Structural technology challenges for evolutionary growth of Space Station Freedom
NASA Technical Reports Server (NTRS)
Doiron, Harold H.
1990-01-01
A proposed evolutionary growth scenario for Space Station Freedom was defined recently by a NASA task force created to study requirements for a Human Exploration Initiative. The study was an initial response to President Bush's July 20, 1989 proposal to begin a long range program of human exploration of space including a permanently manned lunar base and a manned mission to Mars. This growth scenario evolves Freedom into a critical transportation node to support lunar and Mars missions. The growth scenario begins with the Assembly Complete configuration and adds structure, power, and facilities to support a Lunar Transfer Vehicle (LTV) verification flight. Evolutionary growth continues to support expendable, then reusable LTV operations, and finally, LTV and Mars Transfer Vehicle (MTV) operations. The significant structural growth and additional operations creating new loading conditions will present new technological and structural design challenges in addition to the considerable technology requirements of the baseline Space Station Freedom program. Several structural design and technology issues of the baseline program are reviewed and related technology development required by the growth scenario is identified.
Technology-Supported Change: A Staff Development Opportunity.
ERIC Educational Resources Information Center
Bradshaw, Lynn K.
1997-01-01
Implementing technology in a classroom is a personal process that varies from teacher to teacher. The Concerns-Based Adoption Model identifies seven stages of concern that teachers may experience, from awareness to refocusing ideas. Innovative staff development strategies include establishing organizational structures to support technological and…
Pressurized Structure Technology for UAVS
2008-12-01
deficiencies of the UAVs just listed is to employ lighter-than-air or pressurized structure-based ( PSB ) technology. Basically, the UAV will be built such...that a considerable percentage of its weight is supported by or constructed from inflatable structures containing air or helium. PSB technology...neutral buoyancy will allow much slower flight speeds and increased maneuverability while expending little power. PSB airframes used in conjunction
In-Space Structural Assembly: Applications and Technology
NASA Technical Reports Server (NTRS)
Belvin, W. Keith; Doggett, Bill R.; Watson, Judith J.; Dorsey, John T.; Warren, Jay; Jones, Thomas C.; Komendera, Erik E.; Mann, Troy O.; Bowman, Lynn
2016-01-01
As NASA exploration moves beyond earth's orbit, the need exists for long duration space systems that are resilient to events that compromise safety and performance. Fortunately, technology advances in autonomy, robotic manipulators, and modular plug-and-play architectures over the past two decades have made in-space vehicle assembly and servicing possible at acceptable cost and risk. This study evaluates future space systems needed to support scientific observatories and human/robotic Mars exploration to assess key structural design considerations. The impact of in-space assembly is discussed to identify gaps in structural technology and opportunities for new vehicle designs to support NASA's future long duration missions.
ERIC Educational Resources Information Center
Lock, Jennifer; Johnson, Carol
2017-01-01
Transitioning from one technology to another within educational institutions is complex and multi-faceted, and requires time. Such a transition involves more than making the new technology available for use. It requires knowing the people involved, designing differentiated support structures, and integrating various resources to meet their…
A Planning Process Addresses an Organizational and Support Crisis in Information Technology.
ERIC Educational Resources Information Center
Nelson, Keith R.; Davenport, Richard W.
1996-01-01
An institutionwide strategic planning effort at Central Michigan University, in response to a need for rapid and significant changes in its information technology infrastructure, is outlined. The effort resulted in a matrix governance structure for information technology that acknowledges the value of both distributed support and a strong central…
Lighter-Than-Air and Pressurized Structures Technology for Unmanned Aerial Vehicles (UAVs)
2010-01-01
through lighter-than-air or pressurized structures-based ( PSB ) technologies. Basically, we examined how to construct the UAV in such a way that a...considerable percentage of its weight will be supported by or composed of inflatable structures containing air or helium. In this way, PSB technology...will reduce the amount of energy required to keep the UAV aloft, thus allowing the use of smaller, slower, and quieter motors. Using PSB technology
NASA Astrophysics Data System (ADS)
Weiyi, Xie; Pengcheng
2018-03-01
The deep foundation pit supporting technology in the soft soil area of the Pearl River Delta is more complicated, and many factors influence and restrict it. In this project as an example, according to the geological conditions and the surrounding circumstances, the main foundation using bored piles and pre-stressed anchor cable supporting structure + five axis cement mixing pile curtain supporting form; partial use of double row piles supporting structure + five axis cement mixing pile curtain support type. Through the monitoring results of construction show that the foundation pit, the indicators of environmental changes are in the design range, the supporting scheme of deep foundation pit technology is feasible and reliable.
NASA Astrophysics Data System (ADS)
Colladay, R. S.; Carlisle, R. F.
1984-10-01
Some of the most significant advances made in the space station discipline technology program are examined. Technological tasks and advances in the areas of systems/operations, environmental control and life support systems, data management, power, thermal considerations, attitude control and stabilization, auxiliary propulsion, human capabilities, communications, and structures, materials, and mechanisms are discussed. An overview of NASA technology planning to support the initial space station and the evolutionary growth of the space station is given.
Layered Metals Fabrication Technology Development for Support of Lunar Exploration at NASA/MSFC
NASA Technical Reports Server (NTRS)
Cooper, Kenneth G.; Good, James E.; Gilley, Scott D.
2007-01-01
NASA's human exploration initiative poses great opportunity and risk for missions to the Moon and beyond. In support of these missions, engineers and scientists at the Marshall Space Flight Center are developing technologies for ground-based and in-situ fabrication capabilities utilizing provisioned and locally-refined materials. Development efforts are pushing state-of-the art fabrication technologies to support habitat structure development, tools and mechanical part fabrication, as well as repair and replacement of ground support and space mission hardware such as life support items, launch vehicle components and crew exercise equipment. This paper addresses current fabrication technologies relative to meeting targeted capabilities, near term advancement goals, and process certification of fabrication methods.
Jeffries, Mark; Phipps, Denham; Howard, Rachel L; Avery, Anthony; Rodgers, Sarah; Ashcroft, Darren
2017-05-10
Using strong structuration theory, we aimed to understand the adoption and implementation of an electronic clinical audit and feedback tool to support medicine optimisation for patients in primary care. This is a qualitative study informed by strong structuration theory. The analysis was thematic, using a template approach. An a priori set of thematic codes, based on strong structuration theory, was developed from the literature and applied to the transcripts. The coding template was then modified through successive readings of the data. Clinical commissioning group in the south of England. Four focus groups and five semi-structured interviews were conducted with 18 participants purposively sampled from a range of stakeholder groups (general practitioners, pharmacists, patients and commissioners). Using the system could lead to improved medication safety, but use was determined by broad institutional contexts; by the perceptions, dispositions and skills of users; and by the structures embedded within the technology. These included perceptions of the system as new and requiring technical competence and skill; the adoption of the system for information gathering; and interactions and relationships that involved individual, shared or collective use. The dynamics between these external, internal and technological structures affected the adoption and implementation of the system. Successful implementation of information technology interventions for medicine optimisation will depend on a combination of the infrastructure within primary care, social structures embedded in the technology and the conventions, norms and dispositions of those utilising it. Future interventions, using electronic audit and feedback tools to improve medication safety, should consider the complexity of the social and organisational contexts and how internal and external structures can affect the use of the technology in order to support effective implementation. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
On Technology and Schools: A Conversation with Chris Dede.
ERIC Educational Resources Information Center
O'Neil, John
1995-01-01
According to futurist/educational technology expert Chris Dede, new technologies will revolutionize education only when used to support new models of teaching and learning. Grafting technological solutions onto antiquated structures and learning approaches is misguided. Sidebars explain schools' technology access problems and review Clifford…
Communication and Cultural Change in University Technology Transfer
ERIC Educational Resources Information Center
Wright, David
2013-01-01
Faculty culture and communication networks are pivotal components of technology transfer on university campuses. Universities are focused upon diffusing technology to external clients and upon building structure and support systems to enhance technology transfer. However, engaging faculty members in technology transfer requires an internal…
Space Station Technology, 1983
NASA Technical Reports Server (NTRS)
Wright, R. L. (Editor); Mays, C. R. (Editor)
1984-01-01
This publication is a compilation of the panel summaries presented in the following areas: systems/operations technology; crew and life support; EVA; crew and life support: ECLSS; attitude, control, and stabilization; human capabilities; auxillary propulsion; fluid management; communications; structures and mechanisms; data management; power; and thermal control. The objective of the workshop was to aid the Space Station Technology Steering Committee in defining and implementing a technology development program to support the establishment of a permanent human presence in space. This compilation will provide the participants and their organizations with the information presented at this workshop in a referenceable format. This information will establish a stepping stone for users of space station technology to develop new technology and plan future tasks.
Novel Overhang Support Designs for Powder-Based Electron Beam Additive Manufacturing (EBAM)
NASA Technical Reports Server (NTRS)
Nabors, Sammy A.
2014-01-01
NASA Marshall Space Flight Center, in collaboration with the University of Alabama, has developed a contact-free support structure used to fabricate overhang-type geometries via EBAM. The support structure is used for 3-D metal-printed components for the aerospace, automotive, biomedical and other industries. Current techniques use support structures to address deformation challenges inherent in 3-D metal printing. However, these structures (overhangs) are bonded to the component and need to be removed in post-processing using a mechanical tool. This new technology improves the overhang support structure design for components by eliminating associated geometric defects and post-processing requirements.
ERIC Educational Resources Information Center
Teepe, R. C.; Molenaar, I.; Verhoeven, L.
2017-01-01
Preschool children's vocabulary mainly develops verbal through interaction. Therefore, the technology-enhanced storytelling (TES) activity Jeffy's Journey is developed to support parent-child interaction and vocabulary in preschool children. TES entails shared verbal storytelling supported by a story structure and real-time visual, auditory and…
Technology Underutilized: Principal's Role in Creating a Culture of High-Level Uses
ERIC Educational Resources Information Center
Foley, Darlene
2017-01-01
Teachers need to maximize technology to support student learning by drawing upon varying pedagogical orientations; however, teacher-centered, highly structured approaches that foster low-level thinking is more prevalent. Although highly structured approaches help develop students' foundational skills and content knowledge, student-centered,…
Role development of nurses for technology-dependent children attending mainstream schools in Japan.
Shimizu, Fumie; Suzuki, Machiko
2015-04-01
To describe the role development of nurses caring for medical technology-dependent children attending Japanese mainstream schools. Semi-structured interviews with 21 nurses caring for technology-dependent children were conducted and analyzed using the modified grounded theory approach. Nurses developed roles centered on maintaining technology-dependent children's physical health to support children's learning with each other, through building relationships, learning how to interact with children, understanding the children and the school community, and realizing the meaning of supporting technology-dependent children. These findings support nurses to build relationships of mutual trust with teachers and children, and learn on the job in mainstream schools. © 2015, Wiley Periodicals, Inc.
Technology support of the handover: promoting observability, flexibility and efficiency.
Patterson, Emily S
2012-12-01
Efforts to standardise data elements and increase the comprehensiveness of information included in patient handovers have produced a growing interest in augmenting the verbal exchange of information with written communications conducted through health information technology (HIT). The aim of this perspective is to offer recommendations to optimise technology support of handovers, based on a review of the relevant scientific literature. Review of the literature on human factors and the study of communication produced three recommendations. The first entails making available "shared knowledge" relevant to the handover and subsequent clinical management with intended and unintended recipients. The second is to create a flexible narrative structure (unstructured text fields) for human-human communications facilitated by technology. The third recommendation is to avoid reliance on real-time data entry during busy periods. Implementing these recommendations is anticipated to increase the observability (the ability to readily determine current status), flexibility, and efficiency of HIT-supported patient handovers. Anticipated benefits of technology-supported handovers include reducing reliance on human memory, increasing the efficiency and structure of the verbal exchange, avoiding readbacks of numeric data, and aiding clinical management following the handover. In cases when verbal handovers are delayed, do not occur, or involve members of the health care team without first-hand access to critical information, making 'common ground' observable for all recipients, creating a flexible narrative structure for communication and avoiding reliance on real-time data entry during the busiest times has implications for HIT design and day to day data entry and management operations. Benefits include increased observability, flexibility, and efficiency of HIT-supported patient handovers.
NASA Technical Reports Server (NTRS)
1975-01-01
Structural requirements for future space missions were defined in relation to technology needs and payloads. Specific areas examined include: large area space structures (antennas, solar array structures, and platforms); a long, slender structure or boom used to support large objects from the shuttle or hold two bodies apart in space; and advanced composite structures for cost effective weight reductions. Other topics discussed include: minimum gage concepts, high temperature components, load and response determination and control, and reliability and life prediction.
Inflatable Space Structures Technology Development for Large Radar Antennas
NASA Technical Reports Server (NTRS)
Freeland, R. E.; Helms, Richard G.; Willis, Paul B.; Mikulas, M. M.; Stuckey, Wayne; Steckel, Gary; Watson, Judith
2004-01-01
There has been recent interest in inflatable space-structures technology for possible applications on U.S. Department of Defense (DOD) missions because of the technology's potential for high mechanical-packaging efficiency, variable stowed geometry, and deployment reliability. In recent years, the DOD sponsored Large Radar Antenna (LRA) Program applied this new technology to a baseline concept: a rigidizable/inflatable (RI) perimeter-truss structure supporting a mesh/net parabolic reflector antenna. The program addressed: (a) truss concept development, (b) regidizable materials concepts assessment, (c) mesh/net concept selection and integration, and (d) developed potential mechanical-system performance estimates. Critical and enabling technologies were validated, most notably the orbital radiation durable regidized materials and the high modulus, inflatable-deployable truss members. These results in conjunction with conclusions from previous mechanical-packaging studies by the U.S. Defense Advanced Research Projects Agency (DARPA) Special Program Office (SPO) were the impetus for the initiation of the DARPA/SPO Innovative Space-based Antenna Technology (ISAT) Program. The sponsor's baseline concept consisted of an inflatable-deployable truss structure for support of a large number of rigid, active radar panels. The program's goal was to determine the risk associated with the application of these new RI structures to the latest in radar technologies. The approach used to define the technology maturity level of critical structural elements was to: (a) develop truss concept baseline configurations (s), (b) assess specific inflatable-rigidizable materials technologies, and (c) estimate potential mechanical performance. The results of the structures portion of the program indicated there was high risk without the essential materials technology flight experiments, but only moderate risk if the appropriate on-orbit demonstrations were performed. This paper covers both programs (LRA and ISAT) in two sections, Parts 1 and 2 respectively. Please note that the terms strut, tube, and column are all used interchangeably and refer to the basic strut element of a truss. Also, the paper contains a mix of English and metric dimensional descriptions that reflect prevailing technical discipline conventions and common usage.
U.S. perspective on technology demonstration experiments for adaptive structures
NASA Technical Reports Server (NTRS)
Aswani, Mohan; Wada, Ben K.; Garba, John A.
1991-01-01
Evaluation of design concepts for adaptive structures is being performed in support of several focused research programs. These include programs such as Precision Segmented Reflector (PSR), Control Structure Interaction (CSI), and the Advanced Space Structures Technology Research Experiment (ASTREX). Although not specifically designed for adaptive structure technology validation, relevant experiments can be performed using the Passive and Active Control of Space Structures (PACOSS) testbed, the Space Integrated Controls Experiment (SPICE), the CSI Evolutionary Model (CEM), and the Dynamic Scale Model Test (DSMT) Hybrid Scale. In addition to the ground test experiments, several space flight experiments have been planned, including a reduced gravity experiment aboard the KC-135 aircraft, shuttle middeck experiments, and the Inexpensive Flight Experiment (INFLEX).
NASA Astrophysics Data System (ADS)
Schroeder, Sascha Thorsten; Costa, Ana; Obé, Elisabeth
In recent years, fuel cell based micro-combined heat and power (mCHP) has received increasing attention due to its potential contribution to European energy policy goals, i.e., sustainability, competitiveness and security of supply. Besides technical advances, regulatory framework and ownership structures are of crucial importance in order to achieve greater diffusion of the technology in residential applications. This paper analyses the interplay of policy and ownership structures for the future deployment of mCHP. Furthermore, it regards the three country cases Denmark, France and Portugal. Firstly, the implications of different kinds of support schemes on investment risk and the diffusion of a technology are explained conceptually. Secondly, ownership arrangements are addressed. Then, a cross-country comparison on present support schemes for mCHP and competing technologies discusses the national implementation of European legislation in Denmark, France and Portugal. Finally, resulting implications for ownership arrangements on the choice of support scheme are explained. From a conceptual point of view, investment support, feed-in tariffs and price premiums are the most appropriate schemes for fuel cell mCHP. This can be used for improved analysis of operational strategies. The interaction of this plethora of elements necessitates careful balancing from a private- and socio-economic point of view.
Cognitive assistive technology and professional support in everyday life for adults with ADHD.
Lindstedt, Helena; Umb-Carlsson, Oie
2013-09-01
An evaluation of a model of intervention in everyday settings, consisting of cognitive assistive technology (CAT) and support provided by occupational therapists to adults with attention deficit hyperactivity disorder (ADHD). The purpose was to study how professional support and CAT facilitate everyday life and promote community participation of adults with ADHD. The intervention was implemented in five steps and evaluated in a 15-month study (March 200 = T1 to June 2007 = T2). One questionnaire and one protocol describe the CATs and provided support. Two questionnaires were employed at T1 and T2 for evaluation of the intervention in everyday settings. The participants tried 74 CATs, with weekly schedules, watches and weighted blankets being most highly valued. Carrying out a daily routine was the most frequent support. More participants were working at T2 than at T1. Frequency of performing and satisfaction with daily occupations as well as life satisfaction were stable over the one-year period. The results indicate a higher frequency of participating in work but only a tendency of increased subjectively experienced life satisfaction. However, to be of optimal usability, CAT requires individually tailored, systematic and structured support by specially trained professionals. Implications for Rehabilitation Adults with ADHD report an overall satisfaction with the cognitive assistive technology, particularly with low-technological products such as weekly schedules and weighted blankets. Using cognitive assistive technology in everyday settings indicate a higher frequency of participating in work, but only a tendency of increased subjectively experienced life satisfaction for adults with ADHD. Prescription of cognitive assistive technology to adults with ADHD in everyday settings requires individually tailored, systematic and structured support by specially trained professionals.
Composite Technology for Exploration
NASA Technical Reports Server (NTRS)
Fikes, John
2017-01-01
The CTE (Composite Technology for Exploration) Project will develop and demonstrate critical composites technologies with a focus on joints that utilize NASA expertise and capabilities. The project will advance composite technologies providing lightweight structures to support future NASA exploration missions. The CTE project will demonstrate weight-saving, performance-enhancing bonded joint technology for Space Launch System (SLS)-scale composite hardware.
A study on the utilization of advanced composites in commercial aircraft wing structure
NASA Technical Reports Server (NTRS)
Watts, D. J.
1978-01-01
A study was conducted to define the technology and data needed to support the introduction of advanced composite materials in the wing structure of future production aircraft. The study accomplished the following: (1) definition of acceptance factors, (2) identification of technology issues, (3) evaluation of six candidate wing structures, (4) evaluation of five program options, (5) definition of a composite wing technology development plan, (6) identification of full-scale tests, (7) estimation of program costs for the total development plan, (8) forecast of future utilization of composites in commercial transport aircraft and (9) identification of critical technologies for timely program planning.
Radiological Technology. Secondary Curriculum Guide.
ERIC Educational Resources Information Center
Simpson, Bruce; And Others
This curriculum guide was designed for use in postsecondary radiological technology education programs in Georgia. Its purpose is to provide for the development of entry level skills in radiological technology in the areas of knowledge, theoretical structure, tool usage, diagnostic ability, related supportive skills, and occupational survival…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liby, Alan L; Rogers, Hiram
The goal of this activity was to carry out program implementation and technical projects in support of the ARRA-funded Advanced Materials in Support of EERE Needs to Advance Clean Energy Technologies Program of the DOE Advanced Manufacturing Office (AMO) (formerly the Industrial Technologies Program (ITP)). The work was organized into eight projects in four materials areas: strategic materials, structural materials, energy storage and production materials, and advanced/field/transient processing. Strategic materials included work on titanium, magnesium and carbon fiber. Structural materials included work on alumina forming austentic (AFA) and CF8C-Plus steels. The advanced batteries and production materials projects included work onmore » advanced batteries and photovoltaic devices. Advanced/field/transient processing included work on magnetic field processing. Details of the work in the eight projects are available in the project final reports which have been previously submitted.« less
Control of flexible structures
NASA Technical Reports Server (NTRS)
Russell, R. A.
1985-01-01
The requirements for future space missions indicate that many of these spacecraft will be large, flexible, and in some applications, require precision geometries. A technology program that addresses the issues associated with the structure/control interactions for these classes of spacecraft is discussed. The goal of the NASA control of flexible structures technology program is to generate a technology data base that will provide the designer with options and approaches to achieve spacecraft performance such as maintaining geometry and/or suppressing undesired spacecraft dynamics. This technology program will define the appropriate combination of analysis, ground testing, and flight testing required to validate the structural/controls analysis and design tools. This work was motivated by a recognition that large minimum weight space structures will be required for many future missions. The tools necessary to support such design included: (1) improved structural analysis; (2) modern control theory; (3) advanced modeling techniques; (4) system identification; and (5) the integration of structures and controls.
Health Monitoring System Technology Assessments: Cost Benefits Analysis
NASA Technical Reports Server (NTRS)
Kent, Renee M.; Murphy, Dennis A.
2000-01-01
The subject of sensor-based structural health monitoring is very diverse and encompasses a wide range of activities including initiatives and innovations involving the development of advanced sensor, signal processing, data analysis, and actuation and control technologies. In addition, it embraces the consideration of the availability of low-cost, high-quality contributing technologies, computational utilities, and hardware and software resources that enable the operational realization of robust health monitoring technologies. This report presents a detailed analysis of the cost benefit and other logistics and operational considerations associated with the implementation and utilization of sensor-based technologies for use in aerospace structure health monitoring. The scope of this volume is to assess the economic impact, from an end-user perspective, implementation health monitoring technologies on three structures. It specifically focuses on evaluating the impact on maintaining and supporting these structures with and without health monitoring capability.
Hypersonic Inflatable Aerodynamic Decelerator Ground Test Development
NASA Technical Reports Server (NTRS)
Del Corso, Jospeh A.; Hughes, Stephen; Cheatwood, Neil; Johnson, Keith; Calomino, Anthony
2015-01-01
Hypersonic Inflatable Aerodynamic Decelerator (HIAD) technology readiness levels have been incrementally matured by NASA over the last thirteen years, with most recent support from NASA's Space Technology Mission Directorate (STMD) Game Changing Development Program (GCDP). Recently STMD GCDP has authorized funding and support through fiscal year 2015 (FY15) for continued HIAD ground developments which support a Mars Entry, Descent, and Landing (EDL) study. The Mars study will assess the viability of various EDL architectures to enable a Mars human architecture pathfinder mission planned for mid-2020. At its conclusion in November 2014, NASA's first HIAD ground development effort had demonstrated success with fabricating a 50 W/cm2 modular thermal protection system, a 400 C capable inflatable structure, a 10-meter scale aeroshell manufacturing capability, together with calibrated thermal and structural models. Despite the unquestionable success of the first HIAD ground development effort, it was recognized that additional investment was needed in order to realize the full potential of the HIAD technology capability to enable future flight opportunities. The second HIAD ground development effort will focus on extending performance capability in key technology areas that include thermal protection system, lifting-body structures, inflation systems, flight control, stage transitions, and 15-meter aeroshell scalability. This paper presents an overview of the accomplishments under the baseline HIAD development effort and current plans for a follow-on development effort focused on extending those critical technologies needed to enable a Mars Pathfinder mission.
Sensor technology more than a support.
Olsson, Anna; Persson, Ann-Christine; Bartfai, Aniko; Boman, Inga-Lill
2018-03-01
This interview study is a part of a project that evaluated sensor technology as a support in everyday activities for patients with memory impairment. To explore patients with memory impairment and their partners' experiences of using sensor technology in their homes. Five patients with memory impairment after stroke and three partners were interviewed. Individual semi-structured interviews were analyzed with qualitative content analysis. Installing sensor technology with individually prerecorded voice reminders as memory support in the home had a broad impact on patients' and their families' lives. These effects were both positive and negative. The sensor technology not only supported activities but also influenced the patients by changing behavior, providing a sense of security, independence and increased self-confidence. For the partners, the sensor technology eased daily life, but also gave increased responsibility for maintenance. Technical problems led to frustration and stress for the patients. The results indicate that sensor technology has potential to increase opportunities for persons with memory impairment to perform and participate in activities and to unburden their partners. The results may promote an understanding of how sensor technology can be used to support persons with memory impairment in their homes.
ERIC Educational Resources Information Center
Falk, Monica I.
2012-01-01
Enterprise information systems (EIS) governance provides guidance, structure, and rules for companies within industry who use information technology (IT) support services, and in particular, for outsourced IT support. This study focuses on outsourcing from the client perspective for higher education and uses the qualitative methodology with a…
ERIC Educational Resources Information Center
Tait, Alan
2014-01-01
This article examines the impact of digital technologies on student support in distance and e-learning, drawing on the case of Open University UK. Giving a historical perspective on the use of technologies in learning over many centuries, it argues that the dominant paradigm of geography--which has defined the structures for student support…
Impact of Financial Structure on the Cost of Solar Energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mendelsohn, M.; Kreycik, C.; Bird, L.
2012-03-01
To stimulate investment in renewable energy generation projects, the federal government developed a series of support structures that reduce taxes for eligible investors--the investment tax credit, the production tax credit, and accelerated depreciation. The nature of these tax incentives often requires an outside investor and a complex financial arrangement to allocate risk and reward among the parties. These financial arrangements are generally categorized as 'advanced financial structures.' Among renewable energy technologies, advanced financial structures were first widely deployed by the wind industry and are now being explored by the solar industry to support significant scale-up in project development. This reportmore » describes four of the most prevalent financial structures used by the renewable sector and evaluates the impact of financial structure on energy costs for utility-scale solar projects that use photovoltaic and concentrating solar power technologies.« less
Advanced Technology Composite Fuselage-Structural Performance
NASA Technical Reports Server (NTRS)
Walker, T. H.; Minguet, P. J.; Flynn, B. W.; Carbery, D. J.; Swanson, G. D.; Ilcewicz, L. B.
1997-01-01
Boeing is studying the technologies associated with the application of composite materials to commercial transport fuselage structure under the NASA-sponsored contracts for Advanced Technology Composite Aircraft Structures (ATCAS) and Materials Development Omnibus Contract (MDOC). This report addresses the program activities related to structural performance of the selected concepts, including both the design development and subsequent detailed evaluation. Design criteria were developed to ensure compliance with regulatory requirements and typical company objectives. Accurate analysis methods were selected and/or developed where practical, and conservative approaches were used where significant approximations were necessary. Design sizing activities supported subsequent development by providing representative design configurations for structural evaluation and by identifying the critical performance issues. Significant program efforts were directed towards assessing structural performance predictive capability. The structural database collected to perform this assessment was intimately linked to the manufacturing scale-up activities to ensure inclusion of manufacturing-induced performance traits. Mechanical tests were conducted to support the development and critical evaluation of analysis methods addressing internal loads, stability, ultimate strength, attachment and splice strength, and damage tolerance. Unresolved aspects of these performance issues were identified as part of the assessments, providing direction for future development.
Operating Room Technology. Post Secondary Curriculum Guide.
ERIC Educational Resources Information Center
Simpson, Bruce; And Others
This curriculum guide was designed for use in postsecondary operating room technology education programs in Georgia. Its purpose is to provide for development of entry level skills in operating room technology in the areas of knowledge, theoretical structure, tool usage, diagnostic ability, related supportive skills, and occupational survival…
Pedagogical Approaches for Technology-Integrated Science Teaching
ERIC Educational Resources Information Center
Hennessy, Sara; Wishart, Jocelyn; Whitelock, Denise; Deaney, Rosemary; Brawn, Richard; la Velle, Linda; McFarlane, Angela; Ruthven, Kenneth; Winterbottom, Mark
2007-01-01
The two separate projects described have examined how teachers exploit computer-based technologies in supporting learning of science at secondary level. This paper examines how pedagogical approaches associated with these technological tools are adapted to both the cognitive and structuring resources available in the classroom setting. Four…
Zero-gravity atmospheric Cloud Physics Experiment Laboratory; Programmatics report
NASA Technical Reports Server (NTRS)
1974-01-01
The programmatics effort included comprehensive analyses in four major areas: (1) work breakdown structure, (2) schedules, (3) costs, and (4) supporting research and technology. These analyses are discussed in detail in the following sections which identify and define the laboratory project development schedule, cost estimates, funding distributions and supporting research and technology requirements. All programmatics analyses are correlated among themselves and with the technical analyses by means of the work breakdown structure which serves as a common framework for program definition. In addition, the programmatic analyses reflect the results of analyses and plans for reliability, safety, test, and maintenance and refurbishment.
Overview of Heatshield for Extreme Entry Environment Technology (HEEET)
NASA Technical Reports Server (NTRS)
Driver, David M.; Ellerby, Donald T.; Gasch, Matthew J.; Mahzari, Milad; Milos, Frank S.; Nishioka, Owen S.; Stackpoole, Margaret M.; Venkatapathy, Ethiraj; Young, Zion W.; Gage, Peter J.;
2018-01-01
The Heatshield for Extreme Entry Environment Technology (HEEET) projects objective is to mature a 3-D Woven Thermal Protection System (TPS) to Technical Readiness Level (TRL) 6 to support future NASA missions to destinations such as Venus and Saturn. The scope of the project, status of which will be discussed, encompasses development of manufacturing and integration processes, fabrication of a prototype 1m diameter engineering test unit (ETU) that will undergo a series of structural tests, characterizing material aerothermal performance including development of a material response model, and structural testing and analysis to develop tools to support design and establish system capability.
Lewis Structures Technology, 1988. Volume 2: Structural Mechanics
NASA Technical Reports Server (NTRS)
1988-01-01
Lewis Structures Div. performs and disseminates results of research conducted in support of aerospace engine structures. These results have a wide range of applicability to practitioners of structural engineering mechanics beyond the aerospace arena. The engineering community was familiarized with the depth and range of research performed by the division and its academic and industrial partners. Sessions covered vibration control, fracture mechanics, ceramic component reliability, parallel computing, nondestructive evaluation, constitutive models and experimental capabilities, dynamic systems, fatigue and damage, wind turbines, hot section technology (HOST), aeroelasticity, structural mechanics codes, computational methods for dynamics, structural optimization, and applications of structural dynamics, and structural mechanics computer codes.
Aeronautics Technology Possibilities for 2000: Report of a workshop
NASA Technical Reports Server (NTRS)
1984-01-01
The potential of aeronautical research and technology (R&T) development, which could provide the basis for facility planning and long range guidance of R&T programs and could establish justification for support of aeronautical research and technology was studied. The projections served specific purposes: (1) to provide a base for research and future facilities needed to support the projected technologies, and development advanced vehicles; (2) to provide insight on the possible state of the art in aeronautical technology by the year 2000 for civil and military planners of air vehicles and systems. Topics discussed include: aerodynamics; propulsion; structures; materials; guidance, navigation and control; computer and information technology; human factors; and systems integration.
Habitats and Surface Construction Technology and Development Roadmap
NASA Technical Reports Server (NTRS)
Cohen, Marc; Kennedy, Kriss J.
1997-01-01
The vision of the technology and development teams at NASA Ames and Johnson Research Centers is to provide the capability for automated delivery and emplacement of habitats and surface facilities. The benefits of the program are as follows: Composites and Inflatables: 30-50% (goal) lighter than Al Hard Structures; Capability for Increased Habitable Volume, Launch Efficiency; Long Term Growth Potential; and Supports initiation of commercial and industrial expansion. Key Habitats and Surface Construction (H&SC) technology issues are: Habitat Shell Structural Materials; Seals and Mechanisms; Construction and Assembly: Automated Pro-Deploy Construction Systems; ISRU Soil/Construction Equipment: Lightweight and Lower Power Needs; Radiation Protection (Health and Human Performance Tech.); Life Support System (Regenerative Life Support System Tech.); Human Physiology of Long Duration Space Flight (Health and Human Performance Tech.); and Human Psychology of Long Duration Space Flight (Health and Human Performance Tech.) What is being done regarding these issues?: Use of composite materials for X-38 CRV, RLV, etc.; TransHAB inflatable habitat design/development; Japanese corporations working on ISRU-derived construction processes. What needs to be done for the 2004 Go Decision?: Characterize Mars Environmental Conditions: Civil Engineering, Material Durability, etc.; Determine Credibility of Inflatable Structures for Human Habitation; and Determine Seal Technology for Mechanisms and Hatches, Life Cycle, and Durability. An overview encompassing all of the issues above is presented.
DSSTox and Chemical Information Technologies in Support of PredictiveToxicology
The EPA NCCT Distributed Structure-Searchable Toxicity (DSSTox) Database project initially focused on the curation and publication of high-quality, standardized, chemical structure-annotated toxicity databases for use in structure-activity relationship (SAR) modeling. In recent y...
Representations for Semantic Learning Webs: Semantic Web Technology in Learning Support
ERIC Educational Resources Information Center
Dzbor, M.; Stutt, A.; Motta, E.; Collins, T.
2007-01-01
Recent work on applying semantic technologies to learning has concentrated on providing novel means of accessing and making use of learning objects. However, this is unnecessarily limiting: semantic technologies will make it possible to develop a range of educational Semantic Web services, such as interpretation, structure-visualization, support…
National Space Transportation and Support Study/technology requirements and plans
NASA Technical Reports Server (NTRS)
Walberg, G. D.; Gasperich, F. J., Jr.; Scheyhing, E. R.
1986-01-01
This paper presents a generic technology plan which has been developed as part of the National Space Transportation and Support Study. This program, which addresses a wide variety of potentially high payoff technology areas, is structured to promote both enhanced vehicle performance and greatly improved operational efficiency and includes both evolutionary and breakthrough technologies. The plan is presented in terms of disciplinary plan elements, which were developed by joint NASA/USAF disciplinary working groups, and as a set of demonstration projects which serve as focal points for the overall plan and drive the development of the many interrelated disciplinary activities.
ERIC Educational Resources Information Center
Gurbuz, Fatih
2016-01-01
The purpose of this research study is to explore pre-service science teachers' misconceptions on basic astronomy subjects and to examine the effect of micro teaching method supported by educational technologies on correcting misconceptions. This study is an action research. Semi- structured interviews were used in the study as a data collection…
The application of decision analysis to life support research and technology development
NASA Technical Reports Server (NTRS)
Ballin, Mark G.
1994-01-01
Applied research and technology development is often characterized by uncertainty, risk, and significant delays before tangible returns are obtained. Decision making regarding which technologies to advance and what resources to devote to them is a challenging but essential task. In the application of life support technology to future manned space flight, new technology concepts typically are characterized by nonexistent data and rough approximations of technology performance, uncertain future flight program needs, and a complex, time-intensive process to develop technology to a flight-ready status. Decision analysis is a quantitative, logic-based discipline that imposes formalism and structure to complex problems. It also accounts for the limits of knowledge that may be available at the time a decision is needed. The utility of decision analysis to life support technology R & D was evaluated by applying it to two case studies. The methodology was found to provide insight that is not possible from more traditional analysis approaches.
The Use of the STAGS Finite Element Code in Stitched Structures Development
NASA Technical Reports Server (NTRS)
Jegley, Dawn C.; Lovejoy, Andrew E.
2014-01-01
In the last 30 years NASA has worked in collaboration with industry to develop enabling technologies needed to make aircraft more fuel-efficient and more affordable. The focus on the airframe has been to reduce weight, improve damage tolerance and better understand structural behavior under realistic flight and ground loading conditions. Stitched structure is a technology that can address the weight savings, cost reduction, and damage tolerance goals, but only if it is supported by accurate analytical techniques. Development of stitched technology began in the 1990's as a partnership between NASA and Boeing (McDonnell Douglas at the time) under the Advanced Composites Technology Program and has continued under various titles and programs and into the Environmentally Responsible Aviation Project today. These programs contained development efforts involving manufacturing development, design, detailed analysis, and testing. Each phase of development, from coupons to large aircraft components was supported by detailed analysis to prove that the behavior of these structures was well-understood and predictable. The Structural Analysis of General Shells (STAGS) computer code was a critical tool used in the development of many stitched structures. As a key developer of STAGS, Charles Rankin's contribution to the programs was quite significant. Key features of STAGS used in these analyses and discussed in this paper include its accurate nonlinear and post-buckling capabilities, its ability to predict damage growth, and the use of Lagrange constraints and follower forces.
NASA Astrophysics Data System (ADS)
Waight, Noemi; Abd-El-Khalick, Fouad
2007-01-01
This study investigated the impact of the use of computer technology on the enactment of inquiry in a sixth grade science classroom. Participants were 42 students (38% female) enrolled in two sections of the classroom and taught by a technology-enthusiast instructor. Data were collected over the course of 4 months during which several inquiry activities were completed, some of which were supported with the use of technology. Non-participant observation, classroom videotaping, and semi-structured and critical-incident interviews were used to collect data. The results indicated that the technology in use worked to restrict rather than promote inquiry in the participant classroom. In the presence of computers, group activities became more structured with a focus on sharing tasks and accounting for individual responsibility, and less time was dedicated to group discourse with a marked decrease in critical, meaning-making discourse. The views and beliefs of teachers and students in relation to their specific contexts moderate the potential of technology in supporting inquiry teaching and learning and should be factored both in teacher training and attempts to integrate technology in science teaching.
Advanced BCD technology with vertical DMOS based on a semi-insulation structure
NASA Astrophysics Data System (ADS)
Kui, Ma; Xinghua, Fu; Jiexin, Lin; Fashun, Yang
2016-07-01
A new semi-insulation structure in which one isolated island is connected to the substrate was proposed. Based on this semi-insulation structure, an advanced BCD technology which can integrate a vertical device without extra internal interconnection structure was presented. The manufacturing of the new semi-insulation structure employed multi-epitaxy and selectively multi-doping. Isolated islands are insulated with the substrate by reverse-biased PN junctions. Adjacent isolated islands are insulated by isolation wall or deep dielectric trenches. The proposed semi-insulation structure and devices fixed in it were simulated through two-dimensional numerical computer simulators. Based on the new BCD technology, a smart power integrated circuit was designed and fabricated. The simulated and tested results of Vertical DMOS, MOSFETs, BJTs, resistors and diodes indicated that the proposed semi-insulation structure is reasonable and the advanced BCD technology is validated. Project supported by the National Natural Science Foundation of China (No. 61464002), the Science and Technology Fund of Guizhou Province (No. Qian Ke He J Zi [2014]2066), and the Dr. Fund of Guizhou University (No. Gui Da Ren Ji He Zi (2013)20Hao).
Textile technology development
NASA Technical Reports Server (NTRS)
Shah, Bharat M.
1995-01-01
The objectives of this report were to evaluate and select resin systems for Resin Transfer Molding (RTM) and Powder Towpreg Material, to develop and evaluate advanced textile processes by comparing 2-D and 3-D braiding for fuselage frame applications and develop window belt and side panel structural design concepts, to evaluate textile material properties, and to develop low cost manufacturing and tooling processes for the automated manufacturing of fuselage primary structures. This research was in support of the NASA and Langley Research Center (LaRc) Advanced Composite Structural Concepts and Materials Technologies for Primary Aircraft Structures program.
E-Learning as an Emerging Technology in India
ERIC Educational Resources Information Center
Grover, Pooja; Gupta, Nehta
2010-01-01
E-learning is a combination of learning services and technology that allow us to provide high value integrated learning any time, any place. It is about a new blend of resources, interactivity, performance support and structured learning activities. This methodology makes use of various types of technologies in order to enhance or transform the…
Transfer of space technology to industry
NASA Technical Reports Server (NTRS)
Hamilton, J. T.
1974-01-01
Some of the most significant applications of the NASA aerospace technology transfer to industry and other government agencies are briefly outlined. The technology utilization program encompasses computer programs for structural problems, life support systems, fuel cell development, and rechargeable cardiac pacemakers as well as reliability and quality research for oil recovery operations and pollution control.
Darcy, Simon; Green, Jenny; Maxwell, Hazel
2017-05-01
The purpose of this article is to examine the use of a mobile technology platform, software customization and technical support services by people with disability. The disability experience is framed through the participants' use of the technology, their social participation. A qualitative and interpretive research design was employed using a three-stage process of observation and semi-structured interviews of people with disability, a significant other and their service provider. Transcripts were analyzed to examine the research questions through the theoretical framework of PHAATE - Policy, Human, Activity, Assistance and Technology and Environment. The analysis revealed three emergent themes: 1. Engagement and activity; 2. Training, support and customization; and 3. Enablers, barriers and attitudes. The findings indicate that for the majority of users, the mobile technology increased the participants' communication and social participation. However, this was not true for all members of the pilot with variations due to disability type, support needs and availability of support services. Most participants, significant others and service providers identified improvements in confidence, security, safety and independence of those involved. Yet, the actions and attitudes of some of the significant others and service providers acted as a constraint to the adoption of the technology. Implications for Rehabilitation Customized mobile technology can operate as assistive technology providing a distinct benefit in terms of promoting disability citizenship. Mobile technology used in conjunction with a supportive call centre can lead to improvements in confidence, safety and independence for people experiencing disability. Training and support are critical in increasing independent use of mobile technology for people with disability. The enjoyment, development of skills and empowerment gained through the use of mobile technology facilitate the social inclusion of people with disability.
NASA Technical Reports Server (NTRS)
Clark, P. E.; Curtis, S. A.; Rilee, M. L.; Floyd, S. R.
2005-01-01
Addressable Reconfigurable Technology (ART) based structures: Mission Concepts based on Addressable Reconfigurable Technology (ART), originally studied for future ANTS (Autonomous Nanotechnology Swarm) Space Architectures, are now being developed as rovers for nearer term use in lunar and planetary surface exploration. The architecture is based on the reconfigurable tetrahedron as a building block. Tetrahedra are combined to form space-filling networks, shaped for the required function. Basic structural components are highly modular, addressable arrays of robust nodes (tetrahedral apices) from which highly reconfigurable struts (tetrahedral edges), acting as supports or tethers, are efficiently reversibly deployed/stowed, transforming and reshaping the structures as required.
Teachers' Organization of Participation Structures for Teaching Science with Computer Technology
NASA Astrophysics Data System (ADS)
Subramaniam, Karthigeyan
2016-08-01
This paper describes a qualitative study that investigated the nature of the participation structures and how the participation structures were organized by four science teachers when they constructed and communicated science content in their classrooms with computer technology. Participation structures focus on the activity structures and processes in social settings like classrooms thereby providing glimpses into the complex dynamics of teacher-students interactions, configurations, and conventions during collective meaning making and knowledge creation. Data included observations, interviews, and focus group interviews. Analysis revealed that the dominant participation structure evident within participants' instruction with computer technology was ( Teacher) initiation-( Student and Teacher) response sequences-( Teacher) evaluate participation structure. Three key events characterized the how participants organized this participation structure in their classrooms: setting the stage for interactive instruction, the joint activity, and maintaining accountability. Implications include the following: (1) teacher educators need to tap into the knowledge base that underscores science teachers' learning to teach philosophies when computer technology is used in instruction. (2) Teacher educators need to emphasize the essential idea that learning and cognition is not situated within the computer technology but within the pedagogical practices, specifically the participation structures. (3) The pedagogical practices developed with the integration or with the use of computer technology underscored by the teachers' own knowledge of classroom contexts and curriculum needs to be the focus for how students learn science content with computer technology instead of just focusing on how computer technology solely supports students learning of science content.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei, Jiang-Long, E-mail: jlwei@ipp.ac.cn; Li, Jun; Hu, Chun-Dong
A key issue on the development of EAST ion source was the junction design of insulator structure, which consists of three insulators and four supporting flanges of electrode grid. Because the ion source is installed on the vertical plane, the insulator structure has to withstand large bending and shear stress due to the gravity of whole ion source. Through a mechanical analysis, it was calculated that the maximum bending normal stress was 0.34 MPa and shear stress was 0.23 MPa on the insulator structure. Due to the advantages of simplicity and high strength, the adhesive bonding technology was applied tomore » the junction of insulator structure. A tensile testing campaign of different junction designs between insulator and supporting flange was performed, and a junction design of stainless steel and fiber enhanced epoxy resin with epoxy adhesive was determined. The insulator structure based on the determined design can satisfy both the requirements of high-voltage holding and mechanical strength.« less
Propulsion Technology Lifecycle Operational Analysis
NASA Technical Reports Server (NTRS)
Robinson, John W.; Rhodes, Russell E.
2010-01-01
The paper presents the results of a focused effort performed by the members of the Space Propulsion Synergy Team (SPST) Functional Requirements Sub-team to develop propulsion data to support Advanced Technology Lifecycle Analysis System (ATLAS). This is a spreadsheet application to analyze the impact of technology decisions at a system-of-systems level. Results are summarized in an Excel workbook we call the Technology Tool Box (TTB). The TTB provides data for technology performance, operations, and programmatic parameters in the form of a library of technical information to support analysis tools and/or models. The lifecycle of technologies can be analyzed from this data and particularly useful for system operations involving long running missions. The propulsion technologies in this paper are listed against Chemical Rocket Engines in a Work Breakdown Structure (WBS) format. The overall effort involved establishing four elements: (1) A general purpose Functional System Breakdown Structure (FSBS). (2) Operational Requirements for Rocket Engines. (3) Technology Metric Values associated with Operating Systems (4) Work Breakdown Structure (WBS) of Chemical Rocket Engines The list of Chemical Rocket Engines identified in the WBS is by no means complete. It is planned to update the TTB with a more complete list of available Chemical Rocket Engines for United States (US) engines and add the Foreign rocket engines to the WBS which are available to NASA and the Aerospace Industry. The Operational Technology Metric Values were derived by the SPST Sub-team in the form of the TTB and establishes a database for users to help evaluate and establish the technology level of each Chemical Rocket Engine in the database. The Technology Metric Values will serve as a guide to help determine which rocket engine to invest technology money in for future development.
Design and realization of tourism spatial decision support system based on GIS
NASA Astrophysics Data System (ADS)
Ma, Zhangbao; Qi, Qingwen; Xu, Li
2008-10-01
In this paper, the existing problems of current tourism management information system are analyzed. GIS, tourism as well as spatial decision support system are introduced, and the application of geographic information system technology and spatial decision support system to tourism management and the establishment of tourism spatial decision support system based on GIS are proposed. System total structure, system hardware and software environment, database design and structure module design of this system are introduced. Finally, realization methods of this systemic core functions are elaborated.
Advanced Technology Multiple Criteria Decision Model.
1981-11-01
ratings of the sys- tem parameters; and (3), HEADER which contains information on the structure of the problem and titles. Two supporting programs develop...in these files are given in Section V.2. 2. DATA STRUCTURE TABLES This section describes the data files used in the system selection model program ...the supporting program PPP and an input file to UPPP and SSMP. Figure 13 shows the structure of this file. b. User’s preference package (UPP) UPP is
NASA Technical Reports Server (NTRS)
Hammond, Monica S.; Good, James E.; Gilley, Scott D.; Howard, Richard W.
2006-01-01
NASA's human exploration initiative poses great opportunity and risk for manned and robotic missions to the Moon, Mars, and beyond. Engineers and scientists at the Marshall Space Flight Center (MSFC) are developing technologies for in situ fabrication capabilities during lunar and Martian surface operations utilizing provisioned and locally refined materials. Current fabrication technologies must be advanced to support the special demands and applications of the space exploration initiative such as power, weight and volume constraints. In Situ Fabrication and Repair (ISFR) will advance state-of-the-art technologies in support of habitat structure development, tools, and mechanical part fabrication. The repair and replacement of space mission components, such as life support items or crew exercise equipment, fall within the ISFR scope. This paper will address current fabrication technologies relative to meeting ISFR targeted capabilities, near-term advancement goals, and systematic evaluation of various fabrication methods.
Remote Sensing Technologies and Geospatial Modelling Hierarchy for Smart City Support
NASA Astrophysics Data System (ADS)
Popov, M.; Fedorovsky, O.; Stankevich, S.; Filipovich, V.; Khyzhniak, A.; Piestova, I.; Lubskyi, M.; Svideniuk, M.
2017-12-01
The approach to implementing the remote sensing technologies and geospatial modelling for smart city support is presented. The hierarchical structure and basic components of the smart city information support subsystem are considered. Some of the already available useful practical developments are described. These include city land use planning, urban vegetation analysis, thermal condition forecasting, geohazard detection, flooding risk assessment. Remote sensing data fusion approach for comprehensive geospatial analysis is discussed. Long-term city development forecasting by Forrester - Graham system dynamics model is provided over Kiev urban area.
Software support for improving technology infusion
NASA Technical Reports Server (NTRS)
Feather, M. S.; Hicks, K. A.; Johnson, K. R.; Cornford, S. L.
2003-01-01
This paper focuses on describing the custom software tool, DDP, that was developed to support the TIMA process, and on showing how the needs of the TIMA process have influenced the development of the structure and capabilities of the DDP software.
NASA Astrophysics Data System (ADS)
Yan, Pei; Chong, Xiao-Yu; Jiang, Ye-Hua; Feng, Jing
2017-12-01
Not Available Project supported by the Young-Talent Support Programs of Kunming University of Science and Technology, China (Grant No. 11504146) and the National Natural Science Foundation of China (Grant No. 51762028).
ERIC Educational Resources Information Center
Selwyn, Neil
2011-01-01
Schools' use of digital technology has so far proved to be a peripheral feature of the Conservative-Liberal education agenda. Through a series of reductions to previously extensive bureaucratic and funding structures, the Coalition administration has presided over a swift but sustained withdrawal of state support for digital technology use in…
ERIC Educational Resources Information Center
Iqbal, Shazia; Ahmad, Shahzad; Willis, Ian
2017-01-01
As the successful establishment of technology supported educational systems requires wide investment in terms of finances and faculty time, this study explores the influencing factors in the adoption of Technology Enhanced Learning (TEL) and the main barriers encountered during the use of TEL in Punjab, Pakistan. Semi-structured interviews were…
NASA Technical Reports Server (NTRS)
1988-01-01
The charter of the Structures Division is to perform and disseminate results of research conducted in support of aerospace engine structures. These results have a wide range of applicability to practioners of structural engineering mechanics beyond the aerospace arena. The specific purpose of the symposium was to familiarize the engineering structures community with the depth and range of research performed by the division and its academic and industrial partners. Sessions covered vibration control, fracture mechanics, ceramic component reliability, parallel computing, nondestructive evaluation, constitutive models and experimental capabilities, dynamic systems, fatigue and damage, wind turbines, hot section technology (HOST), aeroelasticity, structural mechanics codes, computational methods for dynamics, structural optimization, and applications of structural dynamics, and structural mechanics computer codes.
Advanced Platform Systems Technology study. Volume 3: Supporting data
NASA Technical Reports Server (NTRS)
1983-01-01
The overall study effort proceeded from the identification of 106 technology topics to the selection of 5 for detail trade studies. The technical issues and options were evaluated through the trade process. Finally, individual consideration was given to costs and benefits for the technologies identified for advancement. Eight priority technology items were identified for advancement. Supporting data generated during the trade selection and trade study process were presented. Space platform requirements, trade study and cost benefits analysis, and technology advancement planning are advanced. The structured approach used took advantage of a number of forms developed to ensure that a consistent approach was employed by each of the diverse specialists that participated. These forms were an intrinsic part of the study protocol.
Future payload technology requirements study
NASA Technical Reports Server (NTRS)
1975-01-01
Technology advances needed for an overall mission model standpoint as well as those for individual shuttle payloads are defined. The technology advances relate to the mission scientific equipment, spacecraft subsystems that functionally support this equipment, and other payload-related equipment, software, and environment necessary to meet broad program objectives. In the interest of obtaining commonality of requirements, the study was structured according to technology categories rather than in terms of individual payloads.
78 FR 68425 - Meeting of the National Commission on the Structure of the Air Force
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-14
... mission sets such as security forces, civil engineering and science and technology. -- Projections and... Defense Support to Civil Agencies. This will include implications for the structure of the Air Force from...
Ninth DOD/NASA/FAA Conference on Fibrous Composites in Structural Design, volume 1
NASA Technical Reports Server (NTRS)
Soderquist, Joseph R. (Compiler); Neri, Lawrence M. (Compiler); Bohon, Herman L. (Compiler)
1992-01-01
This publication contains the proceedings of the Ninth DOD/NASA/FAA conference on Fibrous Composites in structural Design. Presentations were made in the following areas of composite structural design: perspectives in composites; design methodology; design applications; design criteria; supporting technology; damage tolerance; and manufacturing.
Kara, Tomas; Leinveber, Pavel; Vlasin, Michal; Jurak, Pavel; Novak, Miroslav; Novak, Zdenek; Chrastina, Jan; Czechowicz, Krzysztof; Belehrad, Milos; Asirvatham, Samuel J
2014-06-01
Despite the substantial progress that has been achieved in interventional cardiology and cardiac electrophysiology, endovascular intervention for the diagnosis and treatment of central nervous system (CNS) disorders such as stroke, epilepsy and CNS malignancy is still limited, particularly due to highly tortuous nature of the cerebral arterial and venous system. Existing interventional devices and techniques enable only limited and complicated access especially into intra-cerebral vessels. The aim of this study was to develop a micro-catheter magnetically-guided technology specifically designed for endovascular intervention and mapping in deep CNS vascular structures. Mapping of electrical brain activity was performed via the venous system on an animal dog model with the support of the NIOBE II system. A novel micro-catheter specially designed for endovascular interventions in the CNS, with the support of the NIOBE II technology, was able to reach safely deep intra-cerebral venous structures and map the electrical activity there. Such structures are not currently accessible using standard catheters. This is the first study demonstrating successful use of a new micro-catheter in combination with NIOBE II technology for endovascular intervention in the brain.
Online Academic Support Peer Groups for Medical Undergraduates
ERIC Educational Resources Information Center
Best, Avril Christine
2012-01-01
As advances in information and communication technologies give way to more innovative opportunities for teaching and learning at a distance, the need to provide supporting structures for online students similar to those offered to on-campus students is becoming more significant. Although a range of support services has been proposed in the past,…
NASA Astrophysics Data System (ADS)
Drygin, M. Yu; Kuryshkin, N. P.
2018-01-01
Active growth of coal extraction and underinvestment of coal mining in Russia lead to the fact that technical state of more than 86% of technological machines at opencast coal mines is unacceptable. One of the most significant problems is unacceptable state of supporting metallic structures of excavators and mine dump trucks. The analysis has shown that defects in these metallic structures had been accumulated for a long time. Their removal by the existing method of repair welding was not effective - the flaws reappeared in 2-6 months of technological machines’ service. The authors detected the prime causes that did not allow to make a good repair welding joint. A new technology of repair welding had been tested and endorsed, and this allowed to reduce the number of welded joints’ flaws by 85% without additional raising welders’ qualification. As a result the number of flaws in metallic structures of the equipment had been reduced by 35 % as early as in the first year of using the new technology.
Technology acceptance perception for promotion of sustainable consumption.
Biswas, Aindrila; Roy, Mousumi
2018-03-01
Economic growth in the past decades has resulted in change in consumption pattern and emergence of tech-savvy generation with unprecedented increase in the usage of social network technology. In this paper, the technology acceptance value gap adapted from the technology acceptance model has been applied as a tool supporting social network technology usage and subsequent promotion of sustainable consumption. The data generated through the use of structured questionnaires have been analyzed using structural equation modeling. The validity of the model and path estimates signifies the robustness of Technology Acceptance value gap in adjudicating the efficiency of social network technology usage in augmentation of sustainable consumption and awareness. The results indicate that subjective norm gap, ease-of-operation gap, and quality of green information gap have the most adversarial impact on social network technology usage. Eventually social networking technology usage has been identified as a significant antecedent of sustainable consumption.
Telehealth technology in case/disease management.
Park, Eun-Jun
2006-01-01
Case managers can better coordinate and facilitate chronic illness care by adopting telehealth technology. This article overviews four major categories of telehealth technology based on patients' roles in self-management: surveillance, testing peripherals and messaging, decision support aids, and online support groups related to patients' subordinate, structured, collaborative, and autonomous roles, respectively. These various telehealth technologies should be selected on the basis of patients' care needs and preferences. Moreover, when they are integrated with other clinical information systems, case management practice can be better performed. However, the specific role functions and skill sets needed to be competent in telehealth environments have not yet been clearly identified. Considering role ambiguity and stress among telehealth clinicians, clarifying relevant roles is an urgent task.
ERIC Educational Resources Information Center
Dillon, Paula A.
2017-01-01
The purpose of this study was to examine administrator, student, and teacher perceptions of organizational structures, systems, and supports implemented to aid technology integration, and the potential for that technology integration to achieve 21st century skill acquisition and deeper learning in a 1:1 environment. The Diffusion of Innovation…
3D printing PLA and silicone elastomer structures with sugar solution support material
NASA Astrophysics Data System (ADS)
Hamidi, Armita; Jain, Shrenik; Tadesse, Yonas
2017-04-01
3D printing technology has been used for rapid prototyping since 1980's and is still developing in a way that can be used for customized products with complex design and miniature features. Among all the available 3D printing techniques, Fused Deposition Modeling (FDM) is one of the most widely used technologies because of its capability to build different structures by employing various materials. However, complexity of parts made by FDM is greatly limited by restriction of using support materials. Support materials are often used in FDM for several complex geometries such as fully suspended shapes, overhanging surfaces and hollow features. This paper describes an approach to 3D print a structure using silicone elastomer and polylactide fiber (PLA) by employing a novel support material that is soluble in water. This support material is melted sugar which can easily be prepared at a low cost. Sugar is a carbohydrate, which is found naturally in plants such as sugarcane and sugar beets; therefore, it is completely organic and eco-friendly. As another advantage, the time for removing this material from the part is considerably less than other commercially available support materials and it can be removed easily by warm water without leaving any trace. Experiments were done using an inexpensive desktop 3D printer to fabricate complex structures for use in soft robots. The results envision that further development of this system would contribute to a method of fabrication of complex parts with lower cost yet high quality.
1998 IEEE Aerospace Conference. Proceedings.
NASA Astrophysics Data System (ADS)
The following topics were covered: science frontiers and aerospace; flight systems technologies; spacecraft attitude determination and control; space power systems; smart structures and dynamics; military avionics; electronic packaging; MEMS; hyperspectral remote sensing for GVP; space laser technology; pointing, control, tracking and stabilization technologies; payload support technologies; protection technologies; 21st century space mission management and design; aircraft flight testing; aerospace test and evaluation; small satellites and enabling technologies; systems design optimisation; advanced launch vehicles; GPS applications and technologies; antennas and radar; software and systems engineering; scalable systems; communications; target tracking applications; remote sensing; advanced sensors; and optoelectronics.
NASA Technical Reports Server (NTRS)
Thomas, Leann; Utley, Dawn
2006-01-01
While there has been extensive research in defining project organizational structures for traditional projects, little research exists to support high technology government project s organizational structure definition. High-Technology Government projects differ from traditional projects in that they are non-profit, span across Government-Industry organizations, typically require significant integration effort, and are strongly susceptible to a volatile external environment. Systems Integration implementation has been identified as a major contributor to both project success and failure. The literature research bridges program management organizational planning, systems integration, organizational theory, and independent project reports, in order to assess Systems Integration (SI) organizational structure selection for improving the high-technology government project s probability of success. This paper will describe the methodology used to 1) Identify and assess SI organizational structures and their success rate, and 2) Identify key factors to be used in the selection of these SI organizational structures during the acquisition strategy process.
Design Oriented Structural Modeling for Airplane Conceptual Design Optimization
NASA Technical Reports Server (NTRS)
Livne, Eli
1999-01-01
The main goal for research conducted with the support of this grant was to develop design oriented structural optimization methods for the conceptual design of airplanes. Traditionally in conceptual design airframe weight is estimated based on statistical equations developed over years of fitting airplane weight data in data bases of similar existing air- planes. Utilization of such regression equations for the design of new airplanes can be justified only if the new air-planes use structural technology similar to the technology on the airplanes in those weight data bases. If any new structural technology is to be pursued or any new unconventional configurations designed the statistical weight equations cannot be used. In such cases any structural weight estimation must be based on rigorous "physics based" structural analysis and optimization of the airframes under consideration. Work under this grant progressed to explore airframe design-oriented structural optimization techniques along two lines of research: methods based on "fast" design oriented finite element technology and methods based on equivalent plate / equivalent shell models of airframes, in which the vehicle is modelled as an assembly of plate and shell components, each simulating a lifting surface or nacelle / fuselage pieces. Since response to changes in geometry are essential in conceptual design of airplanes, as well as the capability to optimize the shape itself, research supported by this grant sought to develop efficient techniques for parametrization of airplane shape and sensitivity analysis with respect to shape design variables. Towards the end of the grant period a prototype automated structural analysis code designed to work with the NASA Aircraft Synthesis conceptual design code ACS= was delivered to NASA Ames.
Just the Right Amount of Reinforcement
NASA Technical Reports Server (NTRS)
Walton, Greg
1998-01-01
Lockheed Martin Skunk Works, is taking the next step towards economical low-Earth-orbit (LEO) operations with NASA's X-33 technology demonstrator, that uses composite tanks for liquid hydrogen (LH sub2) fuel storage and structural support, The X-33 is a 53% scale model of the VentureStar single-stage-to-orbit (SSTO) reusable launch vehicle(RLV) projected to orbit payloads at a rate, of $1,000 per pound beginning in 2004 In order to make VentureStar completely reusable and economical engineers are using composite materials throughout the spacecrafts structure. The first test of the design comes in 1999 on the X-33 technology demonstrator. Two of the primary structures that engineers will be evaluating are the carbon fiber/epoxy LH2 fuel tanks. The 29-ft long by 18-ft wide tanks, which fill two-thirds of the X-33's interior, serve a dual purpose carrying fuel and providing structural support to the walls of the spacecraft. Fiber placement makes it possible to build the fuel tanks, large, light and strong enough to satisfy X33's requirements. Lockheed Martin choose the fabrication technology to produce the eight sections of each tank because of fiber placement's ability to handle complex surfaces, speed and repeatability.
Transforming Dental Technology Education: Skills, Knowledge, and Curricular Reform.
Bobich, Anita M; Mitchell, Betty L
2017-09-01
Dental technology is one of the core allied dental health professions supporting the practice of dentistry. By definition, it is the art, science, and technologies that enable the design and fabrication of dental prostheses and/or corrective devices to restore natural teeth and supporting structures to fulfill a patient's physiological and esthetic needs. Dental technology educational programs are faced with serious challenges, including rapid changes in technology, inadequate funding for educational programs, and the need to develop curricula that reflect current industry needs. Better communications between dental technologists and practitioners are needed to gain greater recognition of the contribution that technologists make to patient health. Amid these challenges, the technology workforce is dedicated to providing patients with the best possible restorative dental prostheses. This article was written as part of the project "Advancing Dental Education in the 21 st Century."
NASA Astrophysics Data System (ADS)
Pan, Tianheng
2018-01-01
In recent years, the combination of workflow management system and Multi-agent technology is a hot research field. The problem of lack of flexibility in workflow management system can be improved by introducing multi-agent collaborative management. The workflow management system adopts distributed structure. It solves the problem that the traditional centralized workflow structure is fragile. In this paper, the agent of Distributed workflow management system is divided according to its function. The execution process of each type of agent is analyzed. The key technologies such as process execution and resource management are analyzed.
NASA Technical Reports Server (NTRS)
Watts, D. J.
1978-01-01
The overall wing study objectives are to study and plan the effort by commercial transport aircraft manufacturers to accomplish the transition from current conventional materials and practices to extensive use of advanced composites in wings of aircraft that will enter service in the 1985-1990 time period. Specific wing study objectives are to define the technology and data needed to support an aircraft manufacturer's commitment to utilize composites primary wing structure in future production aircraft and to develop plans for a composite wing technology program which will provide the needed technology and data.
High Leverage Technologies for In-Space Assembly of Complex Structures
NASA Technical Reports Server (NTRS)
Hamill, Doris; Bowman, Lynn M.; Belvin, W. Keith; Gilman, David A.
2016-01-01
In-space assembly (ISA), the ability to build structures in space, has the potential to enable or support a wide range of advanced mission capabilities. Many different individual assembly technologies would be needed in different combinations to serve many mission concepts. The many-to-many relationship between mission needs and technologies makes it difficult to determine exactly which specific technologies should receive priority for development and demonstration. Furthermore, because enabling technologies are still immature, no realistic, near-term design reference mission has been described that would form the basis for flowing down requirements for such development and demonstration. This broad applicability without a single, well-articulated mission makes it difficult to advance the technology all the way to flight readiness. This paper reports on a study that prioritized individual technologies across a broad field of possible missions to determine priority for future technology investment.
Lunar In Situ Materials-Based Surface Structure Technology Development Efforts at NASA/MSFC
NASA Technical Reports Server (NTRS)
Fiske, M. R.; McGregor, W.; Pope, R.; McLemore, C. A.; Kaul, R.; Smithers, G.; Ethridge, E.; Toutanji, H.
2007-01-01
For long-duration missions on other planetary bodies, the use of in situ materials will become increasingly critical. As man's presence on these bodies expands, so must the structures to accommodate them, including habitats, laboratories, berms, radiation shielding for surface reactors, garages, solar storm shelters, greenhouses, etc. The use of in situ materials will significantly offset required launch upmass and volume issues. Under the auspices of the In Situ Fabrication & Repair (ISFR) Program at NASA/Marshall Space Flight Center (MSFC), the Surface Structures project has been developing materials and construction technologies to support development of these in situ structures. This paper will report on the development of several of these technologies at MSFC's Prototype Development Laboratory (PDL). These technologies include, but are not limited to, development of extruded concrete and inflatable concrete dome technologies based on waterless and water-based concretes, development of regolith-based blocks with potential radiation shielding binders including polyurethane and polyethylene, pressure regulation systems for inflatable structures, production of glass fibers and rebar derived from molten lunar regolith simulant, development of regolithbag structures, and others, including automation design issues. Results to date and lessons learned will be presented, along with recommendations for future activities.
NASA Astrophysics Data System (ADS)
Dvonch, Curt; Smith, Christopher; Bourne, Stefanie; Blandino, Joseph R.; Miles, Jonathan J.
2006-04-01
The Infrared Development and Thermal Structures Laboratory (IDTSL) is an undergraduate research laboratory in the College of Integrated Science and Technology (CISAT) at James Madison University (JMU) in Harrisonburg, Virginia. During the 1997-98 academic year, Dr. Jonathan Miles established the IDTSL at JMU with the support of a collaborative research grant from the NASA Langley Research Center and with additional support from the College of Integrated Science and Technology at JMU. The IDTSL supports research and development efforts that feature non-contact thermal and mechanical measurements and advance the state of the art. These efforts all entail undergraduate participation intended to significantly enrich their technical education. The IDTSL is funded by major government organizations and the private sector and provides a unique opportunity to undergraduates who wish to participate in projects that push the boundaries of non-contact measurement technologies, and provides a model for effective hands-on, project oriented, student-centered learning that reinforces concepts and skills introduced within the Integrated Science and Technology (ISAT) curriculum. The lab also provides access to advanced topics and emerging measurement technologies; fosters development of teaming and communication skills in an interdisciplinary environment; and avails undergraduates of professional activities including writing papers, presentation at conferences, and participation in summer internships. This paper provides an overview of the Infrared Development and Thermal Structures Laboratory, its functionality, its record of achievements, and the important contribution it has made to the field of non-contact measurement and undergraduate education.
Development of Structural Health Management Technology for Aerospace Vehicles
NASA Technical Reports Server (NTRS)
Prosser, W. H.
2003-01-01
As part of the overall goal of developing Integrated Vehicle Health Management (IVHM) systems for aerospace vehicles, NASA has focused considerable resources on the development of technologies for Structural Health Management (SHM). The motivations for these efforts are to increase the safety and reliability of aerospace structural systems, while at the same time decreasing operating and maintenance costs. Research and development of SHM technologies has been supported under a variety of programs for both aircraft and spacecraft including the Space Launch Initiative, X-33, Next Generation Launch Technology, and Aviation Safety Program. The major focus of much of the research to date has been on the development and testing of sensor technologies. A wide range of sensor technologies are under consideration including fiber-optic sensors, active and passive acoustic sensors, electromagnetic sensors, wireless sensing systems, MEMS, and nanosensors. Because of their numerous advantages for aerospace applications, most notably being extremely light weight, fiber-optic sensors are one of the leading candidates and have received considerable attention.
ERIC Educational Resources Information Center
Abidin, Zaenal; Mathrani, Anuradha; Hunter, Roberta; Parsons, David
2017-01-01
Implementing mobile learning in curriculum-based educational settings faces challenges related to perceived ethical and learning issues. This study investigated the affordances of mobile technologies to support mathematics instruction by teachers. An exploratory study employing questionnaires and semi-structured interviews revealed that, while…
FODEM: A Multi-Threaded Research and Development Method for Educational Technology
ERIC Educational Resources Information Center
Suhonen, Jarkko; de Villiers, M. Ruth; Sutinen, Erkki
2012-01-01
Formative development method (FODEM) is a multithreaded design approach that was originated to support the design and development of various types of educational technology innovations, such as learning tools, and online study programmes. The threaded and agile structure of the approach provides flexibility to the design process. Intensive…
Stakeholder Expectations in Practice-Based Medicine
ERIC Educational Resources Information Center
Mills, Ann E.; Rorty, Mary V.; Werhane, Patricia H.
2003-01-01
Competitive pressures are forcing physicians from solo practice into new organizational structures. These new structures and the technologies supporting them have generated suggestions for improving medical practice. This article examines the unspoken assumption often accompanying these suggestions that practice improvement can come about through…
Lightweight structure design for supporting plate of primary mirror
NASA Astrophysics Data System (ADS)
Wang, Xiao; Wang, Wei; Liu, Bei; Qu, Yan Jun; Li, Xu Peng
2017-10-01
A topological optimization design for the lightweight technology of supporting plate of the primary mirror is presented in this paper. The supporting plate of the primary mirror is topologically optimized under the condition of determined shape, loads and environment. And the optimal structure is obtained. The diameter of the primary mirror in this paper is 450mm, and the material is SiC1 . It is better to select SiC/Al as the supporting material. Six points of axial relative displacement can be used as constraints in optimization2 . Establishing the supporting plate model and setting up the model parameters. After analyzing the force of the main mirror on the supporting plate, the model is applied with force and constraints. Modal analysis and static analysis of supporting plates are calculated. The continuum structure topological optimization mathematical model is created with the variable-density method. The maximum deformation of the surface of supporting plate under the gravity of the mirror and the first model frequency are assigned to response variable, and the entire volume of supporting structure is converted to object function. The structures before and after optimization are analyzed using the finite element method. Results show that the optimized fundamental frequency increases 29.85Hz and has a less displacement compared with the traditional structure.
Sail film materials and supporting structure for a solar sail, a preliminary design, volume 4
NASA Technical Reports Server (NTRS)
Rowe, W. M. (Editor)
1978-01-01
Solar sailing technology was examined in relation to a mission to rendezvous with Halley's Comet. Development of an ultra-light, highly reflecting material system capable of operating at high solar intensity for long periods of time was emphasized. Data resulting from the sail materials study are reported. Topics covered include: basic film; coatings and thermal control; joining and handling; system performance; and supporting structures assessment for the heliogyro.
Advanced composite fuselage technology
NASA Technical Reports Server (NTRS)
Ilcewicz, Larry B.; Smith, Peter J.; Horton, Ray E.
1993-01-01
Boeing's ATCAS program has completed its third year and continues to progress towards a goal to demonstrate composite fuselage technology with cost and weight advantages over aluminum. Work on this program is performed by an integrated team that includes several groups within The Boeing Company, industrial and university subcontractors, and technical support from NASA. During the course of the program, the ATCAS team has continued to perform a critical review of composite developments by recognizing advances in metal fuselage technology. Despite recent material, structural design, and manufacturing advancements for metals, polymeric matrix composite designs studied in ATCAS still project significant cost and weight advantages for future applications. A critical path to demonstrating technology readiness for composite transport fuselage structures was created to summarize ATCAS tasks for Phases A, B, and C. This includes a global schedule and list of technical issues which will be addressed throughout the course of studies. Work performed in ATCAS since the last ACT conference is also summarized. Most activities relate to crown quadrant manufacturing scaleup and performance verification. The former was highlighted by fabricating a curved, 7 ft. by 10 ft. panel, with cocured hat-stiffeners and cobonded J-frames. In building to this scale, process developments were achieved for tow-placed skins, drape formed stiffeners, braided/RTM frames, and panel cure tooling. Over 700 tests and supporting analyses have been performed for crown material and design evaluation, including structural tests that demonstrated limit load requirements for severed stiffener/skin failsafe damage conditions. Analysis of tests for tow-placed hybrid laminates with large damage indicates a tensile fracture toughness that is higher than that observed for advanced aluminum alloys. Additional recent ATCAS achievements include crown supporting technology, keel quadrant design evaluation, and sandwich process development.
Optimization of monopiles for offshore wind turbines.
Kallehave, Dan; Byrne, Byron W; LeBlanc Thilsted, Christian; Mikkelsen, Kristian Kousgaard
2015-02-28
The offshore wind industry currently relies on subsidy schemes to be competitive with fossil-fuel-based energy sources. For the wind industry to survive, it is vital that costs are significantly reduced for future projects. This can be partly achieved by introducing new technologies and partly through optimization of existing technologies and design methods. One of the areas where costs can be reduced is in the support structure, where better designs, cheaper fabrication and quicker installation might all be possible. The prevailing support structure design is the monopile structure, where the simple design is well suited to mass-fabrication, and the installation approach, based on conventional impact driving, is relatively low-risk and robust for most soil conditions. The range of application of the monopile for future wind farms can be extended by using more accurate engineering design methods, specifically tailored to offshore wind industry design. This paper describes how state-of-the-art optimization approaches are applied to the design of current wind farms and monopile support structures and identifies the main drivers where more accurate engineering methods could impact on a next generation of highly optimized monopiles. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Additive Construction with Mobile Emplacement (ACME)
NASA Technical Reports Server (NTRS)
Vickers, John
2015-01-01
The Additive Construction with Mobile Emplacement (ACME) project is developing technology to build structures on planetary surfaces using in-situ resources. The project focuses on the construction of both 2D (landing pads, roads, and structure foundations) and 3D (habitats, garages, radiation shelters, and other structures) infrastructure needs for planetary surface missions. The ACME project seeks to raise the Technology Readiness Level (TRL) of two components needed for planetary surface habitation and exploration: 3D additive construction (e.g., contour crafting), and excavation and handling technologies (to effectively and continuously produce in-situ feedstock). Additionally, the ACME project supports the research and development of new materials for planetary surface construction, with the goal of reducing the amount of material to be launched from Earth.
Chung, Namho; Kwon, Soon Jae
2009-10-01
While mobile banking has become an integral part of banking activities, it has also caused systems-related stress and consequent distrust among mobile banking users. This study looks into the phenomenon of technology adoption for mobile banking users and identifies potential factors that nurture positive intentions toward mobile banking usage. It examines the effects of a customer's mobile experience and technical support on mobile banking acceptance and explains how some variables affect this intention. After a literature review, the method of empirical analysis using a structured questionnaire is developed. Hierarchical Moderated Regression Analyses (HMRA) is used to examine the model. We find that mobile experience and technical support tend to strengthen the relationship between technological characteristics and a customer's intention to use the mobile technology.
Zhang, Litao; Cvijic, Mary Ellen; Lippy, Jonathan; Myslik, James; Brenner, Stephen L; Binnie, Alastair; Houston, John G
2012-07-01
In this paper, we review the key solutions that enabled evolution of the lead optimization screening support process at Bristol-Myers Squibb (BMS) between 2004 and 2009. During this time, technology infrastructure investment and scientific expertise integration laid the foundations to build and tailor lead optimization screening support models across all therapeutic groups at BMS. Together, harnessing advanced screening technology platforms and expanding panel screening strategy led to a paradigm shift at BMS in supporting lead optimization screening capability. Parallel SAR and structure liability relationship (SLR) screening approaches were first and broadly introduced to empower more-rapid and -informed decisions about chemical synthesis strategy and to broaden options for identifying high-quality drug candidates during lead optimization. Copyright © 2012 Elsevier Ltd. All rights reserved.
Tirado-Ramos, Alfredo; Hu, Jingkun; Lee, K.P.
2002-01-01
Supplement 23 to DICOM (Digital Imaging and Communications for Medicine), Structured Reporting, is a specification that supports a semantically rich representation of image and waveform content, enabling experts to share image and related patient information. DICOM SR supports the representation of textual and coded data linked to images and waveforms. Nevertheless, the medical information technology community needs models that work as bridges between the DICOM relational model and open object-oriented technologies. The authors assert that representations of the DICOM Structured Reporting standard, using object-oriented modeling languages such as the Unified Modeling Language, can provide a high-level reference view of the semantically rich framework of DICOM and its complex structures. They have produced an object-oriented model to represent the DICOM SR standard and have derived XML-exchangeable representations of this model using World Wide Web Consortium specifications. They expect the model to benefit developers and system architects who are interested in developing applications that are compliant with the DICOM SR specification. PMID:11751804
Embedding technology into inter-professional best practices in home safety evaluation.
Burns, Suzanne Perea; Pickens, Noralyn Davel
2017-08-01
To explore inter-professional home evaluators' perspectives and needs for building useful and acceptable decision-support tools for the field of home modifications. Twenty semi-structured interviews were conducted with a range of home modification professionals from different regions of the United States. The interview transcripts were analyzed with a qualitative, descriptive, perspective approach. Technology supports current best practice and has potential to inform decision making through features that could enhance home evaluation processes, quality, efficiency and inter-professional communication. Technological advances with app design have created numerous opportunities for the field of home modifications. Integrating technology and inter-professional best practices will improve home safety evaluation and intervention development to meet client-centred and societal needs. Implications for rehabilitation Understanding home evaluators technology needs for home safety evaluations contributes to the development of app-based assessments. Integrating inter-professional perspectives of best practice and technological needs in an app for home assessments improves processes. Novice and expert home evaluators would benefit from decision support systems embedded in app-based assessments. Adoption of app-based assessment would improve efficiency while remaining client-centred.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kasten, P.R.; Rittenhouse, P.L.; Bartine, D.E.
1983-06-01
During 1982 the High-Temperature Gas-Cooled Reactor (HTGR) Technology Program at Oak Ridge National Laboratory (ORNL) continued to develop experimental data required for the design and licensing of cogeneration HTGRs. The program involves fuels and materials development (including metals, graphite, ceramic, and concrete materials), HTGR chemistry studies, structural component development and testing, reactor physics and shielding studies, performance testing of the reactor core support structure, and HTGR application and evaluation studies.
Temporal Investment Strategy to Enable JPL Future Space Missions
NASA Technical Reports Server (NTRS)
Lincoln, William P.; Hua, Hook; Weisbin, Charles R.
2006-01-01
The Jet Propulsion Laboratory (JPL) formulates and conducts deep space missions for NASA (the National Aeronautics and Space Administration). The Chief Technologist of JPL has the responsibility for strategic planning of the laboratory's advanced technology program to assure that the required technological capabilities to enable future JPL deep space missions are ready as needed; as such he is responsible for the development of a Strategic Plan. As part of the planning effort, he has supported the development of a structured approach to technology prioritization based upon the work of the START (Strategic Assessment of Risk and Technology) team. A major innovation reported here is the addition of a temporal model that supports scheduling of technology development as a function of time. The JPL Strategic Technology Plan divides the required capabilities into 13 strategic themes. The results reported here represent the analysis of an initial seven.
Ninth DOD/NASA/FAA Conference on Fibrous Composites in Structural Design, volume 2
NASA Technical Reports Server (NTRS)
Soderquist, Joseph R. (Compiler); Neri, Lawrence M. (Compiler); Bohon, Herman L. (Compiler)
1992-01-01
This publication contains the proceedings of the Ninth DOD/NASA/FAA Conference on Fibrous Composites in Structural Design held at Lake Tahoe, Nevada, during 4-7 Nov. 1991. Presentations were made in the following areas of composite structural design: perspectives in composites, design methodology, design applications, design criteria, supporting technology, damage tolerance, and manufacturing.
Ninth DOD/NASA/FAA Conference on Fibrous Composites in Structural Design, volume 3
NASA Technical Reports Server (NTRS)
Soderquist, Joseph R. (Compiler); Neri, Lawrence M. (Compiler); Bohon, Herman L. (Compiler)
1992-01-01
This publication contains the proceedings of the Ninth DOD/NASA/FAA Conference on Fibrous Composites in Structural Design held at Lake Tahoe, Nevada, during 4-7 Nov. 1991. Presentations were made in the following areas of composite structural design: perspectives in composites, design methodology, design applications, design criteria, supporting technology, damage tolerance, and manufacturing.
NASA Technical Reports Server (NTRS)
1990-01-01
A brief but comprehensive review is given of the technical accomplishments of the NASA Lewis Research Center during the past year. Topics covered include instrumentation and controls technology; internal fluid dynamics; aerospace materials, structures, propulsion, and electronics; space flight systems; cryogenic fluids; Space Station Freedom systems engineering, photovoltaic power module, electrical systems, and operations; and engineering and computational support.
Pseudoscience in Instructional Technology: The Case of Learner Control Research.
ERIC Educational Resources Information Center
Reeves, Thomas C.
Scientific research that is conducted without the structure of a supporting scientific paradigm should be labeled pseudoscience in that such research is deceptive or false science. It is argued that much of the research in educational technology is pseudoscience, with the focus on learner control research. Learner control is the design feature of…
Lunar In Situ Materials-Based Habitat Technology Development Efforts at NASA/MSFC
NASA Technical Reports Server (NTRS)
Bodiford, Melanie P.; Burks, K. H.; Perry M. R.; Cooper, R. W.; Fiske, M. R.
2006-01-01
For long duration missions on other planetary bodies, the use of in situ materials will become increasingly critical. As man's presence on these bodies expands, so must the structures to accommodate them including habitats, laboratories, berms, garages, solar storm shelters, greenhouses, etc. The use of in situ materials will significantly offset required launch upmass and volume issues. Under the auspices of the In Situ Fabrication & Repair (ISFR) Program at NASA/Marshall Space Flight Center (MSFC), the Habitat Structures project has been developing materials and construction technologies to support development of these in situ structures. This paper will report on the development of several of these technologies at MSFC's Prototype Development Laboratory (PDL). These technologies include, but are not limited to, development of extruded concrete and inflatable concrete dome technologies based on waterless and water-based concretes, development of regolith-based blocks with potential radiation shielding binders including polyurethane and polyethylene, pressure regulation systems for inflatable structures, production of glass fibers and rebar derived from molten lunar regolith simulant, development of regolithbag structures, and others, including automation design issues. Results to date and planned efforts for FY06 will also be presented.
Innovative Manufacturing of Launch Vehicle Structures - Integrally Stiffened Cylinder Process
NASA Technical Reports Server (NTRS)
Wagner, John; Domack, Marcia; Tayon, Wesley; Bird, Richard K.
2017-01-01
Reducing launch costs is essential to ensuring the success of NASA's visions for planetary exploration and earth science, economical support of the International Space Station, and competitiveness of the U.S. commercial launch industry. Reducing launch vehicle manufacturing cost supports NASA's budget and technology development priorities.
78 FR 76117 - Meeting of the National Commission on the Structure of the Air Force
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-16
... missions such as Homeland Defense, Homeland Security, and Defense Support to Civil Agencies. This will... Support, Training and Education, and other specific mission sets such as security forces, civil engineering and science and technology. --Projections and assumptions about future resource levels that will...
78 FR 76119 - Meeting of the National Commission on the Structure of the Air Force
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-16
... missions such as Homeland Defense, Homeland Security, and Defense Support to Civil Agencies. This will... Support, Training and Education, and other specific mission sets such as security forces, civil engineering and science and technology. --Projections and assumptions about future resource levels that will...
Cabrita, Miriam; Op den Akker, Harm; Tabak, Monique; Hermens, Hermie J; Vollenbroek-Hutten, Miriam M R
2018-06-20
The age of the population worldwide is rapidly increasing, bringing social and economic challenges. Persuasive technology can alleviate the burden on traditional healthcare services when used to support healthy behaviors, for instance in the prevention and treatment of chronic diseases. Additionally, healthy behaviors are key factors for active and healthy ageing by delaying or even reversing functional decline. In this manuscript, we present a multi-perspective analysis of technologies that can be used in the support of active and healthy ageing in the daily life. First, we take the perspective of physical and mental health, by focusing on the promotion of physical activity and emotional wellbeing. From a temporal perspective, we look at how technology evolved from past, present and future. The overview of the literature is structured in four main sections: (1) measurement of current behavior (monitoring), (2) analysis of the data gathered to derive meaningful information (analyzing & reasoning), (3) support the individual in the adoption or maintenance of a behavior (coaching), and (4) tools or interfaces that provide the information to the individual to stimulate the desired behavior (applications). Finally, we provide recommendations for the design, development and implementation of future technological innovations to support Active and Healthy Ageing in daily life. Copyright © 2018. Published by Elsevier Inc.
Diffusion of information technology supporting the Institute of Medicine's quality chasm care aims.
Burke, Darrell; Menachemi, Nir; Brooks, Robert G
2005-01-01
This article examines the degree to which healthcare information technology (HIT) supporting the Institute of Medicine's (IOM) six care aims is utilized in the hospital setting and explores organizational factors associated with HIT use. Guided by the IOM's Crossing the quality chasm report and associated literature, 27 applications and/or capabilities are classified according to one or more of the six care aims. A structured survey of Florida hospitals identified the use of HIT. Results suggest that, on average, hospitals have not yet embraced HIT to support the IOM's care aims and that associated organizational factors vary according to care aim.
NASA Astrophysics Data System (ADS)
Kristensen, Anders; Yang, Joel K. W.; Bozhevolnyi, Sergey I.; Link, Stephan; Nordlander, Peter; Halas, Naomi J.; Mortensen, N. Asger
2017-01-01
Plasmonic colours are structural colours that emerge from resonant interactions between light and metallic nanostructures. The engineering of plasmonic colours is a promising, rapidly emerging research field that could have a large technological impact. We highlight basic properties of plasmonic colours and recent nanofabrication developments, comparing technology-performance indicators for traditional and nanophotonic colour technologies. The structures of interest include diffraction gratings, nanoaperture arrays, thin films, and multilayers and structures that support Mie resonances and whispering-gallery modes. We discuss plasmonic colour nanotechnology based on localized surface plasmon resonances, such as gap plasmons and hybridized disk-hole plasmons, which allow for colour printing with sub-diffraction resolution. We also address a range of fabrication approaches that enable large-area printing and nanoscale lithography compatible with complementary metal-oxide semiconductor technologies, including nanoimprint lithography and self-assembly. Finally, we review recent developments in dynamically reconfigurable plasmonic colours and in the laser-induced post-processing of plasmonic colour surfaces.
In Situ Fabrication and Repair (ISFR) Technologies; New Challenges for Exploration
NASA Technical Reports Server (NTRS)
Bassler, Julie A.; Bodiford, Melanie P.; Hammond, Monica S.; King, Ron; Mclemore, Carole A.; Hall, Nancy R.; Fiske, Michael R.; Ray, Julie A.
2006-01-01
NASA's human exploration initiative poses great opportunity and great risk for manned missions to the Moon and Mars. Engineers and Scientists at the Marshall Space Flight Center (MSFC) are continuing to evaluate current technologies for in situ resource-based exploration fabrication and repair applications. Several technologies to be addressed in this paper have technology readiness levels (TRLs) that are currently mature enough to pursue for exploration purposes. However, while many technologies offer promising applications, these technologies must be pulled along by the demands and applications of this great initiative. The In Situ Fabrication and Repair (ISFR) Element will supply and push state of the art technologies for applications such as habitat structure development, in situ resource utilization for tool and part fabrication, and repair and non-destructive evaluation W E ) of common life support elements. As an overview of the ISFR Element, this paper will address rapid prototyping technologies, their applications, challenges, and near term advancements. This paper will also discuss the anticipated need to utilize in situ resources to produce replacement parts and fabricate repairs to vehicles, habitats, life support and quality of life elements. Overcoming the challenges of ISFR development will provide the Exploration initiative with state of the art technologies that reduce risk, and enhance supportability.
Gravity and thermal deformation of large primary mirror in space telescope
NASA Astrophysics Data System (ADS)
Wang, Xin; Jiang, Shouwang; Wan, Jinlong; Shu, Rong
2016-10-01
The technology of integrating mechanical FEA analysis with optical estimation is essential to simulate the gravity deformation of large main mirror and the thermal deformation such as static or temperature gradient of optical structure. We present the simulation results of FEA analysis, data processing, and image performance. Three kinds of support structure for large primary mirror which have the center holding structure, the edge glue fixation and back support, are designed and compared to get the optimal gravity deformation. Variable mirror materials Zerodur/SiC are chosen and analyzed to obtain the small thermal gradient distortion. The simulation accuracy is dependent on FEA mesh quality, the load definition of structure, the fitting error from discrete data to smooth surface. A main mirror with 1m diameter is designed as an example. The appropriate structure material to match mirror, the central supporting structure, and the key aspects of FEA simulation are optimized for space application.
Life support systems for Mars transit
NASA Technical Reports Server (NTRS)
Macelroy, R. D.; Kliss, M.; Straight, C.
1992-01-01
The structural elements of life-support systems are reviewed in order to assess the suitability of specific features for use during a Mars mission. Life-support requirements are estimated by means of an approximate input/output analysis, and the advantages are listed relating to the use of recycling and regeneration techniques. The technological options for regeneration are presented in categories such as CO2 reduction, organics removal, polishing, food production, and organics oxidation. These data form the basis of proposed mission requirements and constraints as well as the definition of what constitutes an adequate reserve. Regenerative physical/chemical life-support systems are championed based exclusively on the mass savings inherent in the technology. The resiliency and 'soft' failure modes of bioregenerative life-support systems are identified as areas of investigation.
Development of ship structure health monitoring system based on IOT technology
NASA Astrophysics Data System (ADS)
Yang, Sujun; Shi, Lei; Chen, Demin; Dong, Yuqing; Hu, Zhenyi
2017-06-01
It is very important to monitor the ship structure, because ships are affected by all kinds of wind wave and current environment factor. At the same time, internet of things (IOT) technology plays more and more important role of in the development of industrial process. In the paper, real-time online monitoring of the ship can be realized by means of IOT technology. Ship stress, vibration and dynamic parameters are measured. Meanwhile, data is transmitted to remote monitoring system through intelligent data gateway. Timely remote support can be realized for dangerous stage of ship. Safe navigation of ships is guaranteed through application of the system.
Application of NASA's advanced life support technologies in polar regions
NASA Astrophysics Data System (ADS)
Bubenheim, D. L.; Lewis, C.
1997-01-01
NASA's advanced life support technologies are being combined with Arctic science and engineering knowledge in the Advanced Life Systems for Extreme Environments (ALSEE) project. This project addresses treatment and reduction of waste, purification and recycling of water, and production of food in remote communities of Alaska. The project focus is a major issue in the state of Alaska and other areas of the Circumpolar North; the health and welfare of people, their lives and the subsistence lifestyle in remote communities, care for the environment, and economic opportunity through technology transfer. The challenge is to implement the technologies in a manner compatible with the social and economic structures of native communities, the state, and the commercial sector. NASA goals are technology selection, system design and methods development of regenerative life support systems for planetary and Lunar bases and other space exploration missions. The ALSEE project will provide similar advanced technologies to address the multiple problems facing the remote communities of Alaska and provide an extreme environment testbed for future space applications. These technologies have never been assembled for this purpose. They offer an integrated approach to solving pressing problems in remote communities.
NASA Technical Reports Server (NTRS)
Kamhawi, Hani; Huang, Wensheng; Haag, Thomas; Yim, John; Chang, Li; Clayman, Lauren; Herman, Daniel; Shastry, Rohit; Thomas, Robert; Verhey, Timothy;
2014-01-01
NASA is developing mission concepts for a solar electric propulsion technology demonstration mission. A number of mission concepts are being evaluated including ambitious missions to near Earth objects. The demonstration of a high-power solar electric propulsion capability is one of the objectives of the candidate missions under consideration. In support of NASA's exploration goals, a number of projects are developing extensible technologies to support NASA's near and long term mission needs. Specifically, the Space Technology Mission Directorate Solar Electric Propulsion Technology Demonstration Mission project is funding the development of a 12.5-kilowatt magnetically shielded Hall thruster system to support future NASA missions. This paper presents the design attributes of the thruster that was collaboratively developed by the NASA Glenn Research Center and the Jet Propulsion Laboratory. The paper provides an overview of the magnetic, plasma, thermal, and structural modeling activities that were carried out in support of the thruster design. The paper also summarizes the results of the functional tests that have been carried out to date. The planned thruster performance, plasma diagnostics (internal and in the plume), thermal, wear, and mechanical tests are outlined.
NASA Technical Reports Server (NTRS)
Kamhawi, Hani; Huang, Wensheng; Haag, Thomas; Yim, John; Chang, Li; Clayman, Lauren; Herman, Daniel; Shastry, Rohit; Thomas, Robert; Verhey, Timothy;
2014-01-01
NASA is developing mission concepts for a solar electric propulsion technology demonstration mission. A number of mission concepts are being evaluated including ambitious missions to near Earth objects. The demonstration of a high-power solar electric propulsion capability is one of the objectives of the candidate missions under consideration. In support of NASAs exploration goals, a number of projects are developing extensible technologies to support NASAs near and long term mission needs. Specifically, the Space Technology Mission Directorate Solar Electric Propulsion Technology Demonstration Mission project is funding the development of a 12.5-kW magnetically shielded Hall thruster system to support future NASA missions. This paper presents the design attributes of the thruster that was collaboratively developed by the NASA Glenn Research Center and the Jet Propulsion Laboratory. The paper provides an overview of the magnetic, plasma, thermal, and structural modeling activities that were carried out in support of the thruster design. The paper also summarizes the results of the functional tests that have been carried out to date. The planned thruster performance, plasma diagnostics (internal and in the plume), thermal, wear, and mechanical tests are outlined.
Space Assembly of Large Structural System Architectures (SALSSA)
NASA Technical Reports Server (NTRS)
Dorsey, John T.; Watson, Judith J.
2016-01-01
Developing a robust capability for Space Assembly of Large Spacecraft Structural System Architectures (SALSSA) has the potential to drastically increase the capabilities and performance of future space missions and spacecraft while significantly reducing their cost. Currently, NASA architecture studies and space science decadal surveys identify new missions that would benefit from SALSSA capabilities, and the technologies that support SALSSA are interspersed throughout the fourteen NASA Technology Roadmaps. However, a major impediment to the strategic development of cross-cutting SALSSA technologies is the lack of an integrated and comprehensive compilation of the necessary information. This paper summarizes the results of a small study that used an integrated approach to formulate a SALSSA roadmap and associated plan for developing key SALSSA technologies.
NASA technology applications team. Applications of aerospace technology
NASA Technical Reports Server (NTRS)
1991-01-01
Discussed here are the activities of the Research Triangle Institute (RTI) Technology Applications Team for the period 1 October 1990 through 30 September 1991. Topics researched include automated data acquisition and analysis of highway pavement cracking, thermal insulation for refrigerators, the containment of paint removed from steel structures, improved technologies for Kuwait oil well control, sprayed zinc coatings for corrosion control of reinforcing steel in bridges, and the monitoring and life support of medically fragile children in the educational setting.
Technical communication: Notes toward defining discipline
NASA Technical Reports Server (NTRS)
Rubens, P. M.
1981-01-01
In the field of technical communication, definitions posited in virtually any major text violate every major rule of definitions. The most popular method for defining the field is to state that technical writing is any writing that supports technology or technological activities. There is a need for a nice yardstick for measuring what "technology" is. Some ways in which the field can be defined in a tightly structured empirical way and some implications of technical communication for a humanistic education in a technological age are suggested.
Developments in hydrogenation technology for fine-chemical and pharmaceutical applications.
Machado, R M; Heier, K R; Broekhuis, R R
2001-11-01
The continuous innovation in hydrogenation technology is testimony to its growing importance in the manufacture of specialty and fine chemicals. New developments in equipment, process intensification and catalysis represent major themes that have undergone recent advances. Developments in chiral catalysis, methods to support and fix homogeneous catalysts, novel reactor and mixing technology, high-throughput screening, supercritical processing, spectroscopic and electrochemical online process monitoring, monolithic and structured catalysts, and sonochemical activation methods illustrate the scope and breadth of evolving technology applied to hydrogenation.
2014-10-01
Porosity from gas entrapment & shrinkage 4 Continuous Fiber Ti Metal Matrix Composites (Aircraft panels and rotor components) [14...process models for casting, forging, and welding , and software capability to integrate various independent models with design, thermal, and structural...Applications, Ph.D. Thesis, Queen’s College, University of Oxford, (2007). 14. S.A. Singerman and J.J. Jackson, Titanium Metal Matrix Composites for
A Study of the Utilization of Advanced Composites in Fuselage Structures of Commercial Aircraft
NASA Technical Reports Server (NTRS)
Watts, D. J.; Sumida, P. T.; Bunin, B. L.; Janicki, G. S.; Walker, J. V.; Fox, B. R.
1985-01-01
A study was conducted to define the technology and data needed to support the introduction of advanced composites in the future production of fuselage structure in large transport aircraft. Fuselage structures of six candidate airplanes were evaluated for the baseline component. The MD-100 was selected on the basis of its representation of 1990s fuselage structure, an available data base, its impact on the schedule and cost of the development program, and its availability and suitability for flight service evaluation. Acceptance criteria were defined, technology issues were identified, and a composite fuselage technology development plan, including full-scale tests, was identified. The plan was based on composite materials to be available in the mid to late 1980s. Program resources required to develop composite fuselage technology are estimated at a rough order of magnitude to be 877 man-years exclusive of the bird strike and impact dynamic test components. A conceptual composite fuselage was designed, retaining the basic MD-100 structural arrangement for doors, windows, wing, wheel wells, cockpit enclosure, major bulkheads, etc., resulting in a 32 percent weight savings.
Structural Biology and Molecular Applications Research
Part of NCI's Division of Cancer Biology's research portfolio, research and development in this area focuses on enabling technologies, models, and methodologies to support basic and applied cancer research.
The 24th Aerospace Mechanisms Symposium
NASA Technical Reports Server (NTRS)
1990-01-01
The proceedings of the symposium are reported. Technological areas covered include actuators, aerospace mechanism applications for ground support equipment, lubricants, latches, connectors, and other mechanisms for large space structures.
Study on Web-Based Tool for Regional Agriculture Industry Structure Optimization Using Ajax
NASA Astrophysics Data System (ADS)
Huang, Xiaodong; Zhu, Yeping
According to the research status of regional agriculture industry structure adjustment information system and the current development of information technology, this paper takes web-based regional agriculture industry structure optimization tool as research target. This paper introduces Ajax technology and related application frameworks to build an auxiliary toolkit of decision support system for agricultural policy maker and economy researcher. The toolkit includes a “one page” style component of regional agriculture industry structure optimization which provides agile arguments setting method that enables applying sensitivity analysis and usage of data and comparative advantage analysis result, and a component that can solve the linear programming model and its dual problem by simplex method.
New technology planning and approval: critical factors for success.
Haselkorn, Ateret; Rosenstein, Alan H; Rao, Anil K; Van Zuiden, Michele; Coye, Molly J
2007-01-01
The steady evolution of technology, with the associated increased costs, is a major factor affecting health care delivery. In the face of limited capital resources, it is important for hospitals to integrate technology management with the strategic plan, mission, and resource availability of the organization. Experiences in technology management have shown that having a well-organized, consistent approach to technology planning, assessment, committee membership, approval, evaluation, implementation, and monitoring are key factors necessary to ensure a successful program. We examined the results of a survey that assessed the structure, processes, and cultural support behind hospital committees for new technology planning and approval.
Structural Concepts and Materials for Lunar Exploration Habitats
NASA Technical Reports Server (NTRS)
Belvin, W. Keith; Watson, Judith J.; Singhal, Surendra N.
2006-01-01
A new project within the Exploration Systems Mission Directorate s Technology Development Program at NASA involves development of lightweight structures and low temperature mechanisms for Lunar and Mars missions. The Structures and Mechanisms project is to develop advanced structure technology for the primary structure of various pressurized elements needed to implement the Vision for Space Exploration. The goals are to significantly enhance structural systems for man-rated pressurized structures by 1) lowering mass and/or improving efficient volume for reduced launch costs, 2) improving performance to reduce risk and extend life, and 3) improving manufacturing and processing to reduce costs. The targeted application of the technology is to provide for the primary structure of the pressurized elements of the lunar lander for both sortie and outpost missions, and surface habitats for the outpost missions. The paper presents concepts for habitats that support six month (and longer) lunar outpost missions. Both rigid and flexible habitat wall systems are discussed. The challenges of achieving a multi-functional habitat that provides micro-meteoroid, radiation, and thermal protection for explorers are identified.
NASA Astrophysics Data System (ADS)
Yang, Kun; Xu, Quan-li; Peng, Shuang-yun; Cao, Yan-bo
2008-10-01
Based on the necessity analysis of GIS applications in earthquake disaster prevention, this paper has deeply discussed the spatial integration scheme of urban earthquake disaster loss evaluation models and visualization technologies by using the network development methods such as COM/DCOM, ActiveX and ASP, as well as the spatial database development methods such as OO4O and ArcSDE based on ArcGIS software packages. Meanwhile, according to Software Engineering principles, a solution of Urban Earthquake Emergency Response Decision Support Systems based on GIS technologies have also been proposed, which include the systems logical structures, the technical routes,the system realization methods and function structures etc. Finally, the testing systems user interfaces have also been offered in the paper.
Electromagnetic Compatibility in the Defense Systems of Future Years
2002-06-01
Technology activities. Its mission is to conduct and promote cooperative research and information exchange . The objective is to support the development...testing CLEARANCE PRODUCTION AND IN-SERVICE SUPPORT Modelling in support of conceptual design (structure & installation design) EMH Design guides for the... marketed by Advanced Electromagnetics [6-1]. Transmission Line Matrix Method The link between field theory and circuit theory, the major theories on
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2016-02-01
This fact sheet is an overview of the Photovoltaics (PV) subprogram at the U.S. Department of Energy SunShot Initiative. The U.S. Department of Energy (DOE)’s Solar Energy Technologies Office works with industry, academia, national laboratories, and other government agencies to advance solar PV, which is the direct conversion of sunlight into electricity by a semiconductor, in support of the goals of the SunShot Initiative. SunShot supports research and development to aggressively advance PV technology by improving efficiency and reliability and lowering manufacturing costs. SunShot’s PV portfolio spans work from early-stage solar cell research through technology commercialization, including work on materials,more » processes, and device structure and characterization techniques.« less
Study of robotics systems applications to the space station program
NASA Technical Reports Server (NTRS)
Fox, J. C.
1983-01-01
Applications of robotics systems to potential uses of the Space Station as an assembly facility, and secondarily as a servicing facility, are considered. A typical robotics system mission is described along with the pertinent application guidelines and Space Station environmental assumptions utilized in developing the robotic task scenarios. A functional description of a supervised dual-robot space structure construction system is given, and four key areas of robotic technology are defined, described, and assessed. Alternate technologies for implementing the more routine space technology support subsystems that will be required to support the Space Station robotic systems in assembly and servicing tasks are briefly discussed. The environmental conditions impacting on the robotic configuration design and operation are reviewed.
Developing a Data Set and Processing Methodology for Fluid/Structure Interaction Code Validation
2007-06-01
50 29. 9-Probe Wake Survey Rake Configurations...structural stability and fatigue in test article components and, in general, in facility support structures and rotating machinery blading . Both T&E... blade analysis and simulations. To ensure the accuracy of the U of CO technology, validation using flight-test data and test data from a wind tunnel
NASA Astrophysics Data System (ADS)
Chaubey, I.; Vema, V. K.; Sudheer, K.
2016-12-01
Site suitability evaluation of water conservation structures in water scarce rainfed agricultural areas consist of assessment of various landscape characteristics and various criterion. Many of these landscape characteristic attributes are conveyed through linguistic terms rather than precise numeric values. Fuzzy rule based system are capable of incorporating uncertainty and vagueness, when various decision making criteria expressed in linguistic terms are expressed as fuzzy rules. In this study a fuzzy rule based decision support system is developed, for optimal site selection of water harvesting technologies. Water conservation technologies like farm ponds, Check dams, Rock filled dams and percolation ponds aid in conserving water for irrigation and recharging aquifers and development of such a system will aid in improving the efficiency of the structures. Attributes and criteria involved in decision making are classified into different groups to estimate the suitability of the particular technology. The developed model is applied and tested on an Indian watershed. The input attributes are prepared in raster format in ArcGIS software and suitability of each raster cell is calculated and output is generated in the form of a thematic map showing the suitability of the cells pertaining to different technologies. The output of the developed model is compared against the already existing structures and results are satisfactory. This developed model will aid in improving the sustainability and efficiency of the watershed management programs aimed at enhancing in situ moisture content.
ERIC Educational Resources Information Center
Coleman, Lynn
2016-01-01
This paper argues that curriculum decision-making in the South African University of Technology (UoT) environment is affected not only by industry and disciplinary demands, but also by socio-structural features and ideologies particular to this educational sector. It supports the view that recontextualisation processes are subject to multiple…
ERIC Educational Resources Information Center
Sandoval, William A.; Daniszewski, Kenneth
2004-01-01
This paper explores how two teachers concurrently enacting the same technology-based inquiry unit on evolution structured activity and discourse in their classrooms to connect students' computer-based investigations to formal domain theories. Our analyses show that the teachers' interactions with their students during inquiry were quite similar,…
Students' Voices about Information and Communication Technology in Upper Secondary Schools
ERIC Educational Resources Information Center
Olofsson, Anders D.; Lindberg, Ola J.; Fransson, Göran
2018-01-01
Purpose: The purpose of this paper is to explore upper secondary school students' voices on how information and communication technology (ICT) could structure and support their everyday activities and time at school. Design/methodology/approach: In all, 11 group interviews were conducted with a total of 46 students from three upper secondary…
Making Learning and Web 2.0 Technologies Work for Higher Learning Institutions in Africa
ERIC Educational Resources Information Center
Lwoga, Edda
2012-01-01
Purpose: This paper seeks to assess the extent to which learning and Web 2.0 technologies are utilised to support learning and teaching in Africa's higher learning institutions, with a specific focus on Tanzania's public universities. Design/methodology/approach: A combination of content analysis and semi-structured interviews was used to collect…
NASA Technical Reports Server (NTRS)
Bassler, Julie A.; Bodiford, Melanie P.; Fiske, Michael R.; Strong, Janet D.
2005-01-01
NASA's human exploration initiative poses great opportunity and great risk for manned missions to the Moon and Mars. Engineers and Scientists at the Marshall Space Flight Center are evaluating current technologies for in situ exploration habitat and fabrication and repair applications. Several technologies to be addressed in this paper have technology readiness levels (TRLs) that are currently mature enough to pursue for exploration purposes. However, many technologies offer promising applications but these must be pulled along by the demands and applications of this great initiative. The In Situ Fabrication and Repair (ISFR) program will supply and push state of the art technologies for applications such as habitat structure development, in situ resource utilization for tool and part fabrication, and repair and replacement of common life support elements. This paper will look at the current and future habitat technology applications such as the implementation of in situ environmental elements such as caves, rilles and lavatubes, the development of lunar regolith concrete and structure design and development, thin film and inflatable technologies. We will address current rapid prototyping technologies, their ISFR applications and near term advancements. We will discuss the anticipated need to utilize in situ resources to produce replacement parts and fabricate repairs to vehicles, habitats, life support and quality of life elements. All ISFR technology developments will incorporate automated deployment and robotic construction and fabrication techniques. The current state of the art for these applications is fascinating, but the future is out of this world.
Positive Technology for Healthy Living and Active Ageing.
Riva, Giuseppe; Gaggioli, Andrea; Villani, Daniela; Cipresso, Pietro; Repetto, Claudia; Serino, Silvia; Triberti, Stefano; Brivio, Eleonora; Galimberti, Carlo; Graffigna, Guendalina
2014-01-01
Information and communication technologies are widely and rapidly spreading in people's daily lives. But what is the possible role of the mass proliferation of digital devices in supporting healthy living and active ageing? Are they useful in fostering personal growth and individual integration of the elderly, by promoting satisfaction, opportunities for action, and self-expression? Rather, do they enhance automation, impose constraints on personal initiative, and result in compulsive consumption of information? In this chapter, we suggest that possible answers to these questions will be offered by the "Positive Technology" approach, i.e., the scientific and applied approach to using technology so that it improves the quality of our personal experiences through its structuring, augmentation, and/or replacement. First, we suggest that it is possible to use technology to manipulate the quality of experience with the goal of increasing wellness and generating strengths and resilience in individuals, organizations, and society. Then, we classify positive technologies according to their effects on these three features of personal experience - Hedonic: technologies used to induce positive and pleasant experiences; Eudaimonic: technologies used to support individuals in reaching engaging and self-actualizing experiences; Social/Interpersonal: technologies used to support and improve the connectedness between individuals, groups, and organizations. Finally, we discuss the possible role of positive technologies for healthy living and active ageing by presenting different practical applications of this approach.
NASA Technical Reports Server (NTRS)
1979-01-01
Topics covered include growth options evaluation, mass properties, attitude control and structural dynamics, contamination evaluation, berthing concepts, orbit reboost options and growth kit concepts. Systems support elements and space support equipment are reviewed with emphasis on power module operations and technology planning.
Systematic development of technical textiles
NASA Astrophysics Data System (ADS)
Beer, M.; Schrank, V.; Gloy, Y.-S.; Gries, T.
2016-07-01
Technical textiles are used in various fields of applications, ranging from small scale (e.g. medical applications) to large scale products (e.g. aerospace applications). The development of new products is often complex and time consuming, due to multiple interacting parameters. These interacting parameters are production process related and also a result of the textile structure and used material. A huge number of iteration steps are necessary to adjust the process parameter to finalize the new fabric structure. A design method is developed to support the systematic development of technical textiles and to reduce iteration steps. The design method is subdivided into six steps, starting from the identification of the requirements. The fabric characteristics vary depending on the field of application. If possible, benchmarks are tested. A suitable fabric production technology needs to be selected. The aim of the method is to support a development team within the technology selection without restricting the textile developer. After a suitable technology is selected, the transformation and correlation between input and output parameters follows. This generates the information for the production of the structure. Afterwards, the first prototype can be produced and tested. The resulting characteristics are compared with the initial product requirements.
A Support Database System for Integrated System Health Management (ISHM)
NASA Technical Reports Server (NTRS)
Schmalzel, John; Figueroa, Jorge F.; Turowski, Mark; Morris, John
2007-01-01
The development, deployment, operation and maintenance of Integrated Systems Health Management (ISHM) applications require the storage and processing of tremendous amounts of low-level data. This data must be shared in a secure and cost-effective manner between developers, and processed within several heterogeneous architectures. Modern database technology allows this data to be organized efficiently, while ensuring the integrity and security of the data. The extensibility and interoperability of the current database technologies also allows for the creation of an associated support database system. A support database system provides additional capabilities by building applications on top of the database structure. These applications can then be used to support the various technologies in an ISHM architecture. This presentation and paper propose a detailed structure and application description for a support database system, called the Health Assessment Database System (HADS). The HADS provides a shared context for organizing and distributing data as well as a definition of the applications that provide the required data-driven support to ISHM. This approach provides another powerful tool for ISHM developers, while also enabling novel functionality. This functionality includes: automated firmware updating and deployment, algorithm development assistance and electronic datasheet generation. The architecture for the HADS has been developed as part of the ISHM toolset at Stennis Space Center for rocket engine testing. A detailed implementation has begun for the Methane Thruster Testbed Project (MTTP) in order to assist in developing health assessment and anomaly detection algorithms for ISHM. The structure of this implementation is shown in Figure 1. The database structure consists of three primary components: the system hierarchy model, the historical data archive and the firmware codebase. The system hierarchy model replicates the physical relationships between system elements to provide the logical context for the database. The historical data archive provides a common repository for sensor data that can be shared between developers and applications. The firmware codebase is used by the developer to organize the intelligent element firmware into atomic units which can be assembled into complete firmware for specific elements.
New Directions for NASA's Advanced Life Support Program
NASA Technical Reports Server (NTRS)
Barta, Daniel J.
2006-01-01
Advanced Life Support (ALS), an element of Human Systems Research and Technology s (HSRT) Life Support and Habitation Program (LSH), has been NASA s primary sponsor of life support research and technology development for the agency. Over its history, ALS sponsored tasks across a diverse set of institutions, including field centers, colleges and universities, industry, and governmental laboratories, resulting in numerous publications and scientific articles, patents and new technologies, as well as education and training for primary, secondary and graduate students, including minority serving institutions. Prior to the Vision for Space Exploration (VSE) announced on January 14th, 2004 by the President, ALS had been focused on research and technology development for long duration exploration missions, emphasizing closed-loop regenerative systems, including both biological and physicochemical. Taking a robust and flexible approach, ALS focused on capabilities to enable visits to multiple potential destinations beyond low Earth orbit. ALS developed requirements, reference missions, and assumptions upon which to structure and focus its development program. The VSE gave NASA a plan for steady human and robotic space exploration based on specific, achievable goals. Recently, the Exploration Systems Architecture Study (ESAS) was chartered by NASA s Administrator to determine the best exploration architecture and strategy to implement the Vision. The study identified key technologies required to enable and significantly enhance the reference exploration missions and to prioritize near-term and far-term technology investments. This technology assessment resulted in a revised Exploration Systems Mission Directorate (ESMD) technology investment plan. A set of new technology development projects were initiated as part of the plan s implementation, replacing tasks previously initiated under HSRT and its sister program, Exploration Systems Research and Technology (ESRT). The Exploration Life Support (ELS) Project, under the Exploration Technology Development Program, has recently been initiated to perform directed life support technology development in support of Constellation and the Crew Exploration Vehicle (CEV). ELS) has replaced ALS, with several major differences. Thermal Control Systems have been separated into a new stand alone project (Thermal Systems for Exploration Missions). Tasks in Advanced Food Technology have been relocated to the Human Research Program. Tasks in a new discipline area, Habitation Engineering, have been added. Research and technology development for capabilities required for longer duration stays on the Moon and Mars, including bioregenerative system, have been deferred.
Single-Layer, All-Metal Patch Antenna Element with Wide Bandwidth
NASA Technical Reports Server (NTRS)
Chamberlain, Neil F.; Hodges, Richard E.; Zawardzki, Mark S.
2012-01-01
It is known that the impedance at the center of a patch antenna element is a short circuit, implying that a wire or post can be connected from the patch to the groundplane at this point without impacting radiation performance. In principle, this central post can be used to support the patch element, thus eliminating the need for dielectric. In spaceborne applications, this approach is problematic because a patch element supported by a single, thin post is highly susceptible to acoustic loads during launch. The technology reported here uses a large-diameter center post as its supporting structure. The supporting structure allows for the fabrication of a sufficiently rigid antenna element that can survive launch loads. The post may be either hollow or solid, depending on fabrication approach and/or mass constraints. The patch antenna element and support post are envisioned as being fabricated (milled) from a single piece of aluminum or other metal. Alternately, the patch plate and support column can be fabricated separately and then joined using fasteners, adhesive, or welding. Casting and electroforming are also viable techniques for manufacturing the metal patch part(s). The patch structure is then either bonded or fastened to the supporting groundplane. Arrays of patch elements can be fabricated by attaching several structures to a common groundplane/support structure.
Multi-service terminal adapter based on IP technology applications in rural area
NASA Astrophysics Data System (ADS)
Gao, Li; Li, Xiaobo; Yan, Juntao; Ren, Xupeng
Take advantage of ample modern existing telecom network resources to rural areas may achieve it's information society gradually. This includes the establishment of integrated rural information service platform, modern remote education center and electronic administration management platform for rural areas. The geographical and economic constraints must be overcome for structuring the rural service support system, in order to provide technical support, information products and information services to modern rural information service system. It is important that development an access platform based IP technology, which supports multi-service access in order to implement a variety of types of mobile terminal equipment adapter access and to reduce restrictions on mobile terminal equipment.
Development of a verification program for deployable truss advanced technology
NASA Technical Reports Server (NTRS)
Dyer, Jack E.
1988-01-01
Use of large deployable space structures to satisfy the growth demands of space systems is contingent upon reducing the associated risks that pervade many related technical disciplines. The overall objectives of this program was to develop a detailed plan to verify deployable truss advanced technology applicable to future large space structures and to develop a preliminary design of a deployable truss reflector/beam structure for use a a technology demonstration test article. The planning is based on a Shuttle flight experiment program using deployable 5 and 15 meter aperture tetrahedral truss reflections and a 20 m long deployable truss beam structure. The plan addresses validation of analytical methods, the degree to which ground testing adequately simulates flight and in-space testing requirements for large precision antenna designs. Based on an assessment of future NASA and DOD space system requirements, the program was developed to verify four critical technology areas: deployment, shape accuracy and control, pointing and alignment, and articulation and maneuvers. The flight experiment technology verification objectives can be met using two shuttle flights with the total experiment integrated on a single Shuttle Test Experiment Platform (STEP) and a Mission Peculiar Experiment Support Structure (MPESS). First flight of the experiment can be achieved 60 months after go-ahead with a total program duration of 90 months.
Structural Science Laboratory Supplement. High-Technology Training Module.
ERIC Educational Resources Information Center
Luthens, Roger
This module, a laboratory supplement on the theory of bending and properties of sections, is part of a first-year, postsecondary structural science technical support course for architectural drafting and design. The first part of this two-part supplement is directed at the instructor and includes the following sections: program objectives; course…
Nano-material aspects of shock absorption in bone joints.
Tributsch, H; Copf, F; Copf, P; Hindenlang, U; Niethard, F U; Schneider, R
2010-01-01
This theoretical study is based on a nano-technological evaluation of the effect of pressure on the composite bone fine structure. It turned out, that the well known macroscopic mechano-elastic performance of bones in combination with muscles and tendons is just one functional aspect which is critically supported by additional micro- and nano- shock damping technology aimed at minimising local bone material damage within the joints and supporting spongy bone material. The identified mechanisms comprise essentially three phenomena localised within the three-dimensional spongy structure with channels and so called perforated flexible tensulae membranes of different dimensions intersecting and linking them. Kinetic energy of a mechanical shock may be dissipated within the solid-liquid composite bone structure into heat via the generation of quasi-chaotic hydromechanic micro-turbulence. It may generate electro-kinetic energy in terms of electric currents and potentials. And the resulting specific structural and surface electrochemical changes may induce the compressible intra-osseal liquid to build up pressure dependent free chemical energy. Innovative bone joint prostheses will have to consider and to be adapted to the nano-material aspects of shock absorption in the operated bones.
Tirado-Ramos, Alfredo; Hu, Jingkun; Lee, K P
2002-01-01
Supplement 23 to DICOM (Digital Imaging and Communications for Medicine), Structured Reporting, is a specification that supports a semantically rich representation of image and waveform content, enabling experts to share image and related patient information. DICOM SR supports the representation of textual and coded data linked to images and waveforms. Nevertheless, the medical information technology community needs models that work as bridges between the DICOM relational model and open object-oriented technologies. The authors assert that representations of the DICOM Structured Reporting standard, using object-oriented modeling languages such as the Unified Modeling Language, can provide a high-level reference view of the semantically rich framework of DICOM and its complex structures. They have produced an object-oriented model to represent the DICOM SR standard and have derived XML-exchangeable representations of this model using World Wide Web Consortium specifications. They expect the model to benefit developers and system architects who are interested in developing applications that are compliant with the DICOM SR specification.
Miniati, Roberto; Dori, Fabrizio; Cecconi, Giulio; Gusinu, Roberto; Niccolini, Fabrizio; Gentili, Guido Biffi
2013-01-01
A fundamental element of the social and safety function of a health structure is the need to guarantee continuity of clinical activity through the continuity of technology. This paper aims to design a Decision Support System (DSS) for medical technology evaluations based on the use of Key Performance Indicators (KPI) in order to provide a multi-disciplinary valuation of a technology in a health structure. The methodology used in planning the DSS followed the following key steps: the definition of relevant KPIs, the development of a database to calculate the KPIs, the calculation of the defined KPIs and the resulting study report. Finally, the clinical and economic validation of the system was conducted though a case study of Business Continuity applied in the operating department of the Florence University Hospital AOU Careggi in Italy. A web-based support system was designed for HTA in health structures. The case study enabled Business Continuity Management (BCM) to be implemented in a hospital department in relation to aspects of a single technology and the specific clinical process. Finally, an economic analysis of the procedure was carried out. The system is useful for decision makers in that it precisely defines which equipment to include in the BCM procedure, using a scale analysis of the specific clinical process in which the equipment is used. In addition, the economic analysis shows how the cost of the procedure is completely covered by the indirect costs which would result from the expenses incurred from a broken device, hence showing the complete auto-sustainability of the methodology.
Proceedings of a Conference on Telecommunication Technologies, Networkings and Libraries
NASA Astrophysics Data System (ADS)
Knight, N. K.
1981-12-01
Current and developing technologies for digital transmission of image data likely to have an impact on the operations of libraries and information centers or provide support for information networking are reviewed. Technologies reviewed include slow scan television, teleconferencing, and videodisc technology and standards development for computer network interconnection through hardware and software, particularly packet switched networks computer network protocols for library and information service applications, the structure of a national bibliographic telecommunications network; and the major policy issues involved in the regulation or deregulation of the common communications carriers industry.
DSSTOX (DISTRIBUTED STRUCTURE-SEARCHABLE ...
Distributed Structure-Searchable Toxicity Database Network Major trends affecting public toxicity information resources have the potential to significantly alter the future of predictive toxicology. Chemical toxicity screening is undergoing shifts towards greater use of more fundamental information on gene/protein expression patterns and bioactivity and bioassay profiles, the latter generated with highthroughput screening technologies. Curated, systematically organized, and webaccessible toxicity and biological activity data in association with chemical structures, enabling the integration of diverse data information domains, will fuel the next frontier of advancement for QSAR (quantitative structure-activity relationship) and data mining technologies. The DSSTox project is supporting progress towards these goals on many fronts, promoting the use of formalized and structure-annotated toxicity data models, helping to interface these efforts with QSAR modelers, linking data from diverse sources, and creating a large, quality reviewed, central chemical structure information resource linked to various toxicity data sources
Critical care nurses' experiences when technology malfunctions.
Haghenbeck, Karen Toby
2005-01-01
When caring for critically ill patients, critical care nurses work with technology every day. Technology and equipment malfunctions can have a profound effect on nurses' practice and self-image. In this article, a descriptive phenomenological methodology was chosen to explicate the experience of seven critical care nurses. While participants realized that machines might malfunction, they experienced surprise, shock, and feelings of being "let down" and inadequate when malfunctions occurred. They questioned their competence and felt malfunctioning technology jeopardized their credibility and professional image. These findings are useful when structuring educational sessions on technology and in facilitating a supportive environment for critical care nurses when technology malfunctions.
Evolving technologies drive the new roles of Biomedical Engineering.
Frisch, P H; St Germain, J; Lui, W
2008-01-01
Rapidly changing technology coupled with the financial impact of organized health care, has required hospital Biomedical Engineering organizations to augment their traditional operational and business models to increase their role in developing enhanced clinical applications utilizing new and evolving technologies. The deployment of these technology based applications has required Biomedical Engineering organizations to re-organize to optimize the manner in which they provide and manage services. Memorial Sloan-Kettering Cancer Center has implemented a strategy to explore evolving technologies integrating them into enhanced clinical applications while optimally utilizing the expertise of the traditional Biomedical Engineering component (Clinical Engineering) to provide expanded support in technology / equipment management, device repair, preventive maintenance and integration with legacy clinical systems. Specifically, Biomedical Engineering is an integral component of the Medical Physics Department which provides comprehensive and integrated support to the Center in advanced physical, technical and engineering technology. This organizational structure emphasizes the integration and collaboration between a spectrum of technical expertise for clinical support and equipment management roles. The high cost of clinical equipment purchases coupled with the increasing cost of service has driven equipment management responsibilities to include significant business and financial aspects to provide a cost effective service model. This case study details the dynamics of these expanded roles, future initiatives and benefits for Biomedical Engineering and Memorial Sloan Kettering Cancer Center.
NASA Astrophysics Data System (ADS)
Li, Xiao-Hong; Cui, Hong-Ling; Zhang, Rui-Zhou
2017-08-01
Not Available Project supported by the National Natural Science Foundation of China (Grant No. U1304111), Program for Science & Technology Innovation Talents in Universities of Henan Province, China (Grant No. 14HASTIT039), and the Innovation Team of Henan University of Science and Technology, China (Grant No. 2015XTD001)
NASA Astrophysics Data System (ADS)
Li, Hua-Nan; Hua, Zhong; Li, Dong-Fei
2017-01-01
Not Available Project supported by the China Postdoctoral Science Foundation (Grant No. 2013M541286), the Science and Technology Planning Project of Jilin Province, China (Grant Nos. 20140520109JH and 20150414003GH), and the “Twelfth Five year” Scientific and Technological Research Project of Department of Education of Jilin Province, China.
The role of government in supporting technological advance
NASA Astrophysics Data System (ADS)
Tucker, Christopher K.
A broad and poorly focused debate has, for quite some time, raged across the range of social science disciplines and policy related professions. This debate has dealt, in different ways, with the question of the proper role of the government in a mixed economy. Current debates over the appropriate role of government in a mixed economy are largely constrained by a basic set of 'market failure' concepts developed in economics. This dissertation interrogates the histories of the automobile, electrical and aircraft industries in the six decades spanning the turn of the 20th century with a theoretical framework that draws on recent theorizing on the co-evolution of technologies, industrial structure, and supporting institutions. In highlighting institutional and technological aspects of industrial development, this dissertation informs a basis for science and technology policy making that moves beyond 'market failure' analysis.
Development and evaluation of a new taxonomy of mobility-related assistive technology devices.
Shoemaker, Laura L; Lenker, James A; Fuhrer, Marcus J; Jutai, Jeffrey W; Demers, Louise; DeRuyter, Frank
2010-10-01
This article reports on the development of a new taxonomy for mobility-related assistive technology devices. A prototype taxonomy was created based on the extant literature. Five mobility device experts were engaged in a modified Delphi process to evaluate and refine the taxonomy. Multiple iterations of expert feedback and revision yielded consensual agreement on the structure and terminology of a new mobility device taxonomy. The taxonomy uses a hierarchical framework to classify ambulation aids and wheeled mobility devices, including their key features that impact mobility. Five attributes of the new taxonomy differentiate it from previous mobility-related device classifications: (1) hierarchical structure, (2) primary device categories are grouped based on their intended mobility impact, (3) comprehensive inclusion of technical features, (4) a capacity to assimilate reimbursement codes, and (5) availability of a detailed glossary. The taxonomy is intended to support assistive technology outcomes research. The taxonomy will enable researchers to capture mobility-related assistive technology device interventions with precision and provide a common terminology that will allow comparisons among studies. The prominence of technical features within the new taxonomy will hopefully promote research that helps clinicians predict how devices will perform, thus aiding clinical decision making and supporting funding recommendations.
Bridging Organizational Divides in Health Care: An Ecological View of Health Information Exchange
Johnson, Kevin B; Gadd, Cynthia S; Lorenzi, Nancy M
2013-01-01
Background The fragmented nature of health care delivery in the United States leads to fragmented health information and impedes patient care continuity and safety. Technologies to support interorganizational health information exchange (HIE) are becoming more available. Understanding how HIE technology changes health care delivery and affects people and organizations is crucial to long-term successful implementation. Objective Our study investigated the impacts of HIE technology on organizations, health care providers, and patients through a new, context-aware perspective, the Regional Health Information Ecology. Methods We conducted more than 180 hours of direct observation, informal interviews during observation, and 9 formal semi-structured interviews. Data collection focused on workflow and information flow among health care team members and patients and on health care provider use of HIE technology. Results We structured the data analysis around five primary information ecology components: system, locality, diversity, keystone species, and coevolution. Our study identified three main roles, or keystone species, involved in HIE: information consumers, information exchange facilitators, and information repositories. The HIE technology impacted patient care by allowing providers direct access to health information, reducing time to obtain health information, and increasing provider awareness of patient interactions with the health care system. Developing the infrastructure needed to support HIE technology also improved connections among information technology support groups at different health care organizations. Despite the potential of this type of technology to improve continuity of patient care, HIE technology adoption by health care providers was limited. Conclusions To successfully build a HIE network, organizations had to shift perspectives from an ownership view of health data to a continuity of care perspective. To successfully integrate external health information into clinical work practices, health care providers had to move toward understanding potential contributions of external health information. Our study provides a foundation for future context-aware development and implementation of HIE technology. Integrating concepts from the Regional Health Information Ecology into design and implementation may lead to wider diffusion and adoption of HIE technology into clinical work. PMID:25600166
Ground test facility for SEI nuclear rocket engines
NASA Astrophysics Data System (ADS)
Harmon, Charles D.; Ottinger, Cathy A.; Sanchez, Lawrence C.; Shipers, Larry R.
1992-07-01
Nuclear (fission) thermal propulsion has been identified as a critical technology for a manned mission to Mars by the year 2019. Facilities are required that will support ground tests to qualify the nuclear rocket engine design, which must support a realistic thermal and neutronic environment in which the fuel elements will operate at a fraction of the power for a flight weight reactor/engine. This paper describes the design of a fuel element ground test facility, with a strong emphasis on safety and economy. The details of major structures and support systems of the facility are discussed, and a design diagram of the test facility structures is presented.
Using Wikipedia and Conceptual Graph Structures to Generate Questions for Academic Writing Support
ERIC Educational Resources Information Center
Liu, Ming; Calvo, R. A.; Aditomo, A.; Pizzato, L. A.
2012-01-01
In this paper, we present a novel approach for semiautomatic question generation to support academic writing. Our system first extracts key phrases from students' literature review papers. Each key phrase is matched with a Wikipedia article and classified into one of five abstract concept categories: Research Field, Technology, System, Term, and…
ERIC Educational Resources Information Center
Hardy, Precious; Aruguete, Mara
2014-01-01
Retention is a major problem in most colleges and universities. High dropout rates, especially in the STEM disciplines (science, technology, engineering and mathematics), have proved intractable despite the offering of supplemental instruction. A broad model of support systems that includes psychological factors is needed to address retention in…
Designing a Social Work Online Self-Coaching Program: Integrated Support and Joint Ownership
ERIC Educational Resources Information Center
van de Heyde, Valentino; Stoltenkamp, Juliet; Siebrits, André
2017-01-01
The paper explores critical success factors (CSFs) in relation to the support structure for an online self-coaching pilot project, by the Centre for Innovative Education and Communication Technologies of the University of the Western Cape (UWC) in South Africa, in collaboration with UWC's Social Work Department and the University of South Africa…
High-speed civil transport issues and technology program
NASA Technical Reports Server (NTRS)
Hewett, Marle D.
1992-01-01
A strawman program plan is presented, consisting of technology developments and demonstrations required to support the construction of a high-speed civil transport. The plan includes a compilation of technology issues related to the development of a transport. The issues represent technical areas in which research and development are required to allow airframe manufacturers to pursue an HSCT development. The vast majority of technical issues presented require flight demonstrated and validated solutions before a transport development will be undertaken by the industry. The author believes that NASA is the agency best suited to address flight demonstration issues in a concentrated effort. The new Integrated Test Facility at NASA Dryden Flight Research Facility is considered ideally suited to the task of supporting ground validations of proof-of-concept and prototype system demonstrations before night demonstrations. An elaborate ground hardware-in-the-loop (iron bird) simulation supported in this facility provides a viable alternative to developing an expensive fill-scale prototype transport technology demonstrator. Drygen's SR-71 assets, modified appropriately, are a suitable test-bed for supporting flight demonstrations and validations of certain transport technology solutions. A subscale, manned or unmanned flight demonstrator is suitable for flight validation of transport technology solutions, if appropriate structural similarity relationships can be established. The author contends that developing a full-scale prototype transport technology demonstrator is the best alternative to ensuring that a positive decision to develop a transport is reached by the United States aerospace industry.
The PubChem chemical structure sketcher
2009-01-01
PubChem is an important public, Web-based information source for chemical and bioactivity information. In order to provide convenient structure search methods on compounds stored in this database, one mandatory component is a Web-based drawing tool for interactive sketching of chemical query structures. Web-enabled chemical structure sketchers are not new, being in existence for years; however, solutions available rely on complex technology like Java applets or platform-dependent plug-ins. Due to general policy and support incident rate considerations, Java-based or platform-specific sketchers cannot be deployed as a part of public NCBI Web services. Our solution: a chemical structure sketching tool based exclusively on CGI server processing, client-side JavaScript functions, and image sequence streaming. The PubChem structure editor does not require the presence of any specific runtime support libraries or browser configurations on the client. It is completely platform-independent and verified to work on all major Web browsers, including older ones without support for Web2.0 JavaScript objects. PMID:20298522
Consumer-identified barriers and strategies for optimizing technology use in the workplace.
De Jonge, Desleigh M; Rodger, Sylvia A
2006-01-01
This article explores the experiences of 26 assistive technology (AT) users having a range of physical impairments as they optimized their use of technology in the workplace. A qualitative research design was employed using in-depth, open-ended interviews and observations of AT users in the workplace. Participants identified many factors that limited their use of technology such as discomfort and pain, limited knowledge of the technology's features, and the complexity of the technology. The amount of time required for training, limited work time available for mastery, cost of training and limitations of the training provided, resulted in an over-reliance on trial and error and informal support networks and a sense of isolation. AT users enhanced their use of technology by addressing the ergonomics of the workstation and customizing the technology to address individual needs and strategies. Other key strategies included tailored training and learning support as well as opportunities to practice using the technology and explore its features away from work demands. This research identified structures important for effective AT use in the workplace which need to be put in place to ensure that AT users are able to master and optimize their use of technology.
Krakowski, I; Chardot, C; Bey, P; Guillemin, F; Philip, T
2001-03-01
The organization of the management of pain and other symptoms all along the cancer disease, of psychological support and palliative care is a complex question that does not correspond to any perfectly established model, both in France and abroad. Different structures are implied in there care and coexist with an insufficient coordination: cancerology structures, structures of chronic pain management, structures of psycho-oncology, structures of palliative care. Some other assistances are more or less isolated inside the hospital: nutritional support, social assistance, action against tobacco and other addictions, volunteer work. Because of the evolution of practices and mentalities over the last ten years, the highlights of evident interfaces and complementary activities, the notions of "continuous care" and "integrated care" inside conventional departments, the budgetary and organizational restraints, it is now possible to propose a model of hospital structure adapted to the problem of supportive care. The creation is proposed from preexisting structures, consultations, units, departments of supportive oncological care according to the size of the institution. The structure should comply with some specifications, sometimes regulations, and to coordinate at best different competencies in the interest of the patients and medical teams : pain and symptoms management (of which palliative care is an important part), psycho-oncology, rehabilitation (functional rehabilitation, nutrition, social work, fights against addictions). A pooling of technology settings is one of its interest. The model can be applied in other domains than cancerology and in most health institutions.
Design and logistics of integrated spacecraft/lander lunar habitat concepts
NASA Technical Reports Server (NTRS)
Hypes, Warren D.; Wright, Robert L.; Gould, Marston J.; Lovelace, U. M.
1991-01-01
Integrated spacecraft/lander combinations have been designed to provide a support structure for thermal and galactic radiation shielding for three initial lunar habitat concepts. Integrating the support structure with the habitat reduces the logistics requirements for the implantation of the initial base. The designs are simple, make use of existing technologies, and minimize the amount of lunar surface preparation and crew activity. The design facilitates continued use of all elements in the development of a permanent lunar base and precludes the need for an entirely different structure of larger volume and increased complexity of implantation. This design philosophy, coupled with the reduced logistics, increases overall cost effectiveness.
Supporting Collective Inquiry: A Technology Framework for Distributed Learning
NASA Astrophysics Data System (ADS)
Tissenbaum, Michael
This design-based study describes the implementation and evaluation of a technology framework to support smart classrooms and Distributed Technology Enhanced Learning (DTEL) called SAIL Smart Space (S3). S3 is an open-source technology framework designed to support students engaged in inquiry investigations as a knowledge community. To evaluate the effectiveness of S3 as a generalizable technology framework, a curriculum named PLACE (Physics Learning Across Contexts and Environments) was developed to support two grade-11 physics classes (n = 22; n = 23) engaged in a multi-context inquiry curriculum based on the Knowledge Community and Inquiry (KCI) pedagogical model. This dissertation outlines three initial design studies that established a set of design principles for DTEL curricula, and related technology infrastructures. These principles guided the development of PLACE, a twelve-week inquiry curriculum in which students drew upon their community-generated knowledge base as a source of evidence for solving ill-structured physics problems based on the physics of Hollywood movies. During the culminating smart classroom activity, the S3 framework played a central role in orchestrating student activities, including managing the flow of materials and students using real-time data mining and intelligent agents that responded to emergent class patterns. S3 supported students' construction of knowledge through the use individual, collective and collaborative scripts and technologies, including tablets and interactive large-format displays. Aggregate and real-time ambient visualizations helped the teacher act as a wondering facilitator, supporting students in their inquiry where needed. A teacher orchestration tablet gave the teacher some control over the flow of the scripted activities, and alerted him to critical moments for intervention. Analysis focuses on S3's effectiveness in supporting students' inquiry across multiple learning contexts and scales of time, and in making timely and effective use of the community's knowledge base, towards producing solutions to sophisticated, ill defined problems in the domain of physics. Video analysis examined whether S3 supported teacher orchestration, freeing him to focus less on classroom management and more on students' inquiry. Three important outcomes of this research are a set of design principles for DTEL environments, a specific technology infrastructure (S3), and a DTEL research framework.
Shachak, Aviv; Montgomery, Catherine; Dow, Rustam; Barnsley, Jan; Tu, Karen; Jadad, Alejandro R.; Lemieux-Charles, Louise
2015-01-01
Support is considered an important factor for realizing the benefits of health information technology (HIT) but there is a dearth of research on the topic of support, especially in primary care. We conducted a qualitative multiple case study of 4 family health teams (FHTs) and one family health organization (FHO) in Ontario, Canada in an attempt to gain insight into users’ expectations and needs, and the realities of end-user support for primary care electronic medical records (EMRs). Data were collected by semi-structured interviews, documents review, and observation of training sessions. The analysis highlights the important role of on-site information technology (IT) staff and super-users in liaising with various stakeholders to solve technical problems and providing hardware and functional (‘how to’) support; the local development of data support practices to ensure consistent documentation; and the gaps that exist in users’ and support personnel’s understanding of each other’s work processes. PMID:26225209
2012-02-02
flight hours to one significant atmospheric phenomena. OBJECTIVES The P-3 Doppler Wind Lidar (P3DWL) uses the latest version of a coherent ... Doppler transceiver developed at Lockheed Martin Coherent Technologies. The lidar , with the exception of the scanner, is shown on the top in Figure 1...Processes Observed by the P-3 Doppler Wind Lidar in Support of the Western Pacific Tropical Cyclone Structure 2008 Experiment Ralph Foster Applied
Production process stability - core assumption of INDUSTRY 4.0 concept
NASA Astrophysics Data System (ADS)
Chromjakova, F.; Bobak, R.; Hrusecka, D.
2017-06-01
Today’s industrial enterprises are confronted by implementation of INDUSTRY 4.0 concept with basic problem - stabilised manufacturing and supporting processes. Through this phenomenon of stabilisation, they will achieve positive digital management of both processes and continuously throughput. There is required structural stability of horizontal (business) and vertical (digitized) manufacturing processes, supported through digitalised technologies of INDUSTRY 4.0 concept. Results presented in this paper based on the research results and survey realised in more industrial companies. Following will described basic model for structural process stabilisation in manufacturing environment.
MolPrint3D: Enhanced 3D Printing of Ball-and-Stick Molecular Models
ERIC Educational Resources Information Center
Paukstelis, Paul J.
2018-01-01
The increased availability of noncommercial 3D printers has provided instructors and students improved access to printing technology. However, printing complex ball-and-stick molecular structures faces distinct challenges, including the need for support structures that increase with molecular complexity. MolPrint3D is a software add-on for the…
Introduction to session on materials and structures
NASA Technical Reports Server (NTRS)
Vosteen, L. F.
1978-01-01
A review was given of the development of composites for aircraft. Supporting base technology and the Aircraft Energy Efficiency Composites Program are included. Specific topics discussed include: (1) environmental effects on materials; (2) material quality and chemical characterization; (3) design and analysis methods; (4) structural durability; (5) impact sensitivity; (6) carbon fiber electrical effects; and (7) composite components.
Supportability in Aircraft Systems through Technology and Acquisition Strategy Applications.
1987-09-01
structures is their corrosion resistance. These integral structures are water impregnable. Also, the absence of rivet and fastener hole eliminates the...REPCRT SECURITY CLASS,F,CAT ON lb RESTR;CTIVE MARK.NGSU",CLAS S I7 F 15E Za. SECURITY CLASSiFICAT;ON AUTHORITY 3 DISTRiBUTiQN/ AVAILABILIT ’ OF REPORT
Dish concentrators for solar thermal energy: Status and technology development
NASA Technical Reports Server (NTRS)
Jaffe, L. D.
1982-01-01
Point-focusing concentrators under consideration for solar thermal energy use are reviewed. These concentrators differ in such characteristics as optical configuration, optical materials, structure for support of the optical elements and of the receiver, mount, foundation, drive, controls and enclosure. Concentrator performance and cost are considered. Technology development is outlined, including wind loads and aerodynamics; precipitation, sand, and seismic considerations; and maintenance and cleaning.
Informational technologies in modern educational structure
NASA Astrophysics Data System (ADS)
Fedyanin, A. B.
2017-01-01
The article represents the structure of informational technologies complex that is applied in modern school education, describes the most important educational methods, shows the results of their implementation. It represents the forms and methods of educational process informative support usage, examined in respects of different aspects of their using that take into account also the psychological features of students. A range of anxious facts and dangerous trends connected with the usage and distribution of the informational technologies that are to be taken into account in the educational process of informatization is also indicated in the article. Materials of the article are based on the experience of many years in operation and development of the informational educational sphere on the basis of secondary school of the physics and mathematics specialization.
Skill training preferences and technology use in persons with neck and low back pain.
Verbrugghe, Jonas; Haesen, Mieke; Spierings, Ruth; Willems, Kim; Claes, Guido; Olivieri, Enzo; Coninx, Karin; Timmermans, Annick
2017-11-01
Neck pain (NP) and low back pain (LBP) are highly prevalent. Exercise therapy helps, but effect sizes and therapy compliance remain low. Client-centred therapy and technology use may play a role to improve therapy outcomes. To offer technology supported rehabilitation matching patient's goals, training preferences for rehabilitation and technology familiarity need to be known. This study aims to (1) inventory training preferences and motives, (2) evaluate whether these change during rehabilitation, and (3) evaluate familiarity with using technologies, in persons with NP/LBP. Semi-structured interviews were conducted with regard to training preferences and usage of mainstream technological devices. Persons with NP (n = 40) preferred to train on "lifting", "prolonged sitting" and "driving a car". Persons with LBP (n = 40) preferred to train on "household activities", "lifting" and "prolonged walking". Motives were predominantly "ability to work" and "ability to do free time occupations". Preferences shifted in ranking but remained the same during rehabilitation. Participants were familiar with the surveyed technologies. Persons with NP or LBP prefer to train on exercises supporting the improvement of everyday life skills. They use technologies in their professional and personal life, which may lower the threshold for the adoption of rehabilitation technologies. Implications for rehabilitation Persons with neck pain (NP) and persons with low back pain (LBP) prefer to train on specific activities that limit their functional ability during daily tasks. The underlying motives linked to preferred training activities are predominantly "being able to work" and "being able to perform free time occupations". Persons with NP and persons with LBP are accustomed to the use of mainstream technologies and the integration of these technologies in rehabilitation settings seems feasible. In order to enable technology supported rehabilitation that is client-centred, technologies need to offer an extensive number of exercises that support (components of) patient training preferences.
NASA Office of Aeronautical and Space Technology Summer Workshop. Volume 7: Materials panel
NASA Technical Reports Server (NTRS)
1975-01-01
Materials technology requirements pertinent to structures, power, and propulsion for future space missions are identified along with candidate space flight experiments. Most requirements are mission driven, only four (all relating to space processing of materials) are considered to be opportunity driven. Exploitation of the space environment in performing basic research to improve the understanding of materials phenomena (such as solidification) and manufacturing and assembly in space to support missions such as solar energy stations which require the forming, erection, joining, and repair of structures in space are among the topics discussed.
Sohn, S Y; Gyu Joo, Yong; Kyu Han, Hong
2007-02-01
Financial support on the R&D in Science & Technology for SMEs at the governmental level plays a crucial role on the improvement of the national competitiveness. Korea Science & Engineering Foundation (KOSEF) has supported the R&D projects of SMEs with the competitive technology ability by way of the Science and Technology Promotion Fund. In this paper, we propose a structural equation model (SEM) to evaluate the performance of such a funding program in terms of three aspects: output, outcome and impact under given funding inputs, R&D environment of a recipient company, and external evaluation programs of funding organization. We adopt Malcolm Baldrige National Quality Award (MBNQA) criteria to assess the R&D environmental factors of recipient companies. In addition, we test the effect of interim evaluation of the funded project. The proposed model is applied to the real case and is used to identify the best practices as well as to provide feedback information for the improvement of the government funding programs of the R&D projects of SMEs.
ERIC Educational Resources Information Center
Luby, Joan; Rogers, Cynthia
2013-01-01
Advances in brain imaging methods and technology over the last 2 decades have opened an unprecedented window into the understanding of the structure and function of the human brain. In this article, the authors describe their investigation of the relationship between maternal support, observed during the preschool period, and the size of key brain…
NASA Technical Reports Server (NTRS)
Smith-Taylor, Rudeen; Tanner, Sharon E.
1993-01-01
The NASA Controls-Structures Interaction (CSI) Guest Investigator program is described in terms of its support of the development of CSI technologies. The program is based on the introduction of CSI researchers from industry and academia to available test facilities for experimental validation of technologies and methods. Phase 1 experimental results are reviewed with attention given to their use of the Mini-MAST test facility and the facility for the Advance Control Evaluation of Structures. Experiments were conducted regarding the following topics: collocated/noncollocated controllers, nonlinear math modeling, controller design, passive/active suspension systems design, and system identification and fault isolation. The results demonstrate that significantly enhanced performance from the control techniques can be achieved by integrating knowledge of the structural dynamics under consideration into the approaches.
Technology Infusion Challenges from a Decision Support Perspective
NASA Technical Reports Server (NTRS)
Adumitroaie, V.; Weisbin, C. R.
2009-01-01
In a restricted science budget environment and increasingly numerous required technology developments, the technology investment decisions within NASA are objectively more and more difficult to make such that the end results are satisfying the technical objectives and all the organizational constraints. Under these conditions it is rationally desirable to build an investment portfolio, which has the highest possible technology infusion rate. Arguably the path to infusion is subject to many influencing factors, but here only the challenges associated with the very initial stages are addressed: defining the needs and the subsequent investment decision-support process. It is conceivable that decision consistency and possibly its quality suffer when the decision-making process has limited or no traceability. This paper presents a structured decision-support framework aiming to provide traceable, auditable, infusion- driven recommendations towards a selection process in which these recommendations are used as reference points in further discussions among stakeholders. In this framework addressing well-defined requirements, different measures of success can be defined based on traceability to specific selection criteria. As a direct result, even by using simplified decision models the likelihood of infusion can be probed and consequently improved.
Advanced technology commercial fuselage structure
NASA Technical Reports Server (NTRS)
Ilcewicz, L. B.; Smith, P. J.; Walker, T. H.; Johnson, R. W.
1991-01-01
Boeing's program for Advanced Technology Composite Aircraft Structure (ATCAS) has focused on the manufacturing and performance issues associated with a wide body commercial transport fuselage. The primary goal of ATCAS is to demonstrate cost and weight savings over a 1995 aluminum benchmark. A 31 foot section of fuselage directly behind the wing to body intersection was selected for study purposes. This paper summarizes ATCAS contract plans and review progress to date. The six year ATCAS program will study technical issues for crown, side, and keel areas of the fuselage. All structural details in these areas will be included in design studies that incorporate a design build team (DBT) approach. Manufacturing technologies will be developed for concepts deemed by the DBT to have the greatest potential for cost and weight savings. Assembly issues for large, stiff, quadrant panels will receive special attention. Supporting technologies and mechanical tests will concentrate on the major issues identified for fuselage. These include damage tolerance, pressure containment, splices, load redistribution, post-buckled structure, and durability/life. Progress to date includes DBT selection of baseline fuselage concepts; cost and weight comparisons for crown panel designs; initial panel fabrication for manufacturing and structural mechanics research; and toughened material studies related to keel panels. Initial ATCAS studies have shown that NASA's Advanced Composite Technology program goals for cost and weight savings are attainable for composite fuselage.
Technology development life cycle processes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beck, David Franklin
2013-05-01
This report and set of appendices are a collection of memoranda originally drafted in 2009 for the purpose of providing motivation and the necessary background material to support the definition and integration of engineering and management processes related to technology development. At the time there was interest and support to move from Capability Maturity Model Integration (CMMI) Level One (ad hoc processes) to Level Three. As presented herein, the material begins with a survey of open literature perspectives on technology development life cycles, including published data on %E2%80%9Cwhat went wrong.%E2%80%9D The main thrust of the material presents a rational expose%CC%81more » of a structured technology development life cycle that uses the scientific method as a framework, with further rigor added from adapting relevant portions of the systems engineering process. The material concludes with a discussion on the use of multiple measures to assess technology maturity, including consideration of the viewpoint of potential users.« less
Andersson, Stefan; Magnusson, Lennart; Hanson, Elizabeth
2016-03-01
Family care support services have mainly focused on older spousal carers of older people and have largely overlooked working carers, whom combine paid work with informal/family care responsibilities. Recently, however, information and communication technology (ICT) systems have been identified as a potentially flexible way of supporting working carers. The aim of this study was to describe nursing and support staff's experiences of using ICT for information, e-learning and support of working carers of older people. The study employed a descriptive, qualitative approach conducting a qualitative secondary analysis of two original data sets. In total, seventeen professional staff members from two municipal family carer support units in Sweden that had implemented ICTs were interviewed using a semi-structured interview guide consisting of open-ended questions. Two data sets were merged using latent qualitative content analysis. Secondary analysis produced three subthemes and an overall theme, a virtual road as a carriageway for the support of working carers, consisting of both enabling and hindering aspects in family support. This theme provides access points in both directions and is based on caring instruments that enable nursing staff's support role. The staff's sustainability and ability to support is influenced by caring opportunities and barriers. The findings suggest the ICTs to be flexible structures that provided nursing staff with a means and method to support working carers of older people. To overcome barriers to its use, measures to optimise support for working carers and the older person are needed. The use of ICTs provides nurses with a means to offer support to working carers of older people and enables carers to be informed, to learn and to share their burdens with others when caring for an older family member. © 2015 John Wiley & Sons Ltd.
A Methodological Framework for Enterprise Information System Requirements Derivation
NASA Astrophysics Data System (ADS)
Caplinskas, Albertas; Paškevičiūtė, Lina
Current information systems (IS) are enterprise-wide systems supporting strategic goals of the enterprise and meeting its operational business needs. They are supported by information and communication technologies (ICT) and other software that should be fully integrated. To develop software responding to real business needs, we need requirements engineering (RE) methodology that ensures the alignment of requirements for all levels of enterprise system. The main contribution of this chapter is a requirement-oriented methodological framework allowing to transform business requirements level by level into software ones. The structure of the proposed framework reflects the structure of Zachman's framework. However, it has other intentions and is purposed to support not the design but the RE issues.
Autonomous self-powered structural health monitoring system
NASA Astrophysics Data System (ADS)
Qing, Xinlin P.; Anton, Steven R.; Zhang, David; Kumar, Amrita; Inman, Daniel J.; Ooi, Teng K.
2010-03-01
Structural health monitoring technology is perceived as a revolutionary method of determining the integrity of structures involving the use of multidisciplinary fields including sensors, materials, system integration, signal processing and interpretation. The core of the technology is the development of self-sufficient systems for the continuous monitoring, inspection and damage detection of structures with minimal labor involvement. A major drawback of the existing technology for real-time structural health monitoring is the requirement for external electrical power input. For some applications, such as missiles or combat vehicles in the field, this factor can drastically limit the use of the technology. Having an on-board electrical power source that is independent of the vehicle power system can greatly enhance the SHM system and make it a completely self-contained system. In this paper, using the SMART layer technology as a basis, an Autonomous Self-powered (ASP) Structural Health Monitoring (SHM) system has been developed to solve the major challenge facing the transition of SHM systems into field applications. The architecture of the self-powered SHM system was first designed. There are four major components included in the SHM system: SMART Layer with sensor network, low power consumption diagnostic hardware, rechargeable battery with energy harvesting device, and host computer with supporting software. A prototype of the integrated self-powered active SHM system was built for performance and functionality testing. Results from the evaluation tests demonstrated that a fully charged battery system is capable of powering the SHM system for active scanning up to 10 hours.
A rigid and thermally stable all ceramic optical support bench assembly for the LSST Camera
NASA Astrophysics Data System (ADS)
Kroedel, Matthias; Langton, J. Brian; Wahl, Bill
2017-09-01
This paper will present the ceramic design, fabrication and metrology results and assembly plan of the LSST camera optical bench structure which is using the unique manufacturing features of the HB-Cesic technology. The optical bench assembly consists of a rigid "Grid" fabrication supporting individual raft plates mounting sensor assemblies by way of a rigid kinematic support system to meet extreme stringent requirements for focal plane planarity and stability.
Weber, Scott; Crago, Elizabeth A; Sherwood, Paula R; Smith, Tara
2009-11-01
The aim of this study was to explore the experiences of nurses and physicians who use a clinical decision support system (CDSS) in the critical care area, focusing on clinicians' motives and values related to decisions to either use or not use this optional technology. Information technology (IT) has been demonstrated to positively impact quality of patient care. Decision-support technology serves as an adjunct to, not as a replacement for, actual clinical decision making. Nurse administrators play an imperative role in the planning and implementation of IT projects and can benefit from understanding clinicians' affective considerations and approaches to the technology. This qualitative study used grounded theory methods. A total of 33 clinicians participated in in-depth structured interviews probing their professional concerns with how the technology is used. Data were analyzed using the constant comparative method. Medical staff were frustrated by perceived lack of planning input before system implementation. Both nurse and physician cohort groups were dissatisfied with preimplementation education. Barriers to system use were identified in significant detail by the participants. Both nurses and physicians should be involved in preimplementation planning and ongoing evaluation of CDSSs. There is a need for a systematic review or Cochrane meta-analysis describing the affective aspects of successful implementations of decisional technology in critical care, specifically from the perspective of nursing administrators.
FOREWORD: Structural Health Monitoring and Intelligent Infrastructure
NASA Astrophysics Data System (ADS)
Wu, Zhishen; Fujino, Yozo
2005-06-01
This special issue collects together 19 papers that were originally presented at the First International Conference on Structural Health Monitoring and Intelligent Infrastructure (SHMII-1'2003), held in Tokyo, Japan, on 13-15 November 2003. This conference was organized by the Japan Society of Civil Engineers (JSCE) with partial financial support from the Japan Society for the Promotion of Science (JSPS) and the Ministry of Education, Culture, Sport, Science and Technology, Japan. Many related organizations supported the conference. A total of 16 keynote papers including six state-of-the-art reports from different counties, six invited papers and 154 contributed papers were presented at the conference. The conference was attended by a diverse group of about 300 people from a variety of disciplines in academia, industry and government from all over the world. Structural health monitoring (SHM) and intelligent materials, structures and systems have been the subject of intense research and development in the last two decades and, in recent years, an increasing range of applications in infrastructure have been discovered both for existing structures and for new constructions. SHMII-1'2003 addressed progress in the development of building, transportation, marine, underground and energy-generating structures, and other civilian infrastructures that are periodically, continuously and/or actively monitored where there is a need to optimize their performance. In order to focus the current needs on SHM and intelligent technologies, the conference theme was set as 'Structures/Infrastructures Sustainability'. We are pleased to have the privilege to edit this special issue on SHM and intelligent infrastructure based on SHMII-1'2003. We invited some of the presenters to submit a revised/extended version of their paper that was included in the SHMII-1'2003 proceedings for possible publication in the special issue. Each paper included in this special issue was edited with the same quality standards as for any paper in a regular issue. The papers cover a wide spectrum of topics including smart and effective sensing technologies, reliable approaches to signal processing, rational data gathering and interpretation methods, advanced damage characterization, modeling feature selection and diagnosis methods, and system integration technologies, etc. This special issue contains the most up-to-date achievements in SHM and intelligent technologies and provides information pertaining to their current and potential applications in infrastructure. It is our hope that this special issue makes a significant contribution in advancing awareness and acceptance of SHM and intelligent technologies for the maintenance and construction of different kinds of infrastructure. We would like to express our sincere thanks to Professor Varadan (Editor-in-Chief), Professor Matsuzaki (Regional Editor), the Editorial Assistants and the staff at Institute of Physics Publishing for their great support and advice in publishing this special issue. Special thanks are due to all the reviewers for their willingness to share their time and expertise. Final but important thanks go to Ms Suzhen Li (Doctorate Candidate at Ibaraki University) for her assistance in editing this special issue.
Concepts for manned lunar habitats
NASA Technical Reports Server (NTRS)
Hypes, W. D.; Butterfield, A. J.; King, C. B.; Qualls, G. D.; Davis, W. T.; Gould, M. J.; Nealy, J. E.; Simonsen, L. C.
1991-01-01
The design philosophy that will guide the design of early lunar habitats will be based on a compromise between the desired capabilities of the base and the economics of its development and implantation. Preferred design will be simple, make use of existing technologies, require the least amount of lunar surface preparation, and minimize crew activity. Three concepts for an initial habitat supporting a crew of four for 28 to 30 days are proposed. Two of these are based on using Space Station Freedom structural elements modified for use in a lunar-gravity environment. A third concept is proposed that is based on an earlier technology based on expandable modules. The expandable modules offer significant advantages in launch mass and packaged volume reductions. It appears feasible to design a transport spacecraft lander that, once landed, can serve as a habitat and a stand-off for supporting a regolith environmental shield. A permanent lunar base habitat supporting a crew of twelve for an indefinite period can be evolved by using multiple initial habitats. There appears to be no compelling need for an entirely different structure of larger volume and increased complexity of implantation.
Nano-Material Aspects of Shock Absorption in Bone Joints
Tributsch, H; Copf, F; Copf, p; Hindenlang, U; Niethard, F.U; Schneider, R
2010-01-01
This theoretical study is based on a nano-technological evaluation of the effect of pressure on the composite bone fine structure. It turned out, that the well known macroscopic mechano-elastic performance of bones in combination with muscles and tendons is just one functional aspect which is critically supported by additional micro- and nano- shock damping technology aimed at minimising local bone material damage within the joints and supporting spongy bone material. The identified mechanisms comprise essentially three phenomena localised within the three–dimensional spongy structure with channels and so called perforated flexible tensulae membranes of different dimensions intersecting and linking them. Kinetic energy of a mechanical shock may be dissipated within the solid-liquid composite bone structure into heat via the generation of quasi-chaotic hydromechanic micro-turbulence. It may generate electro-kinetic energy in terms of electric currents and potentials. And the resulting specific structural and surface electrochemical changes may induce the compressible intra-osseal liquid to build up pressure dependent free chemical energy. Innovative bone joint prostheses will have to consider and to be adapted to the nano-material aspects of shock absorption in the operated bones. PMID:21625375
Chiu, Ching-Ju; Kuo, Su-E; Lin, Dai-Chan
2017-11-01
Mobile technology provides young adults important support for self-directed learning, but whether there is related support for older adults is not clear. This study aims to determine whether 1) nutrition education combined with mobile technology-supported teaching improves knowledge of and self-efficacy for a healthy diet; 2) if adults who reported reviewing the electronic course material or searching health information online, showed significantly greater progress in knowledge of and self-efficacy for a healthy diet than did those who did not adopt the electronic support. A total of 35 middle-aged and older adults were recruited from the community. Enrollees who were unable to read, who participated in the course fewer than five times, who did not take the post-test, or who did not return complete questionnaires at the pre-test were excluded. Overall, 21 participants were finally analyzed, and 14 participated in the qualitative investigation. The study interventions included three traditional nutrition lectures and three touch-screen tablet computer lessons to access the Internet and nutrition applications. Structured and semi-structured questionnaires were used to collect both quantitative and qualitative data and record participants' Internet use conditions at home. Participants' nutrition knowledge significantly improved (meanpost-pre = 1.19, p = 0.001) and their self-efficacy about a healthy diet showed marginal improvement (meanpost-pre = 0.22, p = 0.07). Nutrition knowledge was positively correlated with their intensity of surfing the Internet ( r = 0.46, p < 0.05), or reviewing the electronic course material ( r = 0.48, p < 0.05) but not correlated with reviewing paper course material ( r = 0.19, p = 0.09). Qualitative results showed that participants reported feeling freshness, joyfulness, and great achievement because of the combined course material. Technology-supported learning combined with traditional health education might provide great opportunities for positive behavioral change, even in older adults without any previous Internet experience.
Day, Arla; Paquet, Stephanie; Scott, Natasha; Hambley, Laura
2012-10-01
Although many employees are using more information communication technology (ICT) as part of their jobs, few studies have examined the impact of ICT on their well-being, and there is a lack of validated measures designed to assess the ICT factors that may impact employee well-being. Therefore, we developed and validated a measure of ICT demands and supports. Using Exploratory Structural Equation Modeling, we found support for 8 ICT demands (i.e., availability, communication, ICT control, ICT hassles, employee monitoring, learning, response expectations, and workload) and two facets of ICT support (personal assistance and resources/upgrades support). Jointly, the ICT demands were associated with increased strain, stress, and burnout and were still associated with stress and strain after controlling for demographics, job variables, and job demands. The two types of ICT support were associated with lower stress, strain, and burnout. Resources/upgrades support moderated the relationship between learning expectations and most strain outcomes and between ICT hassles and strain. Personal assistance support moderated the relationship between ICT hassles and strain.
Karlsson, Petra; Johnston, Christine; Barker, Katrina
2017-09-07
This study explored how classroom teachers, allied health professionals, students with cerebral palsy, and their parents view high-tech assistive technology service delivery in the classroom. Semi-structured interviews with six classroom teachers and six parents and their children were conducted. Additionally, two focus groups comprising 10 occupational therapists and six speech pathologists were carried out. Ethical and confidentiality considerations meant that the groups were not matched. Results revealed that it is often untrained staff member who determine students' educational needs. The participants' experiences suggested that, particularly in mainstream settings, there is a need for support and guidance from a professional with knowledge of assistive technology who can also take a lead and guide classroom teachers in how to meet students' needs. Students' motivation to use the technology was also found to be critical for its successful uptake. The study points to the need for classroom teachers to be given sufficient time and skill development opportunities to enable them to work effectively with assistive technology in the classroom. The participants' experiences suggest that such opportunities are not generally forthcoming. Only in this way can it be ensured that students with disabilities receive the education that is their right. Implications for Rehabilitation Classroom teachers, allied health professionals, students, parents need ongoing support and opportunities to practise operational, strategic and linguistic skills with the assistive technology equipment. System barriers to the uptake of assistive technology need to be addressed. To address the lack of time available for training, programing and other support activities around assistive technology, dedicated administrative support is crucial. Professional development around the use of the quality low cost ICF-CY checklist is recommended for both school and allied health staff.
NASA Astrophysics Data System (ADS)
Saito, Theodore T.; Langenbeck, Sharon L.; Al-Jamily, Ghanim; Arnold, Joe; Barbee, Troy; Coulter, Dan; Dolgin, Ben; Fichter, Buck; George, Patricia; Gorenstein, Paul
1992-08-01
Materials and structures technology covers a wide range of technical areas. Some of the most pertinent issues for the Astrotech 21 missions include dimensionally stable structural materials, advanced composites, dielectric coatings, optical metallic coatings for low scattered light applications, low scattered light surfaces, deployable and inflatable structures (including optical), support structures in 0-g and 1-g environments, cryogenic optics, optical blacks, contamination hardened surfaces, radiation hardened glasses and crystals, mono-metallic telescopes and instruments, and materials characterization. Some specific examples include low coefficients of thermal expansion (CTE) structures (0.01 ppm/K), lightweight thermally stable mirror materials, thermally stable optical assemblies, high reliability/accuracy (1 micron) deployable structures, and characterization of nanometer level behavior of materials/structures for interferometry concepts. Large filled-aperture concepts will require materials with CTE's of 10(exp 9) at 80 K, anti-contamination coatings, deployable and erectable structures, composite materials with CTE's less than 0.01 ppm/K and thermal hysteresis, 0.001 ppm/K. Gravitational detection systems such as LAGOS will require rigid/deployable structures, dimensionally stable components, lightweight materials with low conductivity, and high stability optics. The Materials and Structures panel addressed these issues and the relevance of the Astrotech 21 mission requirements by dividing materials and structures technology into five categories. These categories, the necessary development, and applicable mission/program development phasing are summarized. For each of these areas, technology assessments were made and development plans were defined.
[Physiotherapeutic care marketing research: current state-of-the art].
Babaskin, D V
2011-01-01
Successful introduction of modern technologies into the national health care systems strongly depends on the current pharmaceutical market situation. The present article is focused on the peculiarities of marketing research with special reference to physiotherapeutic services and commodities. Analysis of the structure and sequence of marketing research processes is described along with the methods applied for the purpose including their support by the use of Internet resources and technologies.
NASA Technical Reports Server (NTRS)
Kadlec, E. G.
1979-01-01
The developing Darrieus VAWT technology whose ultimate objective is economically feasible, industry-produced, commercially marketed wind energy systems is reviewed. First-level aerodynamic, structural, and system analyses capabilities which support and evaluate the system designs are discussed. The characteristics of current technology designs are presented and their cost effectiveness is assessed. Potential improvements identified are also presented along with their cost benefits.
NASA Technical Reports Server (NTRS)
2004-01-01
The Waterblast Research Cell supports development of automated systems that remove thermal protection materials and coatings from space flight hardware. These systems remove expended coatings without harsh chemicals or damaging underlying material. Potential applications of this technology include the removal of coatings from industrial machinery, aircraft, and other large structures. Use of the robot improves worker safety by reducing the exposure of persornel to high-pressure water. This technology is a proactive alternative to hazardous chemical strippers.
NASA Astrophysics Data System (ADS)
Peng, Yi; Zhang, Jie; Li, Dong
2018-03-01
A large wastewater treatment plant (WWTP) could not meet the new demand of urban environment and the need of reclaimed water in China, using a US treatment technology. Thus a multi AO reaction process (Anaerobic/oxic/anoxic/oxic/anoxic/oxic) WWTP with underground structure was proposed to carry out the upgrade project. Four main new technologies were applied: (1) multi AO reaction with step feed technology; (2) deodorization; (3) new energy-saving technology such as water resource heat pump and optical fiber lighting system; (4) dependable old WWTP’s water quality support measurement during new WWTP’s construction. After construction, upgrading WWTP had saved two thirds land occupation, increased 80% treatment capacity and improved effluent standard by more than two times. Moreover, it had become a benchmark of an ecological negative capital changing to a positive capital.
Electronic Structures and Adsorption of Li-Doped Graphenes for CO
NASA Astrophysics Data System (ADS)
Liu, Xiao-Juan; Cao, Wen-Qiang; Huang, Zi-Han; Yuan, Jie; Fang, Xiao-Yong; Cao, Mao-Sheng
2015-03-01
Not Available Supported by the National Natural Science Foundation of China under Grant Nos 51372282, 51072024 and 51132002, and the National College Students' Innovative and Entrepreneurial Training Program of Beijing Institute of Technology under Grant No 201410007050.
The management of research institutions: A look at government laboratories
NASA Technical Reports Server (NTRS)
Mark, H.; Levine, A.
1984-01-01
Technology development; project management; employment patterns; research productivity; legal status of support services; functions of senior executives; the role of the sponsoring agency; research diversification; obstacles to technical innovation; organizational structures; and personnel management are addressed.
Chan, Connie V.; Kaufman, David R.
2009-01-01
Health information technologies (HIT) have great potential to advance health care globally. In particular, HIT can provide innovative approaches and methodologies to overcome the range of access and resource barriers specific to developing countries. However, there is a paucity of models and empirical evidence informing the technology selection process in these settings. We propose a framework for selecting patient-oriented technologies in developing countries. The selection guidance process is structured by a set of filters that impose particular constraints and serve to narrow the space of possible decisions. The framework consists of three levels of factors: 1) situational factors, 2) the technology and its relationship with health interventions and with target patients, and 3) empirical evidence. We demonstrate the utility of the framework in the context of mobile phones for behavioral health interventions to reduce risk factors for cardiovascular disease. This framework can be applied to health interventions across health domains to explore how and whether available technologies can support delivery of the associated types of interventions and with the target populations. PMID:19796709
NASA Technical Reports Server (NTRS)
Agnew, Donald L.; Jones, Peter A.
1989-01-01
A study was conducted to define reasonable and representative LDR system concepts for the purpose of defining a technology development program aimed at providing the requisite technological capability necessary to start LDR development by the end of 1991. This volume presents thirteen technology assessments and technology development plans, as well as an overview and summary of the LDR concepts. Twenty-two proposed augmentation projects are described (selected from more than 30 candidates). The five LDR technology areas most in need of supplementary support are: cryogenic cooling; astronaut assembly of the optically precise LDR in space; active segmented primary mirror; dynamic structural control; and primary mirror contamination control. Three broad, time-phased, five-year programs were synthesized from the 22 projects, scheduled, and funding requirements estimated.
Hobson, Esther V; Fazal, Saima; Shaw, Pamela J; McDermott, Christopher J
2017-08-01
Our aim was to explore the attitudes of those living with motor neuron disease towards digital technology. Postal and online questionnaires surveyed 83 people with MND (pwMND) and 54 friends and family members (fMND). Five pwMND and five fMND underwent semi-structured interviews. 82% of pwMND and 87% of fMND use technology every day with iPads and laptops being the devices most commonly used. pwMND used technology to help them continue to participate in everyday activities such as socialising, entertainment and accessing the internet. The internet provided peer support and information about MND but information could be distressing or unreliable. Participants preferred information from professionals and official organisations. Participants were generally supportive of using of technology to access medical care. Barriers to technology, such as lack of digital literacy skills and upper limb dysfunction, and potential solutions were identified. More challenging barriers included language and cognitive difficulties, and the fear of becoming dependent on technology. Addressing the barriers identified in this research could help pwMND access technology. However, as healthcare delivery becomes more reliant on digital technology, care should be taken to ensure that those who are unable or unwilling to use technology continue to have their needs met in alternative ways.
NASA Astrophysics Data System (ADS)
Hongqi, Jing; Li, Zhong; Yuxi, Ni; Junjie, Zhang; Suping, Liu; Xiaoyu, Ma
2015-10-01
A novel high-efficiency cooling mini-channel heat-sink structure has been designed to meet the package technology demands of high power density laser diode array stacks. Thermal and water flowing characteristics have been simulated using the Ansys-Fluent software. Owing to the increased effective cooling area, this mini-channel heat-sink structure has a better cooling effect when compared with the traditional macro-channel heat-sinks. Owing to the lower flow velocity in this novel high efficient cooling structure, the chillers' water-pressure requirement is reduced. Meanwhile, the machining process of this high-efficiency cooling mini-channel heat-sink structure is simple and the cost is relatively low, it also has advantages in terms of high durability and long lifetime. This heat-sink is an ideal choice for the package of high power density laser diode array stacks. Project supported by the Defense Industrial Technology Development Program (No. B1320133033).
[Application of electrostatic spinning technology in nano-structured polymer scaffold].
Chen, Denglong; Li, Min; Fang, Qian
2007-04-01
To review the latest development in the research on the application of the electrostatic spinning technology in preparation of the nanometer high polymer scaffold. The related articles published at home and abroad during the recent years were extensively reviewed and comprehensively analyzed. Micro/nano-structure and space topology on the surfaces of the scaffold materials, especially the weaving structure, were considered to have an important effect on the cell adhesion, proliferation, directional growth, and biological activation. The electrospun scaffold was reported to have a resemblance to the structure of the extracellular matrix and could be used as a promising scaffold for the tissue engineering application. The electrospun scaffolds were applied to the cartilage, bone, blood vessel, heart, and nerve tissue engineering fields. The nano-structured polymer scaffold can support the cell adhesion, proliferation, location, and differentiation, and this kind of scaffold has a considerable value in the tissue engineering field.
Manufacturing Methods and Technology Project Summary Reports
1984-06-01
was selected as the composite material. This selection was based upon the following advantages in comparison to aluminum: 0 Stiffness to weight...closer to titanium than aluminum. Other composite candidate materials considered ( glass , Kevlar and metal matrix) did not offer all of these...of the bearing support ring, and the attachment of the bearing support ring to the composite gimbal base plate. A thermal test structure, which
Study of multi-LLID technology to support multi-services carring in EPONS
NASA Astrophysics Data System (ADS)
Li, Wang; Yi, Benshun; Cheng, Chuanqing
2006-09-01
The Ethernet Passive Optical Network (EPON) has recently attracted more and more research attentions since it could be a perfect candidate for next generation access networks. EPON utilizes pon structure to carry ethernet data, having the both advantages of pon and ethernet devices. From traditional view, EPON is considered to only be a Ethernet services access platform and wake in supporting multi-services especially real-time service. It is obvious that if epon designed only to aim to carrying data service, it is difficult for epon devices to fulfill service provider's command of taking EPON as a integrated service access platform. So discussing the multi-services carrying technology in EPONs is a significative task. This paper deploy a novel method of multi-llid to support multi-services carrying in EPONs.
Sánchez de Madariaga, Inés; Ruiz Cantero, María Teresa
2014-01-01
The European Commission supports several routes for incorporating the gender perspective. The Commission currently supports the new Horizon 2020 program, and also funds projects such as "gendered innovations", which show how gender innovations increase the quality of research and professional practice for health and welfare. One of the policy instruments is the Recommendation on Gender, Science and Innovation. Against this background, the international European Cooperation in Science and Technology (COST) network genderSTE (Gender, Science, Technology and Environment) was created, which seeks to: 1) promote structural changes in institutions to increase the number of women researchers; 2) identify the gender dimensions relevant to the environment; and 3) improve the integration of a gender perspective in research and technology. COST GenderSTE supports networking and the dissemination of knowledge with a gender perspective. All these tools provide an opportunity to incorporate a gender perspective in research in Europe. Copyright © 2013 SESPAS. Published by Elsevier Espana. All rights reserved.
GRC Supporting Technology for NASA's Advanced Stirling Radioisotope Generator (ASRG)
NASA Technical Reports Server (NTRS)
Schreiber, Jeffrey G.; Thieme, Lanny G.
2008-01-01
From 1999 to 2006, the NASA Glenn Research Center (GRC) supported a NASA project to develop a high-efficiency, nominal 110-We Stirling Radioisotope Generator (SRG110) for potential use on NASA missions. Lockheed Martin was selected as the System Integration Contractor for the SRG110, under contract to the Department of Energy (DOE). The potential applications included deep space missions, and Mars rovers. The project was redirected in 2006 to make use of the Advanced Stirling Convertor (ASC) that was being developed by Sunpower, Inc. under contract to GRC, which would reduce the mass of the generator and increase the power output. This change would approximately double the specific power and result in the Advanced Stirling Radioisotope Generator (ASRG). The SRG110 supporting technology effort at GRC was replanned to support the integration of the Sunpower convertor and the ASRG. This paper describes the ASRG supporting technology effort at GRC and provides details of the contributions in some of the key areas. The GRC tasks include convertor extended-operation testing in air and in thermal vacuum environments, heater head life assessment, materials studies, permanent magnet characterization and aging tests, structural dynamics testing, electromagnetic interference and electromagnetic compatibility characterization, evaluation of organic materials, reliability studies, and analysis to support controller development.
Object reasoning for waste remediation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pennock, K.A.; Bohn, S.J.; Franklin, A.L.
1991-08-01
A large number of contaminated waste sites across the United States await size remediation efforts. These sites can be physically complex, composed of multiple, possibly interacting, contaminants distributed throughout one or more media. The Remedial Action Assessment System (RAAS) is being designed and developed to support decisions concerning the selection of remediation alternatives. The goal of this system is to broaden the consideration of remediation alternatives, while reducing the time and cost of making these considerations. The Remedial Action Assessment System is a hybrid system, designed and constructed using object-oriented, knowledge- based systems, and structured programming techniques. RAAS uses amore » combination of quantitative and qualitative reasoning to consider and suggest remediation alternatives. The reasoning process that drives this application is centered around an object-oriented organization of remediation technology information. This paper describes the information structure and organization used to support this reasoning process. In addition, the paper describes the level of detail of the technology related information used in RAAS, discusses required assumptions and procedural implications of these assumptions, and provides rationale for structuring RAAS in this manner. 3 refs., 3 figs.« less
Recent advances in active noise and vibration control at NASA Langley Research Center
NASA Astrophysics Data System (ADS)
Gibbs, Gary P.; Cabell, Randolph H.; Palumbo, Daniel L.; Silcox, Richard J.; Turner, Travis L.
2002-11-01
Over the past 15 years NASA has investigated the use of active control technology for aircraft interior noise. More recently this work has been supported through the Advanced Subsonic Technology Noise Reduction Program (1994-2001), High Speed Research Program (1994-1999), and through the Quiet Aircraft Technology Program (2000-present). The interior environment is recognized as an important element in flight safety, crew communications and fatigue, as well as passenger comfort. This presentation will overview research in active noise and vibration control relating to interior noise being investigated by NASA. The research to be presented includes: active control of aircraft fuselage sidewall transmission due to turbulent boundary layer or jet noise excitation, active control of interior tones due to propeller excitation of aircraft structures, and adaptive stiffening of structures for noise, vibration, and fatigue control. Work on actuator technology ranging from piezoelectrics, shape memory actuators, and fluidic actuators will be described including applications. Control system technology will be included that is experimentally based, real-time, and adaptive.
Z-2 Suit Support Stand and MKIII Suit Center of Gravity Test
NASA Technical Reports Server (NTRS)
Nguyen, Tuan Q.
2014-01-01
NASA's next generation spacesuits are the Z-Series suits, made for a range of possible exploration missions in the near future. The prototype Z-1 suit has been developed and assembled to incorporate new technologies that has never been utilized before in the Apollo suits and the Extravehicular Mobility Unit (EMU). NASA engineers tested the Z-1 suit extensively in order to developed design requirements for the new Z-2 suit. At the end of 2014, NASA will be receiving the new Z-2 suit to perform more testing and to further develop the new technologies of the suit. In order to do so, a suit support stand will be designed and fabricated to support the Z-2 suit during maintenance, sizing, and structural leakage testing. The Z-2 Suit Support Stand (Z2SSS) will be utilized for these purposes in the early testing stages of the Z-2 suit.
Advanced Technology Composite Fuselage - Repair and Damage Assessment Supporting Maintenance
NASA Technical Reports Server (NTRS)
Flynn, B. W.; Bodine, J. B.; Dopker, B.; Finn, S. R.; Griess, K. H.; Hanson, C. T.; Harris, C. G.; Nelson, K. M.; Walker, T. H.; Kennedy, T. C.;
1997-01-01
Under the NASA-sponsored contracts for Advanced Technology Composite Aircraft Structures (ATCAS) and Materials Development Omnibus Contract (MDOC), Boeing is studying the technologies associated with the application of composite materials to commercial transport fuselage structure. Included in the study is the incorporation of maintainability and repairability requirements of composite primary structure into the design. This contractor report describes activities performed to address maintenance issues in composite fuselage applications. A key aspect of the study was the development of a maintenance philosophy which included consideration of maintenance issues early in the design cycle, multiple repair options, and airline participation in design trades. Fuselage design evaluations considered trade-offs between structural weight, damage resistance/tolerance (repair frequency), and inspection burdens. Analysis methods were developed to assess structural residual strength in the presence of damage, and to evaluate repair design concepts. Repair designs were created with a focus on mechanically fastened concepts for skin/stringer structure and bonded concepts for sandwich structure. Both a large crown (skintstringer) and keel (sandwich) panel were repaired. A compression test of the keel panel indicated the demonstrated repairs recovered ultimate load capability. In conjunction with the design and manufacturing developments, inspection methods were investigated for their potential to evaluate damaged structure and verify the integrity of completed repairs.
Advanced rotorcraft technology: Task force report
NASA Technical Reports Server (NTRS)
1978-01-01
The technological needs and opportunities related to future civil and military rotorcraft were determined and a program plan for NASA research which was responsive to the needs and opportunities was prepared. In general, the program plan places the primary emphasis on design methodology where the development and verification of analytical methods is built upon a sound data base. The four advanced rotorcraft technology elements identified are aerodynamics and structures, flight control and avionic systems, propulsion, and vehicle configurations. Estimates of the total funding levels that would be required to support the proposed program plan are included.
The Advanced Technology Solar Telescope mount assembly
NASA Astrophysics Data System (ADS)
Warner, Mark; Cho, Myung; Goodrich, Bret; Hansen, Eric; Hubbard, Rob; Lee, Joon Pyo; Wagner, Jeremy
2006-06-01
When constructed on the summit of Haleakala on the island of Maui, Hawaii, the Advanced Technology Solar Telescope (ATST) will be the world's largest solar telescope. The ATST is a unique design that utilizes a state-of-the-art off-axis Gregorian optical layout with five reflecting mirrors delivering light to a Nasmyth instrument rotator, and nine reflecting mirrors delivering light to an instrument suite located on a large diameter rotating coude lab. The design of the telescope mount structure, which supports and positions the mirrors and scientific instruments, has presented noteworthy challenges to the ATST engineering staff. Several novel design solutions, as well as adaptations of existing telescope technologies to the ATST application, are presented in this paper. Also shown are plans for the control system and drives of the structure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shem, L.M.; Rosenblatt, D.H.; Smits, M.P.
1995-12-01
In support of the U.S. Army`s efforts to determine the best technologies for remediation of soils, water, and structures contaminated with pesticides and chemical agents, Argonne National Laboratory has reviewed technologies for treating soils contaminated with mustard, lewisite, sarin, o-ethyl s-(2- (diisopropylamino)ethyl)methyl-phosphonothioate (VX), and their breakdown products. This report focuses on assessing alternatives to incineration for dealing with these contaminants. For each technology, a brief description is provided, its suitability and constraints on its use are identified, and its overall applicability for treating the agents of concern is summarized. Technologies that merit further investigation are identified.
OTV propulsion tecnology programmatic overview
NASA Astrophysics Data System (ADS)
Cooper, L. P.
1984-04-01
An advanced orbit transfer vehicles (OTV) which will be an integral part of the national space transportation system to carry men and cargo between low Earth orbit and geosynchronous orbit will perform planetary transfers and deliver large acceleration limited space structures to high Earth orbits is reviewed. The establishment of an advanced propulsion technology base for an OTV for the mid 1990's is outlined. The program supports technology for three unique engine concepts. Work is conducted to generic technologies which benefit all three concepts and specific technology which benefits only one of the concepts. Concept and technology definitions to identify propulsion innovations, and subcomponent research to explore and validate their potential benefits are included.
OTV propulsion tecnology programmatic overview
NASA Technical Reports Server (NTRS)
Cooper, L. P.
1984-01-01
An advanced orbit transfer vehicles (OTV) which will be an integral part of the national space transportation system to carry men and cargo between low Earth orbit and geosynchronous orbit will perform planetary transfers and deliver large acceleration limited space structures to high Earth orbits is reviewed. The establishment of an advanced propulsion technology base for an OTV for the mid 1990's is outlined. The program supports technology for three unique engine concepts. Work is conducted to generic technologies which benefit all three concepts and specific technology which benefits only one of the concepts. Concept and technology definitions to identify propulsion innovations, and subcomponent research to explore and validate their potential benefits are included.
Solar Cell and Array Technology Development for NASA Solar Electric Propulsion Missions
NASA Technical Reports Server (NTRS)
Piszczor, Michael; McNatt, Jeremiah; Mercer, Carolyn; Kerslake, Tom; Pappa, Richard
2012-01-01
NASA is currently developing advanced solar cell and solar array technologies to support future exploration activities. These advanced photovoltaic technology development efforts are needed to enable very large (multi-hundred kilowatt) power systems that must be compatible with solar electric propulsion (SEP) missions. The technology being developed must address a wide variety of requirements and cover the necessary advances in solar cell, blanket integration, and large solar array structures that are needed for this class of missions. Th is paper will summarize NASA's plans for high power SEP missions, initi al mission studies and power system requirements, plans for advanced photovoltaic technology development, and the status of specific cell and array technology development and testing that have already been conducted.
Biomedical Monitoring By A Novel Noncontact Radio Frequency Technology Project
NASA Technical Reports Server (NTRS)
Oliva-Buisson, Yvette J. (Compiler)
2014-01-01
The area of Space Health and Medicine is one of the NASA's Space Technology Grand Challenges. Space is an extreme environment which is not conducive to human life. The extraterrestrial environment can result in the deconditioning of various human physiological systems and thus require easy to use physiological monitoring technologies in order to better monitor space crews for appropriate health management and successful space missions and space operations. Furthermore, the Space Technology Roadmap's Technology Area Breakdown Structure calls for improvements in research to support human health and performance (Technology Area 06). To address these needs, this project investigated a potential noncontact and noninvasive radio frequency-based technique of monitoring central hemodynamic function in human research subjects in response to orthostatic stress.
Dual-Use Space Technology Transfer Conference and Exhibition. Volume 2
NASA Technical Reports Server (NTRS)
Krishen, Kumar (Compiler)
1994-01-01
This is the second volume of papers presented at the Dual-Use Space Technology Transfer Conference and Exhibition held at the Johnson Space Center February 1-3, 1994. Possible technology transfers covered during the conference were in the areas of information access; innovative microwave and optical applications; materials and structures; marketing and barriers; intelligent systems; human factors and habitation; communications and data systems; business process and technology transfer; software engineering; biotechnology and advanced bioinstrumentation; communications signal processing and analysis; medical care; applications derived from control center data systems; human performance evaluation; technology transfer methods; mathematics, modeling, and simulation; propulsion; software analysis and decision tools; systems/processes in human support technology; networks, control centers, and distributed systems; power; rapid development; perception and vision technologies; integrated vehicle health management; automation technologies; advanced avionics; and robotics technologies.
Experimental demonstration of the control of flexible structures
NASA Technical Reports Server (NTRS)
Schaechter, D. B.; Eldred, D. B.
1984-01-01
The Large Space Structure Technology Flexible Beam Experiment employs a pinned-free flexible beam to demonstrate such required methods as dynamic and adaptive control, as well as various control law design approaches and hardware requirements. An attempt is made to define the mechanization difficulties that may inhere in flexible structures. Attention is presently given to analytical work performed in support of the test facility's development, the final design's specifications, the control laws' synthesis, and experimental results obtained.
1981-09-01
Systems and Logistics AREA &WORIUNITNUMUERS Air Force Institute of Technology WPAFB OH 11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE Department of...consists of a cursory glance at structural members located in easily accessable areas and many critical parts of the facility go unnoticed. A counterpart...too far, If inspection teams can be persuaded to take a little extra time to inspect obscure areas of a structural support system and educated with
Cell–scaffold interaction within engineered tissue
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Haiping; Liu, Yuanyuan, E-mail: Yuanyuan_liu@shu.edu.cn; Jiang, Zhenglong
The structure of a tissue engineering scaffold plays an important role in modulating tissue growth. A novel gelatin–chitosan (Gel–Cs) scaffold with a unique structure produced by three-dimensional printing (3DP) technology combining with vacuum freeze-drying has been developed for tissue-engineering applications. The scaffold composed of overall construction, micro-pore, surface morphology, and effective mechanical property. Such a structure meets the essential design criteria of an ideal engineered scaffold. The favorable cell–matrix interaction supports the active biocompatibility of the structure. The structure is capable of supporting cell attachment and proliferation. Cells seeded into this structure tend to maintain phenotypic shape and secreted largemore » amounts of extracellular matrix (ECM) and the cell growth decreased the mechanical properties of scaffold. This novel biodegradable scaffold has potential applications for tissue engineering based upon its unique structure, which acts to support cell growth. - Highlights: • The scaffold is not only for providing a surface for cell residence but also for determining cell phenotype and retaining structural integrity. • The mechanical property of scaffold can be affected by activities of cell. • The scaffold provides a microenvironment for cell attachment, growth, and migration.« less
Bibliography on the Design and Performance of Rail Track Structures
DOT National Transportation Integrated Search
1974-01-01
This bibliography was prepared as part of the Rail Supporting Technology Program being sponsored by the Rail Programs Branch of the Urban Mass Transportation Administration. It is based on the reference material that was used to evaluate the technica...
Milestones in Broadcasting: Antennas.
ERIC Educational Resources Information Center
Media in Education and Development, 1985
1985-01-01
Briefly describes the development of antennas in the prebroadcast era (elevated antenna, selectivity to prevent interference between stations, birth of diplex, directional properties, support structures), as well as technological developments used in long-, medium-, and short-wave broadcasting, VHF/FM and television broadcasting, and satellite…
2017-02-27
Quiet Supersonic Technology (QueSST) X-plane in the 8x6 Supersonic Wind Tunnel at NASA Glenn Research Center. This time-lapse shows the model support structure buildup and balance checkout as well as the installation of the model in the test section.
Building a Global Learning Organization: Lessons from the World's Top Corporations.
ERIC Educational Resources Information Center
Marquardt, Michael J.
1995-01-01
Research on 50 organizations elicited 19 attributes of learning organizations: individual learning, group learning, streamlined structure, corporate learning culture, empowerment, environmental scanning, knowledge creation/transfer, learning technology, quality, learning strategy, supportive atmosphere, teamwork/networking, vision, acculturation,…
Economic efficiency of application of innovative materials and structures in high-rise construction
NASA Astrophysics Data System (ADS)
Golov, Roman; Dikareva, Varvara; Gorshkov, Roman; Agarkov, Anatoly
2018-03-01
The article is devoted to the analysis of technical and economic efficiency of application of tube confined concrete structures in high-rise construction. The study of comparative costs of materials with the use of different supporting columns was carried out. The main design, operational, technological and economic advantages of the tube confined concrete technology were evaluated, conclusions were drawn about the high strength and deformation properties of axial compression of steel tubes filled with high-strength concrete. The efficiency of the tube confined concrete use is substantiated, which depends mainly on the scale factor and percentage of reinforcement affecting its load-bearing capacity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anthony D. Rollett; Hasso Weiland; Mohammed Alvi
Carnegie Mellon University was teamed with the Alcoa Technical Center with support from the US Dept. of Energy (Office of Industrial Technology) and the Pennsylvania Technology Investment Authority (PTIA) to make processing of aluminum less costly and more energy efficient. Researchers in the Department of Materials Science and Engineering have investigated how annealing processes in the early stages of aluminum processing affect the structure and properties of the material. Annealing at high temperatures consumes significant amounts of time and energy. By making detailed measurements of the crystallography and morphology of internal structural changes they have generated new information that willmore » provide a scientific basis for shortening processing times and consuming less energy during annealing.« less
[Information technology use in preventing infection].
Ohmagari, Norio
2011-11-01
Infection prevention requires handling enormous amounts of medical information collection, analysis, and delivery--a cumbersome, inefficient process. Hospital information system (HIS) data not intended for preventing infection cannot be used directly for such prevention. The rapid introduction of information technology in infection prevention can potentially solve these problems. The IT-based infection prevention system (ITIPS) structure depends on the purpose specified, however, and using this information in hospitals requires that the detailed HIS structure be clarified, especially the connection between HIS and ITIPS. The future ITIPS role is envisioned in early infection detection and warning. This, in turn, requires that ITIPS field operational support systems for medical staff mature further.
Hanna, Lisa; May, Carl; Fairhurst, Karen
2012-06-01
New information and communication technologies such as email and text messaging have been shown to be useful in some aspects of primary care service delivery. Little is known about Scottish GPs' attitudes towards the adoption of these technologies as routine consultation tools. To explore GPs' perceptions of the potential place of new non-face-to-face consultation technologies in the routine delivery of primary care; to explore GPs' perceived barriers to the introduction of these technologies and to identify the processes by which GPs feel that new consultation technologies could be incorporated into routine primary care. Qualitative interview study: 20 in-depth semi-structured interviews carried out with maximum variation sample of GPs across Scotland. Whilst the face-to-face consultation was seen as central to much of the clinical and diagnostic work of primary care, many GPs were conditionally willing to consider using new technologies in the future, particularly to carry out administrative or less complex tasks and therefore maximize practice efficiency and patient convenience. Key considerations were access to appropriate training, IT support and medico-legal guidance. GPs are conditionally willing to use new consultation media if clinically appropriate and if medico-legal and technical support is available.
Approaching hospital administration about adopting cooling technologies.
Kirkland, Lisa L; Parham, William M; Pastores, Stephen M
2009-07-01
The purpose of this article is to provide intensivists with information and examples regarding cooling technology selection, cost assessment, adaptation, barriers, and presentation to hospital administrators. A review of medical and business literature was conducted using the following search terms: technology assessment, organizational innovation, intensive care, critical care, hospital administration, and presentation to administrators. General recommendations for intensivists are made for assessing cooling technology with descriptions of common new technology implementation stages. A study of 16 hospitals implementing a new cardiac surgery technology is described. A description of successful implementation of an induced hypothermia protocol by one of the authors is presented. Although knowledgeable about the applications of new technologies, including cooling technology, intensivists have little guidance or training on tactics to obtain a hospital administration's funding and support. Intensive care unit budgets are usually controlled by nonintensivists whose interests are neutral, at best, to the needs of intensivists. To rise to the top of the large pile of requisition requests, an intensivist's proposal must be well conceived and aligned with hospital administration's strategic goals. Intensivists must understand the hospital acquisition process and administrative structure and participate on high-level hospital committees. Using design thinking and strong leadership skills, the intensivist can marshal support from staff and administrators to successfully implement cooling technology.
Chorpita, Bruce F; Bernstein, Adam; Daleiden, Eric L
2008-03-01
This paper illustrates the application of design principles for tools that structure clinical decision-making. If the effort to implement evidence-based practices in community services organizations is to be effective, attention must be paid to the decision-making context in which such treatments are delivered. Clinical research trials commonly occur in an environment characterized by structured decision making and expert supports. Technology has great potential to serve mental health organizations by supporting these potentially important contextual features of the research environment, through organization and reporting of clinical data into interpretable information to support decisions and anchor decision-making procedures. This article describes one example of a behavioral health reporting system designed to facilitate clinical and administrative use of evidence-based practices. The design processes underlying this system-mapping of decision points and distillation of performance information at the individual, caseload, and organizational levels-can be implemented to support clinical practice in a wide variety of settings.
Evaluation of bonded boron/epoxy doublers for commercial aircraft aluminum structures
NASA Technical Reports Server (NTRS)
Belason, Bruce; Rutherford, Paul; Miller, Matthew; Raj, Shreeram
1994-01-01
An 18 month laboratory test and stress analysis program was conducted to evaluate bonded boron/epoxy doublers for repairing cracks on aluminum aircraft structures. The objective was to obtain a core body of substantiating data which will support approval for use on commercial transports of a technology that is being widely used by the military. The data showed that the doublers had excellent performance.
Coal gasification systems engineering and analysis. Volume 1: Executive summary
NASA Technical Reports Server (NTRS)
1980-01-01
Feasibility analyses and systems engineering studies for a 20,000 tons per day medium Btu (MBG) coal gasification plant to be built by TVA in Northern Alabama were conducted. Major objectives were as follows: (1) provide design and cost data to support the selection of a gasifier technology and other major plant design parameters, (2) provide design and cost data to support alternate product evaluation, (3) prepare a technology development plan to address areas of high technical risk, and (4) develop schedules, PERT charts, and a work breakdown structure to aid in preliminary project planning. Volume one contains a summary of gasification system characterizations. Five gasification technologies were selected for evaluation: Koppers-Totzek, Texaco, Lurgi Dry Ash, Slagging Lurgi, and Babcock and Wilcox. A summary of the trade studies and cost sensitivity analysis is included.
Pervasive assistive technology for people with dementia: a UCD case
Rønn-Andersen, Kristoffer V.H.; Bień, Paulina; Özkil, Ali Gürcan; Forchhammer, Birgitte Hysse; Maier, Anja M.
2016-01-01
Smart mobile and wearable technology offers exciting opportunities to support people with dementia (PwD). Its ubiquity and popularity could even benefit user adoption – a great challenge for assistive technology (AT) for PwD that calls for user-centred design (UCD) methods. This study describes a user-centred approach to developing and testing AT based on off-the-shelf pervasive technologies. A prototype is created by combining a smartphone, smartwatch and various applications to offer six support features. This is tested among five end-users (PwD) and their caregivers. Controlled usability testing was followed by field testing in a real-world context. Data is gathered from video recordings, interaction logs, system usability scale questionnaires, logbooks, application usage logs and interviews structured on the unified theory of acceptance and use of technology model. The data is analysed to evaluate usability, usefulness and user acceptance. Results show some promise for user adoption, but highlight challenges to be overcome, emphasising personalisation and familiarity as key considerations. The complete findings regarding usability issues, usefulness of support features and four identified adoption profiles are used to provide a set of recommendations for practitioners and further research. These contribute toward UCD practices for improved smart, pervasive AT for dementia. PMID:28008366
2004-04-15
The Waterblast Research Cell supports development of automated systems that remove thermal protection materials and coatings from space flight hardware. These systems remove expended coatings without harsh chemicals or damaging underlying material. Potential applications of this technology include the removal of coatings from industrial machinery, aircraft, and other large structures. Use of the robot improves worker safety by reducing the exposure of persornel to high-pressure water. This technology is a proactive alternative to hazardous chemical strippers.
1991-01-01
Estimates, in support force structure, and identifying of cost- effectiveness studies , other system characteristics. system analysis efforts, and trade- A...mission effectiveness studies , used to justify technology evaluate the results in terms funding. These technology of benefit vs. cost, and marketers often...the formal studies serve on mission effectiveness and to rubber stamp these prede- ultimately, benefit vs. cost termined solutions. In an 101 attempt to
Utilization of the Building-Block Approach in Structural Mechanics Research
NASA Technical Reports Server (NTRS)
Rouse, Marshall; Jegley, Dawn C.; McGowan, David M.; Bush, Harold G.; Waters, W. Allen
2005-01-01
In the last 20 years NASA has worked in collaboration with industry to develop enabling technologies needed to make aircraft safer and more affordable, extend their lifetime, improve their reliability, better understand their behavior, and reduce their weight. To support these efforts, research programs starting with ideas and culminating in full-scale structural testing were conducted at the NASA Langley Research Center. Each program contained development efforts that (a) started with selecting the material system and manufacturing approach; (b) moved on to experimentation and analysis of small samples to characterize the system and quantify behavior in the presence of defects like damage and imperfections; (c) progressed on to examining larger structures to examine buckling behavior, combined loadings, and built-up structures; and (d) finally moved to complicated subcomponents and full-scale components. Each step along the way was supported by detailed analysis, including tool development, to prove that the behavior of these structures was well-understood and predictable. This approach for developing technology became known as the "building-block" approach. In the Advanced Composites Technology Program and the High Speed Research Program the building-block approach was used to develop a true understanding of the response of the structures involved through experimentation and analysis. The philosophy that if the structural response couldn't be accurately predicted, it wasn't really understood, was critical to the progression of these programs. To this end, analytical techniques including closed-form and finite elements were employed and experimentation used to verify assumptions at each step along the way. This paper presents a discussion of the utilization of the building-block approach described previously in structural mechanics research and development programs at NASA Langley Research Center. Specific examples that illustrate the use of this approach are included from recent research and development programs for both subsonic and supersonic transports.
A manned-machine space station construction concept
NASA Technical Reports Server (NTRS)
Mikulas, M. M., Jr.; Bush, H. G.; Wallsom, R. E.; Dorsey, J. T.; Rhodes, M. D.
1984-01-01
A design concept for the construction of a permanent manned space station is developed and discussed. The main considerations examined in developing the design concept are: (1) the support structure of the station be stiff enough to preclude the need for an elaborate on-orbit system to control structural response, (2) the station support structure and solar power system be compatible with existing technology, and (3) the station be capable of growing in a systematic modular fashion. The concept is developed around the assembly of truss platforms by pressure-suited astronauts operating in extravehicular activity (EVA), assisted by a machine (Assembly and Transport Vehicle, ATV) to position the astronauts at joint locations where they latch truss members in place. The ATV is a mobile platform that is attached to and moves on the station support structure using pegs attached to each truss joint. The operation of the ATV is described and a number of conceptual configurations for potential space stations are developed.
Application of new electro-optic technology to Space Station Freedom data management system
NASA Technical Reports Server (NTRS)
Husbands, C. R.; Girard, M. M.
1993-01-01
A low risk design methodology to permit the local bus structures to support increased data carrying capacities and to speed messages and data flow between nodes or stations on the Space Station Freedom Data Management System in anticipation of growing requirements was evaluated and recommended. The recommended design employs a collateral fiber optic technique that follows a NATO avionic standard that is developed, tested, and available. Application of this process will permit a potential 25 fold increase in data transfer performance on the local wire bus network with a fiber optic network, maintaining the functionality of the low-speed bus and supporting all of the redundant transmission and fault detection capabilities designed into the existing system. The application of wavelength division multiplexing (WDM) technology to both the local data bus and global data bus segments of the Data Management System to support anticipated additional highspeed data transmission requirements was also examined. Techniques were examined to provide a dual wavelength implementation of the fiber optic collateral networks. This dual wavelength implementation would permit each local bus to support two simultaneous high-speed transfers on the same fiber optic bus structure and operate within the limits of the existing protocol standard. A second WDM study examined the use of spectral sliced technology to provide a fourfold increase in the Fiber Distributed Data Interface (FDDI) global bus networks without requiring modifications to the existing installed cable plant. Computer simulations presented indicated that this data rate improvement can be achieved with commercially available optical components.
2006-01-12
VANDENBERG AIR FORCE BASE, Calif. — In the Orbital Sciences Building 836 at Vandenberg Air Force Base in California, workers lower the second satellite onto the payload support structure. Three micro-satellites are being mounted on a payload support structure. The three satellites make up the Space Technology 5 spacecraft, called ST5, and will be launched by a Pegasus XL rocket. The satellites contain miniaturized redundant components and technologies. Each will validate New Millennium Program selected technologies, such as the Cold Gas Micro-Thruster and X-Band Transponder Communication System. After deployment from the Pegasus, the micro-satellites will be positioned in a “string of pearls” constellation that demonstrates the ability to position them to perform simultaneous multi-point measurements of the magnetic field using highly sensitive magnetometers. The data will help scientists understand and map the intensity and direction of the Earth’s magnetic field, its relation to space weather events, and affects on our planet. With such missions, NASA hopes to improve scientists’ ability to accurately forecast space weather and minimize its harmful effects on space- and ground-based systems. Launch of ST5 is scheduled for Feb. 28 from Vandenberg Air Force Base.
Supporting Technology at GRC to Mitigate Risk as Stirling Power Conversion Transitions to Flight
NASA Technical Reports Server (NTRS)
Schreiber, Jeffrey G.; Thieme, Lanny G.; Wong, Wayne A.
2009-01-01
Stirling power conversion technology has been reaching more advanced levels of maturity during its development for space power applications. The current effort is in support of the Advanced Stirling Radioisotope Generator (ASRG), which is being developed by the U.S. Department of Energy (DOE), Lockheed Martin Space Systems Company (LMSSC), Sunpower Inc., and the NASA Glenn Research Center (GRC). This generator would use two high-efficiency Advanced Stirling Convertors (ASCs) to convert thermal energy from a radioisotope heat source into electricity. Of paramount importance is the reliability of the power system and as a part of this, the Stirling power convertors. GRC has established a supporting technology effort with tasks in the areas of reliability, convertor testing, high-temperature materials, structures, advanced analysis, organics, and permanent magnets. The project utilizes the matrix system at GRC to make use of resident experts in each of the aforementioned fields. Each task is intended to reduce risk and enhance reliability of the convertor as this technology transitions toward flight status. This paper will provide an overview of each task, outline the recent efforts and accomplishments, and show how they mitigate risk and impact the reliability of the ASC s and ultimately, the ASRG.
Supporting Technology at GRC to Mitigate Risk as Stirling Power Conversion Transitions to Flight
NASA Technical Reports Server (NTRS)
Schreiber, Jeffrey G.; Thieme, Lanny G.; Wong, Wayne A.
2008-01-01
Stirling power conversion technology has been reaching more advanced levels of maturity during its development for space power applications. The current effort is in support of the Advanced Stirling Radioisotope Generator (ASRG), which is being developed by the U.S. Department of Energy (DOE), Lockheed Martin Space Systems Company (LMSSC), Sunpower Inc., and the NASA Glenn Research Center (GRC). This generator would use two high-efficiency Advanced Stirling Convertors (ASCs) to convert thermal energy from a radioisotope heat source into electricity. Of paramount importance is the reliability of the power system and as a part of this, the Stirling power convertors. GRC has established a supporting technology effort with tasks in the areas of reliability, convertor testing, high-temperature materials, structures, advanced analysis, organics, and permanent magnets. The project utilizes the matrix system at GRC to make use of resident experts in each of the aforementioned fields. Each task is intended to reduce risk and enhance reliability of the convertor as this technology transitions toward flight status. This paper will provide an overview of each task, outline the recent efforts and accomplishments, and show how they mitigate risk and impact the reliability of the ASC s and ultimately, the ASRG.
ESTEST: An Open Science Platform for Electronic Structure Research
ERIC Educational Resources Information Center
Yuan, Gary
2012-01-01
Open science platforms in support of data generation, analysis, and dissemination are becoming indispensible tools for conducting research. These platforms use informatics and information technologies to address significant problems in open science data interoperability, verification & validation, comparison, analysis, post-processing,…
Differentiating between Distance/Open Education Systems: Parameters for Comparison.
ERIC Educational Resources Information Center
Guri-Rozenblit, Sarah
1993-01-01
Suggests eight parameters as criteria for describing and comparing distance education/open learning institutions: target population, dimensions of openness, organizational structure, design and development of learning materials, use of advanced technology, teaching/tutoring system, student support systems, and interinstitutional collaboration. (35…
Family Issues for the Nineties.
ERIC Educational Resources Information Center
Mirabelli, Alan
This presentation reviews the characteristics of the Canadian family at present. Discussion focuses on divorce, family structure, reproductive technology, fertility, family size, family mobility, family support, government role, women's participation in the labor force, daily family routines, television viewing, work and the family, the need for…
Astrium Technological Roadmaps for the Next Generation of Launchers Challenges
NASA Astrophysics Data System (ADS)
Larnac, Guy
2014-06-01
Main requirement on Ariane 6 are robustness, overall ownership cost and environmental impacts. To be able to meet these requirements it's mandatory to modify our usual way of working and to think the development and qualification of technologies differently. Airbus Defence and Space in the domain of materials, technologies and structures proposes a vision which address these points declined at different level:- Selection of key metallic and composite technologies to reduce drastically the cost of manufacturing,- Implementation of robust and economical way of assembly, promoting adhesive bonding and innovative technologies- Introducing virtual testing approach coupled with advanced methods and process simulation- Introduction of in-line monitoring to reduce cost of control- Implementation of the design for environment methodology with life cycle analysis to support the choice of technologies and materials- Development of EADS common materials to get benefice of aeronautic supply chain and communalitiesTo be efficient it seems evident and mandatory to develop all these approaches in an integrated and coordinated way. Advanced technologies and methodologies are supported by a strong network of collaboration enabling the integration of upstream ideas and concepts. This network is not only focused on low TRL level. Within EADS divisions intensive collaboration is deployed in order to get synergies. On the other side it's also mandatory for reliability and obsolescence issues to take care and master the supply chain.Additive layer manufacturing and thermoplastic based composite are directly concerned by this problematic. We present how, in the domain of materials and structures, aeronautic materials are considered first and how the mechanism of common qualification shared within EADS is now developed.This vision is being implemented within Airbus Defence and Space, described and reported through roadmaps. These roadmaps are the core of Airbus defence and Space strategies for the incoming years.
ISAAC Advanced Composites Research Testbed
NASA Technical Reports Server (NTRS)
Wu, K. Chauncey; Stewart, Brian K.; Martin, Robert A.
2014-01-01
The NASA Langley Research Center is acquiring a state-of-art composites fabrication capability to support the Center's advanced research and technology mission. The system introduced in this paper is named ISAAC (Integrated Structural Assembly of Advanced Composites). The initial operational capability of ISAAC is automated fiber placement, built around a commercial system from Electroimpact, Inc. that consists of a multi-degree of freedom robot platform, a tool changer mechanism, and a purpose-built fiber placement end effector. Examples are presented of the advanced materials, structures, structural concepts, fabrication processes and technology development that may be enabled using the ISAAC system. The fiber placement end effector may be used directly or with appropriate modifications for these studies, or other end effectors with different capabilities may either be bought or developed with NASA's partners in industry and academia.
Efficient Thermally Conductive Strap Design for Cryogenic Propellant Tank Supports and Plumbing
NASA Technical Reports Server (NTRS)
Elchert, J. P.; Christie, R.; Kashani, A.; Opalach, C.
2012-01-01
After evaluating NASA space architecture goals, the Office of Chief Technologist identified the need for developing enabling technology for long term loiters in space with cryogenic fluids. One such technology is structural heat interception. In this prototype, heat interception at the tank support strut was accomplished using a thermally conductive link to the broad area cooled shield. The design methodology for both locating the heat intercept and predicting the reduction in boil-off heat leak is discussed in detail. Results from the chosen design are presented. It was found that contact resistance resulting from different mechanical attachment techniques played a significant role in the form and functionality of a successful design.
Infrared detectors and test technology of cryogenic camera
NASA Astrophysics Data System (ADS)
Yang, Xiaole; Liu, Xingxin; Xing, Mailing; Ling, Long
2016-10-01
Cryogenic camera which is widely used in deep space detection cools down optical system and support structure by cryogenic refrigeration technology, thereby improving the sensitivity. Discussing the characteristics and design points of infrared detector combined with camera's characteristics. At the same time, cryogenic background test systems of chip and detector assembly are established. Chip test system is based on variable cryogenic and multilayer Dewar, and assembly test system is based on target and background simulator in the thermal vacuum environment. The core of test is to establish cryogenic background. Non-uniformity, ratio of dead pixels and noise of test result are given finally. The establishment of test system supports for the design and calculation of infrared systems.
Efficient Thermally Conductive Strap Design for Cryogenic Propellant Tank Supports and Plumbing
NASA Technical Reports Server (NTRS)
Elchert, J. P.; Christie, R.; Gebby, P.; Kashani, A.
2012-01-01
After evalu1ating NASA space architecture goals, the Office of Chief Technologist identified the need for developing enabling technology for long term loiters in space with cryogenic fluids. One such technology is structural heat interception. In this prototype, heat interception at the tank support strut was accomplished using a thermally conductive link to the broad area cooled shield. The design methodology for both locating the heat intercept and predicting the reduction in boil-off heat leak is discussed in detail. Results from the chosen design are presented. It was found that contact resistance resulting from different mechanical attachment techniques played a significant role in the form and functionality of a successful design.
Study of utilization of advanced composites in fuselage structures of large transports
NASA Technical Reports Server (NTRS)
Jackson, A. C.; Campion, M. C.; Pei, G.
1984-01-01
The effort required by the transport aircraft manufacturers to support the introduction of advanced composite materials into the fuselage structure of future commercial and military transport aircraft is investigated. Technology issues, potential benefits to military life cycle costs and commercial operating costs, and development plans are examined. The most urgent technology issues defined are impact dynamics, acoustic transmission, pressure containment and damage tolerance, post-buckling, cutouts, and joints and splices. A technology demonstration program is defined and a rough cost and schedule identified. The fabrication and test of a full-scale fuselage barrel section is presented. Commercial and military benefits are identified. Fuselage structure weight savings from use of advanced composites are 16.4 percent for the commercial and 21.8 percent for the military. For the all-composite airplanes the savings are 26 percent and 29 percent, respectively. Commercial/operating costs are reduced by 5 percent for the all-composite airplane and military life cycle costs by 10 percent.
Static design of steel-concrete lining for traffic tunnels
NASA Astrophysics Data System (ADS)
Vojtasik, Karel; Mohyla, Marek; Hrubesova, Eva
2017-09-01
Article summarizes the results of research focused on the structural design of traffic tunnel linings that have been achieved in the framework of a research project TE01020168 that supports The Technology Agency of Czech Republic. This research aim is to find and develop a process for design structure parameters of tunnel linings. These are now mostly build up by a shotcrete technology. The shotcrete is commonly endorsed either with steel girders or steel fibres. Since the installation a lining structure is loaded while strength and deformational parameters of shotcrete start to rise till the setting time elapses. That’s reason why conventional approaches of reinforced concrete are not suitable. As well as there are other circumstances to step in shown in this article. Problem is solved by 3D analysis using numerical model that takes into account all the significant features of a tunnel lining construction process inclusive the interaction between lining structure with rock massive. Analysis output is a view into development of stress-strain state in respective construction parts of tunnel lining the whole structure around, including impact on stability of rock massive. The proposed method comprises all features involved in tunnel fabrication including geotechnics and construction technologies.
Bioprinting is changing regenerative medicine forever.
Collins, Scott Forrest
2014-12-01
3D printing, or solid freeform fabrication, applied to regenerative medicine brings technologies from several industries together to help solve unique challenges in both basic science and tissue engineering. By more finely organizing cells and supporting structures precisely in 3D space, we will gain critical knowledge of cell-cell communications and cell-environment interactions. As we increase the scale, we will move toward complex tissue and organ structures where several cell phenotypes will functionally and structurally interact, thus recapitulating the form and function of native tissues and organs.
Structural mechanics simulations
NASA Technical Reports Server (NTRS)
Biffle, Johnny H.
1992-01-01
Sandia National Laboratory has a very broad structural capability. Work has been performed in support of reentry vehicles, nuclear reactor safety, weapons systems and components, nuclear waste transport, strategic petroleum reserve, nuclear waste storage, wind and solar energy, drilling technology, and submarine programs. The analysis environment contains both commercial and internally developed software. Included are mesh generation capabilities, structural simulation codes, and visual codes for examining simulation results. To effectively simulate a wide variety of physical phenomena, a large number of constitutive models have been developed.
Advancing translational research with the Semantic Web.
Ruttenberg, Alan; Clark, Tim; Bug, William; Samwald, Matthias; Bodenreider, Olivier; Chen, Helen; Doherty, Donald; Forsberg, Kerstin; Gao, Yong; Kashyap, Vipul; Kinoshita, June; Luciano, Joanne; Marshall, M Scott; Ogbuji, Chimezie; Rees, Jonathan; Stephens, Susie; Wong, Gwendolyn T; Wu, Elizabeth; Zaccagnini, Davide; Hongsermeier, Tonya; Neumann, Eric; Herman, Ivan; Cheung, Kei-Hoi
2007-05-09
A fundamental goal of the U.S. National Institute of Health (NIH) "Roadmap" is to strengthen Translational Research, defined as the movement of discoveries in basic research to application at the clinical level. A significant barrier to translational research is the lack of uniformly structured data across related biomedical domains. The Semantic Web is an extension of the current Web that enables navigation and meaningful use of digital resources by automatic processes. It is based on common formats that support aggregation and integration of data drawn from diverse sources. A variety of technologies have been built on this foundation that, together, support identifying, representing, and reasoning across a wide range of biomedical data. The Semantic Web Health Care and Life Sciences Interest Group (HCLSIG), set up within the framework of the World Wide Web Consortium, was launched to explore the application of these technologies in a variety of areas. Subgroups focus on making biomedical data available in RDF, working with biomedical ontologies, prototyping clinical decision support systems, working on drug safety and efficacy communication, and supporting disease researchers navigating and annotating the large amount of potentially relevant literature. We present a scenario that shows the value of the information environment the Semantic Web can support for aiding neuroscience researchers. We then report on several projects by members of the HCLSIG, in the process illustrating the range of Semantic Web technologies that have applications in areas of biomedicine. Semantic Web technologies present both promise and challenges. Current tools and standards are already adequate to implement components of the bench-to-bedside vision. On the other hand, these technologies are young. Gaps in standards and implementations still exist and adoption is limited by typical problems with early technology, such as the need for a critical mass of practitioners and installed base, and growing pains as the technology is scaled up. Still, the potential of interoperable knowledge sources for biomedicine, at the scale of the World Wide Web, merits continued work.
Advancing translational research with the Semantic Web
Ruttenberg, Alan; Clark, Tim; Bug, William; Samwald, Matthias; Bodenreider, Olivier; Chen, Helen; Doherty, Donald; Forsberg, Kerstin; Gao, Yong; Kashyap, Vipul; Kinoshita, June; Luciano, Joanne; Marshall, M Scott; Ogbuji, Chimezie; Rees, Jonathan; Stephens, Susie; Wong, Gwendolyn T; Wu, Elizabeth; Zaccagnini, Davide; Hongsermeier, Tonya; Neumann, Eric; Herman, Ivan; Cheung, Kei-Hoi
2007-01-01
Background A fundamental goal of the U.S. National Institute of Health (NIH) "Roadmap" is to strengthen Translational Research, defined as the movement of discoveries in basic research to application at the clinical level. A significant barrier to translational research is the lack of uniformly structured data across related biomedical domains. The Semantic Web is an extension of the current Web that enables navigation and meaningful use of digital resources by automatic processes. It is based on common formats that support aggregation and integration of data drawn from diverse sources. A variety of technologies have been built on this foundation that, together, support identifying, representing, and reasoning across a wide range of biomedical data. The Semantic Web Health Care and Life Sciences Interest Group (HCLSIG), set up within the framework of the World Wide Web Consortium, was launched to explore the application of these technologies in a variety of areas. Subgroups focus on making biomedical data available in RDF, working with biomedical ontologies, prototyping clinical decision support systems, working on drug safety and efficacy communication, and supporting disease researchers navigating and annotating the large amount of potentially relevant literature. Results We present a scenario that shows the value of the information environment the Semantic Web can support for aiding neuroscience researchers. We then report on several projects by members of the HCLSIG, in the process illustrating the range of Semantic Web technologies that have applications in areas of biomedicine. Conclusion Semantic Web technologies present both promise and challenges. Current tools and standards are already adequate to implement components of the bench-to-bedside vision. On the other hand, these technologies are young. Gaps in standards and implementations still exist and adoption is limited by typical problems with early technology, such as the need for a critical mass of practitioners and installed base, and growing pains as the technology is scaled up. Still, the potential of interoperable knowledge sources for biomedicine, at the scale of the World Wide Web, merits continued work. PMID:17493285
Lessons learned from U.S. Department of Defense 911-Bio Advanced Concept Technology Demonstrations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baldwin, T.; Gasper, W.; Lacher, L.
1999-07-06
The US Department of Defense (DoD), in cooperation with other federal agencies, has taken many initiatives to improve its ability to support civilian response to a domestic biological terrorism incident. This paper discusses one initiative, the 911-Bio Advanced Concept Technology Demonstrations (ACTDs), conducted by the Office of the Secretary of Defense during 1997 to better understand: (1) the capability of newly developed chemical and biological collection and identification technologies in a field environment; (2) the ability of specialized DoD response teams to use these new technologies within the structure of cooperating DoD and civilian consequence management organizations; and (3) themore » adequacy of current modeling tools for predicting the dispersal of biological hazards. This paper discusses the experience of the ACTDs from the civilian community support perspective. The 911-Bio ACTD project provided a valuable opportunity for DoD and civilian officials to learn how they should use their combined capabilities to manage the aftermath of a domestic biological terrorism incident.« less
Utilization of Multimedia Laboratory: An Acceptance Analysis using TAM
NASA Astrophysics Data System (ADS)
Modeong, M.; Palilingan, V. R.
2018-02-01
Multimedia is often utilized by teachers to present a learning materials. Learning that delivered by multimedia enables people to understand the information of up to 60% of the learning in general. To applying the creative learning to the classroom, multimedia presentation needs a laboratory as a space that provides multimedia needs. This study aims to reveal the level of student acceptance on the multimedia laboratories, by explaining the direct and indirect effect of internal support and technology infrastructure. Technology Acceptance Model (TAM) is used as the basis of measurement on this research, through the perception of usefulness, ease of use, and the intention, it’s recognized capable of predicting user acceptance about technology. This study used the quantitative method. The data analysis using path analysis that focuses on trimming models, it’s performed to improve the model of path analysis structure by removing exogenous variables that have insignificant path coefficients. The result stated that Internal Support and Technology Infrastructure are well mediated by TAM variables to measure the level of technology acceptance. The implications suggest that TAM can measure the success of multimedia laboratory utilization in Faculty of Engineering UNIMA.
NASA Technical Reports Server (NTRS)
Bodiford, Melanie P.; Gilley, Scott D.; Howard, Richard W.; Kennedy, James P.; Ray, Julie A.
2005-01-01
NASA's human exploration initiative poses great opportunity and great risk for manned missions to the Moon and Mars. Engineers and Scientists at the Marshall Space Flight Center (MSFC) are evaluating current technologies for in situ resource-based exploration fabrication and repair applications. Several technologies to be addressed in this paper have technology readiness levels (TRLs) that are currently mature enough to pursue for exploration purposes. However, many technologies offer promising applications but these must be pulled along by the demands and applications of this great initiative. The In Situ Fabrication and Repair (ISFR) Element will supply and push state of the art technologies for applications such as habitat structure development, in situ resource utilization for tool and part fabrication, and repair and replacement of common life support elements, as well as non-destructive evaluation. This paper will address current rapid prototyping technologies, their ISFR applications and near term advancements. We will discuss the anticipated need to utilize in situ resources to produce replacement parts and fabricate repairs to vehicles, habitats, life support and quality of life elements. Many ISFR technology developments will incorporate automated deployment and robotic construction and fabrication techniques. The current state of the art for these applications is fascinating, but the future is out of this world.
Bansal, Roohi; Dhami, Navdeep Kaur; Mukherjee, Abhijit; Reddy, M Sudhakara
2016-11-01
Microbial carbonate precipitation has emerged as a promising technology for remediation and restoration of concrete structures. Deterioration of reinforced concrete structures in marine environments is a major concern due to chloride-induced corrosion. In the current study, halophilic bacteria Exiguobacterium mexicanum was isolated from sea water and tested for biomineralization potential under different salt stress conditions. The growth, urease and carbonic anhydrase production significantly increased under salt stress conditions. Maximum calcium carbonate precipitation was recorded at 5 % NaCl concentration. Application of E. mexicanum on concrete specimens significantly increased the compressive strength (23.5 %) and reduced water absorption about five times under 5 % salt stress conditions compared to control specimens. SEM and XRD analysis of bacterial-treated concrete specimens confirmed the precipitation of calcite. The present study results support the potential of this technology for improving the strength and durability properties of building structures in marine environments.
Dual-Use Space Technology Transfer Conference and Exhibition. Volume 1
NASA Technical Reports Server (NTRS)
Krishen, Kumar (Compiler)
1994-01-01
This document contains papers presented at the Dual-Use Space Technology Transfer Conference and Exhibition held at the Johnson Space Center February 1-3, 1994. Possible technology transfers covered during the conference were in the areas of information access; innovative microwave and optical applications; materials and structures; marketing and barriers; intelligent systems; human factors and habitation; communications and data systems; business process and technology transfer; software engineering; biotechnology and advanced bioinstrumentation; communications signal processing and analysis; new ways of doing business; medical care; applications derived from control center data systems; human performance evaluation; technology transfer methods; mathematics, modeling, and simulation; propulsion; software analysis and decision tools systems/processes in human support technology; networks, control centers, and distributed systems; power; rapid development perception and vision technologies; integrated vehicle health management; automation technologies; advanced avionics; ans robotics technologies. More than 77 papers, 20 presentations, and 20 exhibits covering various disciplines were presented b experts from NASA, universities, and industry.
3D-engineering of Cellularized Conduits for Peripheral Nerve Regeneration
NASA Astrophysics Data System (ADS)
Hu, Yu; Wu, Yao; Gou, Zhiyuan; Tao, Jie; Zhang, Jiumeng; Liu, Qianqi; Kang, Tianyi; Jiang, Shu; Huang, Siqing; He, Jiankang; Chen, Shaochen; Du, Yanan; Gou, Maling
2016-08-01
Tissue engineered conduits have great promise for bridging peripheral nerve defects by providing physical guiding and biological cues. A flexible method for integrating support cells into a conduit with desired architectures is wanted. Here, a 3D-printing technology is adopted to prepare a bio-conduit with designer structures for peripheral nerve regeneration. This bio-conduit is consisted of a cryopolymerized gelatin methacryloyl (cryoGelMA) gel cellularized with adipose-derived stem cells (ASCs). By modeling using 3D-printed “lock and key” moulds, the cryoGelMA gel is structured into conduits with different geometries, such as the designed multichannel or bifurcating and the personalized structures. The cryoGelMA conduit is degradable and could be completely degraded in 2-4 months in vivo. The cryoGelMA scaffold supports the attachment, proliferation and survival of the seeded ASCs, and up-regulates the expression of their neurotrophic factors mRNA in vitro. After implanted in a rat model, the bio-conduit is capable of supporting the re-innervation across a 10 mm sciatic nerve gap, with results close to that of the autografts in terms of functional and histological assessments. The study describes an indirect 3D-printing technology for fabricating cellularized designer conduits for peripheral nerve regeneration, and could lead to the development of future nerve bio-conduits for clinical use.
Dhar, Rajib Lochan
2012-01-01
Organizational support relates to an organization's readiness to reward increased work effort and to meet socio-emotional needs. This study investigated the various constructs of employees' perceptions of organizational support in the Indian context, with specific reference to the information technology (IT) industry. Thirty six semi-structured interviews were conducted from three different organizations over a period of four months. The participants were employed as Project Managers, Team Leaders and Executives in these organizations operating in Pune and were selected via randomized quota sampling to reflect a mix of age, positions, genders and experience with organization. Qualitative methods were used in order to collect the data, through phenomenological principles. Discussion with the participants led to the emergence of five different themes which influence employees' perception of organizational support. These were: materialistic support, supervisor support, building reciprocal relationships, Organizational justice and intentions to leave. This study provided a tentative starting point towards the greater understanding of the employee's perceived notion of organizational support. Based on the study findings, there is an imperative that the human resource department and organizational forerunners continue to use research findings to support IT professionals in various ways in order to improve their quality of work life.
Testing a structural model of young driver willingness to uptake Smartphone Driver Support Systems.
Kervick, Aoife A; Hogan, Michael J; O'Hora, Denis; Sarma, Kiran M
2015-10-01
There is growing interest in the potential value of using phone applications that can monitor driver behaviour (Smartphone Driver Support Systems, 'SDSSs') in mitigating risky driving by young people. However, their value in this regard will only be realised if young people are willing to use this technology. This paper reports the findings of a study in which a novel structural model of willingness to use SDSSs was tested. Grounded in the driver monitoring and Technology Acceptance (TA) research literature, the model incorporates the perceived risks and gains associated with potential SDSS usage and additional social cognitive factors, including perceived usability and social influences. A total of 333 smartphone users, aged 18-24, with full Irish driving licenses completed an online questionnaire examining willingness or Behavioural Intention (BI) to uptake a SDSS. Following exploratory and confirmatory factor analyses, structural equation modelling indicated that perceived gains and social influence factors had significant direct effects on BI. Perceived risks and social influence also had significant indirect effects on BI, as mediated by perceived gains. Overall, this model accounted for 72.5% of the variance in willingness to uptake SDSSs. Multi-group structural models highlighted invariance of effects across gender, high and low risk drivers, and those likely or unlikely to adopt novel phone app technologies. These findings have implications for our understanding of the willingness of young drivers to adopt and use SDSSs, and highlight potential factors that could be targeted in behavioural change interventions seeking to improve usage rates. Copyright © 2015 Elsevier Ltd. All rights reserved.
COFS 1 Guest Investigator Program
NASA Technical Reports Server (NTRS)
Fontana, Anthony; Wright, Robert L.
1986-01-01
The process for selecting guest investigators for participation in the Control of Flexible Structures (COFS)-1 program is described. Contracts and grants will be awarded in late CY87. A straw-man list of types of experiments and a distribution of the experiments has been defined to initiate definition of an experiments package which supports development and validation of control structures interaction technology. A schedule of guest investigator participation has been developed.
2015-05-01
fatigue an induced ultrasonic elastic vibration (via piezoelectric transducers [ PZTs ]) propagates through the dogbone specimen. A receiver PZT picks up...inspection of fatigue crack growth in aluminum 7075-T6 dogbone specimens. Acellent Technologies, Inc., is supporting this project through providing...January 2015. 15. SUBJECT TERMS structural health monitoring, probabilistics, fatigue damage, guided waves, Lamb waves 16. SECURITY CLASSIFICATION OF
University Female Students' Motives in Enrolling for Non-traditional Degrees.
ERIC Educational Resources Information Center
Aluede, Oyaziwo Omon; Imahe, Caroline Izehi; Imahe, John
2002-01-01
A study of 280 Nigerian women in technical/technological degree programs identified four factors influencing enrollment in nontraditional education (in order of importance): vocational self-efficacy, perceived social support, valence of occupation, and perceived opportunity structure. Motivations of engineering, architecture, and medical sciences…
75 FR 49429 - Metal and Nonmetal Dams
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-13
... internal water pressures. Pressures beyond a certain level would lead to structural instability. In the 18... foundation and embankment material strengths, and stability analyses to verify that the slopes of the dam..., rationales, benefits to miners, technological and economic feasibility, impact on small mines, and supporting...
Strain sensing technology for high temperature applications
NASA Technical Reports Server (NTRS)
Williams, W. Dan
1993-01-01
This review discusses the status of strain sensing technology for high temperature applications. Technologies covered are those supported by NASA such as required for applications in hypersonic vehicles and engines, advanced subsonic engines, as well as material and structure development. The applications may be at temperatures of 540 C (1000 F) to temperatures in excess of 1400 C (2500 F). The most promising technologies at present are the resistance strain gage and remote sensing schemes. Resistance strain gages discussed include the BCL gage, the LaRC compensated gage, and the PdCr gage. Remote sensing schemes such as laser based speckle strain measurement, phase-shifling interferometry, and x-ray extensometry are discussed. Present status and limitations of these technologies are presented.
NASA Astrophysics Data System (ADS)
Guarino, V.; Vassiliev, V.; Buckley, J.; Byrum, K.; Falcone, A.; Fegan, S.; Finley, J.; Hanna, D.; Kaaret, P.; Konopelko, A.; Krawczynski, H.; Krennrich, F.; Romani, R.; Wagner, R.; Woods, M.
2009-05-01
The concept of a future ground-based gamma-ray observatory, AGIS, in the energy range 20 GeV to 200 TeV is based on an array of 50-100 imaging atmospheric Cherenkov telescopes (IACTs). The anticipated improvement of AGIS sensitivity, angular resolution, and reliability of operation imposes demanding technological and cost requirements on the design of IACTs. In this submission, we focus on the optical and mechanical systems for a novel Schwarzschild-Couder two-mirror aplanatic optical system originally proposed by Schwarzschild. Emerging new mirror production technologies based on replication processes, such as cold and hot glass slumping, cured CFRP, and electroforming, provide new opportunities for cost effective solutions for the design of the optical system. We explore capabilities of these mirror fabrication methods for the AGIS project and alignment methods for optical systems. We also study a mechanical structure which will provide support points for mirrors and camera design driven by the requirement of minimizing the deflections of the mirror support structures.
NASA Technical Reports Server (NTRS)
Laue, Greg; Case, David; Moore, Jim
2005-01-01
A 20-meter Scalable Square Solar Sail (S(sup 4)) System was produced and successfully completed functional vacuum testing in NASA Glenn's Space Power Facility at Plum Brook Station Ohio in May 2005. The S(sup 4) system was designed and developed by ATK Space Systems, and the design and production of the Solar Sails for this system was carried out by SRS Technologies. The S(sup 4) system consists of a central structure with four deployable carbon fiber masts that support four triangular sails. SRS has developed an effective and efficient design for triangular sail quadrants that are supported at three points and provide a flat reflective surface with a high fill factor. This sail design is robust enough for deployments in a one atmosphere, one gravity environment and incorporates several advanced features including adhesiveless seaming of membrane strips, compliant edge borders to allow for film membrane cord strain mismatch without causing wrinkling and low mass (3% of total sail mass) ripstop. This paper will outline some of the sail design and fabrication processes and the mature production, packaging and deployment processes that have been developed. This paper will also detail the successful ambient and vacuum testing of the sails and the ATK spacecraft structure. Based on recent experience and testing, SRS is confidant that high Technology Readiness Level (TRL) 5-6 solar sails in the 40-120-meter size range with areal density in the 4-5 grams per square meters (sail minus structure) range can be produced with existing technology. Additional film production research will lead to further reductions in film thickness to less than 1 micron enabling production of sails with areal densities as low as 2.0 grams per square meters using the current design, resulting in a system areal densities as low as 5.3 grams per square meters (sail and structure). These areal densities are low enough to allow nearly all of the Solar Sail missions that have been proposed by the scientific community. The fundamental technologies required to produce these systems has been demonstrated on the 20-meter S(sup 4) sails that have recently completed ground testing demonstrating a mature and technology suitable for incorporation into future flight validation and future mission. Solar Sails can support NASA's Vision for Space Exploration by allowing communication satellite orbits that can maintain continuous communication with the polar regions of the Moon and Mars and to support solar weather monitoring to provide early warning of solar flares and storms that could threaten the safety of astronauts and other spacecraft.
Social network supported process recommender system.
Ye, Yanming; Yin, Jianwei; Xu, Yueshen
2014-01-01
Process recommendation technologies have gained more and more attention in the field of intelligent business process modeling to assist the process modeling. However, most of the existing technologies only use the process structure analysis and do not take the social features of processes into account, while the process modeling is complex and comprehensive in most situations. This paper studies the feasibility of social network research technologies on process recommendation and builds a social network system of processes based on the features similarities. Then, three process matching degree measurements are presented and the system implementation is discussed subsequently. Finally, experimental evaluations and future works are introduced.
Experimental Demonstration of Technologies for Autonomous On-Orbit Robotic Assembly
NASA Technical Reports Server (NTRS)
LeMaster, Edward A.; Schaechter, David B.; Carrington, Connie K.
2006-01-01
The Modular Reconfigurable High Energy (MRHE) program aimed to develop technologies for the automated assembly and deployment of large-scale space structures and aggregate spacecraft. Part of the project involved creation of a terrestrial robotic testbed for validation and demonstration of these technologies and for the support of future development activities. This testbed was completed in 2005, and was thereafter used to demonstrate automated rendezvous, docking, and self-assembly tasks between a group of three modular robotic spacecraft emulators. This paper discusses the rationale for the MRHE project, describes the testbed capabilities, and presents the MRHE assembly demonstration sequence.
NASA Technical Reports Server (NTRS)
Knight, Norman F., Jr.; Nemeth, Michael P.; Hilburger, Mark W.
2004-01-01
A technology review and assessment of modeling and analysis efforts underway in support of a safe return to flight of the thermal protection system (TPS) for the Space Shuttle external tank (ET) are summarized. This review and assessment effort focuses on the structural modeling and analysis practices employed for ET TPS foam design and analysis and on identifying analysis capabilities needed in the short-term and long-term. The current understanding of the relationship between complex flight environments and ET TPS foam failure modes are reviewed as they relate to modeling and analysis. A literature review on modeling and analysis of TPS foam material systems is also presented. Finally, a review of modeling and analysis tools employed in the Space Shuttle Program is presented for the ET TPS acreage and close-out foam regions. This review includes existing simplified engineering analysis tools are well as finite element analysis procedures.
Brown, Kenneth G
2005-09-01
Although D. L. Kirkpatrick (1959, 1996) popularized the concept of trainee reactions over 40 years ago, few studies have critically examined trainees' reactions to learning events. In this article, research on mood and emotion is used to develop a theoretical framework for research on trainee reactions. Two studies examine the factor structure of reactions and their nomological network. In Study 1, 178 undergraduate and 101 graduate students listened to a computer-delivered multimedia lecture. Results suggest that (a) reactions can be conceptualized as hierarchical, with overall satisfaction explaining associations among distinct reaction facets (enjoyment, relevance, and technology satisfaction), and (b) reactions are predicted by trainee characteristics. In Study 2, 97 undergraduates experienced the same lecture in 1 of 3 randomly assigned delivery technologies. Reactions were influenced by technology and were related to learning process (engagement) and outcomes (intentions regarding delivery technology, content, and learning). Both studies support the theoretical framework proposed. Copyright 2005 APA, all rights reserved.
NASA Astrophysics Data System (ADS)
Kouziokas, Georgios N.
2016-01-01
The adoption of Information and Communication Technologies (ICT) in environmental management has become a significant demand nowadays with the rapid growth of environmental information. This paper presents a prototype Environmental Management Information System (EMIS) that was developed to provide a systematic way of managing environmental data and human resources of an environmental organization. The system was designed using programming languages, a Database Management System (DBMS) and other technologies and programming tools and combines information from the relational database in order to achieve the principal goals of the environmental organization. The developed application can be used to store and elaborate information regarding: human resources data, environmental projects, observations, reports, data about the protected species, environmental measurements of pollutant factors or other kinds of analytical measurements and also the financial data of the organization. Furthermore, the system supports the visualization of spatial data structures by using geographic information systems (GIS) and web mapping technologies. This paper describes this prototype software application, its structure, its functions and how this system can be utilized to facilitate technology-based environmental management and decision-making process.
Lunar base Controlled Ecological Life Support System (LCELSS): Preliminary conceptual design study
NASA Technical Reports Server (NTRS)
Schwartzkopf, Steven H.
1991-01-01
The objective of this study was to develop a conceptual design for a self-sufficient LCELSS. The mission need is for a CELSS with a capacity to supply the life support needs for a nominal crew of 30, and a capability for accommodating a range of crew sizes from 4 to 100 people. The work performed in this study was nominally divided into two parts. In the first part, relevant literature was assembled and reviewed. This review identified LCELSS performance requirements and the constraints and advantages confronting the design. It also collected information on the environment of the lunar surface and identified candidate technologies for the life support subsystems and the systems with which the LCELSS interfaced. Information on the operation and performance of these technologies was collected, along with concepts of how they might be incorporated into the LCELSS conceptual design. The data collected on these technologies was stored for incorporation into the study database. Also during part one, the study database structure was formulated and implemented, and an overall systems engineering methodology was developed for carrying out the study.
The impact of structural biology in medicine illustrated with four case studies.
Hu, Tiancen; Sprague, Elizabeth R; Fodor, Michelle; Stams, Travis; Clark, Kirk L; Cowan-Jacob, Sandra W
2018-01-01
The contributions of structural biology to drug discovery have expanded over the last 20 years from structure-based ligand optimization to a broad range of clinically relevant topics including the understanding of disease, target discovery, screening for new types of ligands, discovery of new modes of action, addressing clinical challenges such as side effects or resistance, and providing data to support drug registration. This expansion of scope is due to breakthroughs in the technology, which allow structural information to be obtained rapidly and for more complex molecular systems, but also due to the combination of different technologies such as X-ray, NMR, and other biophysical methods, which allows one to get a more complete molecular understanding of disease and ways to treat it. In this review, we provide examples of the types of impact molecular structure information can have in the clinic for both low molecular weight and biologic drug discovery and describe several case studies from our own work to illustrate some of these contributions.
The 26th Aerospace Mechanisms Symposium
NASA Technical Reports Server (NTRS)
1992-01-01
The proceedings of the 26th Aerospace Mechanisms Symposium, which was held at the Goddard Space Flight Center on May 13, 14, and 15, 1992 are reported. Technological areas covered include actuators, aerospace mechanism applications for ground support equipment, lubricants, latches, connectors and other mechanisms for large space structures.
Knowledge in Development: Epistemic Machineries in a Global Context
ERIC Educational Resources Information Center
Evers, Hans-Dieter; Kaiser, Markus; Muller, Christine
2009-01-01
Knowledge has become a decisive and competitive resource for local and global development, especially since the paradigm "knowledge for development" was initiated and promoted by the World Bank in 1998-1999. Through the use of novel management structures and technologically supported social networks, development organisations and…
Results in standardization of FOS to support the use of SHM systems
NASA Astrophysics Data System (ADS)
Habel, Wolfgang R.; Krebber, Katerina; Daum, Werner
2016-05-01
Measurement and data recording systems are important parts of a holistic Structural Health Monitoring (SHM) system. New sensor technologies such as fiber-optic sensors are often used; however, standards (or at least guidelines) are not yet available or internationally approved. This lack in standardization makes the acceptance of FOS technologies in complex SHM systems substantially difficult. A standard family for different FOS technologies is therefore being developed that should help to design SHM systems in an optimal way. International standardization activities take place in several standardization bodies such as IEC and ASTM, and within SHM societies such as ISHMII. The paper reports on activities in standardization of fiber-optic sensors, on results already achieved, and on newly started projects. Combined activities of fiber sensor experts and SHM experts from Civil Engineering are presented. These contributions should help owners of structures as well as developers of sensors and monitoring systems to select effective and validated sensing technologies. Using these standards, both parties find recommendations how to proceed in development of SHM systems to evaluate the structural behavior based on e.g. standardized fiber optic sensors, and to derive necessary measures, e.g. the optimal maintenance strategy.
NASA Astrophysics Data System (ADS)
Buck, J. A.; Underhill, P. R.; Morelli, J.; Krause, T. W.
2017-02-01
Degradation of nuclear steam generator (SG) tubes and support structures can result in a loss of reactor efficiency. Regular in-service inspection, by conventional eddy current testing (ECT), permits detection of cracks, measurement of wall loss, and identification of other SG tube degradation modes. However, ECT is challenged by overlapping degradation modes such as might occur for SG tube fretting accompanied by tube off-set within a corroding ferromagnetic support structure. Pulsed eddy current (PEC) is an emerging technology examined here for inspection of Alloy-800 SG tubes and associated carbon steel drilled support structures. Support structure hole size was varied to simulate uniform corrosion, while SG tube was off-set relative to hole axis. PEC measurements were performed using a single driver with an 8 pick-up coil configuration in the presence of flat-bottom rectangular frets as an overlapping degradation mode. A modified principal component analysis (MPCA) was performed on the time-voltage data in order to reduce data dimensionality. The MPCA scores were then used to train a support vector machine (SVM) that simultaneously targeted four independent parameters associated with; support structure hole size, tube off-centering in two dimensions and fret depth. The support vector machine was trained, tested, and validated on experimental data. Results were compared with a previously developed artificial neural network (ANN) trained on the same data. Estimates of tube position showed comparable results between the two machine learning tools. However, the ANN produced better estimates of hole inner diameter and fret depth. The better results from ANN analysis was attributed to challenges associated with the SVM when non-constant variance is present in the data.
In-Space Cryogenic Propellant Depot Stepping Stone
NASA Technical Reports Server (NTRS)
Howell, Joe T.; Mankins, John C.; Fikes, John C.
2005-01-01
An In-Space Cryogenic Propellant Depot (ISCPD) is an important stepping stone to provide the capability to preposition, store, manufacture, and later use the propellants for Earth-Neighborhood campaigns and beyond. An in-space propellant depot will provide affordable propellants and other similar consumables to support the development of sustainable and affordable exploration strategies as well as commercial space activities. An in-space propellant depot not only requires technology development in key areas such as zero boil-off storage and fluid transfer, but in other areas such as lightweight structures, highly reliable connectors, and autonomous operations. These technologies can be applicable to a broad range of propellant depot concepts or specific to a certain design. In addition, these technologies are required for spacecraft and orbit transfer vehicle propulsion and power systems, and space life support. Generally, applications of this technology require long-term storage, on-orbit fluid transfer and supply, cryogenic propellant production from water, unique instrumentation and autonomous operations. This paper discusses the reasons why such advances are important to future affordable and sustainable operations in space. This paper also discusses briefly R&D objectives comprising a promising approach to the systems planning and evolution into a meaningful stepping stone design, development, and implementation of an In-Space Cryogenic Propellant Depot. The success of a well-planned and orchestrated approach holds great promise for achieving innovation and revolutionary technology development for supporting future exploration and development of space.
Structural optimization under overhang constraints imposed by additive manufacturing technologies
NASA Astrophysics Data System (ADS)
Allaire, G.; Dapogny, C.; Estevez, R.; Faure, A.; Michailidis, G.
2017-12-01
This article addresses one of the major constraints imposed by additive manufacturing processes on shape optimization problems - that of overhangs, i.e. large regions hanging over void without sufficient support from the lower structure. After revisiting the 'classical' geometric criteria used in the literature, based on the angle between the structural boundary and the build direction, we propose a new mechanical constraint functional, which mimics the layer by layer construction process featured by additive manufacturing technologies, and thereby appeals to the physical origin of the difficulties caused by overhangs. This constraint, as well as some variants, is precisely defined; their shape derivatives are computed in the sense of Hadamard's method, and numerical strategies are extensively discussed, in two and three space dimensions, to efficiently deal with the appearance of overhang features in the course of shape optimization processes.
[Web-based support system for medical device maintenance].
Zhao, Jinhai; Hou, Wensheng; Chen, Haiyan; Tang, Wei; Wang, Yihui
2015-01-01
A Web-based technology system was put forward aiming at the actual problems of the long maintenance cycle and the difficulties of the maintenance and repairing of medical equipments. Based on analysis of platform system structure and function, using the key technologies such as search engine, BBS, knowledge base and etc, a platform for medical equipment service technician to use by online or offline was designed. The platform provides users with knowledge services and interactive services, enabling users to get a more ideal solution.
NASA Technical Reports Server (NTRS)
Dickman, Glen J.
1987-01-01
The technical trade studies and analyses reported in this book represent the accumulated work of the technical staff for the contract period. The general disciplines covered are as follows: (1) Guidance, Navigation, and Control; (2) Avionics Hardware; (3) Aeroassist Technology; (4) Propulsion; (5) Structure and Materials; and (6) Thermal Control Technology. The objectives in each of these areas were to develop the latest data, information, and analyses in support of the vehicle design effort.
Composite Payload Fairing Structural Architecture Assessment and Selection
NASA Technical Reports Server (NTRS)
Krivanek, Thomas M.; Yount, Bryan C.
2012-01-01
This paper provides a summary of the structural architecture assessments conducted and a recommendation for an affordable high performance composite structural concept to use on the next generation heavy-lift launch vehicle, the Space Launch System (SLS). The Structural Concepts Element of the Advanced Composites Technology (ACT) project and its follow on the Lightweight Spacecraft Structures and Materials (LSSM) project was tasked with evaluating a number of composite construction technologies for specific Ares V components: the Payload Shroud, the Interstage, and the Core Stage Intertank. Team studies strived to address the structural challenges, risks and needs for each of these vehicle components. Leveraging off of this work, the subsequent Composites for Exploration (CoEx) effort is focused on providing a composite structural concept to support the Payload Fairing for SLS. This paper documents the evaluation and down selection of composite construction technologies and evolution to the SLS Payload Fairing. Development of the evaluation criteria (also referred to as Figures of Merit or FOMs), their relative importance, and association to vehicle requirements are presented. A summary of the evaluation results, and a recommendation of the composite concept to baseline in the Composites for Exploration (CoEx) project is presented. The recommendation for the SLS Fairing is a Honeycomb Sandwich architecture based primarily on affordability and performance with two promising alternatives, Hat stiffened and Fiber Reinforced Foam (FRF) identified for eventual program block upgrade.
Zhou, Zuoxin; Cunningham, Eoin; Lennon, Alex; McCarthy, Helen O; Buchanan, Fraser; Clarke, Susan A; Dunne, Nicholas
2017-06-01
Powder-based inkjet three-dimensional printing (3DP) to fabricate pre-designed 3D structures has drawn increasing attention. However there are intrinsic limitations associated with 3DP technology due to the weak bonding within the printed structure, which significantly compromises its mechanical integrity. In this study, calcium sulphate ceramic structures demonstrating a porous architecture were manufactured using 3DP technology and subsequently post-processed with a poly (ε-caprolactone) (PCL) coating. PCL concentration, immersion time, and number of coating layers were the principal parameters investigated and improvement in compressive properties was the measure of success. Interparticle spacing within the 3DP structures were successfully filled with PCL material. Consequently the compressive properties, wettability, morphology, and in vitro resorption behaviour of 3DP components were significantly augmented. The average compressive strength, Young׳s modulus, and toughness increased 217%, 250%, and 315%, following PCL coating. Addition of a PCL surface coating provided long-term structural support to the host ceramic material, extending the resorption period from less than 7 days to a minimum of 56 days. This study has demonstrated that application of a PCL coating onto a ceramic 3DP structure was a highly effective approach to addressing some of the limitations of 3DP manufacturing and allows this advanced technology to be potentially used in a wider range of applications. Copyright © 2016 Elsevier Ltd. All rights reserved.
Crossing the quality chasm: the role of information technology departments.
Weir, Charlene R; Hicken, Bret L; Rappaport, Hank Steven; Nebeker, Jonathan R
2006-01-01
Integrating information technology (IT) into medical settings is considered essential to transforming hospitals into 21st-century health care institutions. Yet the role of IT departments in maximizing the effectiveness of information systems is not well understood. This article reports a 3-round Delphi panel of Veterans Administration personnel experienced with provider order entry electronic systems. In round 1, 35 administrative, clinical, and IT personnel answered 10 open-ended questions about IT strategies and structures that best support successful transformation. In round 2, panelists rated item importance and ranked proposed strategies. In round 3, panelists received aggregate feedback and rerated the items. Four domains emerged from round 1: IT organization, IT performance monitoring, user-support activities, and core IT responsibilities (eg, computer security, training). In rounds 2 and 3, IT performance monitoring was rated the most important, closely followed by clinical support. Strategies associated with each domain are identified and discussed.
Demonstration of Corrosion-Resistant Hybrid Composite Bridge Beams for Structural Applications
2016-09-01
result of corrosion of the steel support structures or the reinforcing bar in the concrete. The application of corrosion-resistant technology can...demonstrated and validated a corrosion-resistant hybrid-composite beam (HCB) for the reconstruction of a one span of a traditional steel and...concrete bridge at Fort Knox, Kentucky. The HCBs were installed on half of the bridge, and conventional steel beams were installed on the other half
EBF3 Design and Sustainability Considerations
NASA Technical Reports Server (NTRS)
Taminger, Karen M. B.
2015-01-01
Electron beam freeform fabrication (EBF3) is a cross-cutting technology for producing structural metal parts using an electron beam and wire feed in a layer-additive fashion. This process was developed by researchers at NASA Langley to specifically address needs for aerospace applications. Additive manufacturing technologies like EBF3 enable efficient design of materials and structures by tailoring microstructures and chemistries at the local level to improve performance at the global level. Additive manufacturing also facilitates design freedom by integrating assemblies into complex single-piece components, eliminating flanges, fasteners and joints, resulting in reduced size and mass. These same efficiencies that permit new design paradigms also lend themselves to supportability and sustainability. Long duration space missions will require a high degree of self-sustainability. EBF3 is a candidate technology being developed to allow astronauts to conduct repairs and fabricate new components and tools on demand, with efficient use of feedstock materials and energy.
BCTR: Biological and Chemical Technologies Research 1994 annual summary report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petersen, G.
1995-02-01
The annual summary report presents the fiscal year (FY) 1994 research activities and accomplishments for the United States Department of Energy (DOE) Biological and Chemical Technologies Research (BCTR) Program of the Advanced Industrial Concepts Division (AICD). This AICD program resides within the Office of Industrial Technologies (OIT) of the Office of Energy Efficiency and Renewable Energy (EE). Although the OIT was reorganized in 1991 and AICD no longer exists, this document reports on efforts conducted under the former structure. The annual summary report for 1994 (ASR 94) contains the following: program description (including BCTR program mission statement, historical background, relevance,more » goals and objectives); program structure and organization, selected technical and programmatic highlights for 1994; detailed descriptions of individual projects; a listing of program output, including a bibliography of published work; patents, and awards arising from work supported by BCTR.« less
Designs and Technology Requirements for Civil Heavy Lift Rotorcraft
NASA Technical Reports Server (NTRS)
Johnson, Wayne; Yamauchi, Gloria K.; Watts, Michael E.
2006-01-01
The NASA Heavy Lift Rotorcraft Systems Investigation examined in depth several rotorcraft configurations for large civil transport, designed to meet the technology goals of the NASA Vehicle Systems Program. The investigation identified the Large Civil Tiltrotor as the configuration with the best potential to meet the technology goals. The design presented was economically competitive, with the potential for substantial impact on the air transportation system. The keys to achieving a competitive aircraft were low drag airframe and low disk loading rotors; structural weight reduction, for both airframe and rotors; drive system weight reduction; improved engine efficiency; low maintenance design; and manufacturing cost comparable to fixed-wing aircraft. Risk reduction plans were developed to provide the strategic direction to support a heavy-lift rotorcraft development. The following high risk areas were identified for heavy lift rotorcraft: high torque, light weight drive system; high performance, structurally efficient rotor/wing system; low noise aircraft; and super-integrated vehicle management system.
A survey of enabling technologies in synthetic biology
2013-01-01
Background Realizing constructive applications of synthetic biology requires continued development of enabling technologies as well as policies and practices to ensure these technologies remain accessible for research. Broadly defined, enabling technologies for synthetic biology include any reagent or method that, alone or in combination with associated technologies, provides the means to generate any new research tool or application. Because applications of synthetic biology likely will embody multiple patented inventions, it will be important to create structures for managing intellectual property rights that best promote continued innovation. Monitoring the enabling technologies of synthetic biology will facilitate the systematic investigation of property rights coupled to these technologies and help shape policies and practices that impact the use, regulation, patenting, and licensing of these technologies. Results We conducted a survey among a self-identifying community of practitioners engaged in synthetic biology research to obtain their opinions and experiences with technologies that support the engineering of biological systems. Technologies widely used and considered enabling by survey participants included public and private registries of biological parts, standard methods for physical assembly of DNA constructs, genomic databases, software tools for search, alignment, analysis, and editing of DNA sequences, and commercial services for DNA synthesis and sequencing. Standards and methods supporting measurement, functional composition, and data exchange were less widely used though still considered enabling by a subset of survey participants. Conclusions The set of enabling technologies compiled from this survey provide insight into the many and varied technologies that support innovation in synthetic biology. Many of these technologies are widely accessible for use, either by virtue of being in the public domain or through legal tools such as non-exclusive licensing. Access to some patent protected technologies is less clear and use of these technologies may be subject to restrictions imposed by material transfer agreements or other contract terms. We expect the technologies considered enabling for synthetic biology to change as the field advances. By monitoring the enabling technologies of synthetic biology and addressing the policies and practices that impact their development and use, our hope is that the field will be better able to realize its full potential. PMID:23663447
Davidson, Susan C; Metzger, Richard; Lindgren, Katherine S
2011-05-01
As more registered nurses (RNs) return to school to obtain a bachelor of science in nursing (BSN), innovative ways must be found to support them in this endeavor. Barriers for RNs who return to school include scheduling of coursework and fear of failure. One school of nursing with a traditional BSN program reviewed its RN-BSN track, with its low retention and graduation rates. With input from nursing leaders and nurses in the community, the school applied for and was awarded a 3-year Health Resources and Services Administration grant to redesign the RN-BSN program. A hybrid classroom-online curriculum is offered in a structured, sequential format so that the RNs are admitted once a year and must complete the courses as a group, in a cohort. Data collected from evaluations showed that program support, technology support, and social support from peers encouraged the RNs to "stay the course," and 100% completed the requirements to graduate. Copyright 2011, SLACK Incorporated.
A clinical information systems strategy for a large integrated delivery network.
Kuperman, G. J.; Spurr, C.; Flammini, S.; Bates, D.; Glaser, J.
2000-01-01
Integrated delivery networks (IDNs) are an emerging class of health care institutions. IDNs are formed from the affiliation of individual health care institutions and are intended to be more efficient in the current fiscal health care environment. To realize efficiencies and support their strategic visions, IDNs rely critically on excellent information technology (IT). Because of its importance to the mission of the IDN, strategic decisions about IT are made by the top leadership of the IDN. At Partners HealthCare System, a large IDN in Boston, MA, a clinical information systems strategy has been created to support the Partners clinical vision. In this paper, we discuss the Partners' structure, clinical vision, and current IT initiatives in place to address the clinical vision. The initiatives are: a clinical data repository, inpatient process support, electronic medical records, a portal strategy, referral applications, knowledge resources, support for product lines, patient computing, confidentiality, and clinical decision support. We address several of the issues encountered in trying to bring excellent information technology to a large IDN. PMID:11079921
NASA Technical Reports Server (NTRS)
Watson, David; Knox, James C.; West, Phillip; Stanley, Christine M.; Bush, Richard
2015-01-01
The Life Support Systems Project (LSSP) under the Advanced Exploration Systems (AES) program builds upon the work performed under the AES Atmosphere Resource Recovery and Environmental Monitoring (ARREM) project focusing on the numerous technology development areas. The CO2 removal and associated air drying development efforts are focused on improving the current state-of-the-art system on the International Space Station (ISS) utilizing fixed beds of sorbent pellets by seeking more robust pelletized sorbents, evaluating structured sorbents, and examining alternate bed configurations to improve system efficiency and reliability. A component of the CO2 removal effort encompasses structural stability testing of existing and emerging sorbents. Testing will be performed on dry sorbents and sorbents that have been conditioned to three humidity levels. This paper describes the sorbent structural stability screening efforts in support of the LSS Project within the AES Program.
Laser patterning of transparent polymers assisted by plasmon excitation.
Elashnikov, R; Trelin, A; Otta, J; Fitl, P; Mares, D; Jerabek, V; Svorcik, V; Lyutakov, O
2018-06-13
Plasmon-assisted lithography of thin transparent polymer films, based on polymer mass-redistribution under plasmon excitation, is presented. The plasmon-supported structures were prepared by thermal annealing of thin Ag films sputtered on glass or glass/graphene substrates. Thin films of polymethylmethacrylate, polystyrene and polylactic acid were then spin-coated on the created plasmon-supported structures. Subsequent laser beam writing, at the wavelength corresponding to the position of plasmon absorption, leads to mass redistribution and patterning of the thin polymer films. The prepared structures were characterized using UV-Vis spectroscopy and confocal and AFM microscopy. The shape of the prepared structures was found to be strongly dependent on the substrate type. The mechanism leading to polymer patterning was examined and attributed to the plasmon-heating. The proposed method makes it possible to create different patterns in polymer films without the need for wet technological stages, powerful light sources or a change in the polymer optical properties.
Constructing Arguments with 3-D Printed Models
ERIC Educational Resources Information Center
McConnell, William; Dickerson, Daniel
2017-01-01
In this article, the authors describe a fourth-grade lesson where 3-D printing technologies were not only a stimulus for engagement but also served as a modeling tool providing meaningful learning opportunities. Specifically, fourth-grade students construct an argument that animals' external structures function to support survival in a particular…
The 27th Aerospace Mechanisms Symposium
NASA Technical Reports Server (NTRS)
Mancini, Ron (Compiler)
1993-01-01
The proceedings of the 27th Aerospace Mechanisms Symposium, which was held at ARC, Moffett Field, California, on 12-14 May 1993, are reported. Technological areas covered include the following: actuators, aerospace mechanism applications for ground support equipment, lubricants, latches, connectors, robotic mechanisms, and other mechanisms for large space structures.
Publicizing Your Program: Website Evaluation, Design, and Marketing Strategies
ERIC Educational Resources Information Center
Shroeder, Barbara A.
2007-01-01
This research was undertaken to study and improve the marketing efforts of the Department of Educational Technology (EDTECH) at Boise State University, recognizing the need to generate revenues based upon the new self-support structure instituted at the university and EDTECH Department. In investigating the marketing opportunities for the…
Management of Audio-Visual Media Services. Part II. Practical Management Methods.
ERIC Educational Resources Information Center
Price, Robert V.
1978-01-01
This paper furnishes a framework that allows the local audiovisual administrator to develop a management system necessary for the instructional support of teaching through modern media and educational technology. The structure of this framework rests on organizational patterns which are explained in four categories: complete decentralization,…
Designing a School Website: Contents, Structure, and Responsiveness
ERIC Educational Resources Information Center
Tubin, Dorit; Klein, Sarit
2007-01-01
Over the past few years, as part of the Information and Communication Technology (ICT) reform on the one hand, and the increased demands for school accountability on the other, more and more schools have launched a school website aimed at enhancing educational activities, supporting student-teacher communication, contributing to school marketing…
IT Strategy and Decision-Making: A Comparison of Four Universities
ERIC Educational Resources Information Center
Wilmore, Andrew
2014-01-01
Universities are increasingly dependent on information technology (IT) to support delivery of their objectives. It is crucial, therefore, that the IT investments made lead to successful outcomes. This study analyses the governance structures and decision-making processes used to approve and prioritise IT projects. Factors influencing an…
Underground pipeline laying using the pipe-in-pipe system
NASA Astrophysics Data System (ADS)
Antropova, N.; Krets, V.; Pavlov, M.
2016-09-01
The problems of resource saving and environmental safety during the installation and operation of the underwater crossings are always relevant. The paper describes the existing methods of trenchless pipeline technology, the structure of multi-channel pipelines, the types of supporting and guiding systems. The rational design is suggested for the pipe-in-pipe system. The finite element model is presented for the most dangerous sections of the inner pipes, the optimum distance is detected between the roller supports.
Combustion Integration Rack (CIR) Testing
2015-02-18
Fluids and Combustion Facility (FCF), Combustion Integration Rack (CIR) during testing in the Structural Dynamics Laboratory (SDL). The Fluids and Combustion Facility (FCF) is a set of two International Space Station (ISS) research facilities designed to support physical and biological experiments in support of technology development and validation in space. The FCF consists of two modular, reconfigurable racks called the Combustion Integration Rack (CIR) and the Fluids Integration Rack (FIR). The CIR and FIR were developed at NASAʼs Glenn Research Center.
[Modern aspects of organization of medical support for the Armed Forces].
Stavila, A G; Krasavin, K D; Levchenko, V N; Lemeshko, A L; Roenko, A S
2015-09-01
The challenges that medical service of the Armed Forces of the Russian Federation faces cannot be solved without a new qualitative approach to military and medical support. In order to create a complete organizational system of the medical support, consisting of united process of material flow management and management of accompanying elements, the. structure of the medical support and its equipment must correspond to performed tasks. The article describes a set of activities that are performed in the system of military-medical support and offers some promising approaches, which are supposed to solve assigned tasks imposed upon the center of pharmacy and medical technology and its interaction with superior body control, maintainable and third party organizations.
I-5/Gilman advanced technology bridge project
NASA Astrophysics Data System (ADS)
Lanza di Scalea, Francesco; Karbhari, Vistasp M.; Seible, Frieder
2000-04-01
The UCSD led I-5/Gilman Advanced Technology Bridge Project will design and construct a fully functional traffic bridge of advanced composite materials across Interstate 5 in La Jolla, California. Its objective is to demonstrate the use of advanced composite technologies developed by the aerospace industry in commercial applications to increase the life expectancy of new structures and for the rehabilitation of aging infrastructure components. The structure will be a 450 ft long, 60 ft wide cable-stayed bridge supported by a 150 ft A-frame pylon with two vehicular lanes, two bicycle lanes, pedestrian walkways and utility tunnels. The longitudinal girders and pylon will be carbon fiber shells filled with concrete. The transverse deck system will consist of hollow glass/carbon hybrid tubes and a polypropylene fiber reinforced concrete deck with an arch action. Selected cables will be composite. The bridge's structural behavior will be monitored to determine how advanced composite materials perform in civil infrastructure applications. The bridge will be instrumented to obtain performance and structural health data in real time and, where possible, in a remote fashion. The sensors applied to the bridge will include electrical resistance strain gages, fiberoptic Bragg gratings and accelerometers.
Girard, Laurie D.; Boissinot, Karel; Peytavi, Régis; Boissinot, Maurice; Bergeron, Michel G.
2014-01-01
The combination of molecular diagnostic technologies is increasingly used to overcome limitations on sensitivity, specificity or multiplexing capabilities, and provide efficient lab-on-chip devices. Two such techniques, PCR amplification and microarray hybridization are used serially to take advantage of the high sensitivity and specificity of the former combined with high multiplexing capacities of the latter. These methods are usually performed in different buffers and reaction chambers. However, these elaborate methods have a high complexity cost related to reagent requirements, liquid storage and the number of reaction chambers to integrate into automated devices. Furthermore, microarray hybridizations have a sequence dependent efficiency not always predictable. In this work, we have developed the concept of a structured oligonucleotide probe which is activated by cleavage from polymerase exonuclease activity. This technology is called SCISSOHR for Structured Cleavage Induced Single-Stranded Oligonucleotide Hybridization Reaction. The SCISSOHR probes enable indexing the target sequence to a tag sequence. The SCISSOHR technology also allows the combination of nucleic acid amplification and microarray hybridization in a single vessel in presence of the PCR buffer only. The SCISSOHR technology uses an amplification probe that is irreversibly modified in presence of the target, releasing a single-stranded DNA tag for microarray hybridization. Each tag is composed of a 3-nucleotidesequence-dependent segment and a unique “target sequence-independent” 14-nucleotide segment allowing for optimal hybridization with minimal cross-hybridization. We evaluated the performance of five (5) PCR buffers to support microarray hybridization, compared to a conventional hybridization buffer. Finally, as a proof of concept, we developed a multiplexed assay for the amplification, detection, and identification of three (3) DNA targets. This new technology will facilitate the design of lab-on-chip microfluidic devices, while also reducing consumable costs. At term, it will allow the cost-effective automation of highly multiplexed assays for detection and identification of genetic targets. PMID:25489607
Girard, Laurie D; Boissinot, Karel; Peytavi, Régis; Boissinot, Maurice; Bergeron, Michel G
2015-02-07
The combination of molecular diagnostic technologies is increasingly used to overcome limitations on sensitivity, specificity or multiplexing capabilities, and provide efficient lab-on-chip devices. Two such techniques, PCR amplification and microarray hybridization are used serially to take advantage of the high sensitivity and specificity of the former combined with high multiplexing capacities of the latter. These methods are usually performed in different buffers and reaction chambers. However, these elaborate methods have high complexity and cost related to reagent requirements, liquid storage and the number of reaction chambers to integrate into automated devices. Furthermore, microarray hybridizations have a sequence dependent efficiency not always predictable. In this work, we have developed the concept of a structured oligonucleotide probe which is activated by cleavage from polymerase exonuclease activity. This technology is called SCISSOHR for Structured Cleavage Induced Single-Stranded Oligonucleotide Hybridization Reaction. The SCISSOHR probes enable indexing the target sequence to a tag sequence. The SCISSOHR technology also allows the combination of nucleic acid amplification and microarray hybridization in a single vessel in presence of the PCR buffer only. The SCISSOHR technology uses an amplification probe that is irreversibly modified in presence of the target, releasing a single-stranded DNA tag for microarray hybridization. Each tag is composed of a 3-nucleotide sequence-dependent segment and a unique "target sequence-independent" 14-nucleotide segment allowing for optimal hybridization with minimal cross-hybridization. We evaluated the performance of five (5) PCR buffers to support microarray hybridization, compared to a conventional hybridization buffer. Finally, as a proof of concept, we developed a multiplexed assay for the amplification, detection, and identification of three (3) DNA targets. This new technology will facilitate the design of lab-on-chip microfluidic devices, while also reducing consumable costs. At term, it will allow the cost-effective automation of highly multiplexed assays for detection and identification of genetic targets.
Spatial Query for Planetary Data
NASA Technical Reports Server (NTRS)
Shams, Khawaja S.; Crockett, Thomas M.; Powell, Mark W.; Joswig, Joseph C.; Fox, Jason M.
2011-01-01
Science investigators need to quickly and effectively assess past observations of specific locations on a planetary surface. This innovation involves a location-based search technology that was adapted and applied to planetary science data to support a spatial query capability for mission operations software. High-performance location-based searching requires the use of spatial data structures for database organization. Spatial data structures are designed to organize datasets based on their coordinates in a way that is optimized for location-based retrieval. The particular spatial data structure that was adapted for planetary data search is the R+ tree.
High heat flux actively cooled honeycomb sandwich structural panel for a hypersonic aircraft
NASA Technical Reports Server (NTRS)
Koch, L. C.; Pagel, L. L.
1978-01-01
The results of a program to design and fabricate an unshielded actively cooled structural panel for a hypersonic aircraft are presented. The design is an all-aluminum honeycomb sandwich with embedded cooling passages soldered to the inside of the outer moldline skin. The overall finding is that an actively cooled structure appears feasible for application on a hypersonic aircraft, but the fabrication process is complex and some material and manufacturing technology developments are required. Results from the program are summarized and supporting details are presented.
ERIC Educational Resources Information Center
Beem, Kate
2002-01-01
Discusses technology-support issues, including staff training, cost, and outsourcing. Describes how various school districts manage technology-support services. Features the Technology Support Index, developed by the International Society for Technology in Education, to gauge the operation of school district technology-support programs. (PKP)
Design and modeling of an additive manufactured thin shell for x-ray astronomy
NASA Astrophysics Data System (ADS)
Feldman, Charlotte; Atkins, Carolyn; Brooks, David; Watson, Stephen; Cochrane, William; Roulet, Melanie; Willingale, Richard; Doel, Peter
2017-09-01
Future X-ray astronomy missions require light-weight thin shells to provide large collecting areas within the weight limits of launch vehicles, whilst still delivering angular resolutions close to that of Chandra (0.5 arc seconds). Additive manufacturing (AM), also known as 3D printing, is a well-established technology with the ability to construct or `print' intricate support structures, which can be both integral and light-weight, and is therefore a candidate technique for producing shells for space-based X-ray telescopes. The work described here is a feasibility study into this technology for precision X-ray optics for astronomy and has been sponsored by the UK Space Agency's National Space Technology Programme. The goal of the project is to use a series of test samples to trial different materials and processes with the aim of developing a viable path for the production of an X-ray reflecting prototype for astronomical applications. The initial design of an AM prototype X-ray shell is presented with ray-trace modelling and analysis of the X-ray performance. The polishing process may cause print-through from the light-weight support structure on to the reflecting surface. Investigations in to the effect of the print-through on the X-ray performance of the shell are also presented.
SSTAC/ARTS review of the draft Integrated Technology Plan (ITP). Volume 5: Human Support
NASA Technical Reports Server (NTRS)
1991-01-01
Viewgraphs of briefings from the Space Systems and Technology Advisory Committee (SSTAC)/ARTS review of the draft integrated technology plan (ITP) on human support are included. Topics covered include: human support program; human factors; life support technology; fire safety; medical support technology; advanced refrigeration technology; EVA suit system; advanced PLSS technology; and ARC-EVA systems research program.
NASA Astrophysics Data System (ADS)
Kostopoulos, Vassilis; Vavouliotis, Antonios; Baltopoulos, Athanasios; Sotiririadis, George; Masouras, Athanasios; Pambaguian, Laurent
2014-06-01
The past decade, extensive efforts have been invested in understanding the nano-scale and revealing the capabilities offered by nanotechnology products to structural materials. Nevertheless, a major issue faced lately more seriously due to the interest of industry is on how to incorporate these nano-species into the final composite structure through existing manufacturing processes and infrastructure. In this work, we present the experience obtained from the latest nanotechnology research activities supported by ESA. The paper focuses on prepreg composite manufacturing technology and addresses:- Approaches for nano-enabling of composites- Up-scaling strategies towards final structures- Latest results on performance of nano-enabledfiber reinforced compositesSeveral approaches for the utilization of nanotechnology products in structural composite structures have been proposed and are reviewed, in short along with respective achieved results. A variety of nano-fillers has been proposed and employed, individually or in combination in hybrid forms, to approach the desired performance. A major part of the work deals with the up-scaling routes of these technologies to reach final products and industrial scales and processes while meeting end-user performance.
Overview of mechanics of materials branch activities in the computational structures area
NASA Technical Reports Server (NTRS)
Poe, C. C., Jr.
1992-01-01
Base programs and system programs are discussed. The base programs include fundamental research of composites and metals for airframes leading to characterization of advanced materials, models of behavior, and methods for predicting damage tolerance. Results from the base programs support the systems programs, which change as NASA's missions change. The National Aerospace Plane (NASP), Advanced Composites Technology (ACT), Airframe Structural Integrity Program (Aging Aircraft), and High Speed Research (HSR) programs are currently being supported. Airframe durability is one of the key issues in each of these system programs. The base program has four major thrusts, which will be reviewed subsequently. Additionally, several technical highlights will be reviewed for each thrust.
Social Network Supported Process Recommender System
Ye, Yanming; Yin, Jianwei; Xu, Yueshen
2014-01-01
Process recommendation technologies have gained more and more attention in the field of intelligent business process modeling to assist the process modeling. However, most of the existing technologies only use the process structure analysis and do not take the social features of processes into account, while the process modeling is complex and comprehensive in most situations. This paper studies the feasibility of social network research technologies on process recommendation and builds a social network system of processes based on the features similarities. Then, three process matching degree measurements are presented and the system implementation is discussed subsequently. Finally, experimental evaluations and future works are introduced. PMID:24672309
Approaches to Design and Evaluation of Sandwich Composites
NASA Technical Reports Server (NTRS)
Shivakumar, Kunigal; Raju, I. S. (Technical Monitor); Ambur, D. (Technical Monitor)
2001-01-01
This report describes research during the period June 15, 1997 to October 31, 2000. This grant yielded a low cast manufacturing of composite sandwich structures technology and characterization interfacial and subinterfacial cracks in foam core sandwich panels. The manufacturing technology is called the vacuum assisted resin transfer (VARTM). The VARTM is suitable for processing composite materials both at ambient and elevated temperatures and of unlimited component size. This technology has been successfully transferred to a small business fiber preform manufacturing company 3TEX located in Cary, North Carolina. The grant also supported one Ph.D, one M.S and a number of under graduate students, and nine publications and Presentations.
Technology for the product and process data base
NASA Technical Reports Server (NTRS)
Barnes, R. D.
1984-01-01
The computerized product and process data base is increasingly recognized to be the cornerstone component of an overall system aimed at the integrated automation of the industrial processes of a given company or enterprise. The technology needed to support these more effective computer integrated design and manufacturing methods, especially the concept of 3-D computer-sensible product definitions rather than engineering drawings, is not fully available and rationalized. Progress is being made, however, in bridging this technology gap with concentration on the modeling of sophisticated information and data structures, high-performance interactive user interfaces and comprehensive tools for managing the resulting computerized product definition and process data base.
Borg, Johan; Larsson, Stig; Ostergren, Per-Olof; Rahman, A S M Atiqur; Bari, Nazmul; Khan, A H M Noman
2012-09-20
Knowledge about the relation between user involvement in the provision of assistive technology and outcomes of assistive technology use is a prerequisite for the development of efficient service delivery strategies. However, current knowledge is limited, particularly from low-income countries where affordability is an issue. The objective was therefore to explore the relation between outcomes of assistive technology use and user involvement in the service delivery process in Bangladesh. Using structured interviews, data from 136 users of hearing aids and 149 users of manual wheelchairs were collected. Outcomes were measured using the International Outcome Inventory for Hearing Aids (IOI-HA), which was adapted for wheelchair users. Predictors of user involvement included preference, measurement and training. Users reported outcomes comparable to those found in other high- and low-income countries. User involvement increased the likelihood for reporting better outcomes except for measurement among hearing aid users. The findings support the provision of assistive technology as a strategy to improve the participation of people with disabilities in society. They also support current policies and guidelines for user-involvement in the service delivery process. Simplified strategies for provision of hearing aids may be explored.
NASA Technical Reports Server (NTRS)
Bubenheim, David L.; Lewis, Carol E.; Covington, M. Alan (Technical Monitor)
1995-01-01
NASA's advanced life support technologies are being combined with Arctic science and engineering knowledge to address the unique needs of the remote communities of Alaska through the Advanced Life Systems for Extreme Environments (ALSEE) project. ALSEE is a collaborative effort involving NASA, the State of Alaska, the University of Alaska, the North Slope Borough of Alaska, and the National Science Foundation (NSF). The focus is a major issue in the state of Alaska and other areas of the Circumpolar North, the health and welfare of its people, their lives and the subsistence lifestyle in remote communities, economic opportunity, and care for the environment. The project primarily provides treatment and reduction of waste, purification and recycling of water. and production of food. A testbed is being established to demonstrate the technologies which will enable safe, healthy, and autonomous function of remote communities and to establish the base for commercial development of the resulting technology into new industries. The challenge is to implement the technological capabilities in a manner compatible with the social and economic structures of the native communities, the state, and the commercial sector. Additional information is contained in the original extended abstract.
NASA Technical Reports Server (NTRS)
Schreiber, Jeffrey G.; Thieme, Lanny G.
2007-01-01
From 1999 to 2006, the NASA Glenn Research Center (GRC) supported the development of a high-efficiency, nominal 110-We Stirling Radioisotope Generator (SRG110) for potential use on NASA missions, including deep space missions, Mars rovers, and lunar applications. Lockheed Martin (LM) was the system integrator for the SRG110, under contract to the Department of Energy (DOE). Infinia Corporation (formerly Stirling Technology Company) developed the Stirling convertor, first as a contractor to DOE and then under subcontract to LM. The SRG110 development has been redirected, and recent program changes have been made to significantly increase the specific power of the generator. System development of an Advanced Stirling Radioisotope Generator (ASRG) has now begun, using a lightweight, advanced convertor from Sunpower, Inc. This paper summarizes the results of the supporting technology effort that GRC completed for the SRG110. GRC tasks included convertor extended-duration testing in air and thermal vacuum environments, heater head life assessment, materials studies, permanent magnet aging characterization, linear alternator evaluations, structural dynamics testing, electromagnetic interference (EMI) and electromagnetic compatibility (EMC) characterization, organic materials evaluations, reliability studies, and development of an end-to-end system dynamic model. Related efforts are now continuing in many of these areas to support ASRG development.
Accelerated Adoption of Advanced Health Information Technology in Beacon Community Health Centers.
Jones, Emily; Wittie, Michael
2015-01-01
To complement national and state-level HITECH Act programs, 17 Beacon communities were funded to fuel community-wide use of health information technology to improve quality. Health centers in Beacon communities received supplemental funding. This article explores the association between participation in the Beacon program and the adoption of electronic health records. Using the 2010-2012 Uniform Data System, trends in health information technology adoption among health centers located within and outside of Beacon communities were explored using differences in mean t tests and multivariate logistic regression. Electronic health record adoption was widespread and rapidly growing in all health centers, especially quality improvement functionalities: structured data capture, order and results management, and clinical decision support. Adoption lagged for functionalities supporting patient engagement, performance measurement, care coordination, and public health. The use of advanced functionalities such as care coordination grew faster in Beacon health centers, and Beacon health centers had 1.7 times higher odds of adopting health records with basic safety and quality functionalities in 2010-2012. Three factors likely underlie these findings: technical assistance, community-wide activation supporting health information exchange, and the layering of financial incentives. Additional technical assistance and community-wide activation is needed to support the use of functionalities that are currently lagging. © Copyright 2015 by the American Board of Family Medicine.
NASA Technical Reports Server (NTRS)
Schreiber, Jeffrey G.; Thieme, Lanny G.
2007-01-01
From 1999-2006, the NASA Glenn Research Center (GRC) supported the development of a high-efficiency, nominal 110-We Stirling Radioisotope Generator (SRG110) for potential use on NASA missions, including deep space missions, Mars rovers, and lunar applications. Lockheed Martin (LM) was the system integrator for the SRG110, under contract to the Department of Energy (DOE). Infinia Corporation (formerly Stirling Technology Company) developed the Stirling convertor, first as a contractor to DOE and then under subcontract to LM. The SRG110 development has been redirected, and recent program changes have been made to significantly increase the specific power of the generator. System development of an Advanced Stirling Radioisotope Generator (ASRG) has now begun, using a lightweight, advanced convertor from Sunpower, Inc. This paper summarizes the results of the supporting technology effort that GRC completed for the SRG110. GRC tasks included convertor extended-duration testing in air and thermal vacuum environments, heater head life assessment, materials studies, permanent magnet aging characterization, linear alternator evaluations, structural dynamics testing, electromagnetic interference (EMI) and electromagnetic compatibility (EMC) characterization, organic materials evaluations, reliability studies, and development of an end-to-end system dynamic model. Related efforts are now continuing in many of these areas to support ASRG development.
Report of the Asilomar 3 LDR Workshop
NASA Technical Reports Server (NTRS)
Mahoney, M. J. (Editor)
1988-01-01
The conclusions and recommendations of the workshop held to study technology development issues critical to the Large Deployable Reflector (LDR) are summarized. LDR is to be a dedicated, orbiting, astronomical observatory, operating at wavelengths from 30 to 1000 microns, a spectral region where the Earth's atmosphere is almost completely opaque. Because it will have a large, segmented, passively cooled aperture, LDR addresses a wide range of technology areas. These include lightweight, low cost, structural composite reflector panels, primary support structures, wavefront sensing and adaptive optics, thermal background management, and integrated vibration and pointing control systems. The science objectives for LDR present instrument development challenges for coherent and direct arrayed detectors which can operate effectively at far infrared and submillimeter wavelengths, and for sub-Kelvin cryogenic systems.
ISAAC - A Testbed for Advanced Composites Research
NASA Technical Reports Server (NTRS)
Wu, K. Chauncey; Stewart, Brian K.; Martin, Robert A.
2014-01-01
The NASA Langley Research Center is acquiring a state-of-art composites fabrication environment to support the Center's research and technology development mission. This overall system described in this paper is named ISAAC, or Integrated Structural Assembly of Advanced Composites. ISAAC's initial operational capability is a commercial robotic automated fiber placement system from Electroimpact, Inc. that consists of a multi-degree of freedom commercial robot platform, a tool changer mechanism, and a specialized automated fiber placement end effector. Examples are presented of how development of advanced composite materials, structures, fabrication processes and technology are enabled by utilizing the fiber placement end effector directly or with appropriate modifications. Alternatively, end effectors with different capabilities may either be bought or developed with NASA's partners in industry and academia.
The well-designed hierarchical structure of Musa basjoo for supercapacitors
Zheng, Kaiwen; Fan, Xiaorong; Mao, Yingzhu; Lin, Jingkai; Dai, Wenxuan; Zhang, Junying; Cheng, Jue
2016-01-01
Application of biological structure is one of the hottest topics in the field of science and technology. The unimaginable and excellent architectures of living beings supporting their vital activities have attracted the interests of worldwide researchers. An intriguing example is Musa basjoo which belongs to the herb, while appears like a tree. The profound mystery of structure and potential application of Musa basjoo have not been probed. Here we show the finding of the hierarchical structure of Musa basjoo and the outstanding electrochemical performance of the super-capacitors fabricated through the simple carbonization of Musa basjoo followed by KOH activation. Musa basjoo has three layers of structure: nanometer-level, micrometer-level and millimeter-level. The nanometer-level structure constructs the micrometer-level structure, while the micrometer-level structure constructs the millimeter-level structure. Based on this hierarchical structure, Musa basjoo reduces the unnecessary weight and therefore supports its huge body. The super-capacitors derived from Musa basjoo display a high specific capacitance and a good cycling stability. This enlightening work opens a window for the applications of the natural structure and we hope that more and more people could pay attention to the bio-inspired materials. PMID:26842714
The well-designed hierarchical structure of Musa basjoo for supercapacitors.
Zheng, Kaiwen; Fan, Xiaorong; Mao, Yingzhu; Lin, Jingkai; Dai, Wenxuan; Zhang, Junying; Cheng, Jue
2016-02-04
Application of biological structure is one of the hottest topics in the field of science and technology. The unimaginable and excellent architectures of living beings supporting their vital activities have attracted the interests of worldwide researchers. An intriguing example is Musa basjoo which belongs to the herb, while appears like a tree. The profound mystery of structure and potential application of Musa basjoo have not been probed. Here we show the finding of the hierarchical structure of Musa basjoo and the outstanding electrochemical performance of the super-capacitors fabricated through the simple carbonization of Musa basjoo followed by KOH activation. Musa basjoo has three layers of structure: nanometer-level, micrometer-level and millimeter-level. The nanometer-level structure constructs the micrometer-level structure, while the micrometer-level structure constructs the millimeter-level structure. Based on this hierarchical structure, Musa basjoo reduces the unnecessary weight and therefore supports its huge body. The super-capacitors derived from Musa basjoo display a high specific capacitance and a good cycling stability. This enlightening work opens a window for the applications of the natural structure and we hope that more and more people could pay attention to the bio-inspired materials.
The well-designed hierarchical structure of Musa basjoo for supercapacitors
NASA Astrophysics Data System (ADS)
Zheng, Kaiwen; Fan, Xiaorong; Mao, Yingzhu; Lin, Jingkai; Dai, Wenxuan; Zhang, Junying; Cheng, Jue
2016-02-01
Application of biological structure is one of the hottest topics in the field of science and technology. The unimaginable and excellent architectures of living beings supporting their vital activities have attracted the interests of worldwide researchers. An intriguing example is Musa basjoo which belongs to the herb, while appears like a tree. The profound mystery of structure and potential application of Musa basjoo have not been probed. Here we show the finding of the hierarchical structure of Musa basjoo and the outstanding electrochemical performance of the super-capacitors fabricated through the simple carbonization of Musa basjoo followed by KOH activation. Musa basjoo has three layers of structure: nanometer-level, micrometer-level and millimeter-level. The nanometer-level structure constructs the micrometer-level structure, while the micrometer-level structure constructs the millimeter-level structure. Based on this hierarchical structure, Musa basjoo reduces the unnecessary weight and therefore supports its huge body. The super-capacitors derived from Musa basjoo display a high specific capacitance and a good cycling stability. This enlightening work opens a window for the applications of the natural structure and we hope that more and more people could pay attention to the bio-inspired materials.
Contact patterning strategies for 32nm and 28nm technology
NASA Astrophysics Data System (ADS)
Morgenfeld, Bradley; Stobert, Ian; An, Ju j.; Kanai, Hideki; Chen, Norman; Aminpur, Massud; Brodsky, Colin; Thomas, Alan
2011-04-01
As 193 nm immersion lithography is extended indefinitely to sustain technology roadmaps, there is increasing pressure to contain escalating lithography costs by identifying patterning solutions that can minimize the use of multiple-pass processes. Contact patterning for the 32/28 nm technology nodes has been greatly facilitated by just-in-time introduction of new process enablers that allow the simultaneous support of flexible foundry-oriented ground rules alongside highperformance technology, while also migrating to a single-pass patterning process. The incorporation of device based performance metrics along with rigorous patterning and structural variability studies were critical in the evaluation of material innovation for improved resolution and CD shrink along with novel data preparation flows utilizing aggressive strategies for SRAF insertion and retargeting.
NASA Technical Reports Server (NTRS)
Generazio, Edward R.
2002-01-01
NASA's Office of Safety and Mission Assurance sponsors an Agency-wide NDE Program that supports Aeronautics and Space Transportation Technology, Human Exploration and Development of Space, Earth Science, and Space Science Enterprises. For each of these Enterprises, safety is the number one priority. Development of the next generation aero-space launch and transportation vehicles, satellites, and deep space probes have highlighted the enabling role that NDE plays in these advanced technology systems. Specific areas of advanced component development, component integrity, and structural heath management are critically supported by NDE technologies. The simultaneous goals of assuring safety, maintaining overall operational efficiency, and developing and utilizing revolutionary technologies to expand human activity and space-based commerce in the frontiers of air and space places increasing demands on the Agencies NDE infrastructure and resources. In this presentation, an overview of NASA's NDE Program will be presented, that includes a background and status of current Enterprise NDE issues, and the NDE investment areas being developed to meet Enterprise safety and mission assurance needs through the year 2009 and beyond.
NASA Technical Reports Server (NTRS)
Horsham, Gary A. P.
1992-01-01
This structure and composition of a new, emerging software application, which models and analyzes space exploration scenario options for feasibility based on technology development projections is presented. The software application consists of four main components: a scenario generator for designing and inputting scenario options and constraints; a processor which performs algorithmic coupling and options analyses of mission activity requirements and technology capabilities; a results display which graphically and textually shows coupling and options analysis results; and a data/knowledge base which contains information on a variety of mission activities and (power and propulsion) technology system capabilities. The general long-range study process used by NASA to support recent studies is briefly introduced to provide the primary basis for comparison for discussing the potential advantages to be gained from developing and applying this kind of application. A hypothetical example of a scenario option to facilitate the best conceptual understanding of what the application is, how it works, or the operating methodology, and when it might be applied is presented.
NASA Technical Reports Server (NTRS)
Horsham, Gary A. P.
1991-01-01
The structure and composition of a new, emerging software application, which models and analyzes space exploration scenario options for feasibility based on technology development projections is presented. The software application consists of four main components: a scenario generator for designing and inputting scenario options and constraints; a processor which performs algorithmic coupling and options analyses of mission activity requirements and technology capabilities; a results display which graphically and textually shows coupling and options analysis results; and a data/knowledge base which contains information on a variety of mission activities and (power and propulsion) technology system capabilities. The general long-range study process used by NASA to support recent studies is briefly introduced to provide the primary basis for comparison for discussing the potential advantages to be gained from developing and applying this king of application. A hypothetical example of a scenario option to facilitate the best conceptual understanding of what the application is, how it works, or the operating methodology, and when it might be applied is presented.
Shi, Ping; Yan, Bo
2016-01-01
We conducted an exploratory investigation of factors influencing the adoption of radio frequency identification (RFID) methods in the agricultural product distribution industry. Through a literature review and field research, and based on the technology-organization-environment (TOE) theoretical framework, this paper analyzes factors influencing RFID adoption in the agricultural product distribution industry in reference to three contexts: technological, organizational, and environmental contexts. An empirical analysis of the TOE framework was conducted by applying structural equation modeling based on actual data from a questionnaire survey on the agricultural product distribution industry in China. The results show that employee resistance and uncertainty are not supported by the model. Technological compatibility, perceived effectiveness, organizational size, upper management support, trust between enterprises, technical knowledge, competitive pressure and support from the Chinese government, which are supported by the model, have significantly positive effects on RFID adoption. Meanwhile, organizational size has the strongest positive effect, while competitive pressure levels have the smallest effect. Technological complexities and costs have significantly negative effects on RFID adoption, with cost being the most significantly negative influencing factor. These research findings will afford enterprises in the agricultural products supply chain with a stronger understanding of the factors that influence RFID adoption in the agricultural product distribution industry. In addition, these findings will help enterprises remain aware of how these factors affect RFID adoption and will thus help enterprises make more accurate and rational decisions by promoting RFID application in the agricultural product distribution industry.
Clinical investigations for SUS, the Brazilian public health system.
Paula, Ana Patrícia de; Giozza, Silvana Pereira; Pereira, Michelle Zanon; Boaventura, Patrícia Souza; Santos, Leonor Maria Pacheco; Sachetti, Camile Giaretta; Tamayo, César Omar Carranza; Kowalski, Clarissa Campos Guaragna; Elias, Flavia Tavares Silva; Serruya, Suzanne Jacob; Guimarães, Reinaldo
2012-01-01
Scientific and technological development is crucial for advancing the Brazilian health system and for promoting quality of life. The way in which the Brazilian Ministry of Health has supported clinical research to provide autonomy, self-sufficiency, competitiveness and innovation for the healthcare industrial production complex, in accordance with the National Policy on Science, Technology and Innovation in Healthcare, was analyzed. Descriptive investigation, based on secondary data, conducted at the Department of Science and Technology, Ministry of Health. The Ministry of Health's research management database, PesquisaSaúde, was analyzed from 2002 to 2009, using the key word "clinical research" in the fields "primary sub-agenda" or "secondary sub-agenda". The 368 projects retrieved were sorted into six categories: basic biomedical research, preclinical studies, expanded clinical research, clinical trials, infrastructure support and health technology assessment. From a structured review on "clinical research funding", results from selected countries are presented and discussed. The amount invested was R$ 140 million. The largest number of projects supported "basic biomedical research", while the highest amounts invested were in "clinical trials" and "infrastructure support". The southeastern region had the greatest proportion of projects and financial resources. In some respects, Brazil is ahead of other BRICS countries (Russia, India, China and South Africa), especially with regard to establishing a National Clinical Research Network. The Ministry of Health ensured investments to encourage clinical research in Brazil and contributed towards promoting cohesion between investigators, health policies and the healthcare industrial production complex.
Nishiyama, Yuichi; Nakamura, Makoto; Henmi, Chizuka; Yamaguchi, Kumiko; Mochizuki, Shuichi; Nakagawa, Hidemoto; Takiura, Koki
2009-03-01
We have developed a new technology for producing three-dimensional (3D) biological structures composed of living cells and hydrogel in vitro, via the direct and accurate printing of cells with an inkjet printing system. Various hydrogel structures were constructed with our custom-made inkjet printer, which we termed 3D bioprinter. In the present study, we used an alginate hydrogel that was obtained through the reaction of a sodium alginate solution with a calcium chloride solution. For the construction of the gel structure, sodium alginate solution was ejected from the inkjet nozzle (SEA-Jet, Seiko Epson Corp., Suwa, Japan) and was mixed with a substrate composed of a calcium chloride solution. In our 3D bioprinter, the nozzle head can be moved in three dimensions. Owing to the development of the 3D bioprinter, an innovative fabrication method that enables the gentle and precise fixation of 3D gel structures was established using living cells as a material. To date, several 3D structures that include living cells have been fabricated, including lines, planes, laminated structures, and tubes, and now, experiments to construct various hydrogel structures are being carried out in our laboratory.
NASA Technical Reports Server (NTRS)
Rincon, Rafael F.; Fatoyinbo, Temilola; Ranson, K. Jon; Osmanoglu, Batuhan; Sun, Guoqing; Deshpande, Manohar D.; Perrine, Martin L.; Du Toit, Cornelis F.; Bonds, Quenton; Beck, Jaclyn;
2014-01-01
EcoSAR is a new synthetic aperture radar (SAR) instrument being developed at the NASA/ Goddard Space Flight Center (GSFC) for the polarimetric and interferometric measurements of ecosystem structure and biomass. The instrument uses a phased-array beamforming architecture and supports full polarimetric measurements and single pass interferometry. This Instrument development is part of NASA's Earth Science Technology Office Instrument Incubator Program (ESTO IIP).
[Development of a medical equipment support information system based on PDF portable document].
Cheng, Jiangbo; Wang, Weidong
2010-07-01
According to the organizational structure and management system of the hospital medical engineering support, integrate medical engineering support workflow to ensure the medical engineering data effectively, accurately and comprehensively collected and kept in electronic archives. Analyse workflow of the medical, equipment support work and record all work processes by the portable electronic document. Using XML middleware technology and SQL Server database, complete process management, data calculation, submission, storage and other functions. The practical application shows that the medical equipment support information system optimizes the existing work process, standardized and digital, automatic and efficient orderly and controllable. The medical equipment support information system based on portable electronic document can effectively optimize and improve hospital medical engineering support work, improve performance, reduce costs, and provide full and accurate digital data
Leonardi, Paul M
2010-04-01
Today, in the midst of economic crisis, senior executives at US automakers and influential industry analysts frequently reflect on the progression that safety testing has taken from the crude trials done on the road, to controlled laboratory experiments, and to today's complex math-based simulation models. They use stories of this seemingly linear and natural sequence to justify further investment in simulation technologies. The analysis presented in this paper shows that change in the structures of automakers' organizations co-evolved with regulations specifying who was at fault in vehicle impacts, how vehicles should be built to withstand the force of an impact, and how testing should be done to assure that vehicles met those requirements. Changes in the regulatory environment were bolstered by new theories about crash test dynamics and changing technologies with which to test those theories. Thus, as new technological and regulatory innovations co-evolved with innovations in organizational structuring, ideas about how to best conduct crash tests shifted and catalyzed new cycles of technological, regulatory, and organizational innovation. However, this co-evolutionary story tells us that the move from road to lab to math was not natural or linear as today's managerial rhetoric would have us believe. Rather, the logic of math-based simulation was the result of technological, regulatory and organizational changes that created an industry-wide ideology that supported the move toward math while making it appear natural within the shifting structure of the industry.
NASA Technical Reports Server (NTRS)
Lewis, Pattie
2005-01-01
Headquarters National Aeronautics and Space Administration (NASA) chartered the Acquisition Pollution Prevention (AP2) Office to coordinate agency activities affecting pollution prevention issues identified during system and component acquisition and sustainment processes. The primary objectives of the AP2 Office are to: (1) Reduce or eliminate the use of hazardous materials (HazMats) or hazardous processes at manufacturing, remanufacturing, and sustainment locations. (2) A void duplication of effort in actions required to reduce or eliminate HazMats through joint center cooperation and technology sharing. This project will identify, evaluate and approve alternative surface preparation technologies for use at NASA and Air Force Space Command (AFSPC) installations. Materials and processes will be evaluated with the goal of selecting those processes that will improve corrosion protection at critical systems, facilitate easier maintenance activity, extend maintenance cycles, eliminate flight hardware contamination and reduce the amount of hazardous waste generated. This Joint Test Protocol (JTP) contains the critical requirements and tests necessary to qualify alternative Low-Emission Surface Preparation/Depainting Technologies for Structural Steel Applications. These tests were derived from engineering, performance, and operational impact (supportability) requirements defined by a consensus of NASA and Air Force Space Command (AFSPC) participants. The Field Test Plan (FTP), entitled Joint Test Protocol for Validation of Alternative Low Emission Surface Preparation/Depainting Technologies for Structural Steel, prepared by ITB, defines the field evaluation and testing requirements for validating alternative surface preparation/depainting technologies and supplements the JTP.
Mass properties survey of solar array technologies
NASA Technical Reports Server (NTRS)
Kraus, Robert
1991-01-01
An overview of the technologies, electrical performance, and mass characteristics of many of the presently available and the more advanced developmental space solar array technologies is presented. Qualitative trends and quantitative mass estimates as total array output power is increased from 1 kW to 5 kW at End of Life (EOL) from a single wing are shown. The array technologies are part of a database supporting an ongoing solar power subsystem model development for top level subsystem and technology analyses. The model is used to estimate the overall electrical and thermal performance of the complete subsystem, and then calculate the mass and volume of the array, batteries, power management, and thermal control elements as an initial sizing. The array types considered here include planar rigid panel designs, flexible and rigid fold-out planar arrays, and two concentrator designs, one with one critical axis and the other with two critical axes. Solar cell technologies of Si, GaAs, and InP were included in the analyses. Comparisons were made at the array level; hinges, booms, harnesses, support structures, power transfer, and launch retention mountings were included. It is important to note that the results presented are approximations, and in some cases revised or modified performance and mass estimates of specific designs.
Developing Advanced Human Support Technologies for Planetary Exploration Missions
NASA Technical Reports Server (NTRS)
Berdich, Debra P.; Campbell, Paul D.; Jernigan, J. Mark
2004-01-01
The United States Vision for Space Exploration calls for sending robots and humans to explore the Earth's moon, the planet Mars, and beyond. The National Aeronautics and Space Administration (NASA) is developing a set of design reference missions that will provide further detail to these plans. Lunar missions are expected to provide a stepping stone, through operational research and evaluation, in developing the knowledge base necessary to send crews on long duration missions to Mars and other distant destinations. The NASA Exploration Systems Directorate (ExSD), in its program of bioastronautics research, manages the development of technologies that maintain human life, health, and performance in space. Using a system engineering process and risk management methods, ExSD's Human Support Systems (HSS) Program selects and performs research and technology development in several critical areas and transfers the results of its efforts to NASA exploration mission/systems development programs in the form of developed technologies and new knowledge about the capabilities and constraints of systems required to support human existence beyond Low Earth Orbit. HSS efforts include the areas of advanced environmental monitoring and control, extravehicular activity, food technologies, life support systems, space human factors engineering, and systems integration of all these elements. The HSS Program provides a structured set of deliverable products to meet the needs of exploration programs. These products reduce the gaps that exist in our knowledge of and capabilities for human support for long duration, remote space missions. They also reduce the performance gap between the efficiency of current space systems and the greater efficiency that must be achieved to make human planetary exploration missions economically and logistically feasible. In conducting this research and technology development program, it is necessary for HSS technologists and program managers to develop a common currency for decision making and the allocation of funding. A high level assessment is made of both the knowledge gaps and the system performance gaps across the program s technical project portfolio. This allows decision making that assures proper emphasis areas and provides a key measure of annual technological progress, as exploration mission plans continue to mature.
Developing Advanced Support Technologies for Planetary Exploration Missions
NASA Technical Reports Server (NTRS)
Berdich, Debra P.; Campbel, Paul D.; Jernigan, J. Mark
2004-01-01
The United States Vision for Space Exploration calls for sending robots and humans to explore the Earth s moon, the planet Mars, and beyond. The National Aeronautics and Space Administration (NASA) is developing a set of design reference missions that will provide further detail to these plans. Lunar missions are expected to provide a stepping stone, through operational research and evaluation, in developing the knowledge base necessary to send crews on long duration missions to Mars and other distant destinations. The NASA Exploration Systems Directorate (ExSD), in its program of bioastronautics research, manages the development of technologies that maintain human life, health, and performance in space. Using a systems engineering process and risk management methods, ExSD s Human Support Systems (HSS) Program selects and performs research and technology development in several critical areas and transfers the results of its efforts to NASA exploration mission/systems development programs in the form of developed technologies and new knowledge about the capabilities and constraints of systems required to support human existence beyond Low Earth Orbit. HSS efforts include the areas of advanced environmental monitoring and control, extravehicular activity, food technologies, life support systems, space human factors engineering, and systems integration of all these elements. The HSS Program provides a structured set of deliverable products to meet the needs of exploration programs. these products reduce the gaps that exist in our knowledge of and capabilities for human support for long duration, remote space missions. They also reduce the performance gap between the efficiency of current space systems and the greater efficiency that must be achieved to make human planetary exploration missions economically and logistically feasible. In conducting this research and technology development program, it is necessary for HSS technologists and program managers to develop a common currency for decision making and the allocation of funding. A high level assessment is made of both the knowledge gaps and the system performance gaps across the program s technical project portfolio. This allows decision making that assures proper emphasis areas and provides a key measure of annual technological progress, as exploration mission plans continue to mature.
Cultural history and aesthetics of nursing care.
Siles González, José; Ruiz, Maria del Carmen Solano
2011-01-01
The aim of this study was to clarify the role of aesthetics in the organization and motivation of care through history. The guiding questions were: What values and aesthetic feelings have supported and motivated pre-professional and professional care? and Based on what structures has pre-professional and professional care been historically socialized? Primary and secondary sources were consulted, selected according to established criteria with a view to avoiding search and selection bias. Data analysis was guided by the categories: "habitus" and "logical conformism". It was found that the relation between social structures and pre-professionals (motherhood, religiosity) and professional aesthetic standards (professionalism, technologism) of care through history is evidenced in the caregiving activity of the functional unit, in the functional framework and the functional element. In conclusion, in social structures, through the socialization process, "logical conformism" and "habitus" constitute the aesthetic standards of care through feelings like motherhood, religiosity, professionalism, technologism and humanism.
Modeling and dynamic environment analysis technology for spacecraft
NASA Astrophysics Data System (ADS)
Fang, Ren; Zhaohong, Qin; Zhong, Zhang; Zhenhao, Liu; Kai, Yuan; Long, Wei
Spacecraft sustains complex and severe vibrations and acoustic environments during flight. Predicting the resulting structures, including numerical predictions of fluctuating pressure, updating models and random vibration and acoustic analysis, plays an important role during the design, manufacture and ground testing of spacecraft. In this paper, Monotony Integrative Large Eddy Simulation (MILES) is introduced to predict the fluctuating pressure of the fairing. The exact flow structures of the fairing wall surface under different Mach numbers are obtained, then a spacecraft model is constructed using the finite element method (FEM). According to the modal test data, the model is updated by the penalty method. On this basis, the random vibration and acoustic responses of the fairing and satellite are analyzed by different methods. The simulated results agree well with the experimental ones, which shows the validity of the modeling and dynamic environment analysis technology. This information can better support test planning, defining test conditions and designing optimal structures.
In-step inflatable antenna experiment
NASA Astrophysics Data System (ADS)
Freeland, R. E.; Bilyeu, G.
Large deployable space antennas are needed to accommodate a number of applications that include mobile communications, earth observation radiometry, active microwave sensing, space-orbiting very long baseline interferometry, and Department of Defense (DoD) space-based radar. The criteria for evaluating candidate structural concepts for essentially all the applications is the same; high deployment reliability, low cost, low weight, low launch volume, and high aperture precision. A new class of space structures, called inflatable deployable structures, have tremendous potential for completely satisfying the first four criteria and good potential for accommodating the longer wavelength applications. An inflatable deployable antenna under development by L'Garde Inc. of Tustin, California, represents such a concept. Its level of technology is mature enough to support a meaningful orbital technology experiment. The NASA Office of Aeronautics and Space Technology initiated the In-Space Technology Experiments Program (IN-STEP) specifically to sponsor the verification and/or validation of unique and innovative space technologies in the space environment. The potential of the L'Garde concept has been recognized and resulted in its selection for an IN-STEP experiment. The objective of the experiment is to (a) validate the deployment of a 14-meter, inflatable parabolic reflector structure, (b) measure the reflector surface accuracy, and (c) investigate structural damping characteristics under operational conditions. The experiment approach will be to use the NASA Spartan Spacecraft to carry the experiment on orbit. Reflector deployment will be monitored by two high-resolution video cameras. Reflector surface quality will be measured with a digital imaging radiometer. Structural damping will be based on measuring the decay of reflector structure amplitude. The experiment is being managed by the Jet Propulsion Laboratory. The experiment definition phase (Phase B) will be completed by the end of fiscal year (FY) 1992; hardware development (Phase C/D) is expected to start by early FY 1993; and launch is scheduled for 1995. The paper describes the accomplishments to date and the approach for the remainder of the experiment.
Exploring informal workplace learning in primary healthcare for continuous professional development.
Joynes, Viktoria; Kerr, Micky; Treasure-Jones, Tamsin
2017-07-01
All health and social care professionals learn on the job through both formal and informal learning processes, which contributes to continuous professional development (CPD). This study explored workplace learning in General Practices, specifically looking at the role of informal learning and the workplace practices that appear to support or restrict that learning, as well as how technology was integrated into these learning processes. Three focus groups with general practitioners, practice nurses, managerial and administrative staff were conducted followed by twelve individual semi-structured interviews with participants drawn from the focus groups. Three observations of multi-disciplinary team meetings were used to establish potential team-based learning activities. Triggers for informal workplace learning included patients presenting challenging or unusual conditions; exposure to others' professional practice; and policy driven changes through revised guidance and protocols. By exploring how these triggers were acted upon, we identified mechanisms through which the primary care workplace supports or restricts informal learning through working practices, existing technologies and inter-professional structures. Informal workplace learning was identified as arising from both opportunistic encounters and more planned activities, which are both supported and restricted through a variety of mechanisms. Maximising informal learning opportunities and removing barriers to doing so should be a priority for primary care practitioners, managers and educators.
Information persistence using XML database technology
NASA Astrophysics Data System (ADS)
Clark, Thomas A.; Lipa, Brian E. G.; Macera, Anthony R.; Staskevich, Gennady R.
2005-05-01
The Joint Battlespace Infosphere (JBI) Information Management (IM) services provide information exchange and persistence capabilities that support tailored, dynamic, and timely access to required information, enabling near real-time planning, control, and execution for DoD decision making. JBI IM services will be built on a substrate of network centric core enterprise services and when transitioned, will establish an interoperable information space that aggregates, integrates, fuses, and intelligently disseminates relevant information to support effective warfighter business processes. This virtual information space provides individual users with information tailored to their specific functional responsibilities and provides a highly tailored repository of, or access to, information that is designed to support a specific Community of Interest (COI), geographic area or mission. Critical to effective operation of JBI IM services is the implementation of repositories, where data, represented as information, is represented and persisted for quick and easy retrieval. This paper will address information representation, persistence and retrieval using existing database technologies to manage structured data in Extensible Markup Language (XML) format as well as unstructured data in an IM services-oriented environment. Three basic categories of database technologies will be compared and contrasted: Relational, XML-Enabled, and Native XML. These technologies have diverse properties such as maturity, performance, query language specifications, indexing, and retrieval methods. We will describe our application of these evolving technologies within the context of a JBI Reference Implementation (RI) by providing some hopefully insightful anecdotes and lessons learned along the way. This paper will also outline future directions, promising technologies and emerging COTS products that can offer more powerful information management representations, better persistence mechanisms and improved retrieval techniques.
NASA Technical Reports Server (NTRS)
1990-01-01
As the NASA center responsible for assembly, checkout, servicing, launch, recovery, and operational support of Space Transportation System elements and payloads, Kennedy Space Center (KSC) is placing increasing emphasis on KSC's research and technology program. In addition to strengthening those areas of engineering and operations technology that contribute to safer, more efficient, and more economical execution of the current mission, the technological tools needed to execute KSC's mission relative to future programs are being developed. The Engineering Development Directorate encompasses most of the laboratories and other KSC resources that are key elements of research and technology program implementation and is responsible for implementation of the majority of the projects in this KSC 1990 annual report. Projects under the following topics are covered: (1) materials science; (2) hazardous emissions and contamination monitoring; (3) biosciences; (4) autonomous systems; (5) communications and control; (6) meteorology; (7) technology utilization; and (8) mechanics, structures, and cryogenics.
ERIC Educational Resources Information Center
Ali, Muhammad; Raza, Syed Ali; Qazi, Wasim; Puah, Chin-Hong
2018-01-01
Purpose: This study aims to examine university students' acceptance of e-learning systems in Pakistan. A Web-based learning system is a new form of utilizing technological features. Although, developed countries have initiated and established the concept for e-learning, developing countries require empirical support to implement e-learning.…
Information and knowledge management in support of sustainable forestry: a review
H. Michael Rauscher; Daniel L. Schmoldt; Harald Vacik
2007-01-01
For individuals, organizations and nations, success and even survival depend upon making good decisions. Doing so can be extremely difficult when problems are not well structured and situations are complex, as they are for natural resource management. Recent advances in computer technology coupled with the increase in accessibility brought about by the...
E-Mentoring for Professional Development of Pre-Service Teachers: A Case Study
ERIC Educational Resources Information Center
Kahraman, Mehmet; Kuzu, Abdullah
2016-01-01
This study focused on supporting the professional development of information technologies pre-service teachers with e-mentoring approach. The e-mentoring program was conducted in four basic phases; preparation, matching, interaction and finalizing. In the study, the data were collected via researcher journals, semi-structured interviews held with…
Introducing Generation Y to the Wilderness
ERIC Educational Resources Information Center
Taylor, Nicole; Gray, Tonia; Birrell, Carol
2012-01-01
Today's Western culture is characterized by high technology, time compression and a disconnection from the natural world. What happens when a group of young adult students who are firmly embedded within this world, embark on a 6-day unassisted wilderness experience? When divorced from the structural support of the everyday, and placed in an…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dinehart, M.
1996-09-01
This document reports status and technical progress for Los Alamos National Laboratories 94-1 Research and Development projects. An introduction to the project structure and an executive summary are included. Projects described include Electrolytic Decontamination, Combustibles, Detox, Sand, Slag, and Crucible, Surveillance, and Core Technology.
University Research and Technology Transfer in a Changing World.
ERIC Educational Resources Information Center
National Association of State Universities and Land Grant Colleges, Washington, DC.
This document derives from a workshop that brought together members of the Council on Research Policy and Graduate Education to discuss models of administrative and support structures to provide a range of services that promoted the goals of faculty, students, and other university employees in research and entrepreneurial activities. Following the…
ERIC Educational Resources Information Center
Kumar, Swapna; Antonenko, Pavlo
2014-01-01
From an instrumental view, conceptual frameworks that are carefully assembled from existing literature in Educational Technology and related disciplines can help students structure all aspects of inquiry. In this article we detail how the development of a conceptual framework that connects theory, practice and method is scaffolded and facilitated…
Storytelling, Technology and Children's Literacy Development.
ERIC Educational Resources Information Center
Amaro, Ana Carla; Moreira, Antonio
This paper reports on a project started November 1999, which aims at understanding the storytelling structuring processes put into action by children at primary education level. The ultimate goal of this study is to draft a script for a computer tool to support story telling. For this purpose it identifies narrative scheme as the main organizing…
An Experimental Investigation of Complexity in Database Query Formulation Tasks
ERIC Educational Resources Information Center
Casterella, Gretchen Irwin; Vijayasarathy, Leo
2013-01-01
Information Technology professionals and other knowledge workers rely on their ability to extract data from organizational databases to respond to business questions and support decision making. Structured query language (SQL) is the standard programming language for querying data in relational databases, and SQL skills are in high demand and are…
Motivation to E-Learn within Organizational Settings: An Exploratory Factor Structure
ERIC Educational Resources Information Center
Rentroia-Bonito, M. A.; Jorge, J.; Ghaoui, C.
2006-01-01
E-learning is expected to support organizations and individuals so they can become more adaptable and competitive. However, in order for organizations to realize the full potential of this technology, they should create and sustain the right context to foster learning in articulation with business objectives. This requires active participation and…
Virtual Environments Supporting Learning and Communication in Special Needs Education
ERIC Educational Resources Information Center
Cobb, Sue V. G.
2007-01-01
Virtual reality (VR) describes a set of technologies that allow users to explore and experience 3-dimensional computer-generated "worlds" or "environments." These virtual environments can contain representations of real or imaginary objects on a small or large scale (from modeling of molecular structures to buildings, streets, and scenery of a…
Distributed user services for supercomputers
NASA Technical Reports Server (NTRS)
Sowizral, Henry A.
1989-01-01
User-service operations at supercomputer facilities are examined. The question is whether a single, possibly distributed, user-services organization could be shared by NASA's supercomputer sites in support of a diverse, geographically dispersed, user community. A possible structure for such an organization is identified as well as some of the technologies needed in operating such an organization.
An Examination of Selected Software Testing Tools: 1992
1992-12-01
Report ....................................................... 27-19 Figure 27-17. Metrics Manager Database Full Report...historical test database , the test management and problem reporting tools were examined using the sample test database provided by each supplier. 4-4...track the impact of new methods, organi- zational structures, and technologies. Metrics Manager is supported by an industry database that allows
Improvement of sensitivity of graphene photodetector by creating bandgap structure
NASA Astrophysics Data System (ADS)
Zhang, Ni-Zhen; He, Meng-Ke; Yu, Peng; Zhou, Da-Hua
2017-10-01
Not Available Project supported by the National Natural Science Foundation of China (Grant No. 51271210), the Chongqing Municipal Research Program of Basic Research and Frontier Technology, China (Grant No. cstc2015jcyjBX0039), and the Foundation for the Creative Research Groups of Higher Education of Chongqing Municipality, China (Grant No. CXTDX201601016).
Exploring Essential Conditions: A Commentary on Bull et al. (2008)
ERIC Educational Resources Information Center
Borthwick, Arlene; Hansen, Randall; Gray, Lucy; Ziemann, Irina
2008-01-01
The editorial by Bull et al. (2008) on connections between informal and formal learning made explicit one element of solving what Koehler and Mishra (2008) termed a "wicked problem." This wicked (complex, ill-structured) problem involves working with teachers for effective integration of technology in support of student learning. The…
The role of materials in global competitiveness
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
A symposium on global competitiveness was sponsored by ASM`s Advisory Technical Awareness Council during Materials Week in Cleveland last October. Carpenter Technology`s approach to internationalization and diversification involves three steps: internationalization of core businesses, diversification into engineered products, and focused research and development. Aluminum`s potential was the basis of the Audi-Alcoa relationship, and the result was a true breakthrough: a spaceframe structure designed to integrate every component surface as a structural entity, featuring straight and curved extruded sections joined by complex diecast nodes at key intersections and connection points. Through the support of research and development, many federal departments andmore » agencies have long been involved directly or indirectly in the support of civilian as well as defense industries. New copper alloys and fabrication techniques are enhancing global competitiveness, based largely on copper`s natural advantages of conductivity and corrosion resistance. The heavy equipment industry is a major transformer and user of steel, rubber, aluminum, welding consumables and equipment; glass, plastics, microprocessors and electronics; machine tools, and energy. It comprises the construction, farming, mining, and powertrain equipment manufacturers.« less
SAM: speech-aware applications in medicine to support structured data entry.
Wormek, A. K.; Ingenerf, J.; Orthner, H. F.
1997-01-01
In the last two years, improvement in speech recognition technology has directed the medical community's interest to porting and using such innovations in clinical systems. The acceptance of speech recognition systems in clinical domains increases with recognition speed, large medical vocabulary, high accuracy, continuous speech recognition, and speaker independence. Although some commercial speech engines approach these requirements, the greatest benefit can be achieved in adapting a speech recognizer to a specific medical application. The goals of our work are first, to develop a speech-aware core component which is able to establish connections to speech recognition engines of different vendors. This is realized in SAM. Second, with applications based on SAM we want to support the physician in his/her routine clinical care activities. Within the STAMP project (STAndardized Multimedia report generator in Pathology), we extend SAM by combining a structured data entry approach with speech recognition technology. Another speech-aware application in the field of Diabetes care is connected to a terminology server. The server delivers a controlled vocabulary which can be used for speech recognition. PMID:9357730
Locatelli, Paolo; Baj, Emanuele; Restifo, Nicola; Origgi, Gianni; Bragagia, Silvia
2011-01-01
Open source is a still unexploited chance for healthcare organizations and technology providers to answer to a growing demand for innovation and to join economical benefits with a new way of managing hospital information systems. This chapter will present the case of the web enterprise clinical portal developed in Italy by Niguarda Hospital in Milan with the support of Fondazione Politecnico di Milano, to enable a paperless environment for clinical and administrative activities in the ward. This represents also one rare case of open source technology and reuse in the healthcare sector, as the system's porting is now taking place at Besta Neurological Institute in Milan. This institute is customizing the portal to feed researchers with structured clinical data collected in its portal's patient records, so that they can be analyzed, e.g., through business intelligence tools. Both organizational and clinical advantages are investigated, from process monitoring, to semantic data structuring, to recognition of common patterns in care processes.
Integrated modeling of advanced optical systems
NASA Astrophysics Data System (ADS)
Briggs, Hugh C.; Needels, Laura; Levine, B. Martin
1993-02-01
This poster session paper describes an integrated modeling and analysis capability being developed at JPL under funding provided by the JPL Director's Discretionary Fund and the JPL Control/Structure Interaction Program (CSI). The posters briefly summarize the program capabilities and illustrate them with an example problem. The computer programs developed under this effort will provide an unprecedented capability for integrated modeling and design of high performance optical spacecraft. The engineering disciplines supported include structural dynamics, controls, optics and thermodynamics. Such tools are needed in order to evaluate the end-to-end system performance of spacecraft such as OSI, POINTS, and SMMM. This paper illustrates the proof-of-concept tools that have been developed to establish the technology requirements and demonstrate the new features of integrated modeling and design. The current program also includes implementation of a prototype tool based upon the CAESY environment being developed under the NASA Guidance and Control Research and Technology Computational Controls Program. This prototype will be available late in FY-92. The development plan proposes a major software production effort to fabricate, deliver, support and maintain a national-class tool from FY-93 through FY-95.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Damiani, Rick; Dykes, Katherine; Scott, George
2016-08-01
U.S. experience in offshore wind is limited, and high costs are expected unless innovations are introduced in one or multiple aspects of the project, from the installed technology to the balance of system (BOS). The substructure is the main single component responsible for the BOS capital expenditure (CapEx) and thus one that, if improved, could yield significant levelized cost of energy (LCOE) savings. For projects in U.S. waters, multimember, lattice structures (also known as jackets) can render required stiffness for transitional water depths at potentially lower costs than monopiles (MPs). In this study, we used a systems engineering approach tomore » evaluate the LCOE of prototypical wind power plants at six locations along the eastern seaboard and the Gulf of Mexico for both types of support structures. Using a reference wind turbine and actual metocean conditions for the selected sites, we calculated loads for a parked and an operational situation, and we optimized the MP- and jacket-based support structures to minimize their overall mass. Using a suite of cost models, we then computed their associated LCOE. For all water depths, the MP-based configurations were heavier than their jacket counterparts, but the overall costs for the MPs were less than they were for jackets up to depths of slightly less than 30 m. When the associated manufacturing and installation costs were included, jackets resulted in lower LCOE for depths greater than 40 m. These results can be used by U.S. stakeholders to understand the potential for different technologies at different sites, but the methodology illustrated in this study can be further employed to analyze the effects of innovations and design choices throughout wind power plant systems.« less
A comparison study of offshore wind support structures with monopiles and jackets for U.S. waters
NASA Astrophysics Data System (ADS)
Damiani, R.; Dykes, K.; Scott, G.
2016-09-01
U.S. experience in offshore wind is limited, and high costs are expected unless innovations are introduced in one or multiple aspects of the project, from the installed technology to the balance of system (BOS). The substructure is the main single component responsible for the BOS capital expenditure (CapEx) and thus one that, if improved, could yield significant levelized cost of energy (LCOE) savings. For projects in U.S. waters, multimember lattice structures (also known as jackets) can render required stiffness for transitional water depths at potentially lower costs than monopiles (MPs). In this study, we used a systems engineering approach to evaluate the LCOE of prototypical wind power plants at six locations along the eastern seaboard and the Gulf of Mexico for both types of support structures. Using a reference wind turbine and actual metocean conditions for the selected sites, we calculated loads for a parked and an operational situation, and we optimized the MP- and jacket-based support structures to minimize their overall mass. Using a suite of cost models, we then computed their associated LCOE. For all water depths, the MP-based configurations were heavier than their jacket counterparts, but the overall costs for the MPs were less than they were for jackets up to depths of slightly less than 30m. When the associated manufacturing and installation costs were included, jackets resulted in lower LCOE for depths greater than 40m. These results can be used by U.S. stakeholders to understand the potential for different technologies at different sites, but the methodology illustrated in this study can be further employed to analyze the effects of innovations and design choices throughout wind power plant systems.
Evaluation of an online continuing education program from the perspective of new graduate nurses.
Karaman, Selcuk; Kucuk, Sevda; Aydemir, Melike
2014-05-01
The aim of this study is to evaluate the online continuing education program from the perspectives of new graduate nurses. An evaluation framework includes five factors (program and course structure, course materials, technology, support services and assessment). In this study, descriptive research methods were used. Participants of the study included 2.365 registered nurses enrolled in the first online nursing bachelor completion degree program in the country. Data were collected by survey. The findings indicated that students were mostly satisfied with this program. The results of this study suggest that well designed asynchronous online education methods can be effective and appropriate for registered nurses. However, the provision of effective support and technological infrastructure is as vital as the quality of teaching for online learners. © 2013.
NASA Astrophysics Data System (ADS)
Wei, Gongjin; Bai, Weijing; Yin, Meifang; Zhang, Songmao
We present a practice of applying the Semantic Web technologies in the domain of Chinese traditional architecture. A knowledge base consisting of one ontology and four rule bases is built to support the automatic generation of animations that demonstrate the construction of various Chinese timber structures based on the user's input. Different Semantic Web formalisms are used, e.g., OWL DL, SWRL and Jess, to capture the domain knowledge, including the wooden components needed for a given building, construction sequence, and the 3D size and position of every piece of wood. Our experience in exploiting the current Semantic Web technologies in real-world application systems indicates their prominent advantages (such as the reasoning facilities and modeling tools) as well as the limitations (such as low efficiency).
NASA Technical Reports Server (NTRS)
Werkheiser, Niki J.; Fiske, Michael R.; Edmunson, Jennifer E.; Khoshnevis, Berokh
2015-01-01
For long-duration missions on other planetary bodies, the use of in situ materials will become increasingly critical. As human presence on these bodies expands, so must the breadth of the structures required to accommodate them including habitats, laboratories, berms, radiation shielding for natural radiation and surface reactors, garages, solar storm shelters, greenhouses, etc. Planetary surface structure manufacturing and assembly technologies that incorporate in situ resources provide options for autonomous, affordable, pre-positioned environments with radiation shielding features and protection from micrometeorites, exhaust plume debris, and other hazards. The ability to use in-situ materials to construct these structures will provide a benefit in the reduction of up-mass that would otherwise make long-term Moon or Mars structures cost prohibitive. The ability to fabricate structures in situ brings with it the ability to repair these structures, which allows for the self-sufficiency and sustainability necessary for long-duration habitation. Previously, under the auspices of the MSFC In-Situ Fabrication and Repair (ISFR) project and more recently, under the jointly-managed MSFC/KSC Additive Construction with Mobile Emplacement (ACME) project, the MSFC Surface Structures Group has been developing materials and construction technologies to support future planetary habitats with in-situ resources. One such additive construction technology is known as Contour Crafting. This paper presents the results to date of these efforts, including development of novel nozzle concepts for advanced layer deposition using this process. Conceived initially for rapid development of cementitious structures on Earth, it also lends itself exceptionally well to the automated fabrication of planetary surface structures using minimally processed regolith as aggregate, and binders developed from in situ materials as well. This process has been used successfully in the fabrication of construction elements using lunar regolith simulant and Mars regolith simulant, both with various binder materials. Future planned activities will be discussed as well.
Neikter, Susanna Allgurin; Rehnqvist, Nina; Rosén, Måns; Dahlgren, Helena
2009-12-01
The aim of this study was to facilitate effective internal and external communication of an international network and to explore how to support communication and work processes in health technology assessment (HTA). STRUCTURE AND METHODS: European network for Health Technology Assessment (EUnetHTA) connected sixty-four HTA Partner organizations from thirty-three countries. User needs in the different steps of the HTA process were the starting point for developing an information system. A step-wise, interdisciplinary, creative approach was used in developing practical tools. An Information Platform facilitated the exchange of scientific information between Partners and with external target groups. More than 200 virtual meetings were set up during the project using an e-meeting tool. A Clearinghouse prototype was developed with the intent to offering a single point of access to HTA relevant information. This evolved into a next step not planned from the outset: Developing a running HTA Information System including several Web-based tools to support communication and daily HTA processes. A communication strategy guided the communication effort, focusing on practical tools, creating added value, involving stakeholders, and avoiding duplication of effort. Modern technology enables a new information infrastructure for HTA. The potential of information and communication technology was used as a strategic tool. Several target groups were represented among the Partners, which supported collaboration and made it easier to identify user needs. A distinctive visual identity made it easier to gain and maintain visibility on a limited budget.
A Lunar Surface System Supportability Technology Development Roadmap
NASA Technical Reports Server (NTRS)
Oeftering, Richard C.; Struk, Peter M.; Taleghani, Barmac K.
2009-01-01
This paper discusses the establishment of a Supportability Technology Development Roadmap as a guide for developing capabilities intended to allow NASA's Constellation program to enable a supportable, sustainable and affordable exploration of the Moon and Mars. Presented is a discussion of "supportability", in terms of space facility maintenance, repair and related logistics and a comparison of how lunar outpost supportability differs from the International Space Station. Supportability lessons learned from NASA and Department of Defense experience and their impact on a future lunar outpost is discussed. A supportability concept for future missions to the Moon and Mars that involves a transition from a highly logistics dependent to a logistically independent operation is discussed. Lunar outpost supportability capability needs are summarized and a supportability technology development strategy is established. The resulting Lunar Surface Systems Supportability Strategy defines general criteria that will be used to select technologies that will enable future flight crews to act effectively to respond to problems and exploit opportunities in a environment of extreme resource scarcity and isolation. This strategy also introduces the concept of exploiting flight hardware as a supportability resource. The technology roadmap involves development of three mutually supporting technology categories, Diagnostics Test & Verification, Maintenance & Repair, and Scavenging & Recycling. The technology roadmap establishes two distinct technology types, "Embedded" and "Process" technologies, with different implementation and thus different criteria and development approaches. The supportability technology roadmap addresses the technology readiness level, and estimated development schedule for technology groups that includes down-selection decision gates that correlate with the lunar program milestones. The resulting supportability technology roadmap is intended to develop a set of technologies with widest possible capability and utility with a minimum impact on crew time and training and remain within the time and cost constraints of the Constellation program
A Lunar Surface System Supportability Technology Development Roadmap
NASA Technical Reports Server (NTRS)
Oeftering, Richard C.; Struk, Peter M.; Taleghani, barmac K.
2011-01-01
This paper discusses the establishment of a Supportability Technology Development Roadmap as a guide for developing capabilities intended to allow NASA s Constellation program to enable a supportable, sustainable and affordable exploration of the Moon and Mars. Presented is a discussion of supportability, in terms of space facility maintenance, repair and related logistics and a comparison of how lunar outpost supportability differs from the International Space Station. Supportability lessons learned from NASA and Department of Defense experience and their impact on a future lunar outpost is discussed. A supportability concept for future missions to the Moon and Mars that involves a transition from a highly logistics dependent to a logistically independent operation is discussed. Lunar outpost supportability capability needs are summarized and a supportability technology development strategy is established. The resulting Lunar Surface Systems Supportability Strategy defines general criteria that will be used to select technologies that will enable future flight crews to act effectively to respond to problems and exploit opportunities in an environment of extreme resource scarcity and isolation. This strategy also introduces the concept of exploiting flight hardware as a supportability resource. The technology roadmap involves development of three mutually supporting technology categories, Diagnostics Test and Verification, Maintenance and Repair, and Scavenging and Recycling. The technology roadmap establishes two distinct technology types, "Embedded" and "Process" technologies, with different implementation and thus different criteria and development approaches. The supportability technology roadmap addresses the technology readiness level, and estimated development schedule for technology groups that includes down-selection decision gates that correlate with the lunar program milestones. The resulting supportability technology roadmap is intended to develop a set of technologies with widest possible capability and utility with a minimum impact on crew time and training and remain within the time and cost constraints of the Constellation program.
Jin, Yifei; Liu, Chengcheng; Chai, Wenxuan; Compaan, Ashley; Huang, Yong
2017-05-24
Three dimensional (3D) bioprinting technology enables the freeform fabrication of complex constructs from various hydrogels and is receiving increasing attention in tissue engineering. The objective of this study is to develop a novel self-supporting direct hydrogel printing approach to extrude complex 3D hydrogel composite structures in air without the help of a support bath. Laponite, a member of the smectite mineral family, is investigated to serve as an internal scaffold material for the direct printing of hydrogel composite structures in air. In the proposed printing approach, due to its yield-stress property, Laponite nanoclay can be easily extruded through a nozzle as a liquid and self-supported after extrusion as a solid. Its unique crystal structure with positive and negative charges enables it to be mixed with many chemically and physically cross-linked hydrogels, which makes it an ideal internal scaffold material for the fabrication of various hydrogel structures. By mixing Laponite nanoclay with various hydrogel precursors, the hydrogel composites retain their self-supporting capacity and can be printed into 3D structures directly in air and retain their shapes before cross-linking. Then, the whole structures are solidified in situ by applying suitable cross-linking stimuli. The addition of Laponite nanoclay can effectively improve the mechanical and biological properties of hydrogel composites. Specifically, the addition of Laponite nanoclay results in a significant increase in the Young's modulus of each hydrogel-Laponite composite: 1.9-fold increase for the poly(ethylene glycol) diacrylate (PEGDA)-Laponite composite, 7.4-fold increase for the alginate-Laponite composite, and 3.3-fold increase for the gelatin-Laponite composite.
Silicon microelectronic field-emissive devices for advanced display technology
NASA Astrophysics Data System (ADS)
Morse, J. D.
1993-03-01
Field-emission displays (FED's) offer the potential advantages of high luminous efficiency, low power consumption, and low cost compared to AMLCD or CRT technologies. An LLNL team has developed silicon-point field emitters for vacuum triode structures and has also used thin-film processing techniques to demonstrate planar edge-emitter configurations. LLNL is interested in contributing its experience in this and other FED-related technologies to collaborations for commercial FED development. At LLNL, FED development is supported by computational capabilities in charge transport and surface/interface modeling in order to develop smaller, low-work-function field emitters using a variety of materials and coatings. Thin-film processing, microfabrication, and diagnostic/test labs permit experimental exploration of emitter and resistor structures. High field standoff technology is an area of long-standing expertise that guides development of low-cost spacers for FEDS. Vacuum sealing facilities are available to complete the FED production engineering process. Drivers constitute a significant fraction of the cost of any flat-panel display. LLNL has an advanced packaging group that can provide chip-on-glass technologies and three-dimensional interconnect generation permitting driver placement on either the front or the back of the display substrate.
Space station structures and dynamics test program
NASA Technical Reports Server (NTRS)
Moore, Carleton J.; Townsend, John S.; Ivey, Edward W.
1987-01-01
The design, construction, and operation of a low-Earth orbit space station poses unique challenges for development and implementation of new technology. The technology arises from the special requirement that the station be built and constructed to function in a weightless environment, where static loads are minimal and secondary to system dynamics and control problems. One specific challenge confronting NASA is the development of a dynamics test program for: (1) defining space station design requirements, and (2) identifying the characterizing phenomena affecting the station's design and development. A general definition of the space station dynamic test program, as proposed by MSFC, forms the subject of this report. The test proposal is a comprehensive structural dynamics program to be launched in support of the space station. The test program will help to define the key issues and/or problems inherent to large space structure analysis, design, and testing. Development of a parametric data base and verification of the math models and analytical analysis tools necessary for engineering support of the station's design, construction, and operation provide the impetus for the dynamics test program. The philosophy is to integrate dynamics into the design phase through extensive ground testing and analytical ground simulations of generic systems, prototype elements, and subassemblies. On-orbit testing of the station will also be used to define its capability.
1983-01-01
altioser access (2) Asesss maturity of on-gotnR efforts and integrate appropriate development Into an effective globally dftjtributod .command spport...numerical techniques for nonlinear media.structure shock Interaction inrluding effects of elastic-plastic deformation have bee.a developed and used to...shtittle flight; develop camera payload for SPARTAN (free flyer) flight f rom shuttle. Develop detailed Interpretivesystem capablity~ for global ultraviolet
Technology initiatives with government/business overlap
NASA Astrophysics Data System (ADS)
Knapp, Robert H., Jr.
2015-03-01
Three important present-day technology development settings involve significant overlap between government and private sectors. The Advanced Research Project Agency for Energy (ARPA-E) supports a wide range of "high risk, high return" projects carried out in academic, non-profit or private business settings. The Materials Genome Initiative (MGI), based in the White House, aims at radical acceleration of the development process for advanced materials. California public utilities such as Pacific Gas & Electric operate under a structure of financial returns and political program mandates that make them arms of public policy as much as independent businesses.
New technology of underground structures the framework of restrained urban conditions
NASA Astrophysics Data System (ADS)
Pleshko, Mikhail; Pankratenko, Alexander; Revyakin, Alexey; Shchekina, Ekaterina; Kholodova, Svetlana
2018-03-01
In the paper was indicated the essentiality of large-scale underground space development and high-rise construction of cities in Russia. The basic elements of transport facilities construction effective technology without traffic restriction are developed. Unlike the well-known solutions, it offers the inclusion of an advanced lining in the construction that strengthens the soil mass. The fundamental principles of methods for determining stress in advanced support and monitoring of underground construction, providing the application of pressure sensors, strain sensors and displacement sensors are considered.
Emerging technologies for communication satellite payloads
NASA Astrophysics Data System (ADS)
Yüceer, Mehmet
2012-04-01
Recent developments in payload designs will allow more flexible and efficient use of telecommunication satellites. Important modifications in repeater designs, antenna structures and spectrum policies open up exciting opportunities for GEO satellites to support a variety of emerging applications, ranging from telemedicine to real-time data transfer between LEO satellite and ground station. This study gives information about the emerging technologies in the design of communication satellites' transceiver subsystem and demonstrates the feasibility of using fiber optic links for the local oscillator distribution in future satellite payloads together with the optical inter-satellite link.
Advanced life support technology development for the Space Exploration Initiative
NASA Technical Reports Server (NTRS)
Evanich, Peggy L.; Voecks, Gerald E.; Seshan, P. K.
1990-01-01
An overview is presented of NASA's advanced life support technology development strategy for the Space Exploration Initiative. Three basic life support technology areas are discussed in detail: air revitalization, water reclamation, and solid waste management. It is projected that regenerative life support systems will become increasingly more complex as system closure is maximized. Advanced life support technology development will utilize three complementary elements, including the Research and Technology Program, the Regenerative Life Support Program, and the Technology Testbed Validations.
Lunar Surface Systems Supportability Technology Development Roadmap
NASA Technical Reports Server (NTRS)
Oeftering, Richard C.; Struk, Peter M.; Green, Jennifer L.; Chau, Savio N.; Curell, Philip C.; Dempsey, Cathy A.; Patterson, Linda P.; Robbins, William; Steele, Michael A.; DAnnunzio, Anthony;
2011-01-01
The Lunar Surface Systems Supportability Technology Development Roadmap is a guide for developing the technologies needed to enable the supportable, sustainable, and affordable exploration of the Moon and other destinations beyond Earth. Supportability is defined in terms of space maintenance, repair, and related logistics. This report considers the supportability lessons learned from NASA and the Department of Defense. Lunar Outpost supportability needs are summarized, and a supportability technology strategy is established to make the transition from high logistics dependence to logistics independence. This strategy will enable flight crews to act effectively to respond to problems and exploit opportunities in an environment of extreme resource scarcity and isolation. The supportability roadmap defines the general technology selection criteria. Technologies are organized into three categories: diagnostics, test, and verification; maintenance and repair; and scavenge and recycle. Furthermore, "embedded technologies" and "process technologies" are used to designate distinct technology types with different development cycles. The roadmap examines the current technology readiness level and lays out a four-phase incremental development schedule with selection decision gates. The supportability technology roadmap is intended to develop technologies with the widest possible capability and utility while minimizing the impact on crew time and training and remaining within the time and cost constraints of the program.
Key Health Information Technologies and Related Issues for Iran: A Qualitative Study.
Hemmat, Morteza; Ayatollahi, Haleh; Maleki, Mohammadreza; Saghafi, Fatemeh
2018-01-01
Planning for the future of Health Information Technology (HIT) requires applying a systematic approach when conducting foresight studies. The aim of this study was to identify key health information technologies and related issues for Iran until 2025. This was a qualitative study and the participants included experts and policy makers in the field of health information technology. In-depth semi-structured interviews were conducted and data were analyzed by using framework analysis and MAXQDA software. The findings revealed that the development of national health information network, electronic health records, patient health records, a cloud-based service center, interoperability standards, patient monitoring technologies, telehealth, mhealth, clinical decision support systems, health information technology and mhealth infrastructure were found to be the key technologies for the future. These technologies could influence the economic, organizational and individual levels. To achieve them, the economic and organizational obstacles need to be overcome. In this study, a number of key technologies and related issues were identified. This approach can help to focus on the most important technologies in the future and to priorities these technologies for better resource allocation and policy making.
System dynamics and simulation of LSS
NASA Technical Reports Server (NTRS)
Ryan, R. F.
1978-01-01
Large Space Structures have many unique problems arising from mission objectives and the resulting configuration. Inherent in these configurations is a strong coupling among several of the designing disciplines. In particular, the coupling between structural dynamics and control is a key design consideration. The solution to these interactive problems requires efficient and accurate analysis, simulation and test techniques, and properly planned and conducted design trade studies. The discussion presented deals with these subjects and concludes with a brief look at some NASA capabilities which can support these technology studies.
Object-oriented structures supporting remote sensing databases
NASA Technical Reports Server (NTRS)
Wichmann, Keith; Cromp, Robert F.
1995-01-01
Object-oriented databases show promise for modeling the complex interrelationships pervasive in scientific domains. To examine the utility of this approach, we have developed an Intelligent Information Fusion System based on this technology, and applied it to the problem of managing an active repository of remotely-sensed satellite scenes. The design and implementation of the system is compared and contrasted with conventional relational database techniques, followed by a presentation of the underlying object-oriented data structures used to enable fast indexing into the data holdings.
Winant, Richard M.
1983-01-01
Virginia Commonwealth University's University Library Services offers through its organizational structure an opportunity for librarians to work directly with media experts. University Library Services envisions the future librarian as an information manager, information specialist, and teacher. In joining together Technical Services, Public Services, Collection Management, Special Collections, Learning Resource Centers, Media Production Center, AV Services, TV Services, Engineering and Telecommunications, the librarian is in an environment which gives the opportunity for growth and support by media expertise.
2013-03-01
series of checkpoints in a complex route network,” while observing standard traffic etiquette and regulations [17]. The rules for the 2012 RoboCup...structure or protocols above the PHY. To support AVEP operation, we developed a packet structure based on the transmission control protocol (TCP...Control Protocol .” 1981. [37] F. Ge, Q. Chen, Y. Wang, C. W. Bostian, T. W. Rondeau, and B. Le, “Cognitive radio: from spectrum sharing to adaptive
Direct Integration of Dynamic Emissive Displays into Knitted Fabric Structures
NASA Astrophysics Data System (ADS)
Bellingham, Alyssa
Smart textiles are revolutionizing the textile industry by combining technology into fabric to give clothing new abilities including communication, transformation, and energy conduction. The advent of electroluminescent fibers, which emit light in response to an applied electric field, has opened the door for fabric-integrated emissive displays in textiles. This thesis focuses on the development of a flexible and scalable emissive fabric display with individually addressable pixels disposed within a fabric matrix. The pixels are formed in areas where a fiber supporting the dielectric and phosphor layers of an electroluminescent structure contacts a conductive surface. This conductive surface can be an external conductive fiber, yarn or wire, or a translucent conductive material layer deposited at set points along the electroluminescent fibers. Different contacting methods are introduced and the different ways the EL yarns can be incorporated into the knitted fabric are discussed. EL fibers were fabricated using a single yarn coating system with a custom, adjustable 3D printed slot die coater for even distribution of material onto the supporting fiber substrates. These fibers are mechanically characterized inside of and outside of a knitted fabric matrix to determine their potential for various applications, including wearables. A 4-pixel dynamic emissive display prototype is fabricated and characterized. This is the first demonstration of an all-knit emissive display with individually controllable pixels. The prototype is composed of a grid of fibers supporting the dielectric and phosphor layers of an electroluminescent (EL) device structure, called EL fibers, and conductive fibers acting as the top electrode. This grid is integrated into a biaxial weft knit structure where the EL fibers make up the rows and conductive fibers make up the columns of the reinforcement yarns inside the supporting weft knit. The pixels exist as individual segments of electroluminescence that occur where the conductive fibers contact the EL fibers. A passive matrix addressing scheme was used to apply a voltage to each pixel individually, creating a display capable of dynamically communicating information. Optical measurements of the intensity and color of emitted light were used to quantify the performance of the display and compare it to state-of-the-art display technologies. The charge-voltage (Q-V) electrical characterization technique is used to gain information about the ACPEL fiber device operation, and mechanical tests were performed to determine the effect everyday wear and tear would have on the performance of the display. The presented textile display structure and method of producing fibers with individual sections of electroluminescence addresses the shortcomings in existing textile display technology and provides a route to directly integrated communicative textiles for applications ranging from biomedical research and monitoring to fashion. An extensive discussion of the materials and methods of production needed to scale this textile display technology and incorporate it into wearable applications is presented.
Wireless networks of opportunity in support of secure field operations
NASA Astrophysics Data System (ADS)
Stehle, Roy H.; Lewis, Mark
1997-02-01
Under funding from the Defense Advanced Research Projects Agency (DARPA) for joint military and law enforcement technologies, demonstrations of secure information transfer in support of law enforcement and military operations other than war, using wireless and wired technology, were held in September 1996 at several locations in the United States. In this paper, the network architecture, protocols, and equipment supporting the demonstration's scenarios are presented, together with initial results, including lessons learned and desired system enhancements. Wireless networks of opportunity encompassed in-building (wireless-LAN), campus-wide (Metricom Inc.), metropolitan (AMPS cellular, CDPD), and national (one- and two-way satellite) systems. Evolving DARPA-sponsored packet radio technology was incorporated. All data was encrypted, using multilevel information system security initiative (MISSI)FORTEZZA technology, for carriage over unsecured and unclassified commercial networks. The identification and authentication process inherent in the security system permitted logging for database accesses and provided an audit trail useful in evidence gathering. Wireless and wireline communications support, to and between modeled crisis management centers, was demonstrated. Mechanisms for the guarded transport of data through the secret-high military tactical Internet were included, to support joint law enforcement and crisis management missions. A secure World Wide Web (WWW) browser forms the primary, user-friendly interface for information retrieval and submission. The WWW pages were structured to be sensitive to the bandwidth, error rate, and cost of the communications medium in use (e.g., the use of and resolution for graphical data). Both still and motion compressed video were demonstrated, along with secure voice transmission from laptop computers in the field. Issues of network bandwidth, airtime costs, and deployment status are discussed.
Finite Element Analysis of Wrinkled Membrane Structures for Sunshield Applications
NASA Technical Reports Server (NTRS)
Johnston, John D.; Brodeur, Stephen J. (Technical Monitor)
2002-01-01
The deployable sunshield is an example of a gossamer structure envisioned for use on future space telescopes. The basic structure consists of multiple layers of pretensioned, thin-film membranes supported by deployable booms. The prediction and verification of sunshield dynamics has been identified as an area in need of technology development due to the difficulties inherent in predicting nonlinear structural behavior of the membranes and because of the challenges involved. in ground testing of the full-scale structure. This paper describes a finite element analysis of a subscale sunshield that has been subjected to ground testing in support of the Next Generation Space Telescope (NGST) program. The analysis utilizes a nonlinear material model that accounts for wrinkling of the membranes. Results are presented from a nonlinear static preloading analysis and subsequent dynamics analyses to illustrate baseline sunshield structural characteristics. Studies are then described which provide further insight into the effect of membrane. preload on sunshield dynamics and the performance of different membrane modeling techniques. Lastly, a comparison of analytical predictions and ground test results is presented.
Operator Support System Design forthe Operation of RSG-GAS Research Reactor
NASA Astrophysics Data System (ADS)
Santoso, S.; Situmorang, J.; Bakhri, S.; Subekti, M.; Sunaryo, G. R.
2018-02-01
The components of RSG-GAS main control room are facing the problem of material ageing and technology obsolescence as well, and therefore the need for modernization and refurbishment are essential. The modernization in control room can be applied on the operator support system which bears the function in providing information for assisting the operator in conducting diagnosis and actions. The research purpose is to design an operator support system for RSG-GAS control room. The design was developed based on the operator requirement in conducting task operation scenarios and the reactor operation characteristics. These scenarios include power operation, low power operation and shutdown/scram reactor. The operator support system design is presented in a single computer display which contains structure and support system elements e.g. operation procedure, status of safety related components and operational requirements, operation limit condition of parameters, alarm information, and prognosis function. The prototype was developed using LabView software and consisted of components structure and features of the operator support system. Information of each component in the operator support system need to be completed before it can be applied and integrated in the RSG-GAS main control room.
Modelling and Decision Support of Clinical Pathways
NASA Astrophysics Data System (ADS)
Gabriel, Roland; Lux, Thomas
The German health care market is under a rapid rate of change, forcing especially hospitals to provide high-quality services at low costs. Appropriate measures for more effective and efficient service provision are process orientation and decision support by information technology of clinical pathway of a patient. The essential requirements are adequate modelling of clinical pathways as well as usage of adequate systems, which are capable of assisting the complete path of a patient within a hospital, and preferably also outside of it, in a digital way. To fulfil these specifications the authors present a suitable concept, which meets the challenges of well-structured clinical pathways as well as rather poorly structured diagnostic and therapeutic decisions, by interplay of process-oriented and knowledge-based hospital information systems.
Fresnel Concentrators for Space Solar Power and Solar Thermal Propulsion
NASA Technical Reports Server (NTRS)
Bradford, Rodney; Parks, Robert W.; Craig, Harry B. (Technical Monitor)
2001-01-01
Large deployable Fresnel concentrators are applicable to solar thermal propulsion and multiple space solar power generation concepts. These concentrators can be used with thermophotovoltaic, solar thermionic, and solar dynamic conversion systems. Thin polyimide Fresnel lenses and reflectors can provide tailored flux distribution and concentration ratios matched to receiver requirements. Thin, preformed polyimide film structure components assembled into support structures for Fresnel concentrators provide the capability to produce large inflation-deployed concentrator assemblies. The polyimide film is resistant to the space environment and allows large lightweight assemblies to be fabricated that can be compactly stowed for launch. This work addressed design and fabrication of lightweight polyimide film Fresnel concentrators, alternate materials evaluation, and data management functions for space solar power concepts, architectures, and supporting technology development.
NASA Astrophysics Data System (ADS)
Denson, R. L.
2003-12-01
The Alabama Math Science Technology Educational Coalition (AMSTEC) was formed as a non-profit after a 1998 NASA Linking Leaders program brought in education and corporate leaders to address systemic education reform in Alabama public schools. AMSTEC was instrumental in the creation of the Alabama Math Science Technology Initiative (AMSTI), a K-12 program designed using data from national and international research and local teacher survey. In the face of dwindling government support in a state ranked last in education funding, AMSTEC believes that its best hope for improved STEM education lies in strengthening its community/industry partnerships and building upon the Department of Education's newly created AMSTI program. NASA's GLOBE program is the primary earth science education component being integrated into AMSTI. AMSTI is structured to provide teachers with (1) the materials, equipment, technology and supplies necessary to deliver high quality, inquiry-based instruction; (2) professional development linked directly to the educational resources with the intent of strengthening content knowledge, instructional strategies, and use of assessment tools; and (3) on-site support and mentoring throughout the year in the interest of achieving these goals. Roles for community partners to support these objectives far exceed that of mere funding - especially in the area of mentoring and professional development. Currently, AMSTEC consists of 100+ members including classroom teachers and district officers, education department representatives from higher educational institutions, policy makers and administrators, and government and industry representatives. AMSTEC remains partially tied to NASA fiscally and is administratively housed by the National Space Science and Technology Center's Earth System Science Center. AMSTEC's partnership emphasis is focused on increasing corporate and industry participation to support the implementation of AMSTI and its hub-site-based program. Future foci for AMSTEC are development and implementation of distance learning programs across Alabama's K-12 public schools.
NASA Astrophysics Data System (ADS)
Zhu, Zhi-Fu; Zhang, He-Qiu; Liang, Hong-Wei; Peng, Xin-Cun; Zou, Ji-Jun; Tang, Bin; Du, Guo-Tong
2017-08-01
Not Available Supported by the Natural Science Foundation of Jiangxi Province under Grant No 20133ACB20005, the Key Program of National Natural Science Foundation of China under Grant No 41330318, the Key Program of Science and Technology Research of Ministry of Education under Grant No NRE1515, the Foundation of Training Academic and Technical Leaders for Main Majors of Jiangxi Province under Grant No 20142BCB22006, the Research Foundation of Education Bureau of Jiangxi Province under Grant No GJJ14501, and the Engineering Research Center of Nuclear Technology Application (East China Institute of Technology) Ministry of Education under Grant No HJSJYB2016-1.
NASA Technical Reports Server (NTRS)
Agnew, Donald L.; Jones, Peter A.
1989-01-01
A study was conducted to define reasonable and representative large deployable reflector (LDR) system concepts for the purpose of defining a technology development program aimed at providing the requisite technological capability necessary to start LDR development by the end of 1991. This volume includes the executive summary for the total study, a report of thirteen system analysis and trades tasks (optical configuration, aperture size, reflector material, segmented mirror, optical subsystem, thermal, pointing and control, transportation to orbit, structures, contamination control, orbital parameters, orbital environment, and spacecraft functions), and descriptions of three selected LDR system concepts. Supporting information is contained in appendices.
Mahrous, Ahmed I; Aldawash, Hussien A; Soliman, Tarek A; Banasr, Fahad H; Abdelwahed, Ahmed
2015-01-01
Background: This study was conducted to compare and evaluate the effect of two different attachments (locator attachment and ball and socket [B&S] attachment) on implants and natural abutments supporting structures, in cases of limited inter-arch spaces in mandibular Kennedy Class I implant supported removable partial over dentures by measuring the bone height changes through the cone beam radiographic technology. Materials and Methods: Two implants were positioned in the first or second molar area following the two-stage surgical protocol. Two equal groups were divided ten for each: Group I: Sides were the placed implants restored by the locator attachment. Group II: The other sides, implants were restored by B&S attachment. Evaluation of the implants and main abutments supporting structures of each group was done at the time of removable partial over denture insertion, 6, 12 and 18 months by measuring the bone height changes using cone beam computed tomography. Results: Implants with locator attachment showed marginal bone height better effects on implants and main abutments supporting structures. Conclusion: Implants restored by locator attachment shows better effects on bone of both main natural abutments and implant than those restored with ball and socket. PMID:26028894
Dynamic analysis of the large deployable reflector
NASA Technical Reports Server (NTRS)
Calleson, Robert E.; Scott, A. Don
1987-01-01
The Large Deployable Reflector (LDR) is to be an astronomical observatory orbiting above Earth's obscuring atmosphere and operating in the spectral range between 30 microns and 1000 microns wavelength. The LDR will be used to study such astronomical phenomena as stellar and galactic formation, cosmology, and planetary atmospheres. The LDR will be the first observatory to be erected and assembled in space. This distinction brings with it several major technological challenges such as the development of ultra-lightweight deployable mirrors, advanced mirror fabrication techniques, advanced structures, and control of vibrations due to various sources of excitation. The purpose of this analysis is to provide an assessment of the vibrational response due to secondary mirror chopping and LDR slewing. The dynamic response of two 20-m LDR configurations was studied. Two mirror support configurations were investigated for the Ames concept, the first employs a six-strut secondary mirror support structure, while the second uses a triple-bipod support design. All three configurations were modeled using a tetrahedral truss design for the primary mirror support structure. Response resulting from secondary mirror chopping was obtained for the two Ames configurations, and the response of the primary mirror from slewing was obtained for all three configurations.
Anderson, Kent R.
2000-01-01
The Internet represents a different type of technology for publishers of scientific, technical, and medical journals. It is not a technology that sustains current markets and creates new efficiencies but is, rather, a disruptive technology that could radically alter market forces, profit expectations, and business models. This paper is a translation and amplification of the research done in this area, applied to a large-circulation new science journal, Pediatrics. The findings suggest that the journal of the future will be electronic, have a less volatile cost structure, be supported more by services than by content, be less able to rely on subscription revenues, and abandon certain elements of current value networks. It also provides a possible framework for other publishers to use to evaluate their own journals relative to this disruptive technology. PMID:10833160
How to Access and Sample the Deep Subsurface of Mars
NASA Technical Reports Server (NTRS)
Briggs, G.; Blacic, J.; Dreesen, D.; Mockler, T.
2000-01-01
We are developing a technology roadmap to support a series of Mars lander missions aimed at successively deeper and more comprehensive explorations of the Martian subsurface. The proposed mission sequence is outlined. Key to this approach is development of a drilling and sampling technology robust and flexible enough to successfully penetrate the presently unknown subsurface geology and structure. Martian environmental conditions, mission constraints of power and mass and a requirement for a high degree of automation all limit applicability of many proven terrestrial drilling technologies. Planetary protection and bioscience objectives further complicate selection of candidate systems. Nevertheless, recent advances in drilling technologies for the oil & gas, mining, underground utility and other specialty drilling industries convinces us that it will be possible to meet science and operational objectives of Mars subsurface exploration.
Marshall Space Flight Center Technology Investments Overview
NASA Technical Reports Server (NTRS)
Tinker, Mike
2014-01-01
NASA is moving forward with prioritized technology investments that will support NASA's exploration and science missions, while benefiting other Government agencies and the U.S. aerospace enterprise. center dotThe plan provides the guidance for NASA's space technology investments during the next four years, within the context of a 20-year horizon center dotThis plan will help ensure that NASA develops technologies that enable its 4 goals to: 1.Sustain and extend human activities in space, 2.Explore the structure, origin, and evolution of the solar system, and search for life past and present, 3.Expand our understanding of the Earth and the universe and have a direct and measurable impact on how we work and live, and 4.Energize domestic space enterprise and extend benefits of space for the Nation.
The Challenges of Integrating Instrumentation with Inflatable Aerodynamic Decelerators
NASA Technical Reports Server (NTRS)
Swanson, Gregory T.; Cassell, Alan M.
2013-01-01
To realize the National Aeronautics and Space Administration s (NASA) goal of landing humans on Mars, development of technologies to facilitate the landing of heavy payloads are being explored. Current entry, decent, and landing technologies are not practical when utilizing these heavy payloads due to mass and volume constraints dictated by limitations imposed by current launch vehicle fairings. Therefore, past and present technologies are now being considered to provide a mass and volume efficient solution, including Inflatable Aerodynamic Decelerators (IADs) [1]. IAD ground and flight tests are currently being conducted to develop and characterize their performance under flight-like conditions. The integrated instrumentation systems, which are key to the performance characterization in each of these tests, have proven to be a challenge compared to the instrumentation of traditional rigid aeroshells. To overcome these challenges, flexible and embedded sensing systems have been developed, along with improved instrumenting techniques. This development opportunity faces many difficult aspects specific to inflatable structures in extreme environments. These include but are not limited to: physical flexibility, packaging, temperature, structural integration and data acquisition [2]. To better define the instrumentation challenges posed by IAD technology development, a survey was conducted to identify valuable measurements for ground and flight testing. From this survey many sensing technologies were explored, resulting in a down-selection to the most viable prospects. These systems were then iterated upon in design to determine the best integration techniques specific to a 3m and 6m stacked torus IAD. Each sensing system was then integrated and employed to support the IAD testing in the National Full-Scale Aerodynamics Complex 40 x 80 wind tunnel at NASA Ames Research Center in the summer of 2012. Another challenge that has been explored is the data acquisition of IAD sensing technologies. Traditionally all space based sensing systems transmit their data through a wired interface. This limits the amount of sensors able to be integrated within the IAD due to volume and routing restrictions of the supporting signal and excitation wires. To alleviate this situation, multiple wireless data acquisition technologies have been researched and developed through rapid prototyping efforts. The final custom multi-nodal wireless system utilized during the summer 2012 IAD test series consisted of four remote nodes and one receiving base station. The system reliably conditioned and acquired 20+ sensors over the course of the wind tunnel test series. These developments in wireless data acquisition techniques can eliminate the need for structural feedthroughs and reduce system mass associated with wiring and wire harnesses. This makes the utilization of flight instrumentation more attractive to future missions, which would result in further improved characterization of IAD technology, and overall, increased scientific knowledge regarding the response of inflatable structures to extreme entry environments. [
Gan, Yiqun; Gan, Tingting; Chen, Zhiyan; Miao, Miao; Zhang, Kan
2015-10-01
This study investigated the role of social support in the complex pattern of associations among stressors, work-family interferences and depression in the domains of work and family. A questionnaire was administered to a nationwide sample of 11,419 Chinese science and technology professionals. Several structural equation models were specified to determine whether social support functioned as a predictor or a mediator. Using Mplus 5.0, we compared the moderation model, the independence model, the antecedent model and the mediation model. The results revealed that the relationship between work-family interference and social support was domain specific. The independence model fit the data best in the work domain. Both the moderation model and the antecedent model fit the family domain data equally well. The current study was conducted to answer the need for comprehensive investigations of cultural uniqueness in the antecedents of work-family interference. The domain specificity, i.e. the multiple channels of the functions of support in the family domain and not in the work domain, ensures that this study is unique and culturally specific. Copyright © 2014 John Wiley & Sons, Ltd.
Basic principles of information technology organization in health care institutions.
Mitchell, J A
1997-01-01
This paper focuses on the basic principles of information technology (IT) organization within health sciences centers. The paper considers the placement of the leader of the IT effort within the health sciences administrative structure and the organization of the IT unit. A case study of the University of Missouri-Columbia Health Sciences Center demonstrates how a role-based organizational model for IT support can be effective for determining the boundary between centralized and decentralized organizations. The conclusions are that the IT leader needs to be positioned with other institutional leaders who are making strategic decisions, and that the internal IT structure needs to be a role-based hybrid of centralized and decentralized units. The IT leader needs to understand the mission of the organization and actively use change-management techniques.
An Overview-NASA LeRC Structures Program
NASA Technical Reports Server (NTRS)
Zaretsky, Erwin V.
1997-01-01
The Structures and Acoustics Division of the NASA Lewis Research Center has its genesis dating back to 1943. It has been an independent Division at Lewis since 1979. Its two primary capabilities are performance and life analysis of static and dynamic systems such as those found in aircraft and spacecraft propulsion systems and experimental verification of these analyses. Research is conducted in-house, through university grants and contracts, and through cooperative programs with industry. Our work directly supports NASA's Advanced Subsonic Technology (AST), Smart Green Engine, Fast Quiet Engine, High-Temperature Materials and Processing (HiTEMP), Hybrid Hyperspeed Propulsion, Rotorcraft, High-Speed Research (HSR), and Aviation Safety Program (AvSP). A general overview is given discussing these programs and other technologies that are being developed at NASA LeRC.
NASA Astrophysics Data System (ADS)
Tolzman, Jean M.
1993-03-01
The potential for expanded communication among researchers, scholars, and students is supported by growth in the capabilities for electronic communication as well as expanding access to various forms of electronic interchange and computing capabilities. Research supported by the National Aeronautics and Space Administration points to a future where workstations with audio and video monitors and screen-sharing protocols are used to support collaborations with colleagues located throughout the world. Instruments and sensors all over the world will produce data streams that will be brought together and analyzed to produce new findings, which in turn can be distributed electronically. New forms of electronic journals will emerge and provide opportunities for researchers and scientists to electronically and interactively exchange information in a wide range of structures and formats. Ultimately, the wide-scale use of these technologies in the dissemination of research results and the stimulation of collegial dialogue will change the way we represent and express our knowledge of the world. A new paradigm will evolve-perhaps a truly worldwide 'invisible college'.
Analysis and application of intelligence network based on FTTH
NASA Astrophysics Data System (ADS)
Feng, Xiancheng; Yun, Xiang
2008-12-01
With the continued rapid growth of Internet, new network service emerges in endless stream, especially the increase of network game, meeting TV, video on demand, etc. The bandwidth requirement increase continuously. Network technique, optical device technical development is swift and violent. FTTH supports all present and future service with enormous bandwidth, including traditional telecommunication service, traditional data service and traditional TV service, and the future digital TV and VOD. With huge bandwidth of FTTH, it wins the final solution of broadband network, becomes the final goal of development of optical access network. Firstly, it introduces the main service which FTTH supports, main analysis key technology such as FTTH system composition way, topological structure, multiplexing, optical cable and device. It focus two kinds of realization methods - PON, P2P technology. Then it proposed that the solution of FTTH can support comprehensive access (service such as broadband data, voice, video and narrowband private line). Finally, it shows the engineering application for FTTH in the district and building. It brings enormous economic benefits and social benefit.
NASA Technical Reports Server (NTRS)
Tolzman, Jean M.
1993-01-01
The potential for expanded communication among researchers, scholars, and students is supported by growth in the capabilities for electronic communication as well as expanding access to various forms of electronic interchange and computing capabilities. Research supported by the National Aeronautics and Space Administration points to a future where workstations with audio and video monitors and screen-sharing protocols are used to support collaborations with colleagues located throughout the world. Instruments and sensors all over the world will produce data streams that will be brought together and analyzed to produce new findings, which in turn can be distributed electronically. New forms of electronic journals will emerge and provide opportunities for researchers and scientists to electronically and interactively exchange information in a wide range of structures and formats. Ultimately, the wide-scale use of these technologies in the dissemination of research results and the stimulation of collegial dialogue will change the way we represent and express our knowledge of the world. A new paradigm will evolve-perhaps a truly worldwide 'invisible college'.
Space Station Freedom Central Thermal Control System Evolution
NASA Technical Reports Server (NTRS)
Bullock, Richard; Olsson, Eric
1990-01-01
The objective of the evolution study is to review the proposed growth scenarios for Space Station Freedom and identify the major CTCS hardware scars and software hooks required to facilitate planned growth and technology obsolescence. The Station's two leading evolutionary configurations are: (1) the Research and Development node, where the fundamental mission is scientific research and commercial endeavors, and (2) the Transportation node, where the emphasis is on supporting Lunar and Mars human exploration. These two nodes evolve from the from the assembly complete configuration by the addition of manned modules, pocket labs, resource nodes, attached payloads, customer servicing facility, and an upper and lower keel and boom truss structure. In the case of the R & D node, the role of the dual keel will be to support external payloads for scientific research. In the case of the Transportation node, the keel will support the Lunar (LTV) and Mars (MTV) transportation vehicle service facilities In addition to external payloads. The transverse boom is extended outboard of the alpha gimbal to accommodate the new solar dynamic arrays for power generation, which will supplement the photovoltaic system. The design, development, deployment, and operation of SSF will take place over a 30 year time period and new Innovations and maturation in technologies can be expected. Evolutionary planning must include the obsolescence and insertion of the new technologies over the life of the program, and the technology growth issues must be addressed in parallel with the development of the baseline thermal control system. Technologies that mature and are available within the next 10 years are best suited for evolutionary consideration as the growth phase begins in the year 2000. To increase TCS capability to accommodate growth using baseline technology would require some penalty in mass, volume, EVA time, manifesting, and operational support. To be cost effective the capabilities of the heat acquisition, transport, and rejection subsystems must be increased.
NASA Technical Reports Server (NTRS)
1978-01-01
Fans of the National Football League s Detroit Lions don't worry about game day weather. Their magnificent new Pontiac Stadium has a domed, air-supported, fabric roof that admits light but protects the playing field and patrons from the elements. The 80,000-seat Silverdome is the world s largest fabric-covered structure-and aerospace technology played an important part in its construction. The key to economical construction of the Silverdome--and many other types of buildings--is a spinoff of fiber glass Beta yarn coated with Teflon TFE fluorocarbon resin. The big advance it offers is permanency.The team of DuPont, Chemical Fabrics and Birdair have collaborated on a number of fabric structures. Some are supported by air pressure, others by cables alone. Most of the structures are in the recreational category. With conventional construction costs still on the upswing, you're likely to see a great many more permanent facilities enclosed by the aerospace spinoff fabric.
The Advanced Gamma-ray Imaging System (AGIS): Telescope Mechanical Designs
NASA Astrophysics Data System (ADS)
Guarino, V.; Buckley, J.; Byrum, K.; Falcone, A.; Fegan, S.; Finley, J.; Hanna, D.; Horan, D.; Kaaret, P.; Konopelko, A.; Krawczynski, H.; Krennrich, F.; Wagner, R.; Woods, M.; Vassiliev, V.
2008-04-01
The concept of a future ground-based gamma-ray observatory, AGIS, in the energy range 40 GeV-100 TeV is based on an array of sim 100 imaging atmospheric Cherenkov telescopes (IACTs). The anticipated improvements of AGIS sensitivity, angular resolution and reliability of operation impose demanding technological and cost requirements on the design of IACTs. The relatively inexpensive Davies-Cotton telescope design has been used in ground-based gamma-ray astronomy for almost fifty years and is an excellent option. We are also exploring alternative designs and in this submission we focus on the recent mechanical design of a two-mirror telescope with a Schwarzschild-Couder (SC) optical system. The mechanical structure provides support points for mirrors and camera. The design was driven by the requirement of minimizing the deflections of the mirror support structures. The structure is also designed to be able to slew in elevation and azimuth at 10 degrees/sec.
Development and Ground Testing of a Compactly Stowed Scalable Inflatably Deployed Solar Sail
NASA Technical Reports Server (NTRS)
Lichodziejewski, David; Derbes, Billy; Reinert, Rich; Belvin, Keith; Slade, Kara; Mann, Troy
2004-01-01
This paper discusses the solar sail design and outlines the interim accomplishments to advance the technology readiness level (TRL) of the subsystem from 3 toward a technology readiness level of 6 in 2005. Under Phase II of the program many component test articles have been fabricated and tested successfully. Most notably an unprecedented section of the conically deployed rigidizable sail support beam, the heart of the inflatable rigidizable structure, has been deployed and tested in the NASA Goddard thermal vacuum chamber with good results. The development testing validated the beam packaging and deployment. The inflatable conically deployed, Sub Tg rigidizable beam technology is now in the TRL 5-6 range. The fabricated masses and structural test results of our beam components have met predictions and no changes to the mass estimates or design assumptions have been identified adding great credibility to the design. Several quadrants of the Mylar sail have also been fabricated and successfully deployed validating our design, manufacturing, and deployment techniques.
Aerocapture Technology Developments from NASA's In-Space Propulsion Technology Program
NASA Technical Reports Server (NTRS)
Munk, Michelle M.; Moon, Steven A.
2007-01-01
This paper will explain the investment strategy, the role of detailed systems analysis, and the hardware and modeling developments that have resulted from the past 5 years of work under NASA's In-Space Propulsion Program (ISPT) Aerocapture investment area. The organizations that have been funded by ISPT over that time period received awards from a 2002 NASA Research Announcement. They are: Lockheed Martin Space Systems, Applied Research Associates, Inc., Ball Aerospace, NASA's Ames Research Center, and NASA's Langley Research Center. Their accomplishments include improved understanding of entry aerothermal environments, particularly at Titan, demonstration of aerocapture guidance algorithm robustness at multiple bodies, manufacture and test of a 2-meter Carbon-Carbon "hot structure," development and test of evolutionary, high-temperature structural systems with efficient ablative materials, and development of aerothermal sensors that will fly on the Mars Science Laboratory in 2009. Due in large part to this sustained ISPT support for Aerocapture, the technology is ready to be validated in flight.
ERIC Educational Resources Information Center
Hollman, Angela K.
2014-01-01
This study uses an explanatory mixed methods methodology to attempt to determine the reporting relationships between business and IT executives within the university. The study also explores IT and business executives thoughts on these relationships. Supporting research from organizational studies and business-IT alignment is combined in order to…
ERIC Educational Resources Information Center
Baker, Elizabeth A.
2017-01-01
Informed by sociocultural and systems theory tenets, this study used ethnographic research methods to examine the feasibility of using speech recognition (SR) technology to support struggling readers in an early elementary classroom setting. Observations of eight first graders were conducted as they participated in a structured SR-supported…
Reengineering for optimized control of DC networks
NASA Astrophysics Data System (ADS)
Vintea, Adela; Schiopu, Paul
2015-02-01
The management of the Independent Power Grids is the global body/structure with flexible technological support for Command-Control-Communications and Informatized Management having the responsibility for providing the conditions and information (the informational flux of decision) for the decision-maker aiming at predictable and harmonic administration of the situations (crises) and for generating the harmonic situations (results).
ERIC Educational Resources Information Center
Karp, Melinda Mechur; Kalamkarian, Hoori Santikian; Klempin, Serena; Fletcher, Jeffrey
2016-01-01
This paper examines technology-mediated advising reform in order to contribute to the understanding of how colleges engage in transformative change to improve student outcomes. Conceptualizing such change as occurring along three interrelated dimensions of organizational functioning (structural, process, and attitudinal), we seek to understand the…
Evaluation of Free Platforms for Delivery of Massive Open Online Courses (MOOCS)
ERIC Educational Resources Information Center
Zancanaro, Airton; Nunes, Carolina Schmitt; Domingues, Maria Jose Carvalho de Souza
2017-01-01
For the hosting, management and delivery of Massive Open Online Courses (MOOC) it is necessary a technological infrastructure that supports it. Various educational institutions do not have or do not wish to invest in such a structure, possibly because MOOCs are not yet part of official programs of universities, but initiatives by a particular…
A Methodology for Assessing Learning in Complex and Ill-Structured Task Domains
ERIC Educational Resources Information Center
Spector, J. Michael
2006-01-01
New information and communications technologies and research in cognitive science have led to new ways to think about and implement learning environments. Among these new approaches to instruction and new methods to support learning and performance is an interest in and emphasis on complex subject matter (e.g., complex and dynamic systems…
1999-03-01
of epistemic forms and games , which can form the basis for building a tool to support expert analyses. 15. SUBJECT TERMS Expert analysis Epistemic...forms Epistemic games SECURITY CLASSIFICATION OF 16. REPORT Unclassified 17. ABSTRACT Unclassified 18. THIS PAGE Unclassified 19. LIMITATION OF...1998 Principal Investigators: Allan Collins & William Ferguson BBN Technologies Introduction 1 Prior Work 2 Structural-Analysis Games 2 Functional
Pre-Service Special Education Teachers Acceptance and Use of ICT: A Structural Equation Model
ERIC Educational Resources Information Center
Yeni, Sabiha; Gecu-Parmaksiz, Zeynep
2016-01-01
Information and communication technology (ICT) supported education helps the individuals with special educational needs to take their attention to the course content and to concentrate their attention on the task they need to perform. The mechanical advantages of ICT tools make them attractive for individuals with special educational needs. If…
Palazzo, Clémence; Klinger, Evelyne; Dorner, Véronique; Kadri, Abdelmajid; Thierry, Olivier; Boumenir, Yasmine; Martin, William; Poiraudeau, Serge; Ville, Isabelle
2016-04-01
To assess views of patients with chronic low back pain (cLBP) concerning barriers to home-based exercise program adherence and to record expectations regarding new technologies. Qualitative study based on semi-structured interviews. A heterogeneous sample of 29 patients who performed a home-based exercise program for cLBP learned during supervised physiotherapy sessions in a tertiary care hospital. Patients were interviewed at home by the same trained interviewer. Interviews combined a funnel-shaped structure and an itinerary method. Barriers to adherence related to the exercise program (number, effectiveness, complexity and burden of exercises), the healthcare journey (breakdown between supervised sessions and home exercise, lack of follow-up and difficulties in contacting care providers), patient representations (illness and exercise perception, despondency, depression and lack of motivation), and the environment (attitudes of others, difficulties in planning exercise practice). Adherence could be enhanced by increasing the attractiveness of exercise programs, improving patient performance (following a model or providing feedback), and the feeling of being supported by care providers and other patients. Regarding new technologies, relatively younger patients favored visual and dynamic support that provided an enjoyable and challenging environment and feedback on their performance. Relatively older patients favored the possibility of being guided when doing exercises. Whatever the tool proposed, patients expected its use to be learned during a supervised session and performance regularly checked by care providers; they expected adherence to be discussed with care providers. For patients with cLBP, adherence to home-based exercise programs could be facilitated by increasing the attractiveness of the programs, improving patient performance and favoring a feeling of being supported. New technologies meet these challenges and seem attractive to patients but are not a substitute for the human relationship between patients and care providers. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
A Definition of STS Accommodations for Attached Payloads
NASA Technical Reports Server (NTRS)
Echols, F. L.; Broome, P. A.
1983-01-01
An input to a study conducted to define a set of carrier avionics for supporting large structures experiments attached to the Space Shuttle Orbiter is reported. The "baseline" Orbier interface used in developing the avionics concept for the Space Technology Experiments Platform, STEP, which Langley Research Center has proposed for supporting experiments of this sort is defined. Primarily, flight operations capabilities and considerations and the avionics systems capabilities that are available to a payload as a "mixed cargo" user of the Space Transportation System are addressed. Ground operations for payload integration at Kennedy Space Center, and ground operations for payload support during the mission are also discussed.
Determinants for the success of regional ICT ventures: a close examination of South Korea.
Park, Eunil; Kim, Ki Joon; Kwon, Sang Jib; Ohm, Jay Y; Del Pobil, Angel P; Yoo, Kyeongsik
2016-01-01
This study identifies the key motivational factors in enhancing economic performance and increasing new job opportunities for information and communication technology ventures (ICTVs) in South Korea and examines their potential causal relationships through structural equation modeling analysis on data collected from over 200 ICTVs located in Daedeok Innopolis. The results indicate that the economic performance of ICTVs is determined mainly by government support, innovation effort, and private equity and support. Government support and innovation effort are also positively associated with new job opportunities. The theoretical, industrial implications of the key findings, and recommendations for the Korean government are discussed.
Tissue Engineering Applications of Three-Dimensional Bioprinting.
Zhang, Xiaoying; Zhang, Yangde
2015-07-01
Recent advances in tissue engineering have adapted the additive manufacturing technology, also known as three-dimensional printing, which is used in several industrial applications, for the fabrication of bioscaffolds and viable tissue and/or organs to overcome the limitations of other in vitro conventional methods. 3D bioprinting technology has gained enormous attention as it enabled 3D printing of a multitude of biocompatible materials, different types of cells and other supporting growth factors into complex functional living tissues in a 3D format. A major advantage of this technology is its ability for simultaneously 3D printing various cell types in defined spatial locations, which makes this technology applicable to regenerative medicine to meet the need for suitable for transplantation suitable organs and tissues. 3D bioprinting is yet to successfully overcome the many challenges related to building 3D structures that closely resemble native organs and tissues, which are complex structures with defined microarchitecture and a variety of cell types in a confined area. An integrated approach with a combination of technologies from the fields of engineering, biomaterials science, cell biology, physics, and medicine is required to address these complexities. Meeting this challenge is being made possible by directing the 3D bioprinting to manufacture biomimetic-shaped 3D structures, using organ/tissue images, obtained from magnetic resonance imaging and computerized tomography, and employing computer-aided design and manufacturing technologies. Applications of 3D bioprinting include the generation of multilayered skin, bone, vascular grafts, heart valves, etc. The current 3D bioprinting technologies need to be improved with respect to the mechanical strength and integrity in the manufactured constructs as the presently used biomaterials are not of optimal viscosity. A better understanding of the tissue/organ microenvironment, which consists of multiple types of cells, is imperative for successful 3D bioprinting.
A review: aluminum nitride MEMS contour-mode resonator
NASA Astrophysics Data System (ADS)
Yunhong, Hou; Meng, Zhang; Guowei, Han; Chaowei, Si; Yongmei, Zhao; Jin, Ning
2016-10-01
Over the past several decades, the technology of micro-electromechanical system (MEMS) has advanced. A clear need of miniaturization and integration of electronics components has had new solutions for the next generation of wireless communications. The aluminum nitride (AlN) MEMS contour-mode resonator (CMR) has emerged and become promising and competitive due to the advantages of the small size, high quality factor and frequency, low resistance, compatibility with integrated circuit (IC) technology, and the ability of integrating multi-frequency devices on a single chip. In this article, a comprehensive review of AlN MEMS CMR technology will be presented, including its basic working principle, main structures, fabrication processes, and methods of performance optimization. Among these, the deposition and etching process of the AlN film will be specially emphasized and recent advances in various performance optimization methods of the CMR will be given through specific examples which are mainly focused on temperature compensation and reducing anchor losses. This review will conclude with an assessment of the challenges and future trends of the CMR. Project supported by National Natural Science Foundation (Nos. 61274001, 61234007, 61504130), the Nurturing and Development Special Projects of Beijing Science and Technology Innovation Base's Financial Support (No. Z131103002813070), and the National Defense Science and Technology Innovation Fund of CAS (No. CXJJ-14-M32).
Mohamad, Nur Royhaila; Marzuki, Nur Haziqah Che; Buang, Nor Aziah; Huyop, Fahrul; Wahab, Roswanira Abdul
2015-01-01
The current demands of sustainable green methodologies have increased the use of enzymatic technology in industrial processes. Employment of enzyme as biocatalysts offers the benefits of mild reaction conditions, biodegradability and catalytic efficiency. The harsh conditions of industrial processes, however, increase propensity of enzyme destabilization, shortening their industrial lifespan. Consequently, the technology of enzyme immobilization provides an effective means to circumvent these concerns by enhancing enzyme catalytic properties and also simplify downstream processing and improve operational stability. There are several techniques used to immobilize the enzymes onto supports which range from reversible physical adsorption and ionic linkages, to the irreversible stable covalent bonds. Such techniques produce immobilized enzymes of varying stability due to changes in the surface microenvironment and degree of multipoint attachment. Hence, it is mandatory to obtain information about the structure of the enzyme protein following interaction with the support surface as well as interactions of the enzymes with other proteins. Characterization technologies at the nanoscale level to study enzymes immobilized on surfaces are crucial to obtain valuable qualitative and quantitative information, including morphological visualization of the immobilized enzymes. These technologies are pertinent to assess efficacy of an immobilization technique and development of future enzyme immobilization strategies. PMID:26019635
Status of Fuel Development and Manufacturing for Space Nuclear Reactors at BWX Technologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carmack, W.J.; Husser, D.L.; Mohr, T.C.
2004-02-04
New advanced nuclear space propulsion systems will soon seek a high temperature, stable fuel form. BWX Technologies Inc (BWXT) has a long history of fuel manufacturing. UO2, UCO, and UCx have been fabricated at BWXT for various US and international programs. Recent efforts at BWXT have focused on establishing the manufacturing techniques and analysis capabilities needed to provide a high quality, high power, compact nuclear reactor for use in space nuclear powered missions. To support the production of a space nuclear reactor, uranium nitride has recently been manufactured by BWXT. In addition, analytical chemistry and analysis techniques have been developedmore » to provide verification and qualification of the uranium nitride production process. The fabrication of a space nuclear reactor will require the ability to place an unclad fuel form into a clad structure for assembly into a reactor core configuration. To this end, BWX Technologies has reestablished its capability for machining, GTA welding, and EB welding of refractory metals. Specifically, BWX Technologies has demonstrated GTA welding of niobium flat plate and EB welding of niobium and Nb-1Zr tubing. In performing these demonstration activities, BWX Technologies has established the necessary infrastructure to manufacture UO2, UCx, or UNx fuel, components, and complete reactor assemblies in support of space nuclear programs.« less
The Virtual Learning Commons: Supporting Science Education with Emerging Technologies
NASA Astrophysics Data System (ADS)
Pennington, D. D.; Gandara, A.; Gris, I.
2012-12-01
The Virtual Learning Commons (VLC), funded by the National Science Foundation Office of Cyberinfrastructure CI-Team Program, is a combination of Semantic Web, mash up, and social networking tools that supports knowledge sharing and innovation across scientific disciplines in research and education communities and networks. The explosion of scientific resources (data, models, algorithms, tools, and cyberinfrastructure) challenges the ability of educators to be aware of resources that might be relevant to their classes. Even when aware, it can be difficult to understand enough about those resources to develop classroom materials. Often emerging data and technologies have little documentation, especially about their application. The VLC tackles this challenge by providing mechanisms for individuals and groups of educators to organize Web resources into virtual collections, and engage each other around those collections in order to a) learn about potentially relevant resources that are available; b) design classes that leverage those resources; and c) develop course syllabi. The VLC integrates Semantic Web functionality for structuring distributed information, mash up functionality for retrieving and displaying information, and social media for discussing/rating information. We are working to provide three views of information that support educators in different ways: 1. Innovation Marketplace: supports users as they find others teaching similar courses, where they are located, and who they collaborate with; 2. Conceptual Mapper: supports educators as they organize their thinking about the content of their class and related classes taught by others; 3. Curriculum Designer: supports educators as they generate a syllabus and find Web resources that are relevant. This presentation will discuss the innovation and learning theories that have informed design of the VLC, hypotheses about the use of emerging technologies to support innovation in classrooms, and will include a brief demonstration of these capabilities.
From Lunar Regolith to Fabricated Parts: Technology Developments and the Utilization of Moon Dirt
NASA Technical Reports Server (NTRS)
McLemore, C. A.; Fikes, J. C.; McCarley, K. S.; Good, J. E.; Gilley, S. D.; Kennedy, J. P.
2008-01-01
The U.S. Space Exploration Policy has as a cornerstone the establishment of an outpost on the moon. This lunar outpost wil1 eventually provide the necessary planning, technology development, testbed, and training for manned missions in the future beyond the Moon. As part of the overall activity, the National Aeronautics and Space Administration (NASA) is investigating how the in situ resources can be utilized to improve mission success by reducing up-mass, improving safety, reducing risk, and bringing down costs for the overall mission. Marshall Space Flight Center (MSFC), along with other NASA centers, is supporting this endeavor by exploring how lunar regolith can be mined for uses such as construction, life support, propulsion, power, and fabrication. An infrastructure capable of fabrication and nondestructive evaluation will be needed to support habitat structure development and maintenance, tools and mechanical parts fabrication, as well as repair and replacement of space-mission hardware such as life-support items, vehicle components, and crew systems, This infrastructure will utilize the technologies being developed under the In Situ Fabrication and Repair (ISFR) element, which is working in conjunction with the technologies being developed under the In Situ Resources Utilization (ISRU) element, to live off the land. The ISFR Element supports the Space Exploration Initiative by reducing downtime due to failed components; decreasing risk to crew by recovering quickly from degraded operation of equipment; improving system functionality with advanced geometry capabilities; and enhancing mission safety by reducing assembly part counts of original designs where possible. This paper addresses the need and plan for understanding the properties of the lunar regolith to determine the applicability of using this material in a fabrication process. This effort includes the development of high fidelity simulants that will be used in fabrication processes on the ground to drive down risk and increase the Technology Readiness Level (TRL) prior to implementing this capability on the moon. Also discussed in this paper is the on-going research using Electron Beam Melting (EBM) technology as a possible solution to manufacturing parts and spares on the Moon's surface.
Augmentative and alternative communication supports for adults with autism spectrum disorders.
Trembath, David; Iacono, Teresa; Lyon, Katie; West, Denise; Johnson, Hilary
2014-11-01
Many adults with autism spectrum disorders have complex communication needs and may benefit from the use of augmentative and alternative communication. However, there is a lack of research examining the specific communication needs of these adults, let alone the outcomes of interventions aimed at addressing them. The aim of this study was to explore the views and experiences of support workers and family members regarding the outcomes of providing low-technology communication aids to adults with autism spectrum disorders. The participants were six support workers and two family members of six men and women with autism spectrum disorders, who had received low-technology communication aids. Using semi-structured, in-depth interviews and following thematic analysis, the results revealed strong support for, and the potential benefits of, augmentative and alternative communication for both adults with autism spectrum disorders and their communication partners. The results also revealed inconsistencies in the actions taken to support the use of the prescribed augmentative and alternative communication systems, pointing to the clinical need to address common barriers to the provision of augmentative and alternative communication support. These barriers include organisational practices and limitations in the knowledge and skills of key stakeholders, as well as problematic attitudes. © The Author(s) 2013.
Stellar Interferometer Technology Experiment (SITE)
NASA Technical Reports Server (NTRS)
Crawley, Edward F.; Miller, David; Laskin, Robert; Shao, Michael
1995-01-01
The MIT Space Engineering Research Center and the Jet Propulsion Laboratory stand ready to advance science sensor technology for discrete-aperture astronomical instruments such as space-based optical interferometers. The objective of the Stellar Interferometer Technology Experiment (SITE) is to demonstrate system-level functionality of a space-based stellar interferometer through the use of enabling and enhancing Controlled-Structures Technologies (CST). SITE mounts to the Mission Peculiar Experiment Support System inside the Shuttle payload bay. Starlight, entering through two apertures, is steered to a combining plate where it is interferred. Interference requires 27 nanometer pathlength (phasing) and 0.29 archsecond wavefront-tilt (pointing) control. The resulting 15 milli-archsecond angular resolution exceeds that of current earth-orbiting telescopes while maintaining low cost by exploiting active optics and structural control technologies. With these technologies, unforeseen and time-varying disturbances can be rejected while relaxing reliance on ground alignment and calibration. SITE will reduce the risk and cost of advanced optical space systems by validating critical technologies in their operational environment. Moreover, these technologies are directly applicable to commercially driven applications such as precision matching, optical scanning, and vibration and noise control systems for the aerospace, medical, and automotive sectors. The SITE team consists of experienced university, government, and industry researchers, scientists, and engineers with extensive expertise in optical interferometry, nano-precision opto-mechanical control and spaceflight experimentation. The experience exists and the technology is mature. SITE will validate these technologies on a functioning interferometer science sensor in order to confirm definitely their readiness to be baselined for future science missions.
NASA Workshop on Technology for Human Robotic Exploration and Development of Space
NASA Technical Reports Server (NTRS)
Mankins, J. C.; Marzwell, N.; Mullins, C. A.; Christensen, C. B.; Howell, J. T.; O'Neil, D. A.
2004-01-01
Continued constrained budgets and growing interests in the industrialization and development of space requires NASA to seize every opportunity for assuring the maximum return on space infrastructure investments. This workshop provided an excellent forum for reviewing, evaluating, and updating pertinent strategic planning, identifying advanced concepts and high-risk/high-leverage research and technology requirements, developing strategies and roadmaps, and establishing approaches, methodologies, modeling, and tools for facilitating the commercial development of space and supporting diverse exploration and scientific missions. Also, the workshop addressed important topic areas including revolutionary space systems requiring investments in innovative advanced technologies; achieving transformational space operations through the insertion of new technologies; revolutionary science in space through advanced systems and new technologies enabling experiments to go anytime to any location; and, innovative and ambitious concepts and approaches essential for promoting advancements in space transportation. Details concerning the workshop process, structure, and results are contained in the ensuing report.
Group decision making with the analytic hierarchy process in benefit-risk assessment: a tutorial.
Hummel, J Marjan; Bridges, John F P; IJzerman, Maarten J
2014-01-01
The analytic hierarchy process (AHP) has been increasingly applied as a technique for multi-criteria decision analysis in healthcare. The AHP can aid decision makers in selecting the most valuable technology for patients, while taking into account multiple, and even conflicting, decision criteria. This tutorial illustrates the procedural steps of the AHP in supporting group decision making about new healthcare technology, including (1) identifying the decision goal, decision criteria, and alternative healthcare technologies to compare, (2) structuring the decision criteria, (3) judging the value of the alternative technologies on each decision criterion, (4) judging the importance of the decision criteria, (5) calculating group judgments, (6) analyzing the inconsistency in judgments, (7) calculating the overall value of the technologies, and (8) conducting sensitivity analyses. The AHP is illustrated via a hypothetical example, adapted from an empirical AHP analysis on the benefits and risks of tissue regeneration to repair small cartilage lesions in the knee.
Human spaceflight technology needs-a foundation for JSC's technology strategy
NASA Astrophysics Data System (ADS)
Stecklein, J. M.
Human space exploration has always been heavily influenced by goals to achieve a specific mission on a specific schedule. This approach drove rapid technology development, the rapidity of which added risks and became a major driver for costs and cost uncertainty. The National Aeronautics and Space Administration (NASA) is now approaching the extension of human presence throughout the solar system by balancing a proactive yet less schedule-driven development of technology with opportunistic scheduling of missions as the needed technologies are realized. This approach should provide cost effective, low risk technology development that will enable efficient and effective manned spaceflight missions. As a first step, the NASA Human Spaceflight Architecture Team (HAT) has identified a suite of critical technologies needed to support future manned missions across a range of destinations, including in cis-lunar space, near earth asteroid visits, lunar exploration, Mars moons, and Mars exploration. The challenge now is to develop a strategy and plan for technology development that efficiently enables these missions over a reasonable time period, without increasing technology development costs unnecessarily due to schedule pressure, and subsequently mitigating development and mission risks. NASA's Johnson Space Center (JSC), as the nation's primary center for human exploration, is addressing this challenge through an innovative approach in allocating Internal Research and Development funding to projects. The HAT Technology Needs (Tech Needs) Database has been developed to correlate across critical technologies and the NASA Office of Chief Technologist Technology Area Breakdown Structure (TABS). The TechNeeds Database illuminates that many critical technologies may support a single technical capability gap, that many HAT technology needs may map to a single TABS technology discipline, and that a single HAT technology need may map to multiple TABS technology disciplines. Th- TechNeeds Database greatly clarifies understanding of the complex relationships of critical technologies to mission and architecture element needs. Extensions to the core TechNeeds Database allow JSC to factor in and appropriately weight JSC core technology competencies, and considerations of commercialization potential and partnership potential. The inherent coupling among these, along with an appropriate importance weighting, has provided an initial prioritization for allocation of technology development research funding at JSc. The HAT Technology Needs Database, with a core of built-in reports, clarifies and communicates complex technology needs for cost effective human space exploration so that an organization seeking to assure that research prioritization supports human spaceflight of the future can be successful.
Human Spaceflight Technology Needs - A Foundation for JSC's Technology Strategy
NASA Technical Reports Server (NTRS)
Stecklein, Jonette M.
2013-01-01
Human space exploration has always been heavily influenced by goals to achieve a specific mission on a specific schedule. This approach drove rapid technology development, the rapidity of which adds risks as well as provides a major driver for costs and cost uncertainty. The National Aeronautics and Space Administration (NASA) is now approaching the extension of human presence throughout the solar system by balancing a proactive yet less schedule-driven development of technology with opportunistic scheduling of missions as the needed technologies are realized. This approach should provide cost effective, low risk technology development that will enable efficient and effective manned spaceflight missions. As a first step, the NASA Human Spaceflight Architecture Team (HAT) has identified a suite of critical technologies needed to support future manned missions across a range of destinations, including in cis-lunar space, near earth asteroid visits, lunar exploration, Mars moons, and Mars exploration. The challenge now is to develop a strategy and plan for technology development that efficiently enables these missions over a reasonable time period, without increasing technology development costs unnecessarily due to schedule pressure, and subsequently mitigating development and mission risks. NASA's Johnson Space Center (JSC), as the nation s primary center for human exploration, is addressing this challenge through an innovative approach in allocating Internal Research and Development funding to projects. The HAT Technology Needs (TechNeeds) Database has been developed to correlate across critical technologies and the NASA Office of Chief Technologist Technology Area Breakdown Structure (TABS). The TechNeeds Database illuminates that many critical technologies may support a single technical capability gap, that many HAT technology needs may map to a single TABS technology discipline, and that a single HAT technology need may map to multiple TABS technology disciplines. The TechNeeds Database greatly clarifies understanding of the complex relationships of critical technologies to mission and architecture element needs. Extensions to the core TechNeeds Database allow JSC to factor in and appropriately weight JSC Center Core Technology Competencies, and considerations of Commercialization Potential and Partnership Potential. The inherent coupling among these, along with an appropriate importance weighting, has provided an initial prioritization for allocation of technology development research funding for JSC. The HAT Technology Needs Database, with a core of built-in reports, clarifies and communicates complex technology needs for cost effective human space exploration such that an organization seeking to assure that research prioritization supports human spaceflight of the future can be successful.
NASA Technical Reports Server (NTRS)
Taminger, Karen M.
2008-01-01
The technological inception and challenges, as well as current applications of the electron beam freeform fabrication (EBF3) process are outlined. The process was motivated by the need for a new metals technology that would be cost-effective, enable the production of new alloys and that would could be used for efficient, lightweight structures. EBF3 is a rapid metal fabrication, layer-additive process that uses no molds or tools and which yields properties equivalent to wrought. The benefits of EBF3 include it near-net shape which minimizes scrap and reduces part count; efficiency in design which allows for lighter weight and enhanced performance; and, its "green" manufacturing process which yields minimal waste products. EBF3 also has a high tensile strength, while a structural test comparison found that EBF3 panels performed 5% lower than machined panels. Technical challenges in the EBF3 process include a need for process control monitoring and an improvement in localized heat response. Currently, the EBF3 process can be used to add details onto forgings and to construct and form complex shapes. However, it has potential uses in a variety of industries including aerospace, automotive, sporting goods and medical implant devices. The novel structural design capabilities of EBF3 have the ability to yield curved stiffeners which may be optimized for performance, low weight, low noise and damage tolerance applications. EBF3 has also demonstrated its usefulness in 0-gravity environments for supportability in space applications.
Direct laser writing of auxetic structures: present capabilities and challenges
NASA Astrophysics Data System (ADS)
Hengsbach, Stefan; Díaz Lantada, Andrés
2014-08-01
Auxetic materials (or metamaterials) are those with a negative Poisson ratio (NPR) and that display the unexpected property of lateral expansion when stretched, as well as an equal and opposing densification when compressed. Such geometries are being progressively employed in the development of novel products, especially in the fields of intelligent expandable actuators, shape morphing structures and minimally invasive implantable devices. Although several micromanufacturing technologies have already been applied to the development of auxetic geometries and devices, additional precision is needed to take full advantage of their special mechanical properties. In this study we present a very promising approach for the development of auxetic metamaterials and devices based on the use of direct laser writing. The process stands out for its precision and complex three-dimensional (3D) geometries attainable without the need of supporting structures. To our knowledge it represents one of the first examples of the application of this technology to the manufacture of auxetic geometries and mechanical metamaterials, with details even more remarkable than those shown in very recent studies, almost reaching the current limit of this additive manufacturing technology. We have used some special 3D auxetic designs whose remarkable NPR has been previously highlighted.
Application and research of recyclable cables in foundation pit support engineering
NASA Astrophysics Data System (ADS)
Zheng, Suping
2018-05-01
Anchoring cables are widely used in the construction of foundation pit as a temporary support structure. After the construction is completed, the anchor cables left in the ground will not only cause environmental pollution but also cause a great waste of resources. The emergence of recyclable cable technology, to avoid such problems, to achieve the secondary use of the anchor cable, excavation in the excavation project is more and more widely used. Combined with the design and construction of recoverable anchor cable in engineering practice, the application effect of recoverable anchor cable in foundation pit support is analyzed, and the conclusion that the support effect of recoverable anchor cable is stable and safe can be obtained Recyclable anchor cable in the future support projects to provide a reference.
Bohnet-Joschko, Sabine; Kientzler, Fionn
2010-01-01
Management science defines user-generated innovations as open innovation and lead user innovation. The medical technology industry finds user-generated innovations profitable and even indispensable. Innovative medical doctors as lead users need medical technology innovations in order to improve patient care. Their motivation to innovate is mostly intrinsic. But innovations may also involve extrinsic motivators such as gain in reputation or monetary incentives. Medical doctors' innovative activities often take place in hospitals and are thus embedded into the hospital's organisational setting. Hospitals find it difficult to gain short-term profits from in-house generated innovations and sometimes hesitate to support them. Strategic investment in medical doctors' innovative activities may be profitable for hospitals in the long run if innovations provide first-mover competitive advantages. Industry co-operations with innovative medical doctors offer chances but also bear potential risks. Innovative ideas generated by expert users may result in even higher complexity of medical devices; this could cause mistakes when applied by less specialised users and thus affect patient safety. Innovations that yield benefits for patients, medical doctors, hospitals and the medical technology industry can be advanced by offering adequate support for knowledge transfer and co-operation models.
Ketikidis, Panayiotis; Dimitrovski, Tomislav; Lazuras, Lambros; Bath, Peter A
2012-06-01
The response of health professionals to the use of health information technology (HIT) is an important research topic that can partly explain the success or failure of any HIT application. The present study applied a modified version of the revised technology acceptance model (TAM) to assess the relevant beliefs and acceptance of HIT systems in a sample of health professionals (n = 133). Structured anonymous questionnaires were used and a cross-sectional design was employed. The main outcome measure was the intention to use HIT systems. ANOVA was employed to examine differences in TAM-related variables between nurses and medical doctors, and no significant differences were found. Multiple linear regression analysis was used to assess the predictors of HIT usage intentions. The findings showed that perceived ease of use, but not usefulness, relevance and subjective norms directly predicted HIT usage intentions. The present findings suggest that a modification of the original TAM approach is needed to better understand health professionals' support and endorsement of HIT. Perceived ease of use, relevance of HIT to the medical and nursing professions, as well as social influences, should be tapped by information campaigns aiming to enhance support for HIT in healthcare settings.
Nuclear Terrorism - Dimensions, Options, and Perspectives in Moldova
NASA Astrophysics Data System (ADS)
Vaseashta, Ashok; Susmann, P.; Braman, Eric W.; Enaki, Nicolae A.
Securing nuclear materials, controlling contraband and preventing proliferation is an international priority to resolve using technology, diplomacy, strategic alliances, and if necessary, targeted military exercises. Nuclear security consists of complementary programs involving international legal and regulatory structure, intelligence and law enforcement agencies, border and customs forces, point and stand-off radiation detectors, personal protection equipment, preparedness for emergency and disaster, and consequence management teams. The strategic goal of UNSCR 1540 and the GICNT is to prevent nuclear materials from finding their way into the hands of our adversaries. This multi-jurisdictional and multi-agency effort demands tremendous coordination, technology assessment, policy development and guidance from several sectors. The overall goal envisions creating a secured environment that controls and protects nuclear materials while maintaining the free flow of commerce and individual liberty on international basis. Integral to such efforts are technologies to sense/detect nuclear material, provide advance information of nuclear smuggling routes, and other advanced means to control nuclear contraband and prevent proliferation. We provide an overview of GICNT and several initiatives supporting such efforts. An overview is provided of technological advances in support of point and stand-off detection and receiving advance information of nuclear material movement from perspectives of the Republic of Moldova.
Marketing netcoatings for aquaculture.
Martin, Robert J
2014-10-17
Unsustainable harvesting of natural fish stocks is driving an ever growing marine aquaculture industry. Part of the aquaculture support industry is net suppliers who provide producers with nets used in confining fish while they are grown to market size. Biofouling must be addressed in marine environments to ensure maximum product growth by maintaining water flow and waste removal through the nets. Biofouling is managed with copper and organic biocide based net coatings. The aquaculture industry provides a case study for business issues related to entry of improved fouling management technology into the marketplace. Several major hurdles hinder entry of improved novel technologies into the market. The first hurdle is due to the structure of business relationships. Net suppliers can actually cut their business profits dramatically by introducing improved technologies. A second major hurdle is financial costs of registration and demonstration of efficacy and quality product with a new technology. Costs of registration are prohibitive if only the net coatings market is involved. Demonstration of quality product requires collaboration and a team approach between formulators, net suppliers and farmers. An alternative solution is a vertically integrated business model in which the support business and product production business are part of the same company.
NASA GRC Technology Development Project for a Stirling Radioisotope Power System
NASA Technical Reports Server (NTRS)
Thieme, Lanny G.; Schreiber, Jeffrey G.
2000-01-01
NASA Glenn Research Center (GRC), the Department of Energy (DOE), and Stirling Technology Company (STC) are developing a Stirling convertor for an advanced radioisotope power system to provide spacecraft on-board electric power for NASA deep space missions. NASA GRC is conducting an in-house project to provide convertor, component, and materials testing and evaluation in support of the overall power system development. A first characterization of the DOE/STC 55-We Stirling Technology Demonstration Convertor (TDC) under the expected launch random vibration environment was recently completed in the NASA GRC Structural Dynamics Laboratory. Two TDCs also completed an initial electromagnetic interference (EMI) characterization at NASA GRC while being tested in a synchronized, opposed configuration. Materials testing is underway to support a life assessment of the heater head, and magnet characterization and aging tests have been initiated. Test facilities are now being established for an independent convertor performance verification and technology development. A preliminary Failure Mode Effect Analysis (FMEA), initial finite element analysis (FEA) for the linear alternator, ionizing radiation survivability assessment, and radiator parametric study have also been completed. This paper will discuss the status, plans, and results to date for these efforts.
Marketing Netcoatings for Aquaculture
Martin, Robert J.
2014-01-01
Unsustainable harvesting of natural fish stocks is driving an ever growing marine aquaculture industry. Part of the aquaculture support industry is net suppliers who provide producers with nets used in confining fish while they are grown to market size. Biofouling must be addressed in marine environments to ensure maximum product growth by maintaining water flow and waste removal through the nets. Biofouling is managed with copper and organic biocide based net coatings. The aquaculture industry provides a case study for business issues related to entry of improved fouling management technology into the marketplace. Several major hurdles hinder entry of improved novel technologies into the market. The first hurdle is due to the structure of business relationships. Net suppliers can actually cut their business profits dramatically by introducing improved technologies. A second major hurdle is financial costs of registration and demonstration of efficacy and quality product with a new technology. Costs of registration are prohibitive if only the net coatings market is involved. Demonstration of quality product requires collaboration and a team approach between formulators, net suppliers and farmers. An alternative solution is a vertically integrated business model in which the support business and product production business are part of the same company. PMID:25329615
NASA Technical Reports Server (NTRS)
1976-01-01
Enabling technology needs and other requirements to support space industrialization include: large space structures; fabrication and joining processes; single stage to orbit and heavy lift launch vehicles; nuclear and solar space power systems; robotics, manipulators, and teleoperators; biotechnology in space; artificial gravity; the utilization of lunar materials for construction; and the extraction of oxygen and metals from lunar resources. New initiatives (FY 1978) directly supportive or partly related to space industrialization are listed.
Drought Occurrence and Management in Kazakhstan
NASA Astrophysics Data System (ADS)
Iskakov, Y.; Mendigarin, A.; Sazanova, B.; Zhumabayev, Y.
2014-12-01
A direct and reliable indicator of drought can be measured by the productive moisture content (PMC) in soil, which uses the weight of the moisture in a soil profile. However the limited network of PMC measurement sites in Kazakhstan (123 for the total area of 2. 7 million km2) does not allow a spatial assessment of drought conditions across the vast majority of the country. To assess the availability of soil moisture and the likelihood of drought, we calculated spatial structure of soil moisture deficit, using the Selyaninov Hydrothermal Coefficient (HTCs). It was derived for the vegetatively active period from May to August. Figure 1 shows the average structure of soil moisture availability across Kazakhstan, and indicates that most of the country is vulnerable to drought. In response to this vulnerability the Kazakhstan also established the following policies and technologies to mitigate the impact of drought. Those measures include: 1. Introduction of resource-saving (soil-protective and moisture preserving) No-Till technologies. 2. Structural and technological diversification of plant growing. 3. Introduction of efficient irrigation systems for southern Kazakhstan. 4. Adaptation of weather and field reports to optimize the benefits of agrotechnical activities. 5. Re-equipment of agricultural vehicles and machinery. 6. Training and professional development of specialists in agriculture. 7. Improvement of insurance system for plant growing. 8. Improvement of systems and mechanisms of state support for small and medium agricultural producers. 9. Improvement of the system of scientific and technological and innovative support for grain production. These strategies, how they are being implemented, and the targeted goals will be presented. We will provide findings from experimental field stations, and model farms. The goals is to improve efficiency in water resources, effectively communication relevant information to farmers, policy makers and the insurance industry, as well as promote climate resilience in the advent of climate change.
What is What in the Nanoworld: A Handbook on Nanoscience and Nanotechnology
NASA Astrophysics Data System (ADS)
Borisenko, Victor E.; Ossicini, Stefano
2004-10-01
This introductory, reference handbook summarizes the terms and definitions, most important phenomena, and regulations discovered in the physics, chemistry, technology, and application of nanostructures. These nanostructures are typically inorganic and organic structures at the atomic scale. Fast progressing nanoelectronics and optoelectronics, molecular electronics and spintronics, nanotechnology and quantum processing of information, are of strategic importance for the information society of the 21st century. The short form of information taken from textbooks, special encyclopedias, recent original books and papers provides fast support in understanding "old" and new terms of nanoscience and technology widely used in scientific literature on recent developments. Such support is indeed important when one reads a scientific paper presenting new results in nanoscience. A representative collection of fundamental terms and definitions from quantum physics, and quantum chemistry, special mathematics, organic and inorganic chemistry, solid state physics, material science and technology accompanies recommended second sources (books, reviews, websites) for an extended study of a subject. Each entry interprets the term or definition under consideration and briefly presents main features of the phenomena behind it. Additional information in the form of notes ("First described in: ?", "Recognition: ?", "More details in: ?") supplements entries and gives a historical retrospective of the subject with reference to further sources. Ideal for answering questions related to unknown terms and definitions of undergraduate and Ph.D. students studying the physics of low-dimensional structures, nanoelectronics, nanotechnology. The handbook provides fast support, when one likes to know or to remind the essence of a scientific term, especially when it contains a personal name in its title, like in terms "Anderson localization", "Aharonov-Bohm effect", "Bose-Einstein condensate", e.t.c. More than 1000 entries, from a few sentences to a page in length.
NASA Astrophysics Data System (ADS)
Slenzka, Klaus; Duenne, Matthias
Solar system exploration with extended stays in totally closed habitats far away from Earth as well as longer stays in LEO requires intensive preparatory activities. Activities supporting life in a more or less close meaning are essential in this context -on a scientific as well as on a technical level. These needed activities are supporting life by e.g.: i) increasing knowledge about the impact of single and combined effects of different exploration related environmental conditions (e. g. microgravity, radiation, reduced pressure and temperature, lunar soil etc.) on biological systems. This is needed to enable safe life of humans itself as well as safe operating of required bioregenerative life support systems. Thus, different human cell types as well as representatives of bioregenerative life support system protagonists (algae, bacteria as well as higher organisms) needs to be addressed. ii) provision of required consumables (oxygen, food, energy equivalents etc.) on site, mainly via bioregenerative life support systems, Bio-ISRU-units etc. Preparation is needed on a scientific as well as technological level. iii) ensuring reduced negative effects on humans (and partially also equipment), which could be caused by living in a closed habitat in general (and thus being not space related per se): E. g. detection systems for the quality of water and air, antimicrobial and selfhealing as well as anti-icing materials without dangerous hazard substances, psychological health enhancing components etc. Referring payloads for above mentioned investigations (scientific evaluation and technology demonstration) must be developed. Extended stays and extended closure in habitats without the possibility of material transport into and out of the system are leading to the necessity of more autonomous technologies and sustainable processes. Latter one will rely mainly on biological processes and structures, which increases additionally the necessity of an intensive scientific and technological verification before routine use under extreme conditions during solar system exploration.
Guided waves in a monopile of an offshore wind turbine.
Zernov, V; Fradkin, L; Mudge, P
2011-01-01
We study the guided waves in a structure which consists of two overlapping steel plates, with the overlapping section grouted. This geometry is often encountered in support structures of large industrial offshore constructions, such as wind turbine monopiles. It has been recognized for some time that the guided wave technology offers distinctive advantages for the ultrasonic inspections and health monitoring of structures of this extent. It is demonstrated that there exist advantageous operational regimes of ultrasonic transducers guaranteeing a good inspection range, even when the structures are totally submerged in water, which is a consideration when the wind turbines are deployed off shore. Copyright © 2010 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
McKinney, John; Wu, Chivey
1998-01-01
The NASA Dryden Flight Research Center (DFRC) Partnership Awards Grant to California State University, Los Angeles (CSULA) has two primary goals that help to achieve NASA objectives. The overall objectives of the NASA Partnership Awards are to create opportunities for joint University NASA/Government sponsored research and related activities. One of the goals of the grant is to have university faculty researchers participate and contribute to the development of NASA technology that supports NASA goals for research and development (R&D) in Aeronautics and Astronautics. The other goal is technology transfer in the other direction, where NASA developed technology is made available to the general public and more specifically, targeted to industries that can profit from utilization of government developed technology. This years NASA Dryden Partnership Awards grant to CSULA entitled, "Computer Simulation of Multi-Disciplinary Engineering Systems", has two major tasks that satisfy overall NASA objectives. The first task conducts basic and applied research that contributes to technology development at the Dryden Flight Research Center. The second part of the grant provides for dissemination of NASA developed technology, by using the teaching environment created in the CSULA classroom. The second task and how this is accomplished is the topic of this paper. The NASA STARS (Structural Analysis Routines) computer simulation program is used at the Dryden center to support flight testing of high-performance experimental aircraft and to conduct research and development of new and advanced Aerospace technology.
Open-Lattice Composite Design Strengthens Structures
NASA Technical Reports Server (NTRS)
2007-01-01
Advanced composite materials and designs could eventually be applied as the framework for spacecraft or extraterrestrial constructions for long-term space habitation. One such structure in which NASA has made an investment is the IsoTruss grid structure, an extension of a two-dimensional "isogrid" concept originally developed at McDonnell Douglas Astronautics Company, under contract to NASA's Marshall Space Flight Center in the early 1970s. IsoTruss is a lightweight and efficient alternative to monocoque composite structures, and can be produced in a manner that involves fairly simple techniques. The technology was developed with support from NASA to explore space applications, and is garnering global attention because it is extremely lightweight; as much as 12 times stronger than steel; inexpensive to manufacture, transport, and install; low-maintenance; and is fully recyclable. IsoTruss is expected to see application as utility poles and meteorological towers, for the aforementioned reasons and because its design offers superior wind resistance and is less susceptible to breaking and woodpeckers. Other applications, such as reinforcement for concrete structures, stand-alone towers, sign supports, prostheses, irrigation equipment, and sporting goods are being explored
Requirements for the structured recording of surgical device data in the digital operating room.
Rockstroh, Max; Franke, Stefan; Neumuth, Thomas
2014-01-01
Due to the increasing complexity of the surgical working environment, increasingly technical solutions must be found to help relieve the surgeon. This objective is supported by a structured storage concept for all relevant device data. In this work, we present a concept and prototype development of a storage system to address intraoperative medical data. The requirements of such a system are described, and solutions for data transfer, processing, and storage are presented. In a subsequent study, a prototype based on the presented concept is tested for correct and complete data transmission and storage and for the ability to record a complete neurosurgical intervention with low processing latencies. In the final section, several applications for the presented data recorder are shown. The developed system based on the presented concept is able to store the generated data correctly, completely, and quickly enough even if much more data than expected are sent during a surgical intervention. The Surgical Data Recorder supports automatic recognition of the interventional situation by providing a centralized data storage and access interface to the OR communication bus. In the future, further data acquisition technologies should be integrated. Therefore, additional interfaces must be developed. The data generated by these devices and technologies should also be stored in or referenced by the Surgical Data Recorder to support the analysis of the OR situation.
Novel imaging technologies for characterization of microbial extracellular polysaccharides.
Lilledahl, Magnus B; Stokke, Bjørn T
2015-01-01
Understanding of biology is underpinned by the ability to observe structures at various length scales. This is so in a historical context and is also valid today. Evolution of novel insight often emerges from technological advancement. Recent developments in imaging technologies that is relevant for characterization of extraceullar microbiological polysaccharides are summarized. Emphasis is on scanning probe and optical based techniques since these tools offers imaging capabilities under aqueous conditions more closely resembling the physiological state than other ultramicroscopy imaging techniques. Following the demonstration of the scanning probe microscopy principle, novel operation modes to increase data capture speed toward video rate, exploitation of several cantilever frequencies, and advancement of utilization of specimen mechanical properties as contrast, also including their mode of operation in liquid, have been developed on this platform. Combined with steps in advancing light microscopy with resolution beyond the far field diffraction limit, non-linear methods, and combinations of the various imaging modalities, the potential ultramicroscopy toolbox available for characterization of exopolysaccharides (EPS) are richer than ever. Examples of application of such ultramicroscopy strategies range from imaging of isolated microbial polysaccharides, structures being observed when they are involved in polyelectrolyte complexes, aspects of their enzymatic degradation, and cell surface localization of secreted polysaccharides. These, and other examples, illustrate that the advancement in imaging technologies relevant for EPS characterization supports characterization of structural aspects.
NASA Technical Reports Server (NTRS)
Farhat, Charbel
1998-01-01
In this grant, we have proposed a three-year research effort focused on developing High Performance Computation and Communication (HPCC) methodologies for structural analysis on parallel processors and clusters of workstations, with emphasis on reducing the structural design cycle time. Besides consolidating and further improving the FETI solver technology to address plate and shell structures, we have proposed to tackle the following design related issues: (a) parallel coupling and assembly of independently designed and analyzed three-dimensional substructures with non-matching interfaces, (b) fast and smart parallel re-analysis of a given structure after it has undergone design modifications, (c) parallel evaluation of sensitivity operators (derivatives) for design optimization, and (d) fast parallel analysis of mildly nonlinear structures. While our proposal was accepted, support was provided only for one year.
Development of Mechanics in Support of Rocket Technology in Ukraine
NASA Astrophysics Data System (ADS)
Prisnyakov, Vladimir
2003-06-01
The paper analyzes the advances of mechanics made in Ukraine in resolving various problems of space and rocket technology such as dynamics and strength of rockets and rocket engines, rockets of different purpose, electric rocket engines, and nonstationary processes in various systems of rockets accompanied by phase transitions of working media. Achievements in research on the effect of vibrations and gravitational fields on the behavior of space-rocket systems are also addressed. Results obtained in investigating the reliability and structural strength durability conditions for nuclear installations, solid- and liquid-propellant engines, and heat pipes are presented
Research on distributed virtual reality system in electronic commerce
NASA Astrophysics Data System (ADS)
Xue, Qiang; Wang, Jiening; Sun, Jizhou
2004-03-01
In this paper, Distributed Virtual Reality (DVR) technology applied in Electronical Commerce (EC) is discussed. DVR has the capability of providing a new means for human being to recognize, analyze and resolve the large scale, complex problems, which makes it develop quickly in EC fields. The technology of CSCW (Computer Supported Cooperative Work) and middleware is introduced into the development of EC-DVR system to meet the need of a platform which can provide the necessary cooperation and communication services to avoid developing the basic module repeatedly. Finally, the paper gives a platform structure of EC-DVR system.
NASA Technical Reports Server (NTRS)
Kerr, Andrew W.
1989-01-01
Programs related to rotorcraft aeromechanics and man-machine integration are discussed which will support advanced army rotorcraft design. In aeromechanics, recent advances in computational fluid dynamics will be used to characterize the complex unsteady flowfields of rotorcraft, and a second-generation comprehensive helicopter analysis system will be used along with models of aerodynamics, engines, and control systems to study the structural dynamics of rotor/body configurations. The man-machine integration program includes the development of advanced cockpit design technology and the evaluation of cockpit and mission equipment concepts in a real-time full-combat environment.
Website for the Space Science Division
NASA Technical Reports Server (NTRS)
Schilling, James; DeVincenzi, Donald (Technical Monitor)
2002-01-01
The Space Science Division at NASA Ames Research Center is dedicated to research in astrophysics, exobiology, advanced life support technologies, and planetary science. These research programs are structured around Astrobiology (the study of life in the universe and the chemical and physical forces and adaptions that influence life's origin, evolution, and destiny), and address some of the most fundamental questions pursued by science. These questions examine the origin of life and our place in the universe. Ames is recognized as a world leader in Astrobiology. In pursuing our mission in Astrobiology, Space Science Division scientists perform pioneering basic research and technology development.
Space station systems technology study (add-on task). Volume 1: Executive summary
NASA Technical Reports Server (NTRS)
1985-01-01
System concepts were characterized in order to define cost versus benefits for autonomous functional control and for controls and displays for OMV, OTV, and spacecraft servicing and operation. The attitude control topic focused on characterizing the Space Station attitude control problem through simulation of control system responses to structural disturbances. The first two topics, mentioned above, focused on specific technology items that require advancement in order to support an early 1990s initial launch of a Space Station, while the attitude control study was an exploration of the capability of conventional controller techniques.
Unique magnetism and structural transformation in rare earth dialumindes
NASA Astrophysics Data System (ADS)
Pathak, Arjun; Mudryk, Yaroslav; Paudyal, Durga; Pecharsky, Vitalij
Rare earth metallic alloys play a critical yet often obscure role in numerous technological applications, including but not limited to sensors, actuators, permanent magnets, and rechargeable batteries; therefore, understanding their fundamental properties is of utmost importance. We study structural behavior, specific heat, and magnetism of various binary and pseudobinary rare earth dialumindes by means of temperature-dependent x-ray powder diffraction, heat capacity and magnetization measurements, and first principles calculations. Here, we focus on our recent understanding of low temperature magnetism, and crystal structure of DyAl2, TbAl2, PrAl2, ErAl2, and discuss magnetic and structural instabilities in the pseudobinary PrAl2 - ErAl2 system. Unique among other mixed heavy lanthanide dialumindes, the substitution of Er in Pr1-xErxAl2 results in unusual ferrimagnetic behavior, and the ferrimagnetic interactions become strongest around x = 0.25. The Ames Laboratory is operated for the U. S. DOE by Iowa State University of Science and Technology under contract No. DE-AC02-07CH11358. This work was supported by the Department of Energy, Office of Basic Energy Sciences, Materials Sciences Division.
Structures and Materials Experimental Facilities and Capabilities Catalog
NASA Technical Reports Server (NTRS)
Horta, Lucas G. (Compiler); Kurtz-Husch, Jeanette D. (Compiler)
2000-01-01
The NASA Center of Excellent for Structures and Materials at Langley Research Center is responsible for conducting research and developing useable technology in the areas of advanced materials and processing technologies, durability, damage tolerance, structural concepts, advanced sensors, intelligent systems, aircraft ground operations, reliability, prediction tools, performance validation, aeroelastic response, and structural dynamics behavior for aerospace vehicles. Supporting the research activities is a complementary set of facilities and capabilities documented in this report. Because of the volume of information, the information collected was restricted in most cases to one page. Specific questions from potential customers or partners should be directed to the points of contacts provided with the various capabilities. Grouping of the equipment is by location as opposed to function. Geographical information of the various buildings housing the equipment is also provided. Since this is the first time that such an inventory is ever collected at Langley it is by no means complete. It is estimated that over 90 percent of the equipment capabilities at hand are included but equipment is continuously being updated and will be reported in the future.
Investigations into dual-grating THz-driven accelerators
NASA Astrophysics Data System (ADS)
Wei, Y.; Ischebeck, R.; Dehler, M.; Ferrari, E.; Hiller, N.; Jamison, S.; Xia, G.; Hanahoe, K.; Li, Y.; Smith, J. D. A.; Welsch, C. P.
2018-01-01
Advanced acceleration technologies are receiving considerable interest in order to miniaturize future particle accelerators. One such technology is the dual-grating dielectric structures, which can support accelerating fields one to two orders of magnitude higher than the metal RF cavities in conventional accelerators. This opens up the possibility of enabling high accelerating gradients of up to several GV/m. This paper investigates numerically a quartz dual-grating structure which is driven by THz pulses to accelerate electrons. Geometry optimizations are carried out to achieve the trade-offs between accelerating gradient and vacuum channel gap. A realistic electron bunch available from the future Compact Linear Accelerator for Research and Applications (CLARA) is loaded into an optimized 100-period dual-grating structure for a detailed wakefield study. A THz pulse is then employed to interact with this CLARA bunch in the optimized structure. The computed beam quality is analyzed in terms of emittance, energy spread and loaded accelerating gradient. The simulations show that an accelerating gradient of 348 ± 12 MV/m with an emittance growth of 3.0% can be obtained.
DNA Origami Patterned Colloids for Programmed Design and Chirality
NASA Astrophysics Data System (ADS)
Ben Zion, Matan Yah; He, Xiaojin; Maass, Corinna; Sha, Ruojie; Seeman, Ned; Chaikin, Paul
Micron size colloidal particles are scientifically important as model systems for equilibrium and active systems in physics, chemistry and biology and for technologies ranging from catalysis to photonics. The past decade has seen development of new particles with directional patches, lock and key reactions and specific recognition that guide assembly of structures such as complex crystalline arrays. What remains lacking is the ability to self-assemble structures of arbitrary shape with specific chirality, placement and orientation of neighbors. Here we demonstrate the adaptation of DNA origami nanotechnology to the micron colloidal scale with designed control of neighbor type, placement and dihedral angle. We use DNA origami belts with programmed flexibility, and functionality to pattern colloidal surfaces and bind particles to specific sites at specific angles and make uniquely right handed or left handed structures. The hybrid DNA origami colloid technology should allow the synthesis of designed functional structural and active materials. This work was supported as part of the Center for Bio-Inspired Energy Science, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences under Award # DE-SC0000989.
Development of Structural Energy Storage for Aeronautics Applications
NASA Technical Reports Server (NTRS)
Santiago-Dejesus, Diana; Loyselle, Patricia L.; Demattia, Brianne; Bednarcyk, Brett; Olson, Erik; Smith, Russell; Hare, David
2017-01-01
The National Aeronautics and Space Administration (NASA) has identified Multifunctional Structures for High Efficiency Lightweight Load-bearing Storage (M-SHELLS) as critical to development of hybrid gas-electric propulsion for commercial aeronautical transport in the N+3 timeframe. The established goals include reducing emissions by 80 and fuel consumption by 60 from todays state of the art. The advancement will enable technology for NASA Aeronautics Research Mission Directorates (ARMD) Strategic Thrust 3 to pioneer big leaps in efficiency and environmental performance for ultra-efficient commercial transports, as well as Strategic Thrust 4 to pioneer low-carbon propulsion technology in the transition to that scheme. The M-SHELLS concept addresses the hybrid gas-electric highest risk with its primary objective: to save structures energy storage system weight for future commercial hybrid electric propulsion aircraft by melding the load-carrying structure with energy storage in a single material. NASA's multifunctional approach also combines supercapacitor and battery chemistries in a synergistic energy storage arrangement in tandem with supporting good mechanical properties. The arrangement provides an advantageous combination of specific power, energy, and strength.
The use of hypermedia to increase the productivity of software development teams
NASA Technical Reports Server (NTRS)
Coles, L. Stephen
1991-01-01
Rapid progress in low-cost commercial PC-class multimedia workstation technology will potentially have a dramatic impact on the productivity of distributed work groups of 50-100 software developers. Hypermedia/multimedia involves the seamless integration in a graphical user interface (GUI) of a wide variety of data structures, including high-resolution graphics, maps, images, voice, and full-motion video. Hypermedia will normally require the manipulation of large dynamic files for which relational data base technology and SQL servers are essential. Basic machine architecture, special-purpose video boards, video equipment, optical memory, software needed for animation, network technology, and the anticipated increase in productivity that will result for the introduction of hypermedia technology are covered. It is suggested that the cost of the hardware and software to support an individual multimedia workstation will be on the order of $10,000.
Support Structure Design of the $$\\hbox{Nb}_{3}\\hbox{Sn}$$ Quadrupole for the High Luminosity LHC
Juchno, M.; Ambrosio, G.; Anerella, M.; ...
2014-10-31
New low-β quadrupole magnets are being developed within the scope of the High Luminosity LHC (HL-LHC) project in collaboration with the US LARP program. The aim of the HLLHC project is to study and implement machine upgrades necessary for increasing the luminosity of the LHC. The new quadrupoles, which are based on the Nb₃Sn superconducting technology, will be installed in the LHC Interaction Regions and will have to generate a gradient of 140 T/m in a coil aperture of 150 mm. In this paper, we describe the design of the short model magnet support structure and discuss results of themore » detailed 3D numerical analysis performed in preparation for the first short model test.« less
NASA Astrophysics Data System (ADS)
Qi, Chenglin; Huang, Yang; Zhan, Teng; Wang, Qinjin; Yi, Xiaoyan; Liu, Zhiqiang
2017-08-01
GaN-based vertical light-emitting-diodes (V-LEDs) with an improved current injection pattern were fabricated and a novel current injection pattern of LEDs which consists of electrode-insulator-semiconductor (EIS) structure was proposed. The EIS structure was achieved by an insulator layer (20-nm Ta2O5) deposited between the p-GaN and the ITO layer. This kind of EIS structure works through a defect-assisted tunneling mechanism to realize current injection and obtains a uniform current distribution on the chip surface, thus greatly improving the current spreading ability of LEDs. The appearance of this novel current injection pattern of V-LEDs will subvert the impression of the conventional LEDs structure, including simplifying the chip manufacture technology and reducing the chip cost. Under a current density of 2, 5, 10, and 25 A/cm2, the luminous uniformity was better than conventional structure LEDs. The standard deviation of power density distribution in light distribution was 0.028, which was much smaller than that of conventional structure LEDs and illustrated a huge advantage on the current spreading ability of EIS-LEDs. Project supported by the Natural Science Foundation of China (Nos. 61306051, 61306050) and the National High Technology Program of China (No. 2014AA032606).
Assembly of silver nanowire ring induced by liquid droplet
NASA Astrophysics Data System (ADS)
Seong, Baekhoon; Park, Hyun Sung; Chae, Ilkyeong; Lee, Hyungdong; Wang, Xiaofeng; Jang, Hyung-Seok; Jung, Jaehyuck; Lee, Changgu; Lin, Liwei; Byun, Doyoung
2017-11-01
Several forces in the liquid droplet drive the nanomaterials to naturally form an assembled structure. During evaporation of a liquid droplet, nanomaterials can move to the rim of the droplet by convective flow and capillary flow, due to the difference in temperature between the top and contact line of the droplet. Here, we demonstrate a new, simple and scalable technology for the fabrication of ring-shaped Ag NWs by a spraying method. We experimentally identify the compressive force of the droplet driven by surface tension as the key mechanism for the self-assembly of ring structures. We investigated the progress of ring shape formation of Ag NWs according to the droplet size with theoretically calculated optimal conditions. As such, this self-assembly technique of making ring-shaped structures from Ag NWs could be applied to other nanomaterials. This work was supported by the New & Renewable Energy R&D program of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) Grant funded by the Korea government Ministry of Trade, Industry and Energy. (No. 20163010071630).
Engineering Three-Dimensional Collagen-IKVAV Matrix to Mimic Neural Microenvironment
2013-01-01
Engineering the cellular microenvironment has great potential to create a platform technology toward engineering of tissue and organs. This study aims to engineer a neural microenvironment through fabrication of three-dimensional (3D) engineered collagen matrixes mimicking in-vivo-like conditions. Collagen was chemically modified with a pentapeptide epitope consisting of isoleucine-lysine-valine-alanine-valine (IKVAV) to mimic laminin structure supports of the neural extracellular matrix (ECM). Three-dimensional collagen matrixes with and without IKVAV peptide modification were fabricated by freeze-drying technology and chemical cross-linking with glutaraldehyde. Structural information of 3D collagen matrixes indicated interconnected pores structure with an average pore size of 180 μm. Our results indicated that culture of dorsal root ganglion (DRG) cells in 3D collagen matrix was greatly influenced by 3D culture method and significantly enhanced with engineered collagen matrix conjugated with IKVAV peptide. It may be concluded that an appropriate 3D culture of neurons enables DRG to positively improve the cellular fate toward further acceleration in tissue regeneration. PMID:23705903
AMTD - Advanced Mirror Technology Development in Mechanical Stability
NASA Technical Reports Server (NTRS)
Knight, J. Brent
2015-01-01
Analytical tools and processes are being developed at NASA Marshal Space Flight Center in support of the Advanced Mirror Technology Development (AMTD) project. One facet of optical performance is mechanical stability with respect to structural dynamics. Pertinent parameters are: (1) the spacecraft structural design, (2) the mechanical disturbances on-board the spacecraft (sources of vibratory/transient motion such as reaction wheels), (3) the vibration isolation systems (invariably required to meet future science needs), and (4) the dynamic characteristics of the optical system itself. With stability requirements of future large aperture space telescopes being in the lower Pico meter regime, it is paramount that all sources of mechanical excitation be considered in both feasibility studies and detailed analyses. The primary objective of this paper is to lay out a path to perform feasibility studies of future large aperture space telescope projects which require extreme stability. To get to that end, a high level overview of a structural dynamic analysis process to assess an integrated spacecraft and optical system is included.
Active vibration absorber for CSI evolutionary model: Design and experimental results
NASA Technical Reports Server (NTRS)
Bruner, Anne M.; Belvin, W. Keith; Horta, Lucas G.; Juang, Jer-Nan
1991-01-01
The development of control of large flexible structures technology must include practical demonstration to aid in the understanding and characterization of controlled structures in space. To support this effort, a testbed facility was developed to study practical implementation of new control technologies under realistic conditions. The design is discussed of a second order, acceleration feedback controller which acts as an active vibration absorber. This controller provides guaranteed stability margins for collocated sensor/actuator pairs in the absence of sensor/actuator dynamics and computational time delay. The primary performance objective considered is damping augmentation of the first nine structural modes. Comparison of experimental and predicted closed loop damping is presented, including test and simulation time histories for open and closed loop cases. Although the simulation and test results are not in full agreement, robustness of this design under model uncertainty is demonstrated. The basic advantage of this second order controller design is that the stability of the controller is model independent.
Australian defence requirements and initiatives in smart materials and structures
NASA Astrophysics Data System (ADS)
Wilson, Alan R.; Galea, Stephen C.; Scala, Christine; Wong, Albert
2002-11-01
The Australian Defence Force is increasingly facing escalating costs on through-life support for major platforms (ships, aircraft and land vehicles). The application of smart materials and structures technologies in platform management systems is seen as a very promising approach to reduce these costs and to potentially achieve significant enhancement of platform capability. A new DSTO Key Initiative, 'Smart Materials and Structures', has been recently developed and funded to address these technologies. The Initiative will build on and grow the current activities within DSTO and promote collaboration with external Australian institutes and industry. This paper will present an overview of the Initiative and the generic sensor and system issues inherent in the 'whole-of-platform' and 'whole-of-life' monitoring and management of major defence platforms. Examples for some particular elements of this will be drawn from current work in DSTO. Other presentations in the conference will cover the technical and scientific aspects of these in more detail.
Finite temperature effects on the X-ray absorption spectra of energy related materials
NASA Astrophysics Data System (ADS)
Pascal, Tod; Prendergast, David
2014-03-01
We elucidate the role of room-temperature-induced instantaneous structural distortions in the Li K-edge X-ray absorption spectra (XAS) of crystalline LiF, Li2SO4, Li2O, Li3N and Li2CO3 using high resolution X-ray Raman spectroscopy (XRS) measurements and first-principles density functional theory calculations within the eXcited electron and Core Hole (XCH) approach. Based on thermodynamic sampling via ab-initio molecular dynamics (MD) simulations, we find calculated XAS in much better agreement with experiment than those computed using the rigid crystal structure alone. We show that local instantaneous distortion of the atomic lattice perturbs the symmetry of the Li 1 s core-excited-state electronic structure, broadening spectral line-shapes and, in some cases, producing additional spectral features. This work was conducted within the Batteries for Advanced Transportation Technologies (BATT) Program, supported by the U.S. Department of Energy Vehicle Technologies Program under Contract No. DE-AC02-05CH11231.
Remote patient monitoring in chronic heart failure.
Palaniswamy, Chandrasekar; Mishkin, Aaron; Aronow, Wilbert S; Kalra, Ankur; Frishman, William H
2013-01-01
Heart failure (HF) poses a significant economic burden on our health-care resources with very high readmission rates. Remote monitoring has a substantial potential to improve the management and outcome of patients with HF. Readmission for decompensated HF is often preceded by a stage of subclinical hemodynamic decompensation, where therapeutic interventions would prevent subsequent clinical decompensation and hospitalization. Various methods of remote patient monitoring include structured telephone support, advanced telemonitoring technologies, remote monitoring of patients with implanted cardiac devices such as pacemakers and defibrillators, and implantable hemodynamic monitors. Current data examining the efficacy of remote monitoring technologies in improving outcomes have shown inconsistent results. Various medicolegal and financial issues need to be addressed before widespread implementation of this exciting technology can take place.
Advanced Materials for Exploration Task Research Results
NASA Technical Reports Server (NTRS)
Cook, M. B. (Compiler); Murphy, K. L.; Schneider, T.
2008-01-01
The Advanced Materials for Exploration (AME) Activity in Marshall Space Flight Center s (MSFC s) Exploration Science and Technology Directorate coordinated activities from 2001 to 2006 to support in-space propulsion technologies for future missions. Working together, materials scientists and mission planners identified materials shortfalls that are limiting the performance of long-term missions. The goal of the AME project was to deliver improved materials in targeted areas to meet technology development milestones of NASA s exploration-dedicated activities. Materials research tasks were targeted in five areas: (1) Thermal management materials, (2) propulsion materials, (3) materials characterization, (4) vehicle health monitoring materials, and (5) structural materials. Selected tasks were scheduled for completion such that these new materials could be incorporated into customer development plans.
Technology-dependent children and the demand for pharmaceutical care.
Okido, Aline Cristiane Cavicchioli; Cunha, Suelen Teles da; Neves, Eliane Tatsch; Dupas, Giselle; Lima, Regina Aparecida Garcia de
2016-01-01
to understand the experience of mothers of technology-dependent children as regards pharmaceutical care. this was a qualitative, descriptive-exploratory study developed based on open interviews using a structured characterization tool, and applied during home visits to 12 mothers caring for technology-dependent children. The data was submitted to inductive content analysis. this study is split into two themes: (i) maternal overload during pharmaceutical care, demonstrating the need to administer drugs continuously and the repercussions of this exhaustive care on the caregivers; (ii) the ease or difficulty of access to the medicines required, showing informal strategies and support networks. pharmaceutical care is a daily challenge expressed in maternal overload and difficulty accessing the drugs, made worse by failures in the care network and coordinated care.
Biological and Chemical Technologies Research at OIT: Annual Summary Report, FY 1997
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peterson, G.
1998-03-01
The annual summary report presents the fiscal year (FY) 1 997 research activities and accomplishments for the United States Department of Energy (DOE) Biological and Chemical Technologies Research (BCTR) Program. This BCTR program resides within the Office of Industrial Technologies (OIT) of the Office of Energy Efficiency and Renewable Energy (EE). The annual summary report for 1997 (ASR 97) contains the following: program description (including BCTR program mission statement, historical background, relevance, goals and objectives); program structure and organization; selected technical and programmatic highlights for 1 997; detailed descriptions of individual projects; and a listing of program output, including amore » bibliography of published work, patents, and awards arising from work supported by the program.« less
Kono, Yuko; Matsushima, Eisuke; Uji, Masayo
2014-02-01
The 25-item Work Limitations Questionnaire (WLQ-25) measures presenteeism but has not been sufficiently validated in a Japanese population. A total of 451 employees from four information technology companies in Tokyo completed the WLQ-25 and questionnaires of other variables on two occasions, 2 weeks apart. The WLQ-25 yielded a two-factor structure: Cognitive Demand and Physical Demand. These subscales showed good internal consistency, and both were associated with adverse working conditions, greater perceived job strain, lower skill use, poorer workplace social support, and less satisfactory psychological adjustment. Intraclass correlation coefficients of the two WLQ-25 subscales between time 1 and time 2 were 0.78 and 0.55, respectively. This study suggests acceptable psychometric properties of the WLQ-25 in Japan.
NASA Technical Reports Server (NTRS)
Marmolejo, Jose; Ewert, Michael
2016-01-01
The Engineering Directorate at the NASA - Johnson Space Center is outfitting a 20-Foot diameter hypobaric chamber in Building 7 to support future deep-space Environmental Control & Life Support System (ECLSS) research as part of the Human Exploration System Test-bed for Integration and Advancement (HESTIA) Project. This human-rated chamber is the only NASA facility that has the unique experience, chamber geometry, infrastructure, and support systems capable of conducting this research. The chamber was used to support Gemini, Apollo, and SkyLab Missions. More recently, it was used to conduct 30-, 60-, and 90-day human ECLSS closed-loop testing in the 1990s to support the International Space Station and life support technology development. NASA studies show that both planetary surface and deep-space transit crew habitats will be 3-4 story cylindrical structures driven by human occupancy volumetric needs and launch vehicle constraints. The HESTIA facility offers a 3-story, 20-foot diameter habitat consistent with the studies' recommendations. HESTIA operations follow stringent processes by a certified test team that including human testing. Project management, analysis, design, acquisition, fabrication, assembly and certification of facility build-ups are available to support this research. HESTIA offers close proximity to key stakeholders including astronauts, Human Research Program (who direct space human research for the agency), Mission Operations, Safety & Mission Assurance, and Engineering Directorate. The HESTIA chamber can operate at reduced pressure and elevated oxygen environments including those proposed for deep-space exploration. Data acquisition, power, fluids and other facility resources are available to support a wide range of research. Recently completed HESTIA research consisted of unmanned testing of ECLSS technologies. Eventually, the HESTIA research will include humans for extended durations at reduced pressure and elevated oxygen to demonstrate very high reliability of critical ECLSS and other technologies.
Key Health Information Technologies and Related Issues for Iran: A Qualitative Study
Hemmat, Morteza; Ayatollahi, Haleh; Maleki, Mohammadreza; Saghafi, Fatemeh
2018-01-01
Background and Objective: Planning for the future of Health Information Technology (HIT) requires applying a systematic approach when conducting foresight studies. The aim of this study was to identify key health information technologies and related issues for Iran until 2025. Methods: This was a qualitative study and the participants included experts and policy makers in the field of health information technology. In-depth semi-structured interviews were conducted and data were analyzed by using framework analysis and MAXQDA software. Results: The findings revealed that the development of national health information network, electronic health records, patient health records, a cloud-based service center, interoperability standards, patient monitoring technologies, telehealth, mhealth, clinical decision support systems, health information technology and mhealth infrastructure were found to be the key technologies for the future. These technologies could influence the economic, organizational and individual levels. To achieve them, the economic and organizational obstacles need to be overcome. Conclusion: In this study, a number of key technologies and related issues were identified. This approach can help to focus on the most important technologies in the future and to priorities these technologies for better resource allocation and policy making. PMID:29854016
High-Temperature Polymer Composites Tested for Hypersonic Rocket Combustor Backup Structure
NASA Technical Reports Server (NTRS)
Sutter, James K.; Shin, E. Eugene; Thesken, John C.; Fink, Jeffrey E.
2005-01-01
Significant component weight reductions are required to achieve the aggressive thrust-toweight goals for the Rocket Based Combined Cycle (RBCC) third-generation, reusable liquid propellant rocket engine, which is one possible engine for a future single-stage-toorbit vehicle. A collaboration between the NASA Glenn Research Center and Boeing Rocketdyne was formed under the Higher Operating Temperature Propulsion Components (HOTPC) program and, currently, the Ultra-Efficient Engine Technology (UEET) Project to develop carbon-fiber-reinforced high-temperature polymer matrix composites (HTPMCs). This program focused primarily on the combustor backup structure to replace all metallic support components with a much lighter polymer-matrixcomposite- (PMC-) titanium honeycomb sandwich structure.
Comparison of electronic structure between monolayer silicenes on Ag (111)
NASA Astrophysics Data System (ADS)
Chun-Liang, Lin; Ryuichi, Arafune; Maki, Kawai; Noriaki, Takagi
2015-08-01
The electronic structures of monolayer silicenes (4 × 4 and ) grown on Ag (111) surface are studied by scanning tunneling spectroscopy (STS) and density functional theory (DFT) calculations. While both phases have similar electronic structures around the Fermi level, significant differences are observed in the higher energy unoccupied states. The DFT calculations show that the contributions of Si 3pz orbitals to the unoccupied states are different because of their different buckled configurations. Project supported by the Ministry of Education, Culture, Sports, Science and Technology (MEXT) through Grants-in-Aid for Scientific Research (Grant Nos. 24241040 and 25110008) and the World Premier International Research Center Initiative (WPI), MEXT, Japan.
Toward a sustainable European Network for Health Technology Assessment. The EUnetHTA project.
Kristensen, F B; Chamova, J; Hansen, N W
2006-03-01
EUnetHTA is a recently initiated EU network aiming at connecting national HTA agencies, research institutions, and health ministries to enable an effective exchange of information and to lend support to health policy decisions by the Member States. The article briefly discusses the policy background, the specific objectives, and the project structure of the network.