ERIC Educational Resources Information Center
Kumar, David Devraj
2017-01-01
This paper reports an analysis of an interactive technology-supported, problem-based learning (PBL) project in science, technology, engineering and mathematics (STEM) from a Learning Sciences perspective using the Selected Learning Sciences Interest Areas (SLSIA). The SLSIA was adapted from the "What kinds of topics do ISLS [International…
ERIC Educational Resources Information Center
Sha, Li; Schunn, Christian; Bathgate, Meghan; Ben-Eliyahu, Adar
2016-01-01
How is a child's successful participation in science learning shaped by their family's support? We focus on the critical time period of early adolescents, testing (i) whether the child's perception of family support is important for both choice preferences to participate in optional learning experiences and engagement during science learning, and…
NASA Astrophysics Data System (ADS)
Gomes, Clement V.
With the current focus to have all students reach scientific literacy in the U.S, there exists a need to support marginalized students, such as those with Learning Disabilities/Differences (LD), to reach the same educational goals as their mainstream counterparts. This dissertation examines the benefits of using audio assistive technology on the iPad to support LD students to achieve comprehension of science vocabulary and semantics. This dissertation is composed of two papers, both of which include qualitative information supported by quantified data. The first paper, titled Using Technology to Overcome Fundamental Literacy Constraints for Students with Learning Differences to Achieve Scientific Literacy, provides quantified evidence from pretest and posttest analysis that audio technology can be beneficial for seventh grade LD students when learning new and unfamiliar science content. Analysis of observations and student interviews support the findings. The second paper, titled Time, Energy, and Motivation: Utilizing Technology to Ease Science Understanding for Students with Learning Differences, supports the importance of creating technology that is clear, audible, and easy for students to use so they benefit and desire to utilize the learning tool. Multiple correlation of Likert Survey analysis was used to identify four major items and was supported with analysis from observations of and interviews with students, parents, and educators. This study provides useful information to support the rising number of identified LD students and their parents and teachers by presenting the benefits of using audio assistive technology to learn science.
ERIC Educational Resources Information Center
Smetana, Lara Kathleen; Bell, Randy L.
2012-01-01
Researchers have explored the effectiveness of computer simulations for supporting science teaching and learning during the past four decades. The purpose of this paper is to provide a comprehensive, critical review of the literature on the impact of computer simulations on science teaching and learning, with the goal of summarizing what is…
ERIC Educational Resources Information Center
Bidarra, José; Rusman, Ellen
2017-01-01
This paper proposes a design framework to support science education through blended learning, based on a participatory and interactive approach supported by ICT-based tools, called "Science Learning Activities Model" (SLAM). The development of this design framework started as a response to complex changes in society and education (e.g.…
Enhancement of Elementary School Students' Science Learning by Web-Quest Supported Science Writing
ERIC Educational Resources Information Center
Min-Hsiung, Chuang; Jeng-Fung, Hung; Quo-Cheng, Sung
2011-01-01
This study aimed to probe into the influence of implementing Web-quest supported science writing instruction on students' science learning and science writing. The subjects were 34 students in one class of grade six in an elementary school in Taiwan. The students participated in the instruction, which lasted for eight weeks. Data collection…
Supporting Three-Dimensional Science Learning: The Role of Curiosity-Driven Classroom Discourse
ERIC Educational Resources Information Center
Johnson, Wendy Renae
2017-01-01
The National Research Council's "Framework for K-12 Science Education" (2011) presents a new vision for science education that calls for the integration of the three dimensions of science learning: science and engineering practices, crosscutting concepts, and disciplinary core ideas. Unlike previous conceptions of science learning that…
ERIC Educational Resources Information Center
Moeed, Azra
2013-01-01
Internationally, learning science through investigation is promoted as a preferred pedagogical approach. Research presented takes a view that such learning depends on how teachers understand science investigation. Teachers' understanding of science investigation was an aspect of an interpretive case study of the phenomenon of science investigation…
Reflections on providing sport science support for athletes with learning difficulties.
Hills, Laura; Utley, Andrea
2010-01-01
To highlight the benefits and the need for sport science support for athletes with learning difficulties, and to reflect on our experience of working with the GB squad for athletes with learning difficulties. A review of key and relevant literature is presented, followed by a discussion of the sport science support provision and the issues that emerged in working with athletes with learning difficulties. Pre- and post- physiological tests along with evaluations of athletes' potential to benefit from sport psychology support were conducted. The aim of these tests was to provide information for the athletes and the coaches on fitness levels, to use this information to plan future training, and to identify how well the performance could be enhanced. A case study is presented for one athlete, who had competed in distance events. The focus is the psychological support that was provided. It is clear that athletes with learning difficulties require the same type of sports science support as their mainstream peers. However, sport scientists will need to consider ways to extend their practice in order to provide the appropriate level of support.
ERIC Educational Resources Information Center
Yang, Fang-Ying; Tsai, Meng-Jung; Chiou, Guo-Li; Lee, Silvia Wen-Yu; Chang, Cheng-Chieh; Chen, Li-Ling
2018-01-01
The main purpose of this study was to provide instructional suggestions for supporting science learning in digital environments based on a review of eye tracking studies in e-learning related areas. Thirty-three eye-tracking studies from 2005 to 2014 were selected from the Social Science Citation Index (SSCI) database for review. Through a…
Affordances of Augmented Reality in Science Learning: Suggestions for Future Research
NASA Astrophysics Data System (ADS)
Cheng, Kun-Hung; Tsai, Chin-Chung
2013-08-01
Augmented reality (AR) is currently considered as having potential for pedagogical applications. However, in science education, research regarding AR-aided learning is in its infancy. To understand how AR could help science learning, this review paper firstly has identified two major approaches of utilizing AR technology in science education, which are named as image- based AR and location- based AR. These approaches may result in different affordances for science learning. It is then found that students' spatial ability, practical skills, and conceptual understanding are often afforded by image-based AR and location-based AR usually supports inquiry-based scientific activities. After examining what has been done in science learning with AR supports, several suggestions for future research are proposed. For example, more research is required to explore learning experience (e.g., motivation or cognitive load) and learner characteristics (e.g., spatial ability or perceived presence) involved in AR. Mixed methods of investigating learning process (e.g., a content analysis and a sequential analysis) and in-depth examination of user experience beyond usability (e.g., affective variables of esthetic pleasure or emotional fulfillment) should be considered. Combining image-based and location-based AR technology may bring new possibility for supporting science learning. Theories including mental models, spatial cognition, situated cognition, and social constructivist learning are suggested for the profitable uses of future AR research in science education.
Exploring How Creating Stop-Motion Animations Supports Student Teachers in Learning to Teach Science
ERIC Educational Resources Information Center
Wishart, Jocelyn
2017-01-01
This article reports on an exploration of teaching and learning through creating rudimentary stop-motion animations set up to identify how learning opportunities involving stop-motion animations can support student learning and science teacher education. Participants were student teachers, volunteers representing both secondary and primary school…
ERIC Educational Resources Information Center
Steffensky, Mirjam; Gold, Bernadette; Holdynski, Manfred; Möller, Kornelia
2015-01-01
The present study investigates the internal structure of professional vision of in-service teachers and student teachers with respect to classroom management and learning support in primary science lessons. Classroom management (including monitoring, managing momentum, and rules and routines) and learning support (including cognitive activation…
Developing Learning Progressions in Support of the New Science Standards: A RAPID Workshop Series
ERIC Educational Resources Information Center
Rogat, Aaron
2011-01-01
The hypothetical learning progressions presented here are the products of the deliberations of two working groups of science education researchers, each group also including a state science curriculum supervisor, organized by the Consortium for Policy Research in Education (CPRE), with support from the National Science Foundation. Their charge was…
NASA Astrophysics Data System (ADS)
Capitelli, Sarah; Hooper, Paula; Rankin, Lynn; Austin, Marilyn; Caven, Gennifer
2016-04-01
This qualitative case study looks closely at an elementary teacher who participated in professional development experiences that helped her develop a hybrid practice of using inquiry-based science to teach both science content and English language development (ELD) to her students, many of whom are English language learners (ELLs). This case study examines the teacher's reflections on her teaching and her students' learning as she engaged her students in science learning and supported their developing language skills. It explicates the professional learning experiences that supported the development of this hybrid practice. Closely examining the pedagogical practice and reflections of a teacher who is developing an inquiry-based approach to both science learning and language development can provide insights into how teachers come to integrate their professional development experiences with their classroom expertise in order to create a hybrid inquiry-based science ELD practice. This qualitative case study contributes to the emerging scholarship on the development of teacher practice of inquiry-based science instruction as a vehicle for both science instruction and ELD for ELLs. This study demonstrates how an effective teaching practice that supports both the science and language learning of students can develop from ongoing professional learning experiences that are grounded in current perspectives about language development and that immerse teachers in an inquiry-based approach to learning and instruction. Additionally, this case study also underscores the important role that professional learning opportunities can play in supporting teachers in developing a deeper understanding of the affordances that inquiry-based science can provide for language development.
Gouvea, Julia Svoboda; Sawtelle, Vashti; Geller, Benjamin D; Turpen, Chandra
2013-06-01
The national conversation around undergraduate science instruction is calling for increased interdisciplinarity. As these calls increase, there is a need to consider the learning objectives of interdisciplinary science courses and how to design curricula to support those objectives. We present a framework that can help support interdisciplinary design research. We developed this framework in an introductory physics for life sciences majors (IPLS) course for which we designed a series of interdisciplinary tasks that bridge physics and biology. We illustrate how this framework can be used to describe the variation in the nature and degree of interdisciplinary interaction in tasks, to aid in redesigning tasks to better align with interdisciplinary learning objectives, and finally, to articulate design conjectures that posit how different characteristics of these tasks might support or impede interdisciplinary learning objectives. This framework will be useful for both curriculum designers and education researchers seeking to understand, in more concrete terms, what interdisciplinary learning means and how integrated science curricula can be designed to support interdisciplinary learning objectives.
Gouvea, Julia Svoboda; Sawtelle, Vashti; Geller, Benjamin D.; Turpen, Chandra
2013-01-01
The national conversation around undergraduate science instruction is calling for increased interdisciplinarity. As these calls increase, there is a need to consider the learning objectives of interdisciplinary science courses and how to design curricula to support those objectives. We present a framework that can help support interdisciplinary design research. We developed this framework in an introductory physics for life sciences majors (IPLS) course for which we designed a series of interdisciplinary tasks that bridge physics and biology. We illustrate how this framework can be used to describe the variation in the nature and degree of interdisciplinary interaction in tasks, to aid in redesigning tasks to better align with interdisciplinary learning objectives, and finally, to articulate design conjectures that posit how different characteristics of these tasks might support or impede interdisciplinary learning objectives. This framework will be useful for both curriculum designers and education researchers seeking to understand, in more concrete terms, what interdisciplinary learning means and how integrated science curricula can be designed to support interdisciplinary learning objectives. PMID:23737627
Implementing Elementary School Next Generation Science Standards
NASA Astrophysics Data System (ADS)
Kennedy, Katheryn B.
Implementation of the Next Generation Science Standards requires developing elementary teacher content and pedagogical content knowledge of science and engineering concepts. Teacher preparation for this undertaking appears inadequate with little known about how in-service Mid-Atlantic urban elementary science teachers approach this task. The purpose of this basic qualitative interview study was to explore the research questions related to perceived learning needs of 8 elementary science teachers and 5 of their administrators serving as instructional leaders. Strategies needed for professional growth to support learning and barriers that hamper it at both building and district levels were included. These questions were considered through the lens of Schon's reflective learning and Weick's sensemaking theories. Analysis with provisional and open coding strategies identified informal and formal supports and barriers to teachers' learning. Results indicated that informal supports, primarily internet usage, emerged as most valuable to the teachers' learning. Formal structures, including professional learning communities and grade level meetings, arose as both supportive and restrictive at the building and district levels. Existing formal supports emerged as the least useful because of the dominance of other priorities competing for time and resources. Addressing weaknesses within formal supports through more effective planning in professional development can promote positive change. Improvement to professional development approaches using the internet and increased hands on activities can be integrated into formal supports. Explicit attention to these strategies can strengthen teacher effectiveness bringing positive social change.
NASA Astrophysics Data System (ADS)
Haefner, Leigh Ann; Zembal-Saul, Carla
This study examined prospective elementary teachers' learning about scientific inquiry in the context of an innovative life science course. Research questions included: (1) What do prospective elementary teachers learn about scientific inquiry within the context of the course? and (2) In what ways do their experiences engaging in science investigations and teaching inquiry-oriented science influence prospective elementary teachers' understanding of science and science learning and teaching? Eleven prospective elementary teachers participated in this qualitative, multi-participant case study. Constant comparative analysis strategies attempted to build abstractions and explanations across participants around the constructs of the study. Findings suggest that engaging in scientific inquiry supported the development more appropriate understandings of science and scientific inquiry, and that prospective teachers became more accepting of approaches to teaching science that encourage children's questions about science phenomena. Implications include careful consideration of learning experiences crafted for prospective elementary teachers to support the development of robust subject matter knowledge.
ERIC Educational Resources Information Center
Akgunduz, Devrim; Akinoglu, Orhan
2016-01-01
The main purpose of this study is to investigate the effect of blended learning and social media supported learning on the students' attitude and self-directed learning skills in Science Education. This research took place with the 7th grade 74 students attending to a primary school in Kadikoy, Istanbul and carried out "Our Body Systems"…
ERIC Educational Resources Information Center
Sabel, Jaime L.; Forbes, Cory T.; Zangori, Laura
2015-01-01
To support elementary students' learning of core, standards-based life science concepts highlighted in the "Next Generation Science Standards," prospective elementary teachers should develop an understanding of life science concepts and learn to apply their content knowledge in instructional practice to craft elementary science learning…
Family Learning: The Missing Exemplar
ERIC Educational Resources Information Center
Dentzau, Michael W.
2013-01-01
As a supporter of informal and alternative learning environments for science learning I am pleased to add to the discussion generated by Adriana Briseno-Garzon's article, "More than science: family learning in a Mexican science museum". I am keenly aware of the value of active family involvement in education in general, and science education in…
ERIC Educational Resources Information Center
Donnelly, Dermot F.; Linn, Marcia C.; Ludvigsen, Sten
2014-01-01
The National Science Foundation-sponsored report "Fostering Learning in the Networked World" called for "a common, open platform to support communities of developers and learners in ways that enable both to take advantage of advances in the learning sciences." We review research on science inquiry learning environments (ILEs)…
ERIC Educational Resources Information Center
Campbell, Todd; Longhurst, Max L.; Wang, Shiang-Kwei; Hsu, Hui-Yin; Coster, Dan C.
2015-01-01
While access to computers, other technologies, and cyber-enabled resources that could be leveraged for enhancing student learning in science is increasing, generally it has been found that teachers use technology more for administrative purposes or to support traditional instruction. This use of technology, especially to support traditional…
Challenges and Support When Teaching Science through an Integrated Inquiry and Literacy Approach
ERIC Educational Resources Information Center
Ødegaard, Marianne; Haug, Berit; Mork, Sonja M.; Sørvik, Gard Ove
2014-01-01
In the Budding Science and Literacy project, we explored how working with an integrated inquiry-based science and literacy approach may challenge and support the teaching and learning of science at the classroom level. By studying the inter-relationship between multiple learning modalities and phases of inquiry, we wished to illuminate possible…
ERIC Educational Resources Information Center
Penuel, William R.; Bell, Philip; Bevan, Bronwyn; Buffington, Pam; Falk, Joni
2016-01-01
This paper explores practical ways to engage two areas of educational scholarship--research on science learning and research on social networks--to inform efforts to plan and support implementation of new standards. The standards, the "Next Generation Science Standards" (NGSS; NGSS Lead States in Next generation science standards: For…
Teaching Triple Science: GCSE Chemistry
ERIC Educational Resources Information Center
Learning and Skills Network (NJ3), 2007
2007-01-01
The Department for Children, Schools and Families (DCSF) has contracted with the Learning and Skills Network to support awareness and take-up of Triple Science GCSEs through the Triple Science Support Programme. This publication provides an introduction to teaching and learning approaches for the extension topics within GCSE Chemistry. It…
NASA Astrophysics Data System (ADS)
Kelley, Sybil Schantz
This mixed-methods study combined pragmatism, sociocultural perspectives, and systems thinking concepts to investigate students' engagement, thinking, and learning in science in an urban, K-8 arts, science, and technology magnet school. A grant-funded school-university partnership supported the implementation of an inquiry-based science curriculum, contextualized in the local environment through field experiences. The researcher worked as co-teacher of 3 sixth-grade science classes and was deeply involved in the daily routines of the school. The purposes of the study were to build a deeper understanding of the complex interactions that take place in an urban science classroom, including challenges related to implementing culturally-relevant instruction; and to offer insight into the role educational systems play in supporting teaching and learning. The central hypothesis was that connecting learning to meaningful experiences in the local environment can provide culturally accessible points of engagement from which to build science learning. Descriptive measures provided an assessment of students' engagement in science activities, as well as their levels of thinking and learning throughout the school year. Combined with analyses of students' work files and focus group responses, these findings provided strong evidence of engagement attributable to the inquiry-based curriculum. In some instances, degree of engagement was found to be affected by student "reluctance" and "resistance," terms defined but needing further examination. A confounding result showed marked increases in thinking levels coupled with stasis or decrease in learning. Congruent with past studies, data indicated the presence of tension between the diverse cultures of students and the mainstream cultures of school and science. Findings were synthesized with existing literature to generate the study's principal product, a grounded theory model representing the complex, interacting factors involved in teaching and learning. The model shows that to support learning and to overcome cultural tensions, there must be alignment among three main forces or "causal factors": students, teaching, and school climate. Conclusions emphasize system-level changes to support science learning, including individualized support for students in the form of differentiated instruction; focus on excellence in teaching, particularly through career-spanning professional support for teachers; and attention to identifying key leverage points for implementing effective change.
Space Science News: from archive to teaching resource, the secret life of newspapers
NASA Astrophysics Data System (ADS)
McClune, Billy; Jarman, Ruth
2004-03-01
This article illustrates the use of newspapers as a resource for teaching and learning about science. Science teachers in Northern Ireland have produced a special edition news magazine, Space Science News, to support the teaching and learning of aspects of space science in secondary school. The resource is based on authentic newspaper articles and was developed in partnership with a local newspaper and with the support of the Particle Physics and Astronomy Research Council (PPARC). Articles have been grouped into curriculum-related 'themes' and are accompanied by a range of classroom activities designed to support learning in this area, to develop literacy skills and to promote awareness of media- and citizenship-related issues.
Challenges and Support When Teaching Science Through an Integrated Inquiry and Literacy Approach
NASA Astrophysics Data System (ADS)
Ødegaard, Marianne; Haug, Berit; Mork, Sonja M.; Ove Sørvik, Gard
2014-12-01
In the Budding Science and Literacy project, we explored how working with an integrated inquiry-based science and literacy approach may challenge and support the teaching and learning of science at the classroom level. By studying the inter-relationship between multiple learning modalities and phases of inquiry, we wished to illuminate possible dynamics between science inquiry and literacy in an integrated science approach. Six teachers and their students were recruited from a professional development course for the current classroom study. The teachers were to try out the Budding Science teaching model. This paper presents an overall video analysis of our material demonstrating variations and patterns of inquiry-based science and literacy activities. Our analysis revealed that multiple learning modalities (read it, write it, do it, and talk it) are used in the integrated approach; oral activities dominate. The inquiry phases shifted throughout the students' investigations, but the consolidating phases of discussion and communication were given less space. The data phase of inquiry seems essential as a driving force for engaging in science learning in consolidating situations. The multiple learning modalities were integrated in all inquiry phases, but to a greater extent in preparation and data. Our results indicate that literacy activities embedded in science inquiry provide support for teaching and learning science; however, the greatest challenge for teachers is to find the time and courage to exploit the discussion and communication phases to consolidate the students' conceptual learning.
Using ICT-Supported Narratives in Teaching Science and Their Effects on Middle School Students
ERIC Educational Resources Information Center
Ekici, Fatma Taskin; Pekmezci, Sultan
2015-01-01
Effective and sustainable science education is enriched by the use of visuals, auditory, and tactile experiences. In order to provide effective learning, instruction needs to include multimodal approaches. Integrating ICT supported narrations into learning environments may provide effective and sustainable learning methods. Investigated in this…
Evaluating NESTA's Support for Science Learning
ERIC Educational Resources Information Center
Davies, Dan
2007-01-01
This paper reports on a commissioned research project to evaluate the impact of support (mainly funding) given by the UK Government's National Endowment for Science, Technology and the Arts (NESTA) to various projects under the general heading of "science learning" over a four-year period (2000-2004). Findings emerging from the study…
Enhanced Resource Descriptions Help Learning Matrix Users.
ERIC Educational Resources Information Center
Roempler, Kimberly S.
2003-01-01
Describes the Learning Matrix digital library which focuses on improving the preparation of math and science teachers by supporting faculty who teach introductory math and science courses in two- and four-year colleges. Suggests it is a valuable resource for school library media specialists to support new science and math teachers. (LRW)
Teaching Triple Science: GCSE Biology
ERIC Educational Resources Information Center
Learning and Skills Network (NJ3), 2007
2007-01-01
The Department for Children, Schools and Families (DCSF) has contracted with the Learning and Skills Network to support awareness and take-up of Triple Science GCSEs through the Triple Science Support Programme. This publication provides an introduction to teaching and learning approaches for the extension topics within GCSE Biology. It highlights…
The Role of Research on Science Teaching and Learning
ERIC Educational Resources Information Center
National Science Teachers Association (NJ1), 2010
2010-01-01
Research on science teaching and learning plays an important role in improving science literacy, a goal called for in the National Science Education Standards (NRC 1996) and supported by the National Science Teachers Association (NSTA 2003). NSTA promotes a research agenda that is focused on the goal of enhancing student learning through effective…
ERIC Educational Resources Information Center
Guloy, Sheryl; Salimi, Farimah; Cukierman, Diana; McGee Thompson, Donna
2017-01-01
Using a design-based orientation, this mixed-method study explored ways to support computing science and engineering students whose study strategies may be inadequate to meet coursework expectations. Learning support workshops, paired with university courses, have been found to assist students as they transition to university learning, thereby…
NASA Astrophysics Data System (ADS)
Marcucci, Emma; Slivinski, Carolyn; Lawton, Brandon L.; Smith, Denise A.; Squires, Gordon K.; Biferno, Anya A.; Lestition, Kathleen; Cominsky, Lynn R.; Lee, Janice C.; Rivera, Thalia; Walker, Allyson; Spisak, Marilyn
2018-06-01
NASA's Universe of Learning creates and delivers science-driven, audience-driven resources and experiences designed to engage and immerse learners of all ages and backgrounds in exploring the universe for themselves. The project is a unique partnership between the Space Telescope Science Institute, Caltech/IPAC, Jet Propulsion Laboratory, Smithsonian Astrophysical Observatory, and Sonoma State University and is part of the NASA SMD Science Activation Collective. The NASA’s Universe of Learning projects pull on the expertise of subject matter experts (scientist and engineers) from across the broad range of NASA Astrophysics themes and missions. One such project, which draws strongly on the expertise of the community, is the NASA’s Universe of Learning Science Briefings, which is done in collaboration with the NASA Museum Alliance. This collaboration presents a monthly hour-long discussion on relevant NASA astrophysics topics or events to an audience composed largely of informal educators from informal learning environments. These professional learning opportunities use experts and resources within the astronomical community to support increased interest and engagement of the informal learning community in NASA Astrophysics-related concepts and events. Briefings are designed to create a foundation for this audience using (1) broad science themes, (2) special events, or (3) breaking science news. The NASA’s Universe of Learning team engages subject matter experts to be speakers and present their science at these briefings to provide a direct connection to NASA Astrophysics science and provide the audience an opportunity to interact directly with scientists and engineers involved in NASA missions. To maximize the usefulness of the Museum Alliance Science Briefings, each briefing highlights resources related to the science theme to support informal educators in incorporating science content into their venues and/or interactions with the public. During this presentation, learn how you can help contribute to the NASA’s Universe of Learning and take part in Science Briefings.
Kitchen Science Investigators: Promoting Identity Development as Scientific Reasoners and Thinkers
ERIC Educational Resources Information Center
Clegg, Tamara Lynnette
2010-01-01
My research centers upon designing transformative learning environments and supporting technologies. Kitchen Science Investigators (KSI) is an out-of-school transformative learning environment we designed to help young people learn science through cooking. My dissertation considers the question, "How can we design a learning environment in which…
Approximations of Practice in the Preparation of Prospective Elementary Science Teachers
ERIC Educational Resources Information Center
Nelson, Michele M.
2011-01-01
Elementary teacher education involves learning to teach science. Even in elementary school, teaching science is demanding work--teachers must orchestrate a complex set of teaching practices to support students' science learning. This dissertation examines the application of Grossman and colleagues' (2009) cross-professional learning framework,…
ERIC Educational Resources Information Center
Tscholl, Michael; Lindgren, Robb
2016-01-01
This research investigates the social learning affordances of a room-sized, immersive, and interactive augmented reality simulation environment designed to support children's understanding of basic physics concepts in a science center. Conversations between 97 parent-child pairs were analyzed in relation to categories of talk through which…
Threshold Concepts as Focal Points for Supporting Student Learning
ERIC Educational Resources Information Center
Jordan, Katy; Tracy, Frances; Johnstone, Keith
2011-01-01
The Plant Sciences Pedagogy Project conducted research into undergraduate teaching and learning in the Department of Plant Sciences at the University of Cambridge and has translated the research findings into interventions to improve support for student learning. A key research objective for the project was to investigate how teachers within the…
Teachers' Use of Educative Curriculum Materials to Engage Students in Science Practices
ERIC Educational Resources Information Center
Arias, Anna Maria; Davis, Elizabeth A.; Marino, John-Carlos; Kademian, Sylvie M.; Palincsar, Annemarie Sullivan
2016-01-01
New reform documents underscore the importance of integrating science practices into the learning of science. This integration requires sophisticated teaching that does not often happen. Educative curriculum materials--materials explicitly designed to support teacher and student learning--have been posited as a way to support teachers to achieve…
Perspectives on learning, learning to teach and teaching elementary science
NASA Astrophysics Data System (ADS)
Avraamidou, Lucy
The framework that characterizes this work is that of elementary teachers' learning and development. Specifically, the ways in which prospective and beginning teachers' develop pedagogical content knowledge for teaching science in light of current recommendations for reform emphasizing teaching and learning science as inquiry are explored. Within this theme, the focus is on three core areas: (a) the use of technology tools (i.e., web-based portfolios) in support of learning to teach science at the elementary level; (b) beginning teachers' specialized knowledge for giving priority to evidence in science teaching; and (c) the applications of perspectives associated with elementary teachers' learning to teach science in Cyprus, where I was born and raised. The first manuscript describes a study aimed at exploring the influence of web-based portfolios and a specific task in support of learning to teach science within the context of a Professional Development School program. The task required prospective teachers to articulate their personal philosophies about teaching and learning science in the form of claims, evidence and justifications in a web-based forum. The findings of this qualitative case study revealed the participants' developing understandings about learning and teaching science, which included emphasizing a student-centered approach, connecting physical engagement of children with conceptual aspects of learning, becoming attentive to what teachers can do to support children's learning, and focusing on teaching science as inquiry. The way the task was organized and the fact that the web-based forum provided the ability to keep multiple versions of their philosophies gave prospective teachers the advantage of examining how their philosophies were changing over time, which supported a continuous engagement in metacognition, self-reflection and self-evaluation. The purpose of the study reported in the second manuscript was to examine the nature of a first-year elementary teacher's specialized knowledge and practices for giving priority to evidence in science teaching. The findings of this study indicated that Jean not only articulated, but also enacted, a student-centered approach to teaching science, which emphasized giving priority to evidence in the construction of scientific explanations. It also became evident through data analysis that Jean's practices were for the most part consistent with her knowledge and beliefs. This contradicts the findings of previous studies that indicate a mismatch between beginning teachers' knowledge and practices. Furthermore, the findings of this study illustrated that critical experiences during teacher preparation and specific university coursework acted as sources through which this aspect of pedagogical content knowledge was generated. The third manuscript proposes new directions for teaching science in elementary schools in Cyprus and makes recommendations to improve the current teacher preparation program in light of the need for a reform. This manuscript is built upon contemporary perspectives of learning and cognition, and is informed by current trends in science education in the United States and United Kingdom. Issues of teaching and learning science as inquiry, engaging in scientific argumentation, and the use of software scaffolds in support of learning and learning to teach science are discussed with special attention to the unique educational setting of Cyprus.
Enabling People Who Are Blind to Experience Science Inquiry Learning through Sound-Based Mediation
ERIC Educational Resources Information Center
Levy, S. T.; Lahav, O.
2012-01-01
This paper addresses a central need among people who are blind, access to inquiry-based science learning materials, which are addressed by few other learning environments that use assistive technologies. In this study, we investigated ways in which learning environments based on sound mediation can support science learning by blind people. We used…
Problem Solving Model for Science Learning
NASA Astrophysics Data System (ADS)
Alberida, H.; Lufri; Festiyed; Barlian, E.
2018-04-01
This research aims to develop problem solving model for science learning in junior high school. The learning model was developed using the ADDIE model. An analysis phase includes curriculum analysis, analysis of students of SMP Kota Padang, analysis of SMP science teachers, learning analysis, as well as the literature review. The design phase includes product planning a science-learning problem-solving model, which consists of syntax, reaction principle, social system, support system, instructional impact and support. Implementation of problem-solving model in science learning to improve students' science process skills. The development stage consists of three steps: a) designing a prototype, b) performing a formative evaluation and c) a prototype revision. Implementation stage is done through a limited trial. A limited trial was conducted on 24 and 26 August 2015 in Class VII 2 SMPN 12 Padang. The evaluation phase was conducted in the form of experiments at SMPN 1 Padang, SMPN 12 Padang and SMP National Padang. Based on the development research done, the syntax model problem solving for science learning at junior high school consists of the introduction, observation, initial problems, data collection, data organization, data analysis/generalization, and communicating.
Re-envisioning scientific literacy as relational, participatory thinking and doing
NASA Astrophysics Data System (ADS)
Trauth-Nare, Amy
2016-06-01
This review explores Michelle Hollingsworth Koomen's "Inclusive science education: Learning from Wizard," a case study of a middle school student with learning exceptionalities in a mainstream science classroom. The strength of Koomen's work lies in her elucidation of the ways in which normative science instruction fails to adequately support Wizard's learning. His classroom experiences position him, if unintentionally, as deficient and incapable, which in turn serves to undermine his ability to fully engage in science or to capitalize on his strengths as a learner in the service of developing disciplinary literacy. I extend this conversation by arguing for a broader view of scientific literacy and the need for a more relational pedagogy in classrooms that supports meaningful and productive engagement in science learning and fosters positive identification with science.
ERIC Educational Resources Information Center
Namdar, Bahadir
2017-01-01
The purpose of this study was to investigate preservice science teachers' collaborative knowledge building through socioscientific argumentation on healthy eating in a multiple representation-rich computer supported collaborative learning (CSCL) environment. This study was conducted with a group of preservice science teachers (n = 18) enrolled in…
Piasta, Shayne B; Logan, Jessica A R; Pelatti, Christina Yeager; Capps, Janet L; Petrill, Stephen A
2015-05-01
Because recent initiatives highlight the need to better support preschool-aged children's math and science learning, the present study investigated the impact of professional development in these domains for early childhood educators. Sixty-five educators were randomly assigned to experience 10.5 days (64 hours) of training on math and science or on an alternative topic. Educators' provision of math and science learning opportunities were documented, as were the fall-to-spring math and science learning gains of children ( n = 385) enrolled in their classrooms. Professional development significantly impacted provision of science, but not math, learning opportunities. Professional development did not directly impact children's math or science learning, although science learning was indirectly affected via the increase in science learning opportunities. Both math and science learning opportunities were positively associated with children's learning. Results suggest that substantive efforts are necessary to ensure that children have opportunities to learn math and science from a young age.
Piasta, Shayne B.; Logan, Jessica A. R.; Pelatti, Christina Yeager; Capps, Janet L.; Petrill, Stephen A.
2014-01-01
Because recent initiatives highlight the need to better support preschool-aged children’s math and science learning, the present study investigated the impact of professional development in these domains for early childhood educators. Sixty-five educators were randomly assigned to experience 10.5 days (64 hours) of training on math and science or on an alternative topic. Educators’ provision of math and science learning opportunities were documented, as were the fall-to-spring math and science learning gains of children (n = 385) enrolled in their classrooms. Professional development significantly impacted provision of science, but not math, learning opportunities. Professional development did not directly impact children’s math or science learning, although science learning was indirectly affected via the increase in science learning opportunities. Both math and science learning opportunities were positively associated with children’s learning. Results suggest that substantive efforts are necessary to ensure that children have opportunities to learn math and science from a young age. PMID:26257434
Supporting Inquiry in Science Classrooms with the Web
ERIC Educational Resources Information Center
Simons, Krista; Clark, Doug
2005-01-01
This paper focuses on Web-based science inquiry and five representative science learning environments. The discussion centers around features that sustain science inquiry, namely, data-driven investigation, modeling, collaboration, and scaffolding. From the perspective of these features five science learning environments are detailed: Whyville,…
NASA Astrophysics Data System (ADS)
Zender, Georgi Anne
The problem of this study was to determine in what ways science professional development would support kindergarten through sixth grade teachers in their implementation of a revised curriculum. The problem centered on evaluating the relationship between professional development involvement and teachers' learning and use of new knowledge and skills, organizational support and change, and student learning outcomes. Using data derived from survey responses and other sources (e.g., test scores, financial records, etc.), this study examined use of a science course of study, use of activities/experiments from workshops, use and adequacy of materials adoptions, administrative support, and achievement scores. This research was completed using an Ex Post Facto research design. Using the General Linear Model and causal-comparative analyses, thus study significantly concluded that teachers with a higher level of involvement in science professional development were more likely to use the revised course of study for lesson planning and to perceive materials adoptions as being adequate, and that districts that had participated in science professional development to revise curriculum showed more gains in student learning outcomes. Data on teachers' learning and use of new knowledge and skills implied that districts needed to continue to design teacher leadership situations that implement long-term professional development, build capacity for shared decision making, create a supportive environment for leaders, and incorporate assessments. Teacher leaders needed to actively engage in action research as a professional development strategy to promote reflection on their teaching and student learning. Data on organizational support and change implied that without logistical and financial support for teaching and learning in terms of hands-on materials, teachers would be unable to support future curriculum improvement efforts. Building principals needed to play a more active role in the implementation of curriculum. Data on student learning outcomes implied that both content knowledge and inquiry skills were critical bases for curriculum in terms of teacher efficacy and student achievement. Teachers needed to examine student work as a professional development strategy to also promote reflection on teaching and learning. Further research and professional development in the area of science assessment, in terms of scientific content and processes, was suggested.
Home Culture, Science, School and Science Learning: Is Reconciliation Possible?
ERIC Educational Resources Information Center
Tan, Aik-Ling
2011-01-01
In response to Meyer and Crawford's article on how nature of science and authentic science inquiry strategies can be used to support the learning of science for underrepresented students, I explore the possibly of reconciliation between the cultures of school, science, school science as well as home. Such reconciliation is only possible when…
ERIC Educational Resources Information Center
Schneider, Rebecca M.; Plasman, Kellie
2011-01-01
Learning progressions are the successively more sophisticated ways of thinking about an idea that follow one another over a broad span of time. This review examines the research on science teachers' pedagogical content knowledge (PCK) in order to refine ideas about science teacher learning progressions and how to support them. Research published…
NASA Astrophysics Data System (ADS)
Lehner, Ed
2007-04-01
In much of the educational literature, researchers make little distinction between African-American students and students of the African Diaspora who immigrated to the United States. Failing to describe these salient student differences serves to perpetuate an inaccurate view of African-American school life. In today's large cities, students of the African Diaspora are frequently learning science in settings that are devoid of the resources and tools to fully support their success. While much of the scholarship unites these disparate groups, this article details the distinctive learning culture created when students from several groups of the African Diaspora learn biology together in a Brooklyn Suspension Center. Specifically this work explains how one student, Gabriel, functions in a biology class. A self-described black-Panamanian, Gabriel had tacitly resigned to not learning science, which then, in effect, precluded him from any further associated courses of study in science, and may have excluded him from the possibility of a science related career. This ethnography follows Gabriel's science learning as he engaged in cogenerative dialogue with teachers to create aligned learning and teaching practices. During the 5 months of this research, Gabriel drew upon his unique lifeworld and the depth of his hybridized cultural identity to produce limited, but nonetheless important demonstrations of science. Coexistent with his involvement in cogenerative dialogue, Gabriel helped to construct many classroom practices that supported a dynamic learning environment which produced small yet concrete examples of standards based biology. This study supports further investigation by the science education community to consider ways that students' lifeworld experiences can serve to structure and transform the urban science classroom.
Beginning science teachers' strategies for communicating with families
NASA Astrophysics Data System (ADS)
Bloom, Nena E.
Science learning occurs in both formal and informal spaces. Families are critical for developing student learning and interest in science because they provide important sources of knowledge, support and motivation. Bidirectional communication between teachers and families can be used to build relationships between homes and schools, leverage family knowledge of and support for learners, and create successful environments for science learning that will support both teaching and student learning. To identify the communication strategies of beginning science teachers, who are still developing their teaching practices, a multiple case study was conducted with seven first year secondary science teachers. The methods these teachers used to communicate with families, the information that was communicated and shared, and factors that shaped these teachers' continued development of communication strategies were examined. Demographic data, interview data, observations and documentation of communication through logs and artifacts were collected for this study. Results indicated that the methods teachers had access to and used for communication impacted the frequency and efficacy of their communication. Teachers and families communicated about a number of important topics, but some topics that could improve learning experiences and science futures for their students were rarely discussed, such as advancement in science, student learning in science and family knowledge. Findings showed that these early career teachers were continuing to learn about their communities and to develop their communication strategies with families. Teachers' familiarity with their school community, opportunities to practice strategies during preservice preparation and student teaching, their teaching environment, school policies, and learning from families and students in their school culture continued to shape and influence their views and communication strategies. Findings and implications for teacher preparation programs, teachers, schools and organizations are discussed.
ERIC Educational Resources Information Center
Grant, Brooke L.; Liu, Xiufeng; Gardella, Joseph A.
2015-01-01
This paper examines the roles that 52 university Science, Technology, Engineering, and Mathematics (STEM) students play in an Interdisciplinary Science and Engineering Partnership that connects several middle schools, high schools, institutions of higher learning, businesses, and community institutions. It also examines the support these students…
Multicultural Inquiry toward Demystifying Scientific Culture and Learning Science
ERIC Educational Resources Information Center
Meyer, Xenia S.; Crawford, Barbara A.
2015-01-01
This study investigated how student participation in an authentic scientific investigation may shape underrepresented students' views of science and support students in learning science. The research centered on the instructional approach used in a fifth-grade classroom to engage English language learning students from Latino backgrounds in a…
Reading Instruction in Science for Students with Learning Disabilities
ERIC Educational Resources Information Center
Kaldenberg, Erica R.; Watt, Sarah J.; Therrien, William J.
2015-01-01
As a growing number of students with learning disabilities (LD) receive science instruction in general education settings, students with LD continue to perform significantly lower than their non-disabled peers. The shift from textbook-driven instruction to inquiry-based approaches to science learning supports students who struggle with reading.…
NASA Astrophysics Data System (ADS)
Sun, Daner; Looi, Chee-Kit; Wu, Longkai; Xie, Wenting
2016-08-01
With advancements made in mobile technology, increasing emphasis has been paid to how to leverage the affordances of mobile technology to improve science learning and instruction. This paper reports on a science curriculum supported by an inquiry-based framework and mobile technologies. It was developed by teachers and researchers in a multiyear program of school-based research. The foci of this paper is on the design principles of the curriculum and its enactment, and the establishment of a teacher learning community. Through elucidating the design features of the innovative curriculum and evaluating teacher and student involvement in science instruction and learning, we introduce the science curriculum, called Mobilized 5E Science Curriculum (M5ESC), and present a representative case study of how one experienced teacher and her class adopted the curriculum. The findings indicate the intervention promoted this teacher's questioning competency, enabled her to interact with students frequently and flexibly in class, and supported her technology use for promoting different levels of cognition. Student learning was also improved in terms of test achievement and activity performance in and out of the classroom. We propose that the study can be used to guide the learning design of mobile technology-supported curricula, as well as teacher professional development for curriculum enactment.
NASA Astrophysics Data System (ADS)
Payton, Jamie; Barnes, Tiffany; Buch, Kim; Rorrer, Audrey; Zuo, Huifang
2015-07-01
This study is a follow-up to one published in computer science education in 2010 that reported preliminary results showing a positive impact of service learning on student attitudes associated with success and retention in computer science. That paper described how service learning was incorporated into a computer science course in the context of the Students & Technology in Academia, Research, and Service (STARS) Alliance, an NSF-supported broadening participation in computing initiative that aims to diversify the computer science pipeline through innovative pedagogy and inter-institutional partnerships. The current paper describes how the STARS Alliance has expanded to diverse institutions, all using service learning as a vehicle for broadening participation in computing and enhancing attitudes and behaviors associated with student success. Results supported the STARS model of service learning for enhancing computing efficacy and computing commitment and for providing diverse students with many personal and professional development benefits.
NASA Astrophysics Data System (ADS)
Stylianou, Agni
2003-06-01
Digital texts which are based on hypertext and hypermedia technologies are now being used to support science learning. Hypertext offers certain opportunities for learning as well as difficulties that challenge readers to become metacognitively aware of their navigation decisions in order to trade both meaning and structure while reading. The goal of this study was to investigate whether supporting sixth grade students to monitor and regulate their navigation behavior while reading from hypertext would lead to better navigation and learning. Metanavigation support in the form of prompts was provided to groups of students who used a hypertext system called CoMPASS to complete a design challenge. The metanavigation prompts aimed at encouraging students to understand the affordances of the navigational aids in CoMPASS and use them to guide their navigation. The study was conducted in a real classroom setting during the implementation of CoMPASS in sixth grade science classes. Multiple sources of group and individual data were collected and analyzed. Measures included student's individual performance in a pre-science knowledge test, the Metacognitive Awareness of Reading Strategies Inventory (MARSI), a reading comprehension test and a concept map test. Process measures included log file information that captured group navigation paths during the use of CoMPASS. The results suggested that providing metanavigation support enabled the groups to make coherent transitions among the text units. Findings also revealed that reading comprehension, presence of metanavigation support and prior domain knowledge significantly predicted students' individual understanding of science. Implications for hypertext design and literacy research fields are discussed.
Valid and Reliable Science Content Assessments for Science Teachers
ERIC Educational Resources Information Center
Tretter, Thomas R.; Brown, Sherri L.; Bush, William S.; Saderholm, Jon C.; Holmes, Vicki-Lynn
2013-01-01
Science teachers' content knowledge is an important influence on student learning, highlighting an ongoing need for programs, and assessments of those programs, designed to support teacher learning of science. Valid and reliable assessments of teacher science knowledge are needed for direct measurement of this crucial variable. This paper…
NASA Astrophysics Data System (ADS)
Sakiz, Gonul
2017-01-01
Background: In recent research, affective learning environments and affective support have been receiving increasing attention for their roles in stimulating students' learning outcomes. Despite its raising importance, little is known about affective support in educational contexts in developing countries. Moreover, international student assessment programmes (e.g. PISA and TIMSS) reveal poor science proficiency of students in most of those countries, which provokes the question of how to make positive changes in students' perspectives and attitudes in science.
ERIC Educational Resources Information Center
Song, Yanjie
2016-01-01
This paper reports on a study situated in a one-year project "Bring Your Own Device (BYOD) for Mobile Knowledge Building," aiming at investigating how primary school students developed their inquiry skills in science learning in BYOD-supported learning environments. Student perceptions of the BYOD-supported inquiry experience were also…
NASA Astrophysics Data System (ADS)
Han, Alyson Kim
According to the California Commission on Teacher Credentialing (2001), one in three students speaks a language other than English. Additionally, the Commission stated that a student is considered to be an English learner if the second language acquisition is English. In California more than 1.4 million English learners enter school speaking a variety of languages, and this number continues to rise. There is an imminent need to promote instructional strategies that support this group of diverse learners. Although this was not a California study, the results derived from the nationwide participants' responses provided a congruent assessment of the basic need to provide effective science teaching strategies to all English learners. The purpose of this study was to examine the status of elementary science teaching practices used with English learners in kindergarten through fifth grade in public mathematics, science, and technology-centered elementary magnet schools throughout the country. This descriptive research was designed to provide current information and to identify trends in the areas of curriculum and instruction for English learners in science themed magnet schools. This report described the status of elementary (grades K-5) school science instruction for English learners based on the responses of 116 elementary school teachers: 59 grade K-2, and 57 grade 3-5 teachers. Current research-based approaches support incorporating self-directed learning strategy, expository teaching strategy, active listening strategies, questioning strategies, wait time strategy, small group strategy, peer tutoring strategy, large group learning strategy, demonstrations strategy, formal debates strategy, review sessions strategy, mediated conversation strategy, cooperative learning strategy, and theme-based instruction into the curriculum to assist English learners in science education. Science Technology Society (STS) strategy, problem-based learning strategy, discovery learning strategy, constructivist learning strategy, learning cycle strategy, SCALE technique strategy, conceptual change strategy, inquiry-based strategy, cognitive academic language learning approach (CALLA) strategy, and learning from text strategy provide effective science teaching instruction to English learners. These science instructional strategies assist elementary science teachers by providing additional support to make science instruction more comprehensible for English learners.
Drawing Connections Across Conceptually Related Visual Representations in Science
NASA Astrophysics Data System (ADS)
Hansen, Janice
This dissertation explored beliefs about learning from multiple related visual representations in science, and compared beliefs to learning outcomes. Three research questions were explored: 1) What beliefs do pre-service teachers, non-educators and children have about learning from visual representations? 2) What format of presenting those representations is most effective for learning? And, 3) Can children's ability to process conceptually related science diagrams be enhanced with added support? Three groups of participants, 89 pre-service teachers, 211 adult non-educators, and 385 middle school children, were surveyed about whether they felt related visual representations presented serially or simultaneously would lead to better learning outcomes. Two experiments, one with adults and one with child participants, explored the validity of these beliefs. Pre-service teachers did not endorse either serial or simultaneous related visual representations for their own learning. They were, however, significantly more likely to indicate that children would learn better from serially presented diagrams. In direct contrast to the educators, middle school students believed they would learn better from related visual representations presented simultaneously. Experimental data indicated that the beliefs adult non-educators held about their own learning needs matched learning outcomes. These participants endorsed simultaneous presentation of related diagrams for their own learning. When comparing learning from related diagrams presented simultaneously to learning from the same diagrams presented serially indicate that those in the simultaneously condition were able to create more complex mental models. A second experiment compared children's learning from related diagrams across four randomly-assigned conditions: serial, simultaneous, simultaneous with signaling, and simultaneous with structure mapping support. Providing middle school students with simultaneous related diagrams with support for structure mapping led to a lessened reliance on surface features, and a better understanding of the science concepts presented. These findings suggest that presenting diagrams serially in an effort to reduce cognitive load may not be preferable for learning if making connections across representations, and by extension across science concepts, is desired. Instead, providing simultaneous diagrams with structure mapping support may result in greater attention to the salient relationships between related visual representations as well as between the representations and the science concepts they depict.
ERIC Educational Resources Information Center
Oshima, Jun; Oshima, Ritsuko; Murayama, Isao; Inagaki, Shigenori; Takenaka, Makiko; Nakayama, Hayashi; Yamaguchi, Etsuji
2004-01-01
This paper reports design experiments on two Japanese elementary science lesson units in a sixth-grade classroom supported by computer support for collaborative learning (CSCL) technology as a collaborative reflection tool. We took different approaches in the experiments depending on their instructional goals. In the unit 'air and how things…
Science Learning at Home: Involving Families
ERIC Educational Resources Information Center
Crawford, Elizabeth Outlaw; Heaton, Emily T.; Heslop, Karen; Kixmiller, Kassandra
2009-01-01
Families' involvement in their children's science learning at home has numerous benefits, especially when they support children's self-initiated investigations. In a position statement on parental involvement in science education, the National Science Teachers Association (NSTA 2009) stresses the role of parents in the daily reinforcement of…
Designing a Technology-Enhanced Learning Environment to Support Scientific Modeling
ERIC Educational Resources Information Center
Wu, Hsin-Kai; Hsu, Ying-Shao; Hwang, Fu-Kwun
2010-01-01
Modeling of a natural phenomenon is of value in science learning and increasingly emphasized as an important component of science education. However, previous research has shown that secondary school students encounter difficulties when engaging in modeling activities and need substantial support in order to create meaningful scientific models.…
Interactive Teaching as a Recruitment and Training Tool for K-12 Science Teachers
NASA Astrophysics Data System (ADS)
Rosenberg, J. L.
2004-12-01
The Science, Technology, Engineering, and Mathematics Teacher Preparation (STEMTP) program at the University of Colorado has been designed to recruit and train prospective K-12 science teachers while improving student learning through interactive teaching. The program has four key goals: (1) recruit undergraduate students into K-12 science education, (2) provide these prospective teachers with hands-on experience in an interactive teaching pedagogy, (3) create an intergrated program designed to support (educationally, socially, and financially) and engage these prospective science teachers up until they obtain liscensure and/or their masters degree in education, and (4) improve student learning in large introductory science classes. Currently there are 31 students involved in the program and a total of 72 students have been involved in the year and a half it has been in existence. I will discuss the design of the STEMTP program, the success in recruiting K-12 science teachers, and the affect on student learning in a large lecture class of implementing interactive learning pedagogies by involving these prospective K-12 science teachers. J. L. Rosenberg would like to acknowledge the NSF Astronomy and Astrophysics Fellowship for support for this work. The course transformation project is also supported by grants from the National Science Foundation.
The Development of Teaching Skills to Support Active Learning in University Science (ALIUS)
ERIC Educational Resources Information Center
Bedgood, Danny R., Jr.; Bridgeman, Adam J.; Buntine, Mark; Mocerino, Mauro; Southam, Daniel; Lim, Kieran F.; Gardiner, Michael; Yates, Brian; Morris, Gayle; Pyke, Simon M.; Zadnik, Marjan
2010-01-01
This paper describes an Australian Learning and Teaching Council funded project for which Learning Design is encompassed in the broadest sense. ALIUS (Active Learning In University Science) takes the design of learning back to the learning experiences created for students. ALIUS is not about designing a particular activity, or subject, or course,…
Towards a Learning Progression of Energy
ERIC Educational Resources Information Center
Neumann, Knut; Viering, Tobias; Boone, William J.; Fischer, Hans E.
2013-01-01
This article presents an empirical study on an initial learning progression of energy, a concept of central importance to the understanding of science. Learning progressions have been suggested as one vehicle to support the systematic and successful teaching of core science concepts. Ideally, a learning progression will provide teachers with a…
NASA Astrophysics Data System (ADS)
Fleer, Marilyn; March, Sue
2015-09-01
The international literature on science learning in inclusive settings has a long history, but it is generally very limited in scope. Few studies have been undertaken that draw upon a cultural-historical reading of inclusive pedagogy, and even less in the area of science education. In addition, we know next to nothing about the science learning of preschool children with visual impairment using cultural-historical theory. This paper seeks to fill this gap by presenting a study of one child with Albinism who participated in a unit of early childhood science where fairy tales were used for learning about the concepts of sound and growth. This paper reports upon the social and material conditions that were created to support learning in the preschool, whilst also examining how the learning of growth and sound were supported at home. The study found three new pedagogical features for inclusion: Imagination in science; Ongoing scientific narrative; and Scientific mirroring. It was found that when a dialectical reading of home and centre practices feature, greater insights into inclusive pedagogy for science learning are afforded, and a view of science as a collective enterprise emerges. It is argued that a cultural-historical conception of inclusion demands that the social conditions, rather than the biology of the child, is foregrounded, and through this greater insights into how science learning for children with visual impairment is gained.
ERIC Educational Resources Information Center
Scogin, Stephen C.; Stuessy, Carol L.
2015-01-01
Next Generation Science Standards (NGSS) call for integrating knowledge and practice in learning experiences in K-12 science education. "PlantingScience" (PS), an ideal curriculum for use as an NGSS model, is a computer-mediated collaborative learning environment intertwining scientific inquiry, classroom instruction, and online…
Teacher Learning from Girls' Informal Science Experiences
ERIC Educational Resources Information Center
Birmingham, Daniel J.
2013-01-01
School science continues to fail to engage youth from non-dominant communities (Carlone, Huan-Frank & Webb, 2011). However, recent research demonstrates that informal science learning settings support both knowledge gains and increased participation in science among youth from non-dominant communities (Dierking, 2007; Falk et al., 2007; HFRP,…
ERIC Educational Resources Information Center
Liang, Ling L.; Gabel, Dorothy L.
2005-01-01
This study examines the effectiveness of a new constructivist curriculum model (Powerful Ideas in Physical Science) in improving prospective teachers' understanding of science concepts, in fostering a learning environment supporting conceptual understanding, and in promoting positive attitudes toward learning and teaching science and chemistry in…
Chipps, Jennifer; Kerr, Jane; Brysiewicz, Petra; Walters, Fiona
2015-02-01
Learning management systems have been widely advocated for the support of distance learning. In low-resource settings, the uptake of these systems by students has been mixed. This study aimed to identify, through the use of the Technology Acceptance Model, the individual, organizational, and technological factors that could be influencing the use of learning management systems. A simple quantitative descriptive survey was conducted of nursing and health science students at a university in South Africa as part of their first exposure to a learning management system. A total of 274 respondents (56.7%) completed the survey questionnaire, made up of 213 nursing respondents (87.7%) and 61 health sciences respondents (25%). Overall, the respondents found the learning management system easy to use and useful for learning. There were significant differences between the two groups of respondents, with the respondents from health sciences being both younger and more computer literate. The nursing respondents, who received more support and orientations, reported finding the learning management system more useful. Recommendations are made for training and support to ensure uptake.
ERIC Educational Resources Information Center
Feliciano, Josephine S.; Mandapat, Louie Carl R.; Khan, Concepcion L.
2013-01-01
This paper presents the open learning initiatives of the Science Education Institute of the Department of Science and Technology to overcome certain barriers, such as enabling access, cost of replication, timely feedback, monitoring and continuous improvement of learning modules. Using an open-education model, like MIT's (Massachusetts Institute…
NASA Astrophysics Data System (ADS)
Campbell, Todd; Longhurst, Max L.; Wang, Shiang-Kwei; Hsu, Hui-Yin; Coster, Dan C.
2015-10-01
While access to computers, other technologies, and cyber-enabled resources that could be leveraged for enhancing student learning in science is increasing, generally it has been found that teachers use technology more for administrative purposes or to support traditional instruction. This use of technology, especially to support traditional instruction, sits in opposition to most recent standards documents in science education that call for student involvement in evidence-based sense-making activities. Many see technology as a potentially powerful resource that is reshaping society and has the potential to do the same in science classrooms. To consider the promise of technology in science classrooms, this research investigated the impact of a professional development project focused on enhancing teacher and student learning by using information and communication technologies (ICTs) for engaging students in reformed-based instruction. More specifically, these findings revealed positive teacher outcomes with respect to reformed-based and technology-supported instruction and increased ICT and new literacies skills. When considering students, the findings revealed positive outcomes with respect to ICT and new literacies skills and student achievement in science.
Marshall, Thomas; Champagne-Langabeer, Tiffiany; Castelli, Darla; Hoelscher, Deanna
2017-12-01
To present research models based on artificial intelligence and discuss the concept of cognitive computing and eScience as disruptive factors in health and life science research methodologies. The paper identifies big data as a catalyst to innovation and the development of artificial intelligence, presents a framework for computer-supported human problem solving and describes a transformation of research support models. This framework includes traditional computer support; federated cognition using machine learning and cognitive agents to augment human intelligence; and a semi-autonomous/autonomous cognitive model, based on deep machine learning, which supports eScience. The paper provides a forward view of the impact of artificial intelligence on our human-computer support and research methods in health and life science research. By augmenting or amplifying human task performance with artificial intelligence, cognitive computing and eScience research models are discussed as novel and innovative systems for developing more effective adaptive obesity intervention programs.
Lessons Learned from Optical Payload for Lasercomm Science (OPALS) Mission Operations
NASA Technical Reports Server (NTRS)
Sindiy, Oleg V.; Abrahamson, Matthew J.; Biswas, Abhijit; Wright, Malcolm W.; Padams, Jordan H.; Konyha, Alexander L.
2015-01-01
This paper provides an overview of Optical Payload for Lasercomm Science (OPALS) activities and lessons learned during mission operations. Activities described cover the periods of commissioning, prime, and extended mission operations, during which primary and secondary mission objectives were achieved for demonstrating space-to-ground optical communications. Lessons learned cover Mission Operations System topics in areas of: architecture verification and validation, staffing, mission support area, workstations, workstation tools, interfaces with support services, supporting ground stations, team training, procedures, flight software upgrades, post-processing tools, and public outreach.
ERIC Educational Resources Information Center
Hottecke, Dietmar; Silva, Cibelle Celestino
2011-01-01
Teaching and learning with history and philosophy of science (HPS) has been, and continues to be, supported by science educators. While science education standards documents in many countries also stress the importance of teaching and learning with HPS, the approach still suffers from ineffective implementation in school science teaching. In order…
Preschool children's Collaborative Science Learning Scaffolded by Tablets
NASA Astrophysics Data System (ADS)
Fridberg, Marie; Thulin, Susanne; Redfors, Andreas
2017-06-01
This paper reports on a project aiming to extend the current understanding of how emerging technologies, i.e. tablets, can be used in preschools to support collaborative learning of real-life science phenomena. The potential of tablets to support collaborative inquiry-based science learning and reflective thinking in preschool is investigated through the analysis of teacher-led activities on science, including children making timelapse photography and Slowmation movies. A qualitative analysis of verbal communication during different learning contexts gives rise to a number of categories that distinguish and identify different themes of the discussion. In this study, groups of children work with phase changes of water. We report enhanced and focused reasoning about this science phenomenon in situations where timelapse movies are used to stimulate recall. Furthermore, we show that children communicate in a more advanced manner about the phenomenon, and they focus more readily on problem solving when active in experimentation or Slowmation producing contexts.
NASA Astrophysics Data System (ADS)
Loomis, Molly
This research explored the relationships among societal, organizational, and visitor assumptions about learning in a science center. The study combined a sociocultural theory of learning with a constructivist theory of organizations to examine empirical links among the history of the Exploratorium (founded in 1969 and located in San Francisco, California), its organizational practices, and family activity at its exhibits. The study focused on three perspectives on science learning in a science center: (1) the societal perspective, which traced assumptions about science learning to the history of science centers; (2) the organizational perspective, which documented the ways that assumptions about science learning were manifested in historic museum exhibits; and (3) the family perspective, which documented the assumptions about science learning that characterized family activity at historic exhibits. All three perspectives uncovered a tension between the goals of supporting public empowerment on the one hand and preserving scientific authority on the other. Findings revealed this tension to be grounded in the social context of the organization's development, where ideas about promoting democracy and preserving the authority of science intersected. The tension was manifested in museum exhibits, which had as their task addressing the dual purposes of supporting all visitors, while also supporting committed visitors. The tension was also evident in the activity of families, who echoed sentiments about potential for their own empowerment but deferred to scientific authority. The study draws on critiques of a hidden curriculum in schools in order to explore the relationship between empowerment and authority in science centers, specifically as they are conveyed in the explicit and underlying missions of the Exploratorium. Findings suggest the need for science centers to engage in ongoing critical reflection and also lend empirical justification to the need for science centers to think in new and critical ways about whom the serve, as well as how and why they serve their audiences.
School Innovation in Science: A Model for Supporting School and Teacher Development
ERIC Educational Resources Information Center
Tytler, Russell
2007-01-01
"School Innovation in Science" represents a model, developed through working with more than 200 Victorian schools, to improve science teaching and learning. SIS works at the level of the science team and the teacher, providing resources to challenge and support the change process. Its emphasis is on strategic planning supported by a…
Science Hobbyists: Active Users of the Science-Learning Ecosystem
ERIC Educational Resources Information Center
Corin, Elysa N.; Jones, M. Gail; Andre, Thomas; Childers, Gina M.; Stevens, Vanessa
2017-01-01
Science hobbyists engage in self-directed, free-choice science learning and many have considerable expertise in their hobby area. This study focused on astronomy and birding hobbyists and examined how they used organizations to support their hobby engagement. Interviews were conducted with 58 amateur astronomers and 49 birders from the midwestern…
Affordances of ICT in Science Learning: Implications for an Integrated Pedagogy. Research Report
ERIC Educational Resources Information Center
Webb, Mary E.
2005-01-01
This paper presents an analysis of how affordances of ICT-rich environments identified from a recent review of the research literature can support students in learning science in schools within a proposed framework for pedagogical practice in science education. Furthermore other pedagogical and curriculum innovations in science education…
ERIC Educational Resources Information Center
Chen, Guang; Xin, Youlong; Chen, Nian-Shing
2017-01-01
Informal science learning has drawn the attention of researchers, educators and museum administrators for a long time. However, the problem of how to better support visitors to be more engaged while visiting exhibits and improve informal science learning performance is still missing. Context-aware technologies have the advantages of fostering…
ERIC Educational Resources Information Center
Sun, Daner; Looi, Chee-Kit
2018-01-01
This paper explores the crossover between formal learning and learning in informal spaces supported by mobile technology, and proposes design principles for educators to carry out a science curriculum, namely Boundary Activity-based Science Curriculum (BAbSC). The conceptualization of the boundary object, and the principles of boundary activity as…
A New Virtual and Remote Experimental Environment for Teaching and Learning Science
NASA Astrophysics Data System (ADS)
Lustigova, Zdena; Lustig, Frantisek
This paper describes how a scientifically exact and problem-solving-oriented remote and virtual science experimental environment might help to build a new strategy for science education. The main features are: the remote observations and control of real world phenomena, their processing and evaluation, verification of hypotheses combined with the development of critical thinking, supported by sophisticated relevant information search, classification and storing tools and collaborative environment, supporting argumentative writing and teamwork, public presentations and defense of achieved results, all either in real presence, in telepresence or in combination of both. Only then real understanding of generalized science laws and their consequences can be developed. This science learning and teaching environment (called ROL - Remote and Open Laboratory), has been developed and used by Charles University in Prague since 1996, offered to science students in both formal and informal learning, and also to science teachers within their professional development studies, since 2003.
NASA Astrophysics Data System (ADS)
Welstead, C.; Forder, S. E.
2014-12-01
This presentation is an overview of best practices in the design of continuing education courses and professional development workshops for Science teachers to enable them to transition to the NGSS; to share their enthusiasm in a way that engages students and leads to increased student achievement; and to become change agents in their educational settings and in their communities, in order to garner widespread support for an inquiry-based, NGSS-based curriculum. Proposed strands for teacher preparation programmes include a focus on higher level conceptual thinking; problem-solving opportunities for learning; inquiry-based learning; experiential learning and fieldwork; the authentic and effective incorporation of technology in teaching and learning; integrated and cross-curricular teaching and learning; learning that supports diversity and equity; and the appropriate, reliable and valid assessment of understanding. A series of three courses has been developed to prepare teachers in a graduate programme for implementing an inquiry-based, standards-based Science curriculum that incorporates the above-mentioned strands.
Views from the Chalkface. Values of Teaching Nature of Science in Hong Kong
NASA Astrophysics Data System (ADS)
Wan, Zhi Hong; Wong, Siu Ling
2016-12-01
Although the goal of developing school students' understanding of nature of science (NOS) has long been advocated, there is still a lack of research that focuses on probing how science teachers, a kind of major stakeholder in NOS instruction, perceive the values of teaching NOS. Through semi-structured interviews, this study investigated the views of 15 Hong Kong in-service senior secondary science teachers about the values of teaching NOS. These values as perceived by the teachers fall into two types. The first type is related to students' learning of science in the classroom and involves: (i) facilitating the study of subject knowledge, (ii) increasing the interest in learning science, (iii) supporting the conduct of scientific inquiry, (iv) meeting the needs of public examinations, and (v) fulfilling the requirement of learning science. The second type goes beyond learning science and includes (i) developing thinking skills, (ii) cultivating scientific ethics in students, and (iii) supporting the participation in public decisions on socioscientific issues. Although rich relationships were perceived by these teachers between NOS instruction and students' learning of science, few values were stated from broad social and cultural perspectives. Suggestions are made about developing teachers' views of the values of teaching NOS so as to influence their intention of teaching it.
Integrating Reading into Middle School Science: What We Did, Found and Learned
ERIC Educational Resources Information Center
Fang, Zhihui; Lamme, Linda; Pringle, Rose; Patrick, Jennifer; Sanders, Jennifer; Zmach, Courtney; Charbonnet, Sara; Henkel, Melissa
2008-01-01
Recent calls for border crossing between reading and science have heightened the need to support science teachers in integrating reading into science and to verify the robustness of this approach in the context of inquiry-based science. In this paper, we share what we did, found, and learned in a collaborative project in which a team of…
ERIC Educational Resources Information Center
Agunbiade, Esther; Ngcoza, Kenneth; Jawahar, Kavish; Sewry, Joyce
2017-01-01
The Khanya Maths and Science Club (KMSC) is an afterschool science/maths enrichment programme for learners in Grades 7-12 supported by postgraduate students and academic staff volunteers. This research seeks to explore the relationship between participating learners' attitude toward learning science and the characteristics of this afterschool…
The Design and Use of Educative Curricular Supports for Text-Based Discussions in Science
ERIC Educational Resources Information Center
Arias, Anna Maria; Palincsar, Annemarie S.; Davis, Elizabeth A.
2015-01-01
This article identifies the principles that informed the design of educative curriculum supports for teaching science texts and reports how elementary teachers chose to use the supports, which included identified learning goals, discussion moves to support sensemaking with the text, and narratives of teachers' uses of text in science teaching. The…
A Progressive Reading, Writing, and Artistic Module to Support Scientific Literacy.
Stockwell, Stephanie B
2016-03-01
Scientific literacy, marked by the ability and willingness to engage with scientific information, is supported through a new genre of citizen science-course-based research in association with undergraduate laboratories. A three-phased progressive learning module was developed to enhance student engagement in such contexts while supporting three learning outcomes: I) present an argument based on evidence, II) analyze science and scientists within a social context, and III) experience, reflect upon, and communicate the nature of scientific discovery. Phase I entails guided reading and reflection of citizen science-themed texts. In Phase II, students write, peer-review, and edit position and counterpoint papers inspired by the following prompt, "Nonscientists should do scientific research." Phase III involves two creative assignments intended to communicate the true nature of science. Students work collaboratively to develop public service announcement-like poster campaigns to debunk a common misconception about the nature of science or scientists. Individually, they create a work of art to communicate a specific message about the raw experience of performing scientific research. Suggestions for implementation and modifications are provided. Strengths of the module include the development of transferable skills, temporal distribution of grading demands, minimal in-class time needed for implementation, and the inclusion of artistic projects to support affective learning domains. This citizen science-themed learning module is an excellent complement to laboratory coursework, as it serves to surprise, challenge, and inspire students while promoting disciplinary values.
ERIC Educational Resources Information Center
National Science Teachers Association (NJ1), 2007
2007-01-01
The National Science Teachers Association (NSTA) recommends that schools and teacher preparation programs provide new teachers of science with comprehensive induction programs. Research suggests these programs should address specifics for teachers of science, involve trained mentors, provide adequate time to support continual learning of new…
Fostering Distributed Science Learning through Collaborative Technologies
ERIC Educational Resources Information Center
Vazquez-Abad, Jesus; Brousseau, Nancy; Guillermina, Waldegg C.; Vezina, Mylene; Martinez, Alicia D.; de Verjovsky, Janet Paul
2004-01-01
TACTICS (French and Spanish acronym standing for Collaborative Work and Learning in Science with Information and Communications Technologies) is an ongoing project aimed at investigating a distributed community of learning and practice in which information and communications technologies (ICT) take the role of collaborative tools to support social…
ERIC Educational Resources Information Center
Bruckermann, Till; Aschermann, Ellen; Bresges, André; Schlüter, Kirsten
2017-01-01
Promoting preservice science teachers' experimentation competency is required to provide a basis for meaningful learning through experiments in schools. However, preservice teachers show difficulties when experimenting. Previous research revealed that cognitive scaffolding promotes experimentation competency by structuring the learning process,…
Science-for-Teaching Discourse in Science Teachers' Professional Learning Communities
NASA Astrophysics Data System (ADS)
Lohwasser, Karin
Professional learning communities (PLCs) provide an increasingly common structure for teachers' professional development. The effectiveness of PLCs depends on the content and quality of the participants' discourse. This dissertation was conducted to add to an understanding of the science content needed to prepare to teach science, and the discourse characteristics that create learning opportunities in teachers' PLCs. To this end, this study examined how middle school science teachers in three PLCs addressed science-for-teaching, and to what effect. Insight into discourse about content knowledge for teaching in PLCs has implications for the analysis, interpretation, and support of teachers' professional discourse, their collaborative learning, and consequently their improvement of practice. This dissertation looked closely at the hybrid space between teachers' knowledge of students, of teaching, and of science, and how this space was explored in the discourse among teachers, and between teachers and science experts. At the center of the study were observations of three 2-day PLC cycles in which participants worked together to improve the way they taught their curriculum. Two of the PLC cycles were supported, in part, by a science expert who helped the teachers explore the science they needed for teaching. The third PLC worked without such support. The following overarching questions were explored in the three articles of this dissertation: (1) What kind of science knowledge did teachers discuss in preparation for teaching? (2) How did the teachers talk about content knowledge for science teaching, and to what effect for their teaching practice? (3) How did collaborating teachers' discursive accountabilities provide opportunities for furthering the teachers' content knowledge for science teaching? The teachers' discourse during the 2-day collaboration cycles was analyzed and interpreted based on a sociocultural framework that included concepts from the practice-based theory of content knowledge for teaching developed by D. L. Ball, Thames, and Phelps (2008) and the Accountable Talk framework by Michaels, O'Connor, & Resnick (2008). The study's findings could provide justification for and ideas on how to provide targeted support for PLCs to make teachers' work on science knowledge more applicable to lesson planning, teaching, and student learning.
Promising Teacher Practices: Students' Views about Their Science Learning
ERIC Educational Resources Information Center
Moeed, Azra; Easterbrook, Matthew
2016-01-01
Internationally, conceptual and procedural understanding, understanding the Nature of Science, and scientific literacy are considered worthy goals of school science education in modern times. The empirical study presented here reports on promising teacher practices that in the students' views afford learning opportunities and support their science…
ERIC Educational Resources Information Center
Devolder, A.; van Braak, J.; Tondeur, J.
2012-01-01
Despite the widespread assumption that students require scaffolding support for self-regulated learning (SRL) processes in computer-based learning environments (CBLEs), there is little clarity as to which types of scaffolds are most effective. This study offers a literature review covering the various scaffolds that support SRL processes in the…
ERIC Educational Resources Information Center
Su, C. Y.; Chiu, C. H.; Wang, T. I.
2010-01-01
This study incorporates the 5E learning cycle strategy to design and develop Sharable Content Object Reference Model-conformant materials for elementary science education. The 5E learning cycle that supports the constructivist approach has been widely applied in science education. The strategy consists of five phases: engagement, exploration,…
Supporting Teachers and Technicians in the Delivery of High-Quality, Effective Practical Science
ERIC Educational Resources Information Center
Langley, Mark
2014-01-01
Science is at heart a practical subject, but the perception of what makes good teaching and learning through practical science is often misunderstood. Through working with teachers on professional development courses at the UK's National Science Learning Centre, and drawing on work carried out by other organisations, we present some thoughts and…
ERIC Educational Resources Information Center
Scott, Timothy P.; Thigpin, Sara S.; Bentz, Adrienne O.
2017-01-01
The College of Science at Texas A&M University developed a transfer student learning community with one 2-year institution after receiving National Science Foundation funds for scholarships to support students majoring in engineering and science. To date, 89% of the students that matriculated to Texas A&M University under this grant have…
ERIC Educational Resources Information Center
Sadler, Troy D.; Romine, William L.; Topçu, Mustafa Sami
2016-01-01
Science educators have presented numerous conceptual and theoretical arguments in favor of teaching science through the exploration of socio-scientific issues (SSI). However, the empirical knowledge base regarding the extent to which SSI-based instruction supports student learning of science content is limited both in terms of the number of…
ERIC Educational Resources Information Center
Richmond, Gail; Parker, Joyce M.; Kaldaras, Leonora
2016-01-01
The Next-Generation Science Standards (NGSS) call for a different approach to learning science. They promote three-dimensional (3D) learning that blends disciplinary core ideas, crosscutting concepts and scientific practices. In this study, we examined explanations constructed by secondary science teacher candidates (TCs) as a scientific practice…
Engaging in vocabulary learning in science: the promise of multimodal instruction
NASA Astrophysics Data System (ADS)
Townsend, Dianna; Brock, Cynthia; Morrison, Jennifer D.
2018-02-01
To a science 'outsider', science language often appears unnecessarily technical and dense. However, scientific language is typically used with the goal of being concise and precise, which allows those who regularly participate in scientific discourse communities to learn from each other and build upon existing scientific knowledge. One essential component of science language is the academic vocabulary that characterises it. This mixed-methods study investigates middle school students' (N = 59) growth in academic vocabulary as it relates to their teacher's instructional practices that supported academic language development. Students made significant gains in their production of general academic words, t(57) = 2.32, p = .024 and of discipline-specific science words, t(57) = 3.01, p = .004 in science writing. Results from the qualitative strand of this inquiry contextualised the students' learning of academic vocabulary as it relates to their teacher's instructional practices and intentions as well as the students' perceptions of their learning environment. These qualitative findings reveal that both the students and their teacher articulated that the teacher's intentional use of resources supported students' academic vocabulary growth. Implications for research and instruction with science language are shared.
Science: A Second Language for ELL Students
ERIC Educational Resources Information Center
Nabors, Martha L.; Edwards, Linda Carol
2011-01-01
In today's inclusive classrooms, teachers are challenged to incorporate a variety of instructional activities designed to support learning for all--including children who are English Language Learners (ELLs). In science lessons at the early childhood level, ELLs not only must learn science concepts, but also the vocabulary essential for mastering…
Science Learning via Multimedia Portal Resources: The Scottish Case
ERIC Educational Resources Information Center
Elliot, Dely; Wilson, Delia; Boyle, Stephen
2014-01-01
Scotland's rich heritage in the field of science and engineering and recent curricular developments led to major investment in education to equip pupils with improved scientific knowledge and skills. However, due to its abstract and conceptual nature, learning science can be challenging. Literature supports the role of multimedia technology in…
ERIC Educational Resources Information Center
Wilson, Rachel E.; Kittleson, Julie M.
2012-01-01
Science education researchers are concerned with preparing pre-service elementary teachers (PSETs) to teach in ways that support students to learn science in a meaningful way. Preparing elementary teachers to teach science is complicated given that they tend to be generalists and may not have the same experience with science as secondary teachers.…
NASA Astrophysics Data System (ADS)
Sherwood, Carrie-Anne
At this pivotal moment in time, when the proliferation of mobile technologies in our daily lives is influencing the relatively fast integration of these technologies into classrooms, there is little known about the process of student learning, and the role of collaboration, with app-based learning environments on mobile devices. To address this gap, this dissertation, comprised of three manuscripts, investigated three pairs of sixth grade students' synchronous collaborative use of a tablet-based science app called WeInvestigate . The first paper illustrated the methodological decisions necessary to conduct the study of student synchronous and face-to-face collaboration and knowledge building within the complex WeInvestigate and classroom learning environments. The second paper provided the theory of collaboration that guided the design of supports in WeInvestigate, and described its subsequent development. The third paper detailed the interactions between pairs of students as they engaged collaboratively in model construction and explanation tasks using WeInvestigate, hypothesizing connections between these interactions and the designed supports for collaboration. Together, these manuscripts provide encouraging evidence regarding the potential of teaching and learning with WeInvestigate. Findings demonstrated that the students in this study learned science through WeInvestigate , and were supported by the app - particularly the collabrification - to engage in collaborative modeling of phenomena. The findings also highlight the potential of the multiple methods used in this study to understand students' face-to-face and technology-based interactions within the "messy" context of an app-based learning environment and a traditional K-12 classroom. However, as the third manuscript most clearly illustrates, there are still a number of modifications to be made to the WeInvestigate technology before it can be optimally used in classrooms to support students' collaborative science endeavors. The findings presented in this dissertation contribute in theoretical, methodological, and applied ways to the fields of science education, educational technology, and the learning sciences, and point to exciting possibilities for future research on students' collaborations using future iterations of WeInvestigate with more embedded supports; comparative studies of students' use of synchronous collaboration; and studies focused on elucidating the role of the teacher using WeInvestigate - and similar mobile platforms - for teaching and learning.
ERIC Educational Resources Information Center
Campbell, Todd; Longhurst, Max; Duffy, Aaron M.; Wolf, Paul G.; Nagy, Robin
2012-01-01
Teaching science as inquiry is advocated in all national science education documents and by leading science and science teaching organizations. In addition to teaching science as inquiry, we recognize that learning experiences need to connect to students' lives. This article details how we use a sequence of faded scaffolded inquiry supported by…
Science That Matters: Exploring Science Learning and Teaching in Primary Schools
ERIC Educational Resources Information Center
Fitzgerald, Angela; Smith, Kathy
2016-01-01
To help support primary school students to better understand why science matters, teachers must first be supported to teach science in ways that matter. In moving to this point, this paper identifies the dilemmas and tensions primary school teachers face in the teaching of science. The balance is then readdressed through a research-based…
Jordan, Rebecca; Gray, Steven; Sorensen, Amanda; Newman, Greg; Mellor, David; Newman, Greg; Hmelo-Silver, Cindy; LaDeau, Shannon; Biehler, Dawn; Crall, Alycia
2016-06-01
Citizen science has generated a growing interest among scientists and community groups, and citizen science programs have been created specifically for conservation. We examined collaborative science, a highly interactive form of citizen science, which we developed within a theoretically informed framework. In this essay, we focused on 2 aspects of our framework: social learning and adaptive management. Social learning, in contrast to individual-based learning, stresses collaborative and generative insight making and is well-suited for adaptive management. Adaptive-management integrates feedback loops that are informed by what is learned and is guided by iterative decision making. Participants engaged in citizen science are able to add to what they are learning through primary data collection, which can result in the real-time information that is often necessary for conservation. Our work is particularly timely because research publications consistently report a lack of established frameworks and evaluation plans to address the extent of conservation outcomes in citizen science. To illustrate how our framework supports conservation through citizen science, we examined how 2 programs enacted our collaborative science framework. Further, we inspected preliminary conservation outcomes of our case-study programs. These programs, despite their recent implementation, are demonstrating promise with regard to positive conservation outcomes. To date, they are independently earning funds to support research, earning buy-in from local partners to engage in experimentation, and, in the absence of leading scientists, are collecting data to test ideas. We argue that this success is due to citizen scientists being organized around local issues and engaging in iterative, collaborative, and adaptive learning. © 2016 Society for Conservation Biology.
NASA Astrophysics Data System (ADS)
Tang, Xiaowei
Recent reform documents and science education literature emphasize the importance of scientific argumentation as a discourse and practice of science that should be supported in school science learning. Much of this literature focuses on the structure of argument, whether for assessing the quality of argument or designing instructional scaffolds. This study challenges the narrowness of this research paradigm and argues for the necessity of examining students' argumentative practices as rooted in the complex, evolving system of the classroom. Employing a sociocultural-historical lens of activity theory (Engestrom, 1987, 1999), discourse analysis is employed to explore how a high school biology class continuously builds affordances and constraints for argumentation practices through interactions. The ways in which argumentation occurs, including the nature of teacher and student participation, are influenced by learning goals, classroom norms, teacher-student relationships and epistemological stances constructed through a class' interactive history. Based on such findings, science education should consider promoting classroom scientific argumentation as a long-term process, requiring supportive resources that develop through continuous classroom interactions. Moreover, in order to understand affordances that support disciplinary learning in classroom, we need to look beyond just disciplinary interactions. This work has implications for classroom research on argumentation and teacher education, specifically, the preparation of teachers for secondary science teaching.
NASA Astrophysics Data System (ADS)
Williams, Latonya Michelle
This dissertation reports on a three year study designed to investigate the trajectories of two urban elementary school teachers---a novice and an experienced teacher---learning to teach a science curriculum unit using an inquiry approach supported by the Web-based Inquiry Science Environment (WISE). This research investigated teachers' development in knowledge and practice. Through analyses of video records of classroom instruction and professional development meetings, repeated interviews, and student assessments, I have produced case studies of teachers' journeys as they implement the technological inquiry-based instructional model. This study captures the interplay between the teachers' pedagogical content knowledge, enacted practice, and insights into students' thinking about complex science ideas. I trace the factors that encouraged and supported the teachers' development, in addition to the kinds of struggles they faced and overcame. I discuss the social supports I provided for the teachers, including scaffolding them in reflecting on their practice, assisting them with curriculum customizations, and supporting their learning such as arranging online interactions with scientists. I analyze spontaneous activities such as teachers' own reflections. The results suggest that the novice and experienced teacher's classroom practices became more inquiry oriented across time. For both teachers, use of technology accompanied an increase in science dialogue with small groups in years two and three. The novice teacher began asking inquiry questions in her second year of classroom experience, after a great deal of professional support. Both teachers improved in their pedagogical content knowledge from years one through three as a result of the varied professional development supports. The results suggest that teachers' improvement in instructional strategies and pedagogical content knowledge accompanied students' improvement in understanding of the science content.
The essential skills required by librarians to support medical virtual learning programs.
Soleymani, Mohammad Reza; Akbari, Zahra; Mojiri, Shahin
2016-01-01
Background: With the recent spread of virtual learning programs in universities, especially in the field of medical sciences, libraries play a crucial role to support these programs. This study aimed at investigating the skills required by librarians to support virtual learning programs in Isfahan University and Isfahan University of Medical Sciences. Methods: This was an applied survey study. The population of the study includes all librarians working in Isfahan University and Isfahan University of Medical Sciences. A sample of 89 librarians was selected by stratified random sampling. Data were collected by a researcher-made questionnaire, the validity of which was confirmed by specialists in the fields of librarianship and information sciences and virtual learning, and its reliability was determined to be 0.92, using Cronbach's Alpha. The questionnaire consisted of 51 items designed to evaluate the librarians' virtual learning skills using Likert scale. Descriptive and inferential statistics were used to analyze the findings. Results: The findings of this study revealed that librarians had low level of skills with respect to the online reference services, and familiarity with virtual learning environment. They also showed low and average level of skills with respect to their general information technology, communication skills, ability to teach electronic information literacy and ability to create access to electronic resources. The results revealed no significant difference between the librarians of the two universities, or between male and female librarians. However, librarians with educational background in librarianship and information sciences were significantly more skillful and competent than their colleagues. Conclusion: Despite the crucial role of libraries in supporting virtual learning programs, the librarians in Isfahan University and Isfahan University of Medical Sciences had low-level skills to play such an important role. Therefore, it is essential to provide on-the-job virtual training courses for librarians to improve their job performance and the quality of library services.
The essential skills required by librarians to support medical virtual learning programs
Soleymani, Mohammad Reza; Akbari, Zahra; Mojiri, Shahin
2016-01-01
Background: With the recent spread of virtual learning programs in universities, especially in the field of medical sciences, libraries play a crucial role to support these programs. This study aimed at investigating the skills required by librarians to support virtual learning programs in Isfahan University and Isfahan University of Medical Sciences. Methods: This was an applied survey study. The population of the study includes all librarians working in Isfahan University and Isfahan University of Medical Sciences. A sample of 89 librarians was selected by stratified random sampling. Data were collected by a researcher-made questionnaire, the validity of which was confirmed by specialists in the fields of librarianship and information sciences and virtual learning, and its reliability was determined to be 0.92, using Cronbach's Alpha. The questionnaire consisted of 51 items designed to evaluate the librarians' virtual learning skills using Likert scale. Descriptive and inferential statistics were used to analyze the findings. Results: The findings of this study revealed that librarians had low level of skills with respect to the online reference services, and familiarity with virtual learning environment. They also showed low and average level of skills with respect to their general information technology, communication skills, ability to teach electronic information literacy and ability to create access to electronic resources. The results revealed no significant difference between the librarians of the two universities, or between male and female librarians. However, librarians with educational background in librarianship and information sciences were significantly more skillful and competent than their colleagues. Conclusion: Despite the crucial role of libraries in supporting virtual learning programs, the librarians in Isfahan University and Isfahan University of Medical Sciences had low-level skills to play such an important role. Therefore, it is essential to provide on-the-job virtual training courses for librarians to improve their job performance and the quality of library services. PMID:28491838
ERIC Educational Resources Information Center
Swensen, Kaja Vembe; Silseth, Kenneth; Krange, Ingeborg
2014-01-01
In this paper, we will present and discuss data from a research project called MIRACLE, in which high school students learned about energy and energy transformation in a technology-rich learning environment. This learning environment spanned across a classroom, a science center, and an online platform specially designed to support coherence across…
Optimizing biomedical science learning in a veterinary curriculum: a review.
Warren, Amy L; Donnon, Tyrone
2013-01-01
As veterinary medical curricula evolve, the time dedicated to biomedical science teaching, as well as the role of biomedical science knowledge in veterinary education, has been scrutinized. Aside from being mandated by accrediting bodies, biomedical science knowledge plays an important role in developing clinical, diagnostic, and therapeutic reasoning skills in the application of clinical skills, in supporting evidence-based veterinary practice and life-long learning, and in advancing biomedical knowledge and comparative medicine. With an increasing volume and fast pace of change in biomedical knowledge, as well as increased demands on curricular time, there has been pressure to make biomedical science education efficient and relevant for veterinary medicine. This has lead to a shift in biomedical education from fact-based, teacher-centered and discipline-based teaching to applicable, student-centered, integrated teaching. This movement is supported by adult learning theories and is thought to enhance students' transference of biomedical science into their clinical practice. The importance of biomedical science in veterinary education and the theories of biomedical science learning will be discussed in this article. In addition, we will explore current advances in biomedical teaching methodologies that are aimed to maximize knowledge retention and application for clinical veterinary training and practice.
An Investigation of the Effects of Authentic Science Experiences Among Urban High School Students
NASA Astrophysics Data System (ADS)
Chapman, Angela
Providing equitable learning opportunities for all students has been a persistent issue for some time. This is evident by the science achievement gap that still exists between male and female students as well as between White and many non-White student populations (NCES, 2007, 2009, 2009b) and an underrepresentation of female, African-American, Hispanic, and Native Americans in many science, technology, engineering, and mathematics (STEM) related careers (NCES, 2009b). In addition to gender and ethnicity, socioeconomic status and linguistic differences are also factors that can marginalize students in the science classroom. One factor attributed to the achievement gap and low participation in STEM career is equitable access to resources including textbooks, laboratory equipment, qualified science teachers, and type of instruction. Extensive literature supports authentic science as one way of improving science learning. However, the majority of students do not have access to this type of resource. Additionally, extensive literature posits that culturally relevant pedagogy is one way of improving education. This study examines students' participation in an authentic science experience and argues that this is one way of providing culturally relevant pedagogy in science classrooms. The purpose of this study was to better understand how marginalized students were affected by their participation in an authentic science experience, within the context of an algae biofuel project. Accordingly, an interpretivist approach was taken. Data were collected from pre/post surveys and tests, semi-structured interviews, student journals, and classroom observations. Data analysis used a mixed methods approach. The data from this study were analyzed to better understand whether students perceived the experience to be one of authentic science, as well as how students science identities, perceptions about who can do science, attitudes toward science, and learning of science practices were affected by participation in an authentic science experience. Findings indicated that participation in an authentic science experience has a positive effect on science identities, scientist perceptions, science attitudes, and learning of science and is one approach to mitigating the effects of marginalization in the science classroom. Additional findings indicated that a relationship between the authenticity of the experience and the outcomes (science identity, perceptions about who can do science, science attitudes, and learning of science). This study provides empirical evidence to support authentic science learning as a means of improving students' learning, attitudes, and identities with respect to science. This study endorses authentic science experiences for all students, marginalized included. This has implications for how we prepare future and support current science teachers. In addition, this study shows how this model can be used to effectively implement science, technology, engineering, and mathematics (STEM) education.
Berglund, Mia; Sjögren, Reet; Ekebergh, Margaretha
2012-03-01
To describe the importance of supervisors working together in supporting the learning process of nurse students through reflective caring science supervision. A supervision model has been developed in order to meet the need for interweaving theory and practice. The model is characterized by learning reflection in caring science. A unique aspect of the present project was that the student groups were led by a teacher and a nurse. Data were collected through interviews with the supervisors. The analysis was performed with a phenomenological approach. The results showed that theory and practice can be made more tangible and interwoven by using two supervisors in a dual supervision. The essential structure is built on the constituents 'Reflection as Learning Support', 'Interweaving Caring Science with the Patient's Narrative', 'The Student as a Learning Subject' and 'The Learning Environment of Supervision'. The study concludes that supervision in pairs provides unique possibilities for interweaving and developing theory and practice. The supervision model offers unique opportunities for cooperation, for the development of theory and practice and for the development of the professional roll of nurses and teachers. © 2012 Blackwell Publishing Ltd.
ERIC Educational Resources Information Center
Kulo, Violet; Bodzin, Alec
2013-01-01
Geospatial technologies are increasingly being integrated in science classrooms to foster learning. This study examined whether a Web-enhanced science inquiry curriculum supported by geospatial technologies promoted urban middle school students' understanding of energy concepts. The participants included one science teacher and 108 eighth-grade…
Inquiry-based Learning and Digital Libraries in Undergraduate Science Education
NASA Astrophysics Data System (ADS)
Apedoe, Xornam S.; Reeves, Thomas C.
2006-12-01
The purpose of this paper is twofold: to describe robust rationales for integrating inquiry-based learning into undergraduate science education, and to propose that digital libraries are potentially powerful technological tools that can support inquiry-based learning goals in undergraduate science courses. Overviews of constructivism and situated cognition are provided with regard to how these two theoretical perspectives have influenced current science education reform movements, especially those that involve inquiry-based learning. The role that digital libraries can play in inquiry-based learning environments is discussed. Finally, the importance of alignment among critical pedagogical dimensions of an inquiry-based pedagogical framework is stressed in the paper, and an example of how this can be done is presented using earth science education as a context.
OceanGLOBE: an Outdoor Research and Environmental Education Program for K-12 Students
NASA Astrophysics Data System (ADS)
Perry, R. B.; Hamner, W. M.
2006-12-01
OceanGLOBE is an outdoor environmental research and education program for upper elementary, middle and high school students, supplemented by online instructional materials that are available without charge to any educator. OceanGLOBE was piloted in 1995 with support from a National Science Foundation Teacher Enhancement project, "Leadership in Marine Science" (award no.ESI-9454413 to UCLA). Continuing support by a second NSF Teacher Enhancement project (award no. ESI-9819424 to UCLA) and by COSEE-West (NSF awards OCE-215506 to UCLA and OCE-0215497 to USC) has enabled OceanGLOBE to expand to a growing number of schools and to provide an increasingly robust collection of marine science instructional materials on its website, http://www.msc.ucla.edu/oceanglobe/ OceanGLOBE provides a mechanism for students to conduct inquiry-based, hands-on marine science research, providing experiences that anchor the national and state science content standards learned in the classroom. Students regularly collect environmental and biological data from a beach site over an extended period of time. In the classroom they organize, graph and analyze their data, which can lead to a variety of student-created science products. Beach research is supported by instructional marine science materials on the OceanGLOBE website. These online materials also can be used in the classroom independent of the field component. Annotated PowerPoint slide shows explain research protocols and provide marine science content. Field guides and photographs of marine organisms (with emphasis on the Southern California Bight) and a growing collection of classroom investigations (applicable to any ocean location) support the science content presented in the beach research program and slide shows. In summary, OceanGLOBE is a comprehensive learning package grounded in hands-on, outdoor marine science research project in which students are the principal investigators. By doing scientific work repetitively over an extended time period students learn about how science is done as much as they learn science content.
Supporting Students' Learning in the Domain of Computer Science
ERIC Educational Resources Information Center
Gasparinatou, Alexandra; Grigoriadou, Maria
2011-01-01
Previous studies have shown that students with low knowledge understand and learn better from more cohesive texts, whereas high-knowledge students have been shown to learn better from texts of lower cohesion. This study examines whether high-knowledge readers in computer science benefit from a text of low cohesion. Undergraduate students (n = 65)…
Fostering Personalized Learning in Science Inquiry Supported by Mobile Technologies
ERIC Educational Resources Information Center
Song, Yanjie; Wong, Lung-Hsiang; Looi, Chee-Kit
2012-01-01
In this paper, we present a mobile technology-assisted seamless learning process design where students were facilitated to develop their personalized and diversified understanding in a primary school's science topic of the life cycles of various living things. A goal-based approach to experiential learning model was adopted as the pedagogical…
Design, Development, and Evaluation of a Mobile Learning Application for Computing Education
ERIC Educational Resources Information Center
Oyelere, Solomon Sunday; Suhonen, Jarkko; Wajiga, Greg M.; Sutinen, Erkki
2018-01-01
The study focused on the application of the design science research approach in the course of developing a mobile learning application, MobileEdu, for computing education in the Nigerian higher education context. MobileEdu facilitates the learning of computer science courses on mobile devices. The application supports ubiquitous, collaborative,…
Student Motivation and Learning in Mathematics and Science: A Cluster Analysis
ERIC Educational Resources Information Center
Ng, Betsy L. L.; Liu, W. C.; Wang, John C. K.
2016-01-01
The present study focused on an in-depth understanding of student motivation and self-regulated learning in mathematics and science through cluster analysis. It examined the different learning profiles of motivational beliefs and self-regulatory strategies in relation to perceived teacher autonomy support, basic psychological needs (i.e. autonomy,…
Applying TLC (a Targeted Learning Community) to Transform Teaching and Learning in Science
ERIC Educational Resources Information Center
Steiner, Hillary H.; Dean, Michelle L.; Foote, Stephanie M.; Goldfine, Ruth A.
2013-01-01
This article describes the development of a Targeted Learning Community (TLC) that supports first-year science students enrolled in a General Chemistry course. Drawing on student feedback and knowledge and expertise in their respective disciplines, four faculty members from two colleges at Kennesaw State University came together to develop a…
ERIC Educational Resources Information Center
Koedinger, Kenneth R.; Corbett, Albert T.; Perfetti, Charles
2012-01-01
Despite the accumulation of substantial cognitive science research relevant to education, there remains confusion and controversy in the application of research to educational practice. In support of a more systematic approach, we describe the Knowledge-Learning-Instruction (KLI) framework. KLI promotes the emergence of instructional principles of…
Writing To Learn in Science: A Curriculum Guide.
ERIC Educational Resources Information Center
Chatel, Regina G.
This curriculum guide supports and gives structure to engaging students in writing-to-learn activities in science classes by delineating writing outcomes and assessment. The guide is structured according to the beliefs that students need models, revision is the key to successful writing, writing is a tool for demonstrating learning, and writing is…
NASA Astrophysics Data System (ADS)
Dunn, Karee E.; Lo, Wen-Juo
2015-11-01
Understanding self-regulation in science learning is important for theorists and practitioners alike. However, very little has been done to explore and understand students' self-regulatory processes in postsecondary science courses. In this study, the influence of science efficacy, learning value, and goal orientation on the perceived use of science study strategies was explored using structural equation modeling. In addition, the study served to validate the first two stages of Zimmerman's cyclical model of self-regulation and to address the common methodological weakness in self-regulation research in which data are all collected at one point after the learning cycle is complete. Thus, data were collected across the learning cycle rather than asking students to reflect upon each construct after the learning cycle was complete. The findings supported the hypothesized model in which it was predicted that self-efficacy would significantly and positively influence students' perceived science strategy use, and the influence of students' valuation of science learning on science study strategies would be mediated by their learning goal orientation. The findings of the study are discussed and implications for undergraduate science instructors are proposed.
ERIC Educational Resources Information Center
Knipfer, Kristin; Mayr, Eva; Zahn, Carmen; Schwan, Stephan; Hesse, Friedrich W.
2009-01-01
In this article, the potentials of advanced technologies for learning in science exhibitions are outlined. For this purpose, we conceptualize science exhibitions as "dynamic information space for knowledge building" which includes three pathways of knowledge communication. This article centers on the second pathway, that is, knowledge…
ERIC Educational Resources Information Center
Lucariello, Joan M.; Nastasi, Bonnie K.; Anderman, Eric M.; Dwyer, Carol; Ormiston, Heather; Skiba, Russell
2016-01-01
Psychological science has much to contribute to preK-12 education because substantial psychological research exists on the processes of learning, teaching, motivation, classroom management, social interaction, communication, and assessment. This article details the psychological science that led to the identification, by the American Psychological…
Talk Like a Scientist! Simple "Frames" to Scaffold the Language of Science
ERIC Educational Resources Information Center
Hoffman, Lisa
2013-01-01
This article shares a teaching strategy for science teachers to use when supporting language development among English language learners. Students from other language backgrounds who are learning English need to learn both grade-level academic content and the language necessary to express scientific concepts. However, most science teachers are not…
Finnish Science Teachers' Views on the Three Stage Model
ERIC Educational Resources Information Center
Sormunen, K.; Keinonen, T.; Holbrook, J.
2014-01-01
The core idea of the PROFILES project is to support science teachers' continuous professional development. The instructional innovation of the PROFILES is the so called Three Stage Model (TSM) which aims to arouse students' intrinsic motivation, to offer a meaningful inquiry-based learning environment and to use the science learning in…
NASA Astrophysics Data System (ADS)
Hvidsten, Connie J.
Connie J. Hvidsten September 2016 Education Secondary Science Teachers Making Sense of Model-Based Classroom Instruction: Understanding the Learning and Learning Pathways Teachers Describe as Supporting Changes in Teaching Practice This dissertation consists of three papers analyzing writings and interviews of experienced secondary science teachers during and after a two-year professional development (PD) program focused on model-based reasoning (MBR). MBR is an approach to science instruction that provides opportunities for students to use conceptual models to make sense of natural phenomena in ways that are similar to the use of models within the scientific community. The aim of this research is to better understand the learning and learning pathways teachers identified as valuable in supporting changes in their teaching practice. To accomplish this aim, the papers analyze the ways teachers 1) ascribe their learning to various aspects of the program, 2) describe what they learned, and 3) reflect on the impact the PD had on their teaching practice. Twenty-one secondary science teachers completed the Innovations in Science Instruction through Modeling (ISIM) program from 2007 through 2009. Commonalities in the written reflections and interview responses led to a set of generalizable findings related to the impacts and outcomes of the PD. The first of the three papers describes elements of the ISIM program that teachers associated with their own learning. One of the most frequently mentioned PD feature was being in the position of an adult learner. Embedding learning in instructional practice by collaboratively developing and revising lessons, and observing the lessons in one-another's classrooms provided a sense of professional community, accountability, and support teachers reported were necessary to overcome the challenges of implementing new pedagogical practices. Additionally, teachers described that opportunities to reflect on their learning and connect their experiences to a larger literature base and rationale helped them negotiate the dissonance occurring as they tried new practices in their own classroom. Teachers associated these elements with learning about both science content and effective instructional pedagogy and producing a level of dissatisfaction with current understanding that motivated their persistence when met with obstacles or struggles. The second of the three papers analyzes what teachers said they learned in the ISIM program. Teachers' reported learning about scientific models, both how they are used in both the scientific community and how they can support students' classroom learning. Additionally, teachers mentioned learning more about the science they taught through interacting with models during the PD and learned more about effective teaching strategies. Teachers also reported learning about themselves as teachers and learners, as well as about the school and classroom contexts that shape their ability to implement new instructional practices. Finally, the third paper draws from interviews occurring a year or more after the program ended to identify how teachers reported changes in their classroom instruction resulting from their ISIM participation. Four of the teachers reported little or no change in classroom practice. Eight teachers described changes to their teaching to incorporate elements of the professional development, but who fell short of adopting model-based reasoning as a core feature of their classroom instruction. Nine teachers expressed a strong understanding of modeling instruction, and its ongoing influence on their classroom instruction.
NASA Astrophysics Data System (ADS)
Gardner, Christina M.
Learning-by-doing learning environments support a wealth of physical engagement in activities. However, there is also a lot of variability in what participants learn in each enactment of these types of environments. Therefore, it is not always clear how participants are learning in these environments. In order to design technologies to support learning in these environments, we must have a greater understanding of how participants engage in learning activities, their goals for their engagement, and the types of help they need to cognitively engage in learning activities. To gain a greater understanding of participant engagement and factors and circumstances that promote and inhibit engagement, this dissertation explores and answers several questions: What are the types of interactions and experiences that promote and /or inhibit learning and engagement in learning-by-doing learning environments? What are the types of configurations that afford or inhibit these interactions and experiences in learning-by-doing learning environments? I explore answers to these questions through the context of two enactments of Kitchen Science Investigators (KSI), a learning-by-doing learning environment where middle-school aged children learn science through cooking from customizing recipes to their own taste and texture preferences. In small groups, they investigate effects of ingredients through the design of cooking and science experiments, through which they experience and learn about chemical, biological, and physical science phenomena and concepts (Clegg, Gardner, Williams, & Kolodner, 2006). The research reported in this dissertation sheds light on the different ways participant engagement promotes and/or inhibits cognitive engagement in by learning-by-doing learning environments through two case studies. It also provides detailed descriptions of the circumstances (social, material, and physical configurations) that promote and/or inhibit participant engagement in these learning environments through cross-case analyses of these cases. Finally, it offers suggestions about structuring activities, selecting materials and resources, and designing facilitation and software-realized scaffolding in the design of these types of learning environments. These design implications focus on affording participant engagement in science content and practices learning. Overall, the case studies, cross-case analyses, and empirically-based design implications begin to bridge the gap between theory and practice in the design and implementation of these learning environments. This is demonstrated by providing detailed and explanatory examples and factors that affect how participants take up the affordances of the learning opportunities designed into these learning environments.
ERIC Educational Resources Information Center
Kinzie, Mable B.; Whittaker, Jessica Vick; Williford, Amanda P.; DeCoster, Jamie; McGuire, Patrick; Lee, Youngju; Kilday, Carolyn R.
2014-01-01
"MyTeachingPartner--Math/Science" ("MTP-MS") is a system of two curricula (math and science) plus teacher supports designed to improve the quality of instructional interactions in pre-kindergarten classrooms and to scaffold children's development in mathematics and science. The program includes year-long curricula in these…
NASA Astrophysics Data System (ADS)
DiBenedetto, Christina M.
This study is the first of its kind to explore the thoughts, beliefs, attitudes and values of secondary educators as they experience conceptual change in their understanding of the nature of science learning vis a vis the Framework for K-12 Science Education published by the National Research Council. The study takes aim at the existing gap between the vision for science learning as an active process of inquiry and current pedagogical practices in K-12 science classrooms. For students to understand and explain everyday science ideas and succeed in science studies and careers, the means by which they learn science must change. Focusing on this change, the study explores the significance of educator attitudes, beliefs and values to science learning through interpretive phenomenological analysis around the central question, "In what ways do educators understand and articulate attitudes and beliefs toward the nature of science learning?" The study further explores the questions, "How do educators experience changes in their understanding of the nature of science learning?" and "How do educators believe these changes influence their pedagogical practice?" Study findings converge on four conceptions that science learning: is the action of inquiry; is a visible process initiated by both teacher and learner; values student voice and changing conceptions is science learning. These findings have implications for the primacy of educator beliefs, attitudes and values in reform efforts, science teacher leadership and the explicit instruction of both Nature of Science and conceptual change in educator preparation programs. This study supports the understanding that the nature of science learning is cognitive and affective conceptual change. Keywords: conceptual change, educator attitudes and beliefs, framework for K-12 science education, interpretive phenomenological analysis, nature of science learning, next generation science standards, science professional development, secondary science education.
ERIC Educational Resources Information Center
Soleimani, Ali
2013-01-01
Immersive 3D worlds can be designed to effectively engage students in peer-to-peer collaborative learning activities, supported by scientific visualization, to help with understanding complex concepts associated with learning science, technology, engineering, and mathematics (STEM). Previous research studies have shown STEM learning benefits…
NASA Astrophysics Data System (ADS)
Leuchter, Miriam; Saalbach, Henrik; Hardy, Ilonca
2014-07-01
Research on learning and instruction of science has shown that learning environments applied in preschool and primary school rarely makes use of structured learning materials in problem-based environments although these are decisive quality features for promoting conceptual change and scientific reasoning within early science learning. We thus developed and implemented a science learning environment for children in the first years of schooling which contains structured learning materials with the goal of supporting conceptual change concerning the understanding of the floating and sinking of objects and fostering students' scientific reasoning skills. In the present implementation study, we aim to provide a best-practice example of early science learning. The study was conducted with a sample of 15 classes of the first years of schooling and a total of 244 children. Tests were constructed to measure children's conceptual understanding before and after the implementation. Our results reveal a decrease in children's misconceptions from pretest to posttest. After the curriculum, the children were able to produce significantly more correct predictions about the sinking or floating of objects than before the curriculum and also relative to a control group. Moreover, due to the intervention, the explanations given for their predictions implied a more elaborated concept of material kinds. All in all, a well-structured curriculum promoting comparison and scientific reasoning by means of inquiry learning was shown to support children's conceptual change.
ERIC Educational Resources Information Center
Stewart, Phillip Michael, Jr.
2013-01-01
Games in science education is emerging as a popular topic of scholarly inquiry. The National Research Council recently published a report detailing a research agenda for games and science education entitled "Learning Science Through Computer Games and Simulations" (2011). The report recommends moving beyond typical proof-of-concept…
NASA Astrophysics Data System (ADS)
Yasri, Pratchayapong; Mancy, Rebecca
2014-01-01
This study investigates a range of positions that learners take on the relationship between science and religion and the potential for these positions to explain student approaches when learning about evolution. A phenomenographic study based on interviews with nine students studying in Christian high schools in Thailand led to the identification of five distinct positions on the relationship between science and religion. Each position was associated with a characteristic pattern of learning about evolution that could be explained as an attempt by the students to align their particular learning approach with their position. Three of the positions have the potential to support scientifically valid understandings of evolution while avoiding emotional conflict. We suggest that knowledge of the range of positions and associated learning approaches can help educators to focus on the form and timing of support of benefit to those holding different viewpoints.
Building a Science Communication Culture: One Agency's Approach
NASA Astrophysics Data System (ADS)
DeWitt, S.; Tenenbaum, L. F.; Betz, L.
2014-12-01
Science communication does not have to be a solitary practice. And yet, many scientists go about it alone and with little support from their peers and organizations. To strengthen community and build support for science communicators, NASA designed a training course aimed at two goals: 1) to develop individual scientists' communication skills, and 2) to begin to build a science communication culture at the agency. NASA offered a pilot version of this training course in 2014: the agency's first multidisciplinary face-to-face learning experience for science communicators. Twenty-six Earth, space and life scientists from ten field centers came together for three days of learning. They took part in fundamental skill-building exercises, individual development planning, and high-impact team projects. This presentation will describe the course design and learning objectives, the experience of the participants, and the evaluation results that will inform future offerings of communication training for NASA scientists and others.
A study of students' motivation using the augmented reality science textbook
NASA Astrophysics Data System (ADS)
Gopalan, Valarmathie; Zulkifli, Abdul Nasir; Bakar, Juliana Aida Abu
2016-08-01
Science plays a major role in assisting Malaysia to achieve the developed nation status by 2020. However, over a few decades, Malaysia is facing a downward trend in the number of students pursuing careers and higher education in science related fields. Since school is the first platform where students learn science, a new learning approach needs to be introduced to motivate them towards science learning. The aim of this study is to determine whether the intervention of the enhanced science textbook using augmented reality contributes to the learning process of lower secondary school students in science. The study was carried out among a sample of 70 lower secondary school students. Pearson Correlation and Regression analyses were used to determine the effects of ease of use, engaging, enjoyment and fun on students' motivation in using the augmented reality science textbook for science learning. The results provide empirical support for the positive and statistically significant relationship between engaging, enjoyment and fun and students' motivation for science learning. However, Ease of use is not significant but positively correlated to Motivation.
ERIC Educational Resources Information Center
Hwang, Gwo-Jen; Chu, Hui-Chun; Shih, Ju-Ling; Huang, Shu-Hsien; Tsai, Chin-Chung
2010-01-01
A context-aware ubiquitous learning environment is an authentic learning environment with personalized digital supports. While showing the potential of applying such a learning environment, researchers have also indicated the challenges of providing adaptive and dynamic support to individual students. In this paper, a decision-tree-oriented…
Learning How to Design a Technology Supported Inquiry-Based Learning Environment
ERIC Educational Resources Information Center
Hakverdi-Can, Meral; Sonmez, Duygu
2012-01-01
This paper describes a study focusing on pre-service teachers' experience of learning how to design a technology supported inquiry-based learning environment using the Internet. As part of their elective course, pre-service science teachers were asked to develop a WebQuest environment targeting middle school students. A WebQuest is an…
The College Science Learning Cycle: An Instructional Model for Reformed Teaching
Withers, Michelle
2016-01-01
Finding the time for developing or locating new class materials is one of the biggest barriers for instructors reforming their teaching approaches. Even instructors who have taken part in training workshops may feel overwhelmed by the task of transforming passive lecture content to engaging learning activities. Learning cycles have been instrumental in helping K–12 science teachers design effective instruction for decades. This paper introduces the College Science Learning Cycle adapted from the popular Biological Sciences Curriculum Study 5E to help science, technology, engineering, and mathematics faculty develop course materials to support active, student-centered teaching approaches in their classrooms. The learning cycle is embedded in backward design, a learning outcomes–oriented instructional design approach, and is accompanied by resources and examples to help faculty transform their teaching in a time-efficient manner. PMID:27909030
Teaching and Learning Methodologies Supported by ICT Applied in Computer Science
ERIC Educational Resources Information Center
Capacho, Jose
2016-01-01
The main objective of this paper is to show a set of new methodologies applied in the teaching of Computer Science using ICT. The methodologies are framed in the conceptual basis of the following sciences: Psychology, Education and Computer Science. The theoretical framework of the research is supported by Behavioral Theory, Gestalt Theory.…
An Analysis of Data Activities and Instructional Supports in Middle School Science Textbooks
ERIC Educational Resources Information Center
Morris, Bradley J.; Masnick, Amy M.; Baker, Katie; Junglen, Angela
2015-01-01
A critical component of science and math education is reasoning with data. Science textbooks are instructional tools that provide opportunities for learning science content (e.g. facts about force and motion) and process skills (e.g. data recording) that support and augment reasoning with data. In addition, the construction and design of textbooks…
NASA Astrophysics Data System (ADS)
Chinn, Pauline W. U.
2012-06-01
Maria Andrée focuses on an immigrant student whose error in a laboratory activity leads to a novel, colorful outcome that she excitedly shares with peers. After engaging in class activities for a few weeks she returns to her earlier dislike of science, saying: "I hate science, particularly Chemistry." The classroom activity system focused on reproduction of school knowledge did not expand to accommodate Helena's "new activity system with an object of learning science." This essay suggests teachers be prepared to teach diverse students in ways supporting multiple ways to engage in science. This becomes possible when teachers view their classrooms as dynamic, participatory activity systems that support content mastery as contributing to but not being identical to science identity and science literacy.
High School Teachers Use of Writing to Support Students' Learning: A National Survey
ERIC Educational Resources Information Center
Gillespie, Amy; Graham, Steve; Kiuhara, Sharlene; Hebert, Michael
2014-01-01
A random sample of language arts, social studies, science, and math high school teachers from across the United States were surveyed about their use of writing to support student learning. Four out of every five teachers reported they used writing to support student learning, applying on average 24 different writing activities across the school…
ERIC Educational Resources Information Center
Tsivitanidou, Olia; Zacharia, Zacharias C.; Hovardas, Tasos; Nicolaou, Aphrodite
2012-01-01
In this study we introduced a peer feedback tool to secondary school students while aiming at investigating whether this tool leads to a feedback dialogue when using a computer supported inquiry learning environment in science. Moreover, we aimed at examining what type of feedback students ask for and receive and whether the students use the…
ERIC Educational Resources Information Center
Jurow, A. Susan; Tracy, Rita; Hotchkiss, Jacqueline S.; Kirshner, Ben
2012-01-01
In this article, the authors discuss how they redesigned an educational psychology course for preservice teachers using insights from the burgeoning, interdisciplinary field of the Learning Sciences. Research on the situated nature of learning and the value of out-of-school contexts for supporting children s development informed their decisions to…
The Effect of Contextualized Conversational Feedback in a Complex Open-Ended Learning Environment
ERIC Educational Resources Information Center
Segedy, James R.; Kinnebrew, John S.; Biswas, Gautam
2013-01-01
Betty's Brain is an open-ended learning environment in which students learn about science topics by teaching a virtual agent named Betty through the construction of a visual causal map that represents the relevant science phenomena. The task is complex, and success requires the use of metacognitive strategies that support knowledge acquisition,…
Methods and Strategies: Literacy in the Learning Cycle
ERIC Educational Resources Information Center
Everett, Susan; Moyer, Richard
2009-01-01
Trade books can be used in all phases of the learning cycle to support effective teaching and learning. Romance and Vitale (1992) found that texts and other nonfiction science books can be effective tools for teaching reading, as the science activities give learners a purpose for their reading. In this article, the authors share ways to…
ERIC Educational Resources Information Center
Davis, Kathleen S.
2003-01-01
Provides a critical analysis of the implementation of an innovative science curriculum at a middle school site. Explores the issues that surround teacher learning of new practices including the structures, policies, and practices that were in place within the reform context that supported or impeded teacher learning. Identifies parallels between…
A Delphi Study on Technology Enhanced Learning (TEL) Applied on Computer Science (CS) Skills
ERIC Educational Resources Information Center
Porta, Marcela; Mas-Machuca, Marta; Martinez-Costa, Carme; Maillet, Katherine
2012-01-01
Technology Enhanced Learning (TEL) is a new pedagogical domain aiming to study the usage of information and communication technologies to support teaching and learning. The following study investigated how this domain is used to increase technical skills in Computer Science (CS). A Delphi method was applied, using three-rounds of online survey…
ERIC Educational Resources Information Center
Greenfield, Daryl B.; Alexander, Alexandra; Frechette, Elizabeth
2017-01-01
When science is integrated into early childhood learning experiences, it becomes a critical area supporting young children's development. Young children are natural scientists, curious about their world, and they engage in scientific practices to learn about and explore their world. This article describes how the K-12 Framework for Science…
Open Educational Resources in Support of Science Learning: Tools for Inquiry and Observation
ERIC Educational Resources Information Center
Scanlon, Eileen
2012-01-01
This article focuses on the potential of free tools, particularly inquiry tools for influencing participation in twenty-first-century learning in science, as well as influencing the development of communities around tools. Two examples are presented: one on the development of an open source tool for structured inquiry learning that can bridge the…
ERIC Educational Resources Information Center
Borgerding, Lisa A.; Caniglia, Joanne
2017-01-01
Previous literature suggests that service learning may offer new opportunities to support the development of preservice science and math teachers, but few studies examine service learning beyond isolated teaching events. In this qualitative study, we attempt to improve upon this literature by following Master of Arts in Teaching (MAT) students'…
Towards Personalising Learning in School Science: Making This Learning More Relevant
ERIC Educational Resources Information Center
Prain, Vaughan; Waldrip, Bruce; Sbaglia, Rob; Lovejoy, Val
2017-01-01
In this paper, we report on a case study of how three teachers personalised learning in science through supporting a group of Year 8 students to engage in individual inquiry projects. The case study demonstrated how heavily transmissive teaching can be avoided by restructuring classes to optimise student group and individual work and timely…
NASA Astrophysics Data System (ADS)
Van Horne, Katie
This dissertation investigates the implementation issues and the educational opportunities associated with "taking the practice turn" in science education. This pedagogical shift focuses instructional experiences on engaging students in the epistemic practices of science both to learn the core ideas of the disciplines, as well as to gain an understanding of and personal connection to the scientific enterprise. In Chapter 2, I examine the teacher-researcher co-design collaboration that supported the classroom implementation of a year-long, project-based biology curriculum that was under development. This study explores the dilemmas that arose when teachers implemented a new intervention and how the dilemmas arose and were managed throughout the collaboration of researchers and teachers and between the teachers. In the design-based research of Chapter 3, I demonstrate how students' engagement in epistemic practices in contemporary science investigations supported their conceptual development about genetics. The analysis shows how this involved a complex interaction between the scientific, school and community practices in students' lives and how through varied participation in the practices students come to write about and recognize how contemporary investigations can give them leverage for science-based action outside of the school setting. Finally, Chapter 4 explores the characteristics of learning environments for supporting the development of scientific practice-linked identities. Specific features of the learning environment---access to the intellectual work of the domain, authentic roles and accountability, space to make meaningful contributions in relation to personal interests, and practice-linked identity resources that arose from interactions in the learning setting---supported learners in stabilizing practice-linked science identities through their engagement in contemporary scientific practices. This set of studies shows that providing students with the tools and means of contemporary scientific inquiry allows them to gain conceptual development and proficiency with the scientific practices within the contexts of their lives, in ways that provided access to resources that promoted students' stabilization of practice-linked identities. For teachers implementing this instructional model in their classrooms, it brought up dilemmas and opportunities related to their school contexts and their personal history of instructional practices. The work collectively informs how interest-driven project-based science instruction can happen across a range of school contexts and how such models can support meaningful science learning and identification.
ERIC Educational Resources Information Center
Lawrie, Gwendolyn A.; Gahan, Lawrence R.; Matthews, Kelly E.; Weaver, Gabriela C.; Bailey, Chantal; Adams, Peter; Kavanagh, Lydia J.; Long, Phillip D.; Taylor, Matthew
2014-01-01
Collaborative learning activities offer the potential to support mutual knowledge construction and shared understanding amongst students. Introducing collaborative tasks into large first-year undergraduate science classes to create learning environments that foster student engagement and enhance communication skills is appealing. However,…
The ASE Improving Practical Work in Triple Science Learning Skills Network
ERIC Educational Resources Information Center
Barber, Paul; Chapman, Georgina; Ellis-Sackey, Cecilia; Grainger, Beth; Jones, Steve
2011-01-01
In July 2010, the Association for Science Education won a bid to run a "Sharing innovation network" for the Triple Science Support Programme, which is delivered by the Learning Skills Network on behalf of the Department for Education. The network involves schools from the London boroughs of Tower Hamlets and Greenwich. In this article,…
ERIC Educational Resources Information Center
Sun, Daner; Looi, Chee-Kit; Wu, Longkai; Xie, Wenting
2016-01-01
With advancements made in mobile technology, increasing emphasis has been paid to how to leverage the affordances of mobile technology to improve science learning and instruction. This paper reports on a science curriculum supported by an inquiry-based framework and mobile technologies. It was developed by teachers and researchers in a multiyear…
ERIC Educational Resources Information Center
Debarger, Angela Haydel; Penuel, William R.; Moorthy, Savitha; Beauvineau, Yves; Kennedy, Cathleen A.; Boscardin, Christy Kim
2017-01-01
In this paper, we investigate the potential and conditions for using curriculum adaptation to support reform of science teaching and learning. With each wave of reform in science education, curriculum has played a central role and the contemporary wave focused on implementation of the principles and vision of the "Framework for K-12 Science…
Frames for Learning Science: Analyzing Learner Positioning in a Technology-Enhanced Science Project
ERIC Educational Resources Information Center
Silseth, K.; Arnseth, H. C.
2016-01-01
In this article, we examine the relationship between how students are positioned in social encounters and how this influences learning in a technology-supported science project. We pursue this topic by focusing on the participation trajectory of one particular learner. The analysis shows that the student cannot be interpreted as one type of…
ERIC Educational Resources Information Center
Çetinkaya, Murat
2016-01-01
Positive results of science teaching studies supported with the means provided by technology require the enrichment of the content of blended learning environments to provide more benefits. Within this context, it is thought that preparing a web-assisted model-based teaching, which is frequently used in science teaching, based on the "Matter…
ERIC Educational Resources Information Center
Tansomboon, Charissa
2017-01-01
Students studying complex science topics can benefit from receiving immediate, personalized guidance. Supporting students to revise their written explanations in science can help students to integrate disparate ideas and develop a coherent, generative account of complex scientific topics. Using natural language processing to analyze student…
Dispositions Supporting Elementary Interns in the Teaching of Reform-Based Science Materials
ERIC Educational Resources Information Center
Eick, Charles J.; Stewart, Bethany
2010-01-01
Dispositions supporting the teaching of science as structured inquiry by four elementary candidates are presented. Candidates were studied during student teaching based on their positive attitudes toward teaching science with reform-based materials in their methods course. Personal learning histories informed their attitudes, values, and beliefs…
NASA Astrophysics Data System (ADS)
Clark, J.; Bloom, N.
2017-12-01
Data driven design practices should be the basis for any effective educational product, particularly those used to support STEM learning and literacy. Planetary Learning that Advances the Nexus of Engineering, Technology, and Science (PLANETS) is a five-year NASA-funded (NNX16AC53A) interdisciplinary and cross-institutional partnership to develop and disseminate STEM out-of-school time (OST) curricular and professional development units that integrate planetary science, technology, and engineering. The Center for Science Teaching and Learning at Northern Arizona University, the U.S. Geological Survey Astrogeology Science Center, and the Museum of Science Boston are partners in developing, piloting, and researching the impact of three out of school time units. Two units are for middle grades youth and one is for upper elementary aged youth. The presentation will highlight the data driven development process of the educational products used to provide support for educators teaching these curriculum units. This includes how data from the project needs assessment, curriculum pilot testing, and professional support product field tests are used in the design of products for out of school time educators. Based on data analysis, the project is developing and testing four tiers of professional support for OST educators. Tier 1 meets the immediate needs of OST educators to teach curriculum and include how-to videos and other direct support materials. Tier 2 provides additional content and pedagogical knowledge and includes short content videos designed to specifically address the content of the curriculum. Tier 3 elaborates on best practices in education and gives guidance on methods, for example, to develop cultural relevancy for underrepresented students. Tier 4 helps make connections to other NASA or educational products that support STEM learning in out of school settings. Examples of the tiers of support will be provided.
Computers as learning resources in the health sciences: impact and issues.
Ellis, L B; Hannigan, G G
1986-01-01
Starting with two computer terminals in 1972, the Health Sciences Learning Resources Center of the University of Minnesota Bio-Medical Library expanded its instructional facilities to ten terminals and thirty-five microcomputers by 1985. Computer use accounted for 28% of total center circulation. The impact of these resources on health sciences curricula is described and issues related to use, support, and planning are raised and discussed. Judged by their acceptance and educational value, computers are successful health sciences learning resources at the University of Minnesota. PMID:3518843
Work-Based Curriculum to Broaden Learners' Participation in Science: Insights for Designers
NASA Astrophysics Data System (ADS)
Bopardikar, Anushree; Bernstein, Debra; Drayton, Brian; McKenney, Susan
2018-05-01
Around the globe, science education during compulsory schooling is envisioned for all learners regardless of their educational and career aspirations, including learners bound to the workforce upon secondary school completion. Yet, a major barrier in attaining this vision is low learner participation in secondary school science. Because curricula play a major role in shaping enacted learning, this study investigated how designers developed a high school physics curriculum with positive learning outcomes in learners with varied inclinations. Qualitative analysis of documents and semistructured interviews with the designers focused on the curriculum in different stages—from designers' ideas about learning goals to their vision for enactment to the printed materials—and on the design processes that brought them to fruition. This revealed designers' emphases on fostering workplace connections via learning goals and activities, and printed supports. The curriculum supported workplace-inspired, hands-on design-and-build projects, developed to address deeply a limited set of standards aligned learning goals. The curriculum also supported learners' interactions with relevant workplace professionals. To create these features, the designers reviewed other curricula to develop vision and printed supports, tested activities internally to assess content coverage, surveyed states in the USA receiving federal school-to-work grants and reviewed occupational information to choose unit topics and career contexts, and visited actual workplaces to learn about authentic praxis. Based on the worked example, this paper offers guidelines for designing work-based science curriculum products and processes that can serve the work of other designers, as well as recommendations for research serving designers and policymakers.
Designing learning spaces for interprofessional education in the anatomical sciences.
Cleveland, Benjamin; Kvan, Thomas
2015-01-01
This article explores connections between interprofessional education (IPE) models and the design of learning spaces for undergraduate and graduate education in the anatomical sciences and other professional preparation. The authors argue that for IPE models to be successful and sustained they must be embodied in the environment in which interprofessional learning occurs. To elaborate these arguments, two exemplar tertiary education facilities are discussed: the Charles Perkins Centre at the University of Sydney for science education and research, and Victoria University's Interprofessional Clinic in Wyndham for undergraduate IPE in health care. Backed by well-conceived curriculum and pedagogical models, the architectures of these facilities embody the educational visions, methods, and practices they were designed to support. Subsequently, the article discusses the spatial implications of curriculum and pedagogical change in the teaching of the anatomical sciences and explores how architecture might further the development of IPE models in the field. In conclusion, it is argued that learning spaces should be designed and developed (socially) with the expressed intention of supporting collaborative IPE models in health education settings, including those in the anatomical sciences. © 2015 American Association of Anatomists.
ERIC Educational Resources Information Center
Taffs, Kathryn H.; Holt, Julienne I.
2013-01-01
The use of information and communication technologies (ICTs) in higher education to support student learning is expanding. However, student usage has been low and the value of e-learning resources has been under investigation. We reflect on best practices for pedagogical design of e-learning resources to support academic writing in environmental…
NASA Astrophysics Data System (ADS)
Higgins, Tara Eileen
Professional development is important for improving teacher practice and student learning, particularly in inquiry-oriented and technology-enhanced science instruction. This study examines professional developers' practices and their impact on teachers' classroom instruction and student achievement. It analyzes professional developers designing and implementing a five-year professional development program designed to support middle school science teachers. The professional developers are four university-based researchers who worked with sixteen science teachers over three years, setting program goals, facilitating workshops, providing in-classroom support for teachers, and continually refining the program. The analysis is guided by the knowledge integration perspective, a sociocognitive framework for understanding how teachers and professional developers integrate their ideas about teaching and learning. The study investigates the professional developers' goals and teachers' interpretations of those goals. It documents how professional developers plan teacher learning experiences and explores the connection between professional development activities and teachers' classroom practice. Results are based on two rounds of interviews with professional developers, audio recordings of professional developers' planning meetings and videotaped professional development activities. Data include classroom observations, teacher interviews, teacher reflections during professional development activities, and results from student assessments. The study shows the benefit of a professional development approach that relies on an integrated cycle of setting goals, understanding teachers' interpretations, and refining implementation. The professional developers based their design on making inquiry and technology accessible, situating professional development in teachers' work, supporting collaboration, and sustaining learning. The findings reflect alignment of the design goals with the perspective guiding the curriculum design, and consider multiple goals for student and teacher learning. The study has implications for professional development design, particularly in supporting inquiry-oriented science and technology-enhanced instruction. Effective professional developers formulate coherent conceptions of program goals, use evidence of teacher outcomes to refine their goals and practices, and connect student and teacher learning. This study illustrates the value of research on the individuals who design and lead professional development programs.
Using Educative Assessments to Support Science Teaching for Middle School English-language Learners
NASA Astrophysics Data System (ADS)
Buxton, Cory A.; Allexsaht-Snider, Martha; Suriel, Regina; Kayumova, Shakhnoza; Choi, Youn-jeng; Bouton, Bobette; Baker, Melissa
2013-03-01
Grounded in Hallidayan perspectives on academic language, we report on our development of an educative science assessment as one component of the language-rich inquiry science for English-language learners teacher professional learning project for middle school science teachers. The project emphasizes the role of content-area writing to support teachers in diagnosing their students' emergent understandings of science inquiry practices, science content knowledge, and the academic language of science, with a particular focus on the needs of English-language learners. In our current school policy context, writing for meaningful purposes has received decreased attention as teachers struggle to cover large numbers of discrete content standards. Additionally, high-stakes assessments presented in multiple-choice format have become the definitive measure of student science learning, further de-emphasizing the value of academic writing for developing and expressing understanding. To counter these trends, we examine the implementation of educative assessment materials—writing-rich assessments designed to support teachers' instructional decision making. We report on the qualities of our educative assessment that supported teachers in diagnosing their students' emergent understandings, and how teacher-researcher collaborative scoring sessions and interpretation of assessment results led to changes in teachers' instructional decision making to better support students in expressing their scientific understandings. We conclude with implications of this work for theory, research, and practice.
NASA Astrophysics Data System (ADS)
Harlow, Danielle B.; Swanson, Lauren H.; Dwyer, Hilary A.; Bianchini, Julie A.
2010-10-01
We report on an adapted version of the Physics and Everyday Thinking (PET) curriculum. A unique aspect of PET is its inclusion of special activities that focus on Learning about Learning (LAL) in which undergraduates analyze videos of children talking about science and explicitly consider the nature of science. To create a course that intentionally linked science content, children's ideas, and strategies for science instruction, we augmented the existing LAL activities with discussions about teaching, and added activities focused on LAL from companion curricula such as Physical Science and Everyday Thinking (PSET) and Learning Physical Science (LEPS). To compensate for the additional time on LAL, we reduced the content activities to only those that directly supported LAL activities. We found that students made significant gains on the CLASS and expressed beliefs about teaching consistent with the PET pedagogy.
The Factors that Affect Science Teachers' Participation in Professional Development
NASA Astrophysics Data System (ADS)
Roux, Judi Ann
Scientific literacy for our students and the possibilities for careers available in Science, Technology, Engineering, and Mathematics (STEM) areas are important topics for economic growth as well as global competitiveness. The achievement of students in science learning is dependent upon the science teachers' effectiveness and experienced science teachers depend upon relevant professional development experiences to support their learning. In order to understand how to improve student learning in science, the learning of science teachers must also be understood. Previous research studies on teacher professional development have been conducted in other states, but Minnesota science teachers comprised a new and different population from those previously studied. The purpose of this two-phase mixed methods study was to identify the current types of professional development in which experienced, Minnesota secondary science teachers participated and the factors that affect their participation in professional development activities. The mixed-methods approach s utilized an initial online survey followed by qualitative interviews with five survey respondents. The results of the quantitative survey and the qualitative interviews indicated the quality of professional development experiences and the factors which affected the science teachers' participation in professional development activities. The supporting and inhibiting factors involved the availability of resources such as time and money, external relationships with school administrators, teacher colleagues, and family members, and personal intrinsic attributes such as desires to learn and help students. This study also describes implications for science teachers, school administrators, policymakers, and professional development providers. Recommendations for future research include the following areas: relationships between and among intrinsic and extrinsic factors, science-related professional development activities within local school districts, the use of formal and informal professional development, and the needs of rural science teachers compared to urban and suburban teachers.
NASA Astrophysics Data System (ADS)
Kulo, Violet; Bodzin, Alec
2013-02-01
Geospatial technologies are increasingly being integrated in science classrooms to foster learning. This study examined whether a Web-enhanced science inquiry curriculum supported by geospatial technologies promoted urban middle school students' understanding of energy concepts. The participants included one science teacher and 108 eighth-grade students classified in three ability level tracks. Data were gathered through pre/posttest content knowledge assessments, daily classroom observations, and daily reflective meetings with the teacher. Findings indicated a significant increase in the energy content knowledge for all the students. Effect sizes were large for all three ability level tracks, with the middle and low track classes having larger effect sizes than the upper track class. Learners in all three tracks were highly engaged with the curriculum. Curriculum effectiveness and practical issues involved with using geospatial technologies to support science learning are discussed.
Distributed Revisiting: An Analytic for Retention of Coherent Science Learning
ERIC Educational Resources Information Center
Svihla, Vanessa; Wester, Michael J.; Linn, Marcia C.
2015-01-01
Designing learning experiences that support the development of coherent understanding of complex scientific phenomena is challenging. We sought to identify analytics that can also guide such designs to support retention of coherent understanding. Based on prior research that distributing study of material over time supports retention, we explored…
Teaching science to English Language Learners: Instructional approaches of high school teachers
NASA Astrophysics Data System (ADS)
Frank, Betty-Vinca N.
Students who are English Language Learners (ELLs) form the fastest growing segment of the American school population. Prompted by the call for scientific literacy for all citizens, science educators too have investigated the intersection of language and science instruction of ELLs. However these studies have typically been conducted with elementary students. Few studies have explored how high school science teachers, particularly those who have not received any special training, approach science instruction of ELLs and what supports them in this endeavor. This was a qualitative case study conducted with five science teachers in one small urban high school that predominantly served ELLs. The purpose of this study was to examine instructional approaches used by teachers to make science accessible to ELLs and the factors that supported or inhibited them in developing their instructional approaches. This goal encompassed the following questions: (a) how teachers viewed science instruction of ELLs, (b) how teachers designed a responsive program to teach science to ELLs, (c) what approaches teachers used for curriculum development and instruction, (d) how teachers developed classroom learning communities to meet the needs of ELLs. Seven instructional strategies and five perceived sources of support emerged as findings of this research. In summary, teachers believed that they needed to make science more accessible for their ELL students while promoting their literacy skills. Teachers provided individualized attention to students to provide relevant support. Teachers engaged their students in various types of active learning lessons in social contexts, where students worked on both hands-on and meaning-making activities and interacted with their peers and teachers. Teachers also created classroom communities and learning spaces where students felt comfortable to seek and give help. Finally, teachers identified several sources of support that influenced their instructional approaches including, the structure of the school, working on instructional teams, collaborating and working with other teachers especially English teachers and including science teachers, and participating in various professional development activities. The findings indicated that the instructional approaches used by teachers were largely supported by literacy education and science education done at elementary level. Findings also revealed that teachers in this study encouraged their ELLs to participate in classroom conversations and involved them in answering open-ended questions. However, not all teachers in this study had the same repertoire of instructional strategies for their ELL students and some teachers demonstrated a better understanding of these approaches than others. All teachers perceived that the structure of the school as well as collaborating and working with other teachers, especially English teachers, as their main source of support in designing instructional approaches. This study suggests that teacher educators and professional development providers need to develop courses and programs to help high school teachers learn about how to design instructional activities that simultaneously promote both academic science and English literacy. Also, administrators need to create conditions at their schools that would allow teachers to interact, collaborate, and learn from each other.
NASA Astrophysics Data System (ADS)
Höttecke, Dietmar; Silva, Cibelle Celestino
2011-03-01
Teaching and learning with history and philosophy of science (HPS) has been, and continues to be, supported by science educators. While science education standards documents in many countries also stress the importance of teaching and learning with HPS, the approach still suffers from ineffective implementation in school science teaching. In order to better understand this problem, an analysis of the obstacles of implementing HPS into classrooms was undertaken. The obstacles taken into account were structured in four groups: 1. culture of teaching physics, 2. teachers' skills, epistemological and didactical attitudes and beliefs, 3. institutional framework of science teaching, and 4. textbooks as fundamental didactical support. Implications for more effective implementation of HPS are presented, taking the social nature of educational systems into account.
NASA Astrophysics Data System (ADS)
Song, Yanjie; Wen, Yun
2018-04-01
Despite that BYOD (Bring Your Own Device) technology model has been increasingly adopted in education, few studies have been reported on how to integrate various apps on BYOD into inquiry-based pedagogical practices in primary schools. This article reports a case study, examining what apps on BYOD can help students enhance their science learning, and how students develop their science knowledge in a seamless inquiry-based learning environment supported by these apps. A variety of qualitative data were collected and analyzed. The findings show that the affordances of the apps on BYOD could help students improve their science knowledge without time and place constraints and gain a better sense of ownership in learning.
ERIC Educational Resources Information Center
Liu, Min; Horton, Lucas; Lee, Jaejin; Kang, Jina; Rosenblum, Jason; O'Hair, Matthew; Lu, Chu-Wei
2014-01-01
This paper describes the design and development process used to create Alien Rescue, a multimedia-enhanced learning environment that supports problem-based learning (PBL) in middle school science. The goal of the project is to further our understandings of technology, pedagogy, and instructional theories as they relate to the application of PBL…
ERIC Educational Resources Information Center
Yoon, Susan A.; Anderson, Emma; Koehler-Yom, Jessica; Evans, Chad; Park, Miyoung; Sheldon, Josh; Schoenfeld, Ilana; Wendel, Daniel; Scheintaub, Hal; Klopfer, Eric
2017-01-01
The recent next generation science standards in the United States have emphasized learning about complex systems as a core feature of science learning. Over the past 15 years, a number of educational tools and theories have been investigated to help students learn about complex systems; but surprisingly, little research has been devoted to…
ERIC Educational Resources Information Center
Vogel, Bahtijar; Kurti, Arianit; Milrad, Marcelo; Johansson, Emil; Müller, Maximilian
2014-01-01
This paper presents the overall lifecycle and evolution of a software system we have developed in relation to the "Learning Ecology through Science with Global Outcomes" (LETS GO) research project. One of the aims of the project is to support "open inquiry learning" using mobile science collaboratories that provide open…
ERIC Educational Resources Information Center
McDonald, Paige L.; Lyons, Laurie B.; Straker, Howard O.; Barnett, Jacqueline S.; Schlumpf, Karen S.; Cotton, Linda; Corcoran, Mary A.
2014-01-01
For disciplines heavily reliant upon traditional classroom teaching, such as medicine and health sciences, incorporating new learning models may pose challenges for students and faculty. In an effort to innovate curricula, better align courses to required student learning outcomes, and address the call to redesign health professions education,…
Learning and engagement through natural history museums*
Lawrence, Martin; Oliver, Mary; Reiss, Michael J.
2018-01-01
Abstract This review examines how natural history museums (NHMs) can enhance learning and engagement in science, particularly for school-age students. First, we describe the learning potential of informal science learning institutions in general, then we focus on NHMs. We review the possible benefits of interactions between schools and NHMs, and the potential for NHMs to teach about challenging issues such as evolution and climate change and to use digital technologies to augment more traditional artefacts. We conclude that NHMs can provide students with new knowledge and perspectives, with impacts that can last for years. Through visits and their on-line presence, NHMs can help students see science in ways that the school classroom rarely can, with opportunities to meet scientists, explore whole topic exhibitions, engage with interactive displays and employ digital technologies both in situ and to support learning in the school science classroom. Although these interactions have the potential to foster positive cognitive, affective and social outcomes for students, there is a lack of reliable measures of the impact of NHM experiences for students. Opportunities to foster relationships between NHM staff and teachers through professional development can help articulate shared goals to support students’ learning and engagement.
Designing a Web-Based Science Learning Environment for Model-Based Collaborative Inquiry
NASA Astrophysics Data System (ADS)
Sun, Daner; Looi, Chee-Kit
2013-02-01
The paper traces a research process in the design and development of a science learning environment called WiMVT (web-based inquirer with modeling and visualization technology). The WiMVT system is designed to help secondary school students build a sophisticated understanding of scientific conceptions, and the science inquiry process, as well as develop critical learning skills through model-based collaborative inquiry approach. It is intended to support collaborative inquiry, real-time social interaction, progressive modeling, and to provide multiple sources of scaffolding for students. We first discuss the theoretical underpinnings for synthesizing the WiMVT design framework, introduce the components and features of the system, and describe the proposed work flow of WiMVT instruction. We also elucidate our research approach that supports the development of the system. Finally, the findings of a pilot study are briefly presented to demonstrate of the potential for learning efficacy of the WiMVT implementation in science learning. Implications are drawn on how to improve the existing system, refine teaching strategies and provide feedback to researchers, designers and teachers. This pilot study informs designers like us on how to narrow the gap between the learning environment's intended design and its actual usage in the classroom.
Learning and engagement through natural history museums.
Mujtaba, Tamjid; Lawrence, Martin; Oliver, Mary; Reiss, Michael J
2018-01-01
This review examines how natural history museums (NHMs) can enhance learning and engagement in science, particularly for school-age students. First, we describe the learning potential of informal science learning institutions in general, then we focus on NHMs. We review the possible benefits of interactions between schools and NHMs, and the potential for NHMs to teach about challenging issues such as evolution and climate change and to use digital technologies to augment more traditional artefacts. We conclude that NHMs can provide students with new knowledge and perspectives, with impacts that can last for years. Through visits and their on-line presence, NHMs can help students see science in ways that the school classroom rarely can, with opportunities to meet scientists, explore whole topic exhibitions, engage with interactive displays and employ digital technologies both in situ and to support learning in the school science classroom. Although these interactions have the potential to foster positive cognitive, affective and social outcomes for students, there is a lack of reliable measures of the impact of NHM experiences for students. Opportunities to foster relationships between NHM staff and teachers through professional development can help articulate shared goals to support students' learning and engagement.
ERIC Educational Resources Information Center
Piasta, Shayne B.; Logan, Jessica A. R.; Pelatti, Christina Yeager; Capps, Janet L.; Petrill, Stephen A.
2015-01-01
Because recent initiatives highlight the need to better support preschool-aged children's math and science learning, the present study investigated the impact of professional development in these domains for early childhood educators. Sixty-five educators were randomly assigned to experience 10.5 days (64 hr) of training on math and science or on…
Children's Motivation toward Science across Contexts, Manner of Interaction, and Topic
ERIC Educational Resources Information Center
Bathgate, Meghan E.; Schunn, Christian D.; Correnti, Richard
2014-01-01
Understanding the features of science learning experiences that organize and motivate children at early ages can help educators and researchers find ways to ignite interest to support future passion and learning in the sciences at a time when children's motivation is declining. Using a sample of 252 fifth-and sixth-grade students, we…
Roden, Julie A; Jakob, Susanne; Roehrig, Casey; Brenner, Tamara J
2018-03-12
In the past ten years, increasing evidence has demonstrated that scientific teaching and active learning improve student retention and learning gains in the sciences. Graduate teaching assistants (GTAs), who play an important role in undergraduate education at many universities, require training in these methods to encourage implementation, long-term adoption, and advocacy. Here, we describe the design and evaluation of a two-day training workshop for first-year GTAs in the life sciences. This workshop combines instruction in current research and theory supporting teaching science through active learning as well as opportunities for participants to practice teaching and receive feedback from peers and mentors. Postworkshop assessments indicated that GTA participants' knowledge of key topics increased during the workshop. In follow-up evaluations, participants reported that the workshop helped them prepare for teaching. This workshop design can easily be adapted to a wide range of science disciplines. Overall, the workshop prepares graduate students to engage, include, and support undergraduates from a variety of backgrounds when teaching in the sciences. © 2018 by The International Union of Biochemistry and Molecular Biology, 2018. © 2018 The International Union of Biochemistry and Molecular Biology.
Understanding How Families Use Magnifiers During Nature Center Walks
NASA Astrophysics Data System (ADS)
Zimmerman, Heather Toomey; McClain, Lucy Richardson; Crowl, Michele
2013-10-01
This analysis uses a sociocultural learning theory and parent-child interaction framework to understand families' interactions with one type of scientific tool, the magnifier, during nature walks offered by a nature center. Families were video recorded to observe how they organized their activities where they used magnifiers to explore in the outdoors. Findings include that families used magnifiers for scientific inquiry as well as for playful exploration. Using the concept of guided facilitation where families develop roles to support their joint endeavor, three roles to support family thinking were found to be: (a) tool suggester, (b) teacher, and (c) exploration ender. Some families struggled to use magnifiers and often, parents and older siblings provided support for younger children in using magnifying lenses. Implications to informal science learning theory are drawn and suggestions for future family learning research are offered: (a) inclusion of sociocultural and situated perspectives as theories to study informal learning in outdoor spaces, (b) further study on the role of siblings in family interactions, (c) design-based research is needed to encourage family role-taking when engaging in science practices, and (d) new conceptualizations on how to design informal programs that support science learning while leaving space for visitors' personal agendas and interests that can guide the families' activities.
ERIC Educational Resources Information Center
Furberg, Anniken
2016-01-01
This paper reports on a study of teacher support in a setting where students engaged with computer-supported collaborative learning (CSCL) in science. The empirical basis is an intervention study where secondary school students and their teacher performed a lab experiment in genetics supported by a digital learning environment. The analytical…
Fermilab Friends for Science Education | Programs
Fermilab Friends for Science Education FFSE Home About Us Join Us Support Us Contact Us Programs and conducts programs to enhance the teaching and learning of science and mathematics at the inception in 1983, sponsored more than 30 programs; most of them are still offered today. FFSE supports the
Using Mobile Phones in Support of Student Learning in Secondary Science Inquiry Classrooms
ERIC Educational Resources Information Center
Khoo, Elaine; Otrel-Cass, Kathrin
2017-01-01
This paper reports on findings from a research project concerned with how electronic networking tools (e-networked tools), such as the Internet, online forums, and mobile technologies, can support authentic science inquiry in junior secondary classrooms. It focuses on three qualitative case studies involving science teachers from two high schools…
What Do Students "Construct" According to Constructivism in Science Education?
ERIC Educational Resources Information Center
Bächtold, Manuel
2013-01-01
This paper aims at shedding light on what students can "construct" when they learn science and how this construction process may be supported. Constructivism is a pluralist theory of science education. As a consequence, I support, there are several points of view concerning this construction process. Firstly, I stress that constructivism…
NASA Astrophysics Data System (ADS)
Sliogeris, Marija; Almeida, Sylvia Christine
2017-09-01
Play-based approaches to science learning allow children to meaningfully draw on their everyday experiences and activities as they explore science concepts in context. Acknowledging the crucial role of the teacher in facilitating science learning through play, the purpose of this qualitative study was to examine how teacher-guided play, in conjunction with child-guided play, supports children's development of science concepts. While previous research on play-based science learning has mainly focused on preschool settings, this study explores the possibilities of play-based approaches to science in primary school contexts. Using a qualitative methodology grounded in the cultural-historical theoretical perspective, children's learning was examined during a science learning sequence that combined teacher-guided and child-guided play. This study revealed that the teacher-guided play explicitly introduced science concepts which children then used and explored in subsequent child-guided play. However, intentional teaching during the child-guided play continued to be important. Play-based approaches to science allowed children to make sense of the science concepts using familiar, everyday knowledge and activities. It became evident that the expectations and values communicated through classroom practices influenced children's learning through play.
NASA Astrophysics Data System (ADS)
Spevak, Arlene J.
Research in science education has presented investigations and findings related to the significance of particular learning variables. For example, the factors of learning style, learning strategy and motivational orientation have been shown to have considerable impact upon learning in a traditional classroom setting. Although these data have been somewhat generous for the face-to-face learning situation, this does not appear to be the case for distance education, particularly the Internet-based environment. The purpose of this study was to describe the on-line graduate science student, regarding the variables of learning style, learning strategy and motivational orientation. It was believed that by understanding the characteristics of adult science learners and by identifying their learning needs, Web course designers and science educators could create on-line learning programs that best utilized students' strengths in learning science. A case study method using a questionnaire, inventories, telephone interviews and documents was applied to nine graduate science students who participated for ten weeks in an asynchronous, exclusively Internet mediated graduate science course at a large, Northeastern university. Within-case and cross-case analysis indicated that these learners displayed several categories of learning styles as well as learning strategies. The students also demonstrated high levels of both intrinsic and extrinsic motivation, and this, together with varying strategy use, may have compensated for any mismatch between their preferred learning styles and their learning environment. Recommendations include replicating this study in other online graduate science courses, administration of learning style and learning strategy inventories to perspective online graduate science students, incorporation of synchronous communication into on-line science courses, and implementation of appropriate technology that supports visual and kinesthetic learners. Although the study was limited to nine participants, the implications of the findings are clear. Most adult science students experience learning in an on-line environment. Those who are independent, highly motivated learners and utilize a variety of learning strategies can adapt their learning style to the situational aspects of the learning environment. This further indicates that Internet-based graduate science education institutions should become aware of different learning styles and strategies, and be prepared to address this variety when developing and delivering such programming.
NASA Astrophysics Data System (ADS)
Kumar, David Devraj; Dunn, Jessica
2018-03-01
Analysis of self-reflections of undergraduate education students in a project involving web-supported counterintuitive science demonstrations is reported in this paper. Participating students (N = 19) taught science with counterintuitive demonstrations in local elementary school classrooms and used web-based resources accessed via wireless USB adapters. Student reflections to seven questions were analyzed qualitatively using four components of reflection (meeting objectives/perception of learning, dynamics of pedagogy, special needs accommodations, improving teaching) deriving 27 initial data categories and 12 emergent themes. Overall the undergraduates reported meeting objectives, engaging students in pedagogically relevant learning tasks including, providing accommodations to students with special needs, and gaining practice and insight to improve their own teaching. Additional research is needed to arrive at generalizable findings concerning teaching with web-supported counterintuitive science demonstrations in elementary classrooms.
ERIC Educational Resources Information Center
Eick, Charles J.; Dias, Michael; Smith, Nancy R. Cook
2009-01-01
A new National Science Foundation supported curriculum, Interactions in Physical Science[TM], was evaluated on students' conceptual change in the twelve concept areas of the national physical science content standard (B) for grades 5-8. Eighth grade students (N = 66) were evaluated pre and post on a 31-item multiple-choice test of conceptual…
The effectiveness of problem-based learning on teaching the first law of thermodynamics
NASA Astrophysics Data System (ADS)
Tatar, Erdal; Oktay, Münir
2011-11-01
Background: Problem-based learning (PBL) is a teaching approach working in cooperation with self-learning and involving research to solve real problems. The first law of thermodynamics states that energy can neither be created nor destroyed, but that energy is conserved. Students had difficulty learning or misconceptions about this law. This study is related to the teaching of the first law of thermodynamics within a PBL environment. Purpose: This study examined the effectiveness of PBL on candidate science teachers' understanding of the first law of thermodynamics and their science process skills. This study also examined their opinions about PBL. Sample: The sample consists of 48 third-grade university students from the Department of Science Education in one of the public universities in Turkey. Design and methods: A one-group pretest-posttest experimental design was used. Data collection tools included the Achievement Test, Science Process Skill Test, Constructivist Learning Environment Survey and an interview with open-ended questions. Paired samples t-test was conducted to examine differences in pre/post tests. Results: The PBL approach has a positive effect on the students' learning abilities and science process skills. The students thought that the PBL environment supports effective and permanent learning, and self-learning planning skills. On the other hand, some students think that the limited time and unfamiliarity of the approach impede learning. Conclusions: The PBL is an active learning approach supporting students in the process of learning. But there are still many practical disadvantages that could reduce the effectiveness of the PBL. To prevent the alienation of the students, simple PBL activities should be applied from the primary school level. In order to overcome time limitations, education researchers should examine short-term and effective PBL activities.
Literacy and science: each in the service of the other.
Pearson, P David; Moje, Elizabeth; Greenleaf, Cynthia
2010-04-23
We use conceptual and empirical lenses to examine synergies between inquiry science and literacy teaching and learning of K-12 (kindergarten through high school) curriculum. We address two questions: (i) how can reading and writing be used as tools to support inquiry-based science, and (ii) how do reading and writing benefit when embedded in an inquiry-based science setting? After elaborating the theoretical and empirical support for integrated approaches, we discuss how to support their implementation in today's complicated curricular landscape.
Moving Apart and Coming Together: Discourse, Engagement, and Deep Learning
ERIC Educational Resources Information Center
Gomoll, Andrea S.; Hmelo-Silver, Cindy E.; Tolar, Erin; Šabanovic, Selma; Francisco, Matthew
2017-01-01
An important part of "doing" science is engaging in collaborative science practices. To better understand how to support these practices, we need to consider how students collaboratively construct and represent shared understanding in complex, problem-oriented, and authentic learning environments. This research presents a case study…
ERIC Educational Resources Information Center
Tas, Yasemin
2016-01-01
This study investigated middle school students' engagement in science in relation to students' perceptions of the classroom learning environment (teacher support, student cohesiveness, and equity) and motivation (self-efficacy beliefs and achievement goals). The participants were 315 Turkish sixth and seventh grade students. Four hierarchical…
Student Sensemaking with Science Diagrams in a Computer-Based Setting
ERIC Educational Resources Information Center
Furberg, Anniken; Kluge, Anders; Ludvigsen, Sten
2013-01-01
This paper reports on a study of students' conceptual sensemaking with science diagrams within a computer-based learning environment aimed at supporting collaborative learning. Through the microanalysis of students' interactions in a project about energy and heat transfer, we demonstrate "how" representations become productive social and cognitive…
ERIC Educational Resources Information Center
Touitou, Israel; Barry, Stephen; Bielik, Tom; Schneider, Barbara; Krajcik, Joseph
2018-01-01
Project-based learning (PBL) is an instructional approach to science teaching that supports the "Next Generation Science Standards" (Krajcik 2015; NGSS Lead States 2013). In a PBL lesson, students design and solve real-world problems or explain scientific phenomena. Students using a PBL model learn and retain more than those not using…
Networked Environments that Create Hybrid Spaces for Learning Science
ERIC Educational Resources Information Center
Otrel-Cass, Kathrin; Khoo, Elaine; Cowie, Bronwen
2014-01-01
Networked learning environments that embed the essence of the Community of Inquiry (CoI) framework utilise pedagogies that encourage dialogic practices. This can be of significance for classroom teaching across all curriculum areas. In science education, networked environments are thought to support student investigations of scientific problems,…
Champions or Helpers: Leadership in Curriculum Reform in Science
ERIC Educational Resources Information Center
Johnson, Elizabeth D.; Bird, Fiona L.; Fyffe, Jeanette; Yench, Emma
2012-01-01
This study describes the perceptions of embedded teaching and learning leadership teams working on curriculum reform in science teaching departments. The teams combined a formally recognised leader, School Director of Learning and Teaching, with a project-based, more junior academic, Curriculum Fellow, to better leverage support for curriculum…
NASA Astrophysics Data System (ADS)
McDonald, Scott Powell
New understandings about how people learn and constructivist pedagogy pose challenges for teachers. Science teachers face an additional challenge of developing inquiry-based pedagogy to foster complex reasoning skills. Theory provides only fuzzy guidance as to how constructivist or inquiry pedagogy can be accomplished in a wide variety of contexts and local constraints. This study contributes to the understanding of the development of constructivist, inquiry-based pedagogy by addressing the question: How do teachers interpret and enact a technology-rich, inquiry fostering science curricula for fifth grade students' biodiversity learning? This research is a case study of two teachers chosen as critical contrasting cases and represent differences across multiple criteria including: urban I suburban, teaching philosophy, and content preparation. The two fifth grade teachers each enacted BioKIDS: Kids' Inquiry in Diverse Species, an eight week curriculum focused on biodiversity. BioKIDS incorporates multiple learning technologies to support student learning including handheld computer software designed to help students collect field data, and a web-based resource for data on local animal species. The results of this study indicate there are tensions teachers must struggle with when setting goals during enactment of inquiry science curricula. They must find a balance between an emphasis on authentic learning and authentic science, and between natural history and natural science. Authentic learning focuses on students' interests and lives; Authentic science focuses on students working with the tools and processes of science. Natural history focuses on the foundational skills in science of observation and classification. Natural science focuses on analytical science drawing on data to develop claims about the world. These two key tensions in teachers' goal setting were critical in defining and understanding differences in how teachers interpreted a curriculum to meet local context and constraints. This study also examined how teachers used technology and scientific inscriptions to support their goals. Implications for research in science education as well as design of curricula and technology are discussed.
ERIC Educational Resources Information Center
Chen, Ching-Huei; Chen, Chia-Ying
2012-01-01
This study examined the effects of an inquiry-based learning (IBL) approach compared to that of a problem-based learning (PBL) approach on learner performance, attitude toward science and inquiry ability. Ninety-six students from three 7th-grade classes at a public school were randomly assigned to two experimental groups and one control group. All…
ERIC Educational Resources Information Center
Sakiz, Gonul
2017-01-01
Background: In recent research, affective learning environments and affective support have been receiving increasing attention for their roles in stimulating students' learning outcomes. Despite its raising importance, little is known about affective support in educational contexts in developing countries. Moreover, international student…
Wikis for a Collaborative Problem-Solving (CPS) Module for Secondary School Science
ERIC Educational Resources Information Center
DeWitt, Dorothy; Alias, Norlidah; Siraj, Saedah; Spector, Jonathan Michael
2017-01-01
Collaborative problem solving (CPS) can support online learning by enabling interactions for social and cognitive processes. Teachers may not have sufficient knowledge to support such interactions, so support needs to be designed into learning modules for this purpose. This study investigates to what extent an online module for teaching nutrition…
The effects of a new constructivist science curriculum (PIPS) for prospective elementary teachers
NASA Astrophysics Data System (ADS)
Liang, Ling L.
This study examines the effectiveness of a new constructivist curriculum model (Powerful Ideas in Physical Science, PIPS) in promoting preservice teachers' understanding of science concepts, in fostering a learning environment supporting conceptual change, and in improving preservice teachers' attitudes toward science as well as their science teaching efficacy beliefs. The PIPS curriculum model integrates a conceptual change perspective with a hands-on, inquiry-based approach and other promising effective teaching strategies such as cooperative learning. Three instructors each taught one class section using the PIPS and one using the existing curriculum for an introductory science course. Their students were 121 prospective elementary teachers at a large mid-western university. ANCOVA and Repeated Measures Analyses of Variance were performed to analyze the scores on concept tests and attitude surveys. Data from videotaped observations of lab sessions and interviews of prospective teachers and their instructors were analyzed by employing a naturalistic inquiry method to get insights into the process of science learning and teaching for the prospective teachers. The interpretations were made based on the findings that could be corroborated by both methodologies. For the twelve prospective teachers interviewed, it was found that the PIPS model was more effective in promoting conceptual understanding and positive attitudes toward science learning for those with lower past science performance. The PIPS approach left more room for self-reflection on the development of understanding of science concepts in contrast to the lecture-lab type teaching. Factors that might have influenced the teacher trainees' attitudes and beliefs about learning and teaching science were identified and discussed. It was also found that better cooperative learning and a more supportive learning environment have been promoted in the PIPS classrooms. However, the differential treatment effects on learning outcomes for all participants of the study, as measured by the paper-pencil instruments, were not statistically significant. Both students' and instructors' perspectives of the PIPS approach are presented in the study. Limitations of the present study as well as recommendations for future revision of the PIPS curriculum and effective implementation of the constructivist teaching in general, are also included.
My Sky Tonight: Nurturing a Scientific Frame of Mind in Early Childhood
NASA Astrophysics Data System (ADS)
Manning, Jim; Manning, J.; Schultz, G. R.; Gurton, S.; Plummer, J.; Callanan, M.; Jipson, J.; Palmquist, S.
2013-06-01
The Astronomical Society of the Pacific (ASP), in collaboration with a team of researchers, evaluators, and informal education institutions, has embarked on an NSF-funded project designed to build capacity in informal science education (ISE) practitioners by supporting development of their understanding of early childhood astronomy knowledge and the building of pedagogical skills and tools supportive of early childhood learning in informal settings. While preschool-aged children have long been considered too young and too cognitively immature to benefit from science learning, a growing body of recent research shows that children’s curiosity about science topics begins in the years prior to school, and that a child’s early years lay a powerful foundation for subsequent learning. Further, informal science educator and learning researchers argue that more effectively building on young children’s inherent curiosity about the natural world could lead to stronger science learning outcomes than waiting to introduce science in classroom settings. Consequently, using the domain of astronomy as a basis, the ASP and its partners are embarking on a project to: 1) advance the knowledge base concerning astronomy conceptions and curiosities of young children and how they can be built upon to position children for later learning, 2) develop interactive learning experiences to be used by ISE practitioners and families with small children to nurture children’s science curiosity and reasoning, 3) increase participation in astronomy by families in general and underserved families in particular, and 4) improve practice by engaging ISE practitioners in the research and development of effective practices, providing implementation tools and methods. The presenter will share project status as it gets underway.
NASA Astrophysics Data System (ADS)
Smetana, Lara Kathleen; Bell, Randy L.
2012-06-01
Researchers have explored the effectiveness of computer simulations for supporting science teaching and learning during the past four decades. The purpose of this paper is to provide a comprehensive, critical review of the literature on the impact of computer simulations on science teaching and learning, with the goal of summarizing what is currently known and providing guidance for future research. We report on the outcomes of 61 empirical studies dealing with the efficacy of, and implications for, computer simulations in science instruction. The overall findings suggest that simulations can be as effective, and in many ways more effective, than traditional (i.e. lecture-based, textbook-based and/or physical hands-on) instructional practices in promoting science content knowledge, developing process skills, and facilitating conceptual change. As with any other educational tool, the effectiveness of computer simulations is dependent upon the ways in which they are used. Thus, we outline specific research-based guidelines for best practice. Computer simulations are most effective when they (a) are used as supplements; (b) incorporate high-quality support structures; (c) encourage student reflection; and (d) promote cognitive dissonance. Used appropriately, computer simulations involve students in inquiry-based, authentic science explorations. Additionally, as educational technologies continue to evolve, advantages such as flexibility, safety, and efficiency deserve attention.
Teacher learning from girls' informal science experiences
NASA Astrophysics Data System (ADS)
Birmingham, Daniel J.
School science continues to fail to engage youth from non-dominant communities (Carlone, Huan-Frank & Webb, 2011). However, recent research demonstrates that informal science learning settings support both knowledge gains and increased participation in science among youth from non-dominant communities (Dierking, 2007; Falk et al., 2007; HFRP, 2010). Despite the success, little is known about how teachers can learn from informal science practices to support student engagement in science. In this study, I examine the impact informal science experiences has for the teaching and learning of science in school contexts. This study is focused on eliciting girls' stories of informal science learning experiences and sharing these stories with science teachers to examine what they notice and make meaning of in connection with their classroom practices (van Es & Sherin, 2002). I co-constructed cases of informal science experiences with middle school females who participate in an after school science program in an urban area. These cases consisted of the girls' written stories, their explicit messages to science teachers, examples of actions taken when investigating community based science issues and transcripts of conversations between the girls and researchers. These cases were shared with local science teachers in order to investigate what they "notice" (van Es & Sherin, 2002) regarding girls' participation in informal science learning, how they make meaning of youths' stories and whether the stories influence their classroom practices. I found that the girls' use their cases to share experiences of how, where and why science matters, to express hope for school science and to critique stereotypical views that young, female, students of color from lower SES backgrounds are not interested or capable of making contributions to scientific investigations. Additionally, I found that teachers noticed powerful messages within and across the girls' cases. The messages include; 1) students' desire to be active participants in science investigations, 2) the need to provide spaces for students to leverage their strengths when learning and doing science, 3) the importance of building connections between science and community, and 4) expanding the outcomes of scientific investigations beyond traditional school measures. However, their individual meaning making was influenced by tensions between what they found powerful in the cases, the institutional narratives that often guide practice in schools and the societal and personal narratives connected to participation of girls from non dominant communities in science. Thus, each of the three teachers took different pathways as they implemented new science learning experiences based upon what each found most salient in the girls' stories as well as the influence of institutional, societal and personal narratives, resulting in varied learning experiences for their students.
ERIC Educational Resources Information Center
Falkner, Katrina; Vivian, Rebecca
2015-01-01
To support teachers to implement Computer Science curricula into classrooms from the very first year of school, teachers, schools and organisations seek quality curriculum resources to support implementation and teacher professional development. Until now, many Computer Science resources and outreach initiatives have targeted K-12 school-age…
ERIC Educational Resources Information Center
Zervas, Panagiotis; Fiskilis, Stefanos; Sampson, Demetrios G.
2014-01-01
Over the past years, Remote and Virtual Labs (RVLs) have gained increased attention for their potential to support technology-enhanced science education by enabling science teachers to improve their day-to-day science teaching. Therefore, many educational institutions and scientific organizations have invested efforts for providing online access…
ERIC Educational Resources Information Center
Merrill, Margaret L.
2012-01-01
To support and improve effective science teaching, educators need methods to reveal student understandings and misconceptions of science concepts and to offer all students an opportunity to reflect on their own knowledge construction and organization. Students can benefit by engaging in scientific activities in which they build personal…
Energy matters: An investigation of drama pedagogy in the science classroom
NASA Astrophysics Data System (ADS)
Alrutz, Megan
The purpose of this study is to explore and document how informal and improvisational drama techniques affect student learning in the science classroom. While implementing a drama-based science unit, I examined multiple notions of learning, including, but not limited to, traditional notions of achievement, student understanding, student participation in the science classroom, and student engagement with, and knowledge of, science content. Employing an interpretivist research methodology, as outlined by Fredrick Erickson for qualitative analysis in the classroom, I collected data through personal observations; student and teacher interviews; written, artistic and performed class work; video-recorded class work; written tests; and questionnaires. In analyzing the data, I found strong support for student engagement during drama-based science instruction. The drama-based lessons provided structures that drew students into lessons, created enthusiasm for the science curriculum, and encouraged meaningful engagement with, and connections to, the science content, including the application and synthesis of science concepts and skills. By making student contributions essential to each of the lessons, and by challenging students to justify, explain, and clarify their understandings within a dramatic scenario, the classroom facilitators created a conducive learning environment that included both support for student ideas and intellectual rigor. The integration of drama-based pedagogy most affected student access to science learning and content. Students' participation levels, as well as their interest in both science and drama, increased during this drama-based science unit. In addition, the drama-based lessons accommodated multiple learning styles and interests, improving students' access to science content and perceptions of their learning experience and abilities. Finally, while the drama-based science lessons provided multiple opportunities for solidifying understanding of the science content, the data also revealed missed opportunities for sense-making within the delivery of several drama-based science lessons. In conclusion, this study demonstrates how the integration of drama and science prepares students for seeking, accessing, and organizing information in different ways, providing multiple means for students to build knowledge and understanding for actively participating in the changing world around us.
NASA Astrophysics Data System (ADS)
Davis, Kathleen S.
2003-01-01
Over the last decade, significant efforts have been made to bring change to science classrooms. Educational researchers (Anderson, R. D., & Helms, J. V. (2001). Journal of Research in Science Teaching, 38(1), 3-16.) have pointed to the need to examine reform efforts systemically to understand the pathways and impediments to successful reform. This study provides a critical analysis of the implementation of an innovative science curriculum at a middle school site. In particular, the author explores the issues that surround teacher learning of new practices including the structures, policies, and practices that were in place within the reform context that supported or impeded teacher learning. Parallels are drawn between student and teacher learning and the importance of autonomy and decision-making structures for both populations of learners. Findings presented include (1) how staff development with constructivist underpinnings facilitated teacher learning; (2) how regular and frequent opportunities for interactions with colleagues and outside support personnel contributed to teacher learning; (3) how the decline of such interactive forums and the continuation of old decision-making structures restricted the development of teacher knowledge, expertise, and a common vision of the science program; and (4) how the process of field-testing at this site limited the incorporation of teachers' prior knowledge and impacted teacher acquisition of new knowledge and skills.
NASA Astrophysics Data System (ADS)
Matthews, Brian
2004-03-01
One hundred and sixty-five Year 7 (11-12 years old) pupils in co-educational schools in England participated in a study investigating the effects of mixed gender working on attitudinal and social measures. Eighty-two children working in mixed-gender groups and 83 control children working mainly in single-gender groups were tested on a variety of measures. Attitudes to science, social cohesion, self-reported individual learning, group learning, conflict resolution, and social facilitation, were recorded and analysed. In addition, pre-test and posttest evaluations were carried out and measures were related to test outcomes. The findings from the study indicated a positive effect of working in mixed groups: they were more likely than the control groups to like science lessons and consider taking it up as a subject in the future. Social measures indicated: (1) a better understanding of opposite-gender classmates, (2) a greater enjoyment of the collaborative nature of science, and (3) increased tendencies to offer academic support to peers. It is thus proposed that the integration of emotional learning within science lessons will facilitate boys' and girls' social development as well as increasing the likelihood of them being interested in science. These findings give support for the integration of emotional literacy with learning concepts in the science classroom and for co-educational schools.
NASA Astrophysics Data System (ADS)
Welsh, Cynthia Ann
Creating opportunities for all learners has not been common practice in the United States, especially when the history of Native American educational practice is examined (Bull, 2006; Chenoweth, 1999; Starnes, 2006a). The American Indian Science and Engineering Society (AISES) is an organization working to increase educational opportunity for American Indian students in science, engineering, and technology related fields (AISES, 2005). AISES provides pre-college support in science by promoting student science fair participation. The purpose of this qualitative research is to describe how American Indian student participation in science fairs and the relationship formed with their teacher affects academic achievement and the likelihood of continued education beyond high school. Two former American Indian students mentored by the principal investigator participated in this study. Four ethnographic research methods were incorporated: participant observation, ethnographic interviewing, search for artifacts, and auto-ethnographic researcher introspection (Eisenhart, 1988). After the interview transcripts, photos documenting past science fair participation, and researcher field notes were analyzed, patterns and themes emerged from the interviews that were supported in literature. American Indian academic success and life long learning are impacted by: (a) the effects of racism and oppression result in creating incredible obstacles to successful learning, (b) positive identity formation and the importance of family and community are essential in student learning, (c) the use of best practice in science education, including the use of curricular cultural integration for American Indian learners, supports student success, (d) the motivational need for student-directed educational opportunities (science fair/inquiry based research) is evident, (e) supportive teacher-student relationships in high school positively influences successful transitions into higher education. An overarching theme presented itself embedded within all themes: the importance of understanding the continued resiliency of the American Indian culture as it relates to success. Ultimately, for long-lasting change to occur, teachers and the community must focus on eliminating educational barriers, while supporting academic success, in order to initiate renewal and school wide change.
Relating Narrative, Inquiry, and Inscriptions: Supporting Consequential Play
NASA Astrophysics Data System (ADS)
Barab, Sasha A.; Sadler, Troy D.; Heiselt, Conan; Hickey, Daniel; Zuiker, Steven
2007-02-01
In this paper we describe our research using a multi-user virtual environment, Quest Atlantis, to embed fourth grade students in an aquatic habitat simulation. Specifically targeted towards engaging students in a rich inquiry investigation, we layered a socio-scientific narrative and an interactive rule set into a multi-user virtual environment gaming engine to establish a virtual world through which students learned about science inquiry, water quality concepts, and the challenges in balancing scientific and socio-economic factors. Overall, students were clearly engaged, participated in rich scientific discourse, submitted quality work, and learned science content. Further, through participation in this narrative, students developed a rich perceptual, conceptual, and ethical understanding of science. This study suggests that multi-user virtual worlds can be effectively leveraged to support academic content learning.
Erratum to: Relating Narrative, Inquiry, and Inscriptions: Supporting Consequential Play
NASA Astrophysics Data System (ADS)
Barab, Sasha A.; Sadler, Troy D.; Heiselt, Conan; Hickey, Daniel; Zuiker, Steven
2010-08-01
In this paper we describe our research using a multi-user virtual environment, Quest Atlantis, to embed fourth grade students in an aquatic habitat simulation. Specifically targeted towards engaging students in a rich inquiry investigation, we layered a socio-scientific narrative and an interactive rule set into a multi-user virtual environment gaming engine to establish a virtual world through which students learned about science inquiry, water quality concepts, and the challenges in balancing scientific and socio-economic factors. Overall, students were clearly engaged, participated in rich scientific discourse, submitted quality work, and learned science content. Further, through participation in this narrative, students developed a rich perceptual, conceptual, and ethical understanding of science. This study suggests that multi-user virtual worlds can be effectively leveraged to support academic content learning.
Laptop Use, Interactive Science Software, and Science Learning Among At-Risk Students
NASA Astrophysics Data System (ADS)
Zheng, Binbin; Warschauer, Mark; Hwang, Jin Kyoung; Collins, Penelope
2014-08-01
This year-long, quasi-experimental study investigated the impact of the use of netbook computers and interactive science software on fifth-grade students' science learning processes, academic achievement, and interest in further science, technology, engineering, and mathematics (STEM) study within a linguistically diverse school district in California. Analysis of students' state standardized science test scores indicated that the program helped close gaps in scientific achievement between at-risk learners (i.e., English learners, Hispanics, and free/reduced-lunch recipients) and their counterparts. Teacher and student interviews and classroom observations suggested that computer-supported visual representations and interactions supported diverse learners' scientific understanding and inquiry and enabled more individualized and differentiated instruction. Finally, interviews revealed that the program had a positive impact on students' motivation in science and on their interest in pursuing science-related careers. This study suggests that technology-facilitated science instruction is beneficial for improving at-risk students' science achievement, scaffolding students' scientific understanding, and strengthening students' motivation to pursue STEM-related careers.
NASA Astrophysics Data System (ADS)
Eick, Charles J.
2012-11-01
A case study of an exemplary third grade teacher's use of the outdoor classroom for meeting both state science and language arts standards is described. Data from the researcher's field journal, teacher lesson plans, and teacher interviews document how this teacher used nature-study to bridge outdoor classroom experiences with the state science and language arts curriculum. This teacher's early life experiences supported her strong interest in science and nature in the outdoors and experiencing it with her children. Children interacted with the outdoor classroom throughout the day as a context for science and literacy learning. All but one child successfully met Annual Yearly Progress (AYP) goals in reading at the end of the school year.
Ready, Set, SCIENCE!: Putting Research to Work in K-8 Science Classrooms
ERIC Educational Resources Information Center
Michaels, Sarah; Shouse, Andrew W.; Schweingruber, Heidi A.
2007-01-01
What types of instructional experiences help K-8 students learn science with understanding? What do science educators, teachers, teacher leaders, science specialists, professional development staff, curriculum designers, and school administrators need to know to create and support such experiences? "Ready, Set, Science!" guides the way with an…
NASA Astrophysics Data System (ADS)
King, Melissa Digennaro
Goals 2000 set forth a bold vision for U.S. students: they would be "first in the world in science and mathematics" by the year 2000. Performance indicators such as the TIMSS-R (1999) and NAEP (2000) reports suggest that U.S. students have not yet reached that goal. This study intended to learn how specific assessment strategies might contribute to improved student performance in science. This quasi-experimental study investigated the effects of formative assessment with reflection on students' motivational beliefs, self-regulatory skills, and achievement in elementary science. The study aimed to find out whether and how classroom applications of formative assessment during science instruction might influence fifth-grade students' attitudes and self-perceptions about science learning, self-regulatory learning behaviors, and achievement. To explore the effects of the assessment intervention, the study utilized a mixed methods approach involving quantitative and qualitative investigations of treatment and control groups during a four-week intervention period. Quantitative measures included student self-report surveys administered pre- and post-treatment and an end-of-unit science test. Qualitative measures included classroom observations, student interviews (post-treatment), and a teacher interview (post-treatment). Findings indicated that the fifth-grade students in this study had positive attitudes toward science and high levels of self-efficacy for science. Results suggested that these elementary students employed a wide variety of cognitive and metacognitive strategies to support science learning. Findings revealed that these fifth graders believed formative assessment with reflection was beneficial for science learning outcomes. Research results did not show that the formative assessment intervention contributed to significant differences between treatment and control groups. However, the data revealed different levels of academic achievement and self-regulation for students in specific instructional services subgroups (i.e., gifted, regular education, special education, and ESL). For example, high achieving students reported higher levels of self-regulatory learning behavior than other fifth grade students. Findings suggested that elementary science instruction that includes classroom applications of formative assessment with reflection may provide support for science learning and the development of self-regulatory learning behavior. However, widespread implementation of this practice in elementary science classrooms represents significant challenges for today's educators, due to time limitations and increasing accountability pressures in our nation's schools.
NASA Astrophysics Data System (ADS)
Falkner, Katrina; Vivian, Rebecca
2015-10-01
To support teachers to implement Computer Science curricula into classrooms from the very first year of school, teachers, schools and organisations seek quality curriculum resources to support implementation and teacher professional development. Until now, many Computer Science resources and outreach initiatives have targeted K-12 school-age children, with the intention to engage children and increase interest, rather than to formally teach concepts and skills. What is the educational quality of existing Computer Science resources and to what extent are they suitable for classroom learning and teaching? In this paper, an assessment framework is presented to evaluate the quality of online Computer Science resources. Further, a semi-systematic review of available online Computer Science resources was conducted to evaluate resources available for classroom learning and teaching and to identify gaps in resource availability, using the Australian curriculum as a case study analysis. The findings reveal a predominance of quality resources, however, a number of critical gaps were identified. This paper provides recommendations and guidance for the development of new and supplementary resources and future research.
NASA Astrophysics Data System (ADS)
Maury, Tracy Anne
This Capstone project examined how leaders in the Bellevue School District can increase elementary teachers' capacity for teaching inquiry-based science through the use of professional learning activities that are grounded in ideas from human learning theory. A framework for professional development was constructed and from that framework, a set of professional learning activities were developed as a means to support teacher learning while project participants piloted new curriculum called the Isopod Habitat Challenge. Teachers in the project increased their understanding of the learning theory principles of preconceptions and metacognition. Teachers did not increase their understanding of the principle of learning with understanding, although they did articulate the significance of engaging children in student-led inquiry cycles. Data from the curriculum revision and professional development project coupled with ideas from learning theory, cognition and policy implementation, and learning community literatures suggest Bellevue's leaders can encourage peer-to-peer interaction, link professional development to teachers' daily practice, and capitalize on technology as ways to increase elementary teachers' capacity for teaching inquiry-based science. These lessons also have significance for supporting teacher learning and efficacy in other subject areas and at other levels in the system.
Support of an Active Science Project by a Large Information System: Lessons for the EOS Era
NASA Technical Reports Server (NTRS)
Angelici, Gary L.; Skiles, J. W.; Popovici, Lidia Z.
1993-01-01
The ability of large information systems to support the changing data requirements of active science projects is being tested in a NASA collaborative study. This paper briefly profiles both the active science project and the large information system involved in this effort and offers some observations about the effectiveness of the project support. This is followed by lessons that are important for those participating in large information systems that need to support active science projects or that make available the valuable data produced by these projects. We learned in this work that it is difficult for a large information system focused on long term data management to satisfy the requirements of an on-going science project. For example, in order to provide the best service, it is important for all information system staff to keep focused on the needs and constraints of the scientists in the development of appropriate services. If the lessons learned in this and other science support experiences are not applied by those involved with large information systems of the EOS (Earth Observing System) era, then the final data products produced by future science projects may not be robust or of high quality, thereby making the conduct of the project science less efficacious and reducing the value of these unique suites of data for future research.
NASA Astrophysics Data System (ADS)
Lin, Shu-Fen; Lin, Huann-shyang
2016-05-01
Comics are popular with adolescents because of their features of humor, narrative, and visual imagery. The purposes of this study were to examine the learning outcomes and emotional perceptions of reading a science comic book and a science text booklet for students of different levels of achievement, and to explore the main factors of the two media which attract high-school students to learn science. A mixed-method quasi-experimental design was adopted. The participants were 697 grade ten students from eight schools with different levels of academic achievement. Two similar classes in each of the eight schools were assigned as the comic group or the text group. The results indicated that the science comic book benefited medium achievers more than the science text booklet did, but the contrary result was found for the high achievers. In comparison, the two media benefited the low achievers equally, but both had only a limited effect due to the students' lack of prior knowledge. We conclude four kinds of evidence, including perceived difficulty of comprehension, reasons for interest/disinterest, emotional perceptions of learning science, and learning time, to support the phenomenon of the learning benefit of media specific to certain achievers' science learning.
NASA Astrophysics Data System (ADS)
Kesidou, Sofia; Roseman, Jo Ellen
2002-08-01
The purposes of this study were to examine how well middle school programs support the attainment of key scientific ideas specified in national science standards, and to identify typical strengths and weaknesses of these programs using research-based criteria. Nine widely used programs were examined by teams of teachers and specialists in research on teaching and learning. Reviewers found that whereas key ideas were generally present in the programs, they were typically buried between detailed or even unrelated ideas. Programs only rarely provided students with a sense of purpose for the units of study, took account of student beliefs that interfere with learning, engaged students with relevant phenomena to make abstract scientific ideas plausible, modeled the use of scientific knowledge so that students could apply what they learned in everyday situations, or scaffolded student efforts to make meaning of key phenomena and ideas presented in the programs. New middle school science programs that reflect findings from learning research are needed to support teachers better in helping students learn key ideas in science. The criteria and findings from this study on the inadequacies in existing programs could serve as guidelines in new curriculum development.
Hodges, Linda C
2018-06-01
As the use of collaborative-learning methods such as group work in science, technology, engineering, and mathematics classes has grown, so has the research into factors impacting effectiveness, the kinds of learning engendered, and demographic differences in student response. Generalizing across the range of this research is complicated by the diversity of group-learning approaches used. In this overview, I discuss theories of how group-work formats support or hinder learning based on the ICAP (interactive, constructive, active, passive) framework of student engagement. I then use this model to analyze current issues in group learning, such as the nature of student discourse during group work, the role of group learning in making our classrooms inclusive, and how classroom spaces factor into group learning. I identify key gaps for further research and propose implications from this research for teaching practice. This analysis helps identify essential, effective, and efficient features of group learning, thus providing faculty with constructive guidelines to support their work and affirm their efforts.
NASA Astrophysics Data System (ADS)
Chamnanwong, Pornpaka; Thathong, Kongsak
2018-01-01
In preparing a science lesson plan, teachers may deal with numerous difficulties. Having a deep understanding of their problems and their demands is extremely essential for the teachers in preparing themselves for the job. Moreover, it is also crucial for the stakeholders in planning suitable and in-need teachers' professional development programs, in school management, and in teaching aid. This study aimed to investigate the primary school science teachers' opinion toward practice of teaching and learning activities in science learning area. Target group was 292 primary science teachers who teach Grade 4 - 6 students in Khon Kaen Province, Thailand in the academic year of 2014. Data were collected using Questionnaire about Investigation the opinions of the primary science teachers toward practice of teaching and learning activities in science learning area. The questionnaires were consisted of closed questions scored on Likert scale and open-ended questions that invite a sentence response to cover from LS Process Ideas. Research findings were as follow. The primary science teachers' level of opinion toward teaching and learning science subject ranged from 3.19 - 3.93 (mean = 3.43) as "Moderate" level of practice. The primary school science teachers' needs to participate in a training workshop based on LS ranged from 3.66 - 4.22 (mean = 3.90) as "High" level. The result indicated that they were interested in attending a training course under the guidance of the Lesson Study by training on planning of management of science learning to solve teaching problems in science contents with the highest mean score 4.22. Open-ended questions questionnaire showed the needs of the implementation of the lesson plans to be actual classrooms, and supporting for learning Medias, innovations, and equipment for science experimentation.
NASA Astrophysics Data System (ADS)
Quinnell, R.; Thompson, R.; LeBard, R. J.
2013-09-01
Developing quantitative skills, or being academically numerate, is part of the curriculum agenda in science teaching and learning. For many of our students, being asked to 'do maths' as part of 'doing science' leads to disengagement from learning. Notions of 'I can't do maths' speak of a rigidity of mind, a 'standoff', forming a barrier to learning in science that needs to be addressed if we, as science educators, are to offer solutions to the so-called 'maths problem' and to support students as they move from being novice to expert. Moving from novice to expert is complex and we lean on several theoretical frameworks (thinking dispositions, threshold concepts and mindfulness in learning) to characterize this pathway in science, with a focus on quantitative skills. Fluid thinking and application of numeracy skills are required to manipulate experimental data sets and are integral to our science practice; we need to stop students from seeing them as optional 'maths' or 'statistics' tasks within our discipline. Being explicit about the ways those in the discipline think, how quantitative data is processed, and allowing places for students to address their skills (including their confidence) offer some ways forward.
A Study on Developing a Guide Material for Science Classes Supported by Out-of-School Learningi
ERIC Educational Resources Information Center
Bakioglu, Büsra; Karamustafaoglu, Orhan
2017-01-01
The main purpose of this research was to develop a guide material in line with learning outcomes of the unit for the 5th Graders titled Solving the Puzzle: Our Body in order to be utilized during out-of-school learning activities by science teachers. There is no guide material developed in our country for science teachers to be used in out-of…
The efficacy of student-centered instruction in supporting science learning.
Granger, E M; Bevis, T H; Saka, Y; Southerland, S A; Sampson, V; Tate, R L
2012-10-05
Transforming science learning through student-centered instruction that engages students in a variety of scientific practices is central to national science-teaching reform efforts. Our study employed a large-scale, randomized-cluster experimental design to compare the effects of student-centered and teacher-centered approaches on elementary school students' understanding of space-science concepts. Data included measures of student characteristics and learning and teacher characteristics and fidelity to the instructional approach. Results reveal that learning outcomes were higher for students enrolled in classrooms engaging in scientific practices through a student-centered approach; two moderators were identified. A statistical search for potential causal mechanisms for the observed outcomes uncovered two potential mediators: students' understanding of models and evidence and the self-efficacy of teachers.
NASA Astrophysics Data System (ADS)
Ryoo, Jean; Goode, Joanna; Margolis, Jane
2015-10-01
This article describes the importance that high school computer science teachers place on a teachers' professional learning community designed around an inquiry- and equity-oriented approach for broadening participation in computing. Using grounded theory to analyze four years of teacher surveys and interviews from the Exploring Computer Science (ECS) program in the Los Angeles Unified School District, this article describes how participating in professional development activities purposefully aimed at fostering a teachers' professional learning community helps ECS teachers make the transition to an inquiry-based classroom culture and break professional isolation. This professional learning community also provides experiences that challenge prevalent deficit notions and stereotypes about which students can or cannot excel in computer science.
Active Classroom Participation in a Group Scribbles Primary Science Classroom
ERIC Educational Resources Information Center
Chen, Wenli; Looi, Chee-Kit
2011-01-01
A key stimulus of learning efficacy for students in the classroom is active participation and engagement in the learning process. This study examines the nature of teacher-student and student-student discourse when leveraged by an interactive technology--Group Scribbles (GS) in a Primary 5 Science classroom in Singapore which supports rapid…
Supporting Teachers to Develop Substantive Discourse in Primary Science Classrooms
ERIC Educational Resources Information Center
Smith, Prudence M.; Hackling, Mark W.
2016-01-01
Students' thinking and learning in inquiry-based science is contingent on them being able to participate in substantive conversations so they explore their ideas and develop reasons and explanations for the outcomes of their investigations. While teachers understand the importance of talk for student learning, they are often unaware of the impact…
ERIC Educational Resources Information Center
Lax, Leila; Scardamalia, Marlene; Watt-Watson, Judy; Hunter, Judith; Bereiter, Carl
2010-01-01
This paper examines theoretical, pedagogical, and technological differences between two technologies that have been used in undergraduate interprofessional health sciences at the University of Toronto. One, a learning management system, WebCT 2.0, supports online coursework. The other, a Knowledge Building environment, Knowledge Forum 2.0,…
Illuminating Apps for Fourth Grade
ERIC Educational Resources Information Center
Lennex, Lesia; Bodenlos, Emily
2014-01-01
Elementary science is chock-full of wonderful experiences for students. Do children see iPads as a tool for learning about science? Using Prensky (2010) as a guide, the researchers decided to see if "assessing students with their own" tools (p.178) using iPad apps would support learning discrete knowledge for electricity and light…
Impact of Additional Guidance in Science Education on Primary Students' Conceptual Understanding
ERIC Educational Resources Information Center
Decristan, Jasmin; Hondrich, A. Lena; Büttner, Gerhard; Hertel, Silke; Klieme, Eckhard; Kunter, Mareike; Lühken, Arnim; Adl-Amini, Katja; Djakovic, Sanna-K.; Mannel, Susanne; Naumann, Alexander; Hardy, Ilonca
2015-01-01
A cognitive and a guidance dimension can describe the support of students' conceptual understanding in inquiry-based science education. The role of guidance for student learning has been intensively discussed. Furthermore, inquiry learning may pose particular challenges to students with low language proficiency. The present intervention in primary…
ERIC Educational Resources Information Center
Forbes, Cory T.; Sabel, Jaime L.; Biggers, Mandy
2015-01-01
Students' thinking should serve as the foundation of effective science curriculum and instruction. To promote science learning, particularly in the geosciences, teachers must attend to students' existing ideas about natural phenomena through the use of ''high-leverage'' instructional practices such as formative assessment. Elementary teachers need…
The Mathematics and Computer Science Learning Center (MLC).
ERIC Educational Resources Information Center
Abraham, Solomon T.
The Mathematics and Computer Science Learning Center (MLC) was established in the Department of Mathematics at North Carolina Central University during the fall semester of the 1982-83 academic year. The initial operations of the MLC were supported by grants to the University from the Burroughs-Wellcome Company and the Kenan Charitable Trust Fund.…
ERIC Educational Resources Information Center
Arias, Anna Maria; Bismack, Amber Schultz; Davis, Elizabeth A.; Palincsar, Annemarie Sullivan
2016-01-01
New reform documents underscore the importance of learning both the practices and content of science. This integration of practices and content requires sophisticated teaching that does not often happen in elementary classrooms. Educative curriculum materials--materials explicitly designed to support teacher and student learning--have been posited…
ERIC Educational Resources Information Center
Turcotte, Sandrine
2012-01-01
This article describes in detail a conversation analysis of conceptual change in a computer-supported collaborative learning environment. Conceptual change is an essential learning process in science education that has yet to be fully understood. While many models and theories have been developed over the last three decades, empirical data to…
Science education and literacy: imperatives for the developed and developing world.
Webb, Paul
2010-04-23
This article explores current language-based research aimed at promoting scientific literacy and examines issues of language use in schools, particularly where science teaching and learning take place in teachers' and learners' second language. Literature supporting the premise that promoting reading, writing, and talking while "doing science" plays a vital role in effective teaching and learning of the subject is highlighted. A wide range of studies suggest that, whether in homogenous or language-diverse settings, science educators can make a significant contribution to both understanding science and promoting literacy.
Educational Technologies in Problem-Based Learning in Health Sciences Education: A Systematic Review
Jin, Jun
2014-01-01
Background As a modern pedagogical philosophy, problem-based learning (PBL) is increasingly being recognized as a major research area in student learning and pedagogical innovation in health sciences education. A new area of research interest has been the role of emerging educational technologies in PBL. Although this field is growing, no systematic reviews of studies of the usage and effects of educational technologies in PBL in health sciences education have been conducted to date. Objective The aim of this paper is to review new and emerging educational technologies in problem-based curricula, with a specific focus on 3 cognate clinical disciplines: medicine, dentistry, and speech and hearing sciences. Analysis of the studies reviewed focused on the effects of educational technologies in PBL contexts while addressing the particular issue of scaffolding of student learning. Methods A comprehensive computerized database search of full-text articles published in English from 1996 to 2014 was carried out using 3 databases: ProQuest, Scopus, and EBSCOhost. Eligibility criteria for selection of studies for review were also determined in light of the population, intervention, comparison, and outcomes (PICO) guidelines. The population was limited to postsecondary education, specifically in dentistry, medicine, and speech and hearing sciences, in which PBL was the key educational pedagogy and curriculum design. Three types of educational technologies were identified as interventions used to support student inquiry: learning software and digital learning objects; interactive whiteboards (IWBs) and plasma screens; and learning management systems (LMSs). Results Of 470 studies, 28 were selected for analysis. Most studies examined the effects of learning software and digital learning objects (n=20) with integration of IWB (n=5) and LMS (n=3) for PBL receiving relatively less attention. The educational technologies examined in these studies were seen as potentially fit for problem-based health sciences education. Positive outcomes for student learning included providing rich, authentic problems and/or case contexts for learning; supporting student development of medical expertise through the accessing and structuring of expert knowledge and skills; making disciplinary thinking and strategies explicit; providing a platform to elicit articulation, collaboration, and reflection; and reducing perceived cognitive load. Limitations included cumbersome scenarios, infrastructure requirements, and the need for staff and student support in light of the technological demands of new affordances. Conclusions This literature review demonstrates the generally positive effect of educational technologies in PBL. Further research into the various applications of educational technology in PBL curricula is needed to fully realize its potential to enhance problem-based approaches in health sciences education. PMID:25498126
Jin, Jun; Bridges, Susan M
2014-12-10
As a modern pedagogical philosophy, problem-based learning (PBL) is increasingly being recognized as a major research area in student learning and pedagogical innovation in health sciences education. A new area of research interest has been the role of emerging educational technologies in PBL. Although this field is growing, no systematic reviews of studies of the usage and effects of educational technologies in PBL in health sciences education have been conducted to date. The aim of this paper is to review new and emerging educational technologies in problem-based curricula, with a specific focus on 3 cognate clinical disciplines: medicine, dentistry, and speech and hearing sciences. Analysis of the studies reviewed focused on the effects of educational technologies in PBL contexts while addressing the particular issue of scaffolding of student learning. A comprehensive computerized database search of full-text articles published in English from 1996 to 2014 was carried out using 3 databases: ProQuest, Scopus, and EBSCOhost. Eligibility criteria for selection of studies for review were also determined in light of the population, intervention, comparison, and outcomes (PICO) guidelines. The population was limited to postsecondary education, specifically in dentistry, medicine, and speech and hearing sciences, in which PBL was the key educational pedagogy and curriculum design. Three types of educational technologies were identified as interventions used to support student inquiry: learning software and digital learning objects; interactive whiteboards (IWBs) and plasma screens; and learning management systems (LMSs). Of 470 studies, 28 were selected for analysis. Most studies examined the effects of learning software and digital learning objects (n=20) with integration of IWB (n=5) and LMS (n=3) for PBL receiving relatively less attention. The educational technologies examined in these studies were seen as potentially fit for problem-based health sciences education. Positive outcomes for student learning included providing rich, authentic problems and/or case contexts for learning; supporting student development of medical expertise through the accessing and structuring of expert knowledge and skills; making disciplinary thinking and strategies explicit; providing a platform to elicit articulation, collaboration, and reflection; and reducing perceived cognitive load. Limitations included cumbersome scenarios, infrastructure requirements, and the need for staff and student support in light of the technological demands of new affordances. This literature review demonstrates the generally positive effect of educational technologies in PBL. Further research into the various applications of educational technology in PBL curricula is needed to fully realize its potential to enhance problem-based approaches in health sciences education.
Exploring the role of curriculum materials to support teachers in science education reform
NASA Astrophysics Data System (ADS)
Schneider, Rebecca M.
2001-07-01
For curriculum materials to succeed in promoting large-scale science education reform, teacher learning must be supported. Materials were designed to reflect desired reforms and to be educative by including detailed lesson descriptions that addressed necessary content, pedagogy, and pedagogical content knowledge for teachers. The goal of this research was to describe how such materials contributed to classroom practices. As part of an urban systemic reform effort, four middle school teachers' initial enactment of an inquiry-based science unit on force and motion were videotaped. Enactments focused on five lesson sequences containing experiences with phenomena, investigation, technology use, or artifact development. Each sequence spanned three to five days across the 10-week unit. For each lesson sequence, intended and actual enactment were compared using ratings of (1) accuracy and completeness of science ideas presented, (2) amount student learning opportunities, similarity of learning opportunities with those intended, and quality of adaptations , and (3) amount of instructional supports offered, appropriateness of instructional supports and source of ideas for instructional supports. Ratings indicated two teachers' enactments were consistent with intentions and two teachers' enactments were not. The first two were in school contexts supportive of the reform. They purposefully used the materials to guide enactment, which tended to be consistent with standards-based reform. They provided students opportunities to use technology tools, design investigations, and discuss ideas. However, enactment ratings were less reflective of curriculum intent when challenges were greatest, such as when teachers attempted to present challenging science ideas, respond to students' ideas, structure investigations, guide small-group discussions, or make adaptations. Moreover, enactment ratings were less consistent in parts of lessons where materials did not include lesson specific educative supports for teachers. Overall, findings indicate curriculum materials that include detailed descriptions of lessons accompanied by educative features can help teachers with enactment. Therefore, design principles to improve materials to support teachers in reform are suggested. However, results also demonstrate materials alone are not sufficient to create intended enactments; reform efforts must include professional development in content and pedagogy and efforts to create systemic change in context and policy to support teacher learning and classroom enactment.
NASA Astrophysics Data System (ADS)
Webb, Horace P.
Doing and learning science are social activities that require certain language, activities, and values. Both constitute what Gee (2005) calls Discourses. The language of learning science varies with the learning context (Lemke, 2001,1990). Science for All Americans (AAAS, 1990) and Inquiry and the National Science Education Standards (NRC, 2000) endorse inquiry science learning. In the United States, most science learning is teacher-centered; inquiry science learning is rare (NRC, 2000). This study focused on 12 high school students from two suburban high schools, their three faculty mentors, and two engineering mentors during an extracurricular robotics activity with FIRST Robotics Competition (FRC). FRC employed student-centered inquiry focus to teach science principles integrating technology. Research questions were (a) How do science teachers and their students enact Discourses as they teach and learn science? and (b) How does the pedagogical approach of a learning activity facilitate the Discourses that are enacted by students and teachers as they learn and teach science? Using Critical Discourse Analysis (CDA), the study examined participants' language during robotic activities to determine how language used in learning science shaped the learning and vice versa. Data sources included videorecordings of participant language and semi-structured interviews with study participants. Transcribed recordings were coded initially using Gee's (2005) linguistic Building Tasks as a priori codes. CDA was applied to code transcripts, to construct Discourses enacted by the participants, and to determine how context facilitated their enactment. Findings indicated that, for the students, FRC facilitated elements of Science Discourse. Wild About Robotics (W.A.R.) team became, through FRC, part of a community similar to scientists' community that promoted knowledge and sound practices, disseminated information, supported research and development and encouraged interaction of its members. The public school science classroom in the U.S. is inimical to inquiry learning because of practices and policies associated with the epistemological stance that spawned the standards and/or testing movement and No Child Left Behind (Baez & Boyles, 2009). The findings of this study provided concrete ideas to accommodate the recommendations by NRC (1996) and NSES (2000) for creating contexts that might lead to inquiry science learning for meaningful student engagement.
ERIC Educational Resources Information Center
Bianchini, Julie A.; Dwyer, Hilary A.; Brenner, Mary E.; Wearly, Alayna J.
2015-01-01
We investigated a 2.5-year professional development effort designed to support practicing science and mathematics teachers in understanding equity and enacting equitable practices. Our purpose was to inform the research base on effective equity professional development, toward the goal of better supporting science and mathematics teachers in…
NASA Astrophysics Data System (ADS)
Kapetanis, Ana Cristina
The use of high stakes testing to improve educational outcomes falls short in many settings. Proposals for improvement include providing more opportunities for students to extend their thinking, gaining experience in the social nature of science, and learning how to interpret, explain, and justify results. This phenomenological qualitative project study took place in a small independent school in the southeastern United States that lacked a cohesive elementary science program and was looking to create a vertically aligned science curriculum based on constructivism. The research question asked what skills and concepts teachers believed should be included in an elementary science program in order for students to learn scientific inquiry to be better prepared for middle and upper school science subjects. Using focus groups, observations, and interviews of a small sample of 4 teachers, data were collected, transcribed, and categorized through open coding. Inductive analysis was employed to look for patterns and emerging themes that painted a picture of how teachers viewed the current science program and what attributes they felt were important in the creation of a new curriculum. The findings revealed that teachers felt there was lack of a vertically aligned science curriculum, availability of resources throughout the school, and consistent support to provide an effective science program. The recommendations called for developing an elementary science program that includes all strands proposed by the National Science Education Standards and would provide students with opportunities to engage in scientific inquiry, conduct detailed observations, and learn to support conclusions using data. The implications for positive social change include development of programs that result in integrated science learning.
The Next Generation of Learning Teams
ERIC Educational Resources Information Center
Carroll, Tom
2009-01-01
Cross-generational learning teams that bring together novice teachers with veteran teachers would address problems at both ends of the teacher pipeline--and benefit student learning at the same time. In this cross-generational learning team, each member brings different skills to support a child's learning--some bring deep science content…
NASA Astrophysics Data System (ADS)
Krist, Christina Rae
Recent reforms in science education, based on decades of learning research, emphasize engaging students in science and engineering practices as the means to develop and refine disciplinary ideas. These reforms advocate an epistemic shift in how school science is done: from students learning about science ideas to students figuring out core science ideas. This shift is challenging to implement: how do we bring the goals and practices of a discipline into classroom communities in meaningful ways that go beyond simply following rote scientific procedures? In this dissertation, I investigate how classroom communities learn to engage meaningfully in scientific practices, characterizing their engagement as a process of epistemic learning. I take a situated perspective that defines learning as shifts in how members engage in communities of practice. I examine students' epistemic learning as a function of their participation in a classroom community of scientific practice along two dimensions: what they do, or the practical epistemic heuristics they use to guide how they build knowledge; and who they are, or how ownership and authorship of ideas is negotiated and affectively marked through interaction. I focus on a cohort of students as they move from 6th to 8 th grade. I analyze three science units, one from each grade level, to look at the epistemic heuristics implicit in student and teacher talk and how the use of those heuristics shifts over time. In addition, I examine one anomalous 8th grade class to look at how students and the teacher position themselves and each other with respect to the ideas in their classroom and how that positioning supports epistemic learning. Taken together, these analyses demonstrate how students' engagement in scientific practices evolves in terms of what they do and who they are in relation to the knowledge and ideas in their classroom over time. I propose a model for epistemic learning that articulates how classroom communities develop practical epistemologies that guide their knowledge building work and how the development of these epistemologies is identity-laden. I find that for engagement in science practices to be meaningful, classroom communities' engagement is motivated by the unknowns in students' knowledge, or what they still need to figure out and explain. In contexts where knowledge is uncertain, practical epistemic heuristics become authentically useful for students' knowledge building work. However, using unknowns to motivate learning can be distressing for students. The anomalous case study suggests that students' meaningful engagement in science knowledge building requires particular affective supports from the teacher that allow students to take on and embrace new identities with respect to ideas in their classroom. Taken together, the model of epistemic learning that I propose suggests that both conceptual and affective supports are necessary to shift science classrooms in ways that engage students in meaningful science knowledge building.
Concept Cartoons Supported Problem Based Learning Method in Middle School Science Classrooms
ERIC Educational Resources Information Center
Balim, Ali Günay; Inel-Ekici, Didem; Özcan, Erkan
2016-01-01
Problem based learning, in which events from daily life are presented as interesting scenarios, is one of the active learning approaches that encourages students to self-direct learning. Problem based learning, generally used in higher education, requires students to use high end thinking skills in learning environments. In order to use…
Do Science Teachers Distinguish Between Their own Learning and the Learning of Their Students?
NASA Astrophysics Data System (ADS)
Brauer, Heike; Wilde, Matthias
2018-02-01
Learning beliefs influence learning and teaching. For this reason, teachers and teacher educators need to be aware of them. To support students' knowledge construction, teachers must develop appropriate learning and teaching beliefs. Teachers appear to have difficulties when analysing students' learning. This seems to be due to the inability to differentiate the beliefs about their students' learning from those about their own learning. Both types of beliefs seem to be intertwined. This study focuses on whether pre-service teachers' beliefs about their own learning are identical to those about their students' learning. Using a sample of pre-service teachers, we measured general beliefs about "constructivist" and "transmissive" learning and science-specific beliefs about "connectivity" and "taking pre-concepts into account". We also analysed the development of these four beliefs during teacher professionalisation by comparing beginning and advanced pre-service teachers. Our results show that although pre-service teachers make the distinction between their own learning and the learning of their students for the general tenets of constructivist and transmissive learning, there is no significant difference for science-specific beliefs. The beliefs pre-service teachers hold about their students' science learning remain closely tied to their own.
Rock-Solid Support: Florida District Weighs Effectiveness of Science Professional Learning
ERIC Educational Resources Information Center
Shear, Linda; Penuel, William R.
2010-01-01
The best science teachers are not only experts in teaching and knowledgeable about science content, but they are also great at teaching science. They have specialized teaching knowledge, including knowledge of effective pedagogical practices in science, student difficulties with understanding content, and curricular purposes. As a result,…
CosmoQuest Collaborative: Galvanizing a Dynamic Professional Learning Network
NASA Astrophysics Data System (ADS)
Cobb, Whitney; Bracey, Georgia; Buxner, Sanlyn; Gay, Pamela L.; Noel-Storr, Jacob; CosmoQuest Team
2016-10-01
The CosmoQuest Collaboration offers in-depth experiences to diverse audiences around the nation and the world through pioneering citizen science in a virtual research facility. An endeavor between universities, research institutes, and NASA centers, CosmoQuest brings together scientists, educators, researchers, programmers—and citizens of all ages—to explore and make sense of our solar system and beyond. Leveraging human networks to expand NASA science, scaffolded by an educational framework that inspires lifelong learners, CosmoQuest engages citizens in analyzing and interpreting real NASA data, inspiring questions and defining problems.The QuestionLinda Darling-Hammond calls for professional development to be: "focused on the learning and teaching of specific curriculum content [i.e. NGSS disciplinary core ideas]; organized around real problems of practice [i.e. NGSS science and engineering practices] … [and] connected to teachers' collaborative work in professional learning community...." (2012) In light of that, what is the unique role CosmoQuest's virtual research facility can offer NASA STEM education?A Few AnswersThe CosmoQuest Collaboration actively engages scientists in education, and educators (and learners) in science. CosmoQuest uses social channels to empower and expand NASA's learning community through a variety of media, including science and education-focused hangouts, virtual star parties, and social media. In addition to creating its own supportive, standards-aligned materials, CosmoQuest offers a hub for excellent resources and materials throughout NASA and the larger astronomy community.In support of CosmoQuest citizen science opportunities, CQ initiatives (Learning Space, S-ROSES, IDEASS, Educator Zone) will be leveraged and shared through the CQPLN. CosmoQuest can be present and alive in the awareness its growing learning community.Finally, to make the CosmoQuest PLN truly relevant, it aims to encourage partnerships between scientists and educators, and offer "just-in-time" opportunities to support constituents exploring emerging NASA STEM education, from diverse educators to the curious learner of any age.
NASA Astrophysics Data System (ADS)
Ali, M.; Supriyatman; Saehana, S.
2018-03-01
It has been successfully designing low cost of science experiment from recycled materials. The science instruments were produced to explain expansion concept and hydrostatic pressure inside the liquid. Science instruments were calibrated and then validated. It was also implemented in science learning.
Family learning: the missing exemplar
NASA Astrophysics Data System (ADS)
Dentzau, Michael W.
2013-06-01
As a supporter of informal and alternative learning environments for science learning I am pleased to add to the discussion generated by Adriana Briseño-Garzón's article, "More than science: family learning in a Mexican science museum". I am keenly aware of the value of active family involvement in education in general, and science education in particular, and the portrait provided from a Mexican science museum adds to the literature of informal education through a specific sociocultural lens. I add, however, that while acknowledging the powerful the role of family in Latin American culture, the issue transcends these confines and is instead a cross-cutting topic within education as a whole. I also discuss the ease at which in an effort to call attention to cultural differences one can, by the very act, unintentionally marginalize others.
Optometry Basic Science Curricula: Current Status.
ERIC Educational Resources Information Center
Berman, Morris S.
1991-01-01
A national survey of optometry schools (n=10) concerning the status of basic biological science instruction provides insight into manpower, curriculum, learning resources, and budgetary support currently available. Results indicate that major changes must occur and that a national effort will be needed to support them. (Author/MSE)
An Interdisciplinary Approach to Success for Underrepresented Students in STEM
ERIC Educational Resources Information Center
Goonewardene, Anura U.; Offutt, Christine A.; Whitling, Jacqueline; Woodhouse, Donald
2016-01-01
To recruit underrepresented students with demonstrated financial need into STEM disciplines, Lock Haven University established the interdisciplinary Nano Scholars Program, offering National Science Foundation-funded scholarships, academic support, and social support. Small cohort sizes, a student-led science learning community (the Nano Club), and…
Facilitating Innovation in Science Education through Assessment Reform
ERIC Educational Resources Information Center
Hanauer, David I.; Bauerle, Cynthia
2012-01-01
The direction of innovation and reform in science education is moving toward a student-centered learning paradigm that is organized around core concepts and competencies, and engaged through empirically supported instructional practices. What forms of assessment would support these educational aims? Several characteristics of a compatible…
NASA Astrophysics Data System (ADS)
Suarez, Enrique A.
This dissertation investigates how emerging bilingual students make sense of natural phenomena through engaging in certain epistemic practices of science, and the elements of the learning environment that created those opportunities. Specifically, the dissertation focuses on how emerging bilingual students problematized electrical phenomena, like electric flow and electrical resistance, and how the design features of the environment (e.g., sequencing of activities, linguistic practices) may have supported students as they made sense of phenomena. The first study describes how for students presented and evaluated mechanistic models of electric flow, focusing specifically on how students identified and negotiated a disagreement between their explanatory models. The results from this study highlight the complexity of students' disagreements, not only because of the epistemological aspects related to presenting and evaluating knowledge, but also due to interpersonal dynamics and the discomfort associated with disagreeing with another person. The second study focuses on the design features of the learning environment that supported emerging bilingual students' investigations of electrical phenomena. The findings from this study highlight how a carefully designed set of activities, with the appropriate material resources (e.g., experimental tools), could support students to problematize electrical resistance. The third study describes how emerging bilingual students engaged in translanguaging practices and the contextual features of the learning environment that created and hindered opportunities for translanguaging. The findings from this study identify and articulate how emerging bilingual students engaged in translanguaging practices when problematizing electrical resistance, and strengthen the perspective that, in order to be equitable for emerging bilingual students, science learning environments need to act as translanguaging spaces. This dissertation makes three contributions to how science educators understand how elementary-aged emerging bilingual students learning science. First, I offer a detailed account of how emerging bilingual students engaged in epistemic practices to problematize electrical phenomena. Secondly, I argue learning environments need to create opportunities for emerging bilingual students to engage in productive epistemic work through leveraging multiple kinds of resources from their semiotic repertoires. Finally, this dissertation contributes to our understanding of how emerging bilingual students engage in translanguaging practices as they investigate and talk about the natural world.
NASA Astrophysics Data System (ADS)
Hitt, Kathleen Milligan
The purpose of this two-year study was to investigate why two female elementary teachers became exemplary science teachers, despite conditions which do not promote such achievement. Each teachers' progress was examined using life history methodology. The study's theoretical grounding included females' academic and attitudinal success in science education. Purposeful sampling of peers, administrators, and college professors produced two research participants. Both teachers participated in interviews, observations, and member checks lasting over one year. Data were analyzed inductively, resulting in two life histories. Comparing the life stories using confluence theory (Feldman, 1986) indicated four major categories for consideration: risk-taking; life-long learning; gender equity; and mentors. Risk-taking is necessary for female elementary teachers because of their often poor educational background. Few female role models support efforts for achievement. Life-long learning, including extensive reading and graduate-level classes, supports female teachers' personal and professional growth. Exposure to new ideas and teacher practices encourages curricular change and refinement in science education. Gender inequity and the male-packaging of science is an issue to be resolved by female elementary teachers. Mentors can provide interaction and feedback to refine science instructional practices. Professors, peers, and mentor teachers support instructional and content knowledge efforts. Recommendations for science education in classroom practices, preservice teacher education and continuing professional development include female-friendly approaches to science instruction. Decreased competitive practices through cooperative learning and gender inclusive language encourages female participation and achievement in classrooms. Hands-on, inquiry-based instruction and verbalization encourages female students' achievement in science education. Preservice teachers must receive adequate conceptual understanding in college science courses. Addressing knowledge, beliefs, attitudes, and gender issues inherent in prior science education assists students to be reflective. Practicing teachers should be encouraged to work collaboratively, be reflective, and be aware of gender inequity issues. In-depth professional development efforts are need to support these changes. Administrators must be supportive of the process. Further research can add to and expand this body of knowledge through additional research into male elementary science teachers' life experiences. Research with preservice teachers may reveal similar findings even though their historical time period differs from the two participants in this study.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stillings, Neil; Wenk, Laura
Hampshire College's Center for Science Education (Center) focuses on teacher professional development, curriculum development, and student enrichment programs. The Center also maintains research programs on teacher change, student learning and instructional effectiveness. The Center's work promotes learning that persists over time and transfers to new situations in and out of school. The projects develop the implications of the increasing agreement among teachers and researchers that effective learning involves active concept mastery and consistent practice with inquiry and critical thinking. The Center's objective is to help strengthen the pipeline of U.S. students pursuing postsecondary study in STEM fields. The Center achievesmore » this by fostering an educational environment in which science is taught as an active, directly experienced endeavor across the K-16 continuum. Too often, young people are dissuaded from pursuing science because they do not see its relevance, instead experiencing it as dry, rote, technical. In contrast, when science is taught as a hands-on, inquiry-driven process, students are encouraged to ask questions grounded in their own curiosity and seek experimental solutions accordingly. In this way, they quickly discover both the profound relevance of science to their daily lives and its accessibility to them. Essentially, they learn to think and act like real scientists. The Center’s approach is multi-faceted: it includes direct inquiry-based science instruction to secondary and postsecondary students, educating the next generation of teachers, and providing new educational opportunities for teachers already working in the schools. Funding from the Department of Energy focused on the last population, enabling in-service teachers to explore and experience the pedagogy of inquiry-based science for themselves, and to take it back to their classrooms and students. The Center has demonstrated that the inquiry-based approach to science learning is compatible with existing state curriculum frameworks and produces students who understand and are positively inclined toward science. Funds from this Department of Energy grant supported three projects that involved K-16 science outreach: 1. Teaching Issues and Experiments in Ecology (TIEE). TIEE a peer-reviewed online journal and curriculum resource for postsecondary science teachers. 2. The Collaboration for Excellence in Science Education (CESE). CESE is a partnership with the Amherst, Massachusetts school system to foster the professional development of science teachers, and to perform research on student learning in the sciences and on teacher change. The project draws on Hampshire's long experience with inquiry-oriented and interdisciplinary education, as well as on its unique strengths in cognitive science. The project is run as design research, working with teachers to improve their practices and studying student and/or teacher outcomes. 3. Day in the Lab. Grant funds partially supported the expansion of the ongoing science outreach activities of the School of Natural Science. These activities are focused on local districts with large minority enrollments, including the Amherst, Holyoke and Springfield Public School Districts, and the Pioneer Valley Performing Arts Charter School (PVPA). Each of the three projects supported by the grant met or exceeded its goals. In part, the successes we met were due to continuity and communication among the staff of the programs. At the beginning of the CESE project, a science outreach coordinator was recruited. He worked throughout the grant period along with a senior researcher and the project's curriculum director. Additionally, the director and an undergraduate student conducted research on teacher change. The science outreach coordinator acted as a liaison among Hampshire College, the school districts, and a number of local businesses and agencies, providing organizational support, discussion facilitation, classroom support for teachers, and materials purchase. His presence in the schools kept teachers engaged and supported. He also brought the PVPA Charter School into the project. He worked closely with the educational outreach coordinator at Hampshire who oversaw the Day in the Lab program. Together, they have ensured the continuity of support to the schools through the use and placement of student interns. Finally, the director and coordinators worked with the Hitchock Center for the Environment to bring the two science professional development efforts in Amherst together. The joint development of workshops for elementary teachers was extremely successful. A major reason for the successes of the CESE program was the strength of the teacher outreach team and the sheer number of hours spent building relationships, talking about teaching and learning, planning projects, developing curriculum, and working with experts throughout the Pioneer Valley.« less
NASA Astrophysics Data System (ADS)
Asim, Sumreen
This mixed method study investigated K-6 teacher candidates' beliefs about informal science instruction prior to and after their experiences in a 15-week science methods course and in comparison to a non-intervention group. The study is predicated by the literature that supports the extent to which teachers' beliefs influence their instructional practices. The intervention integrated the six strands of learning science in informal science education (NRC, 2009) and exposed candidates to out-of-school-time environments (NRC, 2010). Participants included 17 candidates in the intervention and 75 in the comparison group. All were undergraduate K-6 teacher candidates at one university enrolled in different sections of a required science methods course. All the participants completed the Beliefs about Science Teaching (BAT) survey. Reflective journals, drawings, interviews, and microteaching protocols were collected from participants in the intervention. There was no statistically significant difference in pre or post BAT scores of the two groups; However, there was a statistically significant interaction effect for the intervention group over time. Analysis of the qualitative data revealed that the intervention candidates displayed awareness of each of the six strands of learning science in informal environments and commitment to out-of-school-time learning of science. This study supports current reform efforts favoring integration of informal science instructional strategies in science methods courses of elementary teacher education programs.
Collaborative Visualization Project: shared-technology learning environments for science learning
NASA Astrophysics Data System (ADS)
Pea, Roy D.; Gomez, Louis M.
1993-01-01
Project-enhanced science learning (PESL) provides students with opportunities for `cognitive apprenticeships' in authentic scientific inquiry using computers for data-collection and analysis. Student teams work on projects with teacher guidance to develop and apply their understanding of science concepts and skills. We are applying advanced computing and communications technologies to augment and transform PESL at-a-distance (beyond the boundaries of the individual school), which is limited today to asynchronous, text-only networking and unsuitable for collaborative science learning involving shared access to multimedia resources such as data, graphs, tables, pictures, and audio-video communication. Our work creates user technology (a Collaborative Science Workbench providing PESL design support and shared synchronous document views, program, and data access; a Science Learning Resource Directory for easy access to resources including two-way video links to collaborators, mentors, museum exhibits, media-rich resources such as scientific visualization graphics), and refine enabling technologies (audiovisual and shared-data telephony, networking) for this PESL niche. We characterize participation scenarios for using these resources and we discuss national networked access to science education expertise.
NASA Astrophysics Data System (ADS)
Stewart, Phillip Michael, Jr.
Games in science education is emerging as a popular topic of scholarly inquiry. The National Research Council recently published a report detailing a research agenda for games and science education entitled Learning Science Through Computer Games and Simulations (2011). The report recommends moving beyond typical proof-of-concept studies into more exploratory and theoretically-based work to determine how best to integrate games into K-12 classrooms for learning , as well as how scaffolds from within the game and from outside the game (from peers and teachers) support the learning of applicable science. This study uses a mixed-methods, quasi-experimental design with an 8th grade class at an independent school in southern Connecticut to answer the following questions: 1. What is the nature of the supports for science content learning provided by the game, the peer, and the teacher, when the game is used in a classroom setting? 2. How do the learning gains in the peer support condition compare to the solo play condition, both qualitatively and quantitatively? The concept-integrated physics game SURGE (Scaffolding Understanding through Redesigning Games for Education) was selected for this study, as it was developed with an ear towards specific learning theories and prior work on student understandings of impulse, force, and vectors. Stimulated recall interviews and video observations served as the primary sources and major patterns emerged through the triangulation of data sources and qualitative analysis in the software QSR NVivo 9. The first pattern which emerged indicated that scaffolding from within the game and outside the game requires a pause in game action to be effective, unless that scaffolding is directly useful to the player in the moment of action. The second major pattern indicated that both amount and type of prior gaming experience has somewhat complex effects on both the uses of supports and learning outcomes. In general, a high correlation was found between students who were more successful navigating supports from the game, the teacher, and the peer and higher gain scores from pre- to posttest. However, students with a lot of prior game experience that found the game to be easy without much assistance did not do as well from pre- to posttest as they did not need as much assistance from the game to do well and therefore missed out on important physics connections to impulse, force, and vectors. However, those students with little prior game experience did not find game scaffolds as useful and did not do as well from pre- to posttest without significant teacher and peer support to bolster or supplant the game's intended scaffolding. Implications for educators, educational game designers, and games in science education researchers are presented. It is argued that teachers must find ways to extract those scaffolds from the game which are easy to miss or require failure to activate so that all students, even those who find the game easy, are exposed to the intended learning in the game. Ideally, game designers are encouraged to find new ways to present scaffolds such that players of any ability can benefit from the connections from the game to physics.
Student perceptions of secondary science: A performance technology application
NASA Astrophysics Data System (ADS)
Small, Belinda Rusnak
The primary purpose of this study was to identify influences blocking or promoting science performance from the lived K-12 classroom experience. Human Performance Technology protocols were used to understand factors promoting or hindering science performance. The goal was to gain information from the individual students' perspective to enhance opportunities for stakeholders to improve the current state of performance in science education. Individual perspectives of 10 secondary science students were examined using grounded theory protocols. Findings include students' science learning behaviors are influenced by two major themes, environmental supports and individual learning behaviors. The three environmental support factors identified include the methods students receive instruction, students' opportunities to access informal help apart from formal instruction, and students' feelings of teacher likability. Additionally, findings include three major factors causing individual learners to generate knowledge in science. Factors reported include personalizing information to transform data into knowledge, customizing learning opportunities to maximize peak performance, and tapping motivational opportunities to persevere through complex concepts. The emergent theory postulated is that if a performance problem exists in an educational setting, then integrating student perspectives into the cause analysis opens opportunity to align interventions for influencing student performance outcomes. An adapted version of Gilbert's Behavioral Engineering Model is presented as an organizational tool to display the findings. The boundaries of this Performance Technology application do not extend to the identification, selection, design, or implementation of solutions to improved science performance. However, as stakeholders begin to understand learner perspectives then aligned decisions may be created to support learners of science in a direct, cost effective manner.
Technology-Supported Learning Environments in Science Classrooms in India
ERIC Educational Resources Information Center
Gupta, Adit; Fisher, Darrell
2012-01-01
The adoption of technology has created a major impact in the field of education at all levels. Technology-supported classroom learning environments, involving modern information and communication technologies, are also entering the Indian educational system in general and the schools in Jammu region (Jammu & Kashmir State, India) in…
Methods & Strategies: Put Your Walls to Work
ERIC Educational Resources Information Center
Jackson, Julie; Durham, Annie
2016-01-01
This column provides ideas and techniques to enhance your science teaching. This month's issue discusses planning and using interactive word walls to support science and reading instruction. Many classrooms have word walls displaying vocabulary that students have learned in class. Word walls serve as visual scaffolds to support instruction. To…
D.E.E.P. Learning: Promoting Informal STEM Learning through a Popular Gaming Platform
NASA Astrophysics Data System (ADS)
Simms, E.; Rohrlick, D.; Layman, C.; Peach, C. L.; Orcutt, J. A.
2011-12-01
The research and development of educational games, and the study of the educational value of interactive games in general, have lagged far behind efforts for games created for the purpose of entertainment. But evidence suggests that digital simulations and games have the "potential to advance multiple science learning goals, including motivation to learn science, conceptual understanding, science process skills, understanding of the nature of science, scientific discourse and argumentation, and identification with science and science learning." (NRC, 2011). It is also generally recognized that interactive digital games have the potential to promote the development of valuable learning and life skills, including data processing, decision-making, critical thinking, planning, communication and collaboration (Kirriemuir and MacFarlane, 2006). Video games are now played in 67% of American households (ESA, 2010), and across a broad range of ages, making them a potentially valuable tool for Science, Technology, Engineering and Mathematics (STEM) learning among the diverse audiences associated with informal science education institutions (ISEIs; e.g., aquariums, museums, science centers). We are attempting to capitalize on this potential by developing games based on the popular Microsoft Xbox360 gaming platform and the free Microsoft XNA game development kit. The games, collectively known as Deep-sea Extreme Environment Pilot (D.E.E.P.), engage ISEI visitors in the exploration and understanding of the otherwise remote deep-sea environment. Players assume the role of piloting a remotely-operated vehicle (ROV) to explore ocean observing systems and hydrothermal vent environments, and are challenged to complete science-based objectives in order to earn points under timed conditions. The current games are intended to be relatively brief visitor experiences (on the order of several minutes) that support complementary exhibits and programming, and promote interactive visitor experiences. In addition to creating a unique educational product, our efforts are intended to inform the broader understanding of the key elements of a successful STEM-based game experience at an ISEI. Which characteristics of the ISEI environment (e.g., age and cultural diversity, limited time of engagement) are conducive or inhibitive to learning via digital gaming? Which aspects of game design (e.g., challenge, curiosity, fantasy, personal recognition) are most effective at maximizing both learning and enjoyment? We will share our progress and assessment results to date, and discuss the potential benefits and challenges to interactive gaming as a tool to support STEM literacy at ISEIs.
Koedinger, Kenneth R; Corbett, Albert T; Perfetti, Charles
2012-07-01
Despite the accumulation of substantial cognitive science research relevant to education, there remains confusion and controversy in the application of research to educational practice. In support of a more systematic approach, we describe the Knowledge-Learning-Instruction (KLI) framework. KLI promotes the emergence of instructional principles of high potential for generality, while explicitly identifying constraints of and opportunities for detailed analysis of the knowledge students may acquire in courses. Drawing on research across domains of science, math, and language learning, we illustrate the analyses of knowledge, learning, and instructional events that the KLI framework affords. We present a set of three coordinated taxonomies of knowledge, learning, and instruction. For example, we identify three broad classes of learning events (LEs): (a) memory and fluency processes, (b) induction and refinement processes, and (c) understanding and sense-making processes, and we show how these can lead to different knowledge changes and constraints on optimal instructional choices. Copyright © 2012 Cognitive Science Society, Inc.
Concept Mapping Assessment of Media Assisted Learning in Interdisciplinary Science Education
NASA Astrophysics Data System (ADS)
Schaal, Steffen; Bogner, Franz X.; Girwidz, Raimund
2010-05-01
Acquisition of conceptual knowledge is a central aim in science education. In this study we monitored an interdisciplinary hypermedia assisted learning unit on hibernation and thermodynamics based on cooperative learning. We used concept mapping for the assessment, applying a pre-test/post-test design. In our study, 106 9th graders cooperated by working in pairs ( n = 53) for six lessons. As an interdisciplinary learning activity in such complex knowledge domains has to combine many different aspects, we focused on long-term knowledge. Learners working cooperatively in dyads constructed computer-supported concept maps which were analysed by specific software. The data analysis encompassed structural aspects of the knowledge corresponding to a target reference map. After the learning unit, the results showed the acquisition of higher-order domain-specific knowledge structures which indicates successful interdisciplinary learning through the hypermedia learning environment. The benefit of using a computer-assisted concept mapping assessment for research in science education, and in science classrooms is considered.
ERIC Educational Resources Information Center
Tang, Kok-Sing; Tan, Seng-Chee
2017-01-01
The study in this article examines and illustrates the intertextual meanings made by a group of high school science students as they embarked on a knowledge building discourse to solve a physics problem. This study is situated in a computer-supported collaborative learning (CSCL) environment designed to support student learning through a science…
ERIC Educational Resources Information Center
Fang, Su-Chi; Hsu, Ying-Shao; Hsu, Wei Hsiu
2016-01-01
The study explored how to best use scaffolds for supporting students' inquiry practices in computer-supported learning environments. We designed a series of inquiry units assisted with three versions of written inquiry prompts (generic and context-specific); that is, three scaffold-fading conditions: implicit, explicit, and fading. We then…
NASA Astrophysics Data System (ADS)
Potter, Robert; Meisels, Gerry
2005-06-01
In a highly collaborative process we developed an introductory science course sequence to improve science literacy especially among future elementary and middle school education majors. The materials and course features were designed using the results of research on teaching and learning to provide a rigorous, relevant and engaging, standard based science experience. More than ten years of combined planning, development, implementation and assessment of this college science course sequence for nonmajors/future teachers has provided significant insights and success in achieving our goal. This paper describes the history and iterative nature of our ongoing improvements, changes in faculty instructional practice, strategies used to overcome student resistance, significant student learning outcomes, support structures for faculty, and the essential and informative role of assessment in improving the outcomes. Our experience with diverse institutions, students and faculty provides the basis for the lessons we have learned and should be of help to others involved in advancing science education.
National board certification as professional development: What are teachers learning?
NASA Astrophysics Data System (ADS)
Lustick, David Scott
This study investigated the National Board for Professional Teaching Standards' (NBPTS) assessment process in order to identify, quantify, and substantiate possible learning outcomes from the participants. One hundred and twenty candidates for the Adolescent and Young Adult Science (AYA Science) Certificate were studied over a 2-year period using the recurrent institutional cycle research design. This quasi-experimental methodology allowed for the collection of both cross-sectional and longitudinal data insuring a good measure of internal validity regarding observed changes both between and within group means. Multiple assessors scored transcripts of structured interviews with each teacher using the NBPTS' assessment framework according to the 13 standards accomplished science teaching. The scores (aggregated to the group level) provided the quantitative evidence of teacher learning in this study. Significant changes in mean scores from pre to post are reported at the overall, standard group, and individual standard levels. Findings suggest that the intervention had an overall effect size of .475 upon candidates' understanding of science teaching related knowledge. More specifically, most learning was associated with the standards of Scientific Inquiry and Assessment. The results support the hypothesis that the certification process is an effective standards based professional learning opportunity. The learning outcomes discussed in this report (including the identification of Dynamic, Technical, and Deferred Learning categories) should inform debate between educational stakeholders regarding the financial and ideological support of National Board certification as a means of improving teacher quality, provide suggestions for the improvement of the assessment process, and contribute insight into the current divisive state of science education in public education.
Effectiveness of Various Innovative Learning Methods in Health Science Classrooms: A Meta-Analysis
ERIC Educational Resources Information Center
Kalaian, Sema A.; Kasim, Rafa M.
2017-01-01
This study reports the results of a meta-analysis of the available literature on the effectiveness of various forms of innovative small-group learning methods on student achievement in undergraduate college health science classrooms. The results of the analysis revealed that most of the primary studies supported the effectiveness of the…
Developing Critically Thoughtful, Media-Rich Lessons in Science: Process and Product
ERIC Educational Resources Information Center
Balcaen, Philip
2008-01-01
In this paper, I describe a professional development approach and a conceptual framework used to create critically thoughtful and media-rich science learning resources. Greater clarity about the nature of critical thinking and how to support teachers in learning to implement it are needed if we are to respond to broader calls for critical thinking…
ERIC Educational Resources Information Center
Cengiz, Canan; Karatas, Faik Özgür
2015-01-01
The general chemistry laboratory is an appropriate place for learning chemistry well. It is also effective for stimulating higher-order thinking skills, including reflective thinking, a skill that is crucial for science teaching as well as learning. This study aims to examine the effects of feedback-supported reflective journal-keeping activities…
ERIC Educational Resources Information Center
Weible, Jennifer L.; Zimmerman, Heather Toomey
2016-01-01
Although curiosity is considered an integral aspect of science learning, researchers have debated how to define, measure, and support its development in individuals. Prior measures of curiosity include questionnaire type scales (primarily for adults) and behavioral measures. To address the need to measure scientific curiosity, the Science…
ERIC Educational Resources Information Center
Thornton, Amanda; McKissick, Bethany R.; Spooner, Fred; Lo, Ya-yu; Anderson, Adrienne L.
2015-01-01
Investigating the effectiveness of inclusive practices in science instruction and determining how to best support high school students with specific learning disabilities (SLD) in the general education classroom is a topic of increasing research attention in the field. In this study, the researchers conducted a single-subject multiple probe across…
ERIC Educational Resources Information Center
Ryoo, Jean; Goode, Joanna; Margolis, Jane
2015-01-01
This article describes the importance that high school computer science teachers place on a teachers' professional learning community designed around an inquiry- and equity-oriented approach for broadening participation in computing. Using grounded theory to analyze four years of teacher surveys and interviews from the Exploring Computer Science…
ERIC Educational Resources Information Center
Klein, Julie L.; Gray, Phyllis; Zhbanova, Ksenia S.; Rule, Audrey C.
2015-01-01
Arts integration in science has benefits of increasing student engagement and understanding. Lessons focusing on form and function of animal skulls provide an effective example of how handicrafts integrated with science instruction motivate students and support learning. The study involved students ages 9-12 during a week-long summer day camp.…
ERIC Educational Resources Information Center
Bianchini, Julie A.; Brenner, Mary E.
2010-01-01
We investigated how an induction program supported and constrained beginning teachers' efforts to teach science or mathematics in equitable and effective ways. We focused our investigation on the teaching and learning of equitable instructional practices; we conceived of such practices as attention to students' experiences, instruction for English…
Sims for Science: Powerful Tools to Support Inquiry-Based Teaching
ERIC Educational Resources Information Center
Perkins, Katherine K.; Loeblein, Patricia J.; Dessau, Kathryn L.
2010-01-01
Since 2002, the PhET Interactive Simulations project at the University of Colorado has been working to provide learning tools for students and teachers. The project has developed over 85 interactive simulations--or sims--for teaching and learning science. Although these sims can be used in a variety of ways, they are specifically designed to make…
ERIC Educational Resources Information Center
Walsh, Elizabeth M.
2012-01-01
Preparing a generation of citizens to respond to the impacts of climate change will require collaborative interactions between natural scientists, learning scientists, educators and learners. Promoting effective involvement of scientists in climate change education is especially important as climate change science and climate impacts are…
ERIC Educational Resources Information Center
Sexton, Steven S.
2018-01-01
This paper reports on an ongoing professional learning and development (PLD) initiative in New Zealand. The Academy is designed to provide primary and intermediate classroom teachers with the knowledge, materials and support needed for effective delivery of "The New Zealand Curriculum's" science subject area. Specifically, this paper…
Using the Universal Design for Learning Approach in Science Laboratories to Minimize Student Stress
ERIC Educational Resources Information Center
Miller, Daniel K.; Lang, Patricia L.
2016-01-01
This commentary discusses how the principles of universal design for learning (UDL) can be applied in the science laboratory with an emphasis on assisting students who experience stress in the laboratory environment. The UDL approach in the laboratory is based on three elements: open-mindedness, supportive communication, and analysis and…
NASA Astrophysics Data System (ADS)
Idaszak, R.; Lenhardt, W. C.; Jones, M. B.; Ahalt, S.; Schildhauer, M.; Hampton, S. E.
2014-12-01
The NSF, in an effort to support the creation of sustainable science software, funded 16 science software institute conceptualization efforts. The goal of these conceptualization efforts is to explore approaches to creating the institutional, sociological, and physical infrastructures to support sustainable science software. This paper will present the lessons learned from two of these conceptualization efforts, the Institute for Sustainable Earth and Environmental Software (ISEES - http://isees.nceas.ucsb.edu) and the Water Science Software Institute (WSSI - http://waters2i2.org). ISEES is a multi-partner effort led by National Center for Ecological Analysis and Synthesis (NCEAS). WSSI, also a multi-partner effort, is led by the Renaissance Computing Institute (RENCI). The two conceptualization efforts have been collaborating due to the complementarity of their approaches and given the potential synergies of their science focus. ISEES and WSSI have engaged in a number of activities to address the challenges of science software such as workshops, hackathons, and coding efforts. More recently, the two institutes have also collaborated on joint activities including training, proposals, and papers. In addition to presenting lessons learned, this paper will synthesize across the two efforts to project a unified vision for a science software institute.
The Role of Technology in Supporting Learning Communities.
ERIC Educational Resources Information Center
Riel, Margaret; Fulton, Kathleen
2001-01-01
In a learning community, students learn to cooperate and make teams work. Past technologies (print, photography, film, and computers) have enabled idea sharing, but are one-way communication modes. Broader learning communities have been made possible through electronic field trips, online mentoring, science investigations, and humanities…
Teen Advocates for Community and Environmental Sustainability
NASA Astrophysics Data System (ADS)
Wunar, B.
2017-12-01
The Museum of Science and Industry, Chicago (MSI) is in the early stages of a NOAA supported Environmental Literacy Grant project that aims to engage high school age youth in the exploration of climate and Earth systems science. Participating youth are positioned as teen advocates for establishing resilient communities in the Midwest. The project utilizes a variety of resources, including NOAA Science On a Sphere® (SOS) technology and datasets, Great Lakes and local climate assets, and local municipal resiliency planning guides to develop museum-based youth programming. Teen participants in the project will share their learning through regular facilitated interactions with public visitors in the Museum and will bring learning experiences to Chicago Public Library sites throughout the city's neighborhoods. Project content will also be adapted for use in 100+ after-school science clubs to engage younger students from diverse communities across the Chicago area. Current strategies for supporting teen facilitation of public experiences, linkages to out of school time and summer learning programs, and connections to local resiliency planning agencies will be explored.
ERIC Educational Resources Information Center
Duncan, Ravit Golan; El-Moslimany, Hebbah; McDonnell, Janice; Lichtenwalner, Sage
2011-01-01
The development of inquiry and project-based materials is challenging in many ways, not the least of which is the design of supports for teachers implementing such materials. We report on the design of educative and just-in-time teacher supports for an online project-based unit in ocean science. The teacher supports were visible as tabs on the…
Novice High School Science Teachers: Lesson Plan Adaptations
ERIC Educational Resources Information Center
Scharon, Aracelis Janelle
2013-01-01
The Next Generation Science Standards (NRC, 2013) positions teachers as responsible for necessary decision making about how their intended science lesson plan content supports continuous student science learning. Teachers interact with their instructional lesson plans in dynamic and constructive ways. Adapting lesson plans is complex. This process…
Technology and Reform-Based Science Education
ERIC Educational Resources Information Center
Dani, Danielle E.; Koenig, Kathleen M.
2008-01-01
Current reforms in science education call for the integration of digital technologies into science teaching, advocating that students learn science content and processes through technology. In this article, we provide practical examples, situated within the literature, of how digital technologies can be used to support the development and…
NASA Astrophysics Data System (ADS)
Miller, H. R.; Sell, K. S.; Herbert, B. E.
2004-12-01
Shifts in learning goals in introductory earth science courses to greater emphasis on critical thinking and the nature of science has led to the adoption of new pedagogical techniques, including inquiry-based learning (IBL). IBL is thought to support understanding of the nature of science and foster development of scientific reasoning and critical thinking skills by modeling authentic science inquiry. Implementation of new pedagogical techniques do not occur without influence, instruction and learning occurs in a complex learning environment, referring to the social, physical, mental, and pedagogical contexts. This study characterized the impact of an IBL module verses a traditionally structured laboratory exercise in an introductory physical geology class at Texas A&M University. Student activities in this study included manipulation of large-scale data sets, use of multiple representations, and exposure to ill-constrained problems common to the Texas Gulf Coast system. Formative assessment data collected included an initial survey of self efficacy, student demographics, content knowledge and a pre-mental model expression. Summative data collected included a post-test, post-mental model expression, final laboratory report, and a post-survey on student attitudes toward the module. Mental model expressions and final reports were scored according to a validated rubric instrument (Cronbrach alpha: 0.84-0.98). Nine lab sections were randomized into experimental and control groups. Experimental groups were taught using IBL pedagogical techniques, while the control groups were taught using traditional laboratory "workbook" techniques. Preliminary assessment based on rubric scores for pre-tests using Student's t-test (N ˜ 140) indicated that the experimental and control groups were not significantly different (ρ > 0.05), therefore, the learning environment likely impacted student's ability to succeed. A non-supportive learning environment, including student attitudes, teaching assistant attitudes, the lack of scaffolded learning, limited pedagogical content knowledge, and departmental oversight, which were all encountered during this study, can have an affect on the students' attitudes and achievements during the course. Data collected showed an overall improvement in content knowledge (38% increase); while performance effort clearly declined as seen through post-mental model expressions (a decline in performance by 24.8%) and percentage of assignments turned in (39% of all students turned in the required final report). A non-supportive learning environment was also seen through student comments on the final survey, "I think that all the TA's and the professor have forgotten that we are an intro class". A non-supportive environment clearly does not encourage critical thinking and completion of work. This pilot study showed that the complex learning environment can play a significant role in student learning. It also illustrates the need for future studies in IBL with supportive learning environments in order for students to achieve academic excellence and develop scientific reasoning and critical thinking skills.
Do Science Teachers Distinguish between Their Own Learning and the Learning of Their Students?
ERIC Educational Resources Information Center
Brauer, Heike; Wilde, Matthias
2018-01-01
Learning beliefs influence learning and teaching. For this reason, teachers and teacher educators need to be aware of them. To support students' knowledge construction, teachers must develop appropriate learning and teaching beliefs. Teachers appear to have difficulties when analysing students' learning. This seems to be due to the inability to…
ERIC Educational Resources Information Center
Wu, Po-Han; Hwang, Gwo-Jen; Tsai, Wen-Hung
2013-01-01
Context-aware ubiquitous learning has been recognized as being a promising approach that enables students to interact with real-world learning targets with supports from the digital world. Several researchers have indicated the importance of providing learning guidance or hints to individual students during the context-aware ubiquitous learning…
ERIC Educational Resources Information Center
Terrazas-Arellanes, Fatima E.; Strycker, Lisa A.; Walden, Emily D.; Gallard, Alejandro
2017-01-01
Inquiry-based learning methods, coupled with advanced technology, hold promise for closing the science literacy gap for English learners (ELs) and students with learning difficulties (SWLDs). Project ESCOLAR (Etext Supports for Collaborative Online Learning and Academic Reading) created collaborative online learning units for middle school science…
Evaluating Instrument Quality in Science Education: Rasch-Based Analyses of a Nature of Science Test
ERIC Educational Resources Information Center
Neumann, Irene; Neumann, Knut; Nehm, Ross
2011-01-01
Given the central importance of the Nature of Science (NOS) and Scientific Inquiry (SI) in national and international science standards and science learning, empirical support for the theoretical delineation of these constructs is of considerable significance. Furthermore, tests of the effects of varying magnitudes of NOS knowledge on…
ERIC Educational Resources Information Center
Hartry, Ardice; Dorph, Rena; Shields, Patrick; Tiffany-Morales, Juliet; Romero, Valeria
2012-01-01
Despite the expressed need for high-quality science education, very little research has been conducted on what middle school science learning opportunities look like in practice. This study was conducted in support of "Strengthening Science Education in California", a research, policy, and communications initiative. Partners in this…
Sciencey Girls: Discourses Supporting Working-Class Girls to Identify with Science
ERIC Educational Resources Information Center
Godec, Spela
2018-01-01
Women from working class and some ethnic minority backgrounds continue to be underrepresented in science, particularly in areas such as physical sciences and engineering. Many find it difficult to see science as something that is "for them", which then has implications for their learning and participation in science. In this paper, I…
NASA Astrophysics Data System (ADS)
Anbar, Ariel; Center for Education Through eXploration
2018-01-01
Advances in scientific visualization and public access to data have transformed science outreach and communication, but have yet to realize their potential impacts in the realm of education. Computer-based learning is a clear bridge between visualization and education that benefits students through adaptative personalization and enhanced access. Building this bridge requires close partnerships among scientists, technologists, and educators.The Infiniscope project fosters such partnerships to produce exploration-driven online learning experiences that teach basic science concepts using a combination of authentic space science narratives, data, and images, and a personalized guided inquiry approach. Infiniscope includes a web portal to host these digital learning experiences, as well as a teaching network of educators using and modifying these experiences. Infiniscope experiences are built around a new theory of digital learning design that we call “education through exploration” (ETX) developed during the creation of successful online, interactive science courses offered at ASU and other institutions. ETX builds on the research-based practices of active learning and guided inquiry to provide a set of design principles that aim to develop higher order thinking skills in addition to understanding of content. It is employed in these experiences by asking students to solve problems and actively discover relationships, supported by an intelligent tutoring system which provides immediate, personalized feedback and scaffolds scientific thinking and methods. The project is led by ASU’s School of Earth and Space Exploration working with learning designers in the Center for Education Through eXploration, with support from NASA’s Science Mission Directorate as part of the NASA Exploration Connection program.We will present an overview of ETX design, the Infinscope project, and emerging evidence of effectiveness.
Towards a More Authentic Science Curriculum: The contribution of out-of-school learning
NASA Astrophysics Data System (ADS)
Braund, Martin; Reiss, Michael
2006-10-01
In many developed countries of the world, pupil attitudes to school science decline progressively across the age range of secondary schooling while fewer students are choosing to study science at higher levels and as a career. Responses to these developments have included proposals to reform the curriculum, pedagogy, and the nature of pupil discussion in science lessons. We support such changes but argue that far greater use needs to be made of out-of-school sites in the teaching of science. Such usage will result in a school science education that is more valid and more motivating. We present an “evolutionary model” of science teaching that looks at where learning and teaching take place, and draws together thinking about the history of science and developments in the nature of learning over the past 100 years or so. Our contention is that laboratory-based school science teaching needs to be complemented by out-of-school science learning that draws on the actual world (e.g., through fieldtrips), the presented world (e.g., in science centres, botanic gardens, zoos and science museums), and the virtual worlds that are increasingly available through information technologies.
Foundations for a new science of learning.
Meltzoff, Andrew N; Kuhl, Patricia K; Movellan, Javier; Sejnowski, Terrence J
2009-07-17
Human learning is distinguished by the range and complexity of skills that can be learned and the degree of abstraction that can be achieved compared with those of other species. Homo sapiens is also the only species that has developed formal ways to enhance learning: teachers, schools, and curricula. Human infants have an intense interest in people and their behavior and possess powerful implicit learning mechanisms that are affected by social interaction. Neuroscientists are beginning to understand the brain mechanisms underlying learning and how shared brain systems for perception and action support social learning. Machine learning algorithms are being developed that allow robots and computers to learn autonomously. New insights from many different fields are converging to create a new science of learning that may transform educational practices.
Foundations for a New Science of Learning
Meltzoff, Andrew N.; Kuhl, Patricia K.; Movellan, Javier; Sejnowski, Terrence J.
2009-01-01
Human learning is distinguished by the range and complexity of skills that can be learned and the degree of abstraction that can be achieved compared to other species. Humans are also the only species that has developed formal ways to enhance learning: teachers, schools, and curricula. Human infants have an intense interest in people and their behavior, and possess powerful implicit learning mechanisms that are affected by social interaction. Neuroscientists are beginning to understand the brain mechanisms underlying learning and how shared brain systems for perception and action support social learning. Machine learning algorithms are being developed that allow robots and computers to learn autonomously. New insights from many different fields are converging to create a new science of learning that may transform educational practices. PMID:19608908
Cultivating Sustainable and Authentic Service-Learning Partnerships in the Environmental Sciences
NASA Astrophysics Data System (ADS)
Ivanochko, Tara; Grain, Kari
2017-04-01
The two-term, community service-learning capstone course for Environmental Sciences at the University of British Columbia, Canada, aims to support both community and students using authentic science practice in service of the community. During the course development, we implemented a routine process for student and community feedback, instructor reflection and course revision. Drawing on data from 23 interviews and 9 focus groups collected over three years, findings from this study highlight ways that community partnerships can be sustained while students have an authentic science experience. Based on data collected from community partners, we highlight the key processes, challenges, successes, and practical considerations in the creation and sustainability of a scientifically robust service-learning course.
Making mathematics and science integration happen: key aspects of practice
NASA Astrophysics Data System (ADS)
Ríordáin, Máire Ní; Johnston, Jennifer; Walshe, Gráinne
2016-02-01
The integration of mathematics and science teaching and learning facilitates student learning, engagement, motivation, problem-solving, criticality and real-life application. However, the actual implementation of an integrative approach to the teaching and learning of both subjects at classroom level, with in-service teachers working collaboratively, at second-level education, is under-researched due to the complexities of school-based research. This study reports on a year-long case study on the implementation of an integrated unit of learning on distance, speed and time, within three second-level schools in Ireland. This study employed a qualitative approach and examined the key aspects of practice that impact on the integration of mathematics and science teaching and learning. We argue that teacher perspective, teacher knowledge of the 'other subject' and of technological pedagogical content knowledge (TPACK), and teacher collaboration and support all impact on the implementation of an integrative approach to mathematics and science education.
Building Future Directions for Teacher Learning in Science Education
NASA Astrophysics Data System (ADS)
Smith, Kathy; Lindsay, Simon
2016-04-01
In 2013, as part of a process to renew an overall sector vision for science education, Catholic Education Melbourne (CEM) undertook a review of its existing teacher in-service professional development programs in science. This review led to some data analysis being conducted in relation to two of these programs where participant teachers were positioned as active learners undertaking critical reflection in relation to their science teaching practice. The conditions in these programs encouraged teachers to notice critical aspects of their teaching practice. The analysis illustrates that as teachers worked in this way, their understandings about effective science pedagogy began to shift, in particular, teachers recognised how their thinking not only influenced their professional practice but also ultimately shaped the quality of their students' learning. The data from these programs delivers compelling evidence of the learning experience from a teacher perspective. This article explores the impact of this experience on teacher thinking about the relationship between pedagogical choices and quality learning in science. The findings highlight that purposeful, teacher-centred in-service professional learning can significantly contribute to enabling teachers to think differently about science teaching and learning and ultimately become confident pedagogical leaders in science. The future of quality school-based science education therefore relies on a new vision for teacher professional learning, where practice explicitly recognises, values and attends to teachers as professionals and supports them to articulate and share the professional knowledge they have about effective science teaching practice.
Characterizing College Science Assessments: The Three-Dimensional Learning Assessment Protocol.
Laverty, James T; Underwood, Sonia M; Matz, Rebecca L; Posey, Lynmarie A; Carmel, Justin H; Caballero, Marcos D; Fata-Hartley, Cori L; Ebert-May, Diane; Jardeleza, Sarah E; Cooper, Melanie M
2016-01-01
Many calls to improve science education in college and university settings have focused on improving instructor pedagogy. Meanwhile, science education at the K-12 level is undergoing significant changes as a result of the emphasis on scientific and engineering practices, crosscutting concepts, and disciplinary core ideas. This framework of "three-dimensional learning" is based on the literature about how people learn science and how we can help students put their knowledge to use. Recently, similar changes are underway in higher education by incorporating three-dimensional learning into college science courses. As these transformations move forward, it will become important to assess three-dimensional learning both to align assessments with the learning environment, and to assess the extent of the transformations. In this paper we introduce the Three-Dimensional Learning Assessment Protocol (3D-LAP), which is designed to characterize and support the development of assessment tasks in biology, chemistry, and physics that align with transformation efforts. We describe the development process used by our interdisciplinary team, discuss the validity and reliability of the protocol, and provide evidence that the protocol can distinguish between assessments that have the potential to elicit evidence of three-dimensional learning and those that do not.
NSF Support for Information Science Research.
ERIC Educational Resources Information Center
Brownstein, Charles N.
1986-01-01
Major research opportunities and needs are expected by the National Science Foundation in six areas of information science: models of adaptive information processing, learning, searching, and recognition; knowledge resource systems, particularly intelligent systems; user-system interaction; augmentation of human information processing tasks;…
NASA Astrophysics Data System (ADS)
Sabel, Jaime L.; Forbes, Cory T.; Zangori, Laura
2015-06-01
To support elementary students' learning of core, standards-based life science concepts highlighted in the Next Generation Science Standards, prospective elementary teachers should develop an understanding of life science concepts and learn to apply their content knowledge in instructional practice to craft elementary science learning environments grounded in students' thinking. To do so, teachers must learn to use high-leverage instructional practices, such as formative assessment, to engage students in scientific practices and connect instruction to students' ideas. However, teachers may not understand formative assessment or possess sufficient science content knowledge to effectively engage in related instructional practices. To address these needs, we developed and conducted research within an innovative course for preservice elementary teachers built upon two pillars—life science concepts and formative assessment. An embedded mixed methods study was used to evaluate the effect of the intervention on preservice teachers' (n = 49) content knowledge and ability to engage in formative assessment practices for science. Findings showed that increased life content knowledge over the semester helped preservice teachers engage more productively in anticipating and evaluating students' ideas, but not in identifying effective instructional strategies to respond to those ideas.
Pedagogical Affordances of Multiple External Representations in Scientific Processes
NASA Astrophysics Data System (ADS)
Wu, Hsin-Kai; Puntambekar, Sadhana
2012-12-01
Multiple external representations (MERs) have been widely used in science teaching and learning. Theories such as dual coding theory and cognitive flexibility theory have been developed to explain why the use of MERs is beneficial to learning, but they do not provide much information on pedagogical issues such as how and in what conditions MERs could be introduced and used to support students' engagement in scientific processes and develop competent scientific practices (e.g., asking questions, planning investigations, and analyzing data). Additionally, little is understood about complex interactions among scientific processes and affordances of MERs. Therefore, this article focuses on pedagogical affordances of MERs in learning environments that engage students in various scientific processes. By reviewing literature in science education and cognitive psychology and integrating multiple perspectives, this article aims at exploring (1) how MERs can be integrated with science processes due to their different affordances, and (2) how student learning with MERs can be scaffolded, especially in a classroom situation. We argue that pairing representations and scientific processes in a principled way based on the affordances of the representations and the goals of the activities is a powerful way to use MERs in science education. Finally, we outline types of scaffolding that could help effective use of MERs including dynamic linking, model progression, support in instructional materials, teacher support, and active engagement.
NASA Astrophysics Data System (ADS)
Edwards, Leslie D.
How do teenage girls develop an interest in science? What kinds of opportunities can science teachers present to female students that support their engagement with learning science? I studied one aspect of this issue by focusing on ways students could use science to enhance or gain identities that they (probably) already valued. To do that I created technology-rich activities and experiences for an after school class in science and technology for middle school girls who lived in a low socio-economic urban neighborhood. These activities and experiences were designed to create a virtual community of practice whose members used science in diverse ways. Student interest was made evident in their responses to the activities. Four conclusions emerged. (1) Opportunities to learn about the lives and work of admired African American business women interested students in learning by linking it to their middle-class aspirations and their interest in things that money and status can buy. (2) Opportunities to learn about the lives and work of African American women experts in science in a classroom context where students then practiced similar kinds of actual scientific tasks engaged students in relations of legitimate peripheral participation in a virtual and diverse community of practice focused on science which was created in the after-school classes. (3) Opportunities where students used science to show off for family, friends, and supporters of the after-school program, identities they valued, interested them enough that they engaged in long-term science and technology projects that required lots of revisions. (4) In response to the opportunities presented, new and enhanced identities developed around becoming a better student or becoming some kind of scientist.
How do marine and coastal citizen science experiences foster environmental engagement?
Dean, Angela J; Church, Emma K; Loder, Jenn; Fielding, Kelly S; Wilson, Kerrie A
2018-05-01
Citizen science programs enable community involvement in scientific research. In addition to fostering greater science literacy, some citizen science programs aim to foster engagement in environmental issues. However, few data are available to indicate whether and how citizen science programs can achieve greater environmental engagement. We survey individuals choosing to attend one of seventeen reef citizen science events and examine the extent to which attendees reported three indicators of greater environmental engagement: (i) willingness to share information, (ii) increased support for marine conservation and citizen science, and (iii) intentions to adopt a new behavior. Most participants reported being willing to share information about reef conservation (91%) and described increased support for marine science and conservation (87%). Half of participants (51%) reported intentions to adopt a new conservation behavior. We found that key elements of the citizen science experience associated with these outcomes were learning about actions to protect reefs and coasts (procedural learning), experiencing surprise, and experiencing negative emotions about environmental problems. Excitement was also associated with positive outcomes, but only in participants who were less likely to see themselves as environmental, or were less frequent visitors to reefs and coasts. Importantly, the association between factual learning and environmental engagement outcomes was limited or negative. These findings suggest that the way citizen science experiences make people feel, may be more important for fostering future environmental engagement than factual-based learning. When designing citizen science programs for community members, these findings provide a reminder to not focus on provision of factual information alone, but to highlight environmental impacts while providing meaningful experiences and building environmental skills. Copyright © 2018 Elsevier Ltd. All rights reserved.
Assessment Portfolios as Opportunities for Teacher Learning
ERIC Educational Resources Information Center
Gearhart, Maryl; Osmundson, Ellen
2009-01-01
This article is an analysis of the role of assessment portfolios in teacher learning. Over 18 months, 23 science teachers developed, implemented, and evaluated assessments to track student learning, supported by portfolio tasks and resources, grade-level colleagues, and team facilitators. Evidence of teacher learning included (a) portfolios of a…
Outdoor Natural Science Learning with an RFID-Supported Immersive Ubiquitous Learning Environment
ERIC Educational Resources Information Center
Liu, Tsung-Yu; Tan, Tan-Hsu; Chu, Yu-Ling
2009-01-01
Despite their successful use in many conscientious studies involving outdoor learning applications, mobile learning systems still have certain limitations. For instance, because students cannot obtain real-time, context-aware content in outdoor locations such as historical sites, endangered animal habitats, and geological landscapes, they are…
Nursing students' perception of a Web-based intervention to support learning.
Koch, Jane; Andrew, Sharon; Salamonson, Yenna; Everett, Bronwyn; Davidson, Patricia M
2010-08-01
Tailoring information to the needs of the learner is an important strategy in contemporary education settings. Web-based learning support, informed by multimedia theory, comprising interactive quizzes, glossaries with audio, short narrated Power Point(R) presentations, animations and digitised video clips were introduced in a first year Bachelor of Nursing biological sciences subject at a university in metropolitan Sydney. All students enrolled in this unit were invited to obtain access to the site and the number of hits to the site was recorded using the student tracking facility available on WebCT, an online course delivery tool adopted widely by many educational institutions and used in this study. Eighty-five percent of students enrolled in the subject accessed the learning support site. Students' perception of the value of a learning support site was assessed using a web-based survey. The survey was completed by 123 participants, representing a response rate of 22%. Three themes emerged from the qualitative data concerning nursing students' perception of the web-based activities: 'enhances my learning', 'study at my own pace', and 'about the activities: what I really liked/disliked'. Web-based interventions, supplementing a traditionally presented nursing science course were perceived by students to be beneficial in both learning and language development. Although students value interactive, multimedia learning they were not ready to completely abandon traditional modes of learning including face-to-face lectures. The findings of this study contribute to an understanding of how web-based resources can be best used to support students' learning in bioscience. Copyright 2009 Elsevier Ltd. All rights reserved.
Effective Science Instruction: Impact on High-Stakes Assessment Performance
ERIC Educational Resources Information Center
Johnson, Carla C.; Zhang, Danhui; Kahle, Jane Butler
2012-01-01
This longitudinal prospective cohort study was conducted to determine the impact of effective science instruction on performance on high-stakes high school graduation assessments in science. This study provides powerful findings to support authentic science teaching to enhance long-term retention of learning and performance on state-mandated…
Science Highlights and Lessons Learned from the Atmospheric Infrared Sounder (AIRS)
NASA Technical Reports Server (NTRS)
Pagano, Thomas S.; Fetzer, Eric J.; Suda, Jarrod; Licata, Steve
2011-01-01
The Atmospheric Infrared Sounder (AIRS) and companion instrument, the Advanced Microwave Sounding Unit (AMSU) on the NASA Earth Observing System Aqua spacecraft are facility instruments designed to support measurements of atmospheric temperature, water vapor and a wide range of atmospheric constituents in support of weather forecasting and scientific research in climate and atmospheric chemistry. This paper is an update to the science highlights from a paper by the authors released last year and also looks back at the lessons learned and future needs of the scientific community. These lessons not only include requirements on the measurements, but scientific shortfalls as well. Results from the NASA Science Community Workshop in IR and MW Sounders relating to AIRS and AMSU requirements and concerns are covered and reflect much of what has been learned and what is needed for future atmospheric sounding from Low Earth Orbit.
Interdisciplinary Facilities that Support Collaborative Teaching and Learning
ERIC Educational Resources Information Center
Asoodeh, Mike; Bonnette, Roy
2006-01-01
It has become widely accepted that the computer is an indispensable tool in the study of science and technology. Thus, in recent years curricular programs such as Industrial Technology and associated scientific disciplines have been adopting and adapting the computer as a tool in new and innovative ways to support teaching, learning, and research.…
ERIC Educational Resources Information Center
Kapur, Manu; Kinzer, Charles K.
2007-01-01
This study investigated the effect of well- vs. ill-structured problem types on: (a) group interactional activity, (b) evolution of group participation inequities, (c) group discussion quality, and (d) group performance in a synchronous, computer-supported collaborative learning (CSCL) environment. Participants were 60 11th-grade science students…
Supporting students in developing literacy in science.
Krajcik, Joseph S; Sutherland, LeeAnn M
2010-04-23
Reading, writing, and oral communication are critical literacy practices for participation in a global society. In the context of science inquiry, literacy practices support learners by enabling them to grapple with ideas, share their thoughts, enrich understanding, and solve problems. Here we suggest five instructional and curricular features that can support students in developing literacy in the context of science: (i) linking new ideas to prior knowledge and experiences, (ii) anchoring learning in questions that are meaningful in the lives of students, (iii) connecting multiple representations, (iv) providing opportunities for students to use science ideas, and (v) supporting students' engagement with the discourses of science. These five features will promote students' ability to read, write, and communicate about science so that they can engage in inquiry throughout their lives.
Comparing Design Constraints to Support Learning in Technology-Guided Inquiry Projects
ERIC Educational Resources Information Center
Applebaum, Lauren R.; Vitale, Jonathan M.; Gerard, Elizabeth; Linn, Marcia C.
2017-01-01
Physical design projects are a way to motivate and engage students in authentic science and engineering practices. Web-based tools can support design projects to ensure that students address and reflect upon critical science concepts during the course of the project. In addition, by specifying challenging design goals that require students to…
Case Study: Collaborative Creation of an On-Line Degree Program
ERIC Educational Resources Information Center
Stewart, Barbara L.; Norwood, Marcella; Ezell, Shirley; Waight, Consuelo
2006-01-01
Faculty collaboratively developed an on-line Bachelor of Science degree in Consumer Science and Merchandising (CSM). Part-time faculty and technical support services supported the four-member team. Small grants assisted in the creation and redesign of all CSM major courses for on-line delivery. Issues of appropriate learning strategies, student…
Supporting Language-Minoritized Students in Science Practices within a Research-Practice Partnership
ERIC Educational Resources Information Center
Wingert, Kerri M.
2017-01-01
This dissertation investigates the design and implementation of educational change efforts focused on supporting middle-school language-minoritized students in science learning. These chapters take as their units of analyses the shared activity of a research-practice partnership, the co-design of a discourse-based intervention and its outcomes for…
NASA Astrophysics Data System (ADS)
Colon, Erica L.
Online learning is becoming more prevalent in today's education and is changing the way students learn and instructors teach. This study proposed using an informative case study design within a multilevel conceptual framework as teacher candidates were learning to teach and use science inquiry while in an online post-baccalaureate science methods course. The purposes were to (a) explore whether the teacher candidates had a thorough understanding of scientific inquiry and how to implement higher-order thinking skills, (b) examine whether or not the teacher candidates used a variety of computer-based instructional technologies when choosing instructional objectives, and (c) identify barriers that impede teacher candidates from using science inquiry or technology singly, or the ability to incorporate technology into learning science inquiry. The findings indicate that an online approach in preparing science teachers holds great potential for using innovative technology to teach science inquiry. First, the teacher candidates did incorporate essential features of classroom inquiry, however it was limited and varied in the type of inquiry used. Second, of the 86 lesson plans submitted by the teacher candidates, less than twelve percent of the learning objectives involved higher-order skills that promoted science inquiry. Third, results supported that when using technology in their lesson planning, participants had widely varying backgrounds in reference to their familiarity with technology. However, even though each participant used some form or another, the technology used was fairly low level. Finally, when discussing implementing inquiry-based science in the lesson plans, this study identified time as a reason that participants may not be pushing for more inquiry-based lessons. The researcher also identifies that school placements were a huge factor in the amount of inquiry-based skills coded in the lesson plans. The study concludes that online teacher preparation programs hold promise for teacher candidates by providing them knowledge and strategies for implementing innovative technologies to teach science inquiry when designing curriculum. By identifying specific implications for methods course design and implementation, as well as future research, this study contributes to teacher education improvement efforts, and therefore supports changing learning styles of their future students, so-called the iGeneration.
The Learning Assistant Model for Science Teacher Recruitment and Preparation
NASA Astrophysics Data System (ADS)
Otero, Valerie
2006-04-01
There is a shortage of high quality physical science teachers in the United States. In 2001, less than 50% of teachers who taught physics held a major or minor in physics or physics education (Neuschatz & McFarling, 2003). Studies point to content knowledge as one of the two factors that is positively correlated with teacher quality. However, those directly responsible for the science content preparation of teachers, specifically science research faculty, are rarely involved in focused efforts to improve teacher quality or to create alternative paths for becoming a teacher. What role should science research faculty play in the recruitment and preparation of science teachers? How might teacher recruitment and preparation be conceived so that science research faculty members' participation in these efforts is not at odds with the traditional scientific research foci of science research departments? To address this issue, we have coupled our teacher recruitment and preparation efforts with our efforts for transforming our large-enrollment, undergraduate science courses. This is achieved through the undergraduate Learning Assistant (LA) program, where talented mathematics and science majors are hired to assist in transforming large enrollment courses to student-centered, collaborative environments. These LAs are the target of our teacher recruitment efforts. Science research faculty, in collaboration with faculty from the school of education have established a community that supports LAs in making decisions to explore K12 teaching as a career option. Fifteen percent of the LAs who have participated in this program have entered teaching credential programs and now plan to become K12 teachers. An added effect of this program is that research faculty have developed skills and knowledge regarding inquiry-based and student-centered pedagogy and theories of student learning. The Learning Assistant program has led to increased subject matter knowledge among learning assistants, increased interest in K-12 teaching as a career, and increased appreciation and understanding of student-centered and inquiry-based learning. Data to support these claims will be presented. Neuschatz, M. & McFarling, M. (2003). Broadning the Base: High School Physics Education at the Turn of a New Century, AIP Report No. R-439.
ERIC Educational Resources Information Center
Duncan, Ravit Golan; Castro-Faix, Moraima; Choi, Jinnie
2016-01-01
The Framework for Science Education and the Next Generation Science Standards in the USA emphasize learning progressions (LPs) that support conceptual coherence and the gradual building of knowledge over time. In the domain of genetics there are two independently developed alternative LPs. In essence, the difference between the two progressions…
NASA Astrophysics Data System (ADS)
Schäfer, Andreas; Holz, Jan; Leonhardt, Thiemo; Schroeder, Ulrik; Brauner, Philipp; Ziefle, Martina
2013-06-01
In this study, we address the problem of low retention and high dropout rates of computer science university students in early semesters of the studies. Complex and high abstract mathematical learning materials have been identified as one reason for the dropout rate. In order to support the understanding and practicing of core mathematical concepts, we developed a game-based multitouch learning environment in which the need for a suitable learning environment for mathematical logic was combined with the ability to train cooperation and collaboration in a learning scenario. As application domain, the field of mathematical logic had been chosen. The development process was accomplished along three steps: First, ethnographic interviews were run with 12 students of computer science revealing typical problems with mathematical logic. Second, a multitouch learning environment was developed. The game consists of multiple learning and playing modes in which teams of students can collaborate or compete against each other. Finally, a twofold evaluation of the environment was carried out (user study and cognitive walk-through). Overall, the evaluation showed that the game environment was easy to use and rated as helpful: The chosen approach of a multiplayer game supporting competition, collaboration, and cooperation is perceived as motivating and "fun."
Teaching and Learning about Force with a Representational Focus: Pedagogy and Teacher Change
NASA Astrophysics Data System (ADS)
Hubber, Peter; Tytler, Russell; Haslam, Filocha
2010-01-01
A large body of research in the conceptual change tradition has shown the difficulty of learning fundamental science concepts, yet conceptual change schemes have failed to convincingly demonstrate improvements in supporting significant student learning. Recent work in cognitive science has challenged this purely conceptual view of learning, emphasising the role of language, and the importance of personal and contextual aspects of understanding science. The research described in this paper is designed around the notion that learning involves the recognition and development of students’ representational resources. In particular, we argue that conceptual difficulties with the concept of force are fundamentally representational in nature. This paper describes a classroom sequence in force that focuses on representations and their negotiation, and reports on the effectiveness of this perspective in guiding teaching, and in providing insight into student learning. Classroom sequences involving three teachers were videotaped using a combined focus on the teacher and groups of students. Video analysis software was used to capture the variety of representations used, and sequences of representational negotiation. Stimulated recall interviews were conducted with teachers and students. The paper reports on the nature of the pedagogies developed as part of this representational focus, its effectiveness in supporting student learning, and on the pedagogical and epistemological challenges negotiated by teachers in implementing this approach.
NASA Astrophysics Data System (ADS)
Madsen, J. A.; Allen, D. E.; Donham, R. S.; Fifield, S. J.; Shipman, H. L.; Ford, D. J.; Dagher, Z. R.
2004-12-01
With funding from the National Science Foundation, we have designed an integrated science content and methods course for sophomore-level elementary teacher education (ETE) majors. This course, the Science Semester, is a 15-credit sequence that consists of three science content courses (Earth, Life, and Physical Science) and a science teaching methods course. The goal of this integrated science and education methods curriculum is to foster holistic understandings of science and pedagogy that future elementary teachers need to effectively use inquiry-based approaches in teaching science in their classrooms. During the Science Semester, traditional subject matter boundaries are crossed to stress shared themes that teachers must understand to teach standards-based elementary science. Exemplary approaches that support both learning science and learning how to teach science are used. In the science courses, students work collaboratively on multidisciplinary problem-based learning (PBL) activities that place science concepts in authentic contexts and build learning skills. In the methods course, students critically explore the theory and practice of elementary science teaching, drawing on their shared experiences of inquiry learning in the science courses. An earth system science approach is ideally adapted for the integrated, inquiry-based learning that takes place during the Science Semester. The PBL investigations that are the hallmark of the Science Semester provide the backdrop through which fundamental earth system interactions can be studied. For example in the PBL investigation that focuses on energy, the carbon cycle is examined as it relates to fossil fuels. In another PBL investigation centered on kids, cancer, and the environment, the hydrologic cycle with emphasis on surface runoff and ground water contamination is studied. In a PBL investigation that has students learning about the Delaware Bay ecosystem through the story of the horseshoe crab and the biome that swirls around this remarkable arthropod, students are exposed to interactions between the hydrosphere, atmosphere, and geosphere and they examine ways in which climate change can affect this ecosystem.
The College Science Learning Cycle: An Instructional Model for Reformed Teaching.
Withers, Michelle
2016-01-01
Finding the time for developing or locating new class materials is one of the biggest barriers for instructors reforming their teaching approaches. Even instructors who have taken part in training workshops may feel overwhelmed by the task of transforming passive lecture content to engaging learning activities. Learning cycles have been instrumental in helping K-12 science teachers design effective instruction for decades. This paper introduces the College Science Learning Cycle adapted from the popular Biological Sciences Curriculum Study 5E to help science, technology, engineering, and mathematics faculty develop course materials to support active, student-centered teaching approaches in their classrooms. The learning cycle is embedded in backward design, a learning outcomes-oriented instructional design approach, and is accompanied by resources and examples to help faculty transform their teaching in a time-efficient manner. © 2016 M. Withers. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
Machine learning and data science in soft materials engineering
NASA Astrophysics Data System (ADS)
Ferguson, Andrew L.
2018-01-01
In many branches of materials science it is now routine to generate data sets of such large size and dimensionality that conventional methods of analysis fail. Paradigms and tools from data science and machine learning can provide scalable approaches to identify and extract trends and patterns within voluminous data sets, perform guided traversals of high-dimensional phase spaces, and furnish data-driven strategies for inverse materials design. This topical review provides an accessible introduction to machine learning tools in the context of soft and biological materials by ‘de-jargonizing’ data science terminology, presenting a taxonomy of machine learning techniques, and surveying the mathematical underpinnings and software implementations of popular tools, including principal component analysis, independent component analysis, diffusion maps, support vector machines, and relative entropy. We present illustrative examples of machine learning applications in soft matter, including inverse design of self-assembling materials, nonlinear learning of protein folding landscapes, high-throughput antimicrobial peptide design, and data-driven materials design engines. We close with an outlook on the challenges and opportunities for the field.
Machine learning and data science in soft materials engineering.
Ferguson, Andrew L
2018-01-31
In many branches of materials science it is now routine to generate data sets of such large size and dimensionality that conventional methods of analysis fail. Paradigms and tools from data science and machine learning can provide scalable approaches to identify and extract trends and patterns within voluminous data sets, perform guided traversals of high-dimensional phase spaces, and furnish data-driven strategies for inverse materials design. This topical review provides an accessible introduction to machine learning tools in the context of soft and biological materials by 'de-jargonizing' data science terminology, presenting a taxonomy of machine learning techniques, and surveying the mathematical underpinnings and software implementations of popular tools, including principal component analysis, independent component analysis, diffusion maps, support vector machines, and relative entropy. We present illustrative examples of machine learning applications in soft matter, including inverse design of self-assembling materials, nonlinear learning of protein folding landscapes, high-throughput antimicrobial peptide design, and data-driven materials design engines. We close with an outlook on the challenges and opportunities for the field.
NASA Astrophysics Data System (ADS)
Sorensen, A. E.; Dauer, J. M.; Corral, L.; Fontaine, J. J.
2017-12-01
A core component of public scientific literacy, and thereby informed decision-making, is the ability of individuals to reason about complex systems. In response to students having difficulty learning about complex systems, educational research suggests that conceptual representations, or mental models, may help orient student thinking. Mental models provide a framework to support students in organizing and developing ideas. The PMC-2E model is a productive tool in teaching ideas of modeling complex systems in the classroom because the conceptual representation framework allows for self-directed learning where students can externalize systems thinking. Beyond mental models, recent work emphasizes the importance of facilitating integration of authentic science into the formal classroom. To align these ideas, a university class was developed around the theme of carnivore ecology, founded on PMC-2E framework and authentic scientific data collection. Students were asked to develop a protocol, collect, and analyze data around a scientific question in partnership with a scientist, and then use data to inform their own learning about the system through the mental model process. We identified two beneficial outcomes (1) scientific data is collected to address real scientific questions at a larger scale and (2) positive outcomes for student learning and views of science. After participating in the class, students report enjoying class structure, increased support for public understanding of science, and shifts in nature of science and interest in pursuing science metrics on post-assessments. Further work is ongoing investigating the linkages between engaging in authentic scientific practices that inform student mental models, and how it might promote students' systems-thinking skills, implications for student views of nature of science, and development of student epistemic practices.
NASA Astrophysics Data System (ADS)
Li, Sissi L.
At the university level, introductory science courses usually have high student to teacher ratios which increases the challenge to meaningfully connect with students. Various curricula have been developed in physics education to actively engage students in learning through social interactions with peers and instructors in class. This learning environment demands not only conceptual understanding but also learning to be a scientist. However, the success of student learning is typically measured in test performance and course grades while assessment of student development as science learners is largely ignored. This dissertation addresses this issue with the development of an instrument towards a measure of physics learning identity (PLI) which is used to guide and complement case studies through student interviews and in class observations. Using the conceptual framework based on Etienne Wenger's communities of practice (1998), I examine the relationship between science learning and learning identity from a situated perspective in the context of a large enrollment science class as a community of practice. This conceptual framework emphasizes the central role of identity in the practices negotiated in the classroom community and in the way students figure out their trajectory as members. Using this framework, I seek to understand how the changes in student learning identity are supported by active engagement based instruction. In turn, this understanding can better facilitate the building of a productive learning community and provide a measure for achievement of the curricular learning goals in active engagement strategies. Based on the conceptual framework, I developed and validated an instrument for measuring physics learning identity in terms of student learning preferences, self-efficacy for learning physics, and self-image as a physics learner. The instrument was pilot tested with a population of Oregon State University students taking calculus based introductory physics. The responses were analyzed using principal component exploratory factor analysis. The emergent factors were analyzed to create reliable subscales to measure PLI in terms of physics learning self-efficacy and social expectations about learning. Using these subscales, I present a case study of a student who performed well in the course but resisted the identity learning goals of the curriculum. These findings are used to support the factors that emerged from the statistical analysis and suggest a potential model of the relationships between the factors describing science learning and learning identity in large enrollment college science classes. This study offers an instrument with which to measure aspects of physics learning identity and insights on how PLI might develop in a classroom community of practice.
NASA Astrophysics Data System (ADS)
Khan, Uzma Zafar
The aim of this quantitative study was to investigate elementary principals' beliefs about reformed science teaching and learning, science subject matter knowledge, and how these factors relate to fourth grade students' superior science outcomes. Online survey methodology was used for data collection and included a demographic questionnaire and two survey instruments: the K-4 Physical Science Misconceptions Oriented Science Assessment Resources for Teachers (MOSART) and the Beliefs About Reformed Science Teaching and Learning (BARSTL). Hierarchical multiple regression analysis was used to assess the separate and collective contributions of background variables such as principals' personal and school characteristics, principals' science teaching and learning beliefs, and principals' science knowledge on students' superior science outcomes. Mediation analysis was also used to explore whether principals' science knowledge mediated the relationship between their beliefs about science teaching and learning and students' science outcomes. Findings indicated that principals' science beliefs and knowledge do not contribute to predicting students' superior science scores. Fifty-two percent of the variance in percentage of students with superior science scores was explained by school characteristics with free or reduced price lunch and school type as the only significant individual predictors. Furthermore, principals' science knowledge did not mediate the relationship between their science beliefs and students' science outcomes. There was no statistically significant variation among the variables. The data failed to support the proposed mediation model of the study. Implications for future research are discussed.
NASA Astrophysics Data System (ADS)
Laxton, Katherine E.
This dissertation takes a close look at how district-level instructional coaches support teachers in learning to shifting their instructional practice, related to the Next Generation Science Standards. This dissertation aims to address how re-structuring professional development to a job-embedded coaching model supports individual teacher learning of new reform-related instructional practice. Implementing the NGSS is a problem of supporting professional learning in a way that will enable educators to make fundamental changes to their teaching practice. However, there are few examples in the literature that explain how coaches interact with teachers to improve teacher learning of reform-related instructional practice. There are also few examples in the literature that specifically address how supporting teachers with extended professional learning opportunities, aligned with high-leverage practices, tools and curriculum, impacts how teachers make sense of new standards-based educational reforms and what manifests in classroom instruction. This dissertation proposes four conceptual categories of sense-making that influence how instructional coaches interpret the nature of reform, their roles and in instructional improvement and how to work with teachers. It is important to understand how coaches interpret reform because their interpretations may have unintended consequences related to privileging certain views about instruction, or establishing priorities for how to work with teachers. In this dissertation, we found that re-structuring professional development to a job-embedded coaching model supported teachers in learning new reform-related instructional practice. However, individual teacher interpretations of reform emerged and seemed to be linked to how instructional coaches supported teacher learning.
ERIC Educational Resources Information Center
Ryder, Jim; Leach, John
2008-01-01
We begin by drawing upon the available literature to identify four characteristics of teacher talk likely to support student learning about the epistemology of science: making appropriate statements about the epistemology of science in the classroom, linking the epistemology of science with specific science concepts, stating and justifying…
Digital Games and the US National Research Council's Science Proficiency Goals
ERIC Educational Resources Information Center
Martinez-Garza, Mario; Clark, Douglas B.; Nelson, Brian C.
2013-01-01
This review synthesises research on digital games and science learning as it supports the goals for science proficiency outlined in the report by the US National Research Council on science education reform. The review is organised in terms of these research-based goals for science proficiency in light of their alignment with current science…
ERIC Educational Resources Information Center
Quigley, Cassie; Pongsanon, Khemmawadee; Akerson, Valarie L.
2011-01-01
There have been substantial reform efforts in science education to improve students' understandings of science and its processes and provide continual support for students becoming scientifically literate (AAAS, "Benchmarks for science literacy," Oxford University Press, New York, 1993; NRC, National Academy Press, Washington, DC, 1996; NSTA,…
Characterizing College Science Assessments: The Three-Dimensional Learning Assessment Protocol
Underwood, Sonia M.; Matz, Rebecca L.; Posey, Lynmarie A.; Carmel, Justin H.; Caballero, Marcos D.; Fata-Hartley, Cori L.; Ebert-May, Diane; Jardeleza, Sarah E.; Cooper, Melanie M.
2016-01-01
Many calls to improve science education in college and university settings have focused on improving instructor pedagogy. Meanwhile, science education at the K-12 level is undergoing significant changes as a result of the emphasis on scientific and engineering practices, crosscutting concepts, and disciplinary core ideas. This framework of “three-dimensional learning” is based on the literature about how people learn science and how we can help students put their knowledge to use. Recently, similar changes are underway in higher education by incorporating three-dimensional learning into college science courses. As these transformations move forward, it will become important to assess three-dimensional learning both to align assessments with the learning environment, and to assess the extent of the transformations. In this paper we introduce the Three-Dimensional Learning Assessment Protocol (3D-LAP), which is designed to characterize and support the development of assessment tasks in biology, chemistry, and physics that align with transformation efforts. We describe the development process used by our interdisciplinary team, discuss the validity and reliability of the protocol, and provide evidence that the protocol can distinguish between assessments that have the potential to elicit evidence of three-dimensional learning and those that do not. PMID:27606671
Learning with Web Tools, Simulations, and Other Technologies in Science Classrooms
NASA Astrophysics Data System (ADS)
Campbell, Todd; Wang, Shaing Kwei; Hsu, Hui-Yin; Duffy, Aaron M.; Wolf, Paul G.
2010-10-01
This position paper proposes the enhancement of teacher and student learning in science classrooms by tapping the enormous potential of information communication and technologies (ICTs) as cognitive tools for engaging students in scientific inquiry. This paper serves to challenge teacher-held assumptions about students learning science `from technology' with a framework and examples of students learning science `with technology'. Whereas a high percentage of students are finding their way in using ICTs outside of school, for the most part they currently are not doing so inside of school in ways that they find meaningful and relevant to their lives. Instead, the pedagogical approaches that are most often experienced are out-of-step with how students use ICTs outside of schools and are not supportive of learning framed by constructivism. Here we describe a theoretical and pedagogical foundation for better connecting the two worlds of students' lives: life in school and life outside of school. This position paper is in response to the changing landscape of students' lives. The position is transformative in nature because it proposes the use of cyber-enabled resources for cultivating and leveraging students new literacy skills by learning `with technology' to enhance science learning.
NASA Astrophysics Data System (ADS)
Thompson, Jessica J.; Windschitl, Mark
Contemporary critiques of science education have noted that girls often fail to engage in science learning because the activities lack relevance for them, and they cannot "see themselves" in the work of science. Despite the empirical support for these claims, theory around the important connections between relevance, emerging self-identity, and engagement for girls remains underdeveloped. This qualitative, exploratory investigation examines engagement in science learning among five underachieving high school girls. Data sources include in-depth interviews, classroom observations, and teacher surveys. The girls were asked to describe engagement within three learning contexts: science class, a favorite class, and an extracurricular activity. From the girls' voices emerge three themes reflecting the centrality of self: "who I am," "who I am becoming," and "the importance of relationships." It is important that these themes of self and of identity negotiation are integrated with the ways these girls find learning personally relevant. One pattern of extracurricular engagement and two patterns of science engagement (integrated and situational) are described. This study attempts to expand the dialogue around the relationships between identity, relevance, and engagement among underachieving girls and suggests ways in which curriculum can be grounded in students' lives and developing identities.
Emerging Geoscience Education Research at the University of British Columbia
NASA Astrophysics Data System (ADS)
Jones, F. M.; Harris, S.; Wieman, C.; Gilley, B.; Lane, E.; Caulkins, J.
2009-12-01
Geoscience education research (GER) in UBC’s Department of Earth and Ocean Sciences (EOS) began due to a well funded 5-yr Faculty of Science project called the Carl Wieman Science Education Initiative (CWSEI). This initiative takes an evidence-based, scientific approach to improving education by 1) establishing what students should learn; 2) scientifically measuring what students are learning; 3) adapting instruction and curricula using effective technologies and pedagogical research; and 4) disseminating and adopting what works. The presentation will discuss how this initiative has fostered a growing GER presence within our Department. CWSEI funding has enabled the EOS Department to hire 4 full-time Science Teaching and Learning Fellows (STLFs) who work directly with faculty to optimize courses and curricula. Much of the effort goes into developing active learning opportunities and rigorous ways to measure student learning and attitudes. Results serve as feedback for both students and instructors. Over 10 research projects have so far been initiated as a result of course and curriculum transformation. Examples include studies about: student attitudes towards Earth and Ocean Sciences; the effects of multiple instructors in courses; links between student in-class engagement and pedagogy; how certain instructional interventions promote metacognition; and others. Also, many modified courses use pre- and post-testing to measure learning gains. One undergraduate honors thesis, about assessing conceptual understanding of geological time, has been completed. Keys to fostering GER in our setting include: (1) faculty commitment to change, based on funding from CWSEI, (2) full-time Earth scientists (STLFs) who catalyze and support change, and (3) support from CWSEI science education experts. Specifically: - STLFs are trained Earth scientists but were not initially science education experts. Continuous support from CWSEI has been crucial for building expertise about how science is learned. - STLFs neither teach nor do course development alone. Rather, they bring dedication, focus, and enthusiasm to work with faculty members, and involve them in research aspects of the project. - Faculty effort is supported with reduced teaching loads. By project’s end, most (45-50) faculty members will have participated. Already, some have begun to actively pursue GER. - Students are involved: a new geoscience education course encourages graduate students to adopt scientific approaches to teaching early in their careers, and we engage undergraduates to assist with collection and analysis of education research data. Sustaining GER is challenging, therefore all reporting requirements are designed with transfer and sustainable practice in mind. Half way into the project, we have involved over 60% of our teaching faculty, worked on over 20 courses, and initiated several projects that affect our Department’s teaching in general. Faculty are beginning to engage in their own GER projects by observing where improvement is desirable, proposing and implementing changes, and measuring the effects. This scientific approach to teaching and learning is helping catalyze a sustainable GER presence in our department.
Restoring Balance in Science and Humanism
ERIC Educational Resources Information Center
Wunderlich, Ray C.
1977-01-01
The author replies to the article titled "Controversial Medical Treatments of Learning Disabilities" (R. Sieben), and provides support for his own views on the relationship between allergic disorders and learning disabilities in children. (IM)
Online Learning: Is It Meant for Science Courses?
ERIC Educational Resources Information Center
Seng, Lau; Mohamad, Fitri Suraya
2002-01-01
Discusses a case study experience in conducting scientific courses with undergraduates at the Universiti Malaysia Sarawak (UNIMAS) using Web-based learning environments to support conventional teaching sessions. Results showed online learning helped students become more interested, encouraged participation in class discussions, and provided more…
Clinical learning environment at Shiraz Medical School.
Rezaee, Rita; Ebrahimi, Sedigheh
2013-01-01
Clinical learning occurs in the context of a dynamic environment. Learning environment found to be one of the most important factors in determining the success of an effective teaching program. To investigate, from the attending and resident's perspective, factors that may affect student leaning in the educational hospital setting at Shiraz University of Medical Sciences (SUMS). This study combined qualitative and quantitative methods to determine factors affecting effective learning in clinical setting. Residents evaluated the perceived effectiveness of the university hospital learning environment. Fifty two faculty members and 132 residents participated in this study. Key determinants that contribute to an effective clinical teaching were autonomy, supervision, social support, workload, role clarity, learning opportunity, work diversity and physical facilities. In a good clinical setting, residents should be appreciated and given appropriate opportunities to study in order to meet their objectives. They require a supportive environment to consolidate their knowledge, skills and judgment. © 2013 Tehran University of Medical Sciences. All rights reserved.
ERIC Educational Resources Information Center
Kukkonen, Jari Ensio; Kärkkäinen, Sirpa; Dillon, Patrick; Keinonen, Tuula
2014-01-01
Research has demonstrated that simulation-based inquiry learning has significant advantages for learning outcomes when properly scaffolded. For successful learning in science with simulation-based inquiry, one needs to ascertain levels of background knowledge so as to support learners in making, evaluating and modifying hypotheses, conducting…
Learning in Discussion Forums: An Analysis of Knowledge Construction in a Gaming Affinity Space
ERIC Educational Resources Information Center
Davis, Don; Marone, Vittorio
2016-01-01
In the learning sciences and game studies communities, there has been an increasing interest in the potential of game-related "paratexts" and "surrounds" in supporting learning, such as online discussion forums and gaming affinity spaces. While there have been studies identifying how learning occurs in such communities, little…
Galileo Educational Network: Creating, Researching, and Supporting 21st Century Learning
ERIC Educational Resources Information Center
Friesen, Sharon
2009-01-01
School and classroom structures designed to meet the needs of the industrial past cannot "maintain the temperature required for sustaining life." Recent learning sciences research findings compel educators to invent new learning environments better suited to meet the demands of the 21st century. These new learning environments require…
Mobile Devices and Apps as Scaffolds to Science Learning in the Primary Classroom
NASA Astrophysics Data System (ADS)
Falloon, Garry
2017-12-01
Considerable work over many years has explored the contribution technology can make to science learning, at all levels of education. In the school sector, historically this has focused on the use of fixed, desktop-based or semi-mobile laptop systems for purposes such as experiment data collection or analysis, or as a means of engaging or motivating interest in science. However, the advent of mobile devices such as iPads supported by a huge array of low or no cost apps, means that new opportunities are becoming available for teachers to explore how these resources may be useful for supporting `hands on' science learning. This article reports outcomes from a study of primary (elementary) school students' use of a series of apps integrated with practical science activities, in a topic exploring Energy concepts. It used an innovative display capture tool to examine how the students used the apps and features of their iPads to scaffold their practical work at different stages during the experiments. Results identify device functions and app-based scaffolds that assisted these students to structure their experiments, understand procedures, think about the influence of variables and communicate and share outcomes. However, they also discovered limitations in the apps' ability to support conceptual knowledge development, identifying the critical role of teachers and the importance of task structure and design to ensuring conceptual knowledge objectives are met.
Technology Integration in Science Classrooms: Framework, Principles, and Examples
ERIC Educational Resources Information Center
Kim, Minchi C.; Freemyer, Sarah
2011-01-01
A great number of technologies and tools have been developed to support science learning and teaching. However, science teachers and researchers point out numerous challenges to implementing such tools in science classrooms. For instance, guidelines, lesson plans, Web links, and tools teachers can easily find through Web-based search engines often…
Teaching with Visuals in the Science Classroom
ERIC Educational Resources Information Center
Cook, Michelle
2012-01-01
Visuals play an important role in the teaching and learning of science and should be embedded within and supportive of authentic science inquiry. Both researchers and teachers believe that visuals have a great deal of potential to help students understand science, but in practice, these visuals do not always live up to their promise. Teachers need…
Why Teach Science with an Interdisciplinary Approach: History, Trends, and Conceptual Frameworks
ERIC Educational Resources Information Center
You, Hye Sun
2017-01-01
This study aims to describe the history of interdisciplinary education and the current trends and to elucidate the conceptual framework and values that support interdisciplinary science teaching. Many science educators have perceived the necessity for a crucial paradigm shift towards interdisciplinary learning as shown in science standards.…
Using Educative Assessments to Support Science Teaching for Middle School English-Language Learners
ERIC Educational Resources Information Center
Buxton, Cory A.; Allexsaht-Snider, Martha; Suriel, Regina; Kayumova, Shakhnoza; Choi, Youn-jeng; Bouton, Bobette; Baker, Melissa
2013-01-01
Grounded in Hallidayan perspectives on academic language, we report on our development of an educative science assessment as one component of the language-rich inquiry science for English-language learners teacher professional learning project for middle school science teachers. The project emphasizes the role of content-area writing to support…
How Does a Community of Principals Develop Leadership for Technology-Enhanced Science?
ERIC Educational Resources Information Center
Gerard, Libby F.; Bowyer, Jane B.; Linn, Marcia C.
2010-01-01
Active principal leadership can help sustain and scale science curriculum reform. This study illustrates how principal leadership developed in a professional learning community to support a technology-enhanced science curriculum reform funded by the National Science Foundation. Seven middle school and high school principals in one urban-fringe…
ERIC Educational Resources Information Center
Schielack, Jane F., Ed.; Knight, Stephanie L., Ed.
2012-01-01
How can we use new technology to support and educate the science leaders of tomorrow? This unique book describes the design, development, and implementation of an effective science leadership program that promotes collaboration among scientists and science educators, provides authentic research experiences for educators, and facilitates adaptation…
ERIC Educational Resources Information Center
Van Horne, Katie; Bell, Philip
2017-01-01
Recent science educational policy reform efforts call for a shift toward practice-focused instruction in kindergarten-Grade 12 science education. We argue that this focus on engaging students in epistemic practices of science opens up new possibilities for the design of learning environments that support the stabilization of learners'…
Popular Science Writing to Support Students' Learning of Science and Scientific Literacy
ERIC Educational Resources Information Center
Pelger, Susanne; Nilsson, Pernilla
2016-01-01
In higher natural science education, the scientific report is the prevailing genre of writing. Despite the fact that communicative skills are highly valued in working life, earlier studies have shown deficiencies among science students. In this paper, we highlight the need for varied communication training, in particularly arguing for the…
NASA Astrophysics Data System (ADS)
Ross, Danielle Kristina
Teachers face many challenges as we move forward into the age of the Next Generation Science Standards (NGSS) (Achieve, Inc., 2013). The NGSS aim to develop a population of scientifically literate and talented students who can participate in the "innovation-driven economy" (p. 1). In order to meet these goals, teachers must provide students with opportunities to engage in science and engineering practices (SEPs) and learn core ideas of these disciplines. This study followed pre-service secondary science teachers as they participated in a secondary science teacher preparation program intended to support the development of their pedagogical design capacity (Brown, 2009) related to planning and supporting whole-class taskbased discussions. Teacher educators in this program designed an intervention that aimed in supporting this development. This study examined a particular dimension of PDC -- specifically, PSTs effective use of resources to plan science lessons in which students engage in a high demand task, participate in SEPs, and discuss their work in a whole-class setting. In order to examine the effectiveness of the intervention, I had to define PDC a priori. I measured PDC by documenting how/whether PSTs engaged in the following instructional planning practices: developing Learning Goals, selecting and/or designing challenging tasks, anticipating student thinking, planning for monitoring student thinking, imagining the discussion storyline, planning questions, and planning marking strategies. Analyses showed a significant difference between baseline lesson plan scores and Instructional Performance scores. These findings suggest these patterns and changes were directly linked to the teacher preparation program. The mean increase in Instructional Performance scores during the course of the teacher preparation year further supports the effect of the teacher preparation coursework. Pre-service teachers with high pedagogical design capacity continually integrated the ambitious planning practices they learned in their coursework. In contrast, pre-service teachers with low pedagogical design capacity appeared to appropriate the vocabulary and language they learned in coursework, but did not integrate these practices at a high level. This study suggests that pre-service teachers who receive intensive instruction on ambitious planning practices for task-based discussion effectively develop the pedagogical design capacity to plan for task-based discussion lessons.
NASA Astrophysics Data System (ADS)
Mandell, Brian E.
The purpose of the present embedded mixed method study was to examine the self-regulatory processes used by high, average, and low achieving seventh grade students as they learned about a complex science topic from a hypermedia learning environment. Thirty participants were sampled. Participants were administered a number of measures to assess their achievement and self-efficacy. In addition, a microanalytic methodology, grounded in Zimmerman's cyclical model of self-regulated learning, was used to assess student self-regulated learning. It was hypothesized that there would be modest positive correlations between Zimmerman's three phases of self-regulated learning, that high achieving science students would deploy more self-regulatory subprocesses than average and low achieving science students, that high achieving science students would have higher self-efficacy beliefs to engage in self-regulated learning than average and low achieving science students, and that low achieving science students would over-estimate their self-efficacy for performance beliefs, average achieving science students would slightly overestimate their self-efficacy for performance beliefs, and high achieving science students would under-estimate their self-efficacy for performance beliefs. All hypotheses were supported except for the high achieving science students who under-estimated their self-efficacy for performance beliefs on the Declarative Knowledge Measure and slightly overestimated their self-efficacy for performance beliefs on the Conceptual Knowledge Measure. Finally, all measures of self-regulated learning were combined and entered into a regression formula to predict the students' scores on the two science tests, and it was revealed that the combined measure predicted 91% of the variance on the Declarative Knowledge Measure and 92% of the variance on the Conceptual Knowledge Measure. This study adds hypermedia learning environments to the contexts that the microanalytic methodology has been successfully administered. Educational implications and limitations to the study are also discussed.
Digital teaching tools and global learning communities.
Williams, Mary; Lockhart, Patti; Martin, Cathie
2015-01-01
In 2009, we started a project to support the teaching and learning of university-level plant sciences, called Teaching Tools in Plant Biology. Articles in this series are published by the plant science journal, The Plant Cell (published by the American Society of Plant Biologists). Five years on, we investigated how the published materials are being used through an analysis of the Google Analytics pageviews distribution and through a user survey. Our results suggest that this project has had a broad, global impact in supporting higher education, and also that the materials are used differently by individuals in terms of their role (instructor, independent learner, student) and geographical location. We also report on our ongoing efforts to develop a global learning community that encourages discussion and resource sharing.
Science Teaching Orientations and Technology-Enhanced Tools for Student Learning
NASA Astrophysics Data System (ADS)
Campbell, Todd; Longhurst, Max; Duffy, Aaron M.; Wolf, Paul G.; Shelton, Brett E.
2013-10-01
This qualitative study examines teacher orientations and technology-enhanced tools for student learning within a science literacy framework. Data for this study came from a group of 10 eighth grade science teachers. Each of these teachers was a participant in a professional development (PD) project focused on reformed and technology-enhanced science instruction shaped by national standards documents. The research is focused on identifying teacher orientations and use of technology-enhanced tools prior to or unaffected by PD. The primary data sources for this study are drawn from learning journals and classroom observations. Qualitative methods were used to analyze learning journals, while descriptive statistics were used from classroom observations to further explore and triangulate the emergent qualitative findings. Two teacher orientation teacher profiles were developed to reveal the emergent teacher orientation dimensions and technology-enhanced tool categories found: "more traditional teacher orientation profile" and "toward a reformed-based teacher orientation profile." Both profiles were founded on "knowledge of" beliefs about the goals and purposes for science education, while neither profile revealed sophisticated beliefs about the nature of science. The "traditional" profile revealed more teacher-centered beliefs about science teaching and learning, and the "towards reformed-based" profile revealed student-centered beliefs. Finally, only technology-enhanced tools supportive of collaborative construction of science knowledge were found connected to the "towards reformed-based" profile. This research is concluded with a proposed "reformed-based teacher orientation profile" as a future target for science teaching and learning with technology-enhanced tools in a science literacy framework.
NASA Astrophysics Data System (ADS)
Tang, Nai-En
The goal of this study is to examine how reform-based science teaching has been implemented and whether reform-based science teaching has promoted education equity through being available and beneficial for students from different socioeconomic status (SES) family backgrounds in the U.S. and Taiwan. No existing study used large-scale assessment to investigate the implementation and outcomes of the science reform movement in the U.S. and Taiwan. This study was developed to fill this gap using the Program of International Student Assessment (PISA) 2006 data including 5,611 students in the United States and 5995 students in Taiwan. A Latent Profile Analysis (LPA) was used to classify students into different science learning subgroups to understand how broadly reform-based science learning has been implemented in classrooms. The results showed that students in the U.S. had more opportunity to learn science through the reform-based learning activities than students in Taiwan. Latent Class Regression (LCR) and Structural Equation Modeling (SEM) were used for examining the availability of reform-based science teaching in both countries. The results showed that in the U.S., higher SES students had more opportunity to learn science reform-based learning activities. On the other hand, students' SES had no association with reform-based science learning in Taiwan. Regression Mixture Modeling and SEM were used to examine whether there was an association between reform-based science teaching and SES-associated achievement gaps. The results found no evidence to support the claim that reform-based science teaching helps to minimize SES-associated achievement gaps in both countries.
Ballen, Cissy J.; Wieman, Carl; Salehi, Shima; Searle, Jeremy B.; Zamudio, Kelly R.
2017-01-01
Efforts to retain underrepresented minority (URM) students in science, technology, engineering, and mathematics (STEM) have shown only limited success in higher education, due in part to a persistent achievement gap between students from historically underrepresented and well-represented backgrounds. To test the hypothesis that active learning disproportionately benefits URM students, we quantified the effects of traditional versus active learning on student academic performance, science self-efficacy, and sense of social belonging in a large (more than 250 students) introductory STEM course. A transition to active learning closed the gap in learning gains between non-URM and URM students and led to an increase in science self-efficacy for all students. Sense of social belonging also increased significantly with active learning, but only for non-URM students. Through structural equation modeling, we demonstrate that, for URM students, the increase in self-efficacy mediated the positive effect of active-learning pedagogy on two metrics of student performance. Our results add to a growing body of research that supports varied and inclusive teaching as one pathway to a diversified STEM workforce. PMID:29054921
NASA Technical Reports Server (NTRS)
Holmes, Dwight P.; Thompson, Tommy; Simpson, Richard; Tyler, G. Leonard; Dehant, Veronique; Rosenblatt, Pascal; Hausler, Bernd; Patzold, Martin; Goltz, Gene; Kahan, Daniel;
2008-01-01
Radio Science is an opportunistic discipline in the sense that the communication link between a spacecraft and its supporting ground station can be used to probe the intervening media remotely. Radio science has recently expanded to greater, cooperative use of international assets. Mars Express and Venus Express are two such cooperative missions managed by the European Space Agency with broad international science participation supported by NASA's Deep Space Network (DSN) and ESA's tracking network for deep space missions (ESTRAK). This paper provides an overview of the constraints, opportunities, and lessons learned from international cross support of radio science, and it explores techniques for potentially optimizing the resultant data sets.
ERIC Educational Resources Information Center
Vo, Tina; Forbes, Cory T.; Zangori, Laura; Schwarz, Christina V.
2015-01-01
Elementary teachers play a crucial role in supporting and scaffolding students' model-based reasoning about natural phenomena, particularly complex systems such as the water cycle. However, little research exists to inform efforts in supporting elementary teachers' learning to foster model-centered, science learning environments. To address this…
ERIC Educational Resources Information Center
Zeleeva, Vera P.; Bykova, Svetlana S.; Varbanova, Silvia
2016-01-01
The relevance of the study is due to the importance of psychological and pedagogical support for students in university that would prevent difficulties in learning activities and increase adaptive capacity through the development of relevant personal traits. Therefore, this article is aimed at solving the problem of arranging psychological and…
ERIC Educational Resources Information Center
Kumar, David Devraj; Thomas, P. V.; Morris, John D.; Tobias, Karen M.; Baker, Mary; Jermanovich, Trudy
2011-01-01
This study examined the impact of computer simulation and supported science learning on a teacher's understanding and conceptual knowledge of current electricity. Pre/Post tests were used to measure the teachers' concept attainment. Overall, there was a significant and large knowledge difference effect from Pre to Post test. Two interesting…
ERIC Educational Resources Information Center
Schuchardt, Anita M.; Tekkumru-Kisa, Miray; Schunn, Christian D.; Stein, Mary Kay; Reynolds, Birdy
2017-01-01
There is little consensus on the kinds and amounts of teacher support needed to achieve desired student learning outcomes when mathematics is inserted into science classrooms. When supported by educative curriculum materials (ECM) and heavy investment in professional development (PD), teachers implementing a unit designed around mathematical…
Characteristics of Teachers' Support on Learning: A Case Study
ERIC Educational Resources Information Center
Sardà, Anna; Márquez, Conxita; Sanmartí, Neus
2014-01-01
One of the problems in science education research is obtaining evidence that particular teacher support of learning helps achieve better academic results for students. Classroom ecology involves many variables that are difficult to control and, moreover, many results can only be seen in the medium term. The purpose of this case study on an expert…
ERIC Educational Resources Information Center
Anastopoulou, Stamatina; Sharples, Mike; Ainsworth, Shaaron; Crook, Charles; O'Malley, Claire; Wright, Michael
2012-01-01
In this paper, a novel approach to engaging students in personal inquiry learning is described, whereby they carry out scientific investigations that are personally meaningful and relevant to their everyday lives. The learners are supported by software that guides the inquiry process, extending from the classroom into the school grounds, home, or…
Using Technology to Support Science Inquiry Learning
ERIC Educational Resources Information Center
Williams, P. John; Nguyen, Nhung; Mangan, Jenny
2017-01-01
This paper presents a case study of a teacher's experience in implementing an inquiry approach to his teaching over a period of two years with two different classes. His focus was on using a range of information technologies to support student inquiry learning. Data was collected over the two year period by observation, interview and student work…
The Role of Informal Learning Spaces in Enhancing Student Engagement with Mathematical Sciences
ERIC Educational Resources Information Center
Waldock, Jeff; Rowlett, Peter; Cornock, Claire; Robinson, Mike; Bartholomew, Hannah
2017-01-01
By helping create a shared, supportive, learning community, the creative use of custom-designed spaces outside the classroom has a major impact on student engagement. The intention is to create spaces that promote peer interaction within and across year groups, encourage closer working relationships between staff and students and support specific…
Apprehending the Future: Emerging Technologies, from Science Fiction to Campus Reality
ERIC Educational Resources Information Center
Alexander, Bryan
2009-01-01
Deciding which technologies to support for teaching and learning--and how to support them--depends, first, on the ability to learn about each emerging development. Selecting a platform without knowing what is coming right behind it can be risky. Similarly, it is folly to grasp onto a technology without seeing the variety of ways that the…
ERIC Educational Resources Information Center
Kukkonen, Jari; Dillon, Patrick; Kärkkäinen, Sirpa; Hartikainen-Ahia, Anu; Keinonen, Tuula
2016-01-01
Scaffolding helps the novice to accomplish a task goal or solve a problem that otherwise would be beyond unassisted efforts. Scaffolding firstly aims to support the learner in accomplishing the task and secondly in learning from the task and improving future performance. This study has examined pre-service teachers' experiences of…
Bargerhuff, Mary Ellen; Cowan, Heidi; Kirch, Susan A
2010-01-01
As a result of federal legislation, adolescents with disabilities and other exceptionalities are increasingly included in science and math classes alongside their peers who are typically developing. The effectiveness of this placement option, however, is largely dependent on the skill level of the general educator and the support afforded to this teacher through various channels. Efforts arising from two National Science Foundation grants address both skill and support. Center's Lesson Adaptations for Student Success (CLASS) project used summer professional development opportunities to equip teachers with the knowledge and skills needed to provide students with physical, sensory and learning disabilities equitable access to laboratory and field experiences. Second, to support teachers back in their classrooms, the Ohio Resource Center's Lesson Adaptations for Student Success (OR-CLASS) uses web resources to share high quality, peer-reviewed lesson plans, complete with specific recommendations on adaptations for students with a variety of exceptional learning needs.
ERIC Educational Resources Information Center
Black, Paul
2017-01-01
Teachers, both of science and of religion, have to help pupils to learn about the links between these subjects. An effective way to support this learning should start from the beliefs and ideas that pupils already have, ideas which might well be influenced by public debates, often characterised by controversy, between those holding strong beliefs…
ERIC Educational Resources Information Center
Lee, Siok H.
2010-01-01
This study examines strategies for supporting vocabulary and content learning in 5 grade 9 Earth Science classes that are part of a SDAIE program (Specially Designed Academic Instruction in English) in an urban California high school. Students received vocabulary and content instruction during a unit on Earthquakes. One group of students performed…
ERIC Educational Resources Information Center
Fick, Sarah J.
2018-01-01
Science education reforms focus on the integration of three dimensions: disciplinary core ideas (DCIs), scientific and engineering practices (SEPs), and crosscutting concepts (CCCs). While research has examined the role of DCIs and SEPs in teaching and learning, little research has explored how the CCCs might be integrated. This research proposes…
ERIC Educational Resources Information Center
Bevan, Bronwyn
2010-01-01
This dissertation addresses the question of how structured out-of-school-time settings, such as afterschool programs and summer camps, are positioned to support children's engagement and learning in science. This study addresses a gap in the research literature that does not fully specify the nature of the out-of-school-time (OST) setting and that…
ERIC Educational Resources Information Center
Cheng, Stephen; Johnston, Susan
2014-01-01
Supplemental instruction (SI) has proven highly effective at improving success rates in high-risk first and second-year courses, in part because peerled SI sessions inculcate best-practice study skills in a specific learning context which provides opportunities for skill mastery. A successful SI program in the Faculty of Science at the University…
minimUML: A Minimalist Approach to UML Diagramming for Early Computer Science Education
ERIC Educational Resources Information Center
Turner, Scott A.; Perez-Quinones, Manuel A.; Edwards, Stephen H.
2005-01-01
In introductory computer science courses, the Unified Modeling Language (UML) is commonly used to teach basic object-oriented design. However, there appears to be a lack of suitable software to support this task. Many of the available programs that support UML focus on developing code and not on enhancing learning. Programs designed for…
ERIC Educational Resources Information Center
Lin, Feng; Chan, Carol K. K.
2018-01-01
This study examined the role of computer-supported knowledge-building discourse and epistemic reflection in promoting elementary-school students' scientific epistemology and science learning. The participants were 39 Grade 5 students who were collectively pursuing ideas and inquiry for knowledge advance using Knowledge Forum (KF) while studying a…
NASA Astrophysics Data System (ADS)
Liang, Ling L.; Gabel, Dorothy L.
2005-08-01
This study examines the effectiveness of a new constructivist curriculum model (Powerful Ideas in Physical Science) in improving prospective teachers’ understanding of science concepts, in fostering a learning environment supporting conceptual understanding, and in promoting positive attitudes toward learning and teaching science and chemistry in particular. A non-equivalent pretest post-test control-group design was employed. Analysis of covariance and repeated-measures analyses of variance were performed to analyze the scores on concept tests and attitude surveys. Data from videotaped observations of laboratory sessions and interviews of prospective teachers were analyzed by employing a naturalistic inquiry method to provide insights into the process of science learning and teaching for the teacher trainees. The interpretations were made based on the findings that could be corroborated by both methodologies. Conclusions and limitations of the present study as well as recommendations for future implementation of constructivist science curriculum in general are also included.
A Novel Group Engagement Score for Virtual Learning Environments
ERIC Educational Resources Information Center
Castellanos, Jorge; Haya, Pablo A.; Urquiza-Fuentes, Jaime
2017-01-01
STEM (Science, Technology, Engineering, and Math) education is currently receiving much attention from governments and educational institutions. Our work is based on active learning and video-based learning approaches to support STEM education. Here, we aimed to increase students' engagement through reflective processes that embrace video…
Teachers' Learning in an Innovative School
ERIC Educational Resources Information Center
Bissaker, Kerry; Heath, Jayne
2005-01-01
The successful establishment of a purpose-built innovative school designed to support new ways of teaching and learning in the senior secondary years, particularly in the area of science and mathematics, required a comprehensive and research-based professional development policy and program. Planning professional learning opportunities for the…
Variables that impact the implementation of project-based learning in high school science
NASA Astrophysics Data System (ADS)
Cunningham, Kellie
Wagner and colleagues (2006) state the mediocrity of teaching and instructional leadership is the central problem that must be addressed if we are to improve student achievement. Educational reform efforts have been initiated to improve student performance and to hold teachers and school leaders accountable for student achievement (Wagner et al., 2006). Specifically, in the area of science, goals for improving student learning have led reformers to establish standards for what students should know and be able to do, as well as what instructional methods should be used. Key concepts and principles have been identified for student learning. Additionally, reformers recommend student-centered, inquiry-based practices that promote a deep understanding of how science is embedded in the everyday world. These new approaches to science education emphasize inquiry as an essential element for student learning (Schneider, Krajcik, Marx, & Soloway, 2002). Project-based learning (PBL) is an inquiry-based instructional approach that addresses these recommendations for science education reform. The objective of this research was to study the implementation of project-based learning (PBL) in an urban school undergoing reform efforts and identify the variables that positively or negatively impacted the PBL implementation process and its outcomes. This study responded to the need to change how science is taught by focusing on the implementation of project-based learning as an instructional approach to improve student achievement in science and identify the role of both school leaders and teachers in the creation of a school environment that supports project-based learning. A case study design using a mixed-method approach was used in this study. Data were collected through individual interviews with the school principal, science instructional coach, and PBL facilitator. A survey, classroom observations and interviews involving three high school science teachers teaching grades 9--12, were also used in the data collection process. The results of the study indicated that the use of PBL increased student engagement, ability to problem-solve, and to some extent academic performance. The results also revealed several factors that impacted the implementation of project-based learning: (a) Student attributes such as high student absenteeism, lack of motivation, and poor behavior prevented teachers from completing the PBL unit in a timely fashion. (b) Certain school and district policies and requirements were not conducive to PBL implementation. Policies and practices impacting instructional time and teaching supplies acquisition made it difficult for teachers to plan lessons and obtain necessary supplies. (c) Teachers did not receive PBL training in a timely fashion. Teachers received training approximately two months prior to implementation. (d) Teacher collaboration influenced PBL implementation as it enabled teachers to share and discuss ideas, resources, and lessons. Implications for practice include: (a) School and district leaders must create and follow policies and procedures that support conditions that support inquiry learning, (b) Teachers need resources to overcome the challenges associated with project-based learning, (c) Teachers must have the freedom to have a vision for the implementation of PBL that fits their particular classroom context, and (d) Steps should be taken to ensure students have the prior knowledge and skills to successfully engage in PBL.
Measuring the Impact of a Science Center on Its Community
ERIC Educational Resources Information Center
Falk, John H.; Needham, Mark D.
2011-01-01
A range of sources support science learning, including the formal education system, libraries, museums, nature and Science Centers, aquariums and zoos, botanical gardens and arboretums, television programs, film and video, newspapers, radio, books and magazines, the Internet, community and health organizations, environmental organizations, and…
Evaluation of the Use of Remote Laboratories for Secondary School Science Education
ERIC Educational Resources Information Center
Lowe, David; Newcombe, Peter; Stumpers, Ben
2013-01-01
Laboratory experimentation is generally considered central to science-based education. Allowing students to "experience" science through various forms of carefully designed practical work, including experimentation, is often claimed to support their learning and motivate their engagement while fulfilling specific curriculum requirements. However,…
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-03
... only applications for the Postdoctoral Research Training Program in the Education Sciences. Research on... Science Education Social and Behavioral Outcomes to Support Learning Transition Outcomes for Special... grant applications for the Education Research, Education Research Training, Research on Statistical and...
The effect of instruction on socio-cultural beliefs hindering the learning of science
NASA Astrophysics Data System (ADS)
Jegede, Olugbemiro J.; Okebukola, Peter A. O.
Although recent studies have shown that the sociocultural characteristics which children in non-western society bring into the classroom from their environment create a wedge between what they are taught and what they learn, very little has been done to solve the problem. A learner who is not positively disposed to, or has a socio-cultural background that is indifferent to, learning science would find it hard to learn science effectively. This study investigated whether instruction through the use of the socio-cultural mode has any significant effect on students' attitude towards the learning of science. The sample consisted of 600 senior secondary year-one students (442 boys, 158 girls) from 15 secondary schools in Nigeria. The Socio-Cultural Environment Scale (SCES) and the Biology Achievement Test (BAT) were used to measure the change in attitude and achievement of subjects in a pretest-posttest situation after a six-week treatment. Evidence was found to support the hypothesis that science instruction which deliberately involves the discussion of socio-cultural views about science concepts engenders positive attitudes towards the study of science. The findings also indicate that anthropomorphic and mechanistic views can be presented in such a way as to promote positive attitudes towards the study of science in traditional cultures.
Home culture, science, school and science learning: is reconciliation possible?
NASA Astrophysics Data System (ADS)
Tan, Aik-Ling
2011-09-01
In response to Meyer and Crawford's article on how nature of science and authentic science inquiry strategies can be used to support the learning of science for underrepresented students, I explore the possibly of reconciliation between the cultures of school, science, school science as well as home. Such reconciliation is only possible when science teachers are cognizant of the factors affecting the cultural values and belief systems of underrepresented students. Using my experience as an Asian learner of WMS, I suggest that open and honest dialogues in science classrooms will allow for greater clarity of the ideals that WMS profess and cultural beliefs of underrepresented students. This in-depth understanding will eliminate guesswork and unrealistic expectations and in the process promote tolerance and acceptance of diversity in ways of knowing.
Guiding science expeditions: The design of a learning environment for project-based science
NASA Astrophysics Data System (ADS)
Polman, Joseph Louis
Project-based pedagogy has been revived recently as a teaching strategy for promoting students' active engagement in learning science by doing science. Numerous reform efforts have encouraged project-based teaching in high schools, along with a range of supports for its implementation, often including computers and the Internet. History has shown, however, that academic research and new technologies are not enough to effect real change in classrooms. Ultimately, teachers accomplish activity with their students daily in classrooms. Putting the idea of project-based teaching into practice depends on many particulars of teachers' situated work with students. To better understand the complexity of project-based science teaching in schools, I conducted an interpretive case study of one exceptional teacher's work. The teacher devotes all class time after the beginning of the year to open-ended, student-designed Earth Science research projects. Over four years of involvement with the Learning through Collaborative Visualization (CoVis) reform effort, this teacher has developed, implemented, and refined strategies for supporting and guiding students in conducting open-ended inquiry. Through a close examination of the teacher's work supporting student projects, I explore the design issues involved in such an endeavor, including affordances, constraints, and tradeoffs. In particular, I show how time constrains both student and teacher action, how the traditional school culture and grading create stumbling blocks for change, and how conflicting beliefs about teaching and learning undermine the accomplishment of guided inquiry. I also show how Internet tools including Usenet news, email, and the World Wide Web afford students an opportunity to gather and make use of distributed expertise and scientific data resources; how an activity structure, combined with a corresponding structure to the artifact of the final written product, supports student accomplishment of unfamiliar practices; and how the teacher guides students in real time through mutually transformative communication. I synthesize the important design elements into a framework for conducting project-based science, especially in settings where such pedagogy is relatively new. This study will inform teachers and reformers of the practical and complex work of implementing project-based teaching in schools.
NASA Astrophysics Data System (ADS)
Gebre, Engida H.; Polman, Joseph L.
2016-12-01
This study presents descriptive analysis of young adults' use of multiple representations in the context of science news reporting. Across one semester, 71 high school students, in a socioeconomically diverse suburban secondary school in Midwestern United States, participated in activities of researching science topics of their choice and producing infographic-based science news for possible online publication. An external editor reviewed their draft infographics and provided comments for subsequent revision. Students also provided peer feedback to the draft version of infographics using an online commentary tool. We analysed the nature of representations students used as well as the comments from peer and the editor feedback. Results showed both students' capabilities and challenges in learning with representations in this context. Students frequently rely on using certain kinds of representations that are depictive in nature, and supporting their progress towards using more abstract representations requires special attention and identifying learning gaps. Results also showed that students were able to determine representational adequacy in the context of providing peer feedback. The study has implication for research and instruction using infographics as expressive tools to support learning.
NASA Astrophysics Data System (ADS)
Fleer, Marilyn
2013-10-01
Vygotsky (1986) draws attention to the interrelationship between thought and language and other aspects of mind. Although not widely acknowledged, Vygotsky (1999) also drew attention to the search for the relations between cognition and emotions. This paper discusses the findings of a study which examined imaginary scientific situations within the early years. The central research questions examined: What is the emotional nature of scientific learning? and How does affective imagination support early childhood science learning? Video observations were made of the teaching of science from one site in a south-eastern community in Australia (232 h of video observations). The teachers used fairy tales and Slowmation as cultural devices to support the concept formation of 3- and 4-year-old children (n = 53; range of 3.3 to 4.4; mean of 3.8 years). The findings of this under-researched area (e.g. Roth, Mind, Culture, and Activity 15:2-7, 2008) make a contribution to understanding how affective imagination can work in science education in the early years.
Supporting Scientific Experimentation and Reasoning in Young Elementary School Students
NASA Astrophysics Data System (ADS)
Varma, Keisha
2014-06-01
Researchers from multiple perspectives have shown that young students can engage in the scientific reasoning involved in science experimentation. However, there is little research on how well these young students learn in inquiry-based learning environments that focus on using scientific experimentation strategies to learn new scientific information. This work investigates young children's science concept learning via inquiry-based instruction on the thermodynamics system in a developmentally appropriate, technology-supported learning environment. First- and third-grade students participate in three sets of guided experimentation activities that involve using handheld computers to measure change in temperature given different types of insulation materials. Findings from pre- and post-comparisons show that students at both grade levels are able to learn about the thermodynamics system through engaging in the guided experiment activities. The instruction groups outperformed the control groups on multiple measures of thermodynamics knowledge, and the older children outperform the younger children. Knowledge gains are discussed in the context of mental models of the thermodynamics system that include the individual concepts mentioned above and the relationships between them. This work suggests that young students can benefit from science instruction centered on experimentation activities. It shows the benefits of presenting complex scientific information authentic contexts and the importance of providing the necessary scaffolding for meaningful scientific inquiry and experimentation.
The Windows to the Universe Project: Using the Internet to Support K-12 Science Education
NASA Astrophysics Data System (ADS)
Gardiner, L.; Johnson, R.; Bergman, J.; Russell, R.; Genyuk, J.; La Grave, M.
2003-12-01
The World Wide Web can be a powerful tool for reaching the public as well as students and teachers around the world, supporting both formal and informal science education. The Windows to the Universe Project, initiated in 1995, provides a case study of approaches for the use of the web to support earth and space science education and literacy efforts. Through the use of innovative approaches such as easy to use design, multi-level content, and science concepts presented in a broader background context that includes connections to culture and the humanities, Windows to the Universe is an accessible format for individuals of various ages and learning styles. A large global audience regularly uses the web site to learn about earth and space science as well as related humanities content such as myths from around the world. User surveys show that the site has over 4 millions users per year, 65 percent of which are K-12 teachers and students. Approximately 46 percent of users access the site once per week or more. Recently, we have had the opportunity to expand our efforts while we continue to update existing content based on new scientific findings and events. Earth science content on Windows to the Universe is currently growing with a new geology section and development efforts are underway to expand our space weather content with a new curriculum. Educational games allow users to learn about space in a playful context, and an online journaling tool further integrates literacy into the learning experience. In addition, we are currently translating the entire Windows to the Universe web site into Spanish. We have included educators in the project as co-designers from its inception, and by aggressively utilizing and providing professional development opportunities for teachers, the web site is now used in thousands of classrooms around the world. In the past year we have continued to support K-12 educators by adding to our suite of classroom activities and leading professional development workshops and short courses. Core funding for the project is provided from the NASA Office of Space Science Information Technology Research Program, the NASA Earth Science Enterprise Education Program, and the National Science Foundation.
NASA Astrophysics Data System (ADS)
Ebrahim, Ali
The purpose of this study is to examine the impact of two instructional methods on students' academic achievement and attitudes toward elementary science in the State of Kuwait: traditional teaching method and the 4-E learning cycle inquiry teaching method. The subjects were 111 students from four intact 4th grade classes. The experiment group (n = 56) received the learning cycle instruction while the control group (n = 55) received a more traditional approach over a four week period. The same female teacher taught the experimental and control groups for boys and a different female teacher taught experimental and control groups for girls. The dependent variables were measured through the use of: (1) a science achievement test to assess student achievement; and (2) an attitude survey to measure students' attitudes toward science. Quantitative data were collected on students' pre- and post-treatment achievement and attitudes measures. The two way MANOVA reveals that: the 4-E learning cycle instructional method produces significantly greater achievement and attitudes among fourth grade science students than the traditional teaching approach F (2, 93) = 19.765, (P = .000), corresponding to Wilks' Lambda = .702 with an effect size of .298 and a power of 1. In light of these findings, it is therefore suggested that students can achieve greater and have higher science attitudes when the 4-E learning cycle is used. In addition, these findings support the notion that effective instruction in teaching science, such as the 4-E learning cycle instruction, should be proposed and implemented in elementary schools.
Valid and Reliable Science Content Assessments for Science Teachers
NASA Astrophysics Data System (ADS)
Tretter, Thomas R.; Brown, Sherri L.; Bush, William S.; Saderholm, Jon C.; Holmes, Vicki-Lynn
2013-03-01
Science teachers' content knowledge is an important influence on student learning, highlighting an ongoing need for programs, and assessments of those programs, designed to support teacher learning of science. Valid and reliable assessments of teacher science knowledge are needed for direct measurement of this crucial variable. This paper describes multiple sources of validity and reliability (Cronbach's alpha greater than 0.8) evidence for physical, life, and earth/space science assessments—part of the Diagnostic Teacher Assessments of Mathematics and Science (DTAMS) project. Validity was strengthened by systematic synthesis of relevant documents, extensive use of external reviewers, and field tests with 900 teachers during assessment development process. Subsequent results from 4,400 teachers, analyzed with Rasch IRT modeling techniques, offer construct and concurrent validity evidence.
NASA Astrophysics Data System (ADS)
Brissenden, G.; Slater, T. F.; Colodner, D.; Johnson, S.
2003-12-01
The Pre-Instructors in Math and Science (PIMAS) Program at the University of Arizona's Flandrau Science Center offers high school students the opportunity to explore careers in science teaching through on-the-job training in informal science teaching, both at Flandrau and in the community. The goal of the PIMAS program is to encourage these students to consider pursuing science teaching careers as they transition from high school to college. Students become members of the Flandrau Science Center staff, learning how to present several astronomy demonstrations. These demonstrations include: A Journey to Pluto, Robots on Mars, and Constructing the Seasons. Students also learn how to host star parties. They then offer these presentations at Flandrau on Saturdays and public viewing nights. During the Fall semester, students have the opportunity to learn about best practices in informal science education. They participate, as peers, in the U of A's Science Teachers Colloquium Series. They meet with astronomers, planetary scientists, engineers, and amateur astronomers to learn more about the science behind the demonstrations they are learning. In the Spring semester, students take what they've learned "on the road." They plan and execute Space Nights for their communities-at their schools, their siblings' schools, their churches, their scouting troupes, etc. We believe that by letting the students go into their own communities, they have a greater sense of ownership and pride in these events. The PIMAS Program is now entering its third year. We present both our successes and our lessons learned, as well as what the PIMAS students have to say about the program. We greatly appreciate, and acknowledge, the support of the Arizona Teacher Education Coalition, which is funded by the US Department of Education.
NASA Astrophysics Data System (ADS)
Thongnoppakun, Warangkana; Yuenyong, Chokchai
2018-01-01
Pedagogical content knowledge (PCK) is an essential kind of knowledge that teacher have for teaching particular content to particular students for enhance students' understanding, therefore, teachers with adequate PCK can give content to their students in an understandable way rather than transfer subject matter knowledge to learner. This study explored science student teachers' PCK for teaching science using Content representation base methodology. Research participants were 68 4th year science student teachers from department of General Science, faculty of Education, Phuket Rajabhat University. PCK conceptualization for teaching science by Magnusson et al. (1999) was applied as a theoretical framework in this study. In this study, Content representation (CoRe) by Loughran et al. (2004) was employed as research methodology in the lesson preparation process. In addition, CoRe consisted of eight questions (CoRe prompts) that designed to elicit and portray teacher's PCK for teaching science. Data were collected from science student teachers' CoRes design for teaching a given topic and student grade. Science student teachers asked to create CoRes design for teaching in topic `Motion in one direction' for 7th grade student and further class discussion. Science student teachers mostly created a same group of science concepts according to subunits of school science textbook rather than planned and arranged content to support students' understanding. Furthermore, they described about the effect of student's prior knowledge and learning difficulties such as students' knowledge of Scalar and Vector quantity; and calculating skill. These responses portrayed science student teacher's knowledge of students' understanding of science and their content knowledge. However, they still have inadequate knowledge of instructional strategies and activities for enhance student learning. In summary, CoRes design can represented holistic overviews of science student teachers' PCK related to the teaching of a particular topic and also support them to gain more understanding about how to teach for understanding. Research implications are given for teacher education and educational research to offer a potential way to enhance science student teachers' PCK for teaching science and support their professional learning.
Reynolds, Julie A; Thaiss, Christopher; Katkin, Wendy; Thompson, Robert J
2012-01-01
Despite substantial evidence that writing can be an effective tool to promote student learning and engagement, writing-to-learn (WTL) practices are still not widely implemented in science, technology, engineering, and mathematics (STEM) disciplines, particularly at research universities. Two major deterrents to progress are the lack of a community of science faculty committed to undertaking and applying the necessary pedagogical research, and the absence of a conceptual framework to systematically guide study designs and integrate findings. To address these issues, we undertook an initiative, supported by the National Science Foundation and sponsored by the Reinvention Center, to build a community of WTL/STEM educators who would undertake a heuristic review of the literature and formulate a conceptual framework. In addition to generating a searchable database of empirically validated and promising WTL practices, our work lays the foundation for multi-university empirical studies of the effectiveness of WTL practices in advancing student learning and engagement.
NASA Astrophysics Data System (ADS)
2002-09-01
11-14 Curriculum: Supporting Physics Teaching (11-14) Europe: Sci-tech couldn't be without it! Art-Science: Makrolab in Mountain Year Digital Curriculum: Should the BBC learn from the past? Scotland: Teachers get Rocket Science Malaysia: Controversy over the language medium for science teaching UK Science: Next stage of Science Year announced Special Educational Needs: Science for special needs students Folk Physics: Good vibrations Environment: IoM3 - a move towards sustainability? UK Primary Science: The threat of afternoon science
Usability Evaluation of the Student Centered e-Learning Environment
ERIC Educational Resources Information Center
Junus, Inas Sofiyah; Santoso, Harry Budi; Isal, R. Yugo K.; Utomo, Andika Yudha
2015-01-01
Student Centered e-Learning Environment (SCeLE) has substantial roles to support learning activities at Faculty of Computer Science, Universitas Indonesia (Fasilkom UI). Although it has been utilized for about 10 years, the usability aspect of SCeLE as an e-Learning system has not been evaluated. Therefore, the usability aspects of SCeLE Fasilkom…
ERIC Educational Resources Information Center
Corbalan, Gemma; Kester, Liesbeth; van Merrienboer, Jeroen J. G.
2008-01-01
Complex skill acquisition by performing authentic learning tasks is constrained by limited working memory capacity [Baddeley, A. D. (1992). Working memory. "Science, 255", 556-559]. To prevent cognitive overload, task difficulty and support of each newly selected learning task can be adapted to the learner's competence level and perceived task…
ERIC Educational Resources Information Center
Engeness, Irina; Edwards, Anne
2017-01-01
The relationship between the different mediational means for supporting students' learning with digital tools in science group work in a Norwegian lower-secondary school is examined. Analyses of teacher-student and student-student interactions are located in cultural-historical theory and draw on Galperin's conceptualisation of learning processes.…
Ask the Cognitive Scientist: Does Tailoring Instruction to "Learning Styles" Help Students Learn?
ERIC Educational Resources Information Center
Willingham, Daniel T.
2018-01-01
In this regular "American Educator" column, findings from the field of cognitive science that are strong and clear enough to merit classroom application are considered. Research over the last 10 years measuring whether participants learn better when new content fits their purported learning style shows little to no support for style…
ERIC Educational Resources Information Center
Leelamma, Sreelekha; Indira, Uma Devi
2017-01-01
This paper introduces the Mobile Assisted Inquiry Learning Environment (MAILE), an Experimental Instructional Strategy (EIS) which employs an inquiry-based learning approach to guide secondary school students to learn environmental science in an engaging way supported by mobile phones. The students are situated in both the real world and the…
NASA Astrophysics Data System (ADS)
de los Santos, Xeng
Designing professional development that effectively supports teachers in learning new and often challenging practices remains a dilemma for teacher educators. Within the context of current reform efforts in science education, such as the Next Generation Science Standards, teacher educators are faced with managing the dilemma of how to support a large number of teachers in learning new practices while also considering factors such as time, cost, and effectiveness. Implementation of educative, reform-aligned curricula is one way to reach many teachers at once. However, one question is whether large-scale curriculum implementation can effectively support teachers in learning and sustaining new teaching practices. To address this dilemma, this study used a comparative, multiple case study design to investigate how secondary science teachers engaged in sensemaking about implementation of an innovative science curriculum across the settings of professional development and classroom enactment. In using the concept of sensemaking from organizational theory, I focused specifically on how teachers' roles in social organizations influenced their decisions to implement the curriculum in particular ways, with differing outcomes for their own learning and students' engagement in three-dimensional learning. My research questions explored: (1) patterns in teachers' occasions of sensemaking, including critical noticing of interactions among themselves, the curriculum, and their students; (2) how teachers' social commitments to different communities influenced their sensemaking; and, (3) how sustained sensemaking over time could facilitate teacher learning of rigorous and responsive science teaching practices. In privileging teachers' experiences in the classroom using the curriculum with their students, I used data generated primarily from teacher interviews with their case study coaches about implementation over the course of one school year. Secondary sources of data included artifacts such as teacher-modified curriculum materials, classroom observation notes, and video-recordings of classroom instruction and professional development sessions. Data analysis involved descriptive coding of the interview transcripts and searching for linguistic markers related to components of an occasions of sensemaking. Findings show that teachers engaged in sensemaking about curriculum implementation in multiple and different ways that were either productive or unproductive for their learning of rigorous and responsive science teaching practices. Teachers that had productive outcomes for teacher learning were engaged in sustained sensemaking that involved critical noticing of interactions between the curriculum, themselves, and their students, with the goal of bridging the gap between what the curriculum offered and what their students could do. In contrast, teachers that had unproductive outcomes for teacher learning were engaged in sensemaking that often involved critical noticing of only one aspect and were motivated by local obligations. Four themes emerged: sustained sensemaking over time, the influence of school communities, teacher learning of content, and the influence of teachers' beliefs. Using these findings and themes, I present a model for teacher sensemaking within the context of long-term professional development around implementation of an innovative curriculum, with a mechanism for how teacher learning could occur over time. Implications for science teacher professional development and learning and directions for future research are offered.
NASA Astrophysics Data System (ADS)
Henriquez, E.; Bering, E. A.; Slagle, E.; Nieser, K.; Carlson, C.; Kapral, A.
2013-12-01
The Curiosity mission has captured the imagination of children, as NASA missions have done for decades. The AIAA and the University of Houston have developed a flexible curriculum program that offers children in-depth science and language arts learning culminating in the design and construction of their own model rover. The program is called the Mars Rover Model Celebration. It focuses on students, teachers and parents in grades 3-8. Students learn to research Mars in order to pick a science question about Mars that is of interest to them. They learn principles of spacecraft design in order to build a model of a Mars rover to carry out their mission on the surface of Mars. The model is a mock-up, constructed at a minimal cost from art supplies. This project may be used either informally as an after school club or youth group activity or formally as part of a class studying general science, earth science, solar system astronomy or robotics, or as a multi-disciplinary unit for a gifted and talented program. The project's unique strength lies in engaging students in the process of spacecraft design and interesting them in aerospace engineering careers. The project is aimed at elementary and secondary education. Not only will these students learn about scientific fields relevant to the mission (space science, physics, geology, robotics, and more), they will gain an appreciation for how this knowledge is used to tackle complex problems. The low cost of the event makes it an ideal enrichment vehicle for low income schools. It provides activities that provide professional development to educators, curricular support resources using NASA Science Mission Directorate (SMD) content, and provides family opportunities for involvement in K-12 student learning. This paper will describe the structure and organization of the 6 week curriculum. A set of 30 new 5E lesson plans have been written to support this project as a classroom activity. The challenge of developing interactive learning activities for planetary science will be explored. These lesson plans incorporate state of the art interactive pedagogy and current NASA Planetary Science materials.
NASA Astrophysics Data System (ADS)
Schielack, J. F.; Herbert, B. E.
2004-12-01
The ITS Center for Teaching and Learning (http://its.tamu.edu) is a five-year NSF-funded collaborative effort to engage scientists, educational researchers, and educators in the use of information technology to enhance science teaching and learning at Grades 7 - 16. The ITS program combines graduate courses in science and science education leadership for both science and education graduate students with professional development experiences for classroom teachers. The design of the ITS professional development experience is based upon the assumption that science and mathematics teaching and learning will be improved when they become more connected to the authentic science research done in field settings or laboratories. The effective use of information technology to support inquiry in science classrooms has been shown to help achieve this objective. In particular, the professional development for teachers centers around support for implementing educational research in their own classrooms on the impacts of using information technology to promote authentic science experiences for their students. As a design study that is "working toward a greater understanding of the "learning ecology," the research related to the creation and refinement of the ITS Center's collaborative environment for integrating professional development for faculty, graduate students, and classroom teachers is contributing information about an important setting not often included in the descriptions of professional development, a setting that incorporates distributed expertise and resulting distributed growth in the various categories of participants: scientists, science graduate students, education researchers, science education graduate students, and master teachers. Design-based research is an emerging paradigm for the study of learning in context through the systematic design and study of instructional strategies and tools. In this presentation, we will discuss the results of the formative evaluation process that has moved the ITS Center's collaborative environment for professional development through the iterative process from Phase I (the planned program designed in-house) to Phase II (the experimental program being tested in-house). Phase II highlighted learning experiences over two summers focused on the exploration of environmentally-related science, technology, engineering or mathematics (STEM) topics through the use of modeling, visualization and complex data sets to explore authentic scientific questions that can be integrated within the 7-16 curriculum.
Supporting Scientific Experimentation and Reasoning in Young Elementary School Students
ERIC Educational Resources Information Center
Varma, Keisha
2014-01-01
Researchers from multiple perspectives have shown that young students can engage in the scientific reasoning involved in science experimentation. However, there is little research on how well these young students learn in inquiry-based learning environments that focus on using scientific experimentation strategies to learn new scientific…
The Practical Enactment of Adventure Learning: Where Will You AL@?
ERIC Educational Resources Information Center
Miller, Brant G.; Hougham, R. Justin; Eitel, Karla Bradley
2013-01-01
The Adventure Learning (AL) approach to designing and implementing learning experiences has great potential for practitioners. This manuscript delineates the practical enactment of AL to support the K-12 community, teacher educators, and residential environmental science program providers in the conceptualization and delivery of their own AL…
Energy. Stop Faking It! Finally Understanding Science So You Can Teach It.
ERIC Educational Resources Information Center
Robertson, William C.
This book explains science concepts in a manner in which non-science teachers and parents can understand and learn science through activities. The concepts covered in this book include energy, simple machines, temperature, and heat transfer. Each chapter is supported with internet resources available at SciLinks and ends with a summary and…
ERIC Educational Resources Information Center
Dorph, R.; Shields, P.; Tiffany-Morales, J.; Hartry, A.; McCaffrey, T.
2011-01-01
This report addresses how well California is doing to prepare its young people for the evolving economy and societal challenges. Specifically, it describes the status of science teaching and learning in California public elementary schools. This study was conducted in support of "Strengthening Science Education in California," a…
ERIC Educational Resources Information Center
Kallery, Maria; Psillos, Dimitris; Tselfes, Vassilis
2009-01-01
This paper presents an epistemological analysis of typical didactical activities noted in early-years science lessons, which was carried out in an attempt to diagnose the extent to which the teaching practices adopted by early-years educators are successful in supporting young children's understanding in science. The analysis of didactical…
Translating Current Science into Materials for High School via a Scientist-Teacher Partnership
NASA Astrophysics Data System (ADS)
Brown, Julie C.; Bokor, Julie R.; Crippen, Kent J.; Koroly, Mary Jo
2014-04-01
Scientist-teacher partnerships are a unique form of professional development that can assist teachers in translating current science into classroom instruction by involving them in meaningful collaborations with university researchers. However, few reported models aim to directly alter science teachers' practices by supporting them in the development of curriculum materials. This article reports on a multiple case study of seven high school science teachers who attended an ongoing scientist-teacher partnership professional development program at a major Southeastern research university. Our interest was to understand the capacity of this professional development program for supporting teachers in the transfer of personal learning experiences with advanced science content and skills into curriculum materials for high school students. Findings indicate that, regardless of their ultimate success constructing curriculum materials, all cases considered the research grounded professional development supports beneficial to their professional growth with the exception of collective participation. Additionally, the cases also described how supports such as professional recognition and transferability served as affordances to the process of constructing these materials. However, teachers identified multiple constraints, including personal learning barriers, their classroom context, and the cost associated with implementing some of their curriculum ideas. Results have direct implications for future research and the purposeful design of professional development experiences through scientist-teacher partnerships.
NASA Astrophysics Data System (ADS)
Goebel, Camille A.
This longitudinal investigation explores the change in four (3 female, 1 male) science undergraduates' beliefs expressed about low-income elementary school students' ability to learn science. The study sought to identify how the undergraduates in year-long public school science-teaching partnerships perceived the social, cultural, and economic factors affecting student learning. Previous service-learning research infrequently focused on science undergraduates relative to science and society or detailed expressions of their beliefs and field practices over the experience. Qualitative methodology was used to guide the implementation and analysis of this study. A sample of an additional 20 science undergraduates likewise involved in intensive reflection in the service learning in science teaching (SLST) course called Elementary Science Education Partners (ESEP) was used to examine the typicality of the case participants. The findings show two major changes in science undergraduates' belief expressions: (1) a reduction in statements of beliefs from a deficit thinking perspective about the elementary school students' ability to learn science, and (2) a shift in the attribution of students, underlying problems in science learning from individual-oriented to systemic-oriented influences. Additional findings reveal that the science undergraduates perceived they had personally and profoundly changed as a result of the SLST experience. Changes include: (1) the gain of a new understanding of others' situations different from their own; (2) the realization of and appreciation for their relative positions of privilege due to their educational background and family support; (3) the gain in ability to communicate, teach, and work with others; (4) the idea that they were more socially and culturally connected to their community outside the university and their college classrooms; and (5) a broadening of the way they understood or thought about science. Women participants stated that the experience validated their science and science-related career choices. Results imply that these changes have the potential to strengthen the undergraduate pursuit of science-related careers and will contribute positive influences to our education system and society at large.
Professional Development for Technology-Enhanced Inquiry Science
ERIC Educational Resources Information Center
Gerard, Libby F.; Varma, Keisha; Corliss, Stephanie B.; Linn, Marcia C.
2011-01-01
The knowledge integration framework is used to analyze studies on professional development in technology-enhanced science involving more than 2,350 teachers and 138,0000 students. The question of how professional development enhances teachers' support for students' inquiry science learning is the focus of the work. A literature search using the…
Talking Science: Developing a Discourse of Inquiry
ERIC Educational Resources Information Center
Hackling, Mark; Smith, Pru; Murcia, Karen
2010-01-01
A key principle of inquiry-based science education is that the process of inquiry must include opportunities for the exploration of questions and ideas, as well as reasoning with ideas and evidence. Teaching and learning Science therefore involves teachers managing a discourse that supports inquiry and students engaging in talk that facilitates…
ERIC Educational Resources Information Center
Bodzin, Alec; Peffer, Tamara; Kulo, Violet
2012-01-01
Teaching and learning about geospatial aspects of energy resource issues requires that science teachers apply effective science pedagogical approaches to implement geospatial technologies into classroom instruction. To address this need, we designed educative curriculum materials as an integral part of a comprehensive middle school energy…
Supporting Newly Hired Science Teachers
ERIC Educational Resources Information Center
Luft, Julie A.; Nixon, Ryan S.; Dubois, Shannon L.; Campbell, Benjamin K.
2014-01-01
New teachers are common in the teaching workforce (Ingersoll and Merrill 2012). All new teachers will learn about the school curriculum and school policies in their first years. New science teachers, however, need to attend to the "Next Generation of Science Standards" (NGSS Lead States 2013) as they build their instruction and knowledge…
Examining Classroom Interactions Related to Difference in Students' Science Achievement.
ERIC Educational Resources Information Center
Zady, Madelon F.; Portes, Pedro R.; Ochs, V. Dan
2003-01-01
Examines the cognitive supports that underlie achievement in science using a cultural historical framework and the activity setting (AS) construct with five features: personnel, motivation, scripts, task demands, and beliefs. Reports four emergent phenomena--science activities, the building of learning, meaning in lessons, and the conflict over…
Designing for Family Science Explorations Anytime, Anywhere
ERIC Educational Resources Information Center
Luce, Megan R.; Goldman, Shelley; Vea, Tanner
2017-01-01
Families play an important role in informal science learning, but they may need supports for engaging in science that is exploratory, inquiry based, and builds on family practices. We designed resources that frame scientific sensemaking as an active and playful process of exploration in which family members are coparticipants. This approach…
Influence of Joyful Learning on Elementary School Students’ Attitudes Toward Science
NASA Astrophysics Data System (ADS)
Anggoro, S.; Sopandi, W.; Sholehuddin, M.
2017-02-01
This study investigated the effects of joyful learning approach on elementary school students’ attitudes toward science. The method used is quasy experiment with the participants were divided into two groups. Thirty three of 4th grade students volunteered as an experimental group, and the other forty two act as a control group. The data was collected by questionnaire that are given before and after the lesson, observation sheet, and interview. The effect of joyful learning on students’ attitude was obtained by determining the n-gain and independent t-test. Observation and interview results were used to triangulate and support the quantitative findings. The data showed that the gain scores of the experimental group students’ attitudes toward science were significantly higher than the gain scores of control group. In addition, the experimental group made significantly greater progress in their cognitive, affective and conative experiences. Interviews and observations indicated that their attitude toward science changed over the intervention. This indicated that joyful learning approach can enhance the elementary school students’ attitudes toward science. According to these findings, it can be concluded that joyful learning approach can be used as an alternative approach to improve student’s attitude toward science.
Evaluation of a High School Fair Program for Promoting Successful Inquiry-based Learning
NASA Astrophysics Data System (ADS)
Betts, Julia Nykeah
The success of inquiry-based learning (IBL) in supporting science literacy can be challenged when students encounter obstacles in the absence of proper support. This research is intended to evaluate the effectiveness of an Oregon public school district's regional science fair coaching program in promoting inquiry skills and positive attitudes toward science in participating high school students. The purpose of this study was to better understand students' perception of program support, obstacles or barriers faced by students, and potential benefits of IBL facilitated by the science fair program. Data included responses to informal and semi-structured interviews, an anonymous survey, a Skills assessment of final project displays, and an in-depth case study on three students' experiences. Results suggest that the science fair program can properly engage participants in authentic IBL. However, when assessing the participant's final project displays, I found that previous fair experience did not significantly increase mean scores as identified by the official Oregon Department of Education (ODE) scoring guides. Based on results from the case study, it is suggested that participants' low science self-concept, poor understanding of inquiry skills, and inability to engage in reflective discourse may reduce students' abilities to truly benefit. Recommendations to address this discrepancy include identifying specific needs of students through a pre--fair survey to develop more targeted support, and providing new opportunities to develop skills associated with science-self concept, understanding of inquiry and reflective discourse. In addition, results suggest that students would benefit from more financial support in the form of grants, and more connections with knowledgeable mentors.
Cool Science: Using Children's Art to Communicate Climate Change (Invited)
NASA Astrophysics Data System (ADS)
Lustick, D. S.; Lohmeier, J.; Chen, R. F.
2013-12-01
Cool Science is a K-12 Climate Change Science Art Competition. Working with teachers, parents, and students, the project aims to identify outstanding works of art by students about climate change and display the art throughout public mass transit. Cool Science has three distinct goals: 1) provide a convenient means for art and science teachers to incorporate climate change into their curriculum, 2) support teacher/student learning about climate change science, and 3) foster informal learning about climate change among people riding mass transit. By efficiently connecting formal and informal learning with one project, Cool Science is an innovative project that expands the way we engage and evaluate students. Using children's artwork to communicate complex scientific issues such as climate change is a powerful learning experience for the artist, teacher, and audience. Last year, Cool Science received nearly 600 entries from students representing 36 teachers from 32 school districts. Six winning entries went on public display with one highlighted each month from January through June. In addition, there were 6 Runner Ups and 12 Honorable Mentions. For the winning students, it is an unforgettable experience to see a nine-foot version of their artwork traveling around the streets on the side of a bus!
NASA Astrophysics Data System (ADS)
Visintainer, Tammie Ann
This research explores trajectories of developing the practices of and identification with science for high school students of color as they participate in summer science research programs. This study examines students' incoming ideas of what science is (i.e. science practices) and who does/can do science and how these ideas shift following program participation. In addition, this study explores the aspects of students' identities that are most salient in the science programs and how these aspects are supported or reimagined based on the program resources made available. This research utilizes four main data sources: 1) pre and post program student surveys, 2) pre and post program focal student interviews, 3) scientist instructor interviews, and 4) program observations. Findings show that students' ideas about what science is (i.e. science practices) and who can do science shifted together through participation in the practices of science. Findings illustrate the emergence of an identity generative process: that engaging in science practices (e.g. collecting data) and the accompanying program resources generated new possibilities for students (e.g. capable science learner). Findings show that the program resources made available for science practices determined how the practices "functioned" for students. Furthermore, findings document links between an instructor's vision, the design of program resources that engage students in science practices, and students' learning and identity construction. For example, a mentor that employed a politically relevant and racially conscious lens made unique resources available that allowed students to identify as capable science learners and agents of change in their community. This research shows that youth of color can imagine and take up new possibilities for who they can be in science when their science and racial identities are supported in science programs. Findings highlight the need to re-center race in research involving science identity construction for youth of color. Findings from this research inform the design of learning environments that create multiple pathways for learning and identity construction in science. Findings can be applied to the creation of opportunities in science programs, classrooms and teacher education that foster successful and meaningful engagement with science practices and empower youth of color as capable learners, doers, and changes agents in science.
Immigration and culture as factors mediating the teaching and learning of urban science
NASA Astrophysics Data System (ADS)
Shady, Ashraf
In this dissertation I explore how cultural and sociohistorical dimensions of stakeholder groups (teachers, students, administrators, and researchers) mediate the interests of urban students in science. This study was conducted during the school year of 2006--2007 in a low-academically performing middle school in New York City. As an Egyptian immigrant science teacher I experienced resistance from my students in an eighth grade inclusion science class that warranted the use of cogenerative dialogue as a tool to improve teaching and learning. In the cogenerative dialogue sessions, participants (e.g., students, teachers, university researchers, and sometimes administrators) make every effort to convene as equals with goals of improving teaching and learning. By seeking the students' perspectives in cogenerative dialogue participants will be able to identify contradictions that can be addressed in an effort to improve the quality of the learning environments. Examples of such contradictions include shut down techniques that teachers use intentionally and unintentionally in order to have control over students. This authentic ethnography focused on two Black students from low-income homes, and me, a middle-aged male of Egypt's middle class. Throughout this study, the students acted in the capacity of student-researchers, assisting me to construct culturally adaptive curriculum materials, and to analyze data sources. This study utilized a sociocultural framework together with microanalysis of videotaped vignettes to obtain evidence that supports patterns of coherence and associated contradictions that emerged during the research. As the teacher-researcher, I learned along with my students how to communicate successfully in the context of structures that often act against success, including social class, ethnicity, gender, and age. The results of this study indicate that as a result of participating in cogenerative dialogues, I as well as the students learned the importance of group membership, and shared responsibilities for learning and acquiring new identities that support teaching and learning, and value diversity. Students reproduced, and transformed cultural practices from other social fields, such as cogenerative dialogues and home, to support their learning. Participating in cogenerative dialogues has produced a higher quality of teacher-student discourse as evidenced in data sources.
ERIC Educational Resources Information Center
Andrade, Jeanette; Huang, Wen-Hao David; Bohn, Dawn M.
2014-01-01
Effective use of multimedia (MM) in instructional design is critical for student learning, especially for large lecture introductory courses. This study used a mixed-method approach to explore the effect of food science supporting course materials that utilized different MM formats, designed with Cognitive Theory of Multimedia Learning (CTML)…
Underserved populations in science education: Enhancement through learning community participation
NASA Astrophysics Data System (ADS)
Gray, Jennifer Emily
A positive relationship between college anatomy students' achievement and academic language proficiency in the context of a learning community was established. For many students the barrier to learning science is language. A relationship exists between low academic language proficiency and lack of success among students, in particular failure among at-risk minority and language-minority students. The sample consisted of Anatomy classes during the Fall semesters of the academic years, 2000, 2001, and 2002 at a community college in Central California having a high percentage of culturally and linguistically diverse students. Students from each semester participated in the academic language proficiency and science achievement studies. Twenty-two of the Fall 2002 students (n = 65) enrolled in the Learning Community (LC) that included instruction in academic language in the context of the anatomy course content. Fall 2002 students (n = 19) also participated in Peer-led Support (PLS) sessions. Fall 2001 students participated in a textbook use study (n = 44) and in a Cooperative-Learning (CL) (n = 35) study. Students in the LC and Non-LC groups took the academic language assessment; their results were correlated with course grades and attendance. Fall 2002 students were compared for: (1) differences regarding self-expectations, (2) program impressions, and (3) demographics. Fall 2001 student reading habits and CL participation were analyzed. Results identified: (1) selected academic language tasks as good predictors of science success, (2) a significant positive relationship between science success and participation in support interventions, (3) no differences in self expectations or demographic characteristics of participants and non-participants in the LC group, and (4) poor textbook reading habits. Results showed a significant positive relationship between academic language proficiency and science achievement in participatory instruction.
Supporting and Resourcing Secondary Science Teachers in Rural and Regional Schools
ERIC Educational Resources Information Center
Kenny, John; Seen, Andrew; Purser, John
2008-01-01
This paper reports on the outcomes of a pilot project to support secondary teachers of science in rural and regional Tasmania. The pilot project involved eight regional schools and was based on the provision of a kit of materials and an associated learning program that used brine shrimp or "sea-monkeys" to test for water quality. The…
Managing clinical education through understanding key principles.
Cunningham, Joanne; Wright, Caroline; Baird, Marilyn
2015-01-01
Traditionally, a practicum facilitated the integration of on-campus learning and practical workplace training. Over the past 3 decades, an educative practicum has evolved that promotes clinical reasoning, including analytical and evaluative abilities, through reflective practice. Anecdotal evidence indicates that the delivery of clinical education within medical radiation science entry-level programs continues to vacillate between traditional practicums and the new reflective practicums. To review the literature about clinical education within the medical radiation sciences and identify key principles for practitioners seeking to reflect upon and improve their approach to teaching and supporting students in the clinical environment. A search of 3 major journal databases, Internet searches, and hand searches of reference lists were conducted to identify literature about clinical education in the medical radiation sciences from January 1, 2000, to December 31, 2012. Twenty-two studies were included in this review. The 5 key elements associated with clinical education include the clinical support model and quality, overcoming the theory-practice gap, learning outcomes and reliable and valid assessment, preparing and supporting students, and accommodating differing teaching and learning needs. Many factors influence the quality of clinical education, including the culture of the clinical environment and clinical leadership roles. Several approaches can help students bridge the theory-practice gap, including simulators, role-playing activities, and reflective journals. In addition, clinical educators should use assessment strategies that objectively measure student progress, and they should be positive role models for their students. The successful clinical education of students in the medical radiation sciences depends upon the systems, structures, and people in the clinical environment. Clinical education is accomplished through the collaborative efforts of the clinical practitioner, the academic, and the student. Universities should include introductory material on clinical learning and teaching in their radiologic science curriculum.
Finding Meaningful Roles for Scientists in science Education Reform
NASA Astrophysics Data System (ADS)
Evans, Brenda
Successful efforts to achieve reform in science education require the active and purposeful engagement of professional scientists. Working as partners with teachers, school administrators, science educators, parents, and other stakeholders, scientists can make important contributions to the improvement of science teaching and learning in pre-college classrooms. The world of a practicing university, corporate, or government scientist may seem far removed from that of students in an elementary classroom. However, the science knowledge and understanding of all future scientists and scientifically literate citizens begin with their introduction to scientific concepts and phenomena in childhood and the early grades. Science education is the responsibility of the entire scientific community and is not solely the responsibility of teachers and other professional educators. Scientists can serve many roles in science education reform including the following: (1) Science Content Resource, (2) Career Role Model, (3) Interpreter of Science (4) Validator for the Importance of Learning Science and Mathematics, (5) Champion of Real World Connections and Value of Science, (6) Experience and Access to Funding Sources, (7) Link for Community and Business Support, (8) Political Supporter. Special programs have been developed to assist scientists and engineers to be effective partners and advocates of science education reform. We will discuss the rationale, organization, and results of some of these partnership development programs.
Virtual working systems to support R&D groups
NASA Astrophysics Data System (ADS)
Dew, Peter M.; Leigh, Christine; Drew, Richard S.; Morris, David; Curson, Jayne
1995-03-01
The paper reports on the progress at Leeds University to build a Virtual Science Park (VSP) to enhance the University's ability to interact with industry, grow its applied research and workplace learning activities. The VSP exploits the advances in real time collaborative computing and networking to provide an environment that meets the objectives of physically based science parks without the need for the organizations to relocate. It provides an integrated set of services (e.g. virtual consultancy, workbased learning) built around a structured person- centered information model. This model supports the integration of tools for: (a) navigating around the information space; (b) browsing information stored within the VSP database; (c) communicating through a variety of Person-to-Person collaborative tools; and (d) the ability to the information stored in the VSP including the relationships to other information that support the underlying model. The paper gives an overview of a generic virtual working system based on X.500 directory services and the World-Wide Web that can be used to support the Virtual Science Park. Finally the paper discusses some of the research issues that need to be addressed to fully realize a Virtual Science Park.
Development and implications of technology in reform-based physics laboratories
NASA Astrophysics Data System (ADS)
Chen, Sufen; Lo, Hao-Chang; Lin, Jing-Wen; Liang, Jyh-Chong; Chang, Hsin-Yi; Hwang, Fu-Kwun; Chiou, Guo-Li; Wu, Ying-Tien; Lee, Silvia Wen-Yu; Wu, Hsin-Kai; Wang, Chia-Yu; Tsai, Chin-Chung
2012-12-01
Technology has been widely involved in science research. Researchers are now applying it to science education in an attempt to bring students’ science activities closer to authentic science activities. The present study synthesizes the research to discuss the development of technology-enhanced laboratories and how technology may contribute to fulfilling the instructional objectives of laboratories in physics. To be more specific, this paper discusses the engagement of technology to innovate physics laboratories and the potential of technology to promote inquiry, instructor and peer interaction, and learning outcomes. We then construct a framework for teachers, scientists, and programmers to guide and evaluate technology-integrated laboratories. The framework includes inquiry learning and openness supported by technology, ways of conducting laboratories, and the diverse learning objectives on which a technology-integrated laboratory may be focused.
A Progressive Reading, Writing, and Artistic Module to Support Scientific Literacy†
Stockwell, Stephanie B.
2016-01-01
Scientific literacy, marked by the ability and willingness to engage with scientific information, is supported through a new genre of citizen science—course-based research in association with undergraduate laboratories. A three-phased progressive learning module was developed to enhance student engagement in such contexts while supporting three learning outcomes: I) present an argument based on evidence, II) analyze science and scientists within a social context, and III) experience, reflect upon, and communicate the nature of scientific discovery. Phase I entails guided reading and reflection of citizen science–themed texts. In Phase II, students write, peer-review, and edit position and counterpoint papers inspired by the following prompt, “Nonscientists should do scientific research.” Phase III involves two creative assignments intended to communicate the true nature of science. Students work collaboratively to develop public service announcement–like poster campaigns to debunk a common misconception about the nature of science or scientists. Individually, they create a work of art to communicate a specific message about the raw experience of performing scientific research. Suggestions for implementation and modifications are provided. Strengths of the module include the development of transferable skills, temporal distribution of grading demands, minimal in-class time needed for implementation, and the inclusion of artistic projects to support affective learning domains. This citizen science–themed learning module is an excellent complement to laboratory coursework, as it serves to surprise, challenge, and inspire students while promoting disciplinary values. PMID:27047600
NASA Astrophysics Data System (ADS)
Ellenbogen, Kirsten M.
What we know about learning in museums tends to come from studies of single museum visits evaluating success according to the museum's agenda, neglecting the impressive cooperative learning strategies and resources that families bring to their museum experiences. This is a report of an ethnographic case study of four families that visit science museums frequently. The study used ethnographic research and discourse analysis as combined methodological approaches, and was grounded in a sociocultural perspective that frames science as a socially and culturally constituted activity. Over eighteen months, data were collected during observations of the families in science museums, at home, and at other leisure sites. The study generated two types of findings. First, macroanalysis based on established frameworks for understanding learning in museums revealed differences in the orientation and extent of the museum visits. Additionally, a hierarchical framework for measuring science learning in museums proved insensitive. These findings underscore limitations of some of the traditional frameworks for understanding family learning in science museums. Second, microanalysis of interactions around science objects at home and in museums revealed that parents provided children with opportunities to understand the "middle ground" of science. Analysis also revealed that families adapted the science content of the museum to renegotiate family identities. Interestingly, the types of discourse most valued in science education were least important for establishing family identity. These frequent museumgoers eliminated the distance between them and science objects by transforming their meanings to establish family identity. This study demonstrates that the families' mediating strategies shape not just an understanding of science, but also a family identity that is constructed in and through interactions with science. The results of this study provide a foundation for examining how families use museums over time and the network of learning resources that support family life. This study suggests possible ways for museum professionals to reconsider the design of learning activities, museum environments, and a shift in focus from the learning institution of the science museum to the learning institution of the family.
Knowing and learning about science in a preservice setting: A narrative study
NASA Astrophysics Data System (ADS)
Mulholland, Judith; Wallace, John
1994-12-01
This study employs narrative methods to give a holistic view of the experiences of five mature age preservice teachers in a semester unit of science education. The unit was designed to help teachers examine and make explicit their ideas about science and science teaching and consider ways in which they might put those ideas into practice. The pivotal theme, around which the teachers' experiences could be organised, was found to be learning science. The preservice teachers expressed a need for a supportive learning environment in which concepts were built gradually and introduced using concrete examples. Previous science experience was found to be a major influence on the attitudes the participants brought to the present course. A lack of previous experience or negative past experiences were a major cause of anxiety. Gender was also important as it had limited the science experiences available to some participants in the past and continued to influence the way they participated in classes during the semester.
CosmoQuest: Training Students, Teachers and the Public to do NASA Science
NASA Astrophysics Data System (ADS)
Buxner, S.; Bracey, G.; Noel-Storr, J.; Murph, S.; Francis, M. R.; Strishock, L.; Cobb, W. H.; Lebofsky, L. A.; Jones, A. P.; Finkelstein, K.; Gay, P.
2016-12-01
Engaging individuals in science who have not been formally trained as research scientists can both capture a wider audiences in the process of science as well as crowdsource data analysis that gets more science done. CosmoQuest is a virtual research facility that leverages these benefits through citizen science projects that has community members to analyze NASA data that contributes to publishable science results. This is accomplished through an inviting experience that recruits members of the public (including students), meets their needs and motivations, and provides them the education they want so they can to be contributing members of the community. Each research project in CosmoQuest presents new training opportunities that are designed to meet the personal needs of the engaged individuals, while also leading to the production of high-quality data that meets the needs of the research teams. These educational opportunities extend into classrooms, where both teachers and students engage in analysis. Training for teachers is done through in-person and online professional development, and through conference workshops for both scientists and educators. Curricular products are available to support students' understanding of citizen science and how to engage in CosmoQuest projects. Professional development for all audiences is done through online tutorials and courses, with social media support. Our goal is to instill expertise in individuals not formally trained as research scientists. This allows them to work with and provide genuine scientific support to practicing experts in a community that benefits all stakeholders. Training focuses on increasing and supporting individuals' core content knowledge as well as building the specific skills necessary to engage in each project. These skills and knowledge are aligned with the 3-dimensional learning of the Next Generation Science Standards, and support lifelong learning opportunities for those in and out of school.
Teaching the science of learning.
Weinstein, Yana; Madan, Christopher R; Sumeracki, Megan A
2018-01-01
The science of learning has made a considerable contribution to our understanding of effective teaching and learning strategies. However, few instructors outside of the field are privy to this research. In this tutorial review, we focus on six specific cognitive strategies that have received robust support from decades of research: spaced practice, interleaving, retrieval practice, elaboration, concrete examples, and dual coding. We describe the basic research behind each strategy and relevant applied research, present examples of existing and suggested implementation, and make recommendations for further research that would broaden the reach of these strategies.
Evolving Roles For Teaching Assistants In Introductory Courses
NASA Astrophysics Data System (ADS)
Dunbar, R. W.; Egger, A. E.; Schwartz, J. K.
2008-12-01
As we bring new research-based learning approaches, curricular innovations, and student engagement practices into the introductory science classroom, expectations of teaching assistants (TAs) should have, and have, changed. Similarly, the 21st century teaching assistant has different expectations of us. Maintaining relevance in this context means bringing TAs into an integrated teaching team that supports effective learning for students and provides structured professional development opportunities for TAs. A number of support efforts on our campus, with counterparts at many other universities, seek to optimize the instructional impact of faculty and teaching assistants, thus opening the door to enhanced student engagement (e.g. the quality of effort students put forth, their persistence in science and/or engineering courses, and their perception of scientific relevance in everyday life). Among these efforts, School of Earth Sciences course development TAs work 1:1 in advance of the term with introductory course faculty to design exercises and course materials that meet clearly articulated student learning goals or pedagogical challenges. Throughout the process, TAs are mentored by the faculty as well as science pedagogy experts. Initially funded by a major teaching award, the School is now moving to institutionalize this successful program which has broadened the definition of the TA role. Another area of optimization, reflecting Shulman's concept of pedagogical content knowledge, is our campus mandate that TA development take place within a departmental, as well as general, context. Both Chemistry and Physics expect introductory course TAs to lead interactive, guided-inquiry or tutorial-style sections. Integrating these sections with lecture and positively reinforcing course goals requires TA buy-in and a set of pedagogical facilitation skills cultivated through course-specific training and active mentoring while teaching. To better support the mentoring process in these and other departments, the MinT (Mentors in Teaching) program provides resources and a learning community for advanced graduate students who mentor TAs. There is clearly more to do, but we have come a long way from sink or swim toward an enriched infrastructure of support for teaching and learning in the introductory science classroom.
ERIC Educational Resources Information Center
Gradias, Jean
2017-01-01
In 2013, California became one of the first states to adopt the rigorous Next Generation Science Standards (NGSS). However, the current state of science instruction does not support the conceptual shifts of the NGSS, which call for consistent science instruction K-12, increased inquiry, subject integration, as well as science instruction that…
ERIC Educational Resources Information Center
Gillies, Robyn M.; Nichols, Kim
2015-01-01
Many primary teachers face challenges in teaching inquiry science, often because they believe that they do not have the content knowledge or pedagogical skills to do so. This is a concern given the emphasis attached to teaching science through inquiry where students do not simply learn about science but also do science. This study reports on the…
Writing in elementary school science: Factors that influence teacher beliefs and practices
NASA Astrophysics Data System (ADS)
Glen, Nicole J.
Recent calls for scientifically literate citizens have prompted science educators to examine the roles that literacy holds in students' science learning processes. Although many studies have investigated the cognitive gains students acquire when they write in science, these writing-to-learn studies have typically been conducted with only middle and secondary school students. Few studies have explored how teachers, particularly elementary teachers, understand the use of writing in science and the factors that influence their science and writing lessons. This was a qualitative case study conducted in one suburban school with four elementary teachers. The purpose of this study was to understand: (a) how teachers' uses of and purposes for writing in science compared to that in English language arts; (b) the factors that drove teachers' pedagogical decisions to use writing in certain ways; (c) teachers' beliefs about science teaching and learning and its relation to how they used writing; (d) teachers' perceptions of students' writing abilities and its relation to how they used writing; and (e) teachers' views about how writing is used by scientists. Seven main findings resulted from this research. In summary, teachers' main uses of and purposes for writing were similar in science and English language arts. For much of the writing done in both subjects, teachers' expectations of students' writing were typically based on their general literacy writing skills. The teachers believed that scientific writing is factual, for the purpose of communicating about science, and is not as creative or "fun" as other types of writing. The teachers' pedagogical practices in science included teaching by experiences, reading, and the transmission of information. These practices were related to their understanding of scientific writing. Finally, additional factors drove the decisions teachers made regarding the use of writing in science, including time, knowledge of curriculum requirements, science and writing content knowledge, and classroom management. The findings indicated that the teachers were using writing in some of the ways supported by science and literacy education, but there were many areas of writing in science in which teachers could use support and education. This included more knowledge of authentic uses of writing in the science discipline, general writing-to-learn strategies, and assessment of student ideas and information in writing and not only writing skills. The teachers also needed support in better understanding the nature of science and scientific inquiry, and in how to negotiate the social and cultural factors that influence their pedagogical decisions in order to use writing in more authentic ways. This study suggests that teacher educators and administrators must learn more about how teachers understand their role as elementary teachers, as teachers of writing and science, and the environments within which they work in order to help them move toward authentic literacy and science writing practices.
NASA Astrophysics Data System (ADS)
Donnelly, Suzanne M.
This study features a comparative descriptive analysis of the physics content and representations surrounding the first law of thermodynamics as presented in four widely used introductory college physics textbooks representing each of four physics textbook categories (calculus-based, algebra/trigonometry-based, conceptual, and technical/applied). Introducing and employing a newly developed theoretical framework, multimodal generative learning theory (MGLT), an analysis of the multimodal characteristics of textbook and multimedia representations of physics principles was conducted. The modal affordances of textbook representations were identified, characterized, and compared across the four physics textbook categories in the context of their support of problem-solving. Keywords: college science, science textbooks, multimodal learning theory, thermodynamics, representations
NASA Astrophysics Data System (ADS)
Richmond, Gail; Parker, Joyce M.; Kaldaras, Leonora
2016-08-01
The Next-Generation Science Standards (NGSS) call for a different approach to learning science. They promote three-dimensional (3D) learning that blends disciplinary core ideas, crosscutting concepts and scientific practices. In this study, we examined explanations constructed by secondary science teacher candidates (TCs) as a scientific practice outlined in the NGSS necessary for supporting students' learning of science in this 3D way. We examined TCs' ability to give explanations that include explicit statements of underlying reasons for natural phenomena, as opposed to simply describing patterns or laws. In their methods courses, TCs were taught to organize explanations into a what/how/why framework, where what refers to what happens in specific cases (data or observations); how refers to how things usually happen and is equivalent to patterns or laws; and why refers to causal explanations or models. We examined TCs' ability to do this spontaneously and in a resource-rich environment as a first step in gauging their preparedness for NGSS-aligned teaching. We found that (1) the ability of TCs to articulate complete and accurate causal scientific explanations for phenomena exists along a continuum; (2) TCs in our sample whose explanations fell on the upper end of this continuum were more likely to provide complete and accurate explanations even in the absence of support from explicit standards; and (3) teacher candidate's ability to construct complete and accurate explanations did not correlate with cross-course performance or academic major. The implications of these findings for the preparation of teachers for NGSS-based science instruction are discussed.
NASA Astrophysics Data System (ADS)
Rognier, E.
2002-12-01
The WestEd Eisenhower Regional Consortium (WERC) is in its third year of offering two Earth Systems Science On-line Graduate courses from IGES - one for High School teachers, and one for Middle School teachers. These high-quality courses support WERC's commitment to "supporting increased scientific and mathematical literacy among our nation's youth through services and other support aimed at enhancing the efforts of those who provide K-12 science and mathematics education." These courses also support our NSTA-sponsored "Building a Presence for Science" program in California, providing professional development opportunities to help achieve our vision of increased quantity and quality of science education statewide. Our students have included classroom teachers from upper elementary through high school, community college science teachers, and environmental science center staff who provide inservice for teachers. Educators from Hawaii to New Jersey have provided diverse personal experiences of Earth Systems Science events, and add richness to the online discussions. Students have consistently embraced the concept of a systems-based approach to science instruction, commenting on how these courses have forever changed their teaching practices and provided a successful means for engaging and involving their students in scientific inquiry. Through offering these online courses, we have learned valuable lessons about recruitment, retention, team-building, and facilitating discussions for classes with no "face to face" component. This format is both rich and challenging, with teammates from diverse geographic regions and timezones, with a variety of connectivity and accessibility issues. In this third year of offering the courses, we are pleased to have students taking their second course with us, wanting to continue learning content and stragtegies to improve their skills as science teachers.
Collaborative learning in radiologic science education.
Yates, Jennifer L
2006-01-01
Radiologic science is a complex health profession, requiring the competent use of technology as well as the ability to function as part of a team, think critically, exercise independent judgment, solve problems creatively and communicate effectively. This article presents a review of literature in support of the relevance of collaborative learning to radiologic science education. In addition, strategies for effective design, facilitation and authentic assessment of activities are provided for educators wishing to incorporate collaborative techniques into their program curriculum. The connection between the benefits of collaborative learning and necessary workplace skills, particularly in the areas of critical thinking, creative problem solving and communication skills, suggests that collaborative learning techniques may be particularly useful in the education of future radiologic technologists. This article summarizes research identifying the benefits of collaborative learning for adult education and identifying the link between these benefits and the necessary characteristics of medical imaging technologists.
Inclusive science education: learning from Wizard
NASA Astrophysics Data System (ADS)
Koomen, Michele Hollingsworth
2016-06-01
This case study reports on a student with special education needs in an inclusive seventh grade life science classroom using a framework of disability studies in education. Classroom data collected over 13 weeks consisted of qualitative (student and classroom observations, interviews, student work samples and video-taped classroom teaching and learning record using CETP-COP) methods. Three key findings emerged in the analysis and synthesis of the data: (1) The learning experiences in science for Wizard are marked by a dichotomy straddled between autonomy ["Sometimes I do" (get it)] and dependence ["Sometimes I don't (get it)], (2) the process of learning is fragmented for Wizard because it is underscored by an emerging disciplinary literacy, (3) the nature of the inclusion is fragile and functional. Implications for classroom practices that support students with learning disabilities include focusing on student strengths, intentional use of disciplinary literacy strategies, and opportunities for eliciting student voice in decision making.
Enhancing learning using questions, adjunct to science charts
NASA Astrophysics Data System (ADS)
Holliday, William G.; Benson, Garth
This study supported two hypotheses. First, adjunct questions interacted with a science chart so powerfully that content established as difficult to learn in the pilot and in this study's control groups became easier to learn when charted. Second, students familiar with the chart test before instruction (test exposure) were better prepared to take this test after instruction. This adjunct-question study examined the generalizability of selective-attention and academic-studying hypotheses to a modified science chart medium. About 300 high school students were randomly assigned to four conditions each including a vitamin chart (chart only, test exposure, importance of questions emphasized to students by teachers, and combinational conditions - test exposure and question importance) across 16 biology classrooms. Then these same students were again randomly assigned within each classroom to a control and to four question treatments no questions, questions focusing on easy-to-learn charted content, questions focusing on difficult-to-learn charted content, and a combinational treatment.
Enhancing learning using questions adjunct to science charts
NASA Astrophysics Data System (ADS)
Holliday, William G.; Benson, Garth
This study supported two hypotheses. First, adjunct questions interacted with a science chart so powerfully that content established as difficult to learn in the pilot and in this study's control groups became easier to learn when charted. Second, students familiar with the chart test before instruction (test exposure) were better prepared to take this test after instruction. This adjunct-question study examined the generalizability of selective-attention and academic-studying hypotheses to a modified science chart medium. About 300 high school students were randomly assigned to four conditions each including a vitamin chart (chart only, test exposure, importance of questions emphasized to students by teachers, and combinational conditions--test exposure and question importance) across 16 biology classrooms. Then these same students were again randomly assigned within each classroom to a control and to four question treatments (no questions, questions focusing on easy-to-learn charted content, questions focusing on difficult-to-learn charted content, and a combinational treatment).
Identity and science learning in African American students in informal science education contexts
NASA Astrophysics Data System (ADS)
James, Sylvia M.
2007-12-01
Science education researchers are recognizing the need to consider identity and other sociocultural factors when examining causes of the science achievement gap for African American students. Non-school settings may hold greater promise than formal schooling to promote identities that are conductive to science learning in African Americans. This mixed-methods study explored the relationship between participation in out-of-school-time (OST) science enrichment programs and African American middle and high school students' racial and ethnic identity (RED, social identity as science learners, and achievement. Pre-post questionnaires used a previously validated model of REI combined with an original subscale that was developed to measure social identity as science learners. Case studies of two programs allowed for an analysis of the informal learning setting. The treatment group (N = 36) consisted of African American middle and high school students in five OST science programs, while the control group (N = 54) students were enrolled in science classes in public schools in the mid-Atlantic region. Results of a t-test of independent means indicated that there was no significant difference between the treatment and control group on measures of REI or science identity. However, the treatment group earned significantly higher science grades compared to the control group, and an ANOVA revealed a significant relationship between science identity and the intention to pursue post-secondary science studies. Although not significant, MANOVA results indicated that students who participated in OST programs exhibited gradual increases in RD and science identity over time according to grade level and gender. Follow-up analysis revealed significant relationships between awareness of racism, gender, and length of time in OST programs. The case studies illustrated that a unique community of practice exists within the OST programs. Access to authentic science learning experiences, youth development, social interactions, and relationships with staff emerged as key elements of successful science enrichment programs, Collectively, the results suggest that informal learning settings are supportive environments for science learning. Further study is needed to examine the pattern of increasing REI and science identity over time, the impact of youth development and agency, and potential implications for science in school and informal learning contexts.
Supporting Teachers Learning Through the Collaborative Design of Technology-Enhanced Science Lessons
NASA Astrophysics Data System (ADS)
Kafyulilo, Ayoub C.; Fisser, Petra; Voogt, Joke
2015-12-01
This study used the Interconnected Model of Professional Growth (Clarke & Hollingsworth in Teaching and Teacher Education, 18, 947-967, 2002) to unravel how science teachers' technology integration knowledge and skills developed in a professional development arrangement. The professional development arrangement used Technological Pedagogical Content Knowledge as a conceptual framework and included collaborative design of technology-enhanced science lessons, implementation of the lessons and reflection on outcomes. Support to facilitate the process was offered in the form of collaboration guidelines, online learning materials, exemplary lessons and the availability of an expert. Twenty teachers participated in the intervention. Pre- and post-intervention results showed improvements in teachers' perceived and demonstrated knowledge and skills in integrating technology in science teaching. Collaboration guidelines helped the teams to understand the design process, while exemplary materials provided a picture of the product they had to design. The availability of relevant online materials simplified the design process. The expert was important in providing technological and pedagogical support during design and implementation, and reflected with teachers on how to cope with problems met during implementation.
NASA's Kepler Mission: Lessons Learned from Teacher Professional Development Workshops
NASA Astrophysics Data System (ADS)
Devore, E.; Harman, P.; Koch, D.; Gould, A.
2010-08-01
NASA's Kepler Mission conducts teacher professional development workshops on the search for exoplanets in the habitable zone of Sun-like stars. Each is supported by a Kepler team scientist, two Education and Public Outreach staff and local hosts. Activities combine a science content lecture and discussion, making models, kinesthetic activities, and interpretation of transit data. The emphasis is on inquiry-based instruction and supports science education standards in grades 7-12. Participants' kit includes an orrery, optical sensor and software to demonstrate transit detection. The workshop plan, teaching strategies, and lessons learned from evaluation will be discussed. Future events are planned. The Kepler Mission teacher professional development workshops are designed using the best practices and principals from the National Science Education Standards and similar documents. Sharing the outcome of our plans, strategies and formative evaluation results can be of use to other Education and Public Outreach practitioners who plan similar events. In sharing our experiences, we hope to assist others, and to learn from them as well. Supported by NASA Grants to the E. DeVore, SETI Institute NAG2-6066 Kepler Education and Public Outreach and NNX08BA74G, IYA Kepler Mission Pre-launch Workshops.
The implementation of equitable teaching strategies by high school biology student teachers
NASA Astrophysics Data System (ADS)
Scantlebury, Kate; Butler Kahle, Jane
Teachers can perpetuate stereotypic cultural beliefs regarding girls' ability in, aptitude for, and suitability for science by their teaching practices and behaviors. As teachers have a major influence on girls' career choices their equitable teaching practices in the classroom are important to encourage all students, but especially girls, to continue with science. Researchers have studied science classrooms and have defined common strategies and practices that can help create an equitable classroom environment. The purpose of this study was to determine if high school biology student teachers could transfer learned equitable teaching strategies to actual teaching and the support conditions necessary for that transfer. Two support conditions were assessed: cooperating teacher and peer group support. Seven preservice teachers were placed into three groups. One group had both support conditions, the second group had only one condition (peer support), and the third group did not have either support condition. Both qualitative and quantitative data sources were collected. Results showed that preservice teachers could transfer learned equitable teaching into actual teaching practice. However, they were more successful in achieving the transfer if they were supervised by cooperating teachers who are sensitized to the issue of gender equity in education. Being involved in a peer support group was not as crucial to using the strategies as having a supportive cooperative teacher.
An Empirical and Methodological Analysis of the Role of Embodied Resources in Supporting Learning
ERIC Educational Resources Information Center
Saleh, Asmalina
2017-01-01
This dissertation presents three papers centered on understanding how we might learn using the body to learn. The data for these papers is drawn from classroom data where 2nd graders (N = 17) learn about particle behavior by engaging with the Science Through Technologically Enhanced Play (STEP) simulation. The first paper focuses on how two…
ERIC Educational Resources Information Center
Seddon, Jennifer M.; McDonald, Brenda; Schmidt, Adele L.
2012-01-01
Problem and/or scenario-based learning is often deployed in preclinical education and training as a means of: (a) developing students' capacity to respond to authentic, real-world problems; (b) facilitating integration of knowledge across subject areas, and; (c) increasing motivation for learning. Six information and communication technology (ICT)…
Supporting pre-service science teachers in developing culturally relevant pedagogy
NASA Astrophysics Data System (ADS)
Krajeski, Stephen
This study employed a case study methodology to investigate a near-authentic intervention program designed to support the development of culturally relevant pedagogy and its impact on pre-service science teachers' notions of culturally relevant pedagogy. The unit of analysis for this study was the discourse of pre-service science teachers enrolled in a second semester science methods course, which was the site of the intervention program. Data for this study was collected from videos of classroom observations, audio recordings of personal interviews, and artifacts created by the pre-service science teachers during the class. To determine how effective science teacher certification programs are at supporting the development of culturally relevant pedagogy without an immersion aspect, two research questions were investigated: 1) How do pre-service science teachers view and design pedagogy while participating in an intervention designed to support the development of culturally relevant pedagogy? 2) How do pre-service science teachers view the importance of culturally relevant pedagogy for supporting student learning? How do their practices in the field change these initial views?
NASA Astrophysics Data System (ADS)
Selvans, M. M.; Spafford, C. D.
2016-12-01
Many Earth Science phenomena cannot be observed directly because they happen slowly (e.g., Plate Motion) or at large spatial scales (e.g., Weather Patterns). Such topics are investigated by scientists through analysis of large data sets, numerical modeling, and laboratory studies that isolate aspects of the overall phenomena. Middle school students have limited time and lab equipment in comparison, but can employ authentic science practices through investigations using interactive digital simulations (sims). Designing a sim aligned to the Next Generation Science Standards (NGSS) allows students to explore and connect to science ideas in a seamless and supportive way that also deepens their understanding of the phenomena. We helped develop seven units, including the two above, that cover the middle school Earth Science Disciplinary Core Ideas and give students exposure to the other two dimensions of the NGSS (science practices and cross-cutting concepts). These units are developed by the Learning Design Group and Amplify Science. Sims are key to how students engage in 3D learning in these units. For example, in the Rock Transformations Sim students can investigate the ideas that energy from the sun and from Earth's interior can transform rock, and that the transformation processes change the Earth's surface at varying time and spatial scales (ESS2.A). Students can choose and selectively apply transformation processes (melting, weathering, etc.) or energy sources to rock in a cross-section landscape to explore their effects. Students are able to plan steps for making a particular rock transformation happen and carry out their own investigations. A benefit of using a digital platform for student learning is the ability to embed formative assessment. When students plan and carry out missions to achieve specific objectives, the digital platform can capture a record of their actions to measure how they apply science ideas from instruction. Data of these actions, combined with data from other embedded assessments and the teacher's own observations, can be used to provide feedback to teachers about support that can benefit specific students. We will highlight the features of sims in our units that allow middle school students to investigate natural phenomena and support teachers in facilitating 3D learning.
NASA Astrophysics Data System (ADS)
Baker, D.
2006-12-01
As part of the NASA-supported undergraduate Earth System Science Education (ESSE) program, fifty-seven institutions have developed and implemented a wide range of Earth system science (ESS) courses, pedagogies, and evaluation tools. The Teaching, Learning, and Evaluation section of USRA's online ESSE Design Guide showcases these ESS learning environments. This Design Guide section also provides resources for faculty who wish to develop ESS courses. It addresses important course design issues including prior student knowledge and interests, student learning objectives, learning resources, pedagogical approaches, and assessments tied to student learning objectives. The ESSE Design Guide provides links to over 130 ESS course syllabi at introductory, senior, and graduate levels. ESS courses over the past 15 years exhibit common student learning objectives and unique pedagogical approaches. From analysis of ESS course syllabi, seven common student learning objectives emerged: 1) demonstrate systems thinking, 2) develop an ESS knowledge base, 3) apply ESS to the human dimension, 4) expand and apply analytical skills, 5) improve critical thinking skills, 6) build professional/career skills, and 7) acquire an enjoyment and appreciation for science. To meet these objectives, ESSE often requires different ways of teaching than in traditional scientific disciplines. This presentation will highlight some especially successful pedagogical approaches for creating positive and engaging ESS learning environments.
Improving Adolescent Learning: An Action Agenda. A TASC Report
ERIC Educational Resources Information Center
Duffrin, Elizabeth
2014-01-01
At a recent national forum at the Ford Foundation in New York, 140 education and youth development professionals discussed how to better support adolescent learning. Drawing on the discussion and the latest research in neuroscience, psychology and cognitive learning science, TASC presents an action agenda that can be tailored to circumstances in…
ERIC Educational Resources Information Center
Duis, Jennifer M.; Schafer, Laurel L.; Nussbaum, Sophia; Stewart, Jaclyn J.
2013-01-01
Learning goal (LG) identification can greatly inform curriculum, teaching, and evaluation practices. The complex laboratory course setting, however, presents unique obstacles in developing appropriate LGs. For example, in addition to the large quantity and variety of content supported in the general chemistry laboratory program, the interests of…
Inquiry-Based Science Education: Scaffolding Pupils' Self-Directed Learning in Open Inquiry
ERIC Educational Resources Information Center
van Uum, Martina S. J.; Verhoeff, Roald P.; Peeters, Marieke
2017-01-01
This paper describes a multiple case study on open inquiry-based learning in primary schools. During open inquiry, teachers often experience difficulties in balancing support and transferring responsibility to pupils' own learning. To facilitate teachers in guiding open inquiry, we developed hard and soft scaffolds. The hard scaffolds consisted of…
Assessment Portfolios as Opportunities for Teacher Learning. CRESST Report 736
ERIC Educational Resources Information Center
Gearhart, Maryl; Osmundson, Ellen
2008-01-01
This report is an analysis of the role of assessment portfolios in teacher learning. Over 18 months, 19 experienced science teachers worked in grade-level teams to design, implement, and evaluate assessments to track student learning throughout a curriculum unit, supported by semi-structured tasks and resources in assessment portfolios.…
ERIC Educational Resources Information Center
Hwang, Gwo-Jen; Wu, Po-Han; Ke, Hui-Ru
2011-01-01
Mobile and wireless communication technologies not only enable anytime and anywhere learning, but also provide the opportunity to develop learning environments that combine real-world and digital-world resources. Nevertheless, researchers have indicated that, without effective tools for helping students organize their observations in the field,…
ERIC Educational Resources Information Center
Tucker-Raymond, Eli; Gravel, Brian E.; Wagh, Aditi; Wilson, Naeem; Manderino, Michael; Castek, Jill
2016-01-01
Digital literacies for disciplinary learning explores intersections of digital and disciplinary literacies across learning contexts such as community makerspaces and schools and examines learning across disciplines including the arts, engineering, science, social studies, language arts, and math. Columns will address work with both youth and…
Toward Epistemologically Authentic Engineering Design Activities in the Science Classroom
ERIC Educational Resources Information Center
Leonard, Mary J.
2004-01-01
In recent years educators and educational researchers in the U.S. have begun to introduce engineering design activities in secondary science classrooms for the purpose of scaffolding science learning as well as supporting such general problem-solving skills as decision making and working in teams. However, such curricula risk perpetuating a…
Levinas and an Ethics for Science Education
ERIC Educational Resources Information Center
Blades, David W.
2006-01-01
Despite claims that STS(E) science education promotes ethical responsibility, this approach is not supported by a clear philosophy of ethics. This paper argues that the work of Emmanuel Levinas provides an ethics suitable for an STS(E) science education. His concept of the face of the Other redefines education as learning from the other, rather…
Inquiry into the Heart of a Comet
ERIC Educational Resources Information Center
Cobb, Whitney; Roundtree-Brown, Maura; McFadden, Lucy; Warner, Elizabeth
2011-01-01
Real science means wrangling with peers over real ideas. Wouldn't it be thrilling to emulate a real life model of science in action in classrooms? How? By starting with a great, hands-on activity modeling an object in space that introduces both key vocabulary and science concepts with visuals to support retention and learning; encouraging…
ERIC Educational Resources Information Center
Shim, George Tan Geok; Shakawi, Abang Mohammad Hudzaifah Abang; Azizan, Farah Liyana
2017-01-01
Educators have always highlighted the importance of mathematics mastery in education for many years. With the current emphasis of Science, Technology, Engineering and Mathematics (STEMs) education, mathematics mastery is even more vital because it supports the learning and mastery of science fields such as engineering and science. Furthermore, in…
Tapping into the Resources on Our Doorstep
ERIC Educational Resources Information Center
Shaikh, Maha
2014-01-01
With the introduction of the new science curriculum in September 2014 in England, there is an even greater need to teach science that is real and relevant to the children. Bringing in support from external sources can give children hands-on science experiences with meaningful outcomes that will improve and enhance their learning. A wide-reaching…
ERIC Educational Resources Information Center
Gormally, Cara
2017-01-01
For science learning to be successful, students must develop attitudes toward support future engagement with challenging social issues related to science. This is especially important for increasing participation of students from underrepresented populations. This study investigated how participation in inquiry-based biology laboratory classes…
Teaching Physical Science through Children's Literature. 20 Complete Lessons for Elementary Grades.
ERIC Educational Resources Information Center
Gertz, Susan E.; Portman, Dwight J.; Sarquis, Mickey
This guide focuses on teaching hands-on, discovery-oriented physical science in the elementary classroom using children's literature. Each lesson is an integrated learning episode with a clearly defined science content objective which is supported and enriched through literature, writing, and mathematics. The three sections are: (1) "Properties of…
Introducing the TAPS Pyramid Model
ERIC Educational Resources Information Center
Earle, Sarah
2015-01-01
The Teacher Assessment in Primary Science (TAPS) project is a three-year project based at Bath Spa University and funded by the Primary Science Teaching Trust (PSTT). It aims to develop support for a valid, reliable and manageable system of science assessment that will have a positive impact on children's learning. In this article, the author…
ERIC Educational Resources Information Center
Evans, Brian R.
2014-01-01
Mathematics and science education has increasingly become more important for students in our globally competitive society. New alternative certification teachers, particularly in mathematics and science, need to support student learning in these areas in order for the United States to stay globally competitive. This article presents some ideas…
Inquiry-Based Learning: A Framework for Assessing Science in the Early Years
ERIC Educational Resources Information Center
Marian, Hazel; Jackson, Claire
2017-01-01
This article draws on current literature leading to the development of a holistic framework to support practitioners in observation and assessment of childrens evolving inquiry skills. Evidence from the 2011 Trends in International Maths and Science Study (TIMSS) in England identifies a decline of year five student achievement in science. A…
TeenACE for Science: Using Multimedia Tools and Scaffolds to Support Writing
ERIC Educational Resources Information Center
Hitchcock, Caryl H.; Rao, Kavita; Chang, Chuan Chinn; Yuen, Joann W. L.
2016-01-01
TeenACE for Science (TAS) is a writing intervention that combines components of Multimedia Technology, Universal Design for Learning (UDL), and Self-Regulated Strategy Development (SRSD) to help students develop expository writing skills in science. This developmental study examined the effect of the TAS intervention with two groups of culturally…
Conative aptitudes in science learning
NASA Astrophysics Data System (ADS)
Jackson, Douglas Northrop, III
2000-09-01
The conative domain of aptitude constructs spans the domains of individual differences in motivation and volition. This research sampled a broad range of conative constructs, including achievement motivation, anxiety, goal orientations, and interest, among others. The purpose was threefold: (a) to explore relationships among conative constructs hypothesized to affect student commitment to learning and subsequent performance, (b) to determine whether or not individual differences in conative constructs were associated with the learning activities and time-on-task of students learning science, and (c) to ascertain whether or not the conative constructs and the time and activity variables were associated with performance differences in a paper-and-pencil science recall measure. This research consisted of three separate studies. Study I involved 60 U.S. college students. In Study II, 234 Canadian high school students participated. These two studies investigated the construct validity of a selection of conative constructs. A principal components analysis of the measures was undertaken and yielded seven components: Pursuit of Excellence, Evaluation Anxiety, Self-Reported Grades, Science Confidence, Science Interest vs. Science Ambivalence, Performance Orientation, and Verbal Ability. For Study III, 82 Canadian high school students completed the same conative questionnaires as were administered in Study II. A computerized environment patterned after an internet browser allowed students to learn about disease-causing microbes. The environment yielded aggregate measures of the time spent learning science, the time spent playing games, the number of games played, and the number of science-related learning activities engaged in by each student. Following administration of the computerized learning environment, students were administered a paper-and pencil science recall measure. Study III found support for the educational importance of the conative variables. Among the principal components, the strongest positive relationship was found between Science Interest vs. Science Ambivalence and performance on the recall measure. Scores on the conative variables were also correlated with both the time and activity variables from the computerized learning task. The implications of the findings are discussed with regard to the construct validation of conative constructs, the use of conative constructs for future educational research, and the design of computerized learning environments for both educational research and applied use.
Mapping epistemic cultures and learning potential of participants in citizen science projects.
Vallabh, Priya; Lotz-Sisitka, Heila; O'Donoghue, Rob; Schudel, Ingrid
2016-06-01
The ever-widening scope and range of global change and interconnected systemic risks arising from people-environment relationships (social-ecological risks) appears to be increasing concern among, and involvement of, citizens in an increasingly diversified number of citizen science projects responding to these risks. We examined the relationship between epistemic cultures in citizen science projects and learning potential related to matters of concern. We then developed a typology of purposes and a citizen science epistemic-cultures heuristic and mapped 56 projects in southern Africa using this framework. The purpose typology represents the range of knowledge-production purposes, ranging from laboratory science to social learning, whereas the epistemic-cultures typology is a relational representation of scientist and citizen participation and their approach to knowledge production. Results showed an iterative relationship between matters of fact and matters of concern across the projects; the nexus of citizens' engagement in knowledge-production activities varied. The knowledge-production purposes informed and shaped the epistemic cultures of all the sampled citizen science projects, which in turn influenced the potential for learning within each project. Through a historical review of 3 phases in a long-term river health-monitoring project, we found that it is possible to evolve the learning curve of citizen science projects. This evolution involved the development of scientific water monitoring tools, the parallel development of pedagogic practices supporting monitoring activities, and situated engagement around matters of concern within social activism leading to learning-led change. We conclude that such evolutionary processes serve to increase potential for learning and are necessary if citizen science is to contribute to wider restructuring of the epistemic culture of science under conditions of expanding social-ecological risk. © 2016 Society for Conservation Biology.
Enabling Wide-Scale Computer Science Education through Improved Automated Assessment Tools
NASA Astrophysics Data System (ADS)
Boe, Bryce A.
There is a proliferating demand for newly trained computer scientists as the number of computer science related jobs continues to increase. University programs will only be able to train enough new computer scientists to meet this demand when two things happen: when there are more primary and secondary school students interested in computer science, and when university departments have the resources to handle the resulting increase in enrollment. To meet these goals, significant effort is being made to both incorporate computational thinking into existing primary school education, and to support larger university computer science class sizes. We contribute to this effort through the creation and use of improved automated assessment tools. To enable wide-scale computer science education we do two things. First, we create a framework called Hairball to support the static analysis of Scratch programs targeted for fourth, fifth, and sixth grade students. Scratch is a popular building-block language utilized to pique interest in and teach the basics of computer science. We observe that Hairball allows for rapid curriculum alterations and thus contributes to wide-scale deployment of computer science curriculum. Second, we create a real-time feedback and assessment system utilized in university computer science classes to provide better feedback to students while reducing assessment time. Insights from our analysis of student submission data show that modifications to the system configuration support the way students learn and progress through course material, making it possible for instructors to tailor assignments to optimize learning in growing computer science classes.
ERIC Educational Resources Information Center
Ray, Amber B.; Graham, Steve; Houston, Julia D.; Harris, Karen R.
2016-01-01
A random sample of middle school teachers (grades 6-9) from across the United States was surveyed about their use of writing to support students' learning. The selection process was stratified so there were an equal number of English language arts, social studies, and science teachers. More than one-half of the teachers reported applying 15 or…
ERIC Educational Resources Information Center
Schultz-Jones, Barbara A.; Ledbetter, Cynthia E.
2013-01-01
As part of a larger study, the How My Library Supports Inquiry and the How My Science Class Supports Inquiry questionnaires were developed for evaluating the extent of inquiry-based teaching in classrooms and school libraries and the effect of this instruction on student literacy and, by extension, the social good. Each has 28 items in seven…
NASA Astrophysics Data System (ADS)
Norman, Lashaunda Renea
This qualitative case study investigated the teaching strategies that improve science learning of African American students. This research study further sought the extent the identified teaching strategies that are used to improve African American science learning reflect culturally responsive teaching. Best teaching strategies and culturally responsive teaching have been researched, but there has been minimal research on the impact that both have on science learning, with an emphasis on the African American population. Consequently, the Black-White achievement gap in science persists. The findings revealed the following teaching strategies have a positive impact on African American science learning: (a) lecture-discussion, (b) notetaking, (c) reading strategies, (d) graphic organizers, (e) hands-on activities, (f) laboratory experiences, and (g) cooperative learning. Culturally responsive teaching strategies were evident in the seventh-grade science classrooms observed. Seven themes emerged from this research data: (1) The participating teachers based their research-based teaching strategies used in the classroom on all of the students' learning styles, abilities, attitudes towards science, and motivational levels about learning science, with no emphasis on the African American student population; (2) The participating teachers taught the state content standards simultaneously using the same instructional model daily, incorporating other content areas when possible; (3) The participating African American students believed their seventh-grade science teachers used a variety of teaching strategies to ensure science learning took place, that science learning was fun, and that science learning was engaging; (4) The participating African American students genuinely liked their teacher; (5) The participating African American students revealed high self-efficacy; (6) The African American student participants' parents value education and moved to Success Middle School district for better educational opportunities; and (7) Teachers were not familiar with the term "culturally responsive teaching," but there was evidence that several aspects of it were present in the seventh-grade science classroom environment. Critical Race Theory (CRT) was the framework for analysis and interpretation of this research study. The findings support the following tenets of CRT: (a) racism is normal, (b) interest-convergence or colorblindness, (c) contextual-historical analysis, (d) storytelling or counterstorytelling, and (e) social transformation. These findings indicate that racial inequalities remain an issue in the underachievement of African Americans and may be the solution to improving science learning of African Americans. The outcome of this study contributes to the limited research on utilizing culturally responsive teaching along with best teaching strategies to improve academic achievement of African American students, and CRT exposes the issues that contribute to the Black-White achievement gap in science widening.