB
David Florida Laboratory: Support for mobile satellite communications
NASA Technical Reports Server (NTRS)
Dumoulin, Jean-Guy; Mamen, Rolf
1995-01-01
The comprehensive integration and environmental (including RF) test facilities of the Canadian Space Agency's David Florida Laboratory (CSA)(DFL) were used extensively for the MSAT Program. Following a description of the facilities, the paper outlines their application to the qualification of the two MSAT satellites following an overview of the test plan. Particular emphasis is given to passive intermodulation measurement (PIM) demands, which for the MSAT satellites, contributed to the need to extend the anechoic chamber. The extended chamber was also used for an EMC test and SAR signature test of the RADARSAT satellite. The DFL's facilities are being used for additional aspects of mobile satellite communications. One shielded anechoic Extra High Frequency (EHF) chamber and associated test equipment are employed predominantly for measuring the performance of the IRIDIUM satellites' Engineering Model Gateway Moveable Antennas (EM)(GMA). Other chambers are used for testing aeronautical antennas on behalf of Inmarsat. Still others combine thermal and PIM testing. The paper concludes with a review of the test requirements of evolving satcom missions such as Inmarsat Aero-1.
Power System Test and Verification at Satellite Level
NASA Astrophysics Data System (ADS)
Simonelli, Giulio; Mourra, Olivier; Tonicello, Ferdinando
2008-09-01
Most of the articles on Power Systems deal with the architecture and technical solutions related to the functionalities of the power system and their performances. Very few articles, if none, address integration and verification aspects of the Power System at satellite level and the related issues with the Power EGSE (Electrical Ground Support Equipment), which, also, have to support the AIT/AIV (Assembly Integration Test and Verification) program of the satellite and, eventually, the launch campaign. In the last years a more complex development and testing concept based on MDVE (Model Based Development and Verification Environment) has been introduced. In the MDVE approach the simulation software is used to simulate the Satellite environment and, in the early stages, the satellites units. This approach changed significantly the Power EGSE requirements. Power EGSEs or, better, Power SCOEs (Special Check Out Equipment) are now requested to provide the instantaneous power generated by the solar array throughout the orbit. To achieve that, the Power SCOE interfaces to the RTS (Real Time Simulator) of the MDVE. The RTS provides the instantaneous settings, which belong to that point along the orbit, to the Power SCOE so that the Power SCOE generates the instantaneous {I,V} curve of the SA (Solar Array). That means a real time test for the power system, which is even more valuable for EO (Earth Observation) satellites where the Solar Array aspect angle to the sun is rarely fixed, and the power load profile can be particularly complex (for example, in radar applications). In this article the major issues related to integration and testing of Power Systems will be discussed taking into account different power system topologies (i.e. regulated bus, unregulated bus, battery bus, based on MPPT or S3R…). Also aspects about Power System AIT I/Fs (interfaces) and Umbilical I/Fs with the launcher and the Power SCOE I/Fs will be addressed. Last but not least, protection strategy of the Power System during AIT/AIV program will also be discussed. The objective of this discussion is also to provide the Power System Engineer with a checklist of key aspects linked to the satellite AIT/AIV program, that have to be considered in the early phases of a new power system development.
Antenna Scan Mechanism for an Inter Satellite Link of a Constellation Program
NASA Astrophysics Data System (ADS)
Köker, Ingo; Härtel, Frank
2015-09-01
For a constellation program, RF Inter Satellite Links between single satellites can support ranging and communication for uploading mission data or telecommands. These data shall be uploaded from one single ground station to the next reachable satellite and transmitted by the Inter Satellite Link to further dedicated satellites. For this function each satellite has to be equipped with 2 Antenna Scan Mechanisms (ASM) for data transfer in the K-Band.The main challenges for the mechanisms are the high speed position change requirement, low mass requirement and the design to cost approach. Furthermore a small envelope to accommodate the 2- axes antenna scan mechanism was provided. The maximum position change of +/- 180° needs to be reached within 3 seconds. All requirements shall be achieved by relying on the heritage design of our downlink antenna pointing mechanism product.The ASM design approach was based on our 2-axes steerable downlink antenna; however during the definition phase it turned out that some major changes have to be implemented due to mission requirements (high operation speed and long lifetime). Following the design to cost approach most components could be procured from industrial standard but had to be qualified in terms of functionality, performance and life. The following industrial components have been selected: - Bearings procured from an industrial supplier and modified (cage) by a supporting supplier - The selected actuator is a standard stepper motor equipped with redundant windings - The slip ring design was used from a previous project in order to keep the heritage - Suitable rotary joints for the RF link were provided by a small and flexible company However at the very beginning of the project some difficulties with the bearings selection and procurementhave been identified. Since the most suitable standard catalog bearings were not available in time, we were forced to use alternatives. In parallel due to envelope constrains the re-location of one actuator followed by additional design modifications became necessary. Finally this design modification impacts the bearing loads and consequently the selection of other bearings became necessary.The paper will show the error propagation generated by lead time issue of a main component and the test results of the final design including friction tests, and first measurements during the life test program.
M.Y.S.P.A.C.E. : Multinational Youth Studying Practical Applications of Climatic Events
NASA Astrophysics Data System (ADS)
Mckay, M.; Arvedson, J. P.; Arvedson, P.
2014-12-01
M.Y. S.P.A.C.E. (Multinational Youth Studying Practical Applications of Climatic Events) is an international collaboration of high school students engaged in self-selected research projects on the local impact of global environmental issues. Students work with their own, trained, Teacher Leaders at their school sites using both locally generated and satellite-based remote-sensing data with support from the National Oceanic and Atmospheric Administration (NOAA) and the National Aeronautics and Space Administration (NASA). Teams from each school meet at the annual Satellites & Education Conference to discover global trends in their collective data and present their findings. Students learn and practice techniques of scientific investigation; methods of data processing, analysis and interpretation; leadership; and effective communication. They work with NOAA and NASA scientists and engineers, experience university campus life, and can apply for special internships at selected university research centers such as the Center for Energy and Sustainability (CE&S), the Center for Spatial Analysis and Remote Sensing (CSARS), and graduate research opportunities in Geosciences and Environment. The M.Y. S.P.A.C.E. Program is an initiative of the Satellites & Education Conference, which is produced by the non-profit Satellite Educators Association. It is administered from the campus of California State University, Los Angeles. NOAA, NASA, and the NOAA-CREST West grant support the program. It is aligned with NOAA goals of building excitement about careers in science, math, engineering and technology.
Nanosatellite program at Sandia National Laboratories
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reynolds, D.A.; Kern, J.P.; Schoeneman, J.L.
1999-11-11
The concept of building extremely small satellites which, either independently or as a collective, can perform missions which are comparable to their much larger cousins, has fascinated scientists and engineers for several years now. In addition to the now commonplace microelectronic integrated circuits, the more recent advent of technologies such as photonic integrated circuits (PIC's) and micro-electromechanical systems (MEMS) have placed such a goal within their grasp. Key to the acceptance of this technology will be the ability to manufacture these very small satellites in quantity without sacrificing their performance or versatility. In support of its nuclear treaty verification, proliferationmore » monitoring and other remote sensing missions, Sandia National laboratories has had a 35-year history of providing highly capable systems, densely packaged for unintrusive piggyback missions on government satellites. As monitoring requirements have become more challenging and remote sensing technologies become more sophisticated, packaging greater capability into these systems has become a requirement. Likewise, dwindling budgets are pushing satellite programs toward smaller and smaller platforms, reinforcing the need for smaller, cheaper satellite systems. In the next step of its miniaturization plan, Sandia has begun development of technologies for a highly integrated miniature satellite. The focus of this development is to achieve nanosat or smaller dimensions while maintaining significant capability utilizing semiconductor wafer-level integration and, at the same time promoting affordability through modular generic construction.« less
Alkaline regenerative fuel cell energy storage system for manned orbital satellites
NASA Technical Reports Server (NTRS)
Martin, R. E.; Gitlow, B.; Sheibley, D. W.
1982-01-01
It is pointed out that the alkaline regenerative fuel cell system represents a highly efficient, lightweight, reliable approach for providing energy storage in an orbiting satellite. In addition to its energy storage function, the system can supply hydrogen and oxygen for attitude control of the satellite and for life support. A summary is presented of the results to date obtained in connection with the NASA-sponsored fuel cell technology advancement program, giving particular attention to the requirements of the alkaline regenerative fuel cell and the low-earth mission. Attention is given to system design guidelines, weight considerations, gold-platinum cathode cell performance, matrix development, the electrolyte reservoir plate, and the cyclical load profile tests.
Upper Klamath Basin Landsat Image for September 30, 2004: Path 44 Row 31
Snyder, Daniel T.
2012-01-01
This subset of a Landsat-5 image shows part of the upper Klamath Basin. The original images were obtained from the U.S. Geological Survey Earth Resources Observation and Science Center (EROS). EROS is responsible for archive management and distribution of Landsat data products. The Landsat-5 satellite is part of an ongoing mission to provide quality remote sensing data in support of research and applications activities. The launch of Landsat-5 on March 1, 1984 marks the addition of the fifth satellite to the Landsat series. The Landsat-5 satellite carries the Thematic Mapper (TM) sensor. More information on the Landsat program can be found online at http://landsat.usgs.gov/.
Upper Klamath Basin Landsat Image for July 18, 2006: Path 44 Row 31
Snyder, Daniel T.
2012-01-01
This subset of a Landsat-5 image shows part of the upper Klamath Basin. The original images were obtained from the U.S. Geological Survey Earth Resources Observation and Science Center (EROS). EROS is responsible for archive management and distribution of Landsat data products. The Landsat-5 satellite is part of an ongoing mission to provide quality remote sensing data in support of research and applications activities. The launch of Landsat-5 on March 1, 1984 marks the addition of the fifth satellite to the Landsat series. The Landsat-5 satellite carries the Thematic Mapper (TM) sensor. More information on the Landsat program can be found online at http://landsat.usgs.gov/.
Upper Klamath Basin Landsat Image for October 29, 2006: Path 45 Rows 30 and 31
Snyder, Daniel T.
2012-01-01
This image is a mosaic of Landsat-5 images of the upper Klamath Basin. The original images were obtained from the U.S. Geological Survey Earth Resources Observation and Science Center (EROS). EROS is responsible for archive management and distribution of Landsat data products. The Landsat-5 satellite is part of an ongoing mission to provide quality remote sensing data in support of research and applications activities. The launch of Landsat-5 on March 1, 1984 marks the addition of the fifth satellite to the Landsat series. The Landsat-5 satellite carries the Thematic Mapper (TM) sensor. More information on the Landsat program can be found online at http://landsat.usgs.gov/.
Upper Klamath Basin Landsat Image for June 23, 2006: Path 45 Rows 30 and 31
Snyder, Daniel T.
2012-01-01
This image is a mosaic of Landsat-5 images of the upper Klamath Basin. The original images were obtained from the U.S. Geological Survey Earth Resources Observation and Science Center (EROS). EROS is responsible for archive management and distribution of Landsat data products. The Landsat-5 satellite is part of an ongoing mission to provide quality remote sensing data in support of research and applications activities. The launch of Landsat-5 on March 1, 1984 marks the addition of the fifth satellite to the Landsat series. The Landsat-5 satellite carries the Thematic Mapper (TM) sensor. More information on the Landsat program can be found online at http://landsat.usgs.gov/.
Upper Klamath Basin Landsat Image for August 29, 2004: Path 44 Row 31
Snyder, Daniel T.
2012-01-01
This subset of a Landsat-5 image shows part of the upper Klamath Basin. The original images were obtained from the U.S. Geological Survey Earth Resources Observation and Science Center (EROS). EROS is responsible for archive management and distribution of Landsat data products. The Landsat-5 satellite is part of an ongoing mission to provide quality remote sensing data in support of research and applications activities. The launch of Landsat-5 on March 1, 1984 marks the addition of the fifth satellite to the Landsat series. The Landsat-5 satellite carries the Thematic Mapper (TM) sensor. More information on the Landsat program can be found online at http://landsat.usgs.gov/.
Upper Klamath Basin Landsat Image for September 21, 2004: Path 45 Rows 30 and 31
Snyder, Daniel T.
2012-01-01
This image is a mosaic of Landsat-5 images of the upper Klamath Basin. The original images were obtained from the U.S. Geological Survey Earth Resources Observation and Science Center (EROS). EROS is responsible for archive management and distribution of Landsat data products. The Landsat-5 satellite is part of an ongoing mission to provide quality remote sensing data in support of research and applications activities. The launch of Landsat-5 on March 1, 1984 marks the addition of the fifth satellite to the Landsat series. The Landsat-5 satellite carries the Thematic Mapper (TM) sensor. More information on the Landsat program can be found online at http://landsat.usgs.gov/.
Upper Klamath Basin Landsat Image for July 25, 2006: Path 45 Rows 30 and 31
Snyder, Daniel T.
2012-01-01
This image is a mosaic of Landsat-5 images of the upper Klamath Basin. The original images were obtained from the U.S. Geological Survey Earth Resources Observation and Science Center (EROS). EROS is responsible for archive management and distribution of Landsat data products. The Landsat-5 satellite is part of an ongoing mission to provide quality remote sensing data in support of research and applications activities. The launch of Landsat-5 on March 1, 1984 marks the addition of the fifth satellite to the Landsat series. The Landsat-5 satellite carries the Thematic Mapper (TM) sensor. More information on the Landsat program can be found online at http://landsat.usgs.gov/.
Upper Klamath Basin Landsat Image for July 28, 2004: Path 44 Row 31
Snyder, Daniel T.
2012-01-01
This subset of a Landsat-5 image shows part of the upper Klamath Basin. The original images were obtained from the U.S. Geological Survey Earth Resources Observation and Science Center (EROS). EROS is responsible for archive management and distribution of Landsat data products. The Landsat-5 satellite is part of an ongoing mission to provide quality remote sensing data in support of research and applications activities. The launch of Landsat-5 on March 1, 1984 marks the addition of the fifth satellite to the Landsat series. The Landsat-5 satellite carries the Thematic Mapper (TM) sensor. More information on the Landsat program can be found online at http://landsat.usgs.gov/.
Upper Klamath Basin Landsat Image for October 22, 2006: Path 44 Row 31
Snyder, Daniel T.
2012-01-01
This subset of a Landsat-5 image shows part of the upper Klamath Basin. The original images were obtained from the U.S. Geological Survey Earth Resources Observation and Science Center (EROS). EROS is responsible for archive management and distribution of Landsat data products. The Landsat-5 satellite is part of an ongoing mission to provide quality remote sensing data in support of research and applications activities. The launch of Landsat-5 on March 1, 1984 marks the addition of the fifth satellite to the Landsat series. The Landsat-5 satellite carries the Thematic Mapper (TM) sensor. More information on the Landsat program can be found online at http://landsat.usgs.gov/.
Upper Klamath Basin Landsat Image for November 8, 2004: Path 45 Rows 30 and 31
Snyder, Daniel T.
2012-01-01
This image is a mosaic of Landsat-5 images of the upper Klamath Basin. The original images were obtained from the U.S. Geological Survey Earth Resources Observation and Science Center (EROS). EROS is responsible for archive management and distribution of Landsat data products. The Landsat-5 satellite is part of an ongoing mission to provide quality remote sensing data in support of research and applications activities. The launch of Landsat-5 on March 1, 1984 marks the addition of the fifth satellite to the Landsat series. The Landsat-5 satellite carries the Thematic Mapper (TM) sensor. More information on the Landsat program can be found online at http://landsat.usgs.gov/.
Upper Klamath Basin Landsat Image for September 27, 2006: Path 45 Rows 30 and 31
Snyder, Daniel T.
2012-01-01
This image is a mosaic of Landsat-5 images of the upper Klamath Basin. The original images were obtained from the U.S. Geological Survey Earth Resources Observation and Science Center (EROS). EROS is responsible for archive management and distribution of Landsat data products. The Landsat-5 satellite is part of an ongoing mission to provide quality remote sensing data in support of research and applications activities. The launch of Landsat-5 on March 1, 1984 marks the addition of the fifth satellite to the Landsat series. The Landsat-5 satellite carries the Thematic Mapper (TM) sensor. More information on the Landsat program can be found online at http://landsat.usgs.gov/.
Upper Klamath Basin Landsat Image for August 19, 2006: Path 44 Row 31
Snyder, Daniel T.
2012-01-01
This image is a mosaic of Landsat-5 images of the upper Klamath Basin. The original images were obtained from the U.S. Geological Survey Earth Resources Observation and Science Center (EROS). EROS is responsible for archive management and distribution of Landsat data products. The Landsat-5 satellite is part of an ongoing mission to provide quality remote sensing data in support of research and applications activities. The launch of Landsat-5 on March 1, 1984 marks the addition of the fifth satellite to the Landsat series. The Landsat-5 satellite carries the Thematic Mapper (TM) sensor. More information on the Landsat program can be found online at http://landsat.usgs.gov/.
Upper Klamath Basin Landsat Image for August 19, 2006: Path 44 Row 31
Snyder, Daniel T.
2012-01-01
This subset of a Landsat-5 image shows part of the upper Klamath Basin. The original images were obtained from the U.S. Geological Survey Earth Resources Observation and Science Center (EROS). EROS is responsible for archive management and distribution of Landsat data products. The Landsat-5 satellite is part of an ongoing mission to provide quality remote sensing data in support of research and applications activities. The launch of Landsat-5 on March 1, 1984 marks the addition of the fifth satellite to the Landsat series. The Landsat-5 satellite carries the Thematic Mapper (TM) sensor. More information on the Landsat program can be found online at http://landsat.usgs.gov/.
Upper Klamath Basin Landsat Image for October 16, 2004: Path 44 Row 31
Snyder, Daniel T.
2012-01-01
This subset of a Landsat-5 image shows part of the upper Klamath Basin. The original images were obtained from the U.S. Geological Survey Earth Resources Observation and Science Center (EROS). EROS is responsible for archive management and distribution of Landsat data products. The Landsat-5 satellite is part of an ongoing mission to provide quality remote sensing data in support of research and applications activities. The launch of Landsat-5 on March 1, 1984 marks the addition of the fifth satellite to the Landsat series. The Landsat-5 satellite carries the Thematic Mapper (TM) sensor. More information on the Landsat program can be found online at http://landsat.usgs.gov/.
Upper Klamath Basin Landsat Image for August 4, 2004: Path 45 Rows 30 and 31
Snyder, Daniel T.
2012-01-01
This image is a mosaic of Landsat-5 images of the upper Klamath Basin. The original images were obtained from the U.S. Geological Survey Earth Resources Observation and Science Center (EROS). EROS is responsible for archive management and distribution of Landsat data products. The Landsat-5 satellite is part of an ongoing mission to provide quality remote sensing data in support of research and applications activities. The launch of Landsat-5 on March 1, 1984 marks the addition of the fifth satellite to the Landsat series. The Landsat-5 satellite carries the Thematic Mapper (TM) sensor. More information on the Landsat program can be found online at http://landsat.usgs.gov/.
Upper Klamath Basin Landsat Image for September 20, 2006: Path 44 Row 31
Snyder, Daniel T.
2012-01-01
This subset of a Landsat-5 image shows part of the upper Klamath Basin. The original images were obtained from the U.S. Geological Survey Earth Resources Observation and Science Center (EROS). EROS is responsible for archive management and distribution of Landsat data products. The Landsat-5 satellite is part of an ongoing mission to provide quality remote sensing data in support of research and applications activities. The launch of Landsat-5 on March 1, 1984 marks the addition of the fifth satellite to the Landsat series. The Landsat-5 satellite carries the Thematic Mapper (TM) sensor. More information on the Landsat program can be found online at http://landsat.usgs.gov/.
Upper Klamath Basin Landsat Image for October 7, 2004: Path 45 Rows 30 and 31
Snyder, Daniel T.
2012-01-01
This image is a mosaic of Landsat-5 images of the upper Klamath Basin. The original images were obtained from the U.S. Geological Survey Earth Resources Observation and Science Center (EROS). EROS is responsible for archive management and distribution of Landsat data products. The Landsat-5 satellite is part of an ongoing mission to provide quality remote sensing data in support of research and applications activities. The launch of Landsat-5 on March 1, 1984 marks the addition of the fifth satellite to the Landsat series. The Landsat-5 satellite carries the Thematic Mapper (TM) sensor. More information on the Landsat program can be found online at http://landsat.usgs.gov/.
Upper Klamath Basin Landsat Image for July 9, 2006: Path 45 Rows 30 and 31
Snyder, Daniel T.
2012-01-01
This image is a mosaic of Landsat-5 images of the upper Klamath Basin. The original images were obtained from the U.S. Geological Survey Earth Resources Observation and Science Center (EROS). EROS is responsible for archive management and distribution of Landsat data products. The Landsat-5 satellite is part of an ongoing mission to provide quality remote sensing data in support of research and applications activities. The launch of Landsat-5 on March 1, 1984 marks the addition of the fifth satellite to the Landsat series. The Landsat-5 satellite carries the Thematic Mapper (TM) sensor. More information on the Landsat program can be found online at http://landsat.usgs.gov/.
Upper Klamath Basin Landsat Image for May 6, 2006: Path 45 Rows 30 and 31
Snyder, Daniel T.
2012-01-01
This image is a mosaic of Landsat-5 images of the upper Klamath Basin. The original images were obtained from the U.S. Geological Survey Earth Resources Observation and Science Center (EROS). EROS is responsible for archive management and distribution of Landsat data products. The Landsat-5 satellite is part of an ongoing mission to provide quality remote sensing data in support of research and applications activities. The launch of Landsat-5 on March 1, 1984 marks the addition of the fifth satellite to the Landsat series. The Landsat-5 satellite carries the Thematic Mapper (TM) sensor. More information on the Landsat program can be found online at http://landsat.usgs.gov/.
Upper Klamath Basin Landsat Image for June 26, 2004: Path 44 Row 31
Snyder, Daniel T.
2012-01-01
This subset of a Landsat-5 image shows part of the upper Klamath Basin. The original images were obtained from the U.S. Geological Survey Earth Resources Observation and Science Center (EROS). EROS is responsible for archive management and distribution of Landsat data products. The Landsat-5 satellite is part of an ongoing mission to provide quality remote sensing data in support of research and applications activities. The launch of Landsat-5 on March 1, 1984 marks the addition of the fifth satellite to the Landsat series. The Landsat-5 satellite carries the Thematic Mapper (TM) sensor. More information on the Landsat program can be found online at http://landsat.usgs.gov/.
Upper Klamath Basin Landsat Image for April 29, 2006: Path 44 Row 31
Snyder, Daniel T.
2012-01-01
This subset of a Landsat-5 image shows part of the upper Klamath Basin. The original images were obtained from the U.S. Geological Survey Earth Resources Observation and Science Center (EROS). EROS is responsible for archive management and distribution of Landsat data products. The Landsat-5 satellite is part of an ongoing mission to provide quality remote sensing data in support of research and applications activities. The launch of Landsat-5 on March 1, 1984 marks the addition of the fifth satellite to the Landsat series. The Landsat-5 satellite carries the Thematic Mapper (TM) sensor. More information on the Landsat program can be found online at http://landsat.usgs.gov/.
Upper Klamath Basin Landsat Image for July 12, 2004: Path 44 Row 31
Snyder, Daniel T.
2012-01-01
This subset of a Landsat-5 image shows part of the upper Klamath Basin. The original images were obtained from the U.S. Geological Survey Earth Resources Observation and Science Center (EROS). EROS is responsible for archive management and distribution of Landsat data products. The Landsat-5 satellite is part of an ongoing mission to provide quality remote sensing data in support of research and applications activities. The launch of Landsat-5 on March 1, 1984 marks the addition of the fifth satellite to the Landsat series. The Landsat-5 satellite carries the Thematic Mapper (TM) sensor. More information on the Landsat program can be found online at http://landsat.usgs.gov/.
Upper Klamath Basin Landsat Image for July 2, 2006: Path 44 Row 31
Snyder, Daniel T.
2012-01-01
This subset of a Landsat-5 image shows part of the upper Klamath Basin. The original images were obtained from the U.S. Geological Survey Earth Resources Observation and Science Center (EROS). EROS is responsible for archive management and distribution of Landsat data products. The Landsat-5 satellite is part of an ongoing mission to provide quality remote sensing data in support of research and applications activities. The launch of Landsat-5 on March 1, 1984 marks the addition of the fifth satellite to the Landsat series. The Landsat-5 satellite carries the Thematic Mapper (TM) sensor. More information on the Landsat program can be found online at http://landsat.usgs.gov/.
Upper Klamath Basin Landsat Image for April 30, 2004: Path 45 Rows 30 and 31
Snyder, Daniel T.
2012-01-01
This image is a mosaic of Landsat-5 images of the upper Klamath Basin. The original images were obtained from the U.S. Geological Survey Earth Resources Observation and Science Center (EROS). EROS is responsible for archive management and distribution of Landsat data products. The Landsat-5 satellite is part of an ongoing mission to provide quality remote sensing data in support of research and applications activities. The launch of Landsat-5 on March 1, 1984 marks the addition of the fifth satellite to the Landsat series. The Landsat-5 satellite carries the Thematic Mapper (TM) sensor. More information on the Landsat program can be found online at http://landsat.usgs.gov/.
Upper Klamath Basin Landsat Image for May 25, 2004: Path 44 Row 31
Snyder, Daniel T.
2012-01-01
This subset of a Landsat-5 image shows part of the upper Klamath Basin. The original images were obtained from the U.S. Geological Survey Earth Resources Observation and Science Center (EROS). EROS is responsible for archive management and distribution of Landsat data products. The Landsat-5 satellite is part of an ongoing mission to provide quality remote sensing data in support of research and applications activities. The launch of Landsat-5 on March 1, 1984 marks the addition of the fifth satellite to the Landsat series. The Landsat-5 satellite carries the Thematic Mapper (TM) sensor. More information on the Landsat program can be found online at http://landsat.usgs.gov/.
Upper Klamath Basin Landsat Image for June 1, 2004: Path 45 Rows 30 and 31
Snyder, Daniel T.
2012-01-01
This image is a mosaic of Landsat-5 images of the upper Klamath Basin. The original images were obtained from the U.S. Geological Survey Earth Resources Observation and Science Center (EROS). EROS is responsible for archive management and distribution of Landsat data products. The Landsat-5 satellite is part of an ongoing mission to provide quality remote sensing data in support of research and applications activities. The launch of Landsat-5 on March 1, 1984 marks the addition of the fifth satellite to the Landsat series. The Landsat-5 satellite carries the Thematic Mapper (TM) sensor. More information on the Landsat program can be found online at http://landsat.usgs.gov/.
Upper Klamath Basin Landsat Image for June 17, 2004: Path 45 Rows 30 and 31
Snyder, Daniel T.
2012-01-01
This image is a mosaic of Landsat-5 images of the upper Klamath Basin. The original images were obtained from the U.S. Geological Survey Earth Resources Observation and Science Center (EROS). EROS is responsible for archive management and distribution of Landsat data products. The Landsat-5 satellite is part of an ongoing mission to provide quality remote sensing data in support of research and applications activities. The launch of Landsat-5 on March 1, 1984 marks the addition of the fifth satellite to the Landsat series. The Landsat-5 satellite carries the Thematic Mapper (TM) sensor. More information on the Landsat program can be found online at http://landsat.usgs.gov/.
Upper Klamath Basin Landsat Image for June 16, 2006: Path 44 Row 31
Snyder, Daniel T.
2012-01-01
This subset of a Landsat-5 image shows part of the upper Klamath Basin. The original images were obtained from the U.S. Geological Survey Earth Resources Observation and Science Center (EROS). EROS is responsible for archive management and distribution of Landsat data products. The Landsat-5 satellite is part of an ongoing mission to provide quality remote sensing data in support of research and applications activities. The launch of Landsat-5 on March 1, 1984 marks the addition of the fifth satellite to the Landsat series. The Landsat-5 satellite carries the Thematic Mapper (TM) sensor. More information on the Landsat program can be found online at http://landsat.usgs.gov/.
Upper Klamath Basin Landsat Image for April 7, 2004: Path 44 Row 31
Snyder, Daniel T.
2012-01-01
This subset of a Landsat-5 image shows part of the upper Klamath Basin. The original images were obtained from the U.S. Geological Survey Earth Resources Observation and Science Center (EROS). EROS is responsible for archive management and distribution of Landsat data products. The Landsat-5 satellite is part of an ongoing mission to provide quality remote sensing data in support of research and applications activities. The launch of Landsat-5 on March 1, 1984 marks the addition of the fifth satellite to the Landsat series. The Landsat-5 satellite carries the Thematic Mapper (TM) sensor. More information on the Landsat program can be found online at http://landsat.usgs.gov/.
NASA Astrophysics Data System (ADS)
Imani, Moslem; You, Rey-Jer; Kuo, Chung-Yen
2014-10-01
Sea level forecasting at various time intervals is of great importance in water supply management. Evolutionary artificial intelligence (AI) approaches have been accepted as an appropriate tool for modeling complex nonlinear phenomena in water bodies. In the study, we investigated the ability of two AI techniques: support vector machine (SVM), which is mathematically well-founded and provides new insights into function approximation, and gene expression programming (GEP), which is used to forecast Caspian Sea level anomalies using satellite altimetry observations from June 1992 to December 2013. SVM demonstrates the best performance in predicting Caspian Sea level anomalies, given the minimum root mean square error (RMSE = 0.035) and maximum coefficient of determination (R2 = 0.96) during the prediction periods. A comparison between the proposed AI approaches and the cascade correlation neural network (CCNN) model also shows the superiority of the GEP and SVM models over the CCNN.
Earth Observing System (EOS) Aqua Launch and Early Mission Attitude Support Experiences
NASA Technical Reports Server (NTRS)
Tracewell, D.; Glickman, J.; Hashmall, J.; Natanson, G.; Sedlak, J.
2003-01-01
The Earth Observing System (EOS) Aqua satellite was successfully launched on May 4,2002. Aqua is the second in the series of EOS satellites. EOS is part of NASA s Earth Science Enterprise Program, whose goals are to advance the scientific understanding of the Earth system. Aqua is a three-axis stabilized, Earth-pointing spacecraft in a nearly circular, sun-synchronous orbit at an altitude of 705 km. The Goddard Space Flight Center (GSFC) Flight Dynamics attitude team supported all phases of the launch and early mission. This paper presents the main results and lessons learned during this period, including: real-time attitude mode transition support, sensor calibration, onboard computer attitude validation, response to spacecraft emergencies, postlaunch attitude analyses, and anomaly resolution. In particular, Flight Dynamics support proved to be invaluable for successful Earth acquisition, fine-point mode transition, and recognition and correction of several anomalies, including support for the resolution of problems observed with the MODIS instrument.
Nimbus 4/IRLS Balloon Interrogation Package (BIP)
NASA Technical Reports Server (NTRS)
1971-01-01
The balloon interrogation package (BIP), an integral part of the overall interrogation, recording, and location subsystems (IRLS) for the Nimbus 4 program, is described. The BIP is a self-contained, integrated transponder designed to be carried aloft by a constant altitude, superpressure balloon to an altitude of 67,000 or 78,000 feet. After launch the BIP senses high-altitude balloon overpressure and temperature, and upon receipt of an interrogated command from the IRLS aboard the Nimbus 4 satellite, the BIP enodes the data on a real-time basis into a pulse-code modulation (PCM) format and transmits this data to the satellite. A summary of the program activity to produce 30 BIP systems and to support balloon launches from Ascension Island is presented.
NASA Technical Reports Server (NTRS)
Wray, S. T., Jr.
1975-01-01
The LOVES computer code developed to investigate the concept of space servicing operational satellites as an alternative to replacing expendable satellites or returning satellites to earth for ground refurbishment is presented. In addition to having the capability to simulate the expendable satellite operation and the ground refurbished satellite operation, the program is designed to simulate the logistics of space servicing satellites using an upper stage vehicle and/or the earth to orbit shuttle. The program not only provides for the initial deployment of the satellite but also simulates the random failure and subsequent replacement of various equipment modules comprising the satellite. The program has been used primarily to conduct trade studies and/or parametric studies of various space program operational philosophies.
Web-Based Satellite Products Database for Meteorological and Climate Applications
NASA Technical Reports Server (NTRS)
Phan, Dung; Spangenberg, Douglas A.; Palikonda, Rabindra; Khaiyer, Mandana M.; Nordeen, Michele L.; Nguyen, Louis; Minnis, Patrick
2004-01-01
The need for ready access to satellite data and associated physical parameters such as cloud properties has been steadily growing. Air traffic management, weather forecasters, energy producers, and weather and climate researchers among others can utilize more satellite information than in the past. Thus, it is essential that such data are made available in near real-time and as archival products in an easy-access and user friendly environment. A host of Internet web sites currently provide a variety of satellite products for various applications. Each site has a unique contribution with appeal to a particular segment of the public and scientific community. This is no less true for the NASA Langley's Clouds and Radiation (NLCR) website (http://www-pm.larc.nasa.gov) that has been evolving over the past 10 years to support a variety of research projects This website was originally developed to display cloud products derived from the Geostationary Operational Environmental Satellite (GOES) over the Southern Great Plains for the Atmospheric Radiation Measurement (ARM) Program. It has evolved into a site providing a comprehensive database of near real-time and historical satellite products used for meteorological, aviation, and climate studies. To encourage the user community to take advantage of the site, this paper summarizes the various products and projects supported by the website and discusses future options for new datasets.
An overview of the Office of Space Flight satellite servicing program plan
NASA Technical Reports Server (NTRS)
Levin, George M.; Erwin, Harry O., Jr.
1987-01-01
A comprehensive program for the development of satellite servicing tools and techniques is being currently carried out by the Office of Space Flight. The program is based on a satellite servicing infrastructure formulated by analyzing satellite servicing requirements; the program is Shuttle-based and compatible with the Orbital Maneuvering Vehicle and Space Station. The content of the satellite servicing program is reviewed with reference to the tools, techniques, and procedures being developed for refueling (or consumables resupply), repairing, and retrieving.
An overview of DARPA's advanced space technology program
NASA Astrophysics Data System (ADS)
Nicastri, E.; Dodd, J.
1993-02-01
The Defense Advanced Research Projects Agency (DARPA) is the central research and development organization of the DoD and, as such, has the primary responsibility for the maintenance of U.S. technological superiority over potential adversaries. DARPA's programs focus on technology development and proof-of-concept demonstrations of both evolutionary and revolutionary approaches for improved strategic, conventional, rapid deployment and sea power forces, and on the scientific investigation into advanced basic technologies of the future. DARPA can move quickly to exploit new ideas and concepts by working directly with industry and universities. For four years, DARPA's Advanced Space Technology Program (ASTP) has addressed various ways to improve the performance of small satellites and launch vehicles. The advanced technologies that are being and will be developed by DARPA for small satellites can be used just as easily on large satellites. The primary objective of the ASTP is to enhance support to operational commanders by developing and applying advanced technologies that will provide cost-effective, timely, flexible, and responsive space systems. Fundamental to the ASTP effort is finding new ways to do business with the goal of quickly inserting new technologies into DoD space systems while reducing cost. In our view, these methods are prime examples of what may be termed 'technology leveraging.' The ASTP has initiated over 50 technology projects, many of which were completed and transitioned to users. The objectives are to quickly qualify these higher risk technologies for use on future programs and reduce the risk of inserting these technologies into major systems, and to provide the miniaturized systems that would enable smaller satellites to have significant - rather than limited - capability. Only a few of the advanced technologies are described, the majority of which are applicable to both large and small satellites.
NASA Technical Reports Server (NTRS)
1974-01-01
Accomplishments in the continuing programs are reported. The data were obtained in support of the following broad objectives: (1) to provide a precise and accurate geometric description of the earth's surface; (2) to provide a precise and accurate mathematical description of the earth's gravitational field; and (3) to determine time variations of the geometry of the ocean surface, the solid earth, the gravity field, and other geophysical parameters.
The Iodine Satellite (iSAT) Hall Thruster Demonstration Mission Concept and Development
NASA Technical Reports Server (NTRS)
Dankanich, John W.; Polzin, Kurt A.; Calvert, Derek; Kamhawi, Hani
2014-01-01
The use of iodine propellant for Hall thrusters has been studied and proposed by multiple organizations due to the potential mission benefits over xenon. In 2013, NASA Marshall Space Flight Center competitively selected a project for the maturation of an iodine flight operational feed system through the Technology Investment Program. Multiple partnerships and collaborations have allowed the team to expand the scope to include additional mission concept development and risk reduction to support a flight system demonstration, the iodine Satellite (iSAT). The iSAT project was initiated and is progressing towards a technology demonstration mission preliminary design review. The current status of the mission concept development and risk reduction efforts in support of this project is presented.
Weather Satellite Enterprise Information Chain
NASA Astrophysics Data System (ADS)
Jamilkowski, M. L.; Grant, K. D.; Miller, S. W.; Cochran, S.
2015-12-01
NOAA & NASA are acquiring the next-generation civilian operational weather satellite: Joint Polar Satellite System (JPSS). Contributing the afternoon orbit & ground system (GS) to replace current NOAA POES Satellites, its sensors will collect meteorological, oceanographic & climatological data. The JPSS Common Ground System (CGS), consisting of C3 and IDP segments, is developed by Raytheon. It now flies the Suomi National Polar-orbiting Partnership (S-NPP) satellite, transferring data between ground facilities, processing them into environmental products for NOAA weather centers, and expanding to support JPSS-1 in 2017. As a multi-mission system, CGS provides combinations of C3, data processing, and product delivery for numerous NASA, NOAA, DoD and international missions.The CGS provides a wide range of support to a number of missions: Command and control and mission management for the S-NPP mission today, expanding this support to the JPSS-1 satellite mission in 2017 Data acquisition for S-NPP, the JAXA's Global Change Observation Mission - Water (GCOM-W1), POES, and the Defense Meteorological Satellite Program (DMSP) and Coriolis/WindSat for the DoD Data routing over a global fiber network for S-NPP, JPSS-1, GCOM-W1, POES, DMSP, Coriolis/WindSat, NASA EOS missions, MetOp for EUMETSAT and the National Science Foundation Environmental data processing and distribution for S-NPP, GCOM-W1 and JPSS-1 The CGS plays a key role in facilitating the movement and value-added enhancement of data all the way from satellite-based sensor data to delivery to the consumers who generate forecasts and produce watches and warnings. This presentation will discuss the information flow from sensors, through data routing and processing, and finally to product delivery. It will highlight how advances in architecture developed through lessons learned from S-NPP and implemented for JPSS-1 will increase data availability and reduce latency for end user applications.
The Advanced Communications Technology Satellite (ACTS) capabilities for serving science
NASA Technical Reports Server (NTRS)
Meyer, Thomas R.
1990-01-01
Results of research on potential science applications of the NASA Advanced Communications Technology Satellite (ACTS) are presented. Discussed here are: (1) general research on communications related issues; (2) a survey of science-related activities and programs in the local area; (3) interviews of selected scientists and associated telecommunications support personnel whose projects have communications requirements; (4) analysis of linkages between ACTS functionality and science user communications activities and modes of operation; and (5) an analysis of survey results and the projection of conclusions to a national scale.
Development of Decision Support System for Remote Monitoring of PIP Corn
The EPA is developing a multi-level approach that utilizes satellite and airborne remote sensing to locate and monitor genetically modified corn in the agricultural landscape and pest infestation. The current status of the EPA IRM monitoring program based on remote sensed imager...
Space Tracking and Surveillance System (STSS) Cryogenic Technology Efforts and Needs
NASA Astrophysics Data System (ADS)
Kolb, I. L.; Curran, D. G. T.; Lee, C. S.
2004-06-01
The Missile Defense Agency's (MDA) STSS program, the former Space Based Infrared Systems (SBIRS) Low, has been actively supporting and working to advance space-borne cryocooler technology through efforts with the Air Force Research Lab (AFRL) and Small Business Innovation Research (SBIR) program. The envisioned infrared satellite system requires high efficiency, low power, and low weight cooling in a range of temperature and cooling loads below 120K for reliable 10-year operation to meet mission needs. This paper describes cryocooler efforts previously and currently supported by STSS and the possible future cryogenic requirements for later technology insertion.
LANDSAT's role in HUD 701 programs. [New Jersey and South Dakota
NASA Technical Reports Server (NTRS)
1979-01-01
A survey of states concerning the use of LANDSAT in support of the comprehensive planning assistance program (Title IV, section 701) of the Housing and Community Development Act (1974) which is aimed mostly at small communities and rural counties, shows: (1) state governments used or were aware of the application of LANDSAT for inventorying land use and land cover at the state and local level; (2) use of satellite data was associated with the development of automated geographic information systems and the computer capability of handling and analyzing mapped information and other data tied to geographic coordinates and boundaries; and (3) LANDSAT capabilities in states tend to be institutionalized within state government information services where they can be readily assessed by state agencies. A summary of the state program for New Jersey and South Dakota is presented along with the state development guide plans, the rationale for using the satellite, and potential applications.
NPOESS Preparatory Project (NPP) Science Overview
NASA Technical Reports Server (NTRS)
Butler, James J.
2011-01-01
NPP Instruments are: (1) well understood thanks to instrument comprehensive test, characterization and calibration programs. (2) Government team ready for October 25 launch followed by instrument activation and Intensive Calibration/Validation (ICV). NPP Data Products preliminary work includes: (1) JPSS Center for Satellite Applications and Research (STAR) team ready to support NPP ICV and operational data products. (2) NASA NPP science team ready to support NPP ICV and EOS data continuity.
Technology transfer program of Microlabsat
NASA Astrophysics Data System (ADS)
Nakamura, Y.; Hashimoto, H.
2004-11-01
A 50kg-class small satellite developed by JAXA called "MicroLabSat" was launched piggyback by H-IIA rocket No. 4 on 14 December 2002. This satellite will demonstrate small satellite bus technology and conduct experiments on a new separator feasibility and remote inspection technology. All missions were completed successfully on 25 May 2003. Furthermore, the hand-construction by young JAXA engineers motivated these engineers to higher performance in learning design, assembly and testing technology. Small and medium-sized Japanese companies have recently joined together and initiated a project to develop a small satellite. The goal of the project is to commercialise small satellites, which will require low- cost development. Therefore, they have started with a satellite incorporating the components and bus technologies of MicroLabSat and have been technically supported by universities and JAXA since 2004. This satellite project, in which industry, universities and a space agency are collaborating, seeks to meet the technical challenge of launching a low-cost satellite. This paper reports JAX's strategies for developing a small satellite for demonstrating space technology as well as the development and operation results of MicroLabSat. It also describes the project status of an industry-based satellite, developed through collaboration among industries, universities and the space agency, and how the technologies of MicroLabSat are applied.
ERIC Educational Resources Information Center
Swistock, Bryan R.; Sharpe, William E.; Dickison, John
2001-01-01
A safe drinking water program was delivered by satellite as well as the live speaker program. Responses from 230 traditional and 161 satellite participants showed the satellite program met objectives, was cheaper, and required less specialist time although it attracted a smaller audience and allowed limited interaction. The cost per attendee for…
STK/Lifetime as a Replacement for Heritage Orbital Lifetime Software
NASA Technical Reports Server (NTRS)
Dove, Edwin
2004-01-01
The Flight Dynamics Analysis Branch (FDAB) of NASNGSFC is tasked with determining the orbital lifetime of several developmental and operational satellites, which include the Hubble Space Telescope. A DOS based program developed by the FDAB many years ago, called PC Lifetime, is used to determine a satellite s lifetime and could soon be in need of a replacement. STK s Lifetime Object Tool is a possible candidate. Due to the reduced support of the PC Lifetime program, and the growing incompatibility of older programs with new operating systems, a comparative analysis was done to determine if STWLifetime could meet the stringent requirements that were laid before it. The use of highly accurate numerical propagators such as STK s High Precision Orbit Propagator ( OP) and the Goddard Trajectory Determination System (GTDS) provided a basis on which to compare STWLifetime s results. Several test cases were run, but the main four test cases would determine whether or not STWLifetime could be PC- Lifetime s replacement. These four cases include a geotransfer orbit, two circular LEOS, and a Poiar LEO. Following rigorous testmg procedures, a conclusion will be determined. STK has proved to be a versatile program on many satellite missions and the FDAB has high hopes that it can pass FDAB s requirements for orbital lifetime prediction.
Promon's participation in the Brasilsat program: first & second generations
NASA Astrophysics Data System (ADS)
Depaiva, Ricardo N.
This paper presents an overview of the Brasilsat program, space and ground segments, developed by Hughes and Promon. Promon is a Brazilian engineering company that has been actively participating in the Brasilsat Satellite Telecommunications Program since its beginning. During the first generation, as subcontractor of the Spar/Hughes/SED consortium, Promon had a significant participation in the site installation of the Ground Segment, including the antennas. During the second generation, as partner of a consortium with Hughes, Promon participated in the upgrade of Brasilsat's Ground Segment systems: the TT&C (TCR1, TCR2, and SCC) and the COCC (Communications and Operations Control Center). This upgrade consisted of the design and development of hardware and software to support the second generation requirements, followed by integration and tests, factory acceptance tests, transport to site, site installation, site acceptance tests and warranty support. The upgraded systems are distributed over four sites with remote access to the main ground station. The solutions adopted provide a high level of automation, and easy operator interaction. The hardware and software technologies were selected to provide the flexibility to incorporate new technologies and services from the demanding satellite telecommunications market.
Infrared observations of outer planet satellites
NASA Technical Reports Server (NTRS)
Johnson, T. V.
1988-01-01
This task supports IR observations of the outer planet satellites. These data provide vital information about the thermophysical properties of satellite surfaces, including internal heat sources for Io. Observations include both broad and narrow band measurementsin the 2 to 20 micrometer spectral range. The program in the last year has aimed at obtaining lonitude coverage on Io to establish stability of hot spot patterns previously reported. Several runs produced the most complete data set for an apparition since the start of the program. Unfortunately, bad weather limited coverage of key longitude ranges containing the largest known hot spot Loki. Among the preliminary results is the observation of an outburst in Io's thermal flux that was measured at 4.8, 8.7 and 20 micrometer. Analysis of the data has given the best evidence to date of silicate volcanism on Io; this is one of the most significant pieces of the puzzle as to the relative roles of silicate and sulfur volcanism on Io. Researchers are collaborating with J. Goguen (NRC RRA to finish reduction of mutual event data, which have already improved ephermeris information for the satellites. The data appear to place significant limits on the characteristics of any leading side hot spots.
NASA Astrophysics Data System (ADS)
Feher, K.
Topics discussed include highlights of Canadian and US communication-satellite developments, video teleconferencing, modulation/system studies, organization/interface tradeoffs, Canadian satellite programs, performance monitoring techniques, spread spectrum satcom systems, social and educational satellite services, atmospheric/navigational satcom systems, TDMA systems, and Teleglobe/Intelsat and Inmarsat programs. Consideration is also given to SCPC developments, TV and program reception, earth station components, European satcom systems, TCTS/CNCP satellite communications services, satellite designs, coding techniques, Japanese satellite systems, network developments, the ANIK user workshop, industrial/business systems, and satellite antenna technology.
NASA Technical Reports Server (NTRS)
1974-01-01
The instruments to be flown on the Earth Observatory Satellite (EOS) system are defined. The instruments will be used to support the Land Resources Management (LRM) mission of the EOS. Program planning information and suggested acquisition activities for obtaining the instruments are presented. The subjects considered are as follows: (1) the performance and interface of the Thematic Mapper (TM) and the High Resolution Pointing Imager (HRPI), (2) procedure for interfacing the TM and HRPI with the EOS satellite, (3) a space vehicle integration plan suggesting the steps and sequence of events required to carry out the interface activities, and (4) suggested agreements between the contractors for providing timely and equitable solution of problems at minimum cost.
NASA's Earth Science Flight Program Meets the Challenges of Today and Tomorrow
NASA Technical Reports Server (NTRS)
Ianson, Eric E.
2016-01-01
NASA's Earth science flight program is a dynamic undertaking that consists of a large fleet of operating satellites, an array of satellite and instrument projects in various stages of development, a robust airborne science program, and a massive data archiving and distribution system. Each element of the flight program is complex and present unique challenges. NASA builds upon its successes and learns from its setbacks to manage this evolving portfolio to meet NASA's Earth science objectives. NASA fleet of 16 operating missions provide a wide range of scientific measurements made from dedicated Earth science satellites and from instruments mounted to the International Space Station. For operational missions, the program must address issues such as an aging satellites operating well beyond their prime mission, constellation flying, and collision avoidance with other spacecraft and orbital debris. Projects in development are divided into two broad categories: systematic missions and pathfinders. The Earth Systematic Missions (ESM) include a broad range of multi-disciplinary Earth-observing research satellite missions aimed at understanding the Earth system and its response to natural and human-induced forces and changes. Understanding these forces will help determine how to predict future changes, and how to mitigate or adapt to these changes. The Earth System Science Pathfinder (ESSP) program provides frequent, regular, competitively selected Earth science research opportunities that accommodate new and emerging scientific priorities and measurement capabilities. This results in a series of relatively low-cost, small-sized investigations and missions. Principal investigators whose scientific objectives support a variety of studies lead these missions, including studies of the atmosphere, oceans, land surface, polar ice regions, or solid Earth. This portfolio of missions and investigations provides opportunity for investment in innovative Earth science that enhances NASA's capability for better understanding the current state of the Earth system. ESM and ESSP projects often involve partnerships with other US agencies and/or international organizations. This adds to the complexity of mission development, but allows for a greater scientific return on NASA's investments. The Earth Science Airborne Science Program provides manned and unmanned aircraft systems that further science and advance the use of satellite data. NASA uses these assets worldwide in campaigns to investigate extreme weather events, observe Earth system processes, obtain data for Earth science modeling activities, and calibrate instruments flying aboard Earth science spacecraft. The Airborne Science Program has six dedicated aircraft and access to many other platforms. The Earth Science Multi-Mission Operations program acquires, preserves, and distributes observational data from operating spacecraft to support Earth Science research focus areas. The Earth Observing System Data and Information System (EOSDIS), which has been in operations since 1994, primarily accomplishes this. EOSDIS acquires, processes, archives, and distributes Earth Science data and information products. The archiving of NASA Earth Science information happens at eight Distributed Active Archive Centers (DAACs) and four disciplinary data centers located across the United States. The DAACs specialize by topic area, and make their data available to researchers around the world. The DAACs currently house over 9 petabytes of data, growing at a rate of 6.4 terabytes per day. NASA's current Earth Science portfolio is responsive to the National Research Council (NRC) 2007 Earth Science Decadal Survey and well as the 2010 NASA Response to President Obama's Climate Plan. As the program evolves into the future it will leverage the lessons learned from the current missions in operations and development, and plan for adjustments to future objectives in response to the anticipated 2017 NRC Decadal Survey.
NASA Astrophysics Data System (ADS)
Hinnant, F.
2009-12-01
The National Oceanic and Atmospheric Administration (NOAA), Department of Defense (DoD), and National Aeronautics and Space Administration (NASA) are jointly acquiring the next-generation weather and environmental satellite system; the National Polar-orbiting Operational Environmental Satellite System (NPOESS). NPOESS replaces the current Polar-orbiting Operational Environmental Satellites (POES) managed by NOAA and the Defense Meteorological Satellite Program (DMSP) managed by the DoD and will provide continuity for the NASA Earth Observation System with the launch of the NPOESS Preparatory Project. This poster will provide a top level status update of the program, as well as an overview of the NPOESS system architecture, which includes four segments. The space segment includes satellites in two orbits that carry a suite of sensors that collect meteorological, oceanographic, climatological, and solar-geophysical observations of the earth, atmosphere, and space. The NPOESS system design allows centralized mission management and delivers high quality environmental products to military, civil and scientific users through a Command, Control, and Communication Segment (C3S). The data processing for NPOESS is accomplished through an Interface Data Processing Segment (IDPS)/Field Terminal Segment (FTS) that processes NPOESS satellite data to provide environmental data products to NOAA and DoD processing centers operated by the United States government as well as remote terminal users. The Launch Support Segment completes the four segments that make up the NPOESS system that will enhance the connectivity between research and operations and provide critical operational and scientific environmental measurements to military, civil, and scientific users until 2026.
NASA Technical Reports Server (NTRS)
1976-01-01
Data analysis and supporting research in connection with the following objectives are discussed: (1) provide a precise and accurate geometric description of the earth's surface, (2) provide a precise and accurate mathematical description of the earth's gravitational field, and (3) determine time variations of the geometry of the ocean surface, the solid earth, the gravity field and other geophysical parameters.
NASA Data for Water Resources Applications
NASA Technical Reports Server (NTRS)
Toll, David; Houser, Paul; Arsenault, Kristi; Entin, Jared
2004-01-01
Water Management Applications is one of twelve elements in the Earth Science Enterprise National Applications Program. NASA Goddard Space Flight Center is supporting the Applications Program through partnering with other organizations to use NASA project results, such as from satellite instruments and Earth system models to enhance the organizations critical needs. The focus thus far has been: 1) estimating water storage including snowpack and soil moisture, 2) modeling and predicting water fluxes such as evapotranspiration (ET), precipitation and river runoff, and 3) remote sensing of water quality, including both point source (e.g., turbidity and productivity) and non-point source (e.g., land cover conversion such as forest to agriculture yielding higher nutrient runoff). The objectives of the partnering cover three steps of: 1) Evaluation, 2) Verification and Validation, and 3) Benchmark Report. We are working with the U.S. federal agencies including the Environmental Protection Agency (EPA), the Bureau of Reclamation (USBR) and the Department of Agriculture (USDA). We are using several of their Decision Support Systems (DSS) tools. This includes the DSS support tools BASINS used by EPA, Riverware and AWARDS ET ToolBox by USBR and SWAT by USDA and EPA. Regional application sites using NASA data across the US. are currently being eliminated for the DSS tools. The current NASA data emphasized thus far are from the Land Data Assimilation Systems WAS) and MODIS satellite products. We are currently in the first two steps of evaluation and verification validation. Water Management Applications is one of twelve elements in the Earth Science Enterprise s National Applications Program. NASA Goddard Space Flight Center is supporting the Applications Program through partnering with other organizations to use NASA project results, such as from satellite instruments and Earth system models to enhance the organizations critical needs. The focus thus far has been: 1) estimating water storage including snowpack and soil moisture, 2) modeling and predicting water fluxes such as evapotranspiration (ET), precipitation and river runoff, and 3) remote sensing of water quality, including both point source (e.g., turbidity and productivity) and non-point source (e.g., land cover conversion such as forest to agriculture yielding higher nutrient runoff). The objectives of the partnering cover three steps of 1) Evaluation, 2) Verification and Validation, and 3) Benchmark Report. We are working with the U.S. federal agencies the Environmental Protection Agency (EPA), the Bureau of Reclamation (USBR) and the Department of Agriculture (USDA). We are using several of their Decision Support Systems (DSS) tools. T us includes the DSS support tools BASINS used by EPA, Riverware and AWARDS ET ToolBox by USBR and SWAT by USDA and EPA. Regional application sites using NASA data across the US. are currently being evaluated for the DSS tools. The current NASA data emphasized thus far are from the Land Data Assimilation Systems (LDAS) and MODIS satellite products. We are currently in the first two steps of evaluation and verification and validation.
NASA Technical Reports Server (NTRS)
Davarian, Faramaz (Editor)
1995-01-01
The NASA Propagation Experimenters Meeting (NAPEX), supported by the NASA Propagation Program, is convened annually to discuss studies made on radio wave propagation by investigators from domestic and international organizations. NAPEX 19 was held on 14 Jun. 1995, in Fort Collins, Colorado. Participants included representatives from Canada, Japan, and the United States, including researchers from universities, government agencies, and private industry. The meeting focused on mobile personal satellite systems and the use of 20/30-GHz band for fixed and mobile satellite applications. In total, 18 technical papers were presented. Following NAPEX 19, the Advanced Communications Technology Satellite (ACTS) Propagation Studies Workshop 7 (APSW 7) was held on 15-16 Jun. 1995, to review ACTS propagation activities with emphasis on the experimenters' status reports and dissemination of propagation data to industry.
NASA SMD Airborne Science Capabilities for Development and Testing of New Instruments
NASA Technical Reports Server (NTRS)
Fladeland, Matthew
2015-01-01
The SMD NASA Airborne Science Program operates and maintains a fleet of highly modified aircraft to support instrument development, satellite instrument calibration, data product validation and earth science process studies. This poster will provide an overview of aircraft available to NASA researchers including performance specifications and modifications for instrument support, processes for requesting aircraft time and developing cost estimates for proposals, and policies and procedures required to ensure safety of flight.
2012-12-18
VANDENBERG AFB, Calif.-- Mechanical ground support equipment to be used in support of NASA's Landsat Data Continuity Mission, or LDCM, satellite arrives by transport truck at Vandenberg Air Force Base, Calif. The Landsat Data Continuity Mission LDCM is the future of Landsat satellites. It will continue to obtain valuable data and imagery to be used in agriculture, education, business, science, and government. The Landsat Program provides repetitive acquisition of high resolution multispectral data of the Earth's surface on a global basis. The data from the Landsat spacecraft constitute the longest record of the Earth's continental surfaces as seen from space. It is a record unmatched in quality, detail, coverage, and value. Launch is planned for Feb. 11, 2013. For more information, visit: http://www.nasa.gov/mission_pages/landsat/main/index.html Photo credit: NASA
Cloud Computing Applications in Support of Earth Science Activities at Marshall Space Flight Center
NASA Astrophysics Data System (ADS)
Molthan, A.; Limaye, A. S.
2011-12-01
Currently, the NASA Nebula Cloud Computing Platform is available to Agency personnel in a pre-release status as the system undergoes a formal operational readiness review. Over the past year, two projects within the Earth Science Office at NASA Marshall Space Flight Center have been investigating the performance and value of Nebula's "Infrastructure as a Service", or "IaaS" concept and applying cloud computing concepts to advance their respective mission goals. The Short-term Prediction Research and Transition (SPoRT) Center focuses on the transition of unique NASA satellite observations and weather forecasting capabilities for use within the operational forecasting community through partnerships with NOAA's National Weather Service (NWS). SPoRT has evaluated the performance of the Weather Research and Forecasting (WRF) model on virtual machines deployed within Nebula and used Nebula instances to simulate local forecasts in support of regional forecast studies of interest to select NWS forecast offices. In addition to weather forecasting applications, rapidly deployable Nebula virtual machines have supported the processing of high resolution NASA satellite imagery to support disaster assessment following the historic severe weather and tornado outbreak of April 27, 2011. Other modeling and satellite analysis activities are underway in support of NASA's SERVIR program, which integrates satellite observations, ground-based data and forecast models to monitor environmental change and improve disaster response in Central America, the Caribbean, Africa, and the Himalayas. Leveraging SPoRT's experience, SERVIR is working to establish a real-time weather forecasting model for Central America. Other modeling efforts include hydrologic forecasts for Kenya, driven by NASA satellite observations and reanalysis data sets provided by the broader meteorological community. Forecast modeling efforts are supplemented by short-term forecasts of convective initiation, determined by geostationary satellite observations processed on virtual machines powered by Nebula. This presentation will provide an overview of these activities from a scientific and cloud computing applications perspective, identifying the strengths and weaknesses for deploying each project within an IaaS environment, and ways to collaborate with the Nebula or other cloud-user communities to collaborate on projects as they go forward.
Observations of El Niño impacts using in situ GLOBE protocols and satellite data
NASA Astrophysics Data System (ADS)
Srinivasan, M. M.; Destaerke, D.
2015-12-01
The El Niño phenomenon is a periodic ocean condition that occurs every two to ten years in the central and east-central equatorial Pacific Ocean. It alters the normal patterns of ocean circulation, surface temperature, and evaporation, causing noticeable and often severe changes in weather conditions in many areas of the world. El Niño is the warm phase of the El Niño Southern Oscillation (ENSO), and usually reaches its peak between December and February time period. El Niño and its worldwide consequences are studied by the school network of the GLOBE Program (www.globe.gov) which brings together students, teachers, and scientists in support of student research and validation of international Earth science research projects. Since the start of the GLOBE Program over 20 years ago, GLOBE classrooms utilize carefully developed daily, weekly, or seasonally protocols such as maximum, minimum and current temperatures, rainfall, soil moisture, and others, to measure changes in the environment. The data collected by the students is entered in an online GLOBE database. In addition to the student-contributed data, automated stations also collect and send measurements to the GLOBE database.Students compare their data with global data acquired by satellites to help validate the satellite data. With a potentially historic-level El Niño event thought to be on the horizon--possibly one of the strongest in 50 years—we will propose an emphasis on measurements from GLOBE schools that will support studies and satellite observations of El Niño. We plan to provide the schools with additional satellite data sets such as ocean temperature measurements from Advanced Very High Resolution Radiometer (AVHRR), sea surface elevation measurements from Jason-2 and 3 (after it launches), and others to be identified. We wish to address and support the following educational objectives: - Demonstrate how El Niño affects local precipitation and temperature across the globe, - Link teachers, scientists and students to improve understanding of the local effects of El Niño on weather, ecosystems, and society, and compare these effects in different countries, - Provide insights to the essential elements of satellite images and their use in identifying physical changes on Earth's surface, - Strengthen scientific reasoning abilities in GLOBE students.
Software defined radio (SDR) architecture for concurrent multi-satellite communications
NASA Astrophysics Data System (ADS)
Maheshwarappa, Mamatha R.
SDRs have emerged as a viable approach for space communications over the last decade by delivering low-cost hardware and flexible software solutions. The flexibility introduced by the SDR concept not only allows the realisation of concurrent multiple standards on one platform, but also promises to ease the implementation of one communication standard on differing SDR platforms by signal porting. This technology would facilitate implementing reconfigurable nodes for parallel satellite reception in Mobile/Deployable Ground Segments and Distributed Satellite Systems (DSS) for amateur radio/university satellite operations. This work outlines the recent advances in embedded technologies that can enable new communication architectures for concurrent multi-satellite or satellite-to-ground missions where multi-link challenges are associated. This research proposes a novel concept to run advanced parallelised SDR back-end technologies in a Commercial-Off-The-Shelf (COTS) embedded system that can support multi-signal processing for multi-satellite scenarios simultaneously. The initial SDR implementation could support only one receiver chain due to system saturation. However, the design was optimised to facilitate multiple signals within the limited resources available on an embedded system at any given time. This was achieved by providing a VHDL solution to the existing Python and C/C++ programming languages along with parallelisation so as to accelerate performance whilst maintaining the flexibility. The improvement in the performance was validated at every stage through profiling. Various cases of concurrent multiple signals with different standards such as frequency (with Doppler effect) and symbol rates were simulated in order to validate the novel architecture proposed in this research. Also, the architecture allows the system to be reconfigurable by providing the opportunity to change the communication standards in soft real-time. The chosen COTS solution provides a generic software methodology for both ground and space applications that will remain unaltered despite new evolutions in hardware, and supports concurrent multi-standard, multi-channel and multi-rate telemetry signals.
Satellite communication for public services
NASA Technical Reports Server (NTRS)
Cooper, R. S.; Redisch, W. N.
1977-01-01
Public service programs using NASA's ATS-6 and CTS satellites are discussed. Examples include the ATS-6 Health and Education Telecommunications experimental program and the use of CTS to enable students in one university to take courses presented at another distant university. Possible applications of satellite communication systems to several areas of public service are described, and economic and political obstacles hindering the implementation of these programs are considered. It is suggested that a federally sponsored program demonstrating the utility of satellites accomodating a large number of small terminals is needed to encourage commercial satellite operations.
NASA compendium of satellite communications programs
NASA Technical Reports Server (NTRS)
1975-01-01
A comprehensive review is given of worldwide satellite communication programs that range in time from the inception of satellite communications to mid-1974. Particular emphasis is placed on program results, including experiments conducted, communications system operational performance, and technology employed. The background for understanding these results is established through brief summaries of the program organization, system configuration, and satellite and ground terminal characteristics. Major consideration is given to the communications system aspects of each program, but general spacecraft technology and other experiments conducted as part of the same program are mentioned summarily.
PC-SEAPAK - ANALYSIS OF COASTAL ZONE COLOR SCANNER AND ADVANCED VERY HIGH RESOLUTION RADIOMETER DATA
NASA Technical Reports Server (NTRS)
Mcclain, C. R.
1994-01-01
PC-SEAPAK is a user-interactive satellite data analysis software package specifically developed for oceanographic research. The program is used to process and interpret data obtained from the Nimbus-7/Coastal Zone Color Scanner (CZCS), and the NOAA Advanced Very High Resolution Radiometer (AVHRR). PC-SEAPAK is a set of independent microcomputer-based image analysis programs that provide the user with a flexible, user-friendly, standardized interface, and facilitates relatively low-cost analysis of oceanographic satellite data. Version 4.0 includes 114 programs. PC-SEAPAK programs are organized into categories which include CZCS and AVHRR level-1 ingest, level-2 analyses, statistical analyses, data extraction, remapping to standard projections, graphics manipulation, image board memory manipulation, hardcopy output support and general utilities. Most programs allow user interaction through menu and command modes and also by the use of a mouse. Most programs also provide for ASCII file generation for further analysis in spreadsheets, graphics packages, etc. The CZCS scanning radiometer aboard the NIMBUS-7 satellite was designed to measure the concentration of photosynthetic pigments and their degradation products in the ocean. AVHRR data is used to compute sea surface temperatures and is supported for the NOAA 6, 7, 8, 9, 10, 11, and 12 satellites. The CZCS operated from November 1978 to June 1986. CZCS data may be obtained free of charge from the CZCS archive at NASA/Goddard Space Flight Center. AVHRR data may be purchased through NOAA's Satellite Data Service Division. Ordering information is included in the PC-SEAPAK documentation. Although PC-SEAPAK was developed on a COMPAQ Deskpro 386/20, it can be run on most 386-compatible computers with an AT bus, EGA controller, Intel 80387 coprocessor, and MS-DOS 3.3 or higher. A Matrox MVP-AT image board with appropriate monitor and cables is also required. Note that the authors have received some reports of incompatibilities between the MVP-AT image board and ZENITH computers. Also, the MVP-AT image board is not necessarily compatible with 486-based systems; users of 486-based systems should consult with Matrox about compatibility concerns. Other PC-SEAPAK requirements include a Microsoft mouse (serial version), 2Mb RAM, and 100Mb hard disk space. For data ingest and backup, 9-track tape, 8mm tape and optical disks are supported and recommended. PC-SEAPAK has been under development since 1988. Version 4.0 was updated in 1992, and is distributed without source code. It is available only as a set of 36 1.2Mb 5.25 inch IBM MS-DOS format diskettes. PC-SEAPAK is a copyrighted product with all copyright vested in the National Aeronautics and Space Administration. Phar Lap's DOS_Extender run-time version is integrated into several of the programs; therefore, the PC-SEAPAK programs may not be duplicated. Three of the distribution diskettes contain DOS_Extender files. One of the distribution diskettes contains Media Cybernetics' HALO88 font files, also licensed by NASA for dissemination but not duplication. IBM is a registered trademark of International Business Machines. MS-DOS is a registered trademark of Microsoft Corporation. HALO88 is a registered trademark of Media Cybernetics, but the product was discontinued in 1991.
U.S. Aeronautical L-Band Satellite Technology Test Program : Interim Tests Results
DOT National Transportation Integrated Search
1975-06-01
The U.S. Aeronautical L-Band satellite test program was performed between September 1974 and April 1975 as part of an international ATS-6 L-Band satellite test program. The U.S. program consisted of both technology and ATC communications demonstratio...
NORAD LOOK ANGLES AND PIO SATELLITE PACKAGE
NASA Technical Reports Server (NTRS)
ANONYMOUS
1994-01-01
This program package consists of two programs. First is the NORAD Look Angles Program, which computes satellite look angles (azimuth, elevation, and range) as well as the subsatellite points (latitude, longitude, and height). The second program in this package is the PIO Satellite Program, which computes sighting directions, visibility times, and the maximum elevation angle attained during each pass of an earth-orbiting satellite. Computations take into consideration the observing location and the effect of the earth's shadow on the satellite visibility. Input consists of a magnetic tape prepared by the NORAD Look Angles Program and punched cards containing reference Julian date, right ascension, declination, mean sidereal time at zero hours universal time of the reference date, and daily changes of these quantities. Output consists of a tabulated listing of the satellite's rise and set times, direction, and the maximum elevation angle visible from each observing location. This program has been implemented on the GE 635. The program Assembler code can easily be replaced by FORTRAN statements.
SMART-OLEV—An orbital life extension vehicle for servicing commercial spacecrafts in GEO
NASA Astrophysics Data System (ADS)
Kaiser, Clemens; Sjöberg, Fredrik; Delcura, Juan Manuel; Eilertsen, Baard
2008-07-01
Orbital Satellite Services Limited (OSSL) is a satellite servicing company that is developing an orbit life extension vehicle (OLEV) to extend the operational lifetime of geostationary satellites. The industrial consortium of SSC (Sweden), Kayser-Threde (Germany) and Sener (Spain) is in charge to develop and industrialize the space and ground segment. It is a fully commercial program with support of several space agencies during the development phase. The business plan is based on life extension for high value commercial satellites while also providing the satellite operators with various fleet management services such as graveyard burns, slot transfers and on orbit protection against replacement satellite or launch failures. The OLEV spacecraft will be able to dock with a geostationary satellite and uses an electrical propulsion system to extend its life by taking over the attitude control and station keeping functions. The OLEV system is building on the SMART-1 platform developed by Swedish Space Corporation. It was developed for ESA as a technology test-bed to demonstrate the use of electrical propulsion for interplanetary orbit transfer manoeuvres. The concept is called SMART-OLEV and takes advantage of the low cost, low mass SMART-1 platform by a maximum use of recurrent platform technology.
BOREAS Landsat MSS Imagery: Digital Counts
NASA Technical Reports Server (NTRS)
Hall, Forrest G. (Editor); Nickeson, Jaime (Editor); Strub, Richard; Newcomer, Jeffrey A.
2000-01-01
The Boreal Ecosystem-Atmospheric Study (BOREAS) Staff Science Satellite Data Acquisition Program focused on providing the research teams with the remotely sensed satellite data products they needed to compare and spatially extend point results. The Earth Resources Technology Satellite (ERTS) Program launched the first of a series of satellites (ERTS-1) in 1972. Part of the NASA Earth Resources Survey Program, the ERTS Program and the ERTS satellites were later renamed Landsat to better represent the civil satellite program's prime emphasis on remote sensing of land resources. Landsat satellites 1 through 5 carry the Multispectral Scanner (MSS) sensor. Canada for Remote Sensing (CCRS) and BOREAS personnel gathered a set of MSS images of the BOREAS region from Landsat satellites 1, 2, 4, and 5 covering the dates of 21 Aug 1972 to 05 Sep 1988. The data are provided in binary image format files of various formats. The Landsat MSS imagery is available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).
Evaluation of Q-band instrumentation requirements for Strategic Satellite System (SSS) program
NASA Astrophysics Data System (ADS)
Raponi, D. J.
1981-12-01
Q-band instrumentation appropriate for testing the Strategic Satellite System (SSS) satellite terminal is evaluated in terms of current and projected availability; desired and practical measurement capabilities; required development; and schedule/cost impacts to the program. The Air Force is considering several approaches to increasing the strategic communications capability now provided by the recently deployed ultra high frequency (UHF) Air Force Satellite Communications (AFSATCOM) system. The Strategic Satellite System (SSS) was proposed to improve antijam (AJ) characteristics through the use of advanced modulation techniques and higher frequencies (8 and 44 GHz) on links between ground and airborne terminals and the satellites. This report is an assessment of Q-band (44 GHz) test instrumentation requirements, availability, and accuracy as these factors affect cost and schedule for the SSS satellite terminal development program. Though the SSS program has been cancelled, information presented in the report has applicability to the EHF MILSTAR program.
The Telecommunications and Data Acquisition Report
NASA Technical Reports Server (NTRS)
Posner, Edward C. (Editor)
1992-01-01
This quarterly publication provides archival reports on developments in programs managed by JPL's Telecommunications and Data Acquisition (TDA) Office. In the Search for Extraterrestrial Intelligence (SETI), the TDA Progress Report reports on implementation and operations for searching the microwave spectrum. In solar system radar, it reports on the uses of the Goldstone Solar System Radar for scientific exploration of the planets, their rings and satellites, asteroids, and comets. In radio astronomy, the areas of support include spectroscopy, very long baseline interferometry, and astrometry. These three programs are performed for NASA's Office of Space Science and Applications (OSSA) with the Office of Space Operations for funding DSN operational support.
A Search for Satellites of Kuiper Belt Object 55636 from the 2009 October 9 Occultation
NASA Astrophysics Data System (ADS)
Jensen-Clem, Rebecca; Elliot, J. L.; Person, M. J.; Zuluaga, C. A.; Bosh, A. S.; Adams, E. R.; Brothers, T. C.; Gulbis, A. A. S.; Levine, S. E.; Lockhart, M.; Zangari, A. M.; Babcock, B. A.; DuPre, K.; Pasachoff, J. M.; Souza, S. P.; Rosing, W.; Secrest, N.; Bright, L.; Dunham, E. W.; Kakkala, M.; Tilleman, T.; Rapoport, S.; Zambrano-Marin, L.; Wolf, J.; Morzinski, K.
2011-01-01
A world-wide observing campaign of 21 telescopes at 18 sites was organized by Elliot et al. (2010 Nature 465, 897) to observe the 2009 Oct. 9 stellar occultation of 2UCAC 41650964 (UCAC2 magnitude 13.1) by the Kuiper Belt object 55636 (visual magnitude 19.6). Integration times varied between 0.05 seconds at the Vatican Advanced Technology Telescope and 5 seconds at Mauna Kea mid-level. Data from the two sites that successfully observed the occultation (Haleakala and the Mauna Kea mid-level) were analyzed by Elliot et al. (2010) to determine the diameter and albedo of 55636. In this study, we use the entire data set to search for signatures of occultations by nearby satellites. One satellite previously discovered with occultation data is Neptune's moon Larissa, which was detected during Neptune's close approach to a star in 1982 (Reitsema et al. 1982). No satellites are found in this study, and upper limits will be reported on satellite radii within the volume probed (2 x 10-8 of the Hill Sphere). This work was supported, in part, by NASA Grants NNX10AB27G (MIT), NNX08AO50G (Williams College), and NNH08AI17I (USNO-FS) and NSF Grant AST-0406493 (MIT). Student participation was supported in part by NSF's REU program and NASA's Massachusetts Space Grant.
The 30/20 GHz communications system functional requirements
NASA Technical Reports Server (NTRS)
Siperko, C. M.; Frankfort, M.; Markham, R.; Wall, M.
1981-01-01
The characteristics of 30/20 GHz usage in satellite systems to be used in support of projected communication requirements of the 1990's are defined. A requirements analysis which develops projected market demand for satellite services by general and specialized carriers and an analysis of the impact of propagation and system constraints on 30/20 GHz operation are included. A set of technical performance characteristics for the 30/20 GHz systems which can serve the resulting market demand and the experimental program necessary to verify technical and operational aspects of the proposed systems is also discussed.
Direct Broadcast Satellite: Radio Program
NASA Astrophysics Data System (ADS)
Hollansworth, James E.
1992-10-01
NASA is committed to providing technology development that leads to the introduction of new commercial applications for communications satellites. The Direct Broadcast Satellite-Radio (DBS-R) Program is a joint effort between The National Aeronautics and Space Administration (NASA) and The United States Information Agency/Voice of America (USIA/VOA) directed at this objective. The purpose of this program is to define the service and develop the technology for a direct-to-listener satellite sound broadcasting system. The DBS-R Program, as structured by NASA and VOA, is now a three-phase program designed to help the U.S. commercial communications satellite and receiver industry bring about this new communications service. Major efforts are being directed towards frequency planning hardware and service development, service demonstration, and experimentation with new satellite and receiver technology.
USDA-ARS?s Scientific Manuscript database
In California and other regions vulnerable to water shortages, satellite-derived estimates of key hydrologic parameters can support agricultural producers and water managers in maximizing the benefits of available water supplies. The Satellite Irrigation Management Support (SIMS) project combines N...
Research in support of the EODAP validation program and solid earth geophysics
NASA Technical Reports Server (NTRS)
Gaposchkin, E. M.
1978-01-01
A validation program to verify that geodetic space techniques can measure intersite distances of several hundred to several thousand kilometers and polar motion, both with a precision of about 5 cm is described. Laser data were analyzed using a new analytical approach "scalar translocation." It was found that this approach can give geodynamic information and that the method is promising and can be used on a variety of satellites with data of different accuracy.
Sea-Ice Mission Requirements for the US FIREX and Canada RADARSAT programs
NASA Technical Reports Server (NTRS)
Carsey, F. D.; Ramseier, R. O.; Weeks, W. F.
1982-01-01
A bilateral synthetic aperture radar (SAR) satellite program is defined. The studies include addressing the requirements supporting a SAR mission posed by a number of disciplines including science and operations in sea ice covered waters. Sea ice research problems such as ice information and total mission requirements, the mission components, the radar engineering parameters, and an approach to the transition of spacecraft SAR from a research to an operational tool were investigated.
Space Operations Center System Analysis: Requirements for a Space Operations Center, revision A
NASA Technical Reports Server (NTRS)
Woodcock, G. R.
1982-01-01
The system and program requirements for a space operations center as defined by systems analysis studies are presented as a guide for future study and systems definition. Topics covered include general requirements for safety, maintainability, and reliability, service and habitat modules, the health maintenance facility; logistics modules; the docking tunnel; and subsystem requirements (structures, electrical power, environmental control/life support; extravehicular activity; data management; communications and tracking; docking/berthing; flight control/propulsion; and crew support). Facilities for flight support, construction, satellite and mission servicing, and fluid storage are included as well as general purpose support equipment.
Near Real-Time Applications of Earth Remote Sensing for Response to Meteorological Disasters
NASA Technical Reports Server (NTRS)
Molthan, Andrew L.; Burks, Jason E.; McGrath, Kevin M.; Bell, Jordan R.
2013-01-01
Numerous on-orbit satellites provide a wide range of spatial, spectral, and temporal resolutions supporting the use of their resulting imagery in assessments of disasters that are meteorological in nature. This presentation will provide an overview of recent use of Earth remote sensing by NASA's Short-term Prediction Research and Transition (SPoRT) Center in response to disaster activities in 2012 and 2013, along with case studies supporting ongoing research and development. The SPoRT Center, with support from NASA's Applied Sciences Program, has explored a variety of new applications of Earth-observing sensors to support disaster response. In May 2013, the SPoRT Center developed unique power outage composites representing the first clear sky view of damage inflicted upon Moore and Oklahoma City, Oklahoma following the devastating EF-5 tornado that occurred on May 20. Subsequent ASTER, MODIS, Landsat-7 and Landsat-8 imagery help to identify the damaged area. Higher resolution imagery of Moore, Oklahoma were provided by commercial satellites and the recently available International Space Station (ISS) SERVIR Environmental Research and Visualization System (ISERV) instrument. New techniques are being explored by the SPoRT team in order to better identify damage visible in high resolution imagery, and to monitor ongoing recovery for Moore, Oklahoma. Other applications are being developed to refine light source detections with the VIIRS day-night band and to map hail during the growing season through combination of available satellite and radar imagery. The aforementioned products and support are not useful unless they are distributed in a timely manner and within an appropriate decision support system. This presentation will provide an update on ongoing activities to support inclusion of these data sets within the NOAA National Weather Service Damage Assessment Toolkit, which allows meteorologists in the field to consult available satellite imagery while performing their damage assessment.
Near Real-Time Applications of Earth Remote Sensing for Response to Meteorological Disasters
NASA Technical Reports Server (NTRS)
Molthan, Andrew L.; Burks, Jason E.; McGrath, Kevin M.; Bell, Jordan R.
2013-01-01
Numerous on-orbit satellites provide a wide range of spatial, spectral, and temporal resolutions supporting the use of their resulting imagery in assessments of disasters that are meteorological in nature. This presentation will provide an overview of recent use of Earth remote sensing by NASA's Short-term Prediction Research and Transition (SPoRT) Center in response to disaster activities in 2012 and 2013, along with case studies supporting ongoing research and development. The SPoRT Center, with support from NASA's Applied Sciences Program, has explored a variety of new applications of Earth-observing sensors to support disaster response. In May 2013, the SPoRT Center developed unique power outage composites representing the first clear sky view of damage inflicted upon Moore and Oklahoma City, Oklahoma following the devastating EF-5 tornado that occurred on May 20. Subsequent ASTER, MODIS, Landsat-7 and Landsat-8 imagery help to identify the damaged area. Higher resolution imagery of Moore, Oklahoma were provided by commercial satellites and the recently available International Space Station (ISS) SERVIR Environmental Research and Visualization System (ISERV) instrument. New techniques are being explored by the SPoRT team in order to better identify damage visible in high resolution imagery, and to monitor ongoing recovery for Moore, Oklahoma. Other applications are being developed to refine light source detections with the VIIRS day-night band and to map hail during the growing season through combination of available satellite and radar imagery. The aforementioned products and support are not useful unless they are distributed in a timely manner and within an appropriate decision support system. This presentation will provide an update on ongoing activities to support inclusion of these data sets within the NOAA National Weather Service Damage Assessment Toolkit, which allows meteorologists in the field to consult available satellite imagery while performing their damage assessment.
NASA compendium of satellite communications programs
NASA Technical Reports Server (NTRS)
1971-01-01
A comprehensive review of worldwide satellite communication programs is reported that ranges in time from the inception of satellite communications to mid-1971. Particular emphasis is placed on program results, including experiments conducted, communications system operational performance, and technology employed.
Northern Everglades, Florida, satellite image map
Thomas, Jean-Claude; Jones, John W.
2002-01-01
These satellite image maps are one product of the USGS Land Characteristics from Remote Sensing project, funded through the USGS Place-Based Studies Program with support from the Everglades National Park. The objective of this project is to develop and apply innovative remote sensing and geographic information system techniques to map the distribution of vegetation, vegetation characteristics, and related hydrologic variables through space and over time. The mapping and description of vegetation characteristics and their variations are necessary to accurately simulate surface hydrology and other surface processes in South Florida and to monitor land surface changes. As part of this research, data from many airborne and satellite imaging systems have been georeferenced and processed to facilitate data fusion and analysis. These image maps were created using image fusion techniques developed as part of this project.
NASA Technical Reports Server (NTRS)
Davarian, Faramaz (Editor)
1990-01-01
The NASA Propagation Experimenters Meeting (NAPEX), supported by the NASA Propagation Program, is convened annually to discuss studies made on radio wave propagation by investigators from domestic and international organizations. NAPEX XIV was held on May 11, 1990, at the Balcones Research Centers, University of Texas, Austin, Texas. The meeting was organized into two technical sessions: Satellite (ACTS) and the Olympus Spacecraft, while the second focused on the fixed and mobile satellite propagation studies and experiments. Following NAPEX XIV, the ACTS Miniworkshop was held at the Hotel Driskill, Austin, Texas, on May 12, 1990, to review ACTS propagation activities since the First ACTS Propagation Studies Workshop was held in Santa Monica, California, on November 28 and 29, 1989.
Alternative mathematical programming formulations for FSS synthesis
NASA Technical Reports Server (NTRS)
Reilly, C. H.; Mount-Campbell, C. A.; Gonsalvez, D. J. A.; Levis, C. A.
1986-01-01
A variety of mathematical programming models and two solution strategies are suggested for the problem of allocating orbital positions to (synthesizing) satellites in the Fixed Satellite Service. Mixed integer programming and almost linear programming formulations are presented in detail for each of two objectives: (1) positioning satellites as closely as possible to specified desired locations, and (2) minimizing the total length of the geostationary arc allocated to the satellites whose positions are to be determined. Computational results for mixed integer and almost linear programming models, with the objective of positioning satellites as closely as possible to their desired locations, are reported for three six-administration test problems and a thirteen-administration test problem.
NASA Technical Reports Server (NTRS)
1982-01-01
Results of planetary advanced studies and planning support provided by Science Applications, Inc. staff members to Earth and Planetary Exploration Division, OSSA/NASA, for the period 1 February 1981 to 30 April 1982 are summarized. The scope of analyses includes cost estimation, planetary missions performance, solar system exploration committee support, Mars program planning, Galilean satellite mission concepts, and advanced propulsion data base. The work covers 80 man-months of research. Study reports and related publications are included in a bibliography section.
New Directions in Land Remote Sensing Policy and International Cooperation
NASA Astrophysics Data System (ADS)
Stryker, Timothy
2010-12-01
Recent changes to land remote sensing satellite data policies in Brazil and the United States have led to the phenomenal growth in the delivery of land imagery to users worldwide. These new policies, which provide free and unrestricted access to land remote sensing data over a standard electronic interface, are expected to provide significant benefits to scientific and operational users, and open up new areas of Earth system science research and environmental monitoring. Freely-available data sets from the China-Brazil Earth Resources Satellites (CBERS), the U.S. Landsat satellites, and other satellite missions provide essential information for land surface monitoring, ecosystems management, disaster mitigation, and climate change research. These missions are making important contributions to the goals and objectives of regional and global terrestrial research and monitoring programs. These programs are in turn providing significant support to the goals and objectives of the United Nations Framework Convention on Climate Change (UN FCCC), the Global Earth Observation System of Systems (GEOSS), and the UN Reduction in Emissions from Deforestation and Degradation (REDD) program. These data policies are well-aligned with the "Data Democracy" initiative undertaken by the international Committee on Earth Observation Satellites (CEOS), through its current Chair, Brazil's National Institute for Space Research (Instituto Nacional de Pesquisas Espaciais, or INPE), and its former chairs, South Africa's Council for Scientific and Industrial Research (CSIR) and Thailand's Geo Informatics and Space Technology Development Agency (GISTDA). Comparable policies for land imaging data are under consideration within Europe and Canada. Collectively, these initiatives have the potential to accelerate and improve international mission collaboration, and greatly enhance the access, use, and application of land surface imagery for environmental monitoring and societal adaption to changing climate conditions.
Life Cycle Analysis of Dedicated Nano-Launch Technologies
NASA Technical Reports Server (NTRS)
Zapata, Edgar; McCleskey, Carey (Editor); Martin, John; Lepsch, Roger; Ternani, Tosoc
2014-01-01
Recent technology advancements have enabled the development of small cheap satellites that can perform useful functions in the space environment. Currently, the only low cost option for getting these payloads into orbit is through ride share programs - small satellites awaiting the launch of a larger satellite, and then riding along on the same launcher. As a result, these small satellite customers await primary payload launches and a backlog exists. An alternative option would be dedicated nano-launch systems built and operated to provide more flexible launch services, higher availability, and affordable prices. The potential customer base that would drive requirements or support a business case includes commercial, academia, civil government and defense. Further, NASA technology investments could enable these alternative game changing options. With this context, in 2013 the Game Changing Development (GCD) program funded a NASA team to investigate the feasibility of dedicated nano-satellite launch systems with a recurring cost of less than $2 million per launch for a 5 kg payload to low Earth orbit. The team products would include potential concepts, technologies and factors for enabling the ambitious cost goal, exploring the nature of the goal itself, and informing the GCD program technology investment decision making process. This paper provides an overview of the life cycle analysis effort that was conducted in 2013 by an inter-center NASA team. This effort included the development of reference nano-launch system concepts, developing analysis processes and models, establishing a basis for cost estimates (development, manufacturing and launch) suitable to the scale of the systems, and especially, understanding the relationship of potential game changing technologies to life cycle costs, as well as other factors, such as flights per year.
NASA Compendium of Satellite Communications Programs
NASA Technical Reports Server (NTRS)
1973-01-01
A comprehensive review is presented of worldwide communication programs that range in time from the inception of satellite communications to August 1971. The programs included are: Echo, Courier, West Ford, Telstar, Relay, Syncom, Lincoln experimental satellites, Intelsat, Tacsat, Skynet, Nato system, and Telesat.
The costs of introducing new technologies into space systems
NASA Technical Reports Server (NTRS)
Dodson, E. N.; Partma, H.; Ruhland, W.
1992-01-01
A review is conducted of cost-research studies intended to provide guidelines for cost estimates of integrating new technologies into existing satellite systems. Quantitative methods are described for determining the technological state-of-the-art so that proposed programs can be evaluated accurately in terms of their contribution to technological development. The R&D costs associated with the proposed programs are then assessed with attention given to the technological advances. Also incorporated quantifiably are any reductions in the costs of production, operations, and support afforded by the advanced technologies. The proposed model is employed in relation to a satellite sizing and cost study in which a tradeoff between increased R&D costs and reduced production costs is examined. The technology/cost model provides a consistent yardstick for assessing the true relative economic impact of introducing novel techniques and technologies.
STS-43 Space Shuttle mission report
NASA Technical Reports Server (NTRS)
Fricke, Robert W.
1991-01-01
The STS-43 Space Shuttle Program Mission Report contains a summary of the vehicle subsystem operations during the forty-second flight of the Space Shuttle Program and the ninth flight of the Orbiter Vehicle Atlantis (OV-104). In addition to the Atlantis vehicle, the flight vehicle consisted of the following: an External Tank (ET) designated as ET-47 (LWT-40); three Space Shuttle main engines (SSME's) (serial numbers 2024, 2012, and 2028 in positions 1, 2, and 3, respectively); and two Solid Rocket Boosters (SRB's) designated as BI-045. The primary objective of the STS-43 mission was to successfully deploy the Tracking and Data Relay Satellite-E/Inertial Upper Stage (TDRS-E/IUS) satellite and to perform all operations necessary to support the requirements of the Shuttle Solar Backscatter Ultraviolet (SSBUV) payload and the Space Station Heat Pipe Advanced Radiator Element (SHARE-2).
The New Millenium Program ST-5 Mission: Nanosatellite Constellation Trailblazer
NASA Technical Reports Server (NTRS)
Slavin, James A.
1999-01-01
NASA's New Millenium Program has recently selected the Nanosatellite Constellation Trailblazer (NCT) as its fifth mission (ST-5). NCT will consist of 3 small, very capable and highly autonomous satellites which will be operated as a single "constellation" with minimal ground operations support. Each spacecraft will be approximately 40 cm in diameter by 20 cm in height and weigh only 20 kg. These small satellites will incorporate 8 new technologies essential to the further miniaturization of space science spacecraft which need space flight validation. In this talk we will describe in greater detail the NCT mission concept and goals, the exciting new technologies it will validate, and the role of miniaturized particles and fields sensors in this project. Finally, NCT's pathfinder function for such future NASA missions as Magnetotail Constellation and Inner Magnetosphere Constellation will be discussed.
STS-43 Space Shuttle mission report
NASA Astrophysics Data System (ADS)
Fricke, Robert W.
1991-09-01
The STS-43 Space Shuttle Program Mission Report contains a summary of the vehicle subsystem operations during the forty-second flight of the Space Shuttle Program and the ninth flight of the Orbiter Vehicle Atlantis (OV-104). In addition to the Atlantis vehicle, the flight vehicle consisted of the following: an External Tank (ET) designated as ET-47 (LWT-40); three Space Shuttle main engines (SSME's) (serial numbers 2024, 2012, and 2028 in positions 1, 2, and 3, respectively); and two Solid Rocket Boosters (SRB's) designated as BI-045. The primary objective of the STS-43 mission was to successfully deploy the Tracking and Data Relay Satellite-E/Inertial Upper Stage (TDRS-E/IUS) satellite and to perform all operations necessary to support the requirements of the Shuttle Solar Backscatter Ultraviolet (SSBUV) payload and the Space Station Heat Pipe Advanced Radiator Element (SHARE-2).
NASA Astrophysics Data System (ADS)
Luton, J.-M.
1992-02-01
Successful European Space Agency (ESA) programs include the Ariane launcher development, the Meteosat meteorological satellites and the Intelsat 6, ECS (European Communications Satellite) series of communications satellites. The ESA's policy of placing contracts with industrial companies in its 13 member countries has contributed to the strategic development of European high technology in the world market. The ESA's long-term programs, in addition to the Ariane launcher and Columbus/Hermes space-station/spaceplane programs, include participation in the International Space Station program, the Data Relay Satellite system and a variety of space applications programs. Two high-performance satellites to be placed in polar orbits will contribute to European environmental and climate variation studies and, together with the Polar Platform sector of the Columbus program, will drive the establishment and development of new institutions, industrial structures and infrastructure.
NASA Astrophysics Data System (ADS)
Paarmann, Carola; Muller, Jens; Mende, Thomas; Borner, Carsten; Mascher, Rolf
2011-10-01
In the frame of the ESA supported Artes 11 program a new generation of GEO telecommunication satellites is under development. This platform will cover the power range from 2 to 5 kW. ASTRIUM GmbH is contracted to develop and design the Solar Array for this platform. Furthermore the manufacturing and the qualification of a PFM wing for the first flight model is foreseen. The satellite platform, called Small-GEO, is developed under the responsibility of OHB System. This first Small-GEO satellite is designated to be delivered to HISPASAT for operation. The concept of ASTRIUM GmbH is to use all the experiences from the very successful EUROSTAR 2000+, EUROSTAR-3000 and the ALPHABUS platform and to adapt the technologies to the Small- GEO Solar Array. With the benefit of the huge in-orbit heritage of these programs, the remaining risks for the Small-GEO Solar Array can be minimized. The development of the Small-GEO Solar Array extends the ASTRIUM GmbH product portfolio by covering now the complete power range between 2 kW and 31 kW. This paper provides an overview of the different configurations, their main design features and parameters.
Increasing the Use of Earth Science Data and Models in Air Quality Management.
Milford, Jana B; Knight, Daniel
2017-04-01
In 2010, the U.S. National Aeronautics and Space Administration (NASA) initiated the Air Quality Applied Science Team (AQAST) as a 5-year, $17.5-million award with 19 principal investigators. AQAST aims to increase the use of Earth science products in air quality-related research and to help meet air quality managers' information needs. We conducted a Web-based survey and a limited number of follow-up interviews to investigate federal, state, tribal, and local air quality managers' perspectives on usefulness of Earth science data and models, and on the impact AQAST has had. The air quality managers we surveyed identified meeting the National Ambient Air Quality Standards for ozone and particulate matter, emissions from mobile sources, and interstate air pollution transport as top challenges in need of improved information. Most survey respondents viewed inadequate coverage or frequency of satellite observations, data uncertainty, and lack of staff time or resources as barriers to increased use of satellite data by their organizations. Managers who have been involved with AQAST indicated that the program has helped build awareness of NASA Earth science products, and assisted their organizations with retrieval and interpretation of satellite data and with application of global chemistry and climate models. AQAST has also helped build a network between researchers and air quality managers with potential for further collaborations. NASA's Air Quality Applied Science Team (AQAST) aims to increase the use of satellite data and global chemistry and climate models for air quality management purposes, by supporting research and tool development projects of interest to both groups. Our survey and interviews of air quality managers indicate they found value in many AQAST projects and particularly appreciated the connections to the research community that the program facilitated. Managers expressed interest in receiving continued support for their organizations' use of satellite data, including assistance in retrieving and interpreting data from future geostationary platforms meant to provide more frequent coverage for air quality and other applications.
The Tropical Rainfall Measuring Mission and Vern Suomi 's Vital Role
NASA Technical Reports Server (NTRS)
Simpson, Joanne; Kummerow, Christian
1999-01-01
The Tropical Rainfall Measuring Mission was a new concept of measuring rainfall over the global tropics using a combination of instruments, including the first weather radar to be flown in space. An important objective of the mission was to obtain profiles of latent heat in order to initialize large-scale circulation models and to understand the relationship between short-term climate changes in relation to rainfall variability. The idea originated in the early 1980's from scientists at the Goddard Space Flight Center/NASA who had been involved with attempts to measure rain with a passive microwave instrument on Nimbus 5 and had compared its results with rain falling in the area covered by the GATE1 radar ships. Using an imaginary satellite flying over the GATE ships, scientists showed that a satellite with an inclined orbit of 30-35 degrees could obtain monthly rainfalls with a sampling error of less than 10 percent over 5 degree by 5 degree areas. The Japanese proposed that they could build a nadir-scanning rain radar for the satellite. Vern Suomi was excited by this mission from the outset, since he recognized the great importance of adequate rainfall measurements over the tropical oceans. He was a charter member of the Science Steering Team and prepared a large part of the Report. While the mission attracted strong support in the science community, it was opposed by some of the high-level NASA management who feared its competition for funds with some much larger Earth Science satellites. Vern was able to overcome this opposition and to generate Congressional support, so that the Project finally got underway on both sides of the Pacific in 1991. The paper will discuss the design of the satellite, its data system and ground validation program. TP.NM was successfully launched in late 1997. Early results will be described. 1 GATE stands for GARP Atlantic Tropical Experiment and GARP stands for Global Atmospheric Research Program.
Space-based observatories providing key data for climate change applications
NASA Astrophysics Data System (ADS)
Lecomte, J.; Juillet, J. J.
2016-12-01
The Sentinel-1 & 3 mission are part of the Copernicus program, previously known as GMES (Global Monitoring for Environment and Security), whose overall objective is to support Europe's goals regarding sustainable development and global governance of the environment by providing timely and quality data, information, services and knowledge. This European Earth Observation program is led by the European Commission and the space infrastructure is developed under the European Space Agency leadership. Many services will be developed through the Copernicus program among different thematic areas. The climate change is one of this thematic area and the Sentinel-1 & 3 satellites will provide key space-based observations in this area. The Sentinel-1 mission is based on a constellation of 2 identical satellites each one embarking C-SAR Instrument and provides capability for continuous radar mapping of the Earth with enhanced revisit frequency, coverage, timeliness and reliability for operational services and applications requiring long time series. In particular, Sentinel 1 provides all-weather, day-and-night estimates of soil moisture, wind speed and direction, sea ice, continental ice sheets and glaciers. The Sentinel-3 mission will mainly be devoted to the provision of Ocean observation data in routine, long term (20 years of operations) and continuous fashion with a consistent quality and a very high level of availability. Among these data, very accurate surface temperatures and topography measurements will be provided and will constitute key indicators, once ingested in climate change models, for identifying climate drivers and expected climate impacts. The paper will briefly recall the satellite architectures, their main characteristics and performance. The inflight performance and key features of their images or data of the 3 satellites namely Sentinel 1A, 1B and 3A will be reviewed to demonstrate the quality and high scientific potential of the data as well as their availability to the user community. The short, medium and long term will be described. The first satellites are now in operation in orbit. Long-term plan foresees 2 add't recurrent satellites currently under prod, then a new gen in long term. Long term is crucial for climate change analysis & forecast, which is the goal of the Copernicus program.
NASA Technical Reports Server (NTRS)
1974-01-01
Observations and research progress of the Smithsonian Astrophysical Observatory are reported. Satellite tracking networks (ground stations) are discussed and equipment (Baker-Nunn cameras) used to observe the satellites is described. The improvement of the accuracy of a laser ranging system of the ground stations is discussed. Also, research efforts in satellite geodesy (tides, gravity anomalies, plate tectonics) is discussed. The use of data processing for geophysical data is examined, and a data base for the Earth and Ocean Physics Applications Program is proposed. Analytical models of the earth's motion (computerized simulation) are described and the computation (numerical integration and algorithms) of satellite orbits affected by the earth's albedo, using computer techniques, is also considered. Research efforts in the study of the atmosphere are examined (the effect of drag on satellite motion), and models of the atmosphere based on satellite data are described.
NASA Technical Reports Server (NTRS)
Ross, A.; Richards, A.; Keith, K.; Frew, C.; Boseck, J.; Sutton, S.; Watts, C.; Rickman, D.
2007-01-01
This project focused on a comprehensive utilization of air quality model products as decision support tools (DST) needed for public health applications. A review of past and future air quality measurement methods and their uncertainty, along with the relationship of air quality to national and global public health, is vital. This project described current and future NASA satellite remote sensing and ground sensing capabilities and the potential for using these sensors to enhance the prediction, prevention, and control of public health effects that result from poor air quality. The qualitative uncertainty of current satellite remotely sensed air quality, the ground-based remotely sensed air quality, the air quality/public health model, and the decision making process is evaluated in this study. Current peer-reviewed literature suggests that remotely sensed air quality parameters correlate well with ground-based sensor data. A satellite remote-sensed and ground-sensed data complement is needed to enhance the models/tools used by policy makers for the protection of national and global public health communities
ERIC Educational Resources Information Center
Lonsdale, Helen C.; O'Neill, Donald W.
To implement a career education program for junior high school students in the rural, isolated areas of the Rocky Mountain States, Satellite Technology Demonstration (STD) tested the use of a satellite-assisted communications system for the delivery of social services. A magazine was designed to promote acceptance of the television programing and…
Biomedical Experiments Scientific Satellite /BESS/
NASA Technical Reports Server (NTRS)
Berry, W. E.; Tremor, J. W.; Aepli, T. C.
1976-01-01
The Biomedical Experiments Scientific Satellite (BESS) program is proposed to provide a long-duration, earth-orbiting facility to expose selected specimens in a series of biomedical experiments through the 1980's. Launched and retrieved by the Space Transportation System, the fully reusable, free-flying BESS will contain all systems necessary to conduct a six-month to one-year spaceflight mission. The spacecraft system will consist of a large pressurized experiment module and a standard NASA service module currently conceived as the Goddard Multi-Mission Spacecraft (MMS). The experiment module will contain the life-support systems, waste management system, specimen-holding facilities, and monitoring, evaluating, and data-handling equipment. Although a variety of specimens will be flown in basic biological and medical studies, the primate was taken as the principal design driver since it has a maximal life-support demand.
Building technological capability within satellite programs in developing countries
NASA Astrophysics Data System (ADS)
Wood, Danielle; Weigel, Annalisa
2011-12-01
This paper explores the process of building technological capability in government-led satellite programs within developing countries. The key message is that these satellite programs can learn useful lessons from literature in the international development community. These lessons are relevant to emerging satellite programs that leverage international partnerships in order to establish local capability to design, build and operate satellites. Countries with such programs include Algeria, Nigeria, Turkey, Malaysia and the United Arab Emirates. The paper first provides background knowledge about space activity in developing countries, and then explores the nuances of the lessons coming from the international development literature. Developing countries are concerned with satellite technology because satellites provide useful services in the areas of earth observation, communication, navigation and science. Most developing countries access satellite services through indirect means such as sharing data with foreign organizations. More countries, however, are seeking opportunities to develop satellite technology locally. There are objective, technically driven motivations for developing countries to invest in satellite technology, despite rich debate on this topic. The paper provides a framework to understand technical motivations for investment in satellite services, hardware, expertise and infrastructure in both short and long term. If a country decides to pursue such investments they face a common set of strategic decisions at the levels of their satellite program, their national context and their international relationships. Analysis of past projects shows that countries have chosen diverse strategies to address these strategic decisions and grow in technological capability. What is similar about the historical examples is that many countries choose to leverage international partnerships as part of their growth process. There are also historical examples from outside the space arena in which organizations have pursued technological capability. Scholars have analyzed these examples and developed insightful frameworks. The paper draws key concepts from this literature about the nature of development, technology, knowledge and organizational learning. These concepts are relevant to learning in new satellite programs, but the ideas must be applied cautiously because of the nature of satellite technology. The paper draws three major lessons from the international development literature regarding absorptive capacity, tacit knowledge and organizational learning; it synthesizes these lessons into a cohesive, original framework. The closing section proposes future work on a detailed study of technological learning in specific government satellite programs.
Satellite Estimation of Fractional Cover in Several California Specialty Crops
NASA Technical Reports Server (NTRS)
Johnson, Lee; Cahn, Michael; Rosevelt, Carolyn; Guzman, Alberto; Farrara, Barry; Melton, Forrest S.
2016-01-01
Past research in California and elsewhere has revealed strong relationships between satellite NDVI, photosynthetically active vegetation fraction (Fc), and crop evapotranspiration (ETc). Estimation of ETc can support efficiency of irrigation practice, which enhances water security and may mitigate nitrate leaching. The U.C. Cooperative Extension previously developed the CropManage (CM) web application for evaluation of crop water requirement and irrigation scheduling for several high-value specialty crops. CM currently uses empirical equations to predict daily Fc as a function of crop type, planting date and expected harvest date. The Fc prediction is transformed to fraction of reference ET and combined with reference data from the California Irrigation Management Information System to estimate daily ETc. In the current study, atmospherically-corrected Landsat NDVI data were compared with in-situ Fc estimates on several crops in the Salinas Valley during 2011-2014. The satellite data were observed on day of ground collection or were linearly interpolated across no more than an 8-day revisit period. Results will be presented for lettuce, spinach, celery, broccoli, cauliflower, cabbage, peppers, and strawberry. An application programming interface (API) allows CM and other clients to automatically retrieve NDVI and associated data from NASA's Satellite Irrigation Management Support (SIMS) web service. The SIMS API allows for queries both by individual points or user-defined polygons, and provides data for individual days or annual timeseries. Updates to the CM web app will convert these NDVI data to Fc on a crop-specific basis. The satellite observations are expected to play a support role in Salinas Valley, and may eventually serve as a primary data source as CM is extended to crop systems or regions where Fc is less predictable.
Satellite Estimation of Fractional Cover in Several California Specialty Crops
NASA Astrophysics Data System (ADS)
Johnson, L.; Cahn, M.; Rosevelt, C.; Guzman, A.; Lockhart, T.; Farrara, B.; Melton, F. S.
2016-12-01
Past research in California and elsewhere has revealed strong relationships between satellite NDVI, photosynthetically active vegetation fraction (Fc), and crop evapotranspiration (ETc). Estimation of ETc can support efficiency of irrigation practice, which enhances water security and may mitigate nitrate leaching. The U.C. Cooperative Extension previously developed the CropManage (CM) web application for evaluation of crop water requirement and irrigation scheduling for several high-value specialty crops. CM currently uses empirical equations to predict daily Fc as a function of crop type, planting date and expected harvest date. The Fc prediction is transformed to fraction of reference ET and combined with reference data from the California Irrigation Management Information System to estimate daily ETc. In the current study, atmospherically-corrected Landsat NDVI data were compared with in-situ Fc estimates on several crops in the Salinas Valley during 2011-2014. The satellite data were observed on day of ground collection or were linearly interpolated across no more than an 8-day revisit period. Results will be presented for lettuce, spinach, celery, broccoli, cauliflower, cabbage, peppers, and strawberry. An application programming interface (API) allows CM and other clients to automatically retrieve NDVI and associated data from NASA's Satellite Irrigation Management Support (SIMS) web service. The SIMS API allows for queries both by individual points or user-defined polygons, and provides data for individual days or annual timeseries. Updates to the CM web app will convert these NDVI data to Fc on a crop-specific basis. The satellite observations are expected to play a support role in Salinas Valley, and may eventually serve as a primary data source as CM is extended to crop systems or regions where Fc is less predictable.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Landsfeld, M.; Gautier, C.; Figel, T.
1995-01-01
To better predict global climate change, scientists are developing climate models that require interdisciplinary and collaborative efforts in their building. The authors are currently involved in several such projects but will briefly discuss activities in support of two such complementary projects: the Atmospheric Radiation Measurement (ARM) program of the Department of Energy and Sequoia 2000, a joint venture of the University of California, the private sector, and government. The author`s contribution to the ARM program is to investigate the role of clouds on the top of the atmosphere and on surface radiance fields through the data analysis of surface andmore » satellite observations and complex modeling of the interaction of radiation with clouds. One of the first ARM research activities involves the computation of the broadband shortwave surface irradiance from satellite observations. Geostationary satellite images centered over the first ARM observation site are received hourly over the Internet network and processed in real time to compute hourly and daily composite shortwave irradiance fields. The images and the results are transferred via a high-speed network to the Sequoia 2000 storage facility in Berkeley, where they are archived. These satellite-derived results are compared with the surface observations to evaluate the accuracy of the satellite estimate and the spatial representation of the surface observations. In developing the software involved in calculating the surface shortwave irradiance, the authors have produced an environment whereby they can easily modify and monitor the data processing as required. Through the principles of modular programming, they have developed software that is easily modified as new algorithms for computation are developed or input data availability changes. In addition, the software was designed so that it could be run from an interactive, icon-driven, graphical interface, TCL-TK, developed by Sequoia 2000 participants.« less
The ESRC: A Web-based Environmental Satellite Resource Center
NASA Astrophysics Data System (ADS)
Abshire, W. E.; Guarente, B.; Dills, P. N.
2009-12-01
The COMET® Program has developed an Environmental Satellite Resource Center (known as the ESRC), a searchable, database-driven Website that provides easy access to a wide range of useful information training materials on polar-orbiting and geostationary satellites. Primarily sponsored by the NPOESS Program and NOAA, the ESRC is a tool for users seeking reliable sources of satellite information, training, and data. First published in September 2008, and upgraded in April 2009, the site is freely available at: http://www.meted.ucar.edu/esrc. Additional contributions to the ESRC are sought and made on an ongoing basis. The ESRC was created in response to a broad community request first made in May 2006. The COMET Program was asked to develop the site to consolidate and simplify access to reliable, current, and diverse information, training materials, and data associated with environmental satellites. The ESRC currently includes over 400 significant resources from NRL, CIMSS, CIRA, NASA, VISIT, NESDIS, and EUMETSAT, and improves access to the numerous satellite resources available from COMET’s MetEd Website. The ESRC is designed as a community site where organizations and individuals around the globe can easily submit their resources via online forms by providing a small set of metadata. The ESRC supports languages other than English and multi-lingual character sets have been tested. COMET’s role is threefold: 1) maintain the site, 2) populate it with our own materials, including smaller, focused learning objects derived from our larger training modules, and 3) provide the necessary quality assurance and monitoring to ensure that all resources are appropriate and well described before being made available. Our presentation will demonstrate many of the features and functionality of searching for resources using the ESRC, and will outline the steps for users to make their own submissions. For the site to reach its full potential, submissions representing diverse interests and intended for diverse audiences are strongly encouraged.
NASA Technical Reports Server (NTRS)
Greenburg, J. S.; Gaelick, C.; Kaplan, M.; Fishman, J.; Hopkins, C.
1985-01-01
Commercial organizations as well as government agencies invest in spacecraft (S/C) technology programs that are aimed at increasing the performance of communications satellites. The value of these programs must be measured in terms of their impacts on the financial performane of the business ventures that may ultimately utilize the communications satellites. An economic evaluation and planning capability was developed and used to assess the impact of NASA on-orbit propulsion and space power programs on typical fixed satellite service (FSS) and direct broadcast service (DBS) communications satellite business ventures. Typical FSS and DBS spin and three-axis stabilized spacecraft were configured in the absence of NASA technology programs. These spacecraft were reconfigured taking into account the anticipated results of NASA specified on-orbit propulsion and space power programs. In general, the NASA technology programs resulted in spacecraft with increased capability. The developed methodology for assessing the value of spacecraft technology programs in terms of their impact on the financial performance of communication satellite business ventures is described. Results of the assessment of NASA specified on-orbit propulsion and space power technology programs are presented for typical FSS and DBS business ventures.
NASA Astrophysics Data System (ADS)
Greenburg, J. S.; Gaelick, C.; Kaplan, M.; Fishman, J.; Hopkins, C.
1985-09-01
Commercial organizations as well as government agencies invest in spacecraft (S/C) technology programs that are aimed at increasing the performance of communications satellites. The value of these programs must be measured in terms of their impacts on the financial performane of the business ventures that may ultimately utilize the communications satellites. An economic evaluation and planning capability was developed and used to assess the impact of NASA on-orbit propulsion and space power programs on typical fixed satellite service (FSS) and direct broadcast service (DBS) communications satellite business ventures. Typical FSS and DBS spin and three-axis stabilized spacecraft were configured in the absence of NASA technology programs. These spacecraft were reconfigured taking into account the anticipated results of NASA specified on-orbit propulsion and space power programs. In general, the NASA technology programs resulted in spacecraft with increased capability. The developed methodology for assessing the value of spacecraft technology programs in terms of their impact on the financial performance of communication satellite business ventures is described. Results of the assessment of NASA specified on-orbit propulsion and space power technology programs are presented for typical FSS and DBS business ventures.
Ground System Extensibility Considerations
NASA Astrophysics Data System (ADS)
Miller, S. W.; Greene, E.
2017-12-01
The National Oceanic and Atmospheric Administration (NOAA) and National Aeronautics and Space Administration (NASA) are jointly acquiring the next-generation civilian weather and environmental satellite system: the Joint Polar Satellite System (JPSS). The Joint Polar Satellite System will replace the afternoon orbit component and ground processing system of the current Polar-orbiting Operational Environmental Satellites (POES) managed by NOAA. The JPSS satellites will carry a suite of sensors designed to collect meteorological, oceanographic, climatological and geophysical observations of the Earth. The ground processing system for JPSS is known as the JPSS Common Ground System (JPSS CGS). Developed and maintained by Raytheon Intelligence, Information and Services (IIS), the CGS is a multi-mission enterprise system serving NOAA, NASA and their national and international partners, such as NASA's Earth Observation System (EOS), NOAA's current POES, the Japan Aerospace Exploration Agency's (JAXA) Global Change Observation Mission - Water (GCOM-W1), and DoD's Defense Meteorological Satellite Program (DMSP). The CGS provides a wide range of support to a number of national and international missions, including command and control, mission management, data acquisition and routing, and environmental data processing and distribution. The current suite of CGS-supported missions has demonstrated the value of interagency and international partnerships to address global observation needs. With its established infrastructure and existing suite of missions, the CGS is extensible to a wider array of potential new missions. This paper will describe how the inherent scalability and extensibility of the CGS enables the addition of these new missions, with an eye on global enterprise needs in the 2020's and beyond.
New Methods for Air Quality Model Evaluation with Satellite Data
NASA Astrophysics Data System (ADS)
Holloway, T.; Harkey, M.
2015-12-01
Despite major advances in the ability of satellites to detect gases and aerosols in the atmosphere, there remains significant, untapped potential to apply space-based data to air quality regulatory applications. Here, we showcase research findings geared toward increasing the relevance of satellite data to support operational air quality management, focused on model evaluation. Particular emphasis is given to nitrogen dioxide (NO2) and formaldehyde (HCHO) from the Ozone Monitoring Instrument aboard the NASA Aura satellite, and evaluation of simulations from the EPA Community Multiscale Air Quality (CMAQ) model. This work is part of the NASA Air Quality Applied Sciences Team (AQAST), and is motivated by ongoing dialog with state and federal air quality management agencies. We present the response of satellite-derived NO2 to meteorological conditions, satellite-derived HCHO:NO2 ratios as an indicator of ozone production regime, and the ability of models to capture these sensitivities over the continental U.S. In the case of NO2-weather sensitivities, we find boundary layer height, wind speed, temperature, and relative humidity to be the most important variables in determining near-surface NO2 variability. CMAQ agreed with relationships observed in satellite data, as well as in ground-based data, over most regions. However, we find that the southwest U.S. is a problem area for CMAQ, where modeled NO2 responses to insolation, boundary layer height, and other variables are at odds with the observations. Our analyses utilize a software developed by our team, the Wisconsin Horizontal Interpolation Program for Satellites (WHIPS): a free, open-source program designed to make satellite-derived air quality data more usable. WHIPS interpolates level 2 satellite retrievals onto a user-defined fixed grid, in effect creating custom-gridded level 3 satellite product. Currently, WHIPS can process the following data products: OMI NO2 (NASA retrieval); OMI NO2 (KNMI retrieval); OMI HCHO (NASA retrieval); MOPITT CO (NASA retrieval); MODIS AOD (NASA retrieval). More information at http://nelson.wisc.edu/sage/data-and-models/software.php.
Development of an Oceanographic Data Archiving and Service System for the Korean Researchers
NASA Astrophysics Data System (ADS)
Kim, Sung Dae; Park, Hyuk Min; Baek, Sang Ho
2014-05-01
Oceanographic Data and Information Center of Korea Institute of Ocean Science and Technology (KIOST) started to develop an oceanographic data archiving and service system in 2010 to support the Korean ocean researchers by providing quality controlled data continuously. Many physical oceanographic data available in the public domain and Korean domestic data were collected periodically, quality controlled, manipulated and provided to ocean modelers who need ocean data continuously and marine biologists who don't know well physical data but need it. The northern limit and the southern limit of the spatial coverage are 20°N and 55°N, and the western limit and the eastern limit are 110°E and 150°E, respectively. To archive TS (Temperature and Salinity) profile data, ARGO data were gathered from ARGO GDACs (France and USA) and many historical TS profile data observed by CTD, OSD and BT were retrieved from World Ocean Database 2009. The quality control software for TS profile data, which meets QC criteria suggested by the ARGO program and the GTSPP (Global Temperature-Salinity Profile Program), was programmed and applied to the collected data. By the end of 2013, the total number of vertical profile data from the ARGO GDACs was 59,642 and total number of station data from WOD 2009 was 1,604,422. We also collected the global satellite SST data produced by NCDC and global SSH data from AVISO every day. An automatic program was coded to collect satellite data, extract sub data sets of the North West Pacific area and produce distribution maps. The total number of collected satellite data sets was 3,613 by the end of 2013. We use 3 different data services to provide archived data to the Korean experts. A FTP service was prepared to allow data users to download data in the original format. We developed TS database system using Oracle RDBMS to contain all collected temperature salinity data and support SQL data retrieval with various conditions. The KIOST ocean data portal was used as the data retrieving service of TS DB, which uses GIS interface made by open source GIS software. We also installed Live Access Service developed by US PMEL for service of the satellite netCDF data files, which support on-the-fly visualization and OPeNDAP (Open-source Project for a Network Data Access Protocol) service for remote connection and sub-setting of large data set
2013-11-16
CAPE CANAVERAL, Fla. -- In the conference room of Operations Support Building II at NASA's Kennedy Space Center in Florida, social media participants listen to a briefing on the agency's CubeSat Program by Andrew Petro, small satellites program manager. The social media participants gathered at the Florida spaceport for the launch of the Mars Atmosphere and Volatile Evolution, or MAVEN, spacecraft. Their visit included tours of key facilities and participating in presentations by key NASA leaders who updated the space agency's current efforts. Photo credit: NASA/Jim Grossman
Report of Workshop on Methodology for Evaluating Potential Lunar Resources Sites
NASA Technical Reports Server (NTRS)
Williams, R. J.; Hubbard, N.
1981-01-01
The type and quantity of lunar materials needed to support a space power satellite program was used to define the type and quality of geological information required to certify a site for exploitation. The existing geological, geochemical, and geophysical data are summarized. The difference between these data and the required data for exploitation is used to define program requirements. Most of these requirements involve linear extensions of existing capabilities, fuller utilization of existing data, or expanded use of automated systems.
JPSS Common Ground System Multimission Support
NASA Astrophysics Data System (ADS)
Jamilkowski, M. L.; Miller, S. W.; Grant, K. D.
2013-12-01
NOAA & NASA jointly acquire the next-generation civilian operational weather satellite: Joint Polar Satellite System (JPSS). JPSS contributes the afternoon orbit & restructured NPOESS ground system (GS) to replace the current Polar-orbiting Operational Environmental Satellite (POES) system run by NOAA. JPSS sensors will collect meteorological, oceanographic, climatological & solar-geophysical observations of the earth, atmosphere & space. The JPSS GS is the Common Ground System (CGS), consisting of Command, Control, & Communications (C3S) and Interface Data Processing (IDPS) segments, both developed by Raytheon Intelligence, Information & Services (IIS). CGS now flies the Suomi National Polar-orbiting Partnership (S-NPP) satellite, transfers its mission data between ground facilities and processes its data into Environmental Data Records for NOAA & Defense (DoD) weather centers. CGS will expand to support JPSS-1 in 2017. The JPSS CGS currently does data processing (DP) for S-NPP, creating multiple TBs/day across over two dozen environmental data products (EDPs). The workload doubles after JPSS-1 launch. But CGS goes well beyond S-NPP & JPSS mission management & DP by providing data routing support to operational centers & missions worldwide. The CGS supports several other missions: It also provides raw data acquisition, routing & some DP for GCOM-W1. The CGS does data routing for numerous other missions & systems, including USN's Coriolis/Windsat, NASA's SCaN network (including EOS), NSF's McMurdo Station communications, Defense Meteorological Satellite Program (DMSP), and NOAA's POES & EUMETSAT's MetOp satellites. Each of these satellite systems orbits the Earth 14 times/day, downlinking data once or twice/orbit at up to 100s of MBs/second, to support the creation of 10s of TBs of data/day across 100s of EDPs. Raytheon and the US government invested much in Raytheon's mission-management, command & control and data-processing products & capabilities. CGS's flexible, multimission capabilities offer major chances for cost reduction & improved information integration across missions. Raytheon has a unique ability to provide complex, highly-secure, multi-mission GSs. As disaggregation, hosted CGS multimission payloads, and other space-architecture trades are implemented and new sensors come on line that collect orders of magnitude more data, the importance of a flexible, expandable and virtualized modern GS architecture increases. The CGS offers that solution support. JPSS CGS supports 5 global ground stations that can receive S-NPP & JPSS-1 mission data. These, linked with high-bandwidth commercial fiber, quickly transport data to the IDPS for EDP creation & delivery. CGS will process & deliver JPSS-1 data to US operational users in < 80 minutes from time of collection. And CGS leverages this fiber network to provide added data routing for a wide array of global missions. The JPSS CGS is a mature, tested solution for support to operational weather forecasting for civil, military and international partners and climate research. It features a flexible design handling order-of-magnitude increases in data over legacy satellite GSs and meets demanding science accuracy needs. The Raytheon-built JPSS CGS gives the full GS capability, from design & development through operations & sustainment. This lays the foundation for CGS future evolution to support additional missions like Polar Free Flyers.
Modular space station Phase B extension preliminary performance specification. Volume 2: Project
NASA Technical Reports Server (NTRS)
1971-01-01
The four systems of the modular space station project are described, and the interfaces between this project and the shuttle project, the tracking and data relay satellite project, and an arbitrarily defined experiment project are defined. The experiment project was synthesized from internal experiments, detached research and application modules, and attached research and application modules to derive a set of interface requirements which will support multiple combinations of these elements expected during the modular space station mission. The modular space station project element defines a 6-man orbital program capable of growth to a 12-man orbital program capability. The modular space station project element specification defines the modular space station system, the premission operations support system, the mission operations support system, and the cargo module system and their interfaces.
A Research Program in Computer Technology. Volume 1
1981-08-01
rigidity, sensor networks 10. command and control, digital voice communication, graphic input device for terminal, multimedia communications, portable...satellite channel in the internetwork environment; Distributed Sensor Networks - formulation of algorithms and communication protocols to support the...operation of geographically distributed sensors ; Personal Communicator - work intended to result in a demonstration-level portable terminal to test and
Characterization of Orbital Debris via Hyper-Velocity Laboratory-Based Tests
NASA Technical Reports Server (NTRS)
Cowardin, Heather; Liou, J.-C.; Anz-Meador, Phillip; Sorge, Marlon; Opiela, John; Fitz-Coy, Norman; Huynh, Tom; Krisko, Paula
2017-01-01
Existing DOD and NASA satellite breakup models are based on a key laboratory test, Satellite Orbital debris Characterization Impact Test (SOCIT), which has supported many applications and matched on-orbit events involving older satellite designs reasonably well over the years. In order to update and improve these models, the NASA Orbital Debris Program Office, in collaboration with the Air Force Space and Missile Systems Center, The Aerospace Corporation, and the University of Florida, replicated a hypervelocity impact using a mock-up satellite, DebriSat, in controlled laboratory conditions. DebriSat is representative of present-day LEO satellites, built with modern spacecraft materials and construction techniques. Fragments down to 2 mm in size will be characterized by their physical and derived properties. A subset of fragments will be further analyzed in laboratory radar and optical facilities to update the existing radar-based NASA Size Estimation Model (SEM) and develop a comparable optical-based SEM. A historical overview of the project, status of the characterization process, and plans for integrating the data into various models will be discussed herein.
Characterization of Orbital Debris via Hyper-Velocity Laboratory-Based Tests
NASA Technical Reports Server (NTRS)
Cowardin, Heather; Liou, J.-C.; Krisko, Paula; Opiela, John; Fitz-Coy, Norman; Sorge, Marlon; Huynh, Tom
2017-01-01
Existing DoD and NASA satellite breakup models are based on a key laboratory test, Satellite Orbital debris Characterization Impact Test (SOCIT), which has supported many applications and matched on-orbit events involving older satellite designs reasonably well over the years. In order to update and improve these models, the NASA Orbital Debris Program Office, in collaboration with the Air Force Space and Missile Systems Center, The Aerospace Corporation, and the University of Florida, replicated a hypervelocity impact using a mock-up satellite, DebriSat, in controlled laboratory conditions. DebriSat is representative of present-day LEO satellites, built with modern spacecraft materials and construction techniques. Fragments down to 2 mm in size will be characterized by their physical and derived properties. A subset of fragments will be further analyzed in laboratory radar and optical facilities to update the existing radar-based NASA Size Estimation Model (SEM) and develop a comparable optical-based SEM. A historical overview of the project, status of the characterization process, and plans for integrating the data into various models will be discussed herein.
Discovery of Remote Globular Cluster Satellites of M87
NASA Astrophysics Data System (ADS)
Sparkman, Lea; Guo, Rachel; Toloba, Elisa; Guhathakurta, Puragra; Peng, Eric W.; Ferrarese, Laura; Cote, Patrick; NGVS Collaboration
2016-01-01
We present the discovery of several tens of globular clusters (GCs) in the outer regions of the giant elliptical M87, the brightest galaxy in the Virgo Cluster. These M87 GC satellites were discovered in the course of Keck/DEIMOS spectroscopic follow up of GC candidates that were identified in the Next Generation Virgo cluster Survey (NGVS). Specifically, the primary targets of this Keck spectroscopic campaign were GC satellites of early-type dwarf (dE) galaxies. However, we found that our sample contained a subset of GCs for which M87 is the most likely host. This subset is consistent with having an r^-1 power-law surface density distribution and a radial velocity distribution both centered on M87. The remote M87 GC satellites span the radial range 140 to 900 kpc, out to about a third of the Virgo Cluster's virial radius (for comparison, M87's effective radius is only 8 kpc). These M87 GC satellites are probably former satellites of other Virgo Cluster galaxies that have subsequently been cannibalized by M87.This research was supported by the National Science Foundation and the UC Santa Cruz Science Internship Program.
ISS Robotic Student Programming
NASA Technical Reports Server (NTRS)
Barlow, J.; Benavides, J.; Hanson, R.; Cortez, J.; Le Vasseur, D.; Soloway, D.; Oyadomari, K.
2016-01-01
The SPHERES facility is a set of three free-flying satellites launched in 2006. In addition to scientists and engineering, middle- and high-school students program the SPHERES during the annual Zero Robotics programming competition. Zero Robotics conducts virtual competitions via simulator and on SPHERES aboard the ISS, with students doing the programming. A web interface allows teams to submit code, receive results, collaborate, and compete in simulator-based initial rounds and semi-final rounds. The final round of each competition is conducted with SPHERES aboard the ISS. At the end of 2017 a new robotic platform called Astrobee will launch, providing new game elements and new ground support for even more student interaction.
Public Service Communication Satellite Program
NASA Technical Reports Server (NTRS)
Brown, J. P.
1977-01-01
The proposed NASA Public Service Communication Satellite Program consists of four different activities designed to fulfill the needs of public service sector. These are: interaction with the users, experimentation with existing satellites, development of a limited capability satellite for the earliest possible launch, and initiation of an R&D program to develop the greatly increased capability that future systems will require. This paper will discuss NASA efforts in each of these areas.
ERIC Educational Resources Information Center
Arnall, Gail C.
1987-01-01
Discusses the application of satellite information delivery to training. Describes a new trend, horizontal programming. Also discusses vertical programming and in-house production of training materials. Lists vendors of satellite-based training. (CH)
Computer-Aided Communication Satellite System Analysis and Optimization.
ERIC Educational Resources Information Center
Stagl, Thomas W.; And Others
Various published computer programs for fixed/broadcast communication satellite system synthesis and optimization are discussed. The rationale for selecting General Dynamics/Convair's Satellite Telecommunication Analysis and Modeling Program (STAMP) in modified form to aid in the system costing and sensitivity analysis work in the Program on…
Recent Enhancements in NOAA's JPSS Land Product Suite and Key Operational Applications
NASA Astrophysics Data System (ADS)
Csiszar, I. A.; Yu, Y.; Zhan, X.; Vargas, M.; Ek, M. B.; Zheng, W.; Wu, Y.; Smirnova, T. G.; Benjamin, S.; Ahmadov, R.; James, E.; Grell, G. A.
2017-12-01
A suite of operational land products has been produced as part of NOAA's Joint Polar Satellite System (JPSS) program to support a wide range of operational applications in environmental monitoring, prediction, disaster management and mitigation, and decision support. The Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi National Polar-orbiting Partnership (NPP) and the operational JPSS satellite series forms the basis of six fundamental and multiple additional added-value environmental data records (EDRs). A major recent improvement in the land-based VIIRS EDRs has been the development of global gridded products, providing a format and science content suitable for ingest into NOAA's operational land surface and coupled numerical weather prediction models. VIIRS near-real-time Green Vegetation Fraction is now in the process of testing for full operational use, while land surface temperature and albedo are under testing and evaluation. The operational 750m VIIRS active fire product, including fire radiative power, is used to support emission modeling and air quality applications. Testing the evaluation for operational NOAA implementation of the improved 375m VIIRS active fire product is also underway. Added-value and emerging VIIRS land products include vegetation health, phenology, near-real-time surface type and surface condition change, and other biogeophysical variables. As part of the JPSS program, a global soil moisture data product has also been generated from the Advanced Microwave Scanning Radiometer 2 (AMSR2) sensor on the GCOM-W1 (Global Change Observation Mission - Water 1) satellite since July 2012. This product is included in the blended NESDIS Soil Moisture Operational Products System, providing soil moisture data as a critical input for land surface modeling.
NASA Astrophysics Data System (ADS)
Singh, Balbir
This paper is an effort to study and analyze several constraints and issues of space technology and education that organizations other than governmental organizations face in awareness program. In recent years, advancements in technologies have made it possible for Volunteer and Technical Communities, non-government organizations, private agencies and academic research institutions to provide increasing support to space education management and emphasis on response efforts. Important cornerstones of this effort and support are the possibility to access and take advantage of satellite imagery as well as the use of other space-based technologies such as telecommunications satellites and global navigation satellite systems included in main curriculum plus the implementation of programs for use of high class sophisticated technologies used by industries to the students and researchers of non-space faring nations. The authors recognize the importance of such new methodologies for education and public Awareness. This paper demonstrates many hurdles universities and scientific institutions face including lack of access in terms of financial and technical resources for better support. A new model for coordinated private sector partnership in response to space sciences and education has been discussed. In depth analysis and techniques need to connect these pioneering communities with the space industry as well as the space governmental agencies, with special emphasis on financial constraints. The paper mandates its role to promote the use of space-based information; its established networks bringing together national institutions responsible for these space based activities, as well as other end users, and space solution experts; and its technical foundation, particularly in the area of information technologies. To help building a tighter cooperation and further understanding among all these communities, paper delivers an intensive report and solutions for future coordination and ease
The U.S. Geological Survey land remote sensing program
Saunders, T.; Feuquay, J.; Kelmelis, J.A.
2003-01-01
The U.S. Geological Survey has been a provider of remotely sensed information for decades. As the availability and use of satellite data has grown, USGS has placed increasing emphasis on expanding the knowledge about the science of remote sensing and on making remotely sensed data more accessible. USGS encourages widespread availability and distribution of these data and through its programs, encourages and enables a variety of research activities and the development of useful applications of the data. The science of remote sensing has great potential for assisting in the monitoring and assessment of the impacts of natural disasters, management and analysis of environmental, biological, energy, and mineral investigations, and supporting informed public policy decisions. By establishing the Land Remote Sensing Program (LRS) as a major unit of the USGS Geography Program, USGS has taken the next step to further increase support for the accessibility, understanding, and use of remotely sensed data. This article describes the LRS Program, its mission and objectives, and how the program has been structured to accomplish its goals.
The Telecommunications and Data Acquisition Report
NASA Technical Reports Server (NTRS)
Posner, Edward C. (Editor)
1992-01-01
Archival reports on developments in programs managed by the Jet Propulsion Laboratory's (JPL's) Office of Telecommunications and Data Acquisition (TDA) are published in the TDA Progress Report. In the search for extraterrestrial intelligence (SETI), the TDA Progress Report reports on implementation and operations for searching the microwave spectrum. In solar system radar, it reports on the uses of the Goldstone Solar System Radar for scientific exploration of the planets, their rings and satellites, asteroids, and comets. In radio astronomy, the areas of support include spectroscopy, very long baseline interferometry, and astrometry. These three programs are performed for NASA's Office of Space Science and Applications (OSSA), with the Office of Space Operations funding DSN operational support.
The 1973 Smithsonian standard earth (3). [for the satellite geodesy program
NASA Technical Reports Server (NTRS)
Garoschkin, E. M. (Editor)
1973-01-01
The origins of the satellite geodesy program are described, starting with the International Geophysical Year, continuing through a number of international programs, and culminating with the National Geodetic Satellite Program. The philosophical basis for the Baker-Nunn camera and the laser ranging system, the evolution of international scientific cooperation, and the significance of the results are discussed.
Applications of Satellite Remote Sensing for Response to and Recovery from Meteorological Disasters
NASA Technical Reports Server (NTRS)
Molthan, Andrew I.; Burks, Jason E.; McGrath, Kevin M.; Bell, Jordan R.
2014-01-01
Numerous on-orbit satellites provide a wide range of spatial, spectral, and temporal resolutions supporting the use of their resulting imagery in assessments of disasters that are meteorological in nature. This presentation will provide an overview of recent use of Earth remote sensing by NASA's Short-term Prediction Research and Transition (SPoRT) Center in response to disaster activities in 2012 and 2013, along with case studies supporting ongoing research and development. The SPoRT Center, with support from NASA's Applied Sciences Program, has explored a variety of new applications of Earth-observing sensors to support disaster response. In May 2013, the SPoRT Center developed unique power outage composites representing the first clear sky view of damage inflicted upon Moore and Oklahoma City, Oklahoma following the devastating EF-5 tornado that occurred on May 20. Subsequent ASTER, MODIS, Landsat-7 and Landsat-8 imagery help to identify the damaged areas. Higher resolution imagery of Moore, Oklahoma were provided by commercial satellites and the recently available International Space Station (ISS) SERVIR Environmental Research and Visualization System (ISERV) instrument. New techniques are being explored by the SPoRT team in order to better identify damage visible in high resolution imagery, and to monitor ongoing recovery for Moore, Oklahoma. This presentation will provide an overview of near real-time data products developed for dissemination to SPoRT's partners in NOAA's National Weather Service, through collaboration with the USGS and other federal agencies. Specifically, it will focus on integration of various data sets within the NOAA National Weather Service Damage Assessment Toolkit, which allows meteorologists in the field to consult available satellite imagery while performing their damage assessment.
NASA Astrophysics Data System (ADS)
Bernardes, S.; Cotten, D. L.
2016-12-01
University-based satellite programs have been successfully used as a platform for teaching STEM related fields, bringing tremendous benefits to graduate and undergraduate education. Considering their infrastructure and curricula, tech schools have traditionally been considered logical candidates for hosting such programs. More recently, with the dissemination of small satellites initiatives, non-tech schools have been presented the opportunity of developing satellite design and implementation programs. This work reports on the experiences and challenges associated with implementing a satellite program at the University of Georgia (UGA), a non-tech university. With funding from the Air Force Research Laboratory's (AFRL) University Nanosat Program (UNP) and NASA's Undergraduate Student Instrument Project (USIP) a team of undergraduates at UGA has recently been tasked with building two small satellites and helping to create a Small Satellite Research Laboratory (SSRL) at the university. Unique features of the satellite program at UGA include its team of students from a broad range of backgrounds and departments (Engineering, Computer Science, Art, Business, and Geography) and the previous exposure of many of these students to synergistic technologies, including arduino and unmanned aerial systems. We show how informal exposure to those technologies and willingness of students to focus on areas outside of their field of study can benefit from the implementation of satellite programs. In this regard, we report on methods and techniques used to find and recruit driven and knowledgeable students to work in a high paced field such as satellite system integration. We show how students and faculty from multiple departments have collaborated to reach a common, far reaching goal and describe our proposed methods to evaluate and measure educational goals based around SSRL and its projects. We also present the challenges associated with the lack of a developed engineering program, including our solutions to a shortage of equipment and expertise regarding building satellite systems and a satellite laboratory. Finally, we our outreach methods, including K-12, and share our experience and successes finding industry partners, considering an absence of background in the field and prior collaborations.
NASA Astrophysics Data System (ADS)
Sundara, D. M.; Hartono, D. M.; Suganda, E.; Haeruman, JS H.
2018-05-01
East Jakarta icon as a buffer and the lungs of the city is still a big dream of Jakarta. It is a classic problem that there is a struggle for land between current economic interests and sustainable environmental interests for the future. This paper discusses the development of urban forest area of Halim Perdana Kusuma, East Jakarta. The forest area according to regulations of existing city local governments is not enough to support sustainable urban development indicators. Therefore, it requires an extensive mapping of urban forest potential development accurately by utilizing satellite imaging technology. Landsat-TM satellite imagery data can provide a full picture of the potential land width for urban forest area development. The results of this satellite image will then be made into a model of urban forest as one of the indicators of sustainable urban development. This research aims to support sustainable urban development through environmental balance in the form of a green neighborhood revitalization and development of urban forests and to create socio-economic balance. This paper uses a dynamic system model to simulate the conditions of the region against the intervention performed in the potential area for development of urban forests which are derived from urban spatial analysis based on satellite image data, using GIS program as a tool. The result is a model of urban forest area which is integrated with a social and economic function to encourage the development of sustainable cities.
VISAGE Visualization for Integrated Satellite, Airborne and Ground-Based Data Exploration
NASA Technical Reports Server (NTRS)
Conover, Helen; Berendes, Todd; Naeger, Aaron; Maskey, Manil; Gatlin, Patrick; Wingo, Stephanie; Kulkarni, Ajinkya; Gupta, Shivangi; Nagaraj, Sriraksha; Wolff, David;
2017-01-01
The primary goal of the VISAGE project is to facilitate more efficient Earth Science investigations via a tool that can provide visualization and analytic capabilities for diverse coincident datasets. This proof-of-concept project will be centered around the GPM Ground Validation program, which provides a valuable source of intensive, coincident observations of atmospheric phenomena. The data are from a wide variety of ground-based, airborne and satellite instruments, with a wide diversity in spatial and temporal scales, variables, and formats, which makes these data difficult to use together. VISAGE will focus on "golden cases" where most ground instruments were in operation and multiple research aircraft sampled a significant weather event, ideally while the GPM Core Observatory passed overhead. The resulting tools will support physical process studies as well as satellite and model validation.
South Florida Everglades: satellite image map
Jones, John W.; Thomas, Jean-Claude; Desmond, G.B.
2001-01-01
These satellite image maps are one product of the USGS Land Characteristics from Remote Sensing project, funded through the USGS Place-Based Studies Program (http://access.usgs.gov/) with support from the Everglades National Park (http://www.nps.gov/ever/). The objective of this project is to develop and apply innovative remote sensing and geographic information system techniques to map the distribution of vegetation, vegetation characteristics, and related hydrologic variables through space and over time. The mapping and description of vegetation characteristics and their variations are necessary to accurately simulate surface hydrology and other surface processes in South Florida and to monitor land surface changes. As part of this research, data from many airborne and satellite imaging systems have been georeferenced and processed to facilitate data fusion and analysis. These image maps were created using image fusion techniques developed as part of this project.
Tracking and Data Relay Satellite (TDRS) Orbit Estimation Using an Extended Kalman Filter
NASA Technical Reports Server (NTRS)
Ward, Douglas T.; Dang, Ket D.; Slojkowski, Steve; Blizzard, Mike; Jenkins, Greg
2007-01-01
Alternatives to the Tracking and Data Relay Satellite (TDRS) orbit estimation procedure were studied to develop a technique that both produces more reliable results and is more amenable to automation than the prior procedure. The Earth Observing System (EOS) Terra mission has TDRS ephemeris prediction 3(sigma) requirements of 75 meters in position and 5.5 millimeters per second in velocity over a 1.5-day prediction span. Meeting these requirements sometimes required reruns of the prior orbit determination (OD) process, with manual editing of tracking data to get an acceptable solution. After a study of the available alternatives, the Flight Dynamics Facility (FDF) began using the Real-Time Orbit Determination (RTOD(Registered TradeMark)) Kalman filter program for operational support of TDRSs in February 2007. This extended Kalman filter (EKF) is used for daily support, including within hours after most thrusting, to estimate the spacecraft position, velocity, and solar radiation coefficient of reflectivity (C(sub R)). The tracking data used are from the Bilateration Ranging Transponder System (BRTS), selected TDRS System (TDRSS) User satellite tracking data, and Telemetry, Tracking, and Command (TT&C) data. Degraded filter results right after maneuvers and some momentum unloads provided incentive for a hybrid OD technique. The results of combining EKF strengths with the Goddard Trajectory Determination System (GTDS) Differential Correction (DC) program batch-least-squares solutions, as recommended in a 2005 paper on the chain-bias technique, are also presented.
NASA as a Catalyst: Use of Satellite Data in the States
NASA Technical Reports Server (NTRS)
Warnecke, Lisa
1997-01-01
NASA revolutionized our view of the world in 1972 with the launch of the first satellite to monitor the Earth. Recognizing the importance of states in governing the United States, NASA then established a program in the late 1970s to educate and assist states in using satellite data products. This report reviews this brief, but beneficial program that laid a foundation and catalyzed satellite data work that continues today in several states. More recently, outreach efforts as part of NASAs Mission to Planet Earth program and growing state government roles, responsibilities, and initiatives led NASA to begin a new effort in 1994 to understand and work effectively with states. This effort included an investigation and synthesis of current satellite data conditions in each of the 50 states that are included in this report. It provided strong evidence that some state governments are applying satellite data to an increasing array of government needs, while other states have very limited applications to date. A wide range of satellite data applications in executive branch agencies are described, as well as the recent status of the Gap Analysis Program in each of the states with this program. The report also reviews the status of satellite data and geographic information coordination efforts in each of the 50 states. In addition to this investigation, NASA convened a meeting of representatives of 12 states experienced with satellite data to identify future satellite data uses and needs, as well as NASA opportunities to enhance the utility of satellite data products. The findings and recommendations from this meeting, the 50 state investigations, and NASAs past state programs are also included in the report; they provide the rationale for NASA to establish a new outreach effort with state governments in the late 1990s.
Space station systems analysis study. Part 1, volume 1: Executive study
NASA Technical Reports Server (NTRS)
1976-01-01
Potential space station system options were examined for a permanent, manned, orbital space facility and to provide data to NASA program planners and decision makers for their use in future program planning. There were ten space station system objectives identified. These were categorized into five major objectives and five supporting objectives. The major objectives were to support the development of: (1) satellite power systems, (2) nuclear energy plants in space, (3) space processing, (4) earth services, and (5) space cosmological research and development. The five supporting objectives, to define space facilities which would be basic building blocks for future systems, were: (1) a multidiscipline science laboratory, (2) an orbital depot to maintain, fuel, and service orbital transfer vehicles, (3) cluster support systems to provide power and data processing for multiple orbital elements, (4) a sensor development facility, and (5) the facilities necessary to enhance man's living and working in space.
ATS simultaneous and turnaround ranging experiments
NASA Technical Reports Server (NTRS)
Watson, J. S.; Putney, B. H.
1971-01-01
This report explains the data reduction and spacecraft position determination used in conjunction with two ATS experiments - Trilateration and Turnaround Ranging - and describes in detail a multilateration program that is used for part of the data reduction process. The process described is for the determination of the inertial position of the satellite, and for formating input for related programs. In the trilateration procedure, a geometric determination of satellite position is made from near simultaneous range measurements made by three different tracking stations. Turnaround ranging involves two stations; one, the master station, transmits the signal to the satellite and the satellite retransmits the signal to the slave station which turns the signal around to the satellite which in turn retransmits the signal to the master station. The results of the satellite position computations using the multilateration program are compared to results of other position determination programs used at Goddard. All programs give nearly the same results which indicates that because of its simplicity and computational speed the trilateration technique is useful in obtaining spacecraft positions for near synchronous satellites.
Efficient mission control for the 48-satellite Globalstar Constellation
NASA Technical Reports Server (NTRS)
Smith, Dan
1994-01-01
The Globalstar system is being developed by Globalstar, Limited Partnership and will utilize 48 satellites in low earth orbit (See Figure 1) to create a world-wide mobile communications system consistent with Vice President Gore's vision of a Global Information Infrastructure. As a large long term commercial system developed by a newly formed organization, Globalstar provides an excellent opportunity to explore innovative solutions for highly efficient satellite command and control. Design and operational concepts being developed are unencumbered by existing physical and organizational infrastructures. This program really is 'starting with a clean sheet of paper'. Globalstar operations challenges can appear enormous. Clearly, assigning even a single person around the clock to monitor and control each satellite is excessive for Globalstar (it would require a staff of 200! . Even with only a single contact per orbit per satellite, data acquisitions will start or stop every 45 seconds! Although essentially identical, over time the satellites will develop their own 'personalities'and will re quire different data calibrations and levels of support. This paper discusses the Globalstar system and challenges and presents engineering concepts, system design decisions, and operations concepts which address the combined needs and concerns of satellite, ground system, and operations teams. Lessons from past missions have been applied, organizational barriers broken, partnerships formed across the mission segments, and new operations concepts developed for satellite constellation management. Control center requirements were then developed from the operations concepts.
Tools Automate Spacecraft Testing, Operation
NASA Technical Reports Server (NTRS)
2010-01-01
"NASA began the Small Explorer (SMEX) program to develop spacecraft to advance astrophysics and space physics. As one of the entities supporting software development at Goddard Space Flight Center, the Hammers Company Inc. (tHC Inc.), of Greenbelt, Maryland, developed the Integrated Test and Operations System to support SMEX. Later, the company received additional Small Business Innovation Research (SBIR) funding from Goddard for a tool to facilitate the development of flight software called VirtualSat. NASA uses the tools to support 15 satellites, and the aerospace industry is using them to develop science instruments, spacecraft computer systems, and navigation and control software."
Space debris characterization in support of a satellite breakup model
NASA Technical Reports Server (NTRS)
Fortson, Bryan H.; Winter, James E.; Allahdadi, Firooz A.
1992-01-01
The Space Kinetic Impact and Debris Branch began an ambitious program to construct a fully analytical model of the breakup of a satellite under hypervelocity impact. In order to provide empirical data with which to substantiate the model, debris from hypervelocity experiments conducted in a controlled laboratory environment were characterized to provide information of its mass, velocity, and ballistic coefficient distributions. Data on the debris were collected in one master data file, and a simple FORTRAN program allows users to describe the debris from any subset of these experiments that may be of interest to them. A statistical analysis was performed, allowing users to determine the precision of the velocity measurements for the data. Attempts are being made to include and correlate other laboratory data, as well as those data obtained from the explosion or collision of spacecraft in low earth orbit.
The Upper Atmosphere Research Satellite (UARS) mission
NASA Technical Reports Server (NTRS)
Reber, Carl A.; Trevathan, Charles E.; Mcneal, Robert J.; Luther, Michael R.
1993-01-01
The Upper Atmosphere Research Satellite (UARS) is a NASA program aimed at improving our knowledge of the physical and chemical processes controlling the stratosphere, mesosphere, and lower thermosphere, emphasizing those levels that are known to be particularly susceptible to change by human activities. The spacecraft was launched by the Space Shuttle Discovery on September 12, 1991 into a near-circular orbit at 585 km altitude and 57 deg inclination. Measurements include vertical profiles of temperature, many trace gases, and horizontal wind velocities, as well as solar energy inputs. Many of the limb-scanning instruments can measure to as high as 80 deg latitude, providing near-global coverage. The mission is supported by a large international correlative measurement program, yielding data both for validation of the UARS measurements and for complementary scientific studies. A dedicated data system provides rapid processing to geophysical quantities and makes these data available to UARS scientists.
The Role and Evolution of NASA's Earth Science Data Systems
NASA Technical Reports Server (NTRS)
Ramapriyan, H. K.
2015-01-01
One of the three strategic goals of NASA is to Advance understanding of Earth and develop technologies to improve the quality of life on our home planet (NASA strategic plan 2014). NASA's Earth Science Data System (ESDS) Program directly supports this goal. NASA has been launching satellites for civilian Earth observations for over 40 years, and collecting data from various types of instruments. Especially since 1990, with the start of the Earth Observing System (EOS) Program, which was a part of the Mission to Planet Earth, the observations have been significantly more extensive in their volumes, variety and velocity. Frequent, global observations are made in support of Earth system science. An open data policy has been in effect since 1990, with no period of exclusive access and non-discriminatory access to data, free of charge. NASA currently holds nearly 10 petabytes of Earth science data including satellite, air-borne, and ground-based measurements and derived geophysical parameter products in digital form. Millions of users around the world are using NASA data for Earth science research and applications. In 2014, over a billion data files were downloaded by users from NASAs EOS Data and Information System (EOSDIS), a system with 12 Distributed Active Archive Centers (DAACs) across the U. S. As a core component of the ESDS Program, EOSDIS has been operating since 1994, and has been evolving continuously with advances in information technology. The ESDS Program influences as well as benefits from advances in Earth Science Informatics. The presentation will provide an overview of the role and evolution of NASAs ESDS Program.
NASA Astrophysics Data System (ADS)
Mugnai, A.; Smith, E. A.; Tripoli, G. J.; Bizzarri, B.; Casella, D.; Dietrich, S.; Di Paola, F.; Panegrossi, G.; Sanò, P.
2013-04-01
Satellite Application Facility on Support to Operational Hydrology and Water Management (H-SAF) is a EUMETSAT (European Organisation for the Exploitation of Meteorological Satellites) program, designed to deliver satellite products of hydrological interest (precipitation, soil moisture and snow parameters) over the European and Mediterranean region to research and operations users worldwide. Six satellite precipitation algorithms and concomitant precipitation products are the responsibility of various agencies in Italy. Two of these algorithms have been designed for maximum accuracy by restricting their inputs to measurements from conical and cross-track scanning passive microwave (PMW) radiometers mounted on various low Earth orbiting satellites. They have been developed at the Italian National Research Council/Institute of Atmospheric Sciences and Climate in Rome (CNR/ISAC-Rome), and are providing operational retrievals of surface rain rate and its phase properties. Each of these algorithms is physically based, however, the first of these, referred to as the Cloud Dynamics and Radiation Database (CDRD) algorithm, uses a Bayesian-based solution solver, while the second, referred to as the PMW Neural-net Precipitation Retrieval (PNPR) algorithm, uses a neural network-based solution solver. Herein we first provide an overview of the two initial EU research and applications programs that motivated their initial development, EuroTRMM and EURAINSAT (European Satellite Rainfall Analysis and Monitoring at the Geostationary Scale), and the current H-SAF program that provides the framework for their operational use and continued development. We stress the relevance of the CDRD and PNPR algorithms and their precipitation products in helping secure the goals of H-SAF's scientific and operations agenda, the former helpful as a secondary calibration reference to other algorithms in H-SAF's complete mix of algorithms. Descriptions of the algorithms' designs are provided including a few examples of their performance. This aspect of the development of the two algorithms is placed in the context of what we refer to as the TRMM era, which is the era denoting the active and ongoing period of the Tropical Rainfall Measuring Mission (TRMM) that helped inspire their original development. In 2015, the ISAC-Rome precipitation algorithms will undergo a transformation beginning with the upcoming Global Precipitation Measurement (GPM) mission, particularly the GPM Core Satellite technologies. A few years afterward, the first pair of imaging and sounding Meteosat Third Generation (MTG) satellites will be launched, providing additional technological advances. Various of the opportunities presented by the GPM Core and MTG satellites for improving the current CDRD and PNPR precipitation retrieval algorithms, as well as extending their product capability, are discussed.
Space science education based on the usage of microsatellites
NASA Astrophysics Data System (ADS)
Zaitzev, A.; Boyrchuk, K.; Panasuk, M.; Krasotkin, S.; Radchenko, V.; Fateev, V.; Tereshkov, A.
Lomonosov Moscow State University, Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation and Mozhaisky Engineering Space Forces Academy together with collaborators are planning to launch two microsatellites - "Kompas-Tatyana" and "Universitetsky" in 2004. In the Skobeltsyn Institute of Nuclear Physics of Moscow University the team of educators and students was formed in order to develop and to test the space science education program. The program includes few directions. First, the curriculum materials which include all basic knowledge regarding the operation of satellites in outer space. There are cover the telecommunications, navigation, and physical conditions in outer space, the instruments and related subjects. Second stage of the program includes some practical works with real satellite data. When satellite telemetry received, the data must be processed and quick-look graphs constructed. The main task for students in the second stage is the approach to the analysis and the comparison with the data that already exist. They will solve the tasks how to infer some original results from raw data and how to the received data corresponds to the models of outer space. Third, after analysis the students are expected to prepare the written reports and display the results on the open lessons in the web-page formats. The practical realization of the educational program is planned for "Kompas-Tatyana" and "Universitetsky" satellites which will be launched in the end of 2004. It will carry out several scientific instruments with telemetry in the 137 Mhz open channel. Students will able to receive the "live" telemetry data. Such practice is rather exiting and motivates them to work hard with the program tasks. The simple receiving devices will allow to get some data in the high schools as well. Additional support for teachers and students will be provided via main server in the Internet. The pilot version of curriculum materials will be tested on the databases available from other space experiments and microsatellites. Such data bases already exist in Internet and have open public access.
A space standards application to university-class microsatellites: The UNISAT experience
NASA Astrophysics Data System (ADS)
Graziani, Filippo; Piergentili, Fabrizio; Santoni, Fabio
2010-05-01
Hands-on education is recognized as an invaluable tool to improve students' skills, to stimulate their enthusiasm and to educate them to teamwork. University class satellite programs should be developed keeping in mind that education is the main goal and that university satellites are a unique opportunity to make involved students familiar with all the phases of space missions. Moreover university budgets for education programs are much lower than for industrial satellites programs. Therefore two main constraints must be respected: a time schedule fitting with the student course duration and a low economic budget. These have an impact on the standard which can be followed in university class satellite programs. In this paper university-class satellite standardization is discussed on the basis of UNISAT program experience, reporting successful project achievements and lessons learned through unsuccessful experiences. The UNISAT program was established at the Scuola di Ingegneria Aerospaziale by the Group of Astrodynamics of the University of Rome "La Sapienza" (GAUSS) as a research and education program in which Ph.D. and graduate students have the opportunity to gain hands-on experience on small space missions. Four university satellites (UNISAT, UNISAT-2, UNISAT-3, UNISAT-4), weighing about 10 kg, have been designed, manufactured, tested and launched every two years since 2000 in the framework of this program In the paper, after a brief overview of new GAUSS programs, an analysis of the UNISAT satellites ground test campaign is carried out, identifying the most critical procedures and requirements to be fulfilled. Moreover a device for low earth orbit low-cost satellite end-of-life disposal is presented; this system (SIRDARIA) complies with the international guidelines on space debris.
An overview of the Defence Research Agency photovoltaic programme
NASA Technical Reports Server (NTRS)
Goodbody, C.; Davies, M. A. H.
1993-01-01
The Defense Research Agency (DRA) has been active in the photovoltaic field since the early 1960's, then as the Royal Aircraft Establishment (RAE). The early work was aimed at developing silicon cells, solar panels, and light-weight flexible arrays in support of the 'UK' and 'X' series of British scientific and technology satellites, for which the RAE was either the design authority or technical advisor. The X3 satellite - Prospero, launched in 1971 test flew 50 micron wrap-round silicon cells. The X4 satellite - Miranda, launched in 1974 test flew a deployable flexible silicon array which was developed at the DRA. During this period an extensive range of test equipment was developed which was maintained, modernized, and extended to date. Following a period of reduced activity in the late 1970's and early 1980's the current program evolved. The programs that have been undertaken since 1983 are briefly summarized. These range from various cell developments, new types of coverglasses, flight experiments, radiation testing, primary cell calibration, and environmental testing. The current photovoltaic program is mainly funded by the UK Ministry of Defence and by the Department of Trade and Industry through the British National Space Center (BNSC). The program is aimed at research and development, both internally and with industry, to meet the customer's technical objectives and requirements and to provide them with technical advice. The facilities are also being used on contract work for various national and international organizations.
Satellite ATM Networks: Architectures and Guidelines Developed
NASA Technical Reports Server (NTRS)
vonDeak, Thomas C.; Yegendu, Ferit
1999-01-01
An important element of satellite-supported asynchronous transfer mode (ATM) networking will involve support for the routing and rerouting of active connections. Work published under the auspices of the Telecommunications Industry Association (http://www.tiaonline.org), describes basic architectures and routing protocol issues for satellite ATM (SATATM) networks. The architectures and issues identified will serve as a basis for further development of technical specifications for these SATATM networks. Three ATM network architectures for bent pipe satellites and three ATM network architectures for satellites with onboard ATM switches were developed. The architectures differ from one another in terms of required level of mobility, supported data rates, supported terrestrial interfaces, and onboard processing and switching requirements. The documentation addresses low-, middle-, and geosynchronous-Earth-orbit satellite configurations. The satellite environment may require real-time routing to support the mobility of end devices and nodes of the ATM network itself. This requires the network to be able to reroute active circuits in real time. In addition to supporting mobility, rerouting can also be used to (1) optimize network routing, (2) respond to changing quality-of-service requirements, and (3) provide a fault tolerance mechanism. Traffic management and control functions are necessary in ATM to ensure that the quality-of-service requirements associated with each connection are not violated and also to provide flow and congestion control functions. Functions related to traffic management were identified and described. Most of these traffic management functions will be supported by on-ground ATM switches, but in a hybrid terrestrial-satellite ATM network, some of the traffic management functions may have to be supported by the onboard satellite ATM switch. Future work is planned to examine the tradeoffs of placing traffic management functions onboard a satellite as opposed to implementing those functions at the Earth station components.
Strategy for exploration of the outer planets: 1986-1996
NASA Technical Reports Server (NTRS)
1986-01-01
Over the past decade COMPLEX has published three strategy reports which, taken together, encompass the entire planetary system and recommend a coherent program of planetary exploration. The highest priority for outer planet exploration during the next decade is intensive study of Saturn (the planet, satellites, rings, and magnetosphere) as a system. The Committee additionally recommends that NASA engage in the following supporting activities: increased support of laboratory and theoretical studies; pursuit of earth-based and earth-orbital observations; commitment to continued operation of productive spacecraft; implementation of the instrument development plan as appropriate for the outer solar system; studies of deep atmospheric probes; development of penetrators or other hard landers; development of radiation-hardened spacecraft; and development of low-thrust propulsion systems. Longer-term objectives include exploration and intensive study of: the Uranus and Neptune systems; planetology of the Galilean satellites and Titan; and the inner Jovian system.
Timing Calibration of the USA Experiment
NASA Astrophysics Data System (ADS)
Ray, P. S.; Wood, K. S.; Bandyopadhyay, R. M.; Fritz, G.; Hertz, P.; Kowalski, M. P.; Lovellette, M. N.; Wolff, M. T.; Yentis, D.; Bloom, E.; Focke, W.; Giebels, B.; Godfrey, G.; Reilly, K. T.; Saz Parkinson, P.; Shabad, G.; Scargle, J.; Backer, D.; Somer, A.; USA Experiment Science Working Group
2000-10-01
The USA Experiment on ARGOS is an X-ray proportional counter timing experiment, launched in January 1999, which is carrying out a broad program studying X-ray binaries, rotation-powered pulsars, and other bright X-ray sources. Photon events are time tagged to an accuracy of 2 μ s by reference to an onboard GPS receiver built by Boeing (then Rockwell International). Unfortunately, the GPS receiver has an anomaly that causes it to drop out of lock after a few hours. We describe the procedures developed to work around the GPS anomaly and recover accurate absolute time. Simultaneous observations of several rotation-powered pulsars with RXTE were made for comparison with contemporaneous radio timing measurements and to explore time transfer from satellite to satellite. Basic research in X-ray Astronomy at the Naval Research Laboratory is supported by NRL/ONR. Work on USA at SLAC is supported by Department of Energy contract DE-AC03-76SF00515.
System capacity and economic modeling computer tool for satellite mobile communications systems
NASA Technical Reports Server (NTRS)
Wiedeman, Robert A.; Wen, Doong; Mccracken, Albert G.
1988-01-01
A unique computer modeling tool that combines an engineering tool with a financial analysis program is described. The resulting combination yields a flexible economic model that can predict the cost effectiveness of various mobile systems. Cost modeling is necessary in order to ascertain if a given system with a finite satellite resource is capable of supporting itself financially and to determine what services can be supported. Personal computer techniques using Lotus 123 are used for the model in order to provide as universal an application as possible such that the model can be used and modified to fit many situations and conditions. The output of the engineering portion of the model consists of a channel capacity analysis and link calculations for several qualities of service using up to 16 types of earth terminal configurations. The outputs of the financial model are a revenue analysis, an income statement, and a cost model validation section.
Nanotechnology in Aerospace Applications
2007-03-01
CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING...logic and memory chips, sensors, catalyst support, adsorption media, actuators, etc. All early works in nanoelectronics use CNTs as a conducting...inspection cost effectively , quickly, and efficiently than the present procedures, composites, wear resistant tires, improved avionics, satellite
Space station systems analysis study. Part 2, Volume 2. [technical report
NASA Technical Reports Server (NTRS)
1977-01-01
Specific system options are defined and identified for a cost effective space station capable of orderly growth with regard to both function and orbit location. Selected program options are analyzed and configuration concepts are developed to meet objectives for the satellite power system, earth servicing, space processing, and supporting activities. Transportation systems are analyzed for both LEO and GEO orbits.
Small business innovation research. Abstracts of completed 1987 phase 1 projects
NASA Technical Reports Server (NTRS)
1989-01-01
Non-proprietary summaries of Phase 1 Small Business Innovation Research (SBIR) projects supported by NASA in the 1987 program year are given. Work in the areas of aeronautical propulsion, aerodynamics, acoustics, aircraft systems, materials and structures, teleoperators and robotics, computer sciences, information systems, spacecraft systems, spacecraft power supplies, spacecraft propulsion, bioastronautics, satellite communication, and space processing are covered.
NASA Technical Reports Server (NTRS)
Mueller, I. I.; Kumar, M.; Reilly, J. P.; Saxena, N.; Soler, T.
1973-01-01
A multi-year study and analysis of data from satellites launched specifically for geodetic purposes and from other satellites useful in geodetic studies was conducted. The program of work included theoretical studies and analysis for the geometric determination of station positions derived from photographic observations of both passive and active satellites and from range observations. The current status of data analysis, processing and results are examined.
NASA Technical Reports Server (NTRS)
Manning, R. M.
1994-01-01
The frequency and intensity of rain attenuation affecting the communication between a satellite and an earth terminal is an important consideration in planning satellite links. The NASA Lewis Research Center Satellite Link Attenuation Model Program (LeRC-SLAM) provides a static and dynamic statistical assessment of the impact of rain attenuation on a communications link established between an earth terminal and a geosynchronous satellite. The program is designed for use in the specification, design and assessment of satellite links for any terminal location in the continental United States. The basis for LeRC-SLAM is the ACTS Rain Attenuation Prediction Model, which uses a log-normal cumulative probability distribution to describe the random process of rain attenuation on satellite links. The derivation of the statistics for the rainrate process at the specified terminal location relies on long term rainfall records compiled by the U.S. Weather Service during time periods of up to 55 years in length. The theory of extreme value statistics is also utilized. The user provides 1) the longitudinal position of the satellite in geosynchronous orbit, 2) the geographical position of the earth terminal in terms of latitude and longitude, 3) the height above sea level of the terminal site, 4) the yearly average rainfall at the terminal site, and 5) the operating frequency of the communications link (within 1 to 1000 GHz, inclusive). Based on the yearly average rainfall at the terminal location, LeRC-SLAM calculates the relevant rain statistics for the site using an internal data base. The program then generates rain attenuation data for the satellite link. This data includes a description of the static (i.e., yearly) attenuation process, an evaluation of the cumulative probability distribution for attenuation effects, and an evaluation of the probability of fades below selected fade depths. In addition, LeRC-SLAM calculates the elevation and azimuth angles of the terminal antenna required to establish a link with the satellite, the statistical parameters that characterize the rainrate process at the terminal site, the length of the propagation path within the potential rain region, and its projected length onto the local horizontal. The IBM PC version of LeRC-SLAM (LEW-14979) is written in Microsoft QuickBASIC for an IBM PC compatible computer with a monitor and printer capable of supporting an 80-column format. The IBM PC version is available on a 5.25 inch MS-DOS format diskette. The program requires about 30K RAM. The source code and executable are included. The Macintosh version of LeRC-SLAM (LEW-14977) is written in Microsoft Basic, Binary (b) v2.00 for Macintosh II series computers running MacOS. This version requires 400K RAM and is available on a 3.5 inch 800K Macintosh format diskette, which includes source code only. The Macintosh version was developed in 1987 and the IBM PC version was developed in 1989. IBM PC is a trademark of International Business Machines. MS-DOS is a registered trademark of Microsoft Corporation. Macintosh is a registered trademark of Apple Computer, Inc.
LERC-SLAM - THE NASA LEWIS RESEARCH CENTER SATELLITE LINK ATTENUATION MODEL PROGRAM (IBM PC VERSION)
NASA Technical Reports Server (NTRS)
Manning, R. M.
1994-01-01
The frequency and intensity of rain attenuation affecting the communication between a satellite and an earth terminal is an important consideration in planning satellite links. The NASA Lewis Research Center Satellite Link Attenuation Model Program (LeRC-SLAM) provides a static and dynamic statistical assessment of the impact of rain attenuation on a communications link established between an earth terminal and a geosynchronous satellite. The program is designed for use in the specification, design and assessment of satellite links for any terminal location in the continental United States. The basis for LeRC-SLAM is the ACTS Rain Attenuation Prediction Model, which uses a log-normal cumulative probability distribution to describe the random process of rain attenuation on satellite links. The derivation of the statistics for the rainrate process at the specified terminal location relies on long term rainfall records compiled by the U.S. Weather Service during time periods of up to 55 years in length. The theory of extreme value statistics is also utilized. The user provides 1) the longitudinal position of the satellite in geosynchronous orbit, 2) the geographical position of the earth terminal in terms of latitude and longitude, 3) the height above sea level of the terminal site, 4) the yearly average rainfall at the terminal site, and 5) the operating frequency of the communications link (within 1 to 1000 GHz, inclusive). Based on the yearly average rainfall at the terminal location, LeRC-SLAM calculates the relevant rain statistics for the site using an internal data base. The program then generates rain attenuation data for the satellite link. This data includes a description of the static (i.e., yearly) attenuation process, an evaluation of the cumulative probability distribution for attenuation effects, and an evaluation of the probability of fades below selected fade depths. In addition, LeRC-SLAM calculates the elevation and azimuth angles of the terminal antenna required to establish a link with the satellite, the statistical parameters that characterize the rainrate process at the terminal site, the length of the propagation path within the potential rain region, and its projected length onto the local horizontal. The IBM PC version of LeRC-SLAM (LEW-14979) is written in Microsoft QuickBASIC for an IBM PC compatible computer with a monitor and printer capable of supporting an 80-column format. The IBM PC version is available on a 5.25 inch MS-DOS format diskette. The program requires about 30K RAM. The source code and executable are included. The Macintosh version of LeRC-SLAM (LEW-14977) is written in Microsoft Basic, Binary (b) v2.00 for Macintosh II series computers running MacOS. This version requires 400K RAM and is available on a 3.5 inch 800K Macintosh format diskette, which includes source code only. The Macintosh version was developed in 1987 and the IBM PC version was developed in 1989. IBM PC is a trademark of International Business Machines. MS-DOS is a registered trademark of Microsoft Corporation. Macintosh is a registered trademark of Apple Computer, Inc.
NOAASIS (NOAA Satellite Information System) Home Page - Office of Satellite
and Product Operations » DOC » NOAA » NESDIS » NOAASIS NOAA Satellite Information System Organizational Links National Environmental Satellite, Data, and Information Service (NESDIS) Office of Satellite ): Information and specific ground project support data for the Direct Broadcast Community from JPSS supported
NASA Technical Reports Server (NTRS)
Velden, Christopher
1995-01-01
The research objectives in this proposal were part of a continuing program at UW-CIMSS to develop and refine an automated geostationary satellite winds processing system which can be utilized in both research and operational environments. The majority of the originally proposed tasks were successfully accomplished, and in some cases the progress exceeded the original goals. Much of the research and development supported by this grant resulted in upgrades and modifications to the existing automated satellite winds tracking algorithm. These modifications were put to the test through case study demonstrations and numerical model impact studies. After being successfully demonstrated, the modifications and upgrades were implemented into the NESDIS algorithms in Washington DC, and have become part of the operational support. A major focus of the research supported under this grant attended to the continued development of water vapor tracked winds from geostationary observations. The fully automated UW-CIMSS tracking algorithm has been tuned to provide complete upper-tropospheric coverage from this data source, with data set quality close to that of operational cloud motion winds. Multispectral water vapor observations were collected and processed from several different geostationary satellites. The tracking and quality control algorithms were tuned and refined based on ground-truth comparisons and case studies involving impact on numerical model analyses and forecasts. The results have shown the water vapor motion winds are of good quality, complement the cloud motion wind data, and can have a positive impact in NWP on many meteorological scales.
Commerical Remote Sensing Data Contract
,
2005-01-01
The U. S. Geological Survey's (USGS) Commercial Remote Sensing Data Contracts (CRSDCs) provide government agencies with access to a broad range of commercially available remotely sensed airborne and satellite data. These contracts were established to support The National Map partners, other Federal Civilian agency programs, and Department of Defense programs that require data for the United States and its territories. Experience shows that centralized procurement of remotely sensed data leads to considerable cost savings to the Federal government through volume discounts, reduction of redundant contract administrative costs, and avoidance of duplicate purchases. These contracts directly support the President's Commercial Remote Sensing Space Policy, signed in 2003, by providing a centralized mechanism for civil agencies to acquire commercial remote sensing products to support their mission needs in an efficient and coordinated way. CRSDC administration is provided by the USGS Mid-Continent Mapping Center in Rolla, Missouri.
ERIC Educational Resources Information Center
Parkinson Norton, Susan; Pickus, Keith
2011-01-01
This essay will discuss the creation of adult-learner degree programs at Wichita State University's satellite campuses with a particular focus on how such programs complement the mission of a traditional urban-serving research institution. It will assess the decision-making process that led to the transformation of satellite campuses into…
NASA Astrophysics Data System (ADS)
Flaming, Susan C.
2007-12-01
The continuing saga of satellite technology development is as much a story of successful risk management as of innovative engineering. How do program leaders on complex, technology projects manage high stakes risks that threaten business success and satellite performance? This grounded theory study of risk decision making portrays decision leadership practices at one communication satellite company. Integrated product team (IPT) leaders of multi-million dollar programs were interviewed and observed to develop an extensive description of the leadership skills required to navigate organizational influences and drive challenging risk decisions to closure. Based on the study's findings the researcher proposes a new decision making model, Deliberative Decision Making, to describe the program leaders' cognitive and organizational leadership practices. This Deliberative Model extends the insights of prominent decision making models including the rational (or classical) and the naturalistic and qualifies claims made by bounded rationality theory. The Deliberative Model describes how leaders proactively engage resources to play a variety of decision leadership roles. The Model incorporates six distinct types of leadership decision activities, undertaken in varying sequence based on the challenges posed by specific risks. Novel features of the Deliberative Decision Model include: an inventory of leadership methods for managing task challenges, potential stakeholder bias and debates; four types of leadership meta-decisions that guide decision processes, and aligned organizational culture. Both supporting and constraining organizational influences were observed as leaders managed major risks, requiring active leadership on the most difficult decisions. Although the company's engineering culture emphasized the importance of data-based decisions, the uncertainties intrinsic to satellite risks required expert engineering judgment to be exercised throughout. An investigation into the co-variation of decision methods with uncertainty suggests that perceived risk severity may serve as a robust indicator for choices about decision practices. The Deliberative Decision processes incorporate multiple organizational and cultural controls as cross-checks to mitigate potential parochial bias of individuals, stakeholder groups, or leaders. Overall the Deliberative Decision framework describes how expert leadership practices, supportive organizational systems along with aligned cultural values and behavioral norms help leaders drive high stakes risk decisions to closure in this complex, advanced-technology setting.
NASA Technical Reports Server (NTRS)
Fuell, Kevin; Jedlovec, Gary; Leroy, Anita; Schultz, Lori
2015-01-01
The NASA/Short-term Prediction, Research, and Transition (SPoRT) Program works closely with NOAA/NWS weather forecasters to transition unique satellite data and capabilities into operations in order to assist with nowcasting and short-term forecasting issues. Several multispectral composite imagery (i.e. RGB) products were introduced to users in the early 2000s to support hydrometeorology and aviation challenges as well as incident support. These activities lead to SPoRT collaboration with the GOES-R Proving Ground efforts where instruments such as MODIS (Aqua, Terra) and S-NPP/VIIRS imagers began to be used as near-realtime proxies to future capabilities of the Advanced Baseline Imager (ABI). One of the composite imagery products introduced to users was the Night-time Microphysics RGB, originally developed by EUMETSAT. SPoRT worked to transition this imagery to NWS users, provide region-specific training, and assess the impact of the imagery to aviation forecast needs. This presentation discusses the method used to interact with users to address specific aviation forecast challenges, including training activities undertaken to prepare for a product assessment. Users who assessed the multispectral imagery ranged from southern U.S. inland and coastal NWS weather forecast offices (WFOs), to those in the Rocky Mountain Front Range region and West Coast, as well as highlatitude forecasters of Alaska. These user-based assessments were documented and shared with the satellite community to support product developers and the broad users of new generation satellite data.
Science opportunities from the Topex/Poseidon mission
NASA Technical Reports Server (NTRS)
Stewart, R.; Fu, L. L.; Lefebvre, M.
1986-01-01
The U.S. National Aeronautics and Space Administration (NASA) and the French Centre National d'Etudes Spatiales (CNES) propose to conduct a Topex/Poseidon Mission for studying the global ocean circulation from space. The mission will use the techniques of satellite altimetry to make precise and accurate measurements of sea level for several years. The measurements will then be used by Principal Investigators (selected by NASA and CNES) and by the wider oceanographic community working closely with large international programs for observing the Earth, on studies leading to an improved understanding of global ocean dynamics and the interaction of the ocean with other processes influencing life on Earth. The major elements of the mission include a satellite carrrying an altimetric system for measuring the height of the satellite above the sea surface; a precision orbit determination system for referring the altimetric measurements to geodetic coordinates; a data analysis and distribution system for processing the satellite data, verifying their accuracy, and making them available to the scientific community; and a principal investigator program for scientific studies based on the satellite observations. This document describes the satellite, its sensors, its orbit, the data analysis system, and plans for verifying and distributing the data. It then discusses the expected accuracy of the satellite's measurements and their usefulness to oceanographic, geophysical, and other scientific studies. Finally, it outlines the relationship of the Topex/Poseidon mission to other large programs, including the World Climate Research Program, the U.S. Navy's Remote Ocean Sensing System satellite program and the European Space Agency's ERS-1 satellite program.
Training of Ability for Engineering Design through Long Term Internship Program
NASA Astrophysics Data System (ADS)
Konishi, Masami; Gofuku, Akio; Tomita, Eiji
The education program for engineering design capabilities through long term internship of Okayama University had started in 2006. The program supported by the MEXT is aimed to educate students in the Graduate School of Natural Science and Technology of Okayama University. The internship satellite laboratory of the University is settled in the near place of collaborative companies in which students are engaged with the project themes extracted from problems in the factory of collaborative companies. Through the program, promotion of abilities for setup and solving a problem considering cost and due date together with performance of the solution. Students are also expected to gain knowledge on patent and ethics required for skillful engineers.
Space station analysis study. Part 2, Volume 1: Executive summary
NASA Technical Reports Server (NTRS)
1977-01-01
Objectives of the space station program requiring the support of man in space, either in the shuttle sortie mode or in extended duration facilities are identified and analyzed. A set of functional requirements was derived to identify specific technology advancement needs, tests to be conducted, and processes to be developed. Program options are summarized for: (1) satellite power system; (2) earth services; (3) space cosmological research and development; (4) space processing and manufacturing; (5) multidiscipline science laboratory; (6) sensor development facility; (7) living and working in space; and (8) orbital depot.
Progress in MMIC technology for satellite communications
NASA Technical Reports Server (NTRS)
Haugland, Edward J.; Leonard, Regis F.
1987-01-01
NASA's Lewis Research Center is actively involved in the development of monolithic microwave and millimeter-wave integrated circuits (MMICs). The approach of the program is to support basic research under grant or in-house, while MMIC development is done under contract, thereby facilitating the transfer of technology to users. Preliminary thrusts of the program have been the extension of technology to higher frequencies (60 GHz), degrees of complexity, and performance (power, efficiency, noise figure) by utilizing novel circuit designs, processes, and materials. A review of the progress made so far is presented.
1970-01-01
Managed by Marshall Space Flight Center, the Space Tug concept was intended to be a reusable multipurpose space vehicle designed to transport payloads to different orbital inclinations. Utilizing mission-specific combinations of its three primary modules (crew, propulsion, and cargo) and a variety of supplementary kits, the Space Tug would have been capable of numerous space applications. This 1970 illustration depicts the primary modules of the Space Tug system along with some of the supplementary kits: lunar landing legs, extendable support arms, astrionics, and the satellite probe. The Space Tug program was cancelled and did not become a reality.
NASA Technical Reports Server (NTRS)
1974-01-01
The relative merits of several international data acquisition (IDA) alternatives for the Earth Observatory Satellite (EOS) are established and rated on a cost effectiveness basis. The primary alternatives under consideration are: (1) direct transmission to foreign ground stations, (2) a wideband video tape recorder system for collection of foreign data and processing and distribution from the United States, and (3) a tracking and data relay satellite (TDRS) system for the relay of foreign data to the United States for processing and distribution. A requirements model is established for the analysis on the basis of the heaviest concentration of agricultural areas around the world. The model, the orbit path and the constraints of EOS and data volume summaries are presented. Alternative system descriptions and costs are given in addition to cost-performance summaries.
The Iodine Satellite (iSat) Project Development Towards Critical Design Review
NASA Technical Reports Server (NTRS)
Dankanich, John W.; Calvert, Derek; Kamhawi, Hani; Hickman, Tyler; Szabo, James; Byrne, Lawrence
2015-01-01
Despite the prevalence of small satellites in recent years, the systems flown to date have very limited propulsion capability. SmallSats are typically secondary payloads and have significant constraints for volume, mass, and power in addition to limitations on the use of hazardous propellants or stored energy. These constraints limit the options for SmallSat maneuverability. NASA's Space Technology Mission Directorate approved the iodine Satellite flight project for a rapid demonstration of iodine Hall thruster technology in a 12U (cubesat units) configuration under the Small Spacecraft Technology Program. The mission is a partnership between NASA MSFC, NASA GRC, and Busek Co, Inc., with the Air Force supporting the propulsion technology maturation. The team is working towards the critical design review in the final design and fabrication phase of the project. The current design shows positive technical performance margins in all areas. The iSat project is planned for launch readiness in the spring of 2017.
Upper Klamath Basin Landsat Image for May 30, 2006: Path 45 Rows 30 and 31
Snyder, Daniel T.
2012-01-01
This image is a mosaic of Landsat-7 images of the upper Klamath Basin. The original images were obtained from the U.S. Geological Survey Earth Resources Observation and Science Center (EROS). EROS is responsible for archive management and distribution of Landsat data products. The Landsat-7 satellite is part of an ongoing mission to provide quality remote sensing data in support of research and applications activities. The launch of Landsat-7 on April 15, 1999 marks the addition of the latest satellite to the Landsat series. The Landsat-7 satellite carries the Enhanced Thematic Mapper Plus (ETM+) sensor. A mechanical failure of the ETM+ Scan Line Corrector (SLC) occurred on May 31, 2003, with the result that all Landsat 7 scenes acquired from July 14, 2003 to present have been collected in 'SLC-off' mode. More information on the Landsat program can be found online at http://landsat.usgs.gov/.
Upper Klamath Basin Landsat Image for April 28, 2006: Path 45 Rows 30 and 31
Snyder, Daniel T.
2012-01-01
This image is a mosaic of Landsat-7 images of the upper Klamath Basin. The original images were obtained from the U.S. Geological Survey Earth Resources Observation and Science Center (EROS). EROS is responsible for archive management and distribution of Landsat data products. The Landsat-7 satellite is part of an ongoing mission to provide quality remote sensing data in support of research and applications activities. The launch of Landsat-7 on April 15, 1999 marks the addition of the latest satellite to the Landsat series. The Landsat-7 satellite carries the Enhanced Thematic Mapper Plus (ETM+) sensor. A mechanical failure of the ETM+ Scan Line Corrector (SLC) occurred on May 31, 2003, with the result that all Landsat 7 scenes acquired from July 14, 2003 to present have been collected in 'SLC-off' mode. More information on the Landsat program can be found online at http://landsat.usgs.gov/.
NASA's Earth Science Research and Environmental Predictions
NASA Technical Reports Server (NTRS)
Hilsenrath, E.
2004-01-01
NASA Earth Science program began in the 1960s with cloud imaging satellites used for weather observations. A fleet of satellites are now in orbit to investigate the Earth Science System to uncover the connections between land, Oceans and the atmosphere. Satellite systems using an array of active and passive remote sensors are used to search for answers on how is the Earth changing and what are the consequences for life on Earth? The answer to these questions can be used for applications to serve societal needs and contribute to decision support systems for weather, hazard, and air quality predictions and mitigation of adverse effects. Partnerships with operational agencies using NASA's observational capabilities are now being explored. The system of the future will require new technology, data assimilation systems which includes data and models that will be used for forecasts that respond to user needs.
Upper Klamath Basin Landsat Image for June 24, 2006: Path 44 Row 31
Snyder, Daniel T.
2012-01-01
This subset of a Landsat-7 image shows part of the upper Klamath Basin. The original images were obtained from the U.S. Geological Survey Earth Resources Observation and Science Center (EROS). EROS is responsible for archive management and distribution of Landsat data products. The Landsat-7 satellite is part of an ongoing mission to provide quality remote sensing data in support of research and applications activities. The launch of Landsat-7 on April 15, 1999 marks the addition of the latest satellite to the Landsat series. The Landsat-7 satellite carries the Enhanced Thematic Mapper Plus (ETM+) sensor. A mechanical failure of the ETM+ Scan Line Corrector (SLC) occurred on May 31, 2003, with the result that all Landsat 7 scenes acquired from July 14, 2003 to present have been collected in 'SLC-off' mode. More information on the Landsat program can be found online at http://landsat.usgs.gov/.
Upper Klamath Basin Landsat Image for July 11, 2004: Path 45 Rows 30 and 31
Snyder, Daniel T.
2012-01-01
This image is a mosaic of Landsat-7 images of the upper Klamath Basin. The original images were obtained from the U.S. Geological Survey Earth Resources Observation and Science Center (EROS). EROS is responsible for archive management and distribution of Landsat data products. The Landsat-7 satellite is part of an ongoing mission to provide quality remote sensing data in support of research and applications activities. The launch of Landsat-7 on April 15, 1999 marks the addition of the latest satellite to the Landsat series. The Landsat-7 satellite carries the Enhanced Thematic Mapper Plus (ETM+) sensor. A mechanical failure of the ETM+ Scan Line Corrector (SLC) occurred on May 31, 2003, with the result that all Landsat 7 scenes acquired from July 14, 2003 to present have been collected in 'SLC-off' mode. More information on the Landsat program can be found online at http://landsat.usgs.gov/.
Upper Klamath Basin Landsat Image for July 10, 2006: Path 44 Row 31
Snyder, Daniel T.
2012-01-01
This subset of a Landsat-7 image shows part of the upper Klamath Basin. The original images were obtained from the U.S. Geological Survey Earth Resources Observation and Science Center (EROS). EROS is responsible for archive management and distribution of Landsat data products. The Landsat-7 satellite is part of an ongoing mission to provide quality remote sensing data in support of research and applications activities. The launch of Landsat-7 on April 15, 1999 marks the addition of the latest satellite to the Landsat series. The Landsat-7 satellite carries the Enhanced Thematic Mapper Plus (ETM+) sensor. A mechanical failure of the ETM+ Scan Line Corrector (SLC) occurred on May 31, 2003, with the result that all Landsat 7 scenes acquired from July 14, 2003 to present have been collected in 'SLC-off' mode. More information on the Landsat program can be found online at http://landsat.usgs.gov/.
The Earth Based Ground Stations Element of the Lunar Program
NASA Technical Reports Server (NTRS)
Gal-Edd, Jonathan; Fatig, Curtis; Schier, James; Lee, Charles
2007-01-01
The Lunar Architecture Team (LAT) is responsible for developing a concept for building and supporting a lunar outpost with several exploration capabilities such as rovers, colonization, and observatories. The lunar outpost is planned to be located at the Moon's South Pole. The LAT Communications and Navigation Team (C&N) is responsible for defining the network infrastructure to support the lunar outpost. The following elements are needed to support lunar outpost activities: A Lunar surface network based on industry standard wireless 802.xx protocols, relay satellites positioned 180 degrees apart to provide South Pole coverage for the half of the lunar 28-day orbit that is obscured from Earth view, earth-based ground stations deployed at geographical locations 120 degrees apart. This paper will focus on the Earth ground stations of the lunar architecture. Two types of ground station networks are discussed. One provides Direct to Earth (DTE) support to lunar users using Kaband 23/26Giga-Hertz (GHz) communication frequencies. The second supports the Lunar Relay Satellite (LRS) that will be using Ka-band 40/37GHz (Q-band). This paper will discuss strategies to provide a robust operational network in support of various lunar missions and trades of building new antennas at non-NASA facilities, to improve coverage and provide site diversification for handling rain attenuation.
Kahn, Ralph A; Berkoff, Tim A; Brock, Charles; Chen, Gao; Ferrare, Richard A; Ghan, Steven; Hansico, Thomas F; Hegg, Dean A; Martins, J Vanderlei; McNaughton, Cameron S; Murphy, Daniel M; Ogren, John A; Penner, Joyce E; Pilewskie, Peter; Seinfeld, John H; Worsnop, Douglas R
2017-10-01
A modest operational program of systematic aircraft measurements can resolve key satellite-aerosol-data-record limitations. Satellite observations provide frequent, global aerosol-amount maps, but offer only loose aerosol property constraints needed for climate and air quality applications. We define and illustrate the feasibility of flying an aircraft payload to measure key aerosol optical, microphysical, and chemical properties in situ . The flight program could characterize major aerosol air-mass types statistically, at a level-of-detail unobtainable from space. It would: (1) enhance satellite aerosol retrieval products with better climatology assumptions, and (2) improve translation between satellite-retrieved optical properties and species-specific aerosol mass and size simulated in climate models to assess aerosol forcing, its anthropogenic components, and other environmental impacts. As such, Systematic Aircraft Measurements to Characterize Aerosol Air Masses (SAM-CAAM) could add value to data records representing several decades of aerosol observations from space, improve aerosol constraints on climate modeling , help interrelate remote-sensing, in situ, and modeling aerosol-type definitions , and contribute to future satellite aerosol missions. Fifteen Required Variables are identified, and four Payload Options of increasing ambition are defined, to constrain these quantities. "Option C" could meet all the SAM-CAAM objectives with about 20 instruments, most of which have flown before, but never routinely several times per week, and never as a group. Aircraft integration, and approaches to data handling, payload support, and logistical considerations for a long-term, operational mission are discussed. SAM-CAAM is feasible because, for most aerosol sources and specified seasons, particle properties tend to be repeatable , even if aerosol loading varies.
Rich Support for Heterogeneous Polar Data in RAMADDA
NASA Astrophysics Data System (ADS)
McWhirter, J.; Crosby, C. J.; Griffith, P. C.; Khalsa, S.; Lazzara, M. A.; Weber, W. J.
2013-12-01
Difficult to navigate environments, tenuous logistics, strange forms, deeply rooted cultures - these are all experiences shared by Polar scientist in the field as well as the developers of the underlying data management systems back in the office. Among the key data management challenges that Polar investigations present are the heterogeneity and complexity of data that are generated. Polar regions are intensely studied across many science domains through a variety of techniques - satellite and aircraft remote sensing, in-situ observation networks, modeling, sociological investigations, and extensive PI-driven field project data collection. While many data management efforts focus on large homogeneous collections of data targeting specific science domains (e.g., satellite, GPS, modeling), multi-disciplinary efforts that focus on Polar data need to be able to address a wide range of data formats, science domains and user communities. There is growing use of the RAMADDA (Repository for Archiving, Managing and Accessing Diverse Data) system to manage and provide services for Polar data. RAMADDA is a freely available extensible data repository framework that supports a wide range of data types and services to allow the creation, management, discovery and use of data and metadata. The broad range of capabilities provided by RAMADDA and its extensibility makes it well-suited as an archive solution for Polar data. RAMADDA can run in a number of diverse contexts - as a centralized archive, at local institutions, and can even run on an investigator's laptop in the field, providing in-situ metadata and data management services. We are actively developing archives and support for a number of Polar initiatives: - NASA-Arctic Boreal Vulnerability Experiment (ABoVE): ABoVE is a long-term multi-instrument field campaign that will make use of a wide range of data. We have developed an extensive ontology of program, project and site metadata in RAMADDA, in support of the ABoVE Science Definition Team and Project Office. See: http://above.nasa.gov - UNAVCO Terrestrial Laser Scanning (TLS): UNAVCO's Polar program provides support for terrestrial laser scanning field projects. We are using RAMADDA to archive these field projects, with over 40 projects ingested to date. - NASA-IceBridge: As part of the NASA LiDAR Access System (NLAS) project, RAMADDA supports numerous airborne and satellite LiDAR data sets - GLAS, LVIS, ATM, Paris, McORDS, etc. - Antarctic Meteorological Research Center (AMRC): Satellite and surface observation network - Support for numerous other data from AON-ACADIS, Greenland GC-Net, NOAA-GMD, AmeriFlux, etc. In this talk we will discuss some of the challenges that Polar data brings to geoinformatics and describe the approaches we have taken to address these challenges in RAMADDA.
A high-fidelity satellite ephemeris program for Earth satellites in eccentric orbits
NASA Technical Reports Server (NTRS)
Simmons, David R.
1990-01-01
A program for mission planning called the Analytic Satellite Ephemeris Program (ASEP), produces projected data for orbits that remain fairly close to the Earth. ASEP does not take into account lunar and solar perturbations. These perturbations are accounted for in another program called GRAVE, which incorporates more flexible means of input for initial data, provides additional kinds of output information, and makes use of structural programming techniques to make the program more understandable and reliable. GRAVE was revised, and a new program called ORBIT was developed. It is divided into three major phases: initialization, integration, and output. Results of the program development are presented.
Review of NASA programs in applying aerospace technology to energy
NASA Technical Reports Server (NTRS)
Schwenk, F. C.
1981-01-01
NASA's role in energy research and development, with the aid of aerospace technology, is reviewed. A brief history, which began in 1974 with studies of solar energy systems on earth, is presented, and the major energy programs, consisting of over 60 different projects, are described, and include solar terrestrial systems, conservation and fossil energy systems, and space utilization systems. Special attention is given to the Satellite Power System and the isolation of nuclear wastes in space. Emerging prospects for NASA programs in energy technology include bioenergy, and ocean thermal energy conversion, coal extraction and conversion technologies, and support to the nuclear industry in power plant systems safety.
Dynamics and Control of Orbiting Space Structures NASA Advanced Design Program (ADP)
NASA Technical Reports Server (NTRS)
Cruse, T. A.
1996-01-01
The report summarizes the advanced design program in the mechanical engineering department at Vanderbilt University for the academic years 1994-1995 and 1995-1996. Approximately 100 students participated in the two years of the subject grant funding. The NASA-oriented design projects that were selected included lightweight hydrogen propellant tank for the reusable launch vehicle, a thermal barrier coating test facility, a piezoelectric motor for space antenna control, and a lightweight satellite for automated materials processing. The NASA supported advanced design program (ADP) has been a success and a number of graduates are working in aerospace and are doing design.
A vectorized algorithm for 3D dynamics of a tethered satellite
NASA Technical Reports Server (NTRS)
Wilson, Howard B.
1989-01-01
Equations of motion characterizing the three dimensional motion of a tethered satellite during the retrieval phase are studied. The mathematical model involves an arbitrary number of point masses connected by weightless cords. Motion occurs in a gravity gradient field. The formulation presented accounts for general functions describing support point motion, rate of tether retrieval, and arbitrary forces applied to the point masses. The matrix oriented program language MATLAB is used to produce an efficient vectorized formulation for computing natural frequencies and mode shapes for small oscillations about the static equilibrium configuration; and for integrating the nonlinear differential equations governing large amplitude motions. An example of time response pertaining to the skip rope effect is investigated.
NASA Technical Reports Server (NTRS)
Molthan, Andrew L.; Burks, Jason E.; McGrath, Kevin M.; Jedlovec, Gary J.
2012-01-01
NASA s Short-term Prediction Research and Transition (SPoRT) Center supports the transition of unique NASA and NOAA research activities to the operational weather forecasting community. SPoRT emphasizes real-time analysis and prediction out to 48 hours. SPoRT partners with NOAA s National Weather Service (NWS) Weather Forecast Offices (WFOs) and National Centers to improve current products, demonstrate future satellite capabilities and explore new data assimilation techniques. Recently, the SPoRT Center has been involved in several activities related to disaster response, in collaboration with NOAA s National Weather Service, NASA s Applied Sciences Disasters Program, and other partners.
NASA Astrophysics Data System (ADS)
Goembel, L.
2003-12-01
We are currently developing a flight prototype Spacecraft Charge Monitor (SCM) with support from NASA's Small Business Innovation Research (SBIR) program. The device will use a recently proposed high energy-resolution electron spectroscopic technique to determine spacecraft floating potential. The inspiration for the technique came from data collected by the Atmosphere Explorer (AE) satellites in the 1970s. The data available from the AE satellites indicate that the SCM may be able to determine spacecraft floating potential to within 0.1 V under certain conditions. Such accurate measurement of spacecraft charge could be used to correct biases in space plasma measurements. The device may also be able to measure spacecraft floating potential in the solar wind and in orbit around other planets.
Recent work on use of lunar materials for SPS construction
NASA Technical Reports Server (NTRS)
Oneill, G. K.
1980-01-01
The feasibility of mounting a small operation on the Moon to productively use lunar materials in support of programs such as the solar power satellite is addressed. A cost effective scenario of a small chemical process plant on the surface of the Moon and a small machine shop located in orbit is presented. The mass of the space installation is compared to the projected outputs in 90 days. It is indicated that the system would have the capability of replicating about 90% of its own components and would provide the metals, glasses, and silicon needed for the contruction of 90% to 96% of the mass of one solar power satellite per year.
NASA Technical Reports Server (NTRS)
Casas, J. C.; Campbell, S. A.
1981-01-01
The applicability of the gas filter correlation radiometer (GFCR) to the measurement of tropospheric carbon monoxide gas was investigated. An assessment of the GFRC measurement system to a regional measurement program was conducted through extensive aircraft flight-testing of several versions of the GFRC. Investigative work in the following areas is described: flight test planning and coordination, acquisition of verifying CO measurements, determination and acquisition of supporting meteorological data requirements, and development of supporting computational software.
A Hybrid Satellite-Terrestrial Approach to Aeronautical Communication Networks
NASA Technical Reports Server (NTRS)
Kerczewski, Robert J.; Chomos, Gerald J.; Griner, James H.; Mainger, Steven W.; Martzaklis, Konstantinos S.; Kachmar, Brian A.
2000-01-01
Rapid growth in air travel has been projected to continue for the foreseeable future. To maintain a safe and efficient national and global aviation system, significant advances in communications systems supporting aviation are required. Satellites will increasingly play a critical role in the aeronautical communications network. At the same time, current ground-based communications links, primarily very high frequency (VHF), will continue to be employed due to cost advantages and legacy issues. Hence a hybrid satellite-terrestrial network, or group of networks, will emerge. The increased complexity of future aeronautical communications networks dictates that system-level modeling be employed to obtain an optimal system fulfilling a majority of user needs. The NASA Glenn Research Center is investigating the current and potential future state of aeronautical communications, and is developing a simulation and modeling program to research future communications architectures for national and global aeronautical needs. This paper describes the primary requirements, the current infrastructure, and emerging trends of aeronautical communications, including a growing role for satellite communications. The need for a hybrid communications system architecture approach including both satellite and ground-based communications links is explained. Future aeronautical communication network topologies and key issues in simulation and modeling of future aeronautical communications systems are described.
2006-01-12
VANDENBERG AIR FORCE BASE, Calif. — n the Orbital Sciences Building 836 at Vandenberg Air Force Base in California, a third satellite is transported across the floor. It will be mounted with the other satellites on the payload support structure. The three satellites make up the Space Technology 5 spacecraft, called ST5, and will be launched by a Pegasus XL rocket. The satellites contain miniaturized redundant components and technologies. Each will validate New Millennium Program selected technologies, such as the Cold Gas Micro-Thruster and X-Band Transponder Communication System. After deployment from the Pegasus, the micro-satellites will be positioned in a “string of pearls” constellation that demonstrates the ability to position them to perform simultaneous multi-point measurements of the magnetic field using highly sensitive magnetometers. The data will help scientists understand and map the intensity and direction of the Earth’s magnetic field, its relation to space weather events, and affects on our planet. With such missions, NASA hopes to improve scientists’ ability to accurately forecast space weather and minimize its harmful effects on space- and ground-based systems. Launch of ST5 is scheduled for Feb. 28 from Vandenberg Air Force Base.
2006-01-12
VANDENBERG AIR FORCE BASE, Calif. — In the Orbital Sciences Building 836 at Vandenberg Air Force Base in California, workers are maneuvering a second satellite suspended by an overhead crane. Three micro-satellites are being mounted on a payload support structure. The three satellites make up the Space Technology 5 spacecraft, called ST5, and will be launched by a Pegasus XL rocket. The satellites contain miniaturized redundant components and technologies. Each will validate New Millennium Program selected technologies, such as the Cold Gas Micro-Thruster and X-Band Transponder Communication System. After deployment from the Pegasus, the micro-satellites will be positioned in a “string of pearls” constellation that demonstrates the ability to position them to perform simultaneous multi-point measurements of the magnetic field using highly sensitive magnetometers. The data will help scientists understand and map the intensity and direction of the Earth’s magnetic field, its relation to space weather events, and affects on our planet. With such missions, NASA hopes to improve scientists’ ability to accurately forecast space weather and minimize its harmful effects on space- and ground-based systems. Launch of ST5 is scheduled for Feb. 28 from Vandenberg Air Force Base.
TSS-1R satellite integration in O&C Building
NASA Technical Reports Server (NTRS)
1995-01-01
John Powell (left) and Jim Nail (second from right) of McDonnell Douglas Space and Defense Systems prepare the satellite element of the Tethered Satellite System-1R (TSS-1R) for integration with its support unit in the Operations and Checkout (O&C) Building. The TSS-1R is one of two primary payloads scheduled to fly aboard the Orbiter Columbia during the STS-75 mission in early 1996. The TSS program is a joint venture between NASA and the Agenzia Spaziale Italiana, or Italian Space Agency. The 'R' designation indicates a reflight. The TSS-1 flew aboard Atlantis during the STS-46 mission in July 1992 and achieved only a partial success when its tether reel mechanism became jammed after only approximately 840 feet of the 12-mile-long tether had been unwound as the satellite rose from its cradle in the orbiter's payload bay. Once deployed to the 12-mile height on the STS-75 mission, the satellite will be used to validate theories that such a system could possibly be used in the future to generate electrical power to power orbital systems, raise and lower spacecraft, study atmospheric conditions at several different heights and for many other applications.
ERIC Educational Resources Information Center
Lonsdale, Helen C.
Because 16mm film programs for classroom use are expensive and distribution is unpredictable, the Satellite Technology Demonstration (STD) established a Materials Distribution Service (MDS) to transmit material via satellite to rural sites in the Rocky Mountains. The STD leased 300 programs from Encyclopedia Britannica Educational Corporation and…
Acceptance Testing of a Satellite SCADA Photovoltaic-Diesel Hybrid System
NASA Technical Reports Server (NTRS)
Kalu, Alex; Acosta, R.; Durand, S.; Emrich, Carol; Ventre, G.; Wilson, W.
1999-01-01
Savannah State University (SSU) and the Florida Solar Energy Center (FSEC) have been participating in the NASA Advanced Communications Technology Satellite (ACTS) program for the last five years. This program was designed by NASA to help maintain U.S. leadership in commercial space communications by funding high-risk research, and to flight-test next-generation digital satellite components. Launched in 1993, ACTS is an U.S. government funded technology test-bed that incorporates high power Ka-band transponders, small spot beams, and on-board digital storage and switching technology. Associated with the spacecraft, is a prototype satellite control center that supports various application experiments. The SSU/FSEC application experiment is to developing a Photovoltaic-Diesel Hybrid Power system complete with satellite Supervisory Control and Data Acquisition (SCADA). The hybrid system was design to demonstrate the feasibility of using SCADA to maintain and operate remote village power systems. This configuration would enable experts at a central location to provide technical assistance to local technicians while they acquire a measure of proficiency with the hybrid system operation and maintenance. Upon full mastery of the technology, similar SCADA arrangement are planned to remotely monitor and control constellation of hybrid systems scattered overlarge rural areas. Two Orion Energy APEX-1000 hybrid systems were delivered in 1998, one was installed at SSU in eastern Georgia and the other was installed at FSEC in Central Florida. The project was designed to: (1) evaluate the performance of ACTS in a SCADA arrangement, (2) monitor the health and performance of all major hybrid subsystems, (3) investigate load control and battery charging strategies to maximize battery capacity and lifetime, and (4) develop satellite communication protocol. Preliminary results indicate that the hybrid design is suitable for satellite Supervisory Control and Data Acquisition. A modification to the controller software has produced a robust communication link capable of real time control and long term data collection.
SAC-C mission, an example of international cooperation
NASA Astrophysics Data System (ADS)
Colomb, F.; Alonso, C.; Hofmann, C.; Nollmann, I.
In comp liance with the objectives established in the National Space Program, Argentina in Space 1997-2008 ((Plan Espacial Nacional, Argentina en el Espacio 1997-2008), the National Commission on Space Activities (Comisión Nacional de Actividades Espaciales - CONAE) undertook the design, construction, and launching of the SAC-C satellite in close collaboration with NASA. The purpose of this Mission is to carry out observations of interest both for the USA and Argentina, thus contributing effectively to NASA's Earth Science Program and to CONAE's National Space Program. The SAC-C is an international Earth observing satellite mission conceived as a partnership between CONAE and NASA, with additional support in instrumentation and satellite development from the Danish DSRI, the Italian ASI, the French CNES and the Brazilian INPE. A Delta II rocket successfully launched it on November 21st, 2000, from Vandenberg AFB, California, USA. Ten instruments on board the SAC-C perform different studies related to the ground and sea ecosystems, the atmosphere and the geomagnetic field. There are also technological experiments for determination of the satellite attitude and velocity as well as for the studies of the influence of space radiation on advanced electronic components . The inclusion of SAC-C in the AM Constellation, jointly with NASA satellites Landsat 7, EO 1 and Terra, is another example of important international cooperation which synergies the output of any single Mission. The Constellation has been working since March 2001 as a single mission and several cooperative activities have been undertaken including several jointly sponsored technical workshops and collaborative spacecraft navigation experiments. A flight campaign of the NASA AVIRIS instrument was performed in Argentine during January and February 2001, for calibration of SAC-C and EO 1 cameras and the development of joint scientific works. In Cordoba Space Center a jointly operated ground GPS reference site was installed and three Aeronet stations are working in Argentine as part of the world net.
NASA Astrophysics Data System (ADS)
Kiely, J.
1982-04-01
AT&T's Satellite Television Service, which relays TV feeds by means of the Comstar domestic communications satellite system, is discussed. Advantages include the ability to provide multiple feeds of program and advertising material simultaneously to affiliates, which can help accommodate the trend toward greater program diversity, and the ability to distribute one signal to many points, making their use economically attractive. A proposed radio service from AT&T is also discussed, which could provide radio broadcasters and programmers with a high-quality, versatile means of transmitting radio programs via satellite.
NASA Technical Reports Server (NTRS)
Stagl, T. W.; Singh, J. P.
1972-01-01
A description and listings of computer programs for plotting geographical and political features of the world or a specified portion of it, for plotting spot-beam coverages from an earth-synchronous satellite over the computer generated mass, and for plotting polar perspective views of the earth and earth-station antenna elevation contours for a given satellite location are presented. The programs have been prepared in connection with a project on Application of Communication Satellites to Educational Development.
[STS-44 Onboard 16mm Photography
NASA Technical Reports Server (NTRS)
1991-01-01
This silent video was filmed by the crew of the STS-44 Space Shuttle using a 16mm camera. Astronauts, Frederick D. Gregory, Terence T. Henricks, F. Story Musgrave, Mario Runco, Jr., James S. Voss, and Thomas J. Hennen, filmed various crew activities inside the shuttle, the deployment of the Defense Support Program satellite (DSP), and several Earth view-footage of arid land masses and cloud cover.
ERIC Educational Resources Information Center
Practical Concepts, Inc., Washington, DC.
This volume contains the raw data and descriptive materials which form the basis of Volume I, "Analysis of the Demonstration." The information is divided into three categories: (1) description of the overall study plan, (2) compendium of user reaction to program, and (3) a chronology of critical events and their documentary basis. A…
NASA Technical Reports Server (NTRS)
Hanley, G.
1979-01-01
Computer assisted design of a gallium arsenide solid state dc-to-RF converter with supportive fabrication data was investigated. Specific tasks performed include: computer program checkout; amplifier comparisons; computer design analysis of GaSa solar cells; and GaAs diode evaluation. Results obtained in the design and evaluation of transistors for the microwave space power system are presented.
Space Science Cloud: a Virtual Space Science Research Platform Based on Cloud Model
NASA Astrophysics Data System (ADS)
Hu, Xiaoyan; Tong, Jizhou; Zou, Ziming
Through independent and co-operational science missions, Strategic Pioneer Program (SPP) on Space Science, the new initiative of space science program in China which was approved by CAS and implemented by National Space Science Center (NSSC), dedicates to seek new discoveries and new breakthroughs in space science, thus deepen the understanding of universe and planet earth. In the framework of this program, in order to support the operations of space science missions and satisfy the demand of related research activities for e-Science, NSSC is developing a virtual space science research platform based on cloud model, namely the Space Science Cloud (SSC). In order to support mission demonstration, SSC integrates interactive satellite orbit design tool, satellite structure and payloads layout design tool, payload observation coverage analysis tool, etc., to help scientists analyze and verify space science mission designs. Another important function of SSC is supporting the mission operations, which runs through the space satellite data pipelines. Mission operators can acquire and process observation data, then distribute the data products to other systems or issue the data and archives with the services of SSC. In addition, SSC provides useful data, tools and models for space researchers. Several databases in the field of space science are integrated and an efficient retrieve system is developing. Common tools for data visualization, deep processing (e.g., smoothing and filtering tools), analysis (e.g., FFT analysis tool and minimum variance analysis tool) and mining (e.g., proton event correlation analysis tool) are also integrated to help the researchers to better utilize the data. The space weather models on SSC include magnetic storm forecast model, multi-station middle and upper atmospheric climate model, solar energetic particle propagation model and so on. All the services above-mentioned are based on the e-Science infrastructures of CAS e.g. cloud storage and cloud computing. SSC provides its users with self-service storage and computing resources at the same time.At present, the prototyping of SSC is underway and the platform is expected to be put into trial operation in August 2014. We hope that as SSC develops, our vision of Digital Space may come true someday.
Study 2.5 final report. DORCA computer program. Volume 5: Analysis report
NASA Technical Reports Server (NTRS)
Campbell, N.
1972-01-01
A modification of the Dynamic Operational Requirements and Cost Analysis Program to perform traffic analyses of the automated satellite program is described. Inherent in the analyses of the automated satellite program was the assumption that a number of vehicles were available to perform any or all of the missions within the satellite program. The objective of the modification was to select a vehicle or group of vehicles for performing all of the missions at the lowest possible cost. A vehicle selection routine and the capability to simulate ground based vehicle operational modes were incorporated into the program.
Using the remote sensing vegetation condition to assess the drought stress
NASA Astrophysics Data System (ADS)
Semerádová, Daniela; Trnka, Miroslav; Hlavinka, Petr; Balek, Jan; Bohovic, Roman; Tadesse, Tsegaye; Hayes, Michael; Wardlow, Brian; Žalud, Zdeněk
2015-04-01
The occurrence of the meteorological and soil drought is one of the major hydrometeorological extremes with significant impacts on agriculture, horticulture and forestry. The drought monitor system for the Czech Republic was released in 2012. It is based on a daily step calculations of soil moisture for the whole area of the Czech Republic divided into regular grids with a spatial resolution of 500 m. The results are published on the weekly operated webpage (www.intersucho.cz). Using freely available data from the MODIS (Moderate Resolution Imaging Spectroradiometer instrument onboard Terra satellite) the vegetation state condition is taken into account as support tool for vegetation drought impact assessment. Based on the surface reflectance bands the Normalized Difference Vegetation Index (NDVI) is calculated. Consequently, weekly NDVI anomaly is expressed as Percent of Average Actual Greenness (PAAG) in relation to the average for the period of 2000-2014. The system contains filter algorithms that eliminate the noise in the satellite NDVI data mainly due to cloud effects. The following operation allows for changing crop patterns between seasons and aggregates filtered values to the 5x5 km resolution with regard to the main land use categories. The aim of this study was to compare the satellite based vegetation condition to the results of soil moisture calculation in order to detect the impacts of drought on vegetation during seasons with low and normal precipitation sums. This contribution was supported by COST CZ program, project No. LD14121 and the Operational Program of the Czech Republic, project No. CZ.1.07/2.3.00/20.0248.
NASA Technical Reports Server (NTRS)
Landsfeld, M.; Gautier, C.; Figel, T.
1995-01-01
To better predict global climate change, scientists are developing climate models that require interdisciplinary and collaborative efforts in their building. We are currently involved in several such projects but will briefly discuss activities in support of two such complementary projects: the Atmospheric Radiation Measurement (ARM) program of the Department of Energy and Sequoia 2000, a joint venture of the University of California, the private sector, and government agencies. Our contribution to the ARM program is to investigate the role of clouds on the top of the atmosphere and on surface radiance fields through the data analysis of surface and satellite observations and complex modeling of the interaction of radiation with clouds. One of our first ARM research activities involves the computation of the broadband shortwave surface irradiance from satellite observations. Geostationary satellite images centered over the first ARM observation site are received hourly over the Internet network and processed in real time to compute hourly and daily composite shortwave irradiance fields. The images and the results are transferred via a high-speed network to the Sequoia 2000 storage facility in Berkeley, where they are archived These satellite-derived results are compared with the surface observations to evaluate the accuracy of the satellite estimate and the spatial representation of the surface observations. In developing the software involved in calculating the surface shortwave irradiance, we have produced an environment whereby we can easily modify and monitor the data processing as required. Through the principles of modular programming, we have developed software that is easily modified as new algorithms for computation are developed or input data availability changes. In addition, the software was designed so that it could be run from an interactive, icon-driven, graphical interface, TCL-TK, developed by Sequoia 2000 participants. In this way, the data flow can be interactively assessed and altered as needed. In this environment, the intermediate data processing 'images' can be viewed, enabling the investigator to easily monitor the various data processing steps as they progress. Additionally, this environment allows the rapid testing of new processing modules and allows their effects to be visually compared with previous results.
NASA Technical Reports Server (NTRS)
Greenburg, J. S.; Kaplan, M.; Fishman, J.; Hopkins, C.
1985-01-01
The computational procedures used in the evaluation of spacecraft technology programs that impact upon commercial communication satellite operations are discussed. Computer programs and data bases are described.
JPSS-1 Prelaunch News Conference
2017-11-12
JPSS-1 Prelaunch News Conference at Vandenberg Air Force Base hosted by Tori Mclendon, with Steve Volz, NOAA Satellite and Information Service, Greg Mandt, Director, NOAA Joint Polar Satellite Systems Program, Sandra Smalley, NASA Joint Agency Satellite Division, Omar Baez, Launch Manager, NASA Launch Services Program, Scott Messer, Program Manager for NASA Missions, United Launch Alliance, and Ross Malugani, Launch Weather Officer, VAFB 30th Space Wing.
ERIC Educational Resources Information Center
Darby, Keith
The overall objective of the Satellite Technology Demonstration (STD) was to test the feasibility of delivering television Programing via satellite to isolated, rural locations. Community members at various STD sites were surveyed to determine how they felt about a variety of topics which were planned for an adult evening series. Topics in…
Satellite Applications for Public Service: Project Summaries.
ERIC Educational Resources Information Center
Lauffer, Sandra; And Others
Summaries of 18 different projects involving the use of satellite communications are presented in this report, including PEACESAT Education and Communication Experiments, USP Network Satellite Communication Project, Project Satellite, Satellite Instructional Television Experiment (SITE), Appalachian Education Satellite Program, Alaska Education…
Mathematical programming formulations for satellite synthesis
NASA Technical Reports Server (NTRS)
Bhasin, Puneet; Reilly, Charles H.
1987-01-01
The problem of satellite synthesis can be described as optimally allotting locations and sometimes frequencies and polarizations, to communication satellites so that interference from unwanted satellite signals does not exceed a specified threshold. In this report, mathematical programming models and optimization methods are used to solve satellite synthesis problems. A nonlinear programming formulation which is solved using Zoutendijk's method and a gradient search method is described. Nine mixed integer programming models are considered. Results of computer runs with these nine models and five geographically compatible scenarios are presented and evaluated. A heuristic solution procedure is also used to solve two of the models studied. Heuristic solutions to three large synthesis problems are presented. The results of our analysis show that the heuristic performs very well, both in terms of solution quality and solution time, on the two models to which it was applied. It is concluded that the heuristic procedure is the best of the methods considered for solving satellite synthesis problems.
Defense Acquisitions: Assessments of Selected Weapon Programs
2011-03-01
Frequency (UHF) Follow-On ( UFO ) satellite system currently in operation and provide interoperability with legacy terminals. MUOS consists of a...delivery of MUOS capabilities is time-critical due to the operational failures of two UFO satellites. The MUOS program has taken several steps to...launch increased due to the unexpected failures of two UFO satellites. Based on the current health of on-orbit satellites, UHF communication
Remote sensing by satellite - Technical and operational implications for international cooperation
NASA Technical Reports Server (NTRS)
Doyle, S. E.
1976-01-01
International cooperation in the U.S. Space Program is discussed and related to the NASA program for remote sensing of the earth. Satellite remote sensing techniques are considered along with the selection of the best sensors and wavelength bands. The technology of remote sensing satellites is considered with emphasis on the Landsat system configuration. Future aspects of remote sensing satellites are considered.
Code of Federal Regulations, 2014 CFR
2014-10-01
... CABLE TELEVISION SERVICE Competitive Access to Cable Programming § 76.1000 Definitions. As used in this..., satellite cable programming vendors, satellite broadcast programming vendors, or terrestrial cable programming vendors will be attributed to their holders and may subject the interest holders to the rules of...
Code of Federal Regulations, 2012 CFR
2012-10-01
... CABLE TELEVISION SERVICE Competitive Access to Cable Programming § 76.1000 Definitions. As used in this..., satellite cable programming vendors, satellite broadcast programming vendors, or terrestrial cable programming vendors will be attributed to their holders and may subject the interest holders to the rules of...
Code of Federal Regulations, 2013 CFR
2013-10-01
... CABLE TELEVISION SERVICE Competitive Access to Cable Programming § 76.1000 Definitions. As used in this..., satellite cable programming vendors, satellite broadcast programming vendors, or terrestrial cable programming vendors will be attributed to their holders and may subject the interest holders to the rules of...
Code of Federal Regulations, 2010 CFR
2010-10-01
... CABLE TELEVISION SERVICE Competitive Access to Cable Programming § 76.1000 Definitions. As used in this..., satellite cable programming vendors, satellite broadcast programming vendors, or terrestrial cable programming vendors will be attributed to their holders and may subject the interest holders to the rules of...
Code of Federal Regulations, 2011 CFR
2011-10-01
... CABLE TELEVISION SERVICE Competitive Access to Cable Programming § 76.1000 Definitions. As used in this..., satellite cable programming vendors, satellite broadcast programming vendors, or terrestrial cable programming vendors will be attributed to their holders and may subject the interest holders to the rules of...
Architectures of small satellite programs in developing countries
NASA Astrophysics Data System (ADS)
Wood, Danielle; Weigel, Annalisa
2014-04-01
Global participation in space activity is growing as satellite technology matures and spreads. Countries in Africa, Asia and Latin America are creating or reinvigorating national satellite programs. These countries are building local capability in space through technological learning. This paper analyzes implementation approaches in small satellite programs within developing countries. The study addresses diverse examples of approaches used to master, adapt, diffuse and apply satellite technology in emerging countries. The work focuses on government programs that represent the nation and deliver services that provide public goods such as environmental monitoring. An original framework developed by the authors examines implementation approaches and contextual factors using the concept of Systems Architecture. The Systems Architecture analysis defines the satellite programs as systems within a context which execute functions via forms in order to achieve stakeholder objectives. These Systems Architecture definitions are applied to case studies of six satellite projects executed by countries in Africa and Asia. The architectural models used by these countries in various projects reveal patterns in the areas of training, technical specifications and partnership style. Based on these patterns, three Archetypal Project Architectures are defined which link the contextual factors to the implementation approaches. The three Archetypal Project Architectures lead to distinct opportunities for training, capability building and end user services.
Use of Earth Observing Satellites for Operational Hazard Support
NASA Astrophysics Data System (ADS)
Wood, H. M.; Lauritson, L.
The National Oceanic and Atmospheric Administration (NOAA) relies on Earth observing satellite data to carry out its operational mission to monitor, predict, and assess changes in the Earth's atmosphere, land, and oceans. NOAA's National Environmental Satellite, Data, and Information Service (NESDIS) uses satellite data to help lessen the impacts of natural and man-made disasters due to tropical cyclones, flash floods, heavy snowstorms, volcanic ash clouds (for aviation safety), sea ice (for shipping safety), and harmful algal blooms. Communications systems on NOAA satellites are used to support search and rescue and to relay data from data collection platforms to a variety of users. NOAA's Geostationary (GOES) and Polar (POES) Operational Environmental Satellites are used in conjunction with other satellites to support NOAA's operational mission. While NOAA's National Hurricane Center is responsible for predicting tropical cyclones affecting the U.S. mainland, NESDIS continuously monitors the tropics world wide, relaying valuable satellite interpretations of tropical systems strength and position to users throughout the world. Text messages are sent every six hours for tropical cyclones in the Western Pacific, South Pacific, and Indian Oceans. To support the monitoring, prediction, and assessment of flash floods and winter storms, NESDIS sends out text messages alerting U.S. weather forecast offices whenever NOAA satellite imagery indicates the occurrence of heavy rain or snow. NESDIS also produces a 24-hour rainfall composite graphic image covering those areas affected by heavy precipitation. The International Civil Aviation Organization (ICAO) and other aviation concerns recognized the need to keep aviators informed of volcanic hazards. To that end, nine Volcanic Ash Advisory Centers (VAAC's) were created to monitor volcanic ash plumes within their assigned airspace. NESDIS hosts one of the VAAC's. Although the NESDIS VAAC's primary responsibility is the continental U.S., Carribean, and adjacent oceans, it also tracks volcanic eruptions throughout the world. Text messages are produced along with graphic interpretations. This information, along with volcanic ash forecasts produced by NOAA's National Weather Service, is made available to U.S. Government and international agencies concerned with aviation, seismology, and climate analysis. Earth observing satellites help NESDIS to ensure safe navigation of ships through sea ice by measuring the extent, thickness, and age of ice as well as sea surface winds over the polar regions of the globe, coastal areas, and inland waterways. These satellites also help NESDIS to monitor U.S. coastal areas for dangerous algal blooms or other toxic effects to fish and sea mammals as well as monitoring floods and fires. Experimental fire products can help in the monitoring of fires and fire weather, as well as determining fire risk. Experimental soil moisture products support flood and drought monitoring. Flood extent and damage assessment for a variety of hazards can be determined from several satellites at varying spatial resolutions. The Search and Rescue Satellite Aided Tracking (SARSAT) system detects and locates persons in distress on land or water. NOAA satellites relay distress signals from emergency beacons through a network of ground stations to the U.S. Mission Control Center (USMCC). The USMCC processes the data and alerts the appropriate search and rescue authorities. SARSAT is part of the international Cospas-Sarsat Program. NOAA's GOES Data Collection (DCS) and Argos (jointly with the French space agency) POES Data Collection and Locations Systems transmit data collected from remote land and water based platforms and distributes the data to researchers, governmental and environmental organizations worldwide. The GOES DCS system allows near real time and frequent transmissions, e.g. hourly, over the Americas and much of the Atlantic and Eastern Pacific Oceans. ARGOS transmissions are less frequent, but global and provide the location of moving platforms such as animals and drifting buoys.
NASA Technical Reports Server (NTRS)
1971-01-01
The results are reported of a study to explore the potential cost reductions in the operational ITOS weather satellite program as a consequence of shuttle/bug availability for satellite placement and retrieval, and satellite servicing and maintenance. The study program was divided into shuttle impact on equipment and testing costs, and shuttle impact on overall future ITOS operational program costs, and shuttle impact on configuration. It is concluded that savings in recurring spacecraft costs can be realized in the 1978 ITOS program, if a space shuttle is utilized.
NASA Technical Reports Server (NTRS)
Bell, Jordan R.; Molthan, Andrew L.; Burks, Jason E.; McGrath, Kevin M.
2014-01-01
NASA's Short-term Prediction, Research, and Transition (SPoRT) Center uses a wide array of satellites to monitor and assess the impacts of natural disasters, with support from NASA's Applied Sciences Program. One of the newest sensors SPoRT is utilizing in these activities is the International Space Station (ISS) SERVIR Environmental Research and Visualization System (ISERV) instrument. ISERV provides a unique view of the areas impacted and will play a big role in monitoring the recovery these areas. High-resolution commercial satellite data is also used to monitor urban areas that have been impacted by natural disasters. SPoRT is developing techniques to measure the extent of these disasters and to monitor recovery. Several of these techniques include semi-automatic feature detection and change as well as developing an experimental damage assessment based upon the visible damage observed by the satellites. Furthermore, throughout these activities SPoRT hopes to provide additional data to the NOAA National Weather Service Damage Assessment Toolkit, which will help to supplement those activities being performed in the field.
2006-01-13
VANDENBERG AIR FORCE BASE, Calif. — In the Orbital Sciences Building 836 at Vandenberg Air Force Base in California, technicians complete mating of the three micro-satellites on the payload support structure. The three satellites make up the Space Technology 5 spacecraft, called ST5, and will be launched by a Pegasus XL rocket. The satellites contain miniaturized redundant components and technologies. Each will validate New Millennium Program selected technologies, such as the Cold Gas Micro-Thruster and X-Band Transponder Communication System. After deployment from the Pegasus, the micro-satellites will be positioned in a “string of pearls” constellation that demonstrates the ability to position them to perform simultaneous multi-point measurements of the magnetic field using highly sensitive magnetometers. The data will help scientists understand and map the intensity and direction of the Earth’s magnetic field, its relation to space weather events, and affects on our planet. With such missions, NASA hopes to improve scientists’ ability to accurately forecast space weather and minimize its harmful effects on space- and ground-based systems. Launch of ST5 is scheduled for Feb. 28 from Vandenberg Air Force Base.
2006-01-12
VANDENBERG AIR FORCE BASE, Calif. — In the Orbital Sciences Building 836 at Vandenberg Air Force Base in California, workers move lift one of three micro-satellites to prepare it for mating to the payload support structure. The three satellites that make up the Space Technology 5 spacecraft, called ST5, will be launched by a Pegasus XL rocket. The satellites contain miniaturized redundant components and technologies. Each will validate New Millennium Program selected technologies, such as the Cold Gas Micro-Thruster and X-Band Transponder Communication System. After deployment from the Pegasus, the micro-satellites will be positioned in a “string of pearls” constellation that demonstrates the ability to position them to perform simultaneous multi-point measurements of the magnetic field using highly sensitive magnetometers. The data will help scientists understand and map the intensity and direction of the Earth’s magnetic field, its relation to space weather events, and affects on our planet. With such missions, NASA hopes to improve scientists’ ability to accurately forecast space weather and minimize its harmful effects on space- and ground-based systems. Launch of ST5 is scheduled for Feb. 28 from Vandenberg Air Force Base.
2006-01-13
VANDENBERG AIR FORCE BASE, Calif. — In the Orbital Sciences Building 836 at Vandenberg Air Force Base in California, technicians complete mating of the three micro-satellites on the payload support structure. The three satellites make up the Space Technology 5 spacecraft, called ST5, and will be launched by a Pegasus XL rocket. The satellites contain miniaturized redundant components and technologies. Each will validate New Millennium Program selected technologies, such as the Cold Gas Micro-Thruster and X-Band Transponder Communication System. After deployment from the Pegasus, the micro-satellites will be positioned in a “string of pearls” constellation that demonstrates the ability to position them to perform simultaneous multi-point measurements of the magnetic field using highly sensitive magnetometers. The data will help scientists understand and map the intensity and direction of the Earth’s magnetic field, its relation to space weather events, and affects on our planet. With such missions, NASA hopes to improve scientists’ ability to accurately forecast space weather and minimize its harmful effects on space- and ground-based systems. Launch of ST5 is scheduled for Feb. 28 from Vandenberg Air Force Base.
2006-01-12
VANDENBERG AIR FORCE BASE, Calif. — In the Orbital Sciences Building 836 at Vandenberg Air Force Base in California, workers guide one of three micro-satellites onto a payload support structure. The three satellites that make up the Space Technology 5 spacecraft, called ST5, will be launched by a Pegasus XL rocket. The satellites contain miniaturized redundant components and technologies. Each will validate New Millennium Program selected technologies, such as the Cold Gas Micro-Thruster and X-Band Transponder Communication System. After deployment from the Pegasus, the micro-satellites will be positioned in a “string of pearls” constellation that demonstrates the ability to position them to perform simultaneous multi-point measurements of the magnetic field using highly sensitive magnetometers. The data will help scientists understand and map the intensity and direction of the Earth’s magnetic field, its relation to space weather events, and affects on our planet. With such missions, NASA hopes to improve scientists’ ability to accurately forecast space weather and minimize its harmful effects on space- and ground-based systems. Launch of ST5 is scheduled for Feb. 28 from Vandenberg Air Force Base.
2006-01-12
VANDENBERG AIR FORCE BASE, Calif. — In the Orbital Sciences Building 836 at Vandenberg Air Force Base in California, workers are mating a third satellite onto the payload support structure. The three satellites make up the Space Technology 5 spacecraft, called ST5, and will be launched by a Pegasus XL rocket. The satellites contain miniaturized redundant components and technologies. Each will validate New Millennium Program selected technologies, such as the Cold Gas Micro-Thruster and X-Band Transponder Communication System. After deployment from the Pegasus, the micro-satellites will be positioned in a “string of pearls” constellation that demonstrates the ability to position them to perform simultaneous multi-point measurements of the magnetic field using highly sensitive magnetometers. The data will help scientists understand and map the intensity and direction of the Earth’s magnetic field, its relation to space weather events, and affects on our planet. With such missions, NASA hopes to improve scientists’ ability to accurately forecast space weather and minimize its harmful effects on space- and ground-based systems. Launch of ST5 is scheduled for Feb. 28 from Vandenberg Air Force Base.
2006-01-12
VANDENBERG AIR FORCE BASE, Calif. — In the Orbital Sciences Building 836 at Vandenberg Air Force Base in California, three micro-satellites are mounted on the payload support structure. The three satellites make up the Space Technology 5 spacecraft, called ST5, and will be launched by a Pegasus XL rocket. The satellites contain miniaturized redundant components and technologies. Each will validate New Millennium Program selected technologies, such as the Cold Gas Micro-Thruster and X-Band Transponder Communication System. After deployment from the Pegasus, the micro-satellites will be positioned in a “string of pearls” constellation that demonstrates the ability to position them to perform simultaneous multi-point measurements of the magnetic field using highly sensitive magnetometers. The data will help scientists understand and map the intensity and direction of the Earth’s magnetic field, its relation to space weather events, and affects on our planet. With such missions, NASA hopes to improve scientists’ ability to accurately forecast space weather and minimize its harmful effects on space- and ground-based systems. Launch of ST5 is scheduled for Feb. 28 from Vandenberg Air Force Base.
2006-01-12
VANDENBERG AIR FORCE BASE, Calif. — In the Orbital Sciences Building 836 at Vandenberg Air Force Base in California, workers secure one of three micro-satellites onto a payload support structure. The three satellites that make up the Space Technology 5 spacecraft, called ST5, will be launched by a Pegasus XL rocket. The satellites contain miniaturized redundant components and technologies. Each will validate New Millennium Program selected technologies, such as the Cold Gas Micro-Thruster and X-Band Transponder Communication System. After deployment from the Pegasus, the micro-satellites will be positioned in a “string of pearls” constellation that demonstrates the ability to position them to perform simultaneous multi-point measurements of the magnetic field using highly sensitive magnetometers. The data will help scientists understand and map the intensity and direction of the Earth’s magnetic field, its relation to space weather events, and affects on our planet. With such missions, NASA hopes to improve scientists’ ability to accurately forecast space weather and minimize its harmful effects on space- and ground-based systems. Launch of ST5 is scheduled for Feb. 28 from Vandenberg Air Force Base.
2006-01-13
VANDENBERG AIR FORCE BASE, Calif. — In the Orbital Sciences Building 836 at Vandenberg Air Force Base in California, technicians complete mating of the three micro-satellites on the payload support structure. The three satellites make up the Space Technology 5 spacecraft, called ST5, and will be launched by a Pegasus XL rocket. The satellites contain miniaturized redundant components and technologies. Each will validate New Millennium Program selected technologies, such as the Cold Gas Micro-Thruster and X-Band Transponder Communication System. After deployment from the Pegasus, the micro-satellites will be positioned in a “string of pearls” constellation that demonstrates the ability to position them to perform simultaneous multi-point measurements of the magnetic field using highly sensitive magnetometers. The data will help scientists understand and map the intensity and direction of the Earth’s magnetic field, its relation to space weather events, and affects on our planet. With such missions, NASA hopes to improve scientists’ ability to accurately forecast space weather and minimize its harmful effects on space- and ground-based systems. Launch of ST5 is scheduled for Feb. 28 from Vandenberg Air Force Base.
Integrated Global Observation Strategy - Ozone and Atmospheric Chemistry Project
NASA Technical Reports Server (NTRS)
Hilsenrath, Ernest; Readings, C. J.; Kaye, J.; Mohnen, V.; Einaudi, Franco (Technical Monitor)
2000-01-01
The "Long Term Continuity of Stratospheric Ozone Measurements and Atmospheric Chemistry" project was one of six established by the Committee on Earth Observing Satellites (CEOS) in response to the Integrated Global Observing Strategy (IGOS) initiative. IGOS links satellite and ground based systems for global environmental observations. The strategy of this project is to develop a consensus of user requirements including the scientific (SPARC, IGAC, WCRP) and the applications community (WMO, UNEP) and to develop a long-term international plan for ozone and atmospheric chemistry measurements. The major components of the observing system include operational and research (meeting certain criteria) satellite platforms planned by the space faring nations which are integrated with a well supported and sustained ground, aircraft, and balloon measurements program for directed observations as well satellite validation. Highly integrated and continuous measurements of ozone, validation, and reanalysis efforts are essential to meet the international scientific and applications goals. In order to understand ozone trends, climate change, and air quality, it is essential to conduct long term measurements of certain other atmospheric species. These species include key source, radical, and reservoir constituents.
NASA Astrophysics Data System (ADS)
Schultz, L. A.; Molthan, A.; Nicoll, J. B.; Bell, J. R.; Gens, R.; Meyer, F. J.
2017-12-01
Disaster response efforts leveraging imagery from NASA, USGS, NOAA, and the European Space Agency (ESA) have continued to expand as satellite imagery and derived products offer an enhanced overview of the affected areas, especially in remote areas where terrain and the scale of the damage can inhibit response efforts. NASA's Short-term Prediction Research and Transition (SPoRT) Center has been supporting the NASA Earth Science Disaster Response Program by providing both optical and SAR imagery products to the NWS and FEMA to assist during domestic response efforts. Although optical imagery has dominated, the availability of ESA's Synthetic Aperture Radar (SAR) data from the Sentinel 1-A/B satellites offers a unique perspective to the damage response community as SAR imagery can be collected regardless of the time of day or the presence of clouds, two major hindrances to the use of satellite optical imagery. Through a partnership with the University of Alaska Fairbanks (UAF) and the collocated Alaska Satellite Facility (ASF), NASA's SAR Distributed Active Archive Center (DAAC), SPoRT has been investigating the use of SAR imagery products to support storm damage surveys conducted by the National Weather Service after any severe weather event. Additionally, products are also being developed and tested for FEMA and the National Guard Bureau. This presentation will describe how SAR data from the Sentinel 1A/B satellites are processed and developed into products. Examples from multiple tornado and hail events will be presented highlighting both the strengths and weaknesses of SAR imagery and how it integrates and compliments more traditional optical imagery collected post-event. Specific case study information from a large hail event in South Dakota and a long track tornado near Clear Lake, Wisconsin will be discussed as well as an overview of the work being done to support FEMA and the National Guard.
Payload Performance of TDRS KL and Future Services
NASA Technical Reports Server (NTRS)
Toral, Marco A.; Heckler, Gregory W.; Pogorelc, Patricia M.; George, Nicholas E.; Han, Katherine S.
2017-01-01
NASA has accepted two of the 3nd generation Tracking and Data Relay Satellites, TDRS K, L, and M, designed and built by Boeing Defense, Space Security (DSS). TDRS K, L, and M provide S-band Multiple Access (MA) service and S-band, Ku-band and Ka-band Single Access (SA) services to near Earth orbiting satellites. The TDRS KLM satellites offer improved services relative to the 1st generation TDRS spacecraft, such as: an enhanced MA service featuring increased EIRPs and GT; and Ka-band SA capability which provides a 225 and 650 MHz return service (customer-to-TDRS direction) bandwidth and a 50 MHz forward service (TDRS-to-customer direction) bandwidth. MA services are provided through a 15 element forward phased array that forms up to two beams with onboard active beamforming and a 32 element return phased array supported by ground-based beamforming. SA services are provided through two 4.6m tri-band reflector antennas which support program track pointing and autotrack pointing. Prior to NASAs acceptance of the satellites, payload on-orbit testing was performed on each satellite to determine on-orbit compliance with design requirements. Performance parameters evaluated include: EIRP, GT, antenna gain patterns, SA antenna autotrack performance, and radiometric tracking performance. On-orbit antenna calibration and pointing optimization was also performed on the MA and SA antennas including 24 hour duration tests to characterize and calibrate out diurnal effects. Bit-Error-Rate (BER) tests were performed to evaluate the end-to-end link BER performance of service through a TDRS K and L spacecraft. The TDRS M is planned to be launched in August 2017. This paper summarizes the results of the TDRS KL communications payload on-orbit performance verification and end-to-end service characterization and compares the results with the performance of the 2nd generation TDRS J. The paper also provides a high-level overview of an optical communications application that will augment the data rates supported by the Space Network.
Payload Performance of Third Generation TDRS and Future Services
NASA Technical Reports Server (NTRS)
Toral, Marco; Heckler, Gregory; Pogorelc, Patsy; George, Nicholas; Han, Katherine S.
2017-01-01
NASA has accepted two of the 3rd generation Tracking and Data Relay Satellites, TDRS K, L, and M, designed and built by Boeing Defense, Space & Security (DSS). TDRS K, L, and M provide S-band Multiple Access (MA) service and S-band, Ku-band and Ka-band Single Access (SA) services to near Earth orbiting satellites. The TDRS KLM satellites offer improved services relative to the 1st generation TDRS spacecraft, such as: an enhanced MA service featuring increased EIRPs and G/T; and Ka-band SA capability which provides a 225 and 650 MHz return service (customer-to-TDRS direction) bandwidth and a 50 MHz forward service (TDRS-to-customer direction) bandwidth. MA services are provided through a 15 element forward phased array that forms up to two beams with onboard active beamforming and a 32 element return phased array supported by ground-based beamforming. SA services are provided through two 4.6m tri-band reflector antennas which support program track pointing and autotrack pointing. Prior to NASAs acceptance of the satellites, payload on-orbit testing was performed on each satellite to determine on-orbit compliance with design requirements. Performance parameters evaluated include: EIRP, G/T, antenna gain patterns, SA antenna autotrack performance, and radiometric tracking performance. On-orbit antenna calibration and pointing optimization was also performed on the MA and SA antennas including 24 hour duration tests to characterize and calibrate out diurnal effects. Bit-Error-Rate (BER) tests were performed to evaluate the end-to-end link BER performance of service through a TDRS K and L spacecraft. The TDRS M is planned to be launched in August 2017. This paper summarizes the results of the TDRS KL communications payload on-orbit performance verification and end-to-end service characterization and compares the results with the performance of the 2nd generation TDRS J. The paper also provides a high-level overview of an optical communications application that will augment the data rates supported by the Space Network.
Landsat and SPOT data for oil exploration in North-Western China
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nishidai, Takashi
1996-07-01
Satellite remote sensing technology has been employed by Japex to provide information related to oil exploration programs for many years. Since the beginning of the 1980`s, regional geological interpretation through to advanced studies using satellite imagery with high spectral and spatial resolutions (such as Landsat TM and SPOT HRV), have been carried out, for both exploration programs and for scientific research. Advanced techniques (including analysis of airborne hyper-multispectral imaging sensor data) as well as conventional photogeological techniques were used throughout these programs. The first program using remote sensing technology in China focused on the Tarim Basin, Xinjiang Uygur Autonomous Region,more » and was carried out using Landsat MSS data. Landsat MSS imagery allows us to gain useful preliminary geological information about an area of interest, prior to field studies. About 90 Landsat scenes cover the entire Xinjiang Uygru Autonomous Region, this allowed us to give comprehensive overviews of 3 hydrocarbon-bearing basins (Tarim, Junggar, and Turpan-Hami) in NW China. The overviews were based on the interpretations and assessments of the satellite imagery and on a synthesis of the most up-to-date accessible geological and geophysical data as well as some field works. Pairs of stereoscopic SPOT HRV images were used to generate digital elevation data with a 40 in grid cover for part of the Tarim Basin. Topographic contour maps, created from this digital elevation data, at scales of 1:250,000 and 1:100,000 with contour intervals of 100 m and 50 m, allowed us to make precise geological interpretation, and to carry out swift and efficient geological field work. Satellite imagery was also utilized to make medium scale to large scale image maps, not only to interpret geological features but also to support field workers and seismic survey field operations.« less
COMPUTER PROGRAM FOR THE NRL SATELLITE POSITION DISPLAY,
NRL Satellite position Prediction And Display ( SPAD ), provides a considerable amount of display control versatility. Up to eleven satellites can be...expanded mode. A commercial equivalent of the AN/UYK-1 computer was used in the research version of SPAD . Since the program was written in a
Code of Federal Regulations, 2010 CFR
2010-10-01
... definition of a multichannel video programming distributor set forth in paragraph (e) of this section, means... programming that: (1) Agrees to be financially liable for any fees due pursuant to a satellite cable programming, or satellite broadcast programming, contract which it signs as a contracting party as a...
Satellite services system analysis study. Volume 5: Programmatics
NASA Technical Reports Server (NTRS)
1981-01-01
The overall program and resources needed for development and operation of a Satellite Services System is reviewed. Program requirements covered system operations through 1993 and were completed in preliminary form. Program requirements were refined based on equipment preliminary design and analysis. Schedules, costs, equipment utilization, and facility/advanced technology requirements were included in the update. Equipment user charges were developed for each piece of equipment and for representative satellite servicing missions.
NASA Technical Reports Server (NTRS)
Svalbonas, V.; Ogilvie, P.
1973-01-01
The user and programming information necessary for the application of the SATELLITE programs for the STARS system are presented. The individual program functions are: (1) data debugging for the STARS-2S program, (2) Fourier series conversion program, (3) data debugging for the STARS-2B program, and (4) data debugging for the STARS-2V program.
Defense Acquisitions: Assessments of Selected Weapon Programs
2010-03-01
improved availability for small terminals. It is to replace the Ultra High Frequency (UHF) Follow-On ( UFO ) satellite system currently in operation...of MUOS capabilities is time-critical due to the operational failures of two UFO satellites. The MUOS program has taken several steps to address...failures of two UFO satellites. Based on the current health of on-orbit satellites, UHF communication capabilities are predicted to fall below the
NASA Astrophysics Data System (ADS)
Blake, R.; Liou-Mark, J.
2012-12-01
The U.S. remains in grave danger of losing its global competitive edge in STEM. To find solutions to this problem, the Obama Administration proposed two new national initiatives: the Educate to Innovate Initiative and the $100 million government/private industry initiative to train 100,000 STEM teachers and graduate 1 million additional STEM students over the next decade. To assist in ameliorating the national STEM plight, the New York City College of Technology has designed its NSF Research Experience for Undergraduate (REU) program in satellite and ground-based remote sensing to target underrepresented minority students. Since the inception of the program in 2008, a total of 45 undergraduate students of which 38 (84%) are considered underrepresented minorities in STEM have finished or are continuing with their research or are pursuing their STEM endeavors. The program is comprised of the three primary components. The first component, Structured Learning Environments: Preparation and Mentorship, provides the REU Scholars with the skill sets necessary for proficiency in satellite and ground-based remote sensing research. The students are offered mini-courses in Geographic Information Systems, MATLAB, and Remote Sensing. They also participate in workshops on the Ethics of Research. Each REU student is a member of a team that consists of faculty mentors, post doctorate/graduate students, and high school students. The second component, Student Support and Safety Nets, provides undergraduates a learning environment that supports them in becoming successful researchers. Special networking and Brown Bag sessions, and an annual picnic with research scientists are organized so that REU Scholars are provided with opportunities to expand their professional community. Graduate school support is provided by offering free Graduate Record Examination preparation courses and workshops on the graduate school application process. Additionally, students are supported by college counselors. Many of the students are first generation college students who often face issues that can impede their academic progress. The last component, Vision and Impetus for Advancement, allows REU Scholars to see themselves as STEM scientists and workforce professionals. Exposure trips provide students with an opportunity to meet scientists working in industry. Additionally, the students also present their research and participate at local, regional, and national conferences. Furthermore, since many of the students were never given the chance to visit STEM-focused industries and conferences. The program, therefore, helps to broaden their STEM experience. Of the 38 REU Scholars, 16%(6) of them are in graduate school in the STEM disciplines, 21%(8) of them have graduated and are in the STEM workforce, and 63%(24) of them continue to pursue their STEM degrees. Three of the students have won first place recognition for their research, and two of the students will be co-authors for two peer-review publications and one book chapter. Additionally, survey results show that 84% of the student participants now indicate interest in pursuing Master's degrees in STEM and 75% indicate interest in pursuing doctoral degrees in STEM. This program is supported by NSF REU grant #1062934.
Applications of satellite and marine geodesy to operations in the ocean environment
NASA Technical Reports Server (NTRS)
Fubara, D. M.; Mourad, A. G.
1975-01-01
The requirements for marine and satellite geodesy technology are assessed with emphasis on the development of marine geodesy. Various programs and missions for identification of the satellite geodesy technology applicable to marine geodesy are analyzed along with national and international marine programs to identify the roles of satellite/marine geodesy techniques for meeting the objectives of the programs and other objectives of national interest effectively. The case for marine geodesy is developed based on the extraction of requirements documented by authoritative technical industrial people, professional geodesists, government agency personnel, and applicable technology reports.
A Covert Disruptive Technology: Test and Development of the Corona Satellite
NASA Technical Reports Server (NTRS)
Peebles, Curtis
2008-01-01
The launching by the Soviet Union of the Sputnik satellite in 19457 was an impetuous to the United States. The Intercontinental ballistic Missile (ICBM) that launched the Earth's first satellite, could have been armed with a nuclear warhead, that could destroy an American city. The primary intelligence requirement that the US had was to determine the actual size of the Soviet missile program. To this end, a covert, high-risk photoreconnaissance satellite was developed. The code name of this program was "Corona." This article describes the trials and eventual successes of the Corona program.
Choosing ESRO's first scientific satellites
NASA Astrophysics Data System (ADS)
Russo, Arturo
1992-11-01
The choice of the scientific payloads of the European Space Research Organization's (ESRO's) first generation of satellites is analyzed. Concentration is on those aspects of the decision process that involved more directly the scientific community and that emerged as major issues in the discussion of the Launching Program Advisory Committee (LPAC). The main theme was the growing competition between the various fields of space science within the progressive retrenching of the Organization's financial resources available for the satellite program. A general overview of the status of the program by the end of 1966 is presented. The choice of the first small satellites' payloads (ESRO 1 and 2, and HEOS-A) and the difficult definition of the TD satellite program are discussed. This part covers a time span going from early 1963 to the spring of 1966. In the second part, the narrative starts from the spring of 1967, when the decision to recommend a second HEOS-type satellite was taken, and then analyzes the complex situation determined by the crisis of the TD program in 1968, and the debates which eventually led to the abandonment of TD-2 and the start of the far less ambitious ESRO 5 project.
GSFC Technical Outreach: The Capitol College Model
NASA Technical Reports Server (NTRS)
Marius, Julio L.; Wagner, David
2008-01-01
In February 2005, as part of the National Aeronautic and Space Administration (NASA) Technical Outreach Program, Goddard Space Flight Center (GSFC) awarded Capitol College of Laurel, Maryland an Educational Grant to establish a Space Operation academic curriculum to meet the future needs of mission operations engineers. This was in part due to the aerospace industry and GSFC concerns that a large number of professional engineers are projected to retire in the near term with evidence showing that current enrollment in engineering schools will not produce sufficient number of space operation trained engineers that will meet industry and government demands. Capitol College, under the agreement of the Educational Grant, established the Space Operations Institute (SOI) with a new curriculum in Space Operations that was approved and certified by the State of Maryland. The SO1 programs focuses on attracting, recruiting, and training a pipeline of highly qualified engineers with experience in mission operations, system engineering and development. The selected students are integrated as members of the engineering support team in any of the missions supported by the institute. The students are mentored by professional engineers from several aerospace companies that support GSFC. Initially, the institute was involved in providing console engineers and mission planning trainees for the Upper Atmosphere Research Satellite (UARS), the Earth Radiation Budget Satellite (ERBS) and the Total Ozone Mapping Spectrometer mission (TOMS). Subsequently, the students were also involved in the technology refresh of the TOMS ground system and other mission operations development. Further mission assignment by GSFC management included participation in the Tropical Rainfall Measuring Mission (TRMM) mission operations and ground system technology refresh. The SOI program has been very successful. Since October 2005, sixty-four students have been enrolled in the SOI program and twenty-five have already graduated from the program, nineteen of whom are employed by company's supporting GSFC. Due to the success of the program, the initial grant period was extended for another period of two years. This paper presents the process that established the SOI as a viable pipeline of mission operations engineers, the lessons learned in the process of dealing with grants, and experience gained in mentoring engineering students that are responsible for particular areas of expertise and functionality. This paper can also be considered a case study and model for integrating a student team with government and industry professionals in the real world of mission operations.
FADS: A demonstrator for MilComSat AOCS
NASA Astrophysics Data System (ADS)
Huddleston, Martin; Cope, Paul
1995-03-01
This project covers the attitude and orbit control systems (AOCS) research program being carried out as part of the MOD applied research program for AD CIS(OR)1. The project program is to evaluate the candidate sensor technologies and control algorithms, such as Kalman filters, which may be applied to future UK military ComSats. The specific needs of military satellites for robust and threat-resistant control are not offered by current civil technologies which normally use vulnerable earth sensors or RF pointing which is vulnerable to deception. The program is also to investigate ways of reducing control system complexity and improvements in attitude control precision by enabling structural modes to be controlled. The project examines the most promising attitude control system technologies required to support such future communications payloads. User requirements indicate a need for improved threat resistance and for narrower spot beams, and the program supports this perceived need by the use of improved sensors and control algorithms. Improved pointing on civil ComSats is normally by means of ground RF measurements to form a closed loop control system with the spacecraft. For threat reasons this method is unsuitable for military ComSats, and on-board sensors are therefore used. The use of Silicon array star or earth sensors are the most promising, and the sensor program is to concentrate on these. Limited development and available civil sensors will be considered. Experimental work is based on demonstrating and evaluating real hardware in-the-loop on an existing air bearing experimental rig. This offers the closest simulation of real flight performance that can be obtained. The program will develop the Filtered Attitude Determination System (FADS)rig to be fully representative of a MilSatCom satellite, threat-resistant AOCS solution, employing Silicon array star and earth sensors. Both the BAe Mosaic Earth Sensor (MES) nad Marconi Versatile Star Sensor (VSS) technologies show considerable potential as attitude sensors. The VSS and MES capabilities will be evalutated on the FADS rig.
NASA Astrophysics Data System (ADS)
Aleksandrov, A. Yu.; Aleksandrova, E. B.; Tikhonov, A. A.
2018-07-01
The paper deals with a dynamically symmetric satellite in a circular near-Earth orbit. The satellite is equipped with an electrodynamic attitude control system based on Lorentz and magnetic torque properties. The programmed satellite attitude motion is such that the satellite slowly rotates around the axis of its dynamical symmetry. Unlike previous publications, we consider more complex and practically more important case where the axis is fixed in the orbital frame in an inclined position with respect to the local vertical axis. The satellite stabilization in the programmed attitude motion is studied. The gravitational disturbing torque acting on the satellite attitude dynamics is taken into account since it is the largest disturbing torque. The novelty of the proposed approach is based on the usage of electrodynamic attitude control system. With the aid of original construction of a Lyapunov function, new conditions under which electrodynamic control solves the problem are obtained. Sufficient conditions for asymptotic stability of the programmed motion are found in terms of inequalities for the values of control parameters. The results of a numerical simulation are presented to demonstrate the effectiveness of the proposed approach.
Satellite interference analysis and simulation using personal computers
NASA Astrophysics Data System (ADS)
Kantak, Anil
1988-03-01
This report presents the complete analysis and formulas necessary to quantify the interference experienced by a generic satellite communications receiving station due to an interfering satellite. Both satellites, the desired as well as the interfering satellite, are considered to be in elliptical orbits. Formulas are developed for the satellite look angles and the satellite transmit angles generally related to the land mask of the receiving station site for both satellites. Formulas for considering Doppler effect due to the satellite motion as well as the Earth's rotation are developed. The effect of the interfering-satellite signal modulation and the Doppler effect on the power received are considered. The statistical formulation of the interference effect is presented in the form of a histogram of the interference to the desired signal power ratio. Finally, a computer program suitable for microcomputers such as IBM AT is provided with the flowchart, a sample run, results of the run, and the program code.
Satellite Interference Analysis and Simulation Using Personal Computers
NASA Technical Reports Server (NTRS)
Kantak, Anil
1988-01-01
This report presents the complete analysis and formulas necessary to quantify the interference experienced by a generic satellite communications receiving station due to an interfering satellite. Both satellites, the desired as well as the interfering satellite, are considered to be in elliptical orbits. Formulas are developed for the satellite look angles and the satellite transmit angles generally related to the land mask of the receiving station site for both satellites. Formulas for considering Doppler effect due to the satellite motion as well as the Earth's rotation are developed. The effect of the interfering-satellite signal modulation and the Doppler effect on the power received are considered. The statistical formulation of the interference effect is presented in the form of a histogram of the interference to the desired signal power ratio. Finally, a computer program suitable for microcomputers such as IBM AT is provided with the flowchart, a sample run, results of the run, and the program code.
NASA Astrophysics Data System (ADS)
Moses, J. F.; Jain, P.; Johnson, J.; Doiron, J. A.
2017-12-01
New Earth observation instruments are planned to enable advancements in Earth science research over the next decade. Diversity of Earth observing instruments and their observing platforms will continue to increase as new instrument technologies emerge and are deployed as part of National programs such as Joint Polar Satellite System (JPSS), Geostationary Operational Environmental Satellite system (GOES), Landsat as well as the potential for many CubeSat and aircraft missions. The practical use and value of these observational data often extends well beyond their original purpose. The practicing community needs intuitive and standardized tools to enable quick unfettered development of tailored products for specific applications and decision support systems. However, the associated data processing system can take years to develop and requires inherent knowledge and the ability to integrate increasingly diverse data types from multiple sources. This paper describes the adaptation of a large-scale data processing system built for supporting JPSS algorithm calibration and validation (Cal/Val) node to a simplified science data system for rapid application. The new configurable data system reuses scalable JAVA technologies built for the JPSS Government Resource for Algorithm Verification, Independent Test, and Evaluation (GRAVITE) system to run within a laptop environment and support product generation and data processing of AURA Ozone Monitoring Instrument (OMI) science products. Of particular interest are the root requirements necessary for integrating experimental algorithms and Hierarchical Data Format (HDF) data access libraries into a science data production system. This study demonstrates the ability to reuse existing Ground System technologies to support future missions with minimal changes.
The Use of NASA near Real-time and Archived Satellite Data to Support Disaster Assessment
NASA Technical Reports Server (NTRS)
McGrath, Kevin M.; Molthan, Andrew; Burks, Jason
2014-01-01
With support from a NASA's Applied Sciences Program, The Short-term Prediction Research and Transition (SPoRT) Center has explored a variety of techniques for utilizing archived and near real-time NASA satellite data to support disaster assessment activities. MODIS data from the NASA Land Atmosphere Near Real-time Capability for EOS currently provides true color and other imagery for assessment and potential applications including, but not limited to, flooding, fires, and tornadoes. In May 2013, the SPoRT Center developed unique power outage composites using the VIIRS Day/Night Band to represent the first clear sky view of damage inflicted upon Moore and Oklahoma City, Oklahoma following the devastating EF-5 tornado that occurred on May 20. Pre-event imagery provided by the NASA funded Web-Enabled Landsat Data project offer a basis of comparison for monitoring post-disaster recovery efforts. Techniques have also been developed to generate products from higher resolution imagery from the recently available International Space Station SERVIR Environmental Research and Visualization System instrument. Of paramount importance is to deliver these products to end users expeditiously and in formats compatible with Decision Support Systems (DSS). Delivery techniques include a Tile Map Service (TMS) and a Web Mapping Service (WMS). These mechanisms allow easy integration of satellite products into DSS's, including the National Weather Service's Damage Assessment Toolkit for use by personnel conducting damage surveys. This poster will present an overview of the developed techniques and products and compare the strengths and weaknesses of the TMS and WMS.
Mission Applications Support at NASA: The Proposal Surface Water and Ocean Topography Mission
NASA Astrophysics Data System (ADS)
Srinivasan, Margaret; Peterson, Craig; Callahan, Phil
2013-09-01
The NASA Applied Sciences Program is actively supporting an agency-wide effort to formalize a mission-level data applications approach. The program goal is to engage early-phase NASA Earth satellite mission project teams with applied science representation in the flight mission planning process. The end objective is to "to engage applications-oriented users and organizations early in the satellite mission lifecycle to enable them to envision possible applications and integrate end-user needs into satellite mission planning as a way to increase the benefits to the nation."Two mission applications representatives have been selected for each early phase Tier 2 mission, including the Surface Water and Ocean Topography (SWOT) mission concept. These representatives are tasked with identifying and organizing the applications communities and developing and promoting a process for the mission to optimize the reach of existing applications efforts in order to enhance the applications value of the missions. An early project-level awareness of mission planning decisions that may increase or decrease the utility of data products to diverse user and potential user communities (communities of practice and communities of potential, respectively) has high value and potential return to the mission and to the users.Successful strategies to enhance science and practical applications of projected SWOT data streams will require engaging with and facilitating between representatives in the science, societal applications, and mission planning communities.Some of the elements of this program include:• Identify early adopters of data products• Coordinate applications team, including;Project Scientist, Payload Scientist, ProjectManager, data processing lead• Describe mission and products sufficiently inearly stage of development to effectively incorporate all potential usersProducts and activities resulting from this effort will include (but are not limited to); workshops, workshop summaries, web pages, email lists of interested users/scientists, an Applications Plan, printed materials (posters, brochures) and participation in key meetings.
Meteorological satellite product support and research for project GALE
NASA Technical Reports Server (NTRS)
Velden, Christopher S.; Smith, William L.; Achtor, Thomas H.; Menzel, W. Paul
1988-01-01
This participation in the Genesis of Atlantic Lows Experiment (GALE) focused on three main areas: (1) real-time support of the field phase, centered on a McIDAS workstation; (2) satellite data collection, archive, product generation, and dissemination; and (3) research into satellite rainfall estimation and data assimilation. Accomplishments include production of a videotape of animated GOES satellite imagery, production of an atlas of GOES satellite imagery, production of a set of 12-hour interval analyses; research into 4-D data assimilation, and production of a set of satellite-estimated rainfall maps.
Intelligence, Surveillance, and Reconnaissance (ISR) Acquisition: Issues for Congress
2013-04-16
scientists and engineers that launched the satellite program.7 5 Ibid., p. 21. 6 Ibid., p. 22. It is...major role in supporting combat operations in Iraq and Afghanistan, although the E-8s are scheduled to have new engines to extend their service life...that the Army is even considering the development of intelligence- gathering airships .43 In comparison to the complex acquisition history of UAS, the
ATTDES: An Expert System for Satellite Attitude Determination and Control. 2
NASA Technical Reports Server (NTRS)
Mackison, Donald L.; Gifford, Kevin
1996-01-01
The design, analysis, and flight operations of satellite attitude determintion and attitude control systems require extensive mathematical formulations, optimization studies, and computer simulation. This is best done by an analyst with extensive education and experience. The development of programs such as ATTDES permit the use of advanced techniques by those with less experience. Typical tasks include the mission analysis to select stabilization and damping schemes, attitude determination sensors and algorithms, and control system designs to meet program requirements. ATTDES is a system that includes all of these activities, including high fidelity orbit environment models that can be used for preliminary analysis, parameter selection, stabilization schemes, the development of estimators covariance analyses, and optimization, and can support ongoing orbit activities. The modification of existing simulations to model new configurations for these purposes can be an expensive, time consuming activity that becomes a pacing item in the development and operation of such new systems. The use of an integrated tool such as ATTDES significantly reduces the effort and time required for these tasks.
Code of Federal Regulations, 2010 CFR
2010-10-01
... in this subpart: (a) Multichannel video programming system. A distribution system that makes available for purchase, by customers or subscribers, multiple channels of video programming other than an...-to-home multichannel video programming via satellite, and satellite master antenna systems. (b...
NASA Astrophysics Data System (ADS)
Melton, F. S.; Johnson, L.; Post, K. M.; Guzman, A.; Zaragoza, I.; Spellenberg, R.; Rosevelt, C.; Michaelis, A.; Nemani, R. R.; Cahn, M.; Frame, K.; Temesgen, B.; Eching, S.
2016-12-01
Satellite mapping of evapotranspiration (ET) from irrigated agricultural lands can provide agricultural producers and water managers with information that can be used to optimize agricultural water use, especially in regions with limited water supplies. The timely delivery of information on agricultural crop water requirements has the potential to make irrigation scheduling more practical, convenient, and accurate. We present a system for irrigation scheduling and management support in California and describe lessons learned from the development and implementation of the system. The Satellite Irrigation Management Support (SIMS) framework integrates satellite data with information from agricultural weather networks to map crop canopy development, basal crop coefficients (Kcb), and basal crop evapotranspiration (ETcb) at the scale of individual fields. Information is distributed to agricultural producers and water managers via a web-based irrigation management decision support system and web data services. SIMS also provides an application programming interface (API) that facilitates integration with other irrigation decision support tools, estimation of total crop evapotranspiration (ETc) and calculation of on-farm water use efficiency metrics. Accuracy assessments conducted in commercial fields for more than a dozen crop types to date have shown that SIMS seasonal ETcb estimates are within 10% mean absolute error (MAE) for well-watered crops and within 15% across all crop types studied, and closely track daily ETc and running totals of ETc measured in each field. Use of a soil water balance model to correct for soil evaporation and crop water stress reduces this error to less than 8% MAE across all crop types studied to date relative to field measurements of ETc. Results from irrigation trials conducted by the project for four vegetable crops have also demonstrated the potential for use of ET-based irrigation management strategies to reduce total applied water by 20-40% relative to grower standard practices while maintaining crop yields and quality.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kahn, Ralph A.; Berkoff, Tim A.; Brock, Charles
A modest operational program of systematic aircraft measurements can resolve key satellite aerosol data record limitations. Satellite observations provide frequent global aerosol amount maps but offer only loose aerosol property constraints needed for climate and air quality applications. In this paper, we define and illustrate the feasibility of flying an aircraft payload to measure key aerosol optical, microphysical, and chemical properties in situ. The flight program could characterize major aerosol airmass types statistically, at a level of detail unobtainable from space. It would 1) enhance satellite aerosol retrieval products with better climatology assumptions and 2) improve translation between satellite-retrieved opticalmore » properties and species-specific aerosol mass and size simulated in climate models to assess aerosol forcing, its anthropogenic components, and other environmental impacts. As such, Systematic Aircraft Measurements to Characterize Aerosol Air Masses (SAM-CAAM) could add value to data records representing several decades of aerosol observations from space; improve aerosol constraints on climate modeling; help interrelate remote sensing, in situ, and modeling aerosol-type definitions; and contribute to future satellite aerosol missions. Fifteen required variables are identified and four payload options of increasing ambition are defined to constrain these quantities. “Option C” could meet all the SAM-CAAM objectives with about 20 instruments, most of which have flown before, but never routinely several times per week, and never as a group. Aircraft integration and approaches to data handling, payload support, and logistical considerations for a long-term, operational mission are discussed. Finally, SAM-CAAM is feasible because, for most aerosol sources and specified seasons, particle properties tend to be repeatable, even if aerosol loading varies.« less
Kahn, Ralph A.; Berkoff, Tim A.; Brock, Charles; ...
2017-10-30
A modest operational program of systematic aircraft measurements can resolve key satellite aerosol data record limitations. Satellite observations provide frequent global aerosol amount maps but offer only loose aerosol property constraints needed for climate and air quality applications. In this paper, we define and illustrate the feasibility of flying an aircraft payload to measure key aerosol optical, microphysical, and chemical properties in situ. The flight program could characterize major aerosol airmass types statistically, at a level of detail unobtainable from space. It would 1) enhance satellite aerosol retrieval products with better climatology assumptions and 2) improve translation between satellite-retrieved opticalmore » properties and species-specific aerosol mass and size simulated in climate models to assess aerosol forcing, its anthropogenic components, and other environmental impacts. As such, Systematic Aircraft Measurements to Characterize Aerosol Air Masses (SAM-CAAM) could add value to data records representing several decades of aerosol observations from space; improve aerosol constraints on climate modeling; help interrelate remote sensing, in situ, and modeling aerosol-type definitions; and contribute to future satellite aerosol missions. Fifteen required variables are identified and four payload options of increasing ambition are defined to constrain these quantities. “Option C” could meet all the SAM-CAAM objectives with about 20 instruments, most of which have flown before, but never routinely several times per week, and never as a group. Aircraft integration and approaches to data handling, payload support, and logistical considerations for a long-term, operational mission are discussed. Finally, SAM-CAAM is feasible because, for most aerosol sources and specified seasons, particle properties tend to be repeatable, even if aerosol loading varies.« less
Interplanetary Small Satellite Conference 2017 Program
NASA Technical Reports Server (NTRS)
Dalle, Derek Jordan
2017-01-01
The Interplanetary Small Satellite Conference will be held at San Jose State University on May 1 and 2, 2017. The program attached here contains logistical information for attendees, the agenda, and abstracts of the conference presentations. All abstracts were reviewed by their authors' home institute and approved for public release prior to inclusion in the program booklet. The ISSC explores mission concepts, emerging technologies, and fosters outside the box thinking critical to future interplanetary small satellite missions.
Managing a satellite communications program in a hospital library.
Sutton, L S; Phillips, F M; Winfield, S R
1987-01-01
A satellite communications service used for the continuing education of hospital staff can be successfully managed by a hospital library. Organization of the service includes managing equipment and personnel, finding programming, marketing the service, arranging for teleconferences, and establishing videotape procedures. A satellite communications program gives the library the opportunity to establish new partnerships with other departments in the hospital as well as with other segments of the community. PMID:3594024
The NASA welding assessment program
NASA Technical Reports Server (NTRS)
Scott-Monck, J.; Bozek, J.
1984-01-01
The potential cost and performance advantages of welding was understood but ignored by solar panel manufacturers in the U.S. Although NASA, DOD and COMSAT have supported welding development efforts, soldering remains the only U.S. space qualified method for interconnecting solar cells. The reason is that no U.S. satellite prime contractor found it necessary, due to mission requirements, to abandon the space proven soldering process. It appears that the proposed NASA space station program will provide an array requirement, a 10 year operation in a low Earth orbital environment, that mandates welding. The status of welding technology in the U.S. is assessed.
A bibliography of planetary geology principal investigators and their associates, 1979 - 1980
NASA Technical Reports Server (NTRS)
Lettvin, E. (Compiler); Boyce, J. M. (Compiler)
1980-01-01
This bibliography cites 698 reports and articles published from May 1979 through May 1980 by principal investigators and associates who received support from NASA's Office of Space Science, as part of the Planetary Geology program. Entries are arranged in the following categories: (1) general interest; (2) solar system, asteroids, comets, and satellites; (3) structure, tectonics, and stratigraphy; (4) regolith and volatiles; (5) volcanism; (6) impact craters; (7) Eolian glacial An author index is provided. The bibliography serves as a companion document to NASA TM 81776, "Reports of Planetary Geology Programs, 1979-1980".
Maximizing reuse: Applying common sense and discipline
NASA Technical Reports Server (NTRS)
Waligora, Sharon; Langston, James
1992-01-01
Computer Sciences Corporation (CSC)/System Sciences Division (SSD) has maintained a long-term relationship with NASA/Goddard, providing satellite mission ground-support software and services for 23 years. As a partner in the Software Engineering Laboratory (SEL) since 1976, CSC has worked closely with NASA/Goddard to improve the software engineering process. This paper examines the evolution of reuse programs in this uniquely stable environment and formulates certain recommendations for developing reuse programs as a business strategy and as an integral part of production. It focuses on the management strategy and philosophy that have helped make reuse successful in this environment.
Geospatial Education: Working with the NASA Airborne Science Program
NASA Astrophysics Data System (ADS)
Lockwood, C. M.; Handley, L.; Handley, N.
2010-12-01
WETMAAP (Wetland Education Through Maps and Aerial Photography) , a program of CNL World, supports the NASA Strategic Goals and Objectives for Education by providing classroom teachers and formal and informal educators with professional development. WETMAAP promotes science by inquiry through the use of a building-block process, comparative analysis, and analytical observations. Through the WETMAAP workshops and website, educators receive the concepts necessary to provide students with a basic understanding of maps, aerial photography, and satellite and airborne imagery that focus on the study of wetlands and wetland change. The program targets educators, Grades 5 - 12, in earth science, environmental science, biology, geography, and mathematics, and emphasizes a comprehensive curriculum approach.
NASA Technical Reports Server (NTRS)
Davarian, Faramaz (Editor)
1992-01-01
The NASA Propagation Experimenters Meeting (NAPEX), supported by the NASA Propagation Program, is convened annually to discuss studies made on radio wave propagation by investigators from domestic and international organizations. NAPEX 16 was held on May 29, 1992 in Houston, Texas. The meeting was organized into two technical sessions. The first session was dedicated to slant path propagation studies and measurements. The second session focused on Olympus propagation measurements and results. Following NAPEX 16, the Advanced Communications Technology Satellite (ACTS) Miniworkshop was held to review ACTS propagation activities with emphasis on ACTS hardware development and experiment planning. Eight technical papers were presented by contributors from government agencies, private industry, and university research establishments.
TDRSS multimode transponder program. Phase 2: Equipment development
NASA Technical Reports Server (NTRS)
Cnossen, R. S.
1974-01-01
This report contains a complete description of the TDRS Multimode Transponder and its associated ground support equipment. The transponder will demonstrate candidate modulation techniques to provide the required information for the design of an eventual VHF/UHF transponder suitable for installation in a user satellite, capable of operating as part of a Tracking and Data Relay Satellite (TDRS) systems. Use of geosynchronous TDRS which can serve both low data rate users at VHF and high data rate users at other frequencies has been considered. The effects of radio frequency interference from the earth and of multipath propagation due to reflections from the earth are expected to pose problems for the TDRS system at VHF. Investigations have suggested several modulation techniques that offer promise to overcome these problems.
NASA Technical Reports Server (NTRS)
Hielkema, J. U.; Howard, J. A.; Tucker, C. J.; Van Ingen Schenau, H. A.
1987-01-01
The African real time environmental monitoring using imaging satellites (Artemis) system, which should monitor precipitation and vegetation conditions on a continental scale, is presented. The hardware and software characteristics of the system are illustrated and the Artemis databases are outlined. Plans for the system include the use of hourly digital Meteosat data and daily NOAA/AVHRR data to study environmental conditions. Planned mapping activities include monthly rainfall anomaly maps, normalized difference vegetation index maps for ten day and monthly periods with a spatial resolution of 7.6 km, ten day crop/rangeland moisture availability maps, and desert locust potential breeding activity factor maps for a plague prevention program.
Channel coding in the space station data system network
NASA Technical Reports Server (NTRS)
Healy, T.
1982-01-01
A detailed discussion of the use of channel coding for error correction, privacy/secrecy, channel separation, and synchronization is presented. Channel coding, in one form or another, is an established and common element in data systems. No analysis and design of a major new system would fail to consider ways in which channel coding could make the system more effective. The presence of channel coding on TDRS, Shuttle, the Advanced Communication Technology Satellite Program system, the JSC-proposed Space Operations Center, and the proposed 30/20 GHz Satellite Communication System strongly support the requirement for the utilization of coding for the communications channel. The designers of the space station data system have to consider the use of channel coding.
NASA Technical Reports Server (NTRS)
Davarian, Faramaz (Editor)
1994-01-01
The NASA Propagation Experimenters Meeting (NAPEX), supported by the NASA Propagation Program, is convened annually to discuss studies made on radio wave propagation by investigators from domestic and international organizations. Participants included representatives from Canada, the Netherlands, England, and the United States, including researchers from universities, government agencies, and private industry. The meeting was organized into two technical sessions. The first session was dedicated to slant path propagation studies and experiments. The second session focused on propagation studies for mobile, personal, and sound broadcast systems. In total, 14 technical papers and some informal contributions were presented. Preceding NAPEX_17, the Advanced Communications Technology Satellite (ACTS) Propagation Studies Miniworkshop was held to review ACTS propagation activities.
NASA Technical Reports Server (NTRS)
Schaire, Scott H.; Altunc, Serhat; Bussey, George; Shaw, Harry; Horne, Bill; Schier, Jim
2015-01-01
There has been a historical trend to increase capability and drive down the Size, Weight and Power (SWAP) of satellites and that trend continues today. Small satellites, including systems conforming to the CubeSat specification, because of their low launch and development costs, are enabling new concepts and capabilities for science investigations across multiple fields of interest to NASA. NASA scientists and engineers across many of NASAs Mission Directorates and Centers are developing exciting CubeSat concepts and welcome potential partnerships for CubeSat endeavors. From a communications and tracking point of view, small satellites including CubeSats are a challenge to coordinate because of existing small spacecraft constraints, such as limited SWAP and attitude control, low power, and the potential for high numbers of operational spacecraft. The NASA Space Communications and Navigation (SCaN) Programs Near Earth Network (NEN), Deep Space Network (DSN) and the Space Network (SN) are customer driven organizations that provide comprehensive communications services for space assets including data transport between a missions orbiting satellite and its Mission Operations Center (MOC). The NASA NEN consists of multiple ground antennas. The SN consists of a constellation of geosynchronous (Earth orbiting) relay satellites, named the Tracking and Data Relay Satellite System (TDRSS). The DSN currently makes available 13 antennas at its three tracking stations located around the world for interplanetary communication. The presentation will analyze how well these space communication networks are positioned to support the emerging small satellite and CubeSat market. Recognizing the potential support, the presentation will review the basic capabilities of the NEN, DSN and SN in the context of small satellites and will present information about NEN, DSN and SN-compatible flight radios and antenna development activities at the Goddard Space Flight Center (GSFC) and across industry. The presentation will review concepts on how the SN multiple access capability could help locate CubeSats and provide a low-latency early warning system. The presentation will also present how the DSN is evolving to maximize use of its assets for interplanetary CubeSats. The critical spectrum-related topics of available and appropriate frequency bands, licensing, and coordination will be reviewed. Other key considerations, such as standardization of radio frequency interfaces and flight and ground communications hardware systems, will be addressed as such standardization may reduce the amount of time and cost required to obtain frequency authorization and perform compatibility and end-to-end testing. Examples of standardization that exist today are the NASA NEN, DSN and SN systems which have published users guides and defined frequency bands for high data rate communication, as well as conformance to CCSDS standards. The workshop session will also seek input from the workshop participants to better understand the needs of small satellite systems and to identify key development activities and operational approaches necessary to enhance communication and navigation support using NASA's NEN, DSN and SN.
National Polar-orbiting Operational Environmental Satellite System (NPOESS) Design and Architecture
NASA Astrophysics Data System (ADS)
Hinnant, F.
2008-12-01
The National Oceanic and Atmospheric Administration (NOAA), Department of Defense (DoD), and National Aeronautics and Space Administration (NASA) are jointly acquiring the next-generation weather and environmental satellite system - the National Polar-orbiting Operational Environmental Satellite System (NPOESS). NPOESS will replace the current Polar-orbiting Operational Environmental Satellites (POES) managed by NOAA and the Defense Meteorological Satellite Program (DMSP) managed by the DoD and will provide continuity for the NASA Earth Observing System (EOS) with the launch of the NPOESS Preparatory Project (NPP). This poster will provide an overview of the NPOESS architecture, which includes four segments. The space segment includes satellites in two orbits that carry a suite of sensors to collect meteorological, oceanographic, climatological, and solar-geophysical observations of the Earth, atmosphere, and near-Earth space environment. The NPOESS design allows centralized mission management and delivers high quality environmental products to military, civil and scientific users through a Command, Control, and Communication Segment (C3S). The data processing for NPOESS is accomplished through an Interface Data Processing Segment (IDPS)/Field Terminal Segment (FTS) that processes NPOESS satellite data to provide environmental data products to NOAA and DoD processing centers operated by the United States government as well as to remote terminal users. The Launch Support Segment completes the four segments that make up NPOESS that will enhance the connectivity between research and operations and provide critical operational and scientific environmental measurements to military, civil, and scientific users until 2026.
Active Fire Mapping Program Current Large Incidents (Home) New Large Incidents Fire Detection Maps MODIS Satellite Imagery VIIRS Satellite Imagery Fire Detection GIS Data Fire Data in Google Earth ...
Satellite switched FDMA advanced communication technology satellite program
NASA Technical Reports Server (NTRS)
Atwood, S.; Higton, G. H.; Wood, K.; Kline, A.; Furiga, A.; Rausch, M.; Jan, Y.
1982-01-01
The satellite switched frequency division multiple access system provided a detailed system architecture that supports a point to point communication system for long haul voice, video and data traffic between small Earth terminals at Ka band frequencies at 30/20 GHz. A detailed system design is presented for the space segment, small terminal/trunking segment at network control segment for domestic traffic model A or B, each totaling 3.8 Gb/s of small terminal traffic and 6.2 Gb/s trunk traffic. The small terminal traffic (3.8 Gb/s) is emphasized, for the satellite router portion of the system design, which is a composite of thousands of Earth stations with digital traffic ranging from a single 32 Kb/s CVSD voice channel to thousands of channels containing voice, video and data with a data rate as high as 33 Mb/s. The system design concept presented, effectively optimizes a unique frequency and channelization plan for both traffic models A and B with minimum reorganization of the satellite payload transponder subsystem hardware design. The unique zoning concept allows multiple beam antennas while maximizing multiple carrier frequency reuse. Detailed hardware design estimates for an FDMA router (part of the satellite transponder subsystem) indicate a weight and dc power budget of 353 lbs, 195 watts for traffic model A and 498 lbs, 244 watts for traffic model B.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holt, Ashley C.; Stumpf, Richard P.; Tomlinson, Michelle C.
2003-08-01
Harmful algal blooms (HABs) attributed to Pseudo-nitzschia species, a diatom that produces Domoic acid, are a common occurrence and serious threat along the coast of the US Northwest. Monitoring these events or providing advanced warning of their occurrence at the coast would provide an important aid to fisheries managers. Remote sensing, which is being used in the Gulf of Mexico for HAB detection and forecasting (of a different algae), could provide a tool for monitoring and warnings. Chlorophyll and SST imagery are being used to support a research and monitoring program for the region, and HAB monitoring techniques used inmore » the Gulf of Mexico are being examined for their potential utility along the Washington coast. The focus of this study is to determine the efficacy of using satellite ocean color imagery for HAB monitoring off of Washingtons Olympic Peninsula region, and to provide support in the form of ocean color imagery products for management and mitigation efforts.« less
Advancing satellite operations with intelligent graphical monitoring systems
NASA Technical Reports Server (NTRS)
Hughes, Peter M.; Shirah, Gregory W.; Luczak, Edward C.
1993-01-01
For nearly twenty-five years, spacecraft missions have been operated in essentially the same manner: human operators monitor displays filled with alphanumeric text watching for limit violations or other indicators that signal a problem. The task is performed predominately by humans. Only in recent years have graphical user interfaces and expert systems been accepted within the control center environment to help reduce operator workloads. Unfortunately, the development of these systems is often time consuming and costly. At the NASA Goddard Space Flight Center (GSFC), a new domain specific expert system development tool called the Generic Spacecraft Analyst Assistant (GenSAA) has been developed. Through the use of a highly graphical user interface and point-and-click operation, GenSAA facilitates the rapid, 'programming-free' construction of intelligent graphical monitoring systems to serve as real-time, fault-isolation assistants for spacecraft analysts. Although specifically developed to support real-time satellite monitoring, GenSAA can support the development of intelligent graphical monitoring systems in a variety of space and commercial applications.
47 CFR 76.1001 - Unfair practices generally.
Code of Federal Regulations, 2010 CFR
2010-10-01
... MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Competitive Access to Cable Programming § 76.1001 Unfair practices generally. (a) Unfair practices generally. No cable operator, satellite cable programming vendor in which a cable operator has an attributable interest, or satellite broadcast programming vendor...
47 CFR 76.1001 - Unfair practices generally.
Code of Federal Regulations, 2011 CFR
2011-10-01
... MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Competitive Access to Cable Programming § 76.1001 Unfair practices generally. (a) Unfair practices generally. No cable operator, satellite cable programming vendor in which a cable operator has an attributable interest, or satellite broadcast programming vendor...
Implementation of a low-cost, commercial orbit determination system
NASA Astrophysics Data System (ADS)
Corrigan, Jim
1994-11-01
Traditional satellite and launch control systems have consisted of custom solutions requiring significant development and maintenance costs. These systems have typically been designed to support specific program requirements and are expensive to modify and augment after delivery. The expanding role of space in today's marketplace combined with the increased sophistication and capabilities of modern satellites has created a need for more efficient, lower cost solutions to complete command and control systems. Recent technical advances have resulted in commercial-off-the-shelf products which greatly reduce the complete life-cycle costs associated with satellite launch and control system procurements. System integrators and spacecraft operators have, however, been slow to integrate these commercial based solutions into a comprehensive command and control system. This is due, in part, to a resistance to change and the fact that many available products are unable to effectively communicate with other commercial products. The United States Air Force, responsible for the health and safety of over 84 satellites via its Air Force Satellite Control Network (AFSCN), has embarked on an initiative to prove that commercial products can be used effectively to form a comprehensive command and control system. The initial version of this system is being installed at the Air Force's Center for Research Support (CERES) located at the National Test Facility in Colorado Springs, Colorado. The first stage of this initiative involved the identification of commercial products capable of satisfying each functional element of a command and control system. A significant requirement in this product selection criteria was flexibility and ability to integrate with other available commercial products. This paper discusses the functions and capabilities of the product selected to provide orbit determination functions for this comprehensive command and control system.
Implementation of a low-cost, commercial orbit determination system
NASA Technical Reports Server (NTRS)
Corrigan, Jim
1994-01-01
Traditional satellite and launch control systems have consisted of custom solutions requiring significant development and maintenance costs. These systems have typically been designed to support specific program requirements and are expensive to modify and augment after delivery. The expanding role of space in today's marketplace combined with the increased sophistication and capabilities of modern satellites has created a need for more efficient, lower cost solutions to complete command and control systems. Recent technical advances have resulted in commercial-off-the-shelf products which greatly reduce the complete life-cycle costs associated with satellite launch and control system procurements. System integrators and spacecraft operators have, however, been slow to integrate these commercial based solutions into a comprehensive command and control system. This is due, in part, to a resistance to change and the fact that many available products are unable to effectively communicate with other commercial products. The United States Air Force, responsible for the health and safety of over 84 satellites via its Air Force Satellite Control Network (AFSCN), has embarked on an initiative to prove that commercial products can be used effectively to form a comprehensive command and control system. The initial version of this system is being installed at the Air Force's Center for Research Support (CERES) located at the National Test Facility in Colorado Springs, Colorado. The first stage of this initiative involved the identification of commercial products capable of satisfying each functional element of a command and control system. A significant requirement in this product selection criteria was flexibility and ability to integrate with other available commercial products. This paper discusses the functions and capabilities of the product selected to provide orbit determination functions for this comprehensive command and control system.
Incorporation of quality updates for JPSS CGS Products
NASA Astrophysics Data System (ADS)
Cochran, S.; Grant, K. D.; Ibrahim, W.; Brueske, K. F.; Smit, P.
2016-12-01
NOAA's next-generation environmental satellite, the Joint Polar Satellite System (JPSS) replaces the current Polar-orbiting Operational Environmental Satellites (POES). JPSS satellites carry sensors which collect meteorological, oceanographic, climatological, and solar-geophysical observations of the earth, atmosphere, and space. The first JPSS satellite was launched in 2011 and is currently NOAA's primary operational polar satellite. The JPSS ground system is the Common Ground System (CGS), and provides command, control, and communications (C3) and data processing (DP). A multi-mission system, CGS provides combinations of C3/DP for numerous NASA, NOAA, DoD, and international missions. In preparation for the next JPSS satellite, CGS improved its multi-mission capabilities to enhance mission operations for larger constellations of earth observing satellites with the added benefit of streamlining mission operations for other NOAA missions. This paper will discuss both the theoretical basis and the actual practices used to date to identify, test and incorporate algorithm updates into the CGS processing baseline. To provide a basis for this support, Raytheon developed a theoretical analysis framework, and the application of derived engineering processes, for the maintenance of consistency and integrity of remote sensing operational algorithm outputs. The framework is an abstraction of the operationalization of the science-grade algorithm (Sci2Ops) process used throughout the JPSS program. By combining software and systems engineering controls, manufacturing disciplines to detect and reduce defects, and a standard process to control analysis, an environment to maintain operational algorithm maturity is achieved. Results of the use of this approach to implement algorithm changes into operations will also be detailed.
Methods and Tools for Product Quality Maintenance in JPSS CGS
NASA Astrophysics Data System (ADS)
Cochran, S.; Smit, P.; Grant, K. D.; Jamilkowski, M. L.
2015-12-01
NOAA's next-generation environmental satellite, the Joint Polar Satellite System (JPSS) replaces the current Polar-orbiting Operational Environmental Satellites (POES). JPSS satellites carry sensors which collect meteorological, oceanographic, climatological, and solar-geophysical observations of the earth, atmosphere, and space. The first JPSS satellite was launched in 2011 and is currently NOAA's primary operational polar satellite. The JPSS ground system is the Common Ground System (CGS), and provides command, control, and communications (C3) and data processing (DP). A multi-mission system, CGS provides combinations of C3/DP for numerous NASA, NOAA, DoD, and international missions. In preparation for the next JPSS satellite, CGS improved its multi-mission capabilities to enhance mission operations for larger constellations of earth observing satellites with the added benefit of streamlining mission operations for other NOAA missions. This paper will discuss both the theoretical basis and the actual practices used to date to identify, test and incorporate algorithm updates into the CGS processing baseline. To provide a basis for this support, Raytheon developed a theoretical analysis framework, and the application of derived engineering processes, for the maintenance of consistency and integrity of remote sensing operational algorithm outputs. The framework is an abstraction of the operationalization of the science-grade algorithm (Sci2Ops) process used throughout the JPSS program. By combining software and systems engineering controls, manufacturing disciplines to detect and reduce defects, and a standard process to control analysis, an environment to maintain operational algorithm maturity is achieved. Results of the use of this approach to implement algorithm changes into operations will also be detailed.
Space Surveillance Tech Area Benefits From University Partnerships
NASA Astrophysics Data System (ADS)
Cole, K.; Voss, D.; Pietruszewski, A.; King, L.; Hohnstadt, P.; Feirstine, K.; Crassidis, J.; D'Angelo, M.; Linares, R.
2011-09-01
The University Nanosat Program (UNP) is a two year small satellite competition held among leading universities across the nation. In the past 12 years UNP has involved 27 universities and over 5000 students in a variety of engineering fields and other disciplines, in the process of designing and managing the development of a satellite. The UNP is a partnership between the Air Force Office of Scientific Research (AFOSR), the Air Force Research Laboratory (AFRL), and the American Institute of Aeronautics and Astronautics (AIAA). The program’s primary purpose is to help train engineering students in satellite design, fabrication, and testing by requiring them to build the satellite themselves through the mentorship of their Principle Investigator, industry mentors, and a series of six program reviews managed by the AFRL Program Office. Each university-built satellite attempts to further a specific technology or perform a scientific mission. Technologies advanced through the program include all aspects of small satellite designs including structures, propulsion, imaging, navigation and have helped further science payloads such as energetic particle detectors, plasma probes, photometers, and many others. This paper will discuss the educational impact on students involved in a hands-on, hardware focused program, with emphasis given to two UNP satellites relevant to Space Surveillance Technologies. The most recent winner of the UNP competition, Michigan Technological University’s Oculus-ASR, is a calibration instrument for AMOS’ telescopic non-resolved object characterization program. Another example is the University of Buffalo, which is calibrating with the AFRL MESSA program in the current competition cycle. The University of Buffalo’s nanosatellite is being designed to collect multi-band photometric data of glinting geostationary space objects. Both these satellites are excellent examples of the relevance and quality of innovation and technology that can be produced from an educational program. Finally, the paper will discuss how corporate and government sponsors are a critical part of launching a successful educational flight experiment, and are key benefactors from the data gleaned from a successful mission. These strong partnerships result in students working on relevant projects with mission driven requirements resulting in a better educational program and a greater return on the investment of external partners.
Advanced systems data for mapping Emperor Penguin habitats in Antarctica
Sanchez, Richard D.; Kooyman, Gerald L.
2004-01-01
Commercial orbital sensor systems combined with other resource data from the U.S. Geological Survey National Civil Applications Program (NCAP) may offer an effective way of mapping Emperor penguin habitats and their response to regional climate change in Antarctica. This project examined these resources to determine their applicability for mapping Emperor penguin habitats to support the National Science Foundation. This work is especially significant to investigate satellite-based imaging as an alternative to intrusive in-the-field enumeration of Emperor penguins and the potential of applying these procedures to support The National Map (TNP).
Satellite services system analysis study. Volume 2, part 2: Study results
NASA Technical Reports Server (NTRS)
1981-01-01
The development of an effective satellite services system was investigated. Satek Satellite user market, design reference missions, satellite service functions, service equipment, and cost estimates are discussed. Extensive program plans for a satellite service system implementation are included.
NASA Astrophysics Data System (ADS)
Jedlovec, G.; McGrath, K.; Meyer, P. J.; Berndt, E.
2017-12-01
A GOES-R series receiving station has been installed at the NASA Marshall Space Flight Center (MSFC) to support GOES-16 transition-to-operations projects of NASA's Earth science program and provide a community portal for GOES-16 data access. This receiving station is comprised of a 6.5-meter dish; motor-driven positioners; Quorum feed and demodulator; and three Linux workstations for ingest, processing, display, and subsequent product generation. The Community Satellite Processing Package (CSPP) is used to process GOES Rebroadcast data from the Advanced Baseline Imager (ABI), Geostationary Lightning Mapper (GLM), Solar Ultraviolet Imager (SUVI), Extreme Ultraviolet and X-ray Irradiance Sensors (EXIS), and Space Environment In-Situ Suite (SEISS) into Level 1b and Level 2 files. GeoTIFFs of the imagery from several of these instruments are ingested into an Esri Arc Enterprise Web Map Service (WMS) server with tiled imagery displayable through a web browser interface or by connecting directly to the WMS with a Geographic Information System software package. These data also drive a basic web interface where users can manually zoom to and animate regions of interest or acquire similar results using a published Application Program Interface. While not as interactive as a WMS-driven interface, this system is much more expeditious with generating and distributing requested imagery. The legacy web capability enacted for the predecessor GOES Imager currently supports approximately 500,000 unique visitors each month. Dissemination capabilities have been refined to support a significantly larger number of anticipated users. The receiving station also supports NASA's Short-term Prediction, Research, and Transition Center's (SPoRT) project activities to dissemination near real-time ABI RGB products to National Weather Service National Centers, including the Satellite Analysis Branch, National Hurricane Center, Ocean Prediction Center, and Weather Prediction Center, where they are displayed in N-AWIPS and AWIPS II. The multitude of additional real-time data users include the U.S. Coast Guard, Federal Aviation Administration, and The Weather Company. A second antenna is being installed for the ingest, processing, and dissemination of GOES-S data.
The Advanced Communications Technology Satellite - Performance, Reliability and Lessons Learned
NASA Technical Reports Server (NTRS)
Krawczyk, Richard J.; Ignaczak, Louis R.
2000-01-01
The Advanced Communications Satellite (ACTS) was conceived and developed in the mid- 1980s as an experimental satellite to demonstrate unproven Ka-band technology, and potential new commercial applications and services. Since launch into geostationary orbit in September 1993. ACTS has accumulated almost seven years of essentially trouble-free operation and met all program objectives. The unique technology, service experiments. and system level demonstrations accomplished by ACTS have been reported in many forums over the past several years. As ACTS completes its final experiments activity, this paper will relate the top-level program goals that have been achieved in the design, operation, and performance of the particular satellite subsystems. Pre-launch decisions to ensure satellite reliability and the subsequent operational experiences contribute to lessons learned that may be applicable to other comsat programs.
Developing NOAA's Climate Data Records From AVHRR and Other Data
NASA Astrophysics Data System (ADS)
Privette, J. L.; Bates, J. J.; Kearns, E. J.
2010-12-01
As part of the provisional NOAA Climate Service, NOAA is providing leadership in the development of authoritative, measurement-based information on climate change and variability. NOAA’s National Climatic Data Center (NCDC) recently initiated a satellite Climate Data Record Program (CDRP) to provide sustained and objective climate information derived from meteorological satellite data that NOAA has collected over the past 30+ years - particularly from its Polar Orbiting Environmental Satellites (POES) program. These are the longest sustained global measurement records in the world and represent billions of dollars of investment. NOAA is now applying advanced analysis methods -- which have improved remarkably over the last decade -- to the POES AVHRR and other instrument data. Data from other satellite programs, including NASA and international research programs and the Defense Meteorological Satellite Program (DMSP), are also being used. This process will unravel the underlying climate trend and variability information and return new value from the records. In parallel, NCDC will extend these records by applying the same methods to present-day and future satellite measurements, including the Joint Polar Satellite System (JPSS) and Jason-3. In this presentation, we will describe the AVHRR-related algorithm development activities that CDRP recently selected and funded through open competitions. We will particularly discuss some of the technical challenges related to adapting and using AVHRR algorithms with the VIIRS data that should become available with the launch of the NPOESS Preparatory Project (NPP) satellite in early 2012. We will also describe IT system development activities that will provide data processing and reprocessing, storage and management. We will also outline the maturing Program framework, including the strategies for coding and development standards, community reviews, independent program oversight, and research-to-operations algorithm migration and execution. Timeline of NOAA's polar orbiters that carried AVHRR. NOAA's approach to flying the same or similar instruments sequentially is well-suited to CDR development.
Space station commonality analysis
NASA Technical Reports Server (NTRS)
1988-01-01
This study was conducted on the basis of a modification to Contract NAS8-36413, Space Station Commonality Analysis, which was initiated in December, 1987 and completed in July, 1988. The objective was to investigate the commonality aspects of subsystems and mission support hardware while technology experiments are accommodated on board the Space Station in the mid-to-late 1990s. Two types of mission are considered: (1) Advanced solar arrays and their storage; and (2) Satellite servicing. The point of departure for definition of the technology development missions was a set of missions described in the Space Station Mission Requirements Data Base. (MRDB): TDMX 2151 Solar Array/Energy Storage Technology; TDMX 2561 Satellite Servicing and Refurbishment; TDMX 2562 Satellite Maintenance and Repair; TDMX 2563 Materials Resupply (to a free-flyer materials processing platform); TDMX 2564 Coatings Maintenance Technology; and TDMX 2565 Thermal Interface Technology. Issues to be addressed according to the Statement of Work included modularity of programs, data base analysis interactions, user interfaces, and commonality. The study was to consider State-of-the-art advances through the 1990s and to select an appropriate scale for the technology experiments, considering hardware commonality, user interfaces, and mission support requirements. The study was to develop evolutionary plans for the technology advancement missions.
Copernicus Earth observation programme
NASA Astrophysics Data System (ADS)
Žlebir, Silvo
European Earth observation program Copernicus is an EU-wide programme that integrates satellite data, in-situ data and modeling to provide user-focused information services to support policymakers, researchers, businesses and citizens. Land monitoring service and Emergency service are fully operational already, Atmosphere monitoring service and Marine environment monitoring service are preoperational and will become fully operational in the following year, while Climate change service and Security service are in an earlier development phase. New series of a number of dedicated satellite missions will be launched in the following years, operated by the European Space Agency and EUMETSAT, starting with Sentinel 1A satellite early this year. Ground based, air-borne and sea-borne in-situ data are provided by different international networks and organizations, EU member states networks etc. European Union is devoting a particular attention to secure a sustainable long-term operational provision of the services. Copernicus is also stated as a European Union’s most important contribution to Global Earth Observation System of Systems (GEOSS). The status and the recent development of the Copernicus programme will be presented, together with its future perspective. As Copernicus services have already demonstrated their usability and effectiveness, some interesting cases of their deployment will be presented. Copernicus free and open data policy, supported by a recently adopted EU legislative act, will also be presented.
The NASA Applied Sciences Program: Volcanic Ash Observations and Applications
NASA Technical Reports Server (NTRS)
Murray, John J.; Fairlie, Duncan; Green, David; Haynes, John; Krotkov, Nickolai; Meyer, Franz; Pavolonis, Mike; Trepte, Charles; Vernier, Jean-Paul
2016-01-01
Since 2000, the NASA Applied Sciences Program has been actively transitioning observations and research to operations. Particular success has been achieved in developing applications for NASA Earth Observing Satellite (EOS) sensors, integrated observing systems, and operational models for volcanic ash detection, characterization, and transport. These include imager applications for sensors such as the MODerate resolution Imaging SpectroRadiometer (MODIS) on NASA Terra and Aqua satellites, and the Visible Infrared Imaging Radiometer Suite (VIIRS) on the NASA/NOAA Suomi NPP satellite; sounder applications for sensors such as the Atmospheric Infrared Sounder (AIRS) on Aqua, and the Cross-track Infrared Sounder (CrIS) on Suomi NPP; UV applications for the Ozone Mapping Instrument (OMI) on the NASA Aura Satellite and the Ozone Mapping Profiler Suite (OMPS) on Suomi NPP including Direct readout capabilities from OMI and OMPS in Alaska (GINA) and Finland (FMI):; and lidar applications from the Caliop instrument coupled with the imaging IR sensor on the NASA/CNES CALIPSO satellite. Many of these applications are in the process of being transferred to the Washington and Alaska Volcanic Ash Advisory Centers (VAAC) where they support operational monitoring and advisory services. Some have also been accepted, transitioned and adapted for direct, onboard, automated product production in future U.S. operational satellite systems including GOES-R, and in automated volcanic cloud detection, characterization and alerting tools at the VAACs. While other observations and applications remain to be developed for the current constellation of NASA EOS sensors and integrated with observing and forecast systems, future requirements and capabilities for volcanic ash observations and applications are also being developed. Many of these are based on technologies currently being tested on NASA aircraft, Unmanned Aerial Systems (UAS) and balloons. All of these efforts and the potential advances that will be realized by integrating them are shared in this presentation.
Satellite and terrestrial narrow-band propagation measurements at 2.05 GHz
NASA Technical Reports Server (NTRS)
Vaisnys, Arv; Vogel, Wolf
1995-01-01
A series of satellite and terrestrial propagation measurements were conducted on 15 and 16 Dec. 1994 in the vicinity of the Jet Propulsion Laboratory (JPL), Pasadena, California, in support of the VOA/JPL DBS-Radio Program. The reason for including terrestrial measurements was the possible use of terrestrial boosters to improve reception in some satellite digital audio broadcasting system service areas. The signal sources used were the NASA TDRS satellite located at 171 degrees West and a terrestrial transmitter located on a high point on JPL property. Both signals were unmodulated carriers near 2.05 GHz, spaced a few kHz apart so that both could be received simultaneously by a single receiver. An unmodulated signal was used in order to maximize the dynamic range of the signal strength measurement. A range of greater than 35 dB was achieved with the satellite signal, and over 50 dB was achieved with the terrestrial signal measurements. Three test courses were used to conduct the measurements: (1) a 33 km round trip drive from JPL through Pasadena was used to remeasure the propagation of the satellite signal over the path previously used in DBS-Radio experiments in mid 1994. A shortened portion of this test course, approximately 20 km, was used to measure the satellite and terrestrial signals simultaneously; (2) a 9 km round trip drive through JPL property, going behind buildings and other obstacles, was used to measure the satellite and terrestrial signals simultaneously; and (3) a path through one of the buildings at JPL, hand carrying the receiver, was also used to measure the satellite and terrestrial signals simultaneously.
NASA Technical Reports Server (NTRS)
Liou, J.-C.; Fitz-Coy, N.; Werremeyer, M.; Huynh, T.; Voelker, M.; Opiela, J.
2012-01-01
DebriSat is a planned laboratory ]based satellite hypervelocity impact experiment. The goal of the project is to characterize the orbital debris that would be generated by a hypervelocity collision involving a modern satellite in low Earth orbit (LEO). The DebriSat project will update and expand upon the information obtained in the 1992 Satellite Orbital Debris Characterization Impact Test (SOCIT), which characterized the breakup of a 1960 's US Navy Transit satellite. There are three phases to this project: the design and fabrication of an engineering model representing a modern, 50-cm/50-kg class LEO satellite known as DebriSat; conduction of a laboratory-based hypervelocity impact to catastrophically break up the satellite; and characterization of the properties of breakup fragments down to 2 mm in size. The data obtained, including fragment size, area ]to ]mass ratio, density, shape, material composition, optical properties, and radar cross ]section distributions, will be used to supplement the DoD fs and NASA fs satellite breakup models to better describe the breakup outcome of a modern satellite. Updated breakup models will improve mission planning, environmental models, and event response. The DebriSat project is sponsored by the Air Force fs Space and Missile Systems Center and the NASA Orbital Debris Program Office. The design and fabrication of DebriSat is led by University of Florida with subject matter experts f support from The Aerospace Corporation. The major milestones of the project include the complete fabrication of DebriSat by September 2013, the hypervelocity impact of DebriSat at the Air Force fs Arnold Engineering Development Complex in early 2014, and fragment characterization and data analyses in late 2014.
ERIC Educational Resources Information Center
Beard, Karen L.; Lonsdale, Helen C.
The Satellite Technology Demonstration (STD) produced a series of 81 television programs called the "J-series" for junior high school students. This material was used to illustrate real life situations for a career development program. Because materials were expensive, the decision was made to produce "in-house" programs and…
SPICE Module for the Satellite Orbit Analysis Program (SOAP)
NASA Technical Reports Server (NTRS)
Coggi, John; Carnright, Robert; Hildebrand, Claude
2008-01-01
A SPICE module for the Satellite Orbit Analysis Program (SOAP) precisely represents complex motion and maneuvers in an interactive, 3D animated environment with support for user-defined quantitative outputs. (SPICE stands for Spacecraft, Planet, Instrument, Camera-matrix, and Events). This module enables the SOAP software to exploit NASA mission ephemeris represented in the JPL Ancillary Information Facility (NAIF) SPICE formats. Ephemeris types supported include position, velocity, and orientation for spacecraft and planetary bodies including the Sun, planets, natural satellites, comets, and asteroids. Entire missions can now be imported into SOAP for 3D visualization, playback, and analysis. The SOAP analysis and display features can now leverage detailed mission files to offer the analyst both a numerically correct and aesthetically pleasing combination of results that can be varied to study many hypothetical scenarios. The software provides a modeling and simulation environment that can encompass a broad variety of problems using orbital prediction. For example, ground coverage analysis, communications analysis, power and thermal analysis, and 3D visualization that provide the user with insight into complex geometric relations are included. The SOAP SPICE module allows distributed science and engineering teams to share common mission models of known pedigree, which greatly reduces duplication of effort and the potential for error. The use of the software spans all phases of the space system lifecycle, from the study of future concepts to operations and anomaly analysis. It allows SOAP software to correctly position and orient all of the principal bodies of the Solar System within a single simulation session along with multiple spacecraft trajectories and the orientation of mission payloads. In addition to the 3D visualization, the user can define numeric variables and x-y plots to quantitatively assess metrics of interest.
NASA Technical Reports Server (NTRS)
Robbins, W. H.; Donoughe, P. L.
1976-01-01
The Communications Technology Satellite (CTS) is a high-power broadcast satellite launched by NASA on January 17, 1976. CTS is the first satellite to operate at a frequency of 12 gigahertz and incorporates technology making possible new satellite telecommunications services. CTS is a cooperative program of the United States and Canada. This paper presents the results of the United States experimental activity to date. Wide segments of the population are involved in the Experiments Program, including the scientific community, other government agencies, industry, and the education and health entities. The experiments are associated with both technological objectives and the demonstration of new community and social services via satellite.
Nonlinear dynamics of global atmospheric and Earth system processes
NASA Technical Reports Server (NTRS)
Saltzman, Barry
1993-01-01
During the past eight years, we have been engaged in a NASA-supported program of research aimed at establishing the connection between satellite signatures of the earth's environmental state and the nonlinear dynamics of the global weather and climate system. Thirty-five publications and four theses have resulted from this work, which included contributions in five main areas of study: (1) cloud and latent heat processes in finite-amplitude baroclinic waves; (2) application of satellite radiation data in global weather analysis; (3) studies of planetary waves and low-frequency weather variability; (4) GCM studies of the atmospheric response to variable boundary conditions measurable from satellites; and (5) dynamics of long-term earth system changes. Significant accomplishments from the three main lines of investigation pursued during the past year are presented and include the following: (1) planetary atmospheric waves and low frequency variability; (2) GCM studies of the atmospheric response to changed boundary conditions; and (3) dynamics of long-term changes in the global earth system.
The Iodine Satellite (iSat) Project Development Towards Critical Design Review (CDR)
NASA Technical Reports Server (NTRS)
Dankanich, John W.; Selby, Michael; Polzin, Kurt A.; Kamhawi, Hani; Hickman, Tyler; Byrne, Larry
2016-01-01
Despite the prevalence of Small Satellites in recent years, the systems flown to date have very limited propulsion capability. SmallSats are typically secondary payloads and have significant constraints for volume, mass, and power in addition to limitations on the use of hazardous propellants or stored energy (i.e. high pressure vessels). These constraints limit the options for SmallSat maneuverability. NASA's Space Technology Mission Directorate approved the iodine Satellite flight project for a rapid demonstration of iodine Hall thruster technology in a 12U configuration under the Small Spacecraft Technology Program. The project formally began in FY15 as a partnership between NASA MSFC, NASA GRC, and Busek Co, Inc., with the Air Force supporting the propulsion technology maturation. The team is in final preparation of the Critical Design Review prior to initiating the fabrication and integration phase of the project. The iSat project is on schedule for a launch opportunity in November 2017.
SSSFD manipulator engineering using statistical experiment design techniques
NASA Technical Reports Server (NTRS)
Barnes, John
1991-01-01
The Satellite Servicer System Flight Demonstration (SSSFD) program is a series of Shuttle flights designed to verify major on-orbit satellite servicing capabilities, such as rendezvous and docking of free flyers, Orbital Replacement Unit (ORU) exchange, and fluid transfer. A major part of this system is the manipulator system that will perform the ORU exchange. The manipulator must possess adequate toolplate dexterity to maneuver a variety of EVA-type tools into position to interface with ORU fasteners, connectors, latches, and handles on the satellite, and to move workpieces and ORUs through 6 degree of freedom (dof) space from the Target Vehicle (TV) to the Support Module (SM) and back. Two cost efficient tools were combined to perform a study of robot manipulator design parameters. These tools are graphical computer simulations and Taguchi Design of Experiment methods. Using a graphics platform, an off-the-shelf robot simulation software package, and an experiment designed with Taguchi's approach, the sensitivities of various manipulator kinematic design parameters to performance characteristics are determined with minimal cost.
NASA Astrophysics Data System (ADS)
Johnson, J.; Verrill, N.; Horton, D.; Wing, S.
2017-12-01
Since the beginning of NOAA and NASA's Geostationary Operational Environmental Satellite (GOES) program in 1975, GOES satellites have been monitoring the geomagnetic field at geosynchronous orbit with onboard magnetometers. Using this GOES magnetometer data, we develop a state variable which characterizes the stretching of the near-Earth magnetotail by mapping the data to a central location within the magnetotail at geosynchronous distance (≈6.6 RE). Because the stretching of the magnetotail is thought to be related to the occurrence of substorms, we then assess the transfer entropy between the measure of tail stretching and substorm onsets in order to quantify the information content of our state variable with regards to substorms. Our results support the idea that stretching in the magnetotail precedes substorms and that the relationship is causal, which can be useful for magnetospheric activity and substorm predictions. We are currently assessing how well magnetic field measurements at geosynchronous orbit characterize tail stretching and their usefulness for predictions.
Possible communication scheme for closely-spaced multi-spacecraft missions
NASA Astrophysics Data System (ADS)
Dikareva, J.; Veselov, M.; Lesina, T.; Prokhorenko, V.; Nikolaeva, N.
2003-04-01
The progress in space instrumentation causes the rising number of the instrument modes, adjustments and other features. The work of the different instrument groups (field, wave, particle complexes) needs in more precise coordination. Furthermore, several spacecraft carry out the measurements simultaneously. All of that requires new approaches for the s/c control and data synchronization. The positive experience of the use of on-board program libraries correlated with different magnetospheric domains crossing prediction applied in INTERBALL project is analyzed. For the case of satellite-several subsatellites the original communication scheme is suggested. Taking into account strict weight and energy limitations it is difficult to establish a direct high bitrate subsatellite-graundstation radio-link. However such a radio-link seems possible for subsatellite-satellite due to the much shorter distance and therefore less power needed. The advantage of the use of main satellite as a communication mediator between a graundstation and subsatellites is considered. The scheme can be useful for multi-spacecraft planetary and deep space missions. The work is supported by INTAS 2000-465.
NASA Technical Reports Server (NTRS)
1993-01-01
Satellite systems to date have been mainly scientific in nature. Only a few systems have been of direct use to the public such as for telephone or television transmission. Space enterprises have remained a mystery to the general public and beyond the reach of the small business community. The result is a less than supportive public when it comes to space activities. The purpose of the ISAT-1 program is to develop a small and relatively inexpensive satellite that will serve the State of Iowa, primarily for educational purposes. It will provide products, services, and activities that will be educational, practical, and useful for a large number for people. The emphasis is on public awareness, 'space literacy', and routine practical applications rather than high technology. The initial conceptual design phase was complete when the current team took over the project. Some areas of the conceptual design were taken a little farther, but for the most part this team started at the detailed design stage.
Expressions Module for the Satellite Orbit Analysis Program
NASA Technical Reports Server (NTRS)
Edmonds, Karina
2008-01-01
The Expressions Module is a software module that has been incorporated into the Satellite Orbit Analysis Program (SOAP). The module includes an expressions- parser submodule built on top of an analytical system, enabling the user to define logical and numerical variables and constants. The variables can capture output from SOAP orbital-prediction and geometric-engine computations. The module can combine variables and constants with built-in logical operators (such as Boolean AND, OR, and NOT), relational operators (such as >, <, or =), and mathematical operators (such as addition, subtraction, multiplication, division, modulus, exponentiation, differentiation, and integration). Parentheses can be used to specify precedence of operations. The module contains a library of mathematical functions and operations, including logarithms, trigonometric functions, Bessel functions, minimum/ maximum operations, and floating- point-to-integer conversions. The module supports combinations of time, distance, and angular units and has a dimensional- analysis component that checks for correct usage of units. A parser based on the Flex language and the Bison program looks for and indicates errors in syntax. SOAP expressions can be built using other expressions as arguments, thus enabling the user to build analytical trees. A graphical user interface facilitates use.
Earth Observatory Satellite system definition study. Report no. 3: Design/cost tradeoff studies
NASA Technical Reports Server (NTRS)
1974-01-01
The key issues in the Earth Observatory Satellite (EOS) program which are subject to configuration study and tradeoff are identified. The issue of a combined operational and research and development program is considered. It is stated that cost and spacecraft weight are the key design variables and design options are proposed in terms of these parameters. A cost analysis of the EOS program is provided. Diagrams of the satellite configuration and subsystem components are included.
CMR Catalog Service for the Web
NASA Technical Reports Server (NTRS)
Newman, Doug; Mitchell, Andrew
2016-01-01
With the impending retirement of Global Change Master Directory (GCMD) Application Programming Interfaces (APIs) the Common Metadata Repository (CMR) was charged with providing a collection-level Catalog Service for the Web (CSW) that provided the same level of functionality as GCMD. This talk describes the capabilities of the CMR CSW API with particular reference to the support of the Committee on Earth Observation Satellites (CEOS) Working Group on Information Systems and Services (WGISS) Integrated Catalog (CWIC).
Research and technology, fiscal year 1983
NASA Technical Reports Server (NTRS)
1983-01-01
The responibilities and programs of the Goddard Space Flight Center are ranged from basic research in the space and Earth sciences through the management of numerous flight projects to operational responsibility for the tracking of and data acquisition from NASA's Earth orbiting satellites, Progress in the areas of spacecraft technology, sensor development and data system development, as well as in the basic and applied to research in the space and Earth sciences that they support is highlighted.
NASA Technical Reports Server (NTRS)
1979-01-01
The tests and procedures for the manned remote work station (MRWS) open cherry picker (OCP) development test article (DTA) are described to validate systems requirements and performance specifications. A development test program is outlined to evaluate key design issues and man/machine interfaces when the MRWS OCP is used in a shuttle support role of satellite servicing and in orbit construction of large structures.
Probes Measure Gases for Environmental Research
NASA Technical Reports Server (NTRS)
2015-01-01
NASA's Orbiting Carbon Observatory-2 satellite will make the first space-based measurements of carbon dioxide in Earth's atmosphere. In support of the mission, Goddard Space Flight Center will fly air missions from Wallops Flight Facility to gather finer-grained data in areas of interest. Goddard started working with Blacksburg, Virginia-based Aeroprobe Corporation through the SBIR program in 2008 to develop sensors for such flights, and the company has since commercialized the resulting product.
High altitude perspective. [cost-reimbursable services using NASA U-2 aircraft
NASA Technical Reports Server (NTRS)
1978-01-01
The capabilities of the NASA Ames Center U-2 aircraft for research or experimental programs are described for such areas as Earth resources inventories; remote sensing data interpretation, electronic sensor research and development; satellite investigative support; stratospheric gas studies; and astronomy and astrophysics. The availability of this aircraft on a cost-reimbursable basis for use in high-altitude investigations that cannot be performed by the private sector is discussed.
A bibliography of planetary geology principal investigators and their associates, 1976-1978
NASA Technical Reports Server (NTRS)
1978-01-01
This bibliography cites publications submitted by 484 principal investigators and their associates who were supported through NASA's Office of Space Sciences Planetary Geology Program. Subject classifications include: solar system formation, comets, and asteroids; planetary satellites, planetary interiors, geological and geochemical constraints on planetary evolution; impact crater studies, volcanism, eolian studies, fluvian studies, Mars geological mapping; Mercury geological mapping; planetary cartography; and instrument development and techniques. An author/editor index is provided.
Solar power satellite system definition study. Volume 3: Reference system description, phase 1
NASA Technical Reports Server (NTRS)
1979-01-01
An analysis of the solar power satellite system is presented. The satellite solar energy conversion and microwave power transmission systems are discussed including the structure, power distribution, thermal control, and energy storage. Space construction and support systems are described including the work support facilities and construction equipment. An assessment of the space transportation system for the satellite and the ground receiving station is presented.
Air Force electrochemical power research and technology program for space applications
NASA Technical Reports Server (NTRS)
Allen, Douglas
1987-01-01
An overview is presented of the existing Air Force electrochemical power, battery, and fuel cell programs for space application. Present thrusts are described along with anticipated technology availability dates. Critical problems to be solved before system applications occur are highlighted. Areas of needed performance improvement of batteries and fuel cells presently used are outlined including target dates for key demonstrations of advanced technology. Anticipated performance and current schedules for present technology programs are reviewed. Programs that support conventional military satellite power systems and special high power applications are reviewed. Battery types include bipolar lead-acid, nickel-cadmium, silver-zinc, nickel-hydrogen, sodium-sulfur, and some candidate advanced couples. Fuel cells for pulsed and transportation power applications are discussed as are some candidate advanced regenerative concepts.
NASA Technical Reports Server (NTRS)
Estes, Sue M.; Haynes, J. A.
2009-01-01
NASA's strategic Goals: a) Develop a balanced overall program of science, exploration, and aeronautics consistent with the redirection of human spaceflight program to focus on exploration. b) Study Earth from space to advance scientific understanding and meet societal needs. NASA's partnership efforts in global modeling and data assimilation over the next decade will shorten the distance from observations to answers for important, leading-edge science questions. NASA's Applied Sciences program will continue the Agency's efforts in benchmarking the assimilation of NASA research results into policy and management decision-support tools that are vital for the Nation's environment, economy, safety, and security. NASA also is working with NOAH and inter-agency forums to transition mature research capabilities to operational systems, primarily the polar and geostationary operational environmental satellites, and to utilize fully those assets for research purposes.
Technical assessment of PSSC-supported experiments and demonstrations
NASA Technical Reports Server (NTRS)
1978-01-01
A description of CTS and ATS short-term and long-term satellite demonstration supported through usage of a satellite communication ground station complex is presented. User assessments about the programmatic impact of their demonstrations and experiments were summarized. The technical planning and coordination process involved in satellite utilization is also presented.
New Antenna Deployment, Pointing and Supporting Mechanism
NASA Technical Reports Server (NTRS)
Costabile, V.; Lumaca, F.; Marsili, P.; Noni, G.; Portelli, C.
1996-01-01
On ITALSAT Flight 2, the Italian telecommunications satellite, the two L-Ka antennas (Tx and Rx) use two large deployable reflectors (2000-mm diameter), whose deployment and fine pointing functions are accomplished by means of an innovative mechanism concept. The Antenna Deployment & Pointing Mechanism and Supporting Structure (ADPMSS) is based on a new configuration solution, where the reflector and mechanisms are conceived as an integrated, self-contained assembly. This approach is different from the traditional configuration solution. Typically, a rigid arm is used to deploy and then support the reflector in the operating position, and an Antenna Pointing Mechanism (APM) is normally interposed between the reflector and the arm for steering operation. The main characteristics of the ADPMSS are: combined implementation of deployment, pointing, and reflector support; optimum integration of active components and interface matching with the satellite platform; structural link distribution to avoid hyperstatic connections; very light weight and; high performance in terms of deployment torque margin and pointing range/accuracy. After having successfully been subjected to all component-level qualification and system-level acceptance tests, two flight ADPMSS mechanisms (one for each antenna) are now integrated on ITALSAT F2 and are ready for launch. This paper deals with the design concept, development, and testing program performed to qualify the ADPMSS mechanism.
NASA Technical Reports Server (NTRS)
Craighead, F. C., Jr.
1978-01-01
Equipment development and testing, animal-instrument interphase or attachment methods, and the evaluation of various feasibility-tracking experiments with raptors are described as well as suggestions for expediting a future program. Results of animal-instrument interphases work indicate that large free-flying birds can be successfully instrumented with radio packages comparable in weight to satellite-transmitter packages. The 401 MHz frequency proved satisfactory for a combination of satellite and ground tracking of migrating birds. Tests run for nearly a year with the Nimbus 6 satellite and a miniaturized, one-watt prototype RAMS transmitter produced encouraging results in regard to location accuracy, frequency of contact with satellite and use of whip antennas. A future program is recommended with priority given to development of six operational transmitters for feasibility experiments.
Giant step for communication satellite technology
NASA Technical Reports Server (NTRS)
Lovell, R. R.
1984-01-01
NASA's communications program, which is concerned with advanced communications technology, reflects the need for operational communications satellite capacity beyond the capabilities of current technology and the unwillingness of private industry in the U.S. to undertake making the required long-range, high-risk technology advances. It is pointed out that current satellites will not satisfy the forecasted demand for additional capacity in the 1990s and beyond. Current technology exists primarily up to 18 GHz. Designing a communications satellite at each of the three major uplink/downlink frequency bands (C, Ku, and Ka, 6/4 GHz, 14/11 GHz, and 30/20 GHz, respectively) presents different program management and technical problems. Increasing frequency or power can be done only by intensive sustained research. This is the rationale for NASA to pursue the Advanced Communications Technology Satellite (ACTS) program.
Giant step for communication satellite technology
NASA Astrophysics Data System (ADS)
Lovell, R. R.
1984-03-01
NASA's communications program, which is concerned with advanced communications technology, reflects the need for operational communications satellite capacity beyond the capabilities of current technology and the unwillingness of private industry in the U.S. to undertake making the required long-range, high-risk technology advances. It is pointed out that current satellites will not satisfy the forecasted demand for additional capacity in the 1990s and beyond. Current technology exists primarily up to 18 GHz. Designing a communications satellite at each of the three major uplink/downlink frequency bands (C, Ku, and Ka, 6/4 GHz, 14/11 GHz, and 30/20 GHz, respectively) presents different program management and technical problems. Increasing frequency or power can be done only by intensive sustained research. This is the rationale for NASA to pursue the Advanced Communications Technology Satellite (ACTS) program.
Historical overview of Intercosmos program
NASA Astrophysics Data System (ADS)
Rimsha, M. A.
1986-02-01
Fifteen years ago, on October 14, 1969, the artificial Earth satellite Intercosmos-1 was launched initiating joint satellite research conducted by scientists and specialists from friendly countries. A little more than 2 years were spent on the preparations for this launch. The first envoys of the Intercosmos program were comparatively small space vehicles. They consisted of three basic sections: a cylindrical middle section and two hemispheres. The first craft of the Intercosmos series achieved orientation on the Sun with an accuracy of a few angular degrees. The launch of the Intercosmos-1 satellite initiated one of the basic directions of research conducted in accordance with the program of space cooperation by the socialist countries--research on the solar-terrestrial ties using satellites.
NASA Technical Reports Server (NTRS)
Turner, D. N.
1981-01-01
The reusable manned Space Shuttle has made new and innovative payload planning a reality and opened the door to a variety of payload concepts formerly unavailable in routine space operations. In order to define the payload characteristics and program strategies, current Shuttle-oriented programs are presented: NASA's Space Telescope, the Long Duration Exposure Facility, the West German Shuttle Pallet Satellite, and the Goddard Space Flight Center's Multimission Modular Spacecraft. Commonality of spacecraft design and adaptation for specific mission roles minimizes payload program development and STS integration costs. Commonality of airborne support equipment assures the possibility of multiple program space operations with the Shuttle. On-orbit maintenance and repair was suggested for the module and system levels. Program savings from 13 to over 50% were found obtainable by the Shuttle over expendable launch systems, and savings from 17 to 45% were achievable by introducing reuse into the Shuttle-oriented programs.
Implementation of space satellite remote sensing programs in developing countries (Ecuador)
NASA Technical Reports Server (NTRS)
Segovia, A.
1982-01-01
The current state of space satellite remote sensing programs in developing countries is discussed. Sensors being utilized and results obtained are described. Requirements are presented for the research of resources in developing countries. It is recommended that a work procedure be developed for the use of satellite remote sensing data tailored to the necessities of the different countries.
Low Earth orbit communications satellite
NASA Technical Reports Server (NTRS)
Moroney, D.; Lashbrook, D.; Mckibben, B.; Gardener, N.; Rivers, T.; Nottingham, G.; Golden, B.; Barfield, B.; Bruening, J.; Wood, D.
1992-01-01
A current thrust in satellite communication systems considers a low-Earth orbiting constellations of satellites for continuous global coverage. Conceptual design studies have been done at the time of this design project by LORAL Aerospace Corporation under the program name GLOBALSTAR and by Motorola under their IRIDIUM program. This design project concentrates on the spacecraft design of the GLOBALSTAR low-Earth orbiting communication system. Overview information on the program was gained through the Federal Communications Commission licensing request. The GLOBALSTAR system consists of 48 operational satellites positioned in a Walker Delta pattern providing global coverage and redundancy. The operational orbit is 1389 km (750 nmi) altitude with eight planes of six satellites each. The orbital planes are spaced 45 deg., and the spacecraft are separated by 60 deg. within the plane. A Delta 2 launch vehicle is used to carry six spacecraft for orbit establishment. Once in orbit, the spacecraft will utilize code-division multiple access (spread spectrum modulation) for digital relay, voice, and radio determination satellite services (RDSS) yielding position determination with accuracy up to 200 meters.
Development of the Power Simulation Tool for Energy Balance Analysis of Nanosatellites
NASA Astrophysics Data System (ADS)
Kim, Eun-Jung; Sim, Eun-Sup; Kim, Hae-Dong
2017-09-01
The energy balance in a satellite needs to be designed properly for the satellite to safely operate and carry out successive missions on an orbit. In this study, an analysis program was developed using the MATLABⓇ graphic user interface (GUI) for nanosatellites. This program was used in a simulation to confirm the generated power, consumed power, and battery power in the satellites on the orbit, and its performance was verified with applying different satellite operational modes and units. For data transmission, STKⓇ-MATLABⓇ connectivity was used to send the generated power from STKⓇ to MATLABⓇ automatically. Moreover, this program is general-purpose; therefore, it can be applied to nanosatellites that have missions or shapes that are different from those of the satellites in this study. This power simulation tool could be used not only to calculate the suitable power budget when developing the power systems, but also to analyze the remaining energy balance in the satellites.