Sample records for support system failure

  1. Life Support with Failures and Variable Supply

    NASA Technical Reports Server (NTRS)

    Jones, Harry

    2010-01-01

    The life support system for long duration missions will recycle oxygen and water to reduce the material resupply mass from Earth. The impact of life support failures was investigated by dynamic simulation of a lunar outpost habitat life support model. The model was modified to simulate resupply delays, power failures, recycling system failures, and storage failures. Many failures impact the lunar outpost water supply directly or indirectly, depending on the water balance and water storage. Failure effects on the water supply are reduced if Extra Vehicular Activity (EVA) water use is low and the water supply is ample. Additional oxygen can be supplied by scavenging unused propellant or by production from regolith, but the amounts obtained can vary significantly. The requirements for oxygen and water can also vary significantly, especially for EVA. Providing storage buffers can improve efficiency and reliability, and minimize the chance of supply failing to meet demand. Life support failures and supply variations can be survivable if effective solutions are provided by the system design

  2. Diverse Redundant Systems for Reliable Space Life Support

    NASA Technical Reports Server (NTRS)

    Jones, Harry W.

    2015-01-01

    Reliable life support systems are required for deep space missions. The probability of a fatal life support failure should be less than one in a thousand in a multi-year mission. It is far too expensive to develop a single system with such high reliability. Using three redundant units would require only that each have a failure probability of one in ten over the mission. Since the system development cost is inverse to the failure probability, this would cut cost by a factor of one hundred. Using replaceable subsystems instead of full systems would further cut cost. Using full sets of replaceable components improves reliability more than using complete systems as spares, since a set of components could repair many different failures instead of just one. Replaceable components would require more tools, space, and planning than full systems or replaceable subsystems. However, identical system redundancy cannot be relied on in practice. Common cause failures can disable all the identical redundant systems. Typical levels of common cause failures will defeat redundancy greater than two. Diverse redundant systems are required for reliable space life support. Three, four, or five diverse redundant systems could be needed for sufficient reliability. One system with lower level repair could be substituted for two diverse systems to save cost.

  3. Shuttle/ISS EMU Failure History and the Impact on Advanced EMU Portable Life Support System (PLSS) Design

    NASA Technical Reports Server (NTRS)

    Campbell, Colin

    2015-01-01

    As the Shuttle/ISS EMU Program exceeds 35 years in duration and is still supporting the needs of the International Space Station (ISS), a critical benefit of such a long running program with thorough documentation of system and component failures is the ability to study and learn from those failures when considering the design of the next generation space suit. Study of the subject failure history leads to changes in the Advanced EMU Portable Life Support System (PLSS) schematic, selected component technologies, as well as the planned manner of ground testing. This paper reviews the Shuttle/ISS EMU failure history and discusses the implications to the AEMU PLSS.

  4. Operational modes, health, and status monitoring

    NASA Astrophysics Data System (ADS)

    Taljaard, Corrie

    2016-08-01

    System Engineers must fully understand the system, its support system and operational environment to optimise the design. Operations and Support Managers must also identify the correct metrics to measure the performance and to manage the operations and support organisation. Reliability Engineering and Support Analysis provide methods to design a Support System and to optimise the Availability of a complex system. Availability modelling and Failure Analysis during the design is intended to influence the design and to develop an optimum maintenance plan for a system. The remote site locations of the SKA Telescopes place emphasis on availability, failure identification and fault isolation. This paper discusses the use of Failure Analysis and a Support Database to design a Support and Maintenance plan for the SKA Telescopes. It also describes the use of modelling to develop an availability dashboard and performance metrics.

  5. Real-time automated failure analysis for on-orbit operations

    NASA Technical Reports Server (NTRS)

    Kirby, Sarah; Lauritsen, Janet; Pack, Ginger; Ha, Anhhoang; Jowers, Steven; Mcnenny, Robert; Truong, The; Dell, James

    1993-01-01

    A system which is to provide real-time failure analysis support to controllers at the NASA Johnson Space Center Control Center Complex (CCC) for both Space Station and Space Shuttle on-orbit operations is described. The system employs monitored systems' models of failure behavior and model evaluation algorithms which are domain-independent. These failure models are viewed as a stepping stone to more robust algorithms operating over models of intended function. The described system is designed to meet two sets of requirements. It must provide a useful failure analysis capability enhancement to the mission controller. It must satisfy CCC operational environment constraints such as cost, computer resource requirements, verification, and validation. The underlying technology and how it may be used to support operations is also discussed.

  6. Dynamic Considerations for Control of Closed Life Support Systems

    NASA Technical Reports Server (NTRS)

    Babcock, P. S.; Auslander, D. M.; Spear, R. C.

    1985-01-01

    Reliability of closed life support systems depend on their ability to continue supplying the crew's needs during perturbations and equipment failures. The dynamic considerations interact with the basic static design through the sizing of storages, the specification of excess capacities in processors, and the choice of system initial state. A very simple system flow model was used to examine the possibilities for system failures even when there is sufficient storage to buffer the immediate effects of the perturbation. Two control schemes are shown which have different dynamic consequences in response to component failures.

  7. Computer-aided operations engineering with integrated models of systems and operations

    NASA Technical Reports Server (NTRS)

    Malin, Jane T.; Ryan, Dan; Fleming, Land

    1994-01-01

    CONFIG 3 is a prototype software tool that supports integrated conceptual design evaluation from early in the product life cycle, by supporting isolated or integrated modeling, simulation, and analysis of the function, structure, behavior, failures and operation of system designs. Integration and reuse of models is supported in an object-oriented environment providing capabilities for graph analysis and discrete event simulation. Integration is supported among diverse modeling approaches (component view, configuration or flow path view, and procedure view) and diverse simulation and analysis approaches. Support is provided for integrated engineering in diverse design domains, including mechanical and electro-mechanical systems, distributed computer systems, and chemical processing and transport systems. CONFIG supports abstracted qualitative and symbolic modeling, for early conceptual design. System models are component structure models with operating modes, with embedded time-related behavior models. CONFIG supports failure modeling and modeling of state or configuration changes that result in dynamic changes in dependencies among components. Operations and procedure models are activity structure models that interact with system models. CONFIG is designed to support evaluation of system operability, diagnosability and fault tolerance, and analysis of the development of system effects of problems over time, including faults, failures, and procedural or environmental difficulties.

  8. Ultra Reliable Closed Loop Life Support for Long Space Missions

    NASA Technical Reports Server (NTRS)

    Jones, Harry W.; Ewert, Michael K.

    2010-01-01

    Spacecraft human life support systems can achieve ultra reliability by providing sufficient spares to replace all failed components. The additional mass of spares for ultra reliability is approximately equal to the original system mass, provided that the original system reliability is not too low. Acceptable reliability can be achieved for the Space Shuttle and Space Station by preventive maintenance and by replacing failed units. However, on-demand maintenance and repair requires a logistics supply chain in place to provide the needed spares. In contrast, a Mars or other long space mission must take along all the needed spares, since resupply is not possible. Long missions must achieve ultra reliability, a very low failure rate per hour, since they will take years rather than weeks and cannot be cut short if a failure occurs. Also, distant missions have a much higher mass launch cost per kilogram than near-Earth missions. Achieving ultra reliable spacecraft life support systems with acceptable mass will require a well-planned and extensive development effort. Analysis must determine the reliability requirement and allocate it to subsystems and components. Ultra reliability requires reducing the intrinsic failure causes, providing spares to replace failed components and having "graceful" failure modes. Technologies, components, and materials must be selected and designed for high reliability. Long duration testing is needed to confirm very low failure rates. Systems design should segregate the failure causes in the smallest, most easily replaceable parts. The system must be designed, developed, integrated, and tested with system reliability in mind. Maintenance and reparability of failed units must not add to the probability of failure. The overall system must be tested sufficiently to identify any design errors. A program to develop ultra reliable space life support systems with acceptable mass should start soon since it must be a long term effort.

  9. Memory management and compiler support for rapid recovery from failures in computer systems

    NASA Technical Reports Server (NTRS)

    Fuchs, W. K.

    1991-01-01

    This paper describes recent developments in the use of memory management and compiler technology to support rapid recovery from failures in computer systems. The techniques described include cache coherence protocols for user transparent checkpointing in multiprocessor systems, compiler-based checkpoint placement, compiler-based code modification for multiple instruction retry, and forward recovery in distributed systems utilizing optimistic execution.

  10. Artificial and bioartificial liver support: A review of perfusion treatment for hepatic failure patients

    PubMed Central

    Naruse, Katsutoshi; Tang, Wei; Makuuchi, Masatoshi

    2007-01-01

    Liver transplantation and blood purification therapy, including plasmapheresis, hemodiafiltration, and bioartificial liver support, are the available treatments for patients with severe hepatic failure. Bioartificial liver support, in which living liver tissue is used to support hepatic function, has been anticipated as an effective treatment for hepatic failure. The two mainstream systems developed for bioartificial liver support are extracorporeal whole liver perfusion (ECLP) and bioreactor systems. Comparing various types of bioartificial liver in view of function, safety, and operability, we concluded that the best efficacy can be provided by the ECLP system. Moreover, in our subsequent experiments comparing ECLP and apheresis therapy, ECLP offers more ammonia metabolism than HD and HF. In addition, ECLP can compensate amino acid imbalance and can secret bile. A controversial point with ECLP is the procedure is labor intensive, resulting in high costs. However, ECLP has the potential to reduce elevated serum ammonia levels of hepatic coma patients in a short duration. When these problems are solved, bioartificial liver support, especially ECLP, can be adopted as an option in ordinary clinical therapy to treat patients with hepatic failure. PMID:17461442

  11. Independent Orbiter Assessment (IOA): Analysis of the life support and airlock support subsystems

    NASA Technical Reports Server (NTRS)

    Arbet, Jim; Duffy, R.; Barickman, K.; Saiidi, Mo J.

    1987-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. This report documents the independent analysis results corresponding to the Orbiter Life Support System (LSS) and Airlock Support System (ALSS). Each level of hardware was evaluated and analyzed for possible failure modes and effects. Criticality was assigned based upon the severity of the effect for each failure mode. The LSS provides for the management of the supply water, collection of metabolic waste, management of waste water, smoke detection, and fire suppression. The ALSS provides water, oxygen, and electricity to support an extravehicular activity in the airlock.

  12. Shuttle/ISS EMU Failure History and the Impact on Advanced EMU PLSS Design

    NASA Technical Reports Server (NTRS)

    Campbell, Colin

    2011-01-01

    As the Shuttle/ISS EMU Program exceeds 30 years in duration and is still successfully supporting the needs of the International Space Station (ISS), a critical benefit of such a long running program with thorough documentation of system and component failures is the ability to study and learn from those failures when considering the design of the next generation space suit. Study of the subject failure history leads to changes in the Advanced EMU Portable Life Support System (PLSS) schematic, selected component technologies, as well as the planned manner of ground testing. This paper reviews the Shuttle/ISS EMU failure history and discusses the implications to the AEMU PLSS.

  13. Shuttle/ISS EMU Failure History and the Impact on Advanced EMU PLSS Design

    NASA Technical Reports Server (NTRS)

    Campbell, Colin

    2015-01-01

    As the Shuttle/ISS EMU Program exceeds 30 years in duration and is still supporting the needs of the International Space Station (ISS), a critical benefit of such a long running program with thorough documentation of system and component failures is the ability to study and learn from those failures when considering the design of the next generation space suit. Study of the subject failure history leads to changes in the Advanced EMU Portable Life Support System (PLSS) schematic, selected component technologies, as well as the planned manner of ground testing. This paper reviews the Shuttle/ISS EMU failure history and discusses the implications to the AEMU PLSS.

  14. Knowledge representation and user interface concepts to support mixed-initiative diagnosis

    NASA Technical Reports Server (NTRS)

    Sobelman, Beverly H.; Holtzblatt, Lester J.

    1989-01-01

    The Remote Maintenance Monitoring System (RMMS) provides automated support for the maintenance and repair of ModComp computer systems used in the Launch Processing System (LPS) at Kennedy Space Center. RMMS supports manual and automated diagnosis of intermittent hardware failures, providing an efficient means for accessing and analyzing the data generated by catastrophic failure recovery procedures. This paper describes the design and functionality of the user interface for interactive analysis of memory dump data, relating it to the underlying declarative representation of memory dumps.

  15. Right Ventricular Failure Post LVAD Implantation Corrected with Biventricular Support: An In Vitro Model.

    PubMed

    Shehab, Sajad; Allida, Sabine M; Davidson, Patricia M; Newton, Phillip J; Robson, Desiree; Jansz, Paul C; Hayward, Christopher S

    Right ventricular failure after left ventricular assist device (LVAD) implantation is associated with high mortality. Management remains limited to pharmacologic therapy and temporary mechanical support. Delayed right ventricular assist device (RVAD) support after LVAD implantation is associated with poorer outcomes. With the advent of miniaturized, durable, continuous flow ventricular assist device systems, chronic RVAD and biventricular assist device (BiVAD) support has been used with some success. The purpose of this study was to assess combined BiVAD and LVAD with delayed RVAD support within a four-elemental mock circulatory loop (MCL) simulating the human cardiovascular system. Our hypothesis was that delayed continuous flow RVAD (RVAD) would produce similar hemodynamic and flow parameters to those of initial BiVAD support. Using the MCL, baseline biventricular heart failure with elevated right and left filling pressures with low cardiac output was simulated. The addition of LVAD within a biventricular configuration improved cardiac output somewhat, but was associated with persistent right heart failure with elevated right-sided filling pressures. The addition of an RVAD significantly improved LVAD outputs and returned filling pressures to normal throughout the circulation. In conclusion, RVAD support successfully restored hemodynamics and flow parameters of biventricular failure supported with isolated LVAD with persistent elevated right atrial pressure.

  16. Determining Component Probability using Problem Report Data for Ground Systems used in Manned Space Flight

    NASA Technical Reports Server (NTRS)

    Monaghan, Mark W.; Gillespie, Amanda M.

    2013-01-01

    During the shuttle era NASA utilized a failure reporting system called the Problem Reporting and Corrective Action (PRACA) it purpose was to identify and track system non-conformance. The PRACA system over the years evolved from a relatively nominal way to identify system problems to a very complex tracking and report generating data base. The PRACA system became the primary method to categorize any and all anomalies from corrosion to catastrophic failure. The systems documented in the PRACA system range from flight hardware to ground or facility support equipment. While the PRACA system is complex, it does possess all the failure modes, times of occurrence, length of system delay, parts repaired or replaced, and corrective action performed. The difficulty is mining the data then to utilize that data in order to estimate component, Line Replaceable Unit (LRU), and system reliability analysis metrics. In this paper, we identify a methodology to categorize qualitative data from the ground system PRACA data base for common ground or facility support equipment. Then utilizing a heuristic developed for review of the PRACA data determine what reports identify a credible failure. These data are the used to determine inter-arrival times to perform an estimation of a metric for repairable component-or LRU reliability. This analysis is used to determine failure modes of the equipment, determine the probability of the component failure mode, and support various quantitative differing techniques for performing repairable system analysis. The result is that an effective and concise estimate of components used in manned space flight operations. The advantage is the components or LRU's are evaluated in the same environment and condition that occurs during the launch process.

  17. Developing Ultra Reliable Life Support for the Moon and Mars

    NASA Technical Reports Server (NTRS)

    Jones, Harry W.

    2009-01-01

    Recycling life support systems can achieve ultra reliability by using spares to replace failed components. The added mass for spares is approximately equal to the original system mass, provided the original system reliability is not very low. Acceptable reliability can be achieved for the space shuttle and space station by preventive maintenance and by replacing failed units, However, this maintenance and repair depends on a logistics supply chain that provides the needed spares. The Mars mission must take all the needed spares at launch. The Mars mission also must achieve ultra reliability, a very low failure rate per hour, since it requires years rather than weeks and cannot be cut short if a failure occurs. Also, the Mars mission has a much higher mass launch cost per kilogram than shuttle or station. Achieving ultra reliable space life support with acceptable mass will require a well-planned and extensive development effort. Analysis must define the reliability requirement and allocate it to subsystems and components. Technologies, components, and materials must be designed and selected for high reliability. Extensive testing is needed to ascertain very low failure rates. Systems design should segregate the failure causes in the smallest, most easily replaceable parts. The systems must be designed, produced, integrated, and tested without impairing system reliability. Maintenance and failed unit replacement should not introduce any additional probability of failure. The overall system must be tested sufficiently to identify any design errors. A program to develop ultra reliable space life support systems with acceptable mass must start soon if it is to produce timely results for the moon and Mars.

  18. Methods and Costs to Achieve Ultra Reliable Life Support

    NASA Technical Reports Server (NTRS)

    Jones, Harry W.

    2012-01-01

    A published Mars mission is used to explore the methods and costs to achieve ultra reliable life support. The Mars mission and its recycling life support design are described. The life support systems were made triply redundant, implying that each individual system will have fairly good reliability. Ultra reliable life support is needed for Mars and other long, distant missions. Current systems apparently have insufficient reliability. The life cycle cost of the Mars life support system is estimated. Reliability can be increased by improving the intrinsic system reliability, adding spare parts, or by providing technically diverse redundant systems. The costs of these approaches are estimated. Adding spares is least costly but may be defeated by common cause failures. Using two technically diverse systems is effective but doubles the life cycle cost. Achieving ultra reliability is worth its high cost because the penalty for failure is very high.

  19. A Automated Tool for Supporting FMEAs of Digital Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yue,M.; Chu, T.-L.; Martinez-Guridi, G.

    2008-09-07

    Although designs of digital systems can be very different from each other, they typically use many of the same types of generic digital components. Determining the impacts of the failure modes of these generic components on a digital system can be used to support development of a reliability model of the system. A novel approach was proposed for such a purpose by decomposing the system into a level of the generic digital components and propagating failure modes to the system level, which generally is time-consuming and difficult to implement. To overcome the associated issues of implementing the proposed FMEA approach,more » an automated tool for a digital feedwater control system (DFWCS) has been developed in this study. The automated FMEA tool is in nature a simulation platform developed by using or recreating the original source code of the different module software interfaced by input and output variables that represent physical signals exchanged between modules, the system, and the controlled process. For any given failure mode, its impacts on associated signals are determined first and the variables that correspond to these signals are modified accordingly by the simulation. Criteria are also developed, as part of the simulation platform, to determine whether the system has lost its automatic control function, which is defined as a system failure in this study. The conceptual development of the automated FMEA support tool can be generalized and applied to support FMEAs for reliability assessment of complex digital systems.« less

  20. Response of Preterm Infants to 2 Noninvasive Ventilatory Support Systems: Nasal CPAP and Nasal Intermittent Positive-Pressure Ventilation.

    PubMed

    Silveira, Carmen Salum Thomé; Leonardi, Kamila Maia; Melo, Ana Paula Carvalho Freire; Zaia, José Eduardo; Brunherotti, Marisa Afonso Andrade

    2015-12-01

    Noninvasive ventilation (NIV) in preterm infants is currently applied using intermittent positive pressure (2 positive-pressure levels) or in a conventional manner (one pressure level). However, there are no studies in the literature comparing the chances of failure of these NIV methods. The aim of this study was to evaluate the occurrence of failure of 2 noninvasive ventilatory support systems in preterm neonates over a period of 48 h. A randomized, prospective, clinical study was conducted on 80 newborns (gestational age < 37 weeks, birthweight < 2,500 g). The infants were randomized into 2 groups: 40 infants were treated with nasal CPAP and 40 infants with nasal intermittent positive-pressure ventilation (NIPPV). The occurrence of apnea, progression of respiratory distress, nose bleeding, and agitation was defined as ventilation failure. The need for intubation and re-intubation after failure was also observed. There were no significant differences in birth characteristics between groups. Ventilatory support failure was observed in 25 (62.5%) newborns treated with nasal CPAP and in 12 (30%) newborns treated with NIPPV, indicating an association between NIV failure and the absence of intermittent positive pressure (odds ratio [OR] 1.22, P < .05). Apnea (32.5%) was the main reason for nasal CPAP failure. After failure, 25% (OR 0.33) of the newborns receiving nasal CPAP and 12.5% (OR 0.14) receiving NIPPV required invasive mechanical ventilation. Ventilatory support failure was significantly more frequent when nasal CPAP was used. Copyright © 2015 by Daedalus Enterprises.

  1. Developing Reliable Life Support for Mars

    NASA Technical Reports Server (NTRS)

    Jones, Harry W.

    2017-01-01

    A human mission to Mars will require highly reliable life support systems. Mars life support systems may recycle water and oxygen using systems similar to those on the International Space Station (ISS). However, achieving sufficient reliability is less difficult for ISS than it will be for Mars. If an ISS system has a serious failure, it is possible to provide spare parts, or directly supply water or oxygen, or if necessary bring the crew back to Earth. Life support for Mars must be designed, tested, and improved as needed to achieve high demonstrated reliability. A quantitative reliability goal should be established and used to guide development t. The designers should select reliable components and minimize interface and integration problems. In theory a system can achieve the component-limited reliability, but testing often reveal unexpected failures due to design mistakes or flawed components. Testing should extend long enough to detect any unexpected failure modes and to verify the expected reliability. Iterated redesign and retest may be required to achieve the reliability goal. If the reliability is less than required, it may be improved by providing spare components or redundant systems. The number of spares required to achieve a given reliability goal depends on the component failure rate. If the failure rate is under estimated, the number of spares will be insufficient and the system may fail. If the design is likely to have undiscovered design or component problems, it is advisable to use dissimilar redundancy, even though this multiplies the design and development cost. In the ideal case, a human tended closed system operational test should be conducted to gain confidence in operations, maintenance, and repair. The difficulty in achieving high reliability in unproven complex systems may require the use of simpler, more mature, intrinsically higher reliability systems. The limitations of budget, schedule, and technology may suggest accepting lower and less certain expected reliability. A plan to develop reliable life support is needed to achieve the best possible reliability.

  2. Improving the Estimates of International Space Station (ISS) Induced K-Factor Failure Rates for On-Orbit Replacement Unit (ORU) Supportability Analyses

    NASA Technical Reports Server (NTRS)

    Anderson, Leif F.; Harrington, Sean P.; Omeke, Ojei, II; Schwaab, Douglas G.

    2009-01-01

    This is a case study on revised estimates of induced failure for International Space Station (ISS) on-orbit replacement units (ORUs). We devise a heuristic to leverage operational experience data by aggregating ORU, associated function (vehicle sub -system), and vehicle effective' k-factors using actual failure experience. With this input, we determine a significant failure threshold and minimize the difference between the actual and predicted failure rates. We conclude with a discussion on both qualitative and quantitative improvements the heuristic methods and potential benefits to ISS supportability engineering analysis.

  3. Acute Right Ventricle Failure in the Intensive Care Unit: Assessment and Management.

    PubMed

    Hrymak, Carmen; Strumpher, Johann; Jacobsohn, Eric

    2017-01-01

    Caring for the critically ill patient with acute right ventricle (RV) failure is a diagnostic and management challenge. A thorough understanding of normal RV anatomy and physiology is essential to manage RV failure. Despite the fact that the RV is essentially a volume chamber that ejects into a low-pressure system, the left ventricle contributes significantly to RV function through maintenance of the transseptal gradient (TSG). Preserving systemic mean arterial pressure maintains the TSG and RV perfusion. Various pathological states cause acute RV failure by decreasing the TSG and RV perfusion and/or increasing pulmonary vascular resistance. Early diagnosis prevents rapid progression of RV failure due to the "double hit phenomenon," which is acute intra-abdominal multiple organ system failure as a result of a reduced blood pressure and elevated central venous pressure. Management includes hemodynamic support and reversal of the precipitating cause through optimizing RV rate and rhythm, determining ideal RV filling pressure, reducing RV afterload through nonpharmacologic and pharmacological means, and selecting the appropriate RV inotrope or mechanical support. Copyright © 2016 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.

  4. 49 CFR 395.15 - Automatic on-board recording devices.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... information concerning on-board system sensor failures and identification of edited data. Such support systems... driving today; (iv) Total hours on duty for the 7 consecutive day period, including today; (v) Total hours...-driver operation; (7) The on-board recording device/system identifies sensor failures and edited data...

  5. Development of KSC program for investigating and generating field failure rates. Reliability handbook for ground support equipment

    NASA Technical Reports Server (NTRS)

    Bloomquist, C. E.; Kallmeyer, R. H.

    1972-01-01

    Field failure rates and confidence factors are presented for 88 identifiable components of the ground support equipment at the John F. Kennedy Space Center. For most of these, supplementary information regarding failure mode and cause is tabulated. Complete reliability assessments are included for three systems, eight subsystems, and nine generic piece-part classifications. Procedures for updating or augmenting the reliability results are also included.

  6. A Study to Compare the Failure Rates of Current Space Shuttle Ground Support Equipment with the New Pathfinder Equipment and Investigate the Effect that the Proposed GSE Infrastructure Upgrade Might Have to Reduce GSE Infrastructure Failures

    NASA Technical Reports Server (NTRS)

    Kennedy, Barbara J.

    2004-01-01

    The purposes of this study are to compare the current Space Shuttle Ground Support Equipment (GSE) infrastructure with the proposed GSE infrastructure upgrade modification. The methodology will include analyzing the first prototype installation equipment at Launch PAD B called the "Pathfinder". This study will begin by comparing the failure rate of the current components associated with the "Hardware interface module (HIM)" at the Kennedy Space Center to the failure rate of the neW Pathfinder components. Quantitative data will be gathered specifically on HIM components and the PAD B Hypergolic Fuel facility and Hypergolic Oxidizer facility areas which has the upgraded pathfinder equipment installed. The proposed upgrades include utilizing industrial controlled modules, software, and a fiber optic network. The results of this study provide evidence that there is a significant difference in the failure rates of the two studied infrastructure equipment components. There is also evidence that the support staff for each infrastructure system is not equal. A recommendation to continue with future upgrades is based on a significant reduction of failures in the new' installed ground system components.

  7. Reliability Growth in Space Life Support Systems

    NASA Technical Reports Server (NTRS)

    Jones, Harry W.

    2014-01-01

    A hardware system's failure rate often increases over time due to wear and aging, but not always. Some systems instead show reliability growth, a decreasing failure rate with time, due to effective failure analysis and remedial hardware upgrades. Reliability grows when failure causes are removed by improved design. A mathematical reliability growth model allows the reliability growth rate to be computed from the failure data. The space shuttle was extensively maintained, refurbished, and upgraded after each flight and it experienced significant reliability growth during its operational life. In contrast, the International Space Station (ISS) is much more difficult to maintain and upgrade and its failure rate has been constant over time. The ISS Carbon Dioxide Removal Assembly (CDRA) reliability has slightly decreased. Failures on ISS and with the ISS CDRA continue to be a challenge.

  8. Risk Analysis and Prediction of Floor Failure Mechanisms at Longwall Face in Parvadeh-I Coal Mine using Rock Engineering System (RES)

    NASA Astrophysics Data System (ADS)

    Aghababaei, Sajjad; Saeedi, Gholamreza; Jalalifar, Hossein

    2016-05-01

    The floor failure at longwall face decreases productivity and safety, increases operation costs, and causes other serious problems. In Parvadeh-I coal mine, the timber is used to prevent the puncture of powered support base into the floor. In this paper, a rock engineering system (RES)-based model is presented to evaluate the risk of floor failure mechanisms at the longwall face of E 2 and W 1 panels. The presented model is used to determine the most probable floor failure mechanism, effective factors, damaged regions and remedial actions. From the analyzed results, it is found that soft floor failure is dominant in the floor failure mechanism at Parvadeh-I coal mine. The average of vulnerability index (VI) for soft, buckling and compressive floor failure mechanisms was estimated equal to 52, 43 and 30 for both panels, respectively. By determining the critical VI for soft floor failure mechanism equal to 54, the percentage of regions with VIs beyond the critical VI in E 2 and W 1 panels is equal to 65.5 and 30, respectively. The percentage of damaged regions showed that the excess amount of used timber to prevent the puncture of weak floor below the powered support base is equal to 4,180,739 kg. RES outputs and analyzed results showed that setting and yielding load of powered supports, length of face, existent water at face, geometry of powered supports, changing the cutting pattern at longwall face and limiting the panels to damaged regions with supercritical VIs could be considered to control the soft floor failure in this mine. The results of this research could be used as a useful tool to identify the damaged regions prior to mining operation at longwall panel for the same conditions.

  9. Product Support Manager Guidebook

    DTIC Science & Technology

    2011-04-01

    package is being developed using supportability analysis concepts such as Failure Mode, Effects and Criticality Analysis (FMECA), Fault Tree Analysis ( FTA ...Analysis (LORA) Condition Based Maintenance + (CBM+) Fault Tree Analysis ( FTA ) Failure Mode, Effects, and Criticality Analysis (FMECA) Maintenance Task...Reporting and Corrective Action System (FRACAS), Fault Tree Analysis ( FTA ), Level of Repair Analysis (LORA), Maintenance Task Analysis (MTA

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kot, C.A.; Srinivasan, M.G.; Hsieh, B.J.

    As part of the Phase II testing at the HDR Test Facility in Kahl/Main, FRG, two series of high-level seismic/vibrational experiments were performed. In the first of these (SHAG) a coast-down shaker, mounted on the reactor operating floor and capable of generating 1000 tonnes of force, was used to investigate full-scale structural response, soil-structure interaction (SSI), and piping/equipment response at load levels equivalent to those of a design basis earthquake. The HDR soil/structure system was tested to incipient failure exhibiting highly nonlinear response. In the load transmission from structure to piping/equipment significant response amplifications and shifts to higher frequencies occurred.more » The performance of various pipe support configurations was evaluated. This latter effort was continued in the second series of tests (SHAM), in which an in-plant piping system was investigated at simulated seismic loads (generated by two servo-hydraulic actuators each capable of generating 40 tonnes of force), that exceeded design levels manifold and resulted in considerable pipe plastification and failure of some supports (snubbers). The evaluation of six different support configurations demonstrated that proper system design (for a given spectrum) rather than number of supports or system stiffness is essential to limiting pipe stresses. Pipe strains at loads exceeding the design level eightfold were still tolerable, indicating that pipe failure even under extreme seismic loads is unlikely inspite of multiple support failures. Conservatively, an excess capacity (margin) of at least four was estimated for the piping system, and the pipe damping was found to be 4%. Comparisons of linear and nonlinear computational results with measurements showed that analytical predictions have wide scatter and do not necessarily yield conservative responses, underpredicting, in particular, peak support forces.« less

  11. Independent Orbiter Assessment (IOA): Analysis of the Orbiter Experiment (OEX) subsystem

    NASA Technical Reports Server (NTRS)

    Compton, J. M.

    1987-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. This report documents the independent analysis results corresponding to the Orbiter Experiments hardware. Each level of hardware was evaluated and analyzed for possible failure modes and effects. Criticality was assigned based upon the severity of the effect for each failure mode. The Orbiter Experiments (OEX) Program consists of a multiple set of experiments for the purpose of gathering environmental and aerodynamic data to develop more accurate ground models for Shuttle performance and to facilitate the design of future spacecraft. This assessment only addresses currently manifested experiments and their support systems. Specifically this list consists of: Shuttle Entry Air Data System (SEADS); Shuttle Upper Atmosphere Mass Spectrometer (SUMS); Forward Fuselage Support System for OEX (FFSSO); Shuttle Infrared Laced Temperature Sensor (SILTS); Aerodynamic Coefficient Identification Package (ACIP); and Support System for OEX (SSO). There are only two potential critical items for the OEX, since the experiments only gather data for analysis post mission and are totally independent systems except for power. Failure of any experiment component usually only causes a loss of experiment data and in no way jeopardizes the crew or mission.

  12. Independent Orbiter Assessment (IOA): Assessment of the life support and airlock support systems, volume 1

    NASA Technical Reports Server (NTRS)

    Arbet, J. D.; Duffy, R. E.; Barickman, K.; Saiidi, M. J.

    1988-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA effort first completed an analysis of the Life Support and Airlock Support Systems (LSS and ALSS) hardware, generating draft failure modes and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The IOA results were then compared to the NASA FMEA/CIL baseline with proposed Post 51-L updates included. The discrepancies were flagged for potential future resolution. This report documents the results of that comparison for the Orbiter LSS and ALSS hardware. The IOA product for the LSS and ALSS analysis consisted of 511 failure mode worksheets that resulted in 140 potential critical items. Comparison was made to the NASA baseline which consisted of 456 FMEAs and 101 CIL items. The IOA analysis identified 39 failure modes, 6 of which were classified as CIL items, for components not covered by the NASA FMEAs. It was recommended that these failure modes be added to the NASA FMEA baseline. The overall assessment produced agreement on all but 301 FMEAs which caused differences in 111 CIL items.

  13. Development of KSC program for investigating and generating field failure rates. Volume 2: Recommended format for reliability handbook for ground support equipment

    NASA Technical Reports Server (NTRS)

    Bloomquist, C. E.; Kallmeyer, R. H.

    1972-01-01

    Field failure rates and confidence factors are presented for 88 identifiable components of the ground support equipment at the John F. Kennedy Space Center. For most of these, supplementary information regarding failure mode and cause is tabulated. Complete reliability assessments are included for three systems, eight subsystems, and nine generic piece-part classifications. Procedures for updating or augmenting the reliability results presented in this handbook are also included.

  14. Research and Improvement on Characteristics of Emergency Diesel Generating Set Mechanical Support System in Nuclear Power Plant

    NASA Astrophysics Data System (ADS)

    Zhe, Yang

    2017-06-01

    There are often mechanical problems of emergency power generation units in nuclear power plant, which bring a great threat to nuclear safety. Through analyzing the influence factors caused by mechanical failure, the existing defects of the design of mechanical support system are determined, and the design idea has caused the direction misleading in the field of maintenance and transformation. In this paper, research analysis is made on basic support design of diesel generator set, main pipe support design and important components of supercharger support design. And this paper points out the specific design flaws and shortcomings, and proposes targeted improvement program. Through the implementation of improvement programs, vibration level of unit and mechanical failure rate are reduced effectively. At the same time, it also provides guidance for design, maintenance and renovation of diesel generator mechanical support system of nuclear power plants in the future.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, Aiman; Laguna, Ignacio; Sato, Kento

    Future high-performance computing systems may face frequent failures with their rapid increase in scale and complexity. Resilience to faults has become a major challenge for large-scale applications running on supercomputers, which demands fault tolerance support for prevalent MPI applications. Among failure scenarios, process failures are one of the most severe issues as they usually lead to termination of applications. However, the widely used MPI implementations do not provide mechanisms for fault tolerance. We propose FTA-MPI (Fault Tolerance Assistant MPI), a programming model that provides support for failure detection, failure notification and recovery. Specifically, FTA-MPI exploits a try/catch model that enablesmore » failure localization and transparent recovery of process failures in MPI applications. We demonstrate FTA-MPI with synthetic applications and a molecular dynamics code CoMD, and show that FTA-MPI provides high programmability for users and enables convenient and flexible recovery of process failures.« less

  16. Evidence-Based Early Reading Practices within a Response to Intervention System

    ERIC Educational Resources Information Center

    Bursuck, Bill; Blanks, Brooke

    2010-01-01

    Many students who experience reading failure are inappropriately placed in special education. A promising response to reducing reading failure and the overidentification of students for special education is Response to Intervention (RTI), a comprehensive early detection and prevention system that allows teachers to identify and support struggling…

  17. Bioartificial liver: current status.

    PubMed

    Pless, G; Sauer, I M

    2005-11-01

    Liver failure remains a life-threatening syndrome. With the growing disparity between the number of suitable donor organs and the number of patients awaiting transplantation, efforts have been made to optimize the allocation of organs, to find alternatives to cadaveric liver transplantation, and to develop extracorporeal methods to support or replace the function of the failing organ. An extracorporeal liver support system has to provide the main functions of the liver: detoxification, synthesis, and regulation. The understanding that the critical issue of the clinical syndrome in liver failure is the accumulation of toxins not cleared by the failing liver led to the development of artificial filtration and adsorption devices (artificial liver support). Based on this hypothesis, the removal of lipophilic, albumin-bound substances, such as bilirubin, bile acids, metabolites of aromatic amino acids, medium-chain fatty acids, and cytokines, should be beneficial to the clinical course of a patient in liver failure. Artificial detoxification devices currently under clinical evaluation include the Molecular Adsorbent Recirculating System (MARS), Single-Pass Albumin Dialysis (SPAD), and the Prometheus system. The complex tasks of regulation and synthesis remain to be addressed by the use of liver cells (bioartificial liver support). The Extracorporeal Liver Assist Device (ELAD), HepatAssist, Modular Extracorporeal Liver Support system (MELS), and the Amsterdam Medical Center Bioartificial Liver (AMC-BAL) are bioartificial systems. This article gives a brief overview on these artificial and bioartificial devices and discusses remaining obstacles.

  18. DCDS: A Real-time Data Capture and Personalized Decision Support System for Heart Failure Patients in Skilled Nursing Facilities.

    PubMed

    Zhu, Wei; Luo, Lingyun; Jain, Tarun; Boxer, Rebecca S; Cui, Licong; Zhang, Guo-Qiang

    2016-01-01

    Heart disease is the leading cause of death in the United States. Heart failure disease management can improve health outcomes for elderly community dwelling patients with heart failure. This paper describes DCDS, a real-time data capture and personalized decision support system for a Randomized Controlled Trial Investigating the Effect of a Heart Failure Disease Management Program (HF-DMP) in Skilled Nursing Facilities (SNF). SNF is a study funded by the NIH National Heart, Lung, and Blood Institute (NHLBI). The HF-DMP involves proactive weekly monitoring, evaluation, and management, following National HF Guidelines. DCDS collects a wide variety of data including 7 elements considered standard of care for patients with heart failure: documentation of left ventricular function, tracking of weight and symptoms, medication titration, discharge instructions, 7 day follow up appointment post SNF discharge and patient education. We present the design and implementation of DCDS and describe our preliminary testing results.

  19. Functional Fault Model Development Process to Support Design Analysis and Operational Assessment

    NASA Technical Reports Server (NTRS)

    Melcher, Kevin J.; Maul, William A.; Hemminger, Joseph A.

    2016-01-01

    A functional fault model (FFM) is an abstract representation of the failure space of a given system. As such, it simulates the propagation of failure effects along paths between the origin of the system failure modes and points within the system capable of observing the failure effects. As a result, FFMs may be used to diagnose the presence of failures in the modeled system. FFMs necessarily contain a significant amount of information about the design, operations, and failure modes and effects. One of the important benefits of FFMs is that they may be qualitative, rather than quantitative and, as a result, may be implemented early in the design process when there is more potential to positively impact the system design. FFMs may therefore be developed and matured throughout the monitored system's design process and may subsequently be used to provide real-time diagnostic assessments that support system operations. This paper provides an overview of a generalized NASA process that is being used to develop and apply FFMs. FFM technology has been evolving for more than 25 years. The FFM development process presented in this paper was refined during NASA's Ares I, Space Launch System, and Ground Systems Development and Operations programs (i.e., from about 2007 to the present). Process refinement took place as new modeling, analysis, and verification tools were created to enhance FFM capabilities. In this paper, standard elements of a model development process (i.e., knowledge acquisition, conceptual design, implementation & verification, and application) are described within the context of FFMs. Further, newer tools and analytical capabilities that may benefit the broader systems engineering process are identified and briefly described. The discussion is intended as a high-level guide for future FFM modelers.

  20. Failing to Learn: Towards a Unified Design Approach for Failure-Based Learning

    ERIC Educational Resources Information Center

    Tawfik, Andrew A.; Rong, Hui; Choi, Ikseon

    2015-01-01

    To date, many instructional systems are designed to support learners as they progress through a problem-solving task. Often these systems are designed in accordance with instructional design models that progress the learner efficiently through the problem-solving process. However, theories from various fields have discussed failure as a strategic…

  1. Availability Estimate of a Conceptual ESM System.

    DTIC Science & Technology

    1979-06-01

    affect mission operation.t A functional block level failure modes and effects analysis ( FMEA ) performed on the filter resulted in an assessed failure rate...is based on an FMEA of failures that disable the function (see Appendix A). A further 29 examination of the filter piece-parts reveals that the driver...Digital-to-analog converter DC Direct current DF Direction finding ESM Electronic Support Measures FMEA Failure modes and effects analysis FMPO

  2. Vapor Compression Distillation Subsystem (VCDS) Component Enhancement, Testing and Expert Fault Diagnostics Development, Volume 2

    NASA Technical Reports Server (NTRS)

    Mallinak, E. S.

    1987-01-01

    A wide variety of Space Station functions will be managed via computerized controls. Many of these functions are at the same time very complex and very critical to the operation of the Space Station. The Environmental Control and Life Support System is one group of very complex and critical subsystems which directly affects the ability of the crew to perform their mission. Failure of the Environmental Control and Life Support Subsystems are to be avoided and, in the event of failure, repair must be effected as rapidly as possible. Due to the complex and diverse nature of the subsystems, it is not possible to train the Space Station crew to be experts in the operation of all of the subsystems. By applying the concepts of computer-based expert systems, it may be possible to provide the necessary expertise for these subsystems in dedicated controllers. In this way, an expert system could avoid failures and extend the operating time of the subsystems even in the event of failure of some components, and could reduce the time to repair by being able to pinpoint the cause of a failure when one cannot be avoided.

  3. Hypokalemic muscular paralysis causing acute respiratory failure due to rhabdomyolysis with renal tubular acidosis in a chronic glue sniffer.

    PubMed

    Kao, K C; Tsai, Y H; Lin, M C; Huang, C C; Tsao, C Y; Chen, Y C

    2000-01-01

    A 34-year-old male was admitted to the emergency department with the development of quadriparesis and respiratory failure due to hypokalemia after prolonged glue sniffing. The patient was subsequently given mechanical ventilatory support for respiratory failure. He was weaned from the ventilator 4 days later after potassium replacement. Toluene is an aromatic hydrocarbon found in glues, cements, and solvents. It is known to be toxic to the nervous system, hematopoietic system, and causes acid-base and electrolyte disorders. Acute respiratory failure with hypokalemia and rhabdomyolysis with acute renal failure should be considered as potential events in a protracted glue sniffing.

  4. Dynamic Modeling of ALS Systems

    NASA Technical Reports Server (NTRS)

    Jones, Harry

    2002-01-01

    The purpose of dynamic modeling and simulation of Advanced Life Support (ALS) systems is to help design them. Static steady state systems analysis provides basic information and is necessary to guide dynamic modeling, but static analysis is not sufficient to design and compare systems. ALS systems must respond to external input variations and internal off-nominal behavior. Buffer sizing, resupply scheduling, failure response, and control system design are aspects of dynamic system design. We develop two dynamic mass flow models and use them in simulations to evaluate systems issues, optimize designs, and make system design trades. One model is of nitrogen leakage in the space station, the other is of a waste processor failure in a regenerative life support system. Most systems analyses are concerned with optimizing the cost/benefit of a system at its nominal steady-state operating point. ALS analysis must go beyond the static steady state to include dynamic system design. All life support systems exhibit behavior that varies over time. ALS systems must respond to equipment operating cycles, repair schedules, and occasional off-nominal behavior or malfunctions. Biological components, such as bioreactors, composters, and food plant growth chambers, usually have operating cycles or other complex time behavior. Buffer sizes, material stocks, and resupply rates determine dynamic system behavior and directly affect system mass and cost. Dynamic simulation is needed to avoid the extremes of costly over-design of buffers and material reserves or system failure due to insufficient buffers and lack of stored material.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarrack, A.G.

    The purpose of this report is to document fault tree analyses which have been completed for the Defense Waste Processing Facility (DWPF) safety analysis. Logic models for equipment failures and human error combinations that could lead to flammable gas explosions in various process tanks, or failure of critical support systems were developed for internal initiating events and for earthquakes. These fault trees provide frequency estimates for support systems failures and accidents that could lead to radioactive and hazardous chemical releases both on-site and off-site. Top event frequency results from these fault trees will be used in further APET analyses tomore » calculate accident risk associated with DWPF facility operations. This report lists and explains important underlying assumptions, provides references for failure data sources, and briefly describes the fault tree method used. Specific commitments from DWPF to provide new procedural/administrative controls or system design changes are listed in the ''Facility Commitments'' section. The purpose of the ''Assumptions'' section is to clarify the basis for fault tree modeling, and is not necessarily a list of items required to be protected by Technical Safety Requirements (TSRs).« less

  6. Aerospace Applications of Weibull and Monte Carlo Simulation with Importance Sampling

    NASA Technical Reports Server (NTRS)

    Bavuso, Salvatore J.

    1998-01-01

    Recent developments in reliability modeling and computer technology have made it practical to use the Weibull time to failure distribution to model the system reliability of complex fault-tolerant computer-based systems. These system models are becoming increasingly popular in space systems applications as a result of mounting data that support the decreasing Weibull failure distribution and the expectation of increased system reliability. This presentation introduces the new reliability modeling developments and demonstrates their application to a novel space system application. The application is a proposed guidance, navigation, and control (GN&C) system for use in a long duration manned spacecraft for a possible Mars mission. Comparisons to the constant failure rate model are presented and the ramifications of doing so are discussed.

  7. Heart failure analysis dashboard for patient's remote monitoring combining multiple artificial intelligence technologies.

    PubMed

    Guidi, G; Pettenati, M C; Miniati, R; Iadanza, E

    2012-01-01

    In this paper we describe an Heart Failure analysis Dashboard that, combined with a handy device for the automatic acquisition of a set of patient's clinical parameters, allows to support telemonitoring functions. The Dashboard's intelligent core is a Computer Decision Support System designed to assist the clinical decision of non-specialist caring personnel, and it is based on three functional parts: Diagnosis, Prognosis, and Follow-up management. Four Artificial Intelligence-based techniques are compared for providing diagnosis function: a Neural Network, a Support Vector Machine, a Classification Tree and a Fuzzy Expert System whose rules are produced by a Genetic Algorithm. State of the art algorithms are used to support a score-based prognosis function. The patient's Follow-up is used to refine the diagnosis.

  8. A simplified fragility analysis of fan type cable stayed bridges

    NASA Astrophysics Data System (ADS)

    Khan, R. A.; Datta, T. K.; Ahmad, S.

    2005-06-01

    A simplified fragility analysis of fan type cable stayed bridges using Probabilistic Risk Analysis (PRA) procedure is presented for determining their failure probability under random ground motion. Seismic input to the bridge support is considered to be a risk consistent response spectrum which is obtained from a separate analysis. For the response analysis, the bridge deck is modeles as a beam supported on spring at different points. The stiffnesses of the springs are determined by a separate 2D static analysis of cable-tower-deck system. The analysis provides a coupled stiffness matrix for the spring system. A continuum method of analysis using dynamic stiffness is used to determine the dynamic properties of the bridges. The response of the bridge deck is obtained by the response spectrum method of analysis as applied to multidegree of freedom system which duly takes into account the quasi-static component of bridge deck vibration. The fragility analysis includes uncertainties arising due to the variation in ground motion, material property, modeling, method of analysis, ductility factor and damage concentration effect. Probability of failure of the bridge deck is determined by the First Order Second Moment (FOSM) method of reliability. A three span double plane symmetrical fan type cable stayed bridge of total span 689 m, is used as an illustrative example. The fragility curves for the bridge deck failure are obtained under a number of parametric variations. Some of the important conclusions of the study indicate that (i) not only vertical component but also the horizontal component of ground motion has considerable effect on the probability of failure; (ii) ground motion with no time lag between support excitations provides a smaller probability of failure as compared to ground motion with very large time lag between support excitation; and (iii) probability of failure may considerably increase soft soil condition.

  9. Complex Failure Forewarning System - DHS Conference Proceedings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abercrombie, Robert K; Hively, Lee M; Prowell, Stacy J

    2011-01-01

    As the critical infrastructures of the United States have become more and more dependent on public and private networks, the potential for widespread national impact resulting from disruption or failure of these networks has also increased. Securing the nation s critical infrastructures requires protecting not only their physical systems but, just as important, the cyber portions of the systems on which they rely. A failure is inclusive of random events, design flaws, and instabilities caused by cyber (and/or physical) attack. One such domain, aging bridges, is used to explain the Complex Structure Failure Forewarning System. We discuss the workings ofmore » such a system in the context of the necessary sensors, command and control and data collection as well as the cyber security efforts that would support this system. Their application and the implications of this computing architecture are also discussed, with respect to our nation s aging infrastructure.« less

  10. The implementation and use of Ada on distributed systems with reliability requirements

    NASA Technical Reports Server (NTRS)

    Reynolds, P. F.; Knight, J. C.; Urquhart, J. I. A.

    1983-01-01

    The issues involved in the use of the programming language Ada on distributed systems are discussed. The effects of Ada programs on hardware failures such as loss of a processor are emphasized. It is shown that many Ada language elements are not well suited to this environment. Processor failure can easily lead to difficulties on those processors which remain. As an example, the calling task in a rendezvous may be suspended forever if the processor executing the serving task fails. A mechanism for detecting failure is proposed and changes to the Ada run time support system are suggested which avoid most of the difficulties. Ada program structures are defined which allow programs to reconfigure and continue to provide service following processor failure.

  11. Structural evaluation of concepts for a solar energy concentrator for Space Station advanced development program

    NASA Technical Reports Server (NTRS)

    Kenner, Winfred S.; Rhodes, Marvin D.

    1994-01-01

    Solar dynamic power systems have a higher thermodynamic efficiency than conventional photovoltaic systems; therefore they are attractive for long-term space missions with high electrical power demands. In an investigation conducted in support of a preliminary concept for Space Station Freedom, an approach for a solar dynamic power system was developed and a number of the components for the solar concentrator were fabricated for experimental evaluation. The concentrator consists of hexagonal panels comprised of triangular reflective facets which are supported by a truss. Structural analyses of the solar concentrator and the support truss were conducted using finite-element models. A number of potential component failure scenarios were postulated and the resulting structural performance was assessed. The solar concentrator and support truss were found to be adequate to meet a 1.0-Hz structural dynamics design requirement in pristine condition. However, for some of the simulated component failure conditions, the fundamental frequency dropped below the 1.0-Hz design requirement. As a result, two alternative concepts were developed and assessed. One concept incorporated a tetrahedral ring truss support for the hexagonal panels: the second incorporated a full tetrahedral truss support for the panels. The results indicate that significant improvements in stiffness can be obtained by attaching the panels to a tetrahedral truss, and that this concentrator and support truss will meet the 1.0-Hz design requirement with any of the simulated failure conditions.

  12. Software-Implemented Fault Tolerance in Communications Systems

    NASA Technical Reports Server (NTRS)

    Gantenbein, Rex E.

    1994-01-01

    Software-implemented fault tolerance (SIFT) is used in many computer-based command, control, and communications (C(3)) systems to provide the nearly continuous availability that they require. In the communications subsystem of Space Station Alpha, SIFT algorithms are used to detect and recover from failures in the data and command link between the Station and its ground support. The paper presents a review of these algorithms and discusses how such techniques can be applied to similar systems found in applications such as manufacturing control, military communications, and programmable devices such as pacemakers. With support from the Tracking and Communication Division of NASA's Johnson Space Center, researchers at the University of Wyoming are developing a testbed for evaluating the effectiveness of these algorithms prior to their deployment. This testbed will be capable of simulating a variety of C(3) system failures and recording the response of the Space Station SIFT algorithms to these failures. The design of this testbed and the applicability of the approach in other environments is described.

  13. Intelligent Case Based Decision Support System for Online Diagnosis of Automated Production System

    NASA Astrophysics Data System (ADS)

    Ben Rabah, N.; Saddem, R.; Ben Hmida, F.; Carre-Menetrier, V.; Tagina, M.

    2017-01-01

    Diagnosis of Automated Production System (APS) is a decision-making process designed to detect, locate and identify a particular failure caused by the control law. In the literature, there are three major types of reasoning for industrial diagnosis: the first is model-based, the second is rule-based and the third is case-based. The common and major limitation of the first and the second reasonings is that they do not have automated learning ability. This paper presents an interactive and effective Case Based Decision Support System for online Diagnosis (CB-DSSD) of an APS. It offers a synergy between the Case Based Reasoning (CBR) and the Decision Support System (DSS) in order to support and assist Human Operator of Supervision (HOS) in his/her decision process. Indeed, the experimental evaluation performed on an Interactive Training System for PLC (ITS PLC) that allows the control of a Programmable Logic Controller (PLC), simulating sensors or/and actuators failures and validating the control algorithm through a real time interactive experience, showed the efficiency of our approach.

  14. Results following implantation of mechanical circulatory support systems: The Montreal Heart Institute experience

    PubMed Central

    El-Hamamsy, Ismaïl; Jacques, Frédéric; Perrault, Louis P; Bouchard, Denis; Demers, Philippe; White, Michel; Pelletier, Guy B; Racine, Normand; Pellerin, Michel; Carrier, Michel

    2009-01-01

    BACKGROUND: Mechanical circulatory support systems (MCSS) have been available in Canada since 1986. Accepted indications include bridging to transplantation or recovery. The present study reviewed the results following MCSS implantation at the Montreal Heart Institute (Montreal, Quebec). METHODS: From September 1987 to September 2006, 43 MCSS were implanted (32 Thoratec [Thoratec Corporation, USA], nine Cardio West TAH [SynCardia Systems Inc, USA], two Novacor [World Heart Corporation, Canada]) in 43 patients (mean [± SD] age 44±13 years; range 19 to 64 years). Indications for implantation included cardiogenic shock due to ischemic (n=19), viral (n=10) or other types of cardiomyopathies (n=14). RESULTS: The mean ejection fraction before implantation was 17.6±6.5% (range 10% to 45%). Before MCSS implantation, most patients showed signs of end-organ failure, including mechanical ventilation (77%), central venous pressure higher than 16 mmHg (44%), oliguria (35%) and hepatic dysfunction (19%). The mean duration of MCSS support was 22.8±32.8 days (range one to 158 days). Survival to transplantation or recovery was 74%. Only one patient was successfully bridged to recovery. Complications were common during MCSS support. They included re-exploration for bleeding (47%), respiratory failure (44%), renal failure requiring temporary dialysis (40%), infection (33%) and neurological events (16%). Only one patient had device failure. In patients successfully bridged to transplantation, early actuarial survival (one month) following transplantation averaged 71±8% and was 57±9% at one year. CONCLUSION: MCSS support with a left ventricular assist device or a total artificial heart provides an effective means of bridging terminally ill patients to transplantation or recovery. Early survival after transplantation shows satisfactory results. However, these results come at the expense of frequent device-related complications, and device failure remains a constant threat. PMID:19214294

  15. Bearing system

    DOEpatents

    Kapich, Davorin D.

    1987-01-01

    A bearing system includes backup bearings for supporting a rotating shaft upon failure of primary bearings. In the preferred embodiment, the backup bearings are rolling element bearings having their rolling elements disposed out of contact with their associated respective inner races during normal functioning of the primary bearings. Displacement detection sensors are provided for detecting displacement of the shaft upon failure of the primary bearings. Upon detection of the failure of the primary bearings, the rolling elements and inner races of the backup bearings are brought into mutual contact by axial displacement of the shaft.

  16. Health management system for rocket engines

    NASA Technical Reports Server (NTRS)

    Nemeth, Edward

    1990-01-01

    The functional framework of a failure detection algorithm for the Space Shuttle Main Engine (SSME) is developed. The basic algorithm is based only on existing SSME measurements. Supplemental measurements, expected to enhance failure detection effectiveness, are identified. To support the algorithm development, a figure of merit is defined to estimate the likelihood of SSME criticality 1 failure modes and the failure modes are ranked in order of likelihood of occurrence. Nine classes of failure detection strategies are evaluated and promising features are extracted as the basis for the failure detection algorithm. The failure detection algorithm provides early warning capabilities for a wide variety of SSME failure modes. Preliminary algorithm evaluation, using data from three SSME failures representing three different failure types, demonstrated indications of imminent catastrophic failure well in advance of redline cutoff in all three cases.

  17. Preliminary input to the space shuttle reaction control subsystem failure detection and identification software requirements (uncontrolled)

    NASA Technical Reports Server (NTRS)

    Bergmann, E.

    1976-01-01

    The current baseline method and software implementation of the space shuttle reaction control subsystem failure detection and identification (RCS FDI) system is presented. This algorithm is recommended for conclusion in the redundancy management (RM) module of the space shuttle guidance, navigation, and control system. Supporting software is presented, and recommended for inclusion in the system management (SM) and display and control (D&C) systems. RCS FDI uses data from sensors in the jets, in the manifold isolation valves, and in the RCS fuel and oxidizer storage tanks. A list of jet failures and fuel imbalance warnings is generated for use by the jet selection algorithm of the on-orbit and entry flight control systems, and to inform the crew and ground controllers of RCS failure status. Manifold isolation valve close commands are generated in the event of failed on or leaking jets to prevent loss of large quantities of RCS fuel.

  18. Forewarning of Failure in Complex Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abercrombie, Robert K; Hively, Lee M; Prowell, Stacy J

    2011-01-01

    As the critical infrastructures of the United States have become more and more dependent on public and private networks, the potential for widespread national impact resulting from disruption or failure of these networks has also increased. Securing the nation s critical infrastructures requires protecting not only their physical systems but, just as important, the cyber portions of the systems on which they rely. A failure is inclusive of random events, design flaws, and instabilities caused by cyber (and/or physical) attack. One such domain is failure in critical equipment. A second is aging bridges. We discuss the workings of such amore » system in the context of the necessary sensors, command and control and data collection as well as the cyber security efforts that would support this system. Their application and the implications of this computing architecture are also discussed, with respect to our nation s aging infrastructure.« less

  19. Extended Testability Analysis Tool

    NASA Technical Reports Server (NTRS)

    Melcher, Kevin; Maul, William A.; Fulton, Christopher

    2012-01-01

    The Extended Testability Analysis (ETA) Tool is a software application that supports fault management (FM) by performing testability analyses on the fault propagation model of a given system. Fault management includes the prevention of faults through robust design margins and quality assurance methods, or the mitigation of system failures. Fault management requires an understanding of the system design and operation, potential failure mechanisms within the system, and the propagation of those potential failures through the system. The purpose of the ETA Tool software is to process the testability analysis results from a commercial software program called TEAMS Designer in order to provide a detailed set of diagnostic assessment reports. The ETA Tool is a command-line process with several user-selectable report output options. The ETA Tool also extends the COTS testability analysis and enables variation studies with sensor sensitivity impacts on system diagnostics and component isolation using a single testability output. The ETA Tool can also provide extended analyses from a single set of testability output files. The following analysis reports are available to the user: (1) the Detectability Report provides a breakdown of how each tested failure mode was detected, (2) the Test Utilization Report identifies all the failure modes that each test detects, (3) the Failure Mode Isolation Report demonstrates the system s ability to discriminate between failure modes, (4) the Component Isolation Report demonstrates the system s ability to discriminate between failure modes relative to the components containing the failure modes, (5) the Sensor Sensor Sensitivity Analysis Report shows the diagnostic impact due to loss of sensor information, and (6) the Effect Mapping Report identifies failure modes that result in specified system-level effects.

  20. Combination of continuous renal replacement therapies (CRRT) and extracorporeal membrane oxygenation (ECMO) for advanced cardiac patients.

    PubMed

    Yap, Hon-Jek; Chen, Yung-Chang; Fang, Ji-Tseng; Huang, Chiu-Ching

    2003-03-01

    The critically ill patients may require mechanical ventilation, cardiac mechanical support, and other types of critical support. Extracorporeal membrane oxygenation (ECMO) is a supportive therapy, which provides good cardiopulmonary and end-organ support. Continuous renal replacement therapies (CRRT) exhibit important advantages in terms of clinical tolerance and blood purification. This investigation aims to evaluate the acute renal failure in cardiac patients under ECMO, and assess the effect of combining these two technologies, ECMO and CRRT. Between December 1998 and June 2001, 10 adult cardiac patients were treated on ECMO. Five of them were treated with both ECMO and CRRT. The clinical outcomes were retrospectively analyzed. Of the 10 patients studied, five were men and five were women. The mean age of survivors and non-survivors was 37.00 +/- 14.54 years and 46.17 +/- 7.41 years, respectively. The overall mortality rate was 60%. Survivors did not differ significantly from non-survivors in age or gender. The APACHE II scores on the first day of ECMO support between survival and non-survival were 19.00 +/- 9.38 and 24.67 +/- 3.50 (P value = 0.392) (Table 2), which demonstrates no significant differences too. The cause of death in most patients was related to organ system failure during the 24 h immediately before ECMO started. Five patients with acute renal failure treated by CRRT were eventually died. The median and mean survival in this group on CRRT was 40.50 +/- 18.07 h and 92.60 +/- 60.50 h. We conclude that mortality rate for acute renal failure in cardiac patients under ECMO continues to be high. Our data suggest that acute renal failure is generally a part of multiorgan failure. This unique form of acute renal failure, causes generalized edema and fluid overload despite still low serum creatinine and azotemia, and deteriorates rapidly to death. From this study shows, advanced cardiac failure may need more aggressive and early initiation of ECMO support before acute renal failure develops. Acute renal failure in advanced heart failure under ECMO support means a grave sign, need aggressive heart transplantation therapy as soon as possible. Combination of CRRT and ECMO might serve an alternative therapy bridging the temporary replacement treatment and heart transplantation in advanced cardiac patients.

  1. Apollo 16 Mission: Oxidizer Deservicing Tank Failure. No. 1; Anomaly Report

    NASA Technical Reports Server (NTRS)

    1972-01-01

    An explosive failure of a ground support equipment decontamination unit tank occurred during the postflight deactivation of the oxidizer (nitrogen tetroxide) portion of the Apollo 16 command module reaction control system. A discussion of the significant aspects of the incident and conclusions are included.

  2. Optimisation of support stiffness at railway crossings

    NASA Astrophysics Data System (ADS)

    Grossoni, Ilaria; Bezin, Yann; Neves, Sergio

    2018-07-01

    Turnouts are a key element of the railway system. They are also the part of the system with the highest number of degradation modes and associated failures. There are a number of reasons for this, including high dynamic loads resulting from non-uniform rail geometry and track support stiffness. The main aim of this study is to propose a methodology to optimise the pad stiffness along a crossing panel in order to achieve a decrease in the indicators of the most common failure modes. A three-dimensional vehicle/track interaction model has been established, considering a detailed description of the crossing panel support structure. A genetic algorithm has been applied to two main types of constructions, namely direct and indirect fixing, to find the optimum combinations of resilient pad characteristics for various cases of travelling direction, travelling speed and support conditions.

  3. Dyslexia: A Mother's Role

    ERIC Educational Resources Information Center

    Washburn, Erin K.

    2014-01-01

    Children and adolescents with dyslexia are at greater risk for academic failure and socioemotional problems than their non-dyslexic peers. However, researchers have suggested that individuals with dyslexia can benefit from a strong support system. Further, researchers have noted that mothers are integral to their child's support system. However,…

  4. Environmental control system transducer development study

    NASA Technical Reports Server (NTRS)

    Brudnicki, M. J.

    1973-01-01

    A failure evaluation of the transducers used in the environmental control systems of the Apollo command service module, lunar module, and portable life support system is presented in matrix form for several generic categories of transducers to enable identification of chronic failure modes. Transducer vendors were contacted and asked to supply detailed information. The evaluation data generated for each category of transducer were compiled and published in failure design evaluation reports. The evaluation reports also present a review of the failure and design data for the transducers and suggest both design criteria to improve reliability of the transducers and, where necessary, design concepts for required redesign of the transducers. Remedial designs were implemented on a family of pressure transducers and on the oxygen flow transducer. The design concepts were subjected to analysis, breadboard fabrication, and verification testing.

  5. J-2X Abort System Development

    NASA Technical Reports Server (NTRS)

    Santi, Louis M.; Butas, John P.; Aguilar, Robert B.; Sowers, Thomas S.

    2008-01-01

    The J-2X is an expendable liquid hydrogen (LH2)/liquid oxygen (LOX) gas generator cycle rocket engine that is currently being designed as the primary upper stage propulsion element for the new NASA Ares vehicle family. The J-2X engine will contain abort logic that functions as an integral component of the Ares vehicle abort system. This system is responsible for detecting and responding to conditions indicative of impending Loss of Mission (LOM), Loss of Vehicle (LOV), and/or catastrophic Loss of Crew (LOC) failure events. As an earth orbit ascent phase engine, the J-2X is a high power density propulsion element with non-negligible risk of fast propagation rate failures that can quickly lead to LOM, LOV, and/or LOC events. Aggressive reliability requirements for manned Ares missions and the risk of fast propagating J-2X failures dictate the need for on-engine abort condition monitoring and autonomous response capability as well as traditional abort agents such as the vehicle computer, flight crew, and ground control not located on the engine. This paper describes the baseline J-2X abort subsystem concept of operations, as well as the development process for this subsystem. A strategy that leverages heritage system experience and responds to an evolving engine design as well as J-2X specific test data to support abort system development is described. The utilization of performance and failure simulation models to support abort system sensor selection, failure detectability and discrimination studies, decision threshold definition, and abort system performance verification and validation is outlined. The basis for abort false positive and false negative performance constraints is described. Development challenges associated with information shortfalls in the design cycle, abort condition coverage and response assessment, engine-vehicle interface definition, and abort system performance verification and validation are also discussed.

  6. Independent Orbiter Assessment (IOA): Analysis of the extravehicular mobility unit

    NASA Technical Reports Server (NTRS)

    Raffaelli, Gary G.

    1986-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items (PCIs). To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. This report documents the independent analysis results corresponding to the Extravehicular Mobility Unit (EMU) hardware. The EMU is an independent anthropomorphic system that provides environmental protection, mobility, life support, and communications for the Shuttle crewmember to perform Extravehicular Activity (EVA) in Earth orbit. Two EMUs are included on each baseline Orbiter mission, and consumables are provided for three two-man EVAs. The EMU consists of the Life Support System (LSS), Caution and Warning System (CWS), and the Space Suit Assembly (SSA). Each level of hardware was evaluated and analyzed for possible failure modes and effects. The majority of these PCIs are resultant from failures which cause loss of one or more primary functions: pressurization, oxygen delivery, environmental maintenance, and thermal maintenance. It should also be noted that the quantity of PCIs would significantly increase if the SOP were to be treated as an emergency system rather than as an unlike redundant element.

  7. Reliability, Safety and Error Recovery for Advanced Control Software

    NASA Technical Reports Server (NTRS)

    Malin, Jane T.

    2003-01-01

    For long-duration automated operation of regenerative life support systems in space environments, there is a need for advanced integration and control systems that are significantly more reliable and safe, and that support error recovery and minimization of operational failures. This presentation outlines some challenges of hazardous space environments and complex system interactions that can lead to system accidents. It discusses approaches to hazard analysis and error recovery for control software and challenges of supporting effective intervention by safety software and the crew.

  8. Health monitoring display system for a complex plant

    DOEpatents

    Ridolfo, Charles F [Bloomfield, CT; Harmon, Daryl L [Enfield, CT; Colin, Dreyfuss [Enfield, CT

    2006-08-08

    A single page enterprise wide level display provides a comprehensive readily understood representation of the overall health status of a complex plant. Color coded failure domains allow rapid intuitive recognition of component failure status. A three-tier hierarchy of displays provide details on the health status of the components and systems displayed on the enterprise wide level display in a manner that supports a logical drill down to the health status of sub-components on Tier 1 to expected faults of the sub-components on Tier 2 to specific information relative to expected sub-component failures on Tier 3.

  9. Performance evaluation of redundant disk array support for transaction recovery

    NASA Technical Reports Server (NTRS)

    Mourad, Antoine N.; Fuchs, W. Kent; Saab, Daniel G.

    1991-01-01

    Redundant disk arrays provide a way of achieving rapid recovery from media failures with a relatively low storage cost for large scale data systems requiring high availability. Here, we propose a method for using redundant disk arrays to support rapid recovery from system crashes and transaction aborts in addition to their role in providing media failure recovery. A twin page scheme is used to store the parity information in the array so that the time for transaction commit processing is not degraded. Using an analytical model, we show that the proposed method achieves a significant increase in the throughput of database systems using redundant disk arrays by reducing the number of recovery operations needed to maintain the consistency of the database.

  10. Carers' needs in advanced heart failure: A systematic narrative review.

    PubMed

    Doherty, Leanne C; Fitzsimons, Donna; McIlfatrick, Sonja J

    2016-06-01

    Informal caregivers play a pivotal role in the care of people living with advanced heart failure, however, carers' needs have not been clearly identified. The aim of this study is to explore the evidence on palliative care needs expressed by carers of people with heart failure. Five electronic databases (CINAHL PLUS, EMBASE, Medline, PsychInfo and SCOPUS) were systematically searched and articles published January 2003-June 2014 with a qualitative methodology focusing on the palliative care needs of carers of people living with heart failure were included. Data was systematically extracted from 15 articles using an inductive methodology for the thematic analysis. Ten broad categories emerged from which three key areas of support needs were identified; psychosocial support to maintain a sense of normalcy; support with daily living; support navigating the healthcare system. The articles were predominantly published in the UK and USA with a total sample size across all articles of 270, the majority of which were older female spouses. Results included a combination of carers, patients and professionals thoughts, however data was extracted for carers only. Carer's needs initiate when the patient is diagnosed and continue throughout the disease into bereavement. These needs are continuously prioritised and reprioritised depending on the patients' medical stability. A holistic approach is needed to support these carers, incorporating heart failure and palliative care specialties. Further research is warranted to explore different methods of delivering support and information and to evaluate whether these reduce carer burden. © The European Society of Cardiology 2015.

  11. Independent Orbiter Assessment (IOA): Assessment of the life support and airlock support systems, volume 2

    NASA Technical Reports Server (NTRS)

    Barickman, K.

    1988-01-01

    The McDonnell Douglas Astronautics Company (MDAC) was selected in June 1986 to perform an Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL). The IOA effort first completed an analysis of the Life Support and Airlock Support Systems (LSS and ALSS) hardware, generating draft failure modes and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The IOA results were then compared to the NASA FMEA/CIL baseline with proposed Post 51-L updates included. The discrepancies were flagged for potential future resolution. This report documents the results of that comparison for the Orbiter LSS and ALSS hardware. Volume 2 continues the presentation of IOA worksheets and contains the critical items list and NASA FMEA to IOA worksheet cross reference and recommendations.

  12. Cyberspace security system

    DOEpatents

    Abercrombie, Robert K; Sheldon, Frederick T; Ferragut, Erik M

    2014-06-24

    A system evaluates reliability, performance and/or safety by automatically assessing the targeted system's requirements. A cost metric quantifies the impact of failures as a function of failure cost per unit of time. The metrics or measurements may render real-time (or near real-time) outcomes by initiating active response against one or more high ranked threats. The system may support or may be executed in many domains including physical domains, cyber security domains, cyber-physical domains, infrastructure domains, etc. or any other domains that are subject to a threat or a loss.

  13. Fatigue Behavior of a Box-Type Welded Structure of Hydraulic Support Used in Coal Mine

    PubMed Central

    Zhao, Xiaohui; Li, Fuyong; Liu, Yu; Fan, Yanjun

    2015-01-01

    Hydraulic support is the main supporting equipment of the coal mining systems, and they are usually subjected to fatigue failure under the high dynamic load. The fracture positions are generally at welded joints where there is a serious stress concentration. In order to investigate and further improve the fatigue strength of hydraulic support, the present work first located the possible position where fatigue failure occurs through finite element analysis, and then fatigue tests were carried out on the different forms of welded joints for the dangerous parts. Finally, Fatigue strength-life (S-N) curves and fracture mechanism were studied. This research will provide a theoretical reference for the fatigue design of welded structures for hydraulic support. PMID:28793586

  14. Graceful Failure, Engineering, and Planning for Extremes: The Engineering for Climate Extremes Partnership (ECEP)

    NASA Astrophysics Data System (ADS)

    Bruyere, C. L.; Tye, M. R.; Holland, G. J.; Done, J.

    2015-12-01

    Graceful failure acknowledges that all systems will fail at some level and incorporates the potential for failure as a key component of engineering design, community planning, and the associated research and development. This is a fundamental component of the ECEP, an interdisciplinary partnership bringing together scientific, engineering, cultural, business and government expertise to develop robust, well-communicated predictions and advice on the impacts of weather and climate extremes in support of decision-making. A feature of the partnership is the manner in which basic and applied research and development is conducted in direct collaboration with the end user. A major ECEP focus is the Global Risk and Resilience Toolbox (GRRT) that is aimed at developing public-domain, risk-modeling and response data and planning system in support of engineering design, and community planning and adaptation activities. In this presentation I will outline the overall ECEP and GRIP activities, and expand on the 'graceful failure' concept. Specific examples for direct assessment and prediction of hurricane impacts and damage potential will be included.

  15. Follow-up and treatment of an instable patient with heart failure using telemonitoring and a computerised disease management system: a case report.

    PubMed

    de Vries, Arjen E; van der Wal, Martje Hl; Bedijn, Wendy; de Jong, Richard M; van Dijk, Rene B; Hillege, Hans L; Jaarsma, Tiny

    2012-12-01

    In the last decades, the introduction of information and communication technology (ICT) in healthcare promised an improved quality of care while reducing workload and improving cost-effectiveness. This might be realised by the use of computer guided decision support systems and telemonitoring. This case study describes the process of care of a patient with chronic heart failure, who was treated with a computerised disease management system in combination with telemonitoring. With the help of these appliances, we think we were probably able to prevent at least two readmissions for heart failure in a period of 10 months. We also gained more insight into patient's behaviour with regards to compliance with the heart failure regimen at home. Frequent contact at distance and the online availability of physiological measurements at home facilitated patient tailored education and helped the patient to react adequately to symptoms of deterioration. Additionally, up-titration of heart failure medication was performed without contacting the patient at the outpatient clinic.

  16. Model Based Mission Assurance: Emerging Opportunities for Robotic Systems

    NASA Technical Reports Server (NTRS)

    Evans, John W.; DiVenti, Tony

    2016-01-01

    The emergence of Model Based Systems Engineering (MBSE) in a Model Based Engineering framework has created new opportunities to improve effectiveness and efficiencies across the assurance functions. The MBSE environment supports not only system architecture development, but provides for support of Systems Safety, Reliability and Risk Analysis concurrently in the same framework. Linking to detailed design will further improve assurance capabilities to support failures avoidance and mitigation in flight systems. This also is leading new assurance functions including model assurance and management of uncertainty in the modeling environment. Further, the assurance cases, a structured hierarchal argument or model, are emerging as a basis for supporting a comprehensive viewpoint in which to support Model Based Mission Assurance (MBMA).

  17. CONFIG: Integrated engineering of systems and their operation

    NASA Technical Reports Server (NTRS)

    Malin, Jane T.; Ryan, Dan; Fleming, Land

    1994-01-01

    This article discusses CONFIG 3, a prototype software tool that supports integrated conceptual design evaluation from early in the product life cycle, by supporting isolated or integrated modeling, simulation, and analysis of the function, structure, behavior, failures and operations of system designs. Integration and reuse of models is supported in an object-oriented environment providing capabilities for graph analysis and discrete event simulation. CONFIG supports integration among diverse modeling approaches (component view, configuration or flow path view, and procedure view) and diverse simulation and analysis approaches. CONFIG is designed to support integrated engineering in diverse design domains, including mechanical and electro-mechanical systems, distributed computer systems, and chemical processing and transport systems.

  18. Person to Person Biological Heat Bypass During EVA Emergencies

    NASA Technical Reports Server (NTRS)

    Koscheyev, Victor S.; Leon, Gloria R.; Lee, Joo-Young; Kim, Jung-Hyun; Berowiski, Anna; Trevino, Robert C.

    2007-01-01

    During EVA and other extreme environments, mutual human support is sometimes the last way to survive when there is a failure of the life support equipment. The possibility to transfer a coolant to remove heat or a warming fluid to increase heat from one individual to another to support the thermal balance of the individual with system failure was assessed. The following scenarios were considered: 1. one participant has a cooling system that is not working well and already has a body heat deficit equal to 100-120 kcal and a finger temperature decline to 25 C; 2. one participant has the same status of overcooling and the other mild overheating. Preliminary findings showed promise in using such sharing tactics to extend the time duration of survival in extreme situations when there is a high metabolic rate in the donor.

  19. Identification of Modeling Approaches To Support Common-Cause Failure Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korsah, Kofi; Wood, Richard Thomas

    2015-06-01

    Experience with applying current guidance and practices for common-cause failure (CCF) mitigation to digital instrumentation and control (I&C) systems has proven problematic, and the regulatory environment has been unpredictable. The impact of CCF vulnerability is to inhibit I&C modernization and, thereby, challenge the long-term sustainability of existing plants. For new plants and advanced reactor concepts, the issue of CCF vulnerability for highly integrated digital I&C systems imposes a design burden resulting in higher costs and increased complexity. The regulatory uncertainty regarding which mitigation strategies are acceptable (e.g., what diversity is needed and how much is sufficient) drives designers to adoptmore » complicated, costly solutions devised for existing plants. The conditions that constrain the transition to digital I&C technology by the U.S. nuclear industry require crosscutting research to resolve uncertainty, demonstrate necessary characteristics, and establish an objective basis for qualification of digital technology for usage in Nuclear Power Plant (NPP) I&C applications. To fulfill this research need, Oak Ridge National Laboratory is conducting an investigation into mitigation of CCF vulnerability for nuclear-qualified applications. The outcome of this research is expected to contribute to a fundamentally sound, comprehensive technical basis for establishing the qualification of digital technology for nuclear power applications. This report documents the investigation of modeling approaches for representing failure of I&C systems. Failure models are used when there is a need to analyze how the probability of success (or failure) of a system depends on the success (or failure) of individual elements. If these failure models are extensible to represent CCF, then they can be employed to support analysis of CCF vulnerabilities and mitigation strategies. Specifically, the research findings documented in this report identify modeling approaches that can be adapted to contribute to the basis for developing systematic methods, quantifiable measures, and objective criteria for evaluating CCF vulnerabilities and mitigation strategies.« less

  20. Probabilistic Design Analysis (PDA) Approach to Determine the Probability of Cross-System Failures for a Space Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Shih, Ann T.; Lo, Yunnhon; Ward, Natalie C.

    2010-01-01

    Quantifying the probability of significant launch vehicle failure scenarios for a given design, while still in the design process, is critical to mission success and to the safety of the astronauts. Probabilistic risk assessment (PRA) is chosen from many system safety and reliability tools to verify the loss of mission (LOM) and loss of crew (LOC) requirements set by the NASA Program Office. To support the integrated vehicle PRA, probabilistic design analysis (PDA) models are developed by using vehicle design and operation data to better quantify failure probabilities and to better understand the characteristics of a failure and its outcome. This PDA approach uses a physics-based model to describe the system behavior and response for a given failure scenario. Each driving parameter in the model is treated as a random variable with a distribution function. Monte Carlo simulation is used to perform probabilistic calculations to statistically obtain the failure probability. Sensitivity analyses are performed to show how input parameters affect the predicted failure probability, providing insight for potential design improvements to mitigate the risk. The paper discusses the application of the PDA approach in determining the probability of failure for two scenarios from the NASA Ares I project

  1. Space Shuttle Solid Rocket Booster Decelerator Subsystem Drop Test 3 - Anatomy of a failure

    NASA Technical Reports Server (NTRS)

    Runkle, R. E.; Woodis, W. R.

    1979-01-01

    A test failure dramatically points out a design weakness or the limits of the material in the test article. In a low budget test program, with a very limited number of tests, a test failure sparks supreme efforts to investigate, analyze, and/or explain the anomaly and to improve the design such that the failure will not recur. The third air drop of the Space Shuttle Solid Rocket Booster Recovery System experienced such a dramatic failure. On air drop 3, the 54-ft drogue parachute was totally destroyed 0.7 sec after deployment. The parachute failure investigation, based on analysis of drop test data and supporting ground element test results is presented. Drogue design modifications are also discussed.

  2. Determinants of performance failure in the nursing home industry☆

    PubMed Central

    Zinn, Jacqueline; Mor, Vincent; Feng, Zhanlian; Intrator, Orna

    2013-01-01

    This study investigates the determinants of performance failure in U.S. nursing homes. The sample consisted of 91,168 surveys from 10,901 facilities included in the Online Survey Certification and Reporting system from 1996 to 2005. Failed performance was defined as termination from the Medicare and Medicaid programs. Determinants of performance failure were identified as core structural change (ownership change), peripheral change (related diversification), prior financial and quality of care performance, size and environmental shock (Medicaid case mix reimbursement and prospective payment system introduction). Additional control variables that could contribute to the likelihood of performance failure were included in a cross-sectional time series generalized estimating equation logistic regression model. Our results support the contention, derived from structural inertia theory, that where in an organization’s structure change occurs determines whether it is adaptive or disruptive. In addition, while poor prior financial and quality performance and the introduction of case mix reimbursement increases the risk of failure, larger size is protective, decreasing the likelihood of performance failure. PMID:19128865

  3. Determinants of performance failure in the nursing home industry.

    PubMed

    Zinn, Jacqueline; Mor, Vincent; Feng, Zhanlian; Intrator, Orna

    2009-03-01

    This study investigates the determinants of performance failure in U.S. nursing homes. The sample consisted of 91,168 surveys from 10,901 facilities included in the Online Survey Certification and Reporting system from 1996 to 2005. Failed performance was defined as termination from the Medicare and Medicaid programs. Determinants of performance failure were identified as core structural change (ownership change), peripheral change (related diversification), prior financial and quality of care performance, size and environmental shock (Medicaid case mix reimbursement and prospective payment system introduction). Additional control variables that could contribute to the likelihood of performance failure were included in a cross-sectional time series generalized estimating equation logistic regression model. Our results support the contention, derived from structural inertia theory, that where in an organization's structure change occurs determines whether it is adaptive or disruptive. In addition, while poor prior financial and quality performance and the introduction of case mix reimbursement increases the risk of failure, larger size is protective, decreasing the likelihood of performance failure.

  4. Albumin Dialysis for Liver Failure: A Systematic Review.

    PubMed

    Tsipotis, Evangelos; Shuja, Asim; Jaber, Bertrand L

    2015-09-01

    Albumin dialysis is the best-studied extracorporeal nonbiologic liver support system as a bridge or destination therapy for patients with liver failure awaiting liver transplantation or recovery of liver function. We performed a systematic review to examine the efficacy and safety of 3 albumin dialysis systems (molecular adsorbent recirculating system [MARS], fractionated plasma separation, adsorption and hemodialysis [Prometheus system], and single-pass albumin dialysis) in randomized trials for supportive treatment of liver failure. PubMed, Ovid, EMBASE, Cochrane's Library, and ClinicalTrials.gov were searched. Two authors independently screened citations and extracted data on patient characteristics, quality of reports, efficacy, and safety end points. Ten trials (7 of MARS and 3 of Prometheus) were identified (620 patients). By meta-analysis, albumin dialysis achieved a net decrease in serum total bilirubin level relative to standard medical therapy of 8.0 mg/dL (95% confidence interval [CI], -10.6 to -5.4) but not in serum ammonia or bile acids. Albumin dialysis achieved an improvement in hepatic encephalopathy relative to standard medical therapy with a risk ratio of 1.55 (95% CI, 1.16-2.08) but had no effect survival with a risk ratio of 0.95 (95% CI, 0.84-1.07). Because of inconsistency in the reporting of adverse events, the safety analysis was limited but did not demonstrate major safety concerns. Use of albumin dialysis as supportive treatment for liver failure is successful at removing albumin-bound molecules, such as bilirubin and at improving hepatic encephalopathy. Additional experience is required to guide its optimal use and address safety concerns. Copyright © 2015 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  5. Failure Analysis of a Complex Learning Framework Incorporating Multi-Modal and Semi-Supervised Learning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pullum, Laura L; Symons, Christopher T

    2011-01-01

    Machine learning is used in many applications, from machine vision to speech recognition to decision support systems, and is used to test applications. However, though much has been done to evaluate the performance of machine learning algorithms, little has been done to verify the algorithms or examine their failure modes. Moreover, complex learning frameworks often require stepping beyond black box evaluation to distinguish between errors based on natural limits on learning and errors that arise from mistakes in implementation. We present a conceptual architecture, failure model and taxonomy, and failure modes and effects analysis (FMEA) of a semi-supervised, multi-modal learningmore » system, and provide specific examples from its use in a radiological analysis assistant system. The goal of the research described in this paper is to provide a foundation from which dependability analysis of systems using semi-supervised, multi-modal learning can be conducted. The methods presented provide a first step towards that overall goal.« less

  6. Computer system design description for SY-101 hydrogen mitigation test project data acquisition and control system (DACS-1)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ermi, A.M.

    1997-05-01

    Description of the Proposed Activity/REPORTABLE OCCURRENCE or PIAB: This ECN changes the computer systems design description support document describing the computers system used to control, monitor and archive the processes and outputs associated with the Hydrogen Mitigation Test Pump installed in SY-101. There is no new activity or procedure associated with the updating of this reference document. The updating of this computer system design description maintains an agreed upon documentation program initiated within the test program and carried into operations at time of turnover to maintain configuration control as outlined by design authority practicing guidelines. There are no new crediblemore » failure modes associated with the updating of information in a support description document. The failure analysis of each change was reviewed at the time of implementation of the Systems Change Request for all the processes changed. This document simply provides a history of implementation and current system status.« less

  7. Spacecraft Escape Capsule

    NASA Technical Reports Server (NTRS)

    Robertson, Edward A.; Charles, Dingell W.; Bufkin, Ann L.; Rodriggs, Liana M.; Peterson, Wayne; Cuthbert, Peter; Lee, David E.; Westhelle, Carlos

    2006-01-01

    A report discusses the Gumdrop capsule a conceptual spacecraft that would enable the crew to escape safely in the event of a major equipment failure at any time from launch through atmospheric re-entry. The scaleable Gumdrop capsule would comprise a command module (CM), a service module (SM), and a crew escape system (CES). The CM would contain a pressurized crew environment that would include avionic, life-support, thermal control, propulsive attitude control, and recovery systems. The SM would provide the primary propulsion and would also supply electrical power, life-support resources, and active thermal control to the CM. The CES would include a solid rocket motor, embedded within the SM, for pushing the CM away from the SM in the event of a critical thermal-protection-system failure or loss of control. The CM and SM would normally remain integrated with each other from launch through recovery, but could be separated using the CES, if necessary, to enable the safe recovery of the crew in the CM. The crew escape motor could be used, alternatively, as a redundant means of de-orbit propulsion for the CM in the event of a major system failure in the SM.

  8. Analysis of field usage failure rate data for plastic encapsulated solid state devices

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Survey and questionnaire techniques were used to gather data from users and manufacturers on the failure rates in the field of plastic encapsulated semiconductors. It was found that such solid state devices are being successfully used by commercial companies which impose certain screening and qualification procedures. The reliability of these semiconductors is now adequate to support their consideration in NASA systems, particularly in low cost systems. The cost of performing necessary screening for NASA applications was assessed.

  9. Cardiac Cachexia: Perspectives for Prevention and Treatment.

    PubMed

    Okoshi, Marina Politi; Capalbo, Rafael Verardino; Romeiro, Fernando G; Okoshi, Katashi

    2017-01-01

    Cachexia is a prevalent pathological condition associated with chronic heart failure. Its occurrence predicts increased morbidity and mortality independent of important clinical variables such as age, ventricular function, or heart failure functional class. The clinical consequences of cachexia are dependent on both weight loss and systemic inflammation, which accompany cachexia development. Skeletal muscle wasting is an important component of cachexia; it often precedes cachexia development and predicts poor outcome in heart failure. Cachexia clinically affects several organs and systems. It is a multifactorial condition where underlying pathophysiological mechanisms are not completely understood making it difficult to develop specific prevention and treatment therapies. Preventive strategies have largely focused on muscle mass preservation. Different treatment options have been described, mostly in small clinical studies or experimental settings. These include nutritional support, neurohormonal blockade, reducing intestinal bacterial translocation, anemia and iron deficiency treatment, appetite stimulants, immunomodulatory agents, anabolic hormones, and physical exercise regimens. Currently, nonpharmacological therapy such as nutritional support and physical exercise are considered central to cachexia prevention and treatment.

  10. Accounting for Epistemic Uncertainty in Mission Supportability Assessment: A Necessary Step in Understanding Risk and Logistics Requirements

    NASA Technical Reports Server (NTRS)

    Owens, Andrew; De Weck, Olivier L.; Stromgren, Chel; Goodliff, Kandyce; Cirillo, William

    2017-01-01

    Future crewed missions to Mars present a maintenance logistics challenge that is unprecedented in human spaceflight. Mission endurance – defined as the time between resupply opportunities – will be significantly longer than previous missions, and therefore logistics planning horizons are longer and the impact of uncertainty is magnified. Maintenance logistics forecasting typically assumes that component failure rates are deterministically known and uses them to represent aleatory uncertainty, or uncertainty that is inherent to the process being examined. However, failure rates cannot be directly measured; rather, they are estimated based on similarity to other components or statistical analysis of observed failures. As a result, epistemic uncertainty – that is, uncertainty in knowledge of the process – exists in failure rate estimates that must be accounted for. Analyses that neglect epistemic uncertainty tend to significantly underestimate risk. Epistemic uncertainty can be reduced via operational experience; for example, the International Space Station (ISS) failure rate estimates are refined using a Bayesian update process. However, design changes may re-introduce epistemic uncertainty. Thus, there is a tradeoff between changing a design to reduce failure rates and operating a fixed design to reduce uncertainty. This paper examines the impact of epistemic uncertainty on maintenance logistics requirements for future Mars missions, using data from the ISS Environmental Control and Life Support System (ECLS) as a baseline for a case study. Sensitivity analyses are performed to investigate the impact of variations in failure rate estimates and epistemic uncertainty on spares mass. The results of these analyses and their implications for future system design and mission planning are discussed.

  11. The business concept of leader pricing as applied to heart failure disease management.

    PubMed

    Hauptman, Paul J; Bednarek, Heather L

    2004-01-01

    The implementation of a disease management approach for patients with heart failure has been promoted as a way to improve outcomes, including a decrease in hospitalizations. However, in the absence of rigorous cost analyses and with revenues limited by professional fees, heart failure disease management programs may appear to operate at a loss. The literature outlining the importance of disease management for patients with heart failure is summarized. We review the limitations of current cost analyses and outline the economic concepts of leader pricing, vertical integration and transaction costs to argue that heart failure disease management programs may provide significant "downstream" revenue for an integrated system of health care delivery in a fee-for-service payment structure, while reducing overall costs of care. Pilot data from a university-based program are used in support of this argument. In addition, the favorable impact on patient satisfaction and loyalty can enhance market share, a vital consideration for all health systems. Options for improving the reputation of heart failure disease management within a health system are suggested. Viewed as a loss leader, disease management provides not only quality care for patients with heart failure but also appears to provide financial benefits to the health system that funds the infrastructure and administration of the program. The actual magnitude of this benefit and the degree to which it mitigates overall administration costs requires further study.

  12. Mechanical Circulatory Support Devices for Acute Right Ventricular Failure.

    PubMed

    Kapur, Navin K; Esposito, Michele L; Bader, Yousef; Morine, Kevin J; Kiernan, Michael S; Pham, Duc Thinh; Burkhoff, Daniel

    2017-07-18

    Right ventricular (RV) failure remains a major cause of global morbidity and mortality for patients with advanced heart failure, pulmonary hypertension, or acute myocardial infarction and after major cardiac surgery. Over the past 2 decades, percutaneously delivered acute mechanical circulatory support pumps specifically designed to support RV failure have been introduced into clinical practice. RV acute mechanical circulatory support now represents an important step in the management of RV failure and provides an opportunity to rapidly stabilize patients with cardiogenic shock involving the RV. As experience with RV devices grows, their role as mechanical therapies for RV failure will depend less on the technical ability to place the device and more on improved algorithms for identifying RV failure, patient monitoring, and weaning protocols for both isolated RV failure and biventricular failure. In this review, we discuss the pathophysiology of acute RV failure and both the mechanism of action and clinical data exploring the utility of existing RV acute mechanical circulatory support devices. © 2017 American Heart Association, Inc.

  13. 14 CFR 23.1123 - Exhaust system.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Exhaust system. 23.1123 Section 23.1123 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... prevent failure due to expansion by operating temperatures. (b) Each exhaust system must be supported to...

  14. 14 CFR 23.1123 - Exhaust system.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Exhaust system. 23.1123 Section 23.1123 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... prevent failure due to expansion by operating temperatures. (b) Each exhaust system must be supported to...

  15. 14 CFR 23.1123 - Exhaust system.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Exhaust system. 23.1123 Section 23.1123 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... prevent failure due to expansion by operating temperatures. (b) Each exhaust system must be supported to...

  16. 14 CFR 23.1123 - Exhaust system.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Exhaust system. 23.1123 Section 23.1123 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... prevent failure due to expansion by operating temperatures. (b) Each exhaust system must be supported to...

  17. 14 CFR 23.1123 - Exhaust system.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Exhaust system. 23.1123 Section 23.1123 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... prevent failure due to expansion by operating temperatures. (b) Each exhaust system must be supported to...

  18. Development of wheelchair caster testing equipment and preliminary testing of caster models

    PubMed Central

    Mhatre, Anand; Ott, Joseph

    2017-01-01

    Background Because of the adverse environmental conditions present in less-resourced environments (LREs), the World Health Organization (WHO) has recommended that specialised wheelchair test methods may need to be developed to support product quality standards in these environments. A group of experts identified caster test methods as a high priority because of their common failure in LREs, and the insufficiency of existing test methods described in the International Organization for Standardization (ISO) Wheelchair Testing Standards (ISO 7176). Objectives To develop and demonstrate the feasibility of a caster system test method. Method Background literature and expert opinions were collected to identify existing caster test methods, caster failures common in LREs and environmental conditions present in LREs. Several conceptual designs for the caster testing method were developed, and through an iterative process using expert feedback, a final concept and a design were developed and a prototype was fabricated. Feasibility tests were conducted by testing a series of caster systems from wheelchairs used in LREs, and failure modes were recorded and compared to anecdotal reports about field failures. Results The new caster testing system was developed and it provides the flexibility to expose caster systems to typical conditions in LREs. Caster failures such as stem bolt fractures, fork fractures, bearing failures and tire cracking occurred during testing trials and are consistent with field failures. Conclusion The new caster test system has the capability to incorporate necessary test factors that degrade caster quality in LREs. Future work includes developing and validating a testing protocol that results in failure modes common during wheelchair use in LRE. PMID:29062762

  19. US FDA perspective on regulatory issues affecting circulatory assist devices.

    PubMed

    Sapirstein, Wolf; Chen, Eric; Swain, Julie; Zuckerman, Bram

    2006-11-01

    There has been a rapid development in mechanical circulatory support systems in the decade since the US FDA first approved a mechanical device to provide the circulatory support lacking from a failing heart. Devices are presently approved for marketing by the FDA to replace a failing ventricle, the Ventricular Assist Device or the entire heart, Total Artificial Heart. Contemporaneous with, and permitted by, improvement in technology and design, devices have evolved from units located extracorporeally to paracorporeal systems and totally implanted devices. Clinical studies have demonstrated a parallel improvement in the homeostatic adequacy of the circulatory support provided. Thus, while the circulatory support was initially tolerated for short periods to permit recovery of cardiac function, this technology eventually provided effective circulatory support for increasing periods that permitted the FDA to approve devices for bridging patients in end-stage cardiac failure awaiting transplant and eventually a device for destination therapy where patients in end-stage heart failure are not cardiac transplant candidates. The approved devices have relied on displacement pumps that mimic the pulsatility of the physiological system. Accelerated development of more compact devices that rely on alternative pump mechanisms have challenged both the FDA and device manufacturers to assure that the regulatory requirements for safety and effectiveness are met for use of mechanical circulatory support systems in expanded target populations. An FDA regulatory perspective is reviewed of what can be a potentially critical healthcare issue.

  20. Integrating FMEA in a Model-Driven Methodology

    NASA Astrophysics Data System (ADS)

    Scippacercola, Fabio; Pietrantuono, Roberto; Russo, Stefano; Esper, Alexandre; Silva, Nuno

    2016-08-01

    Failure Mode and Effects Analysis (FMEA) is a well known technique for evaluating the effects of potential failures of components of a system. FMEA demands for engineering methods and tools able to support the time- consuming tasks of the analyst. We propose to make FMEA part of the design of a critical system, by integration into a model-driven methodology. We show how to conduct the analysis of failure modes, propagation and effects from SysML design models, by means of custom diagrams, which we name FMEA Diagrams. They offer an additional view of the system, tailored to FMEA goals. The enriched model can then be exploited to automatically generate FMEA worksheet and to conduct qualitative and quantitative analyses. We present a case study from a real-world project.

  1. Andreas Acrivos Dissertation Award: Onset of Dynamic Wetting Failure - The Mechanics of High-Speed Fluid Displacement

    NASA Astrophysics Data System (ADS)

    Vandre, Eric

    2014-11-01

    Dynamic wetting is crucial to processes where a liquid displaces another fluid along a solid surface, such as the deposition of a coating liquid onto a moving substrate. Dynamic wetting fails when process speed exceeds some critical value, leading to incomplete fluid displacement and transient phenomena that impact a variety of applications, such as microfluidic devices, oil-recovery systems, and splashing droplets. Liquid coating processes are particularly sensitive to wetting failure, which can induce air entrainment and other catastrophic coating defects. Despite the industrial incentives for careful control of wetting behavior, the hydrodynamic factors that influence the transition to wetting failure remain poorly understood from empirical and theoretical perspectives. This work investigates the fundamentals of wetting failure in a variety of systems that are relevant to industrial coating flows. A hydrodynamic model is developed where an advancing fluid displaces a receding fluid along a smooth, moving substrate. Numerical solutions predict the onset of wetting failure at a critical substrate speed, which coincides with a turning point in the steady-state solution path for a given set of system parameters. Flow-field analysis reveals a physical mechanism where wetting failure results when capillary forces can no longer support the pressure gradients necessary to steadily displace the receding fluid. Novel experimental systems are used to measure the substrate speeds and meniscus shapes associated with the onset of air entrainment during wetting failure. Using high-speed visualization techniques, air entrainment is identified by the elongation of triangular air films with system-dependent size. Air films become unstable to thickness perturbations and ultimately rupture, leading to the entrainment of air bubbles. Meniscus confinement in a narrow gap between the substrate and a stationary plate is shown to delay air entrainment to higher speeds for a variety of water/glycerol solutions. In addition, liquid pressurization (relative to ambient air) further postpones air entrainment when the meniscus is located near a sharp corner along the plate. Recorded critical speeds compare well to predictions from the model, supporting the hydrodynamic mechanism for the onset of wetting failure. Lastly, the industrial practice of curtain coating is investigated using the hydrodynamic model. Due to the complexity of this system, a new computational approach is developed combining a finite element method and lubrication theory in order to improve the efficiency of the numerical analysis. Results show that the onset of wetting failure varies strongly with the operating conditions of this system. In addition, stresses from the air flow dramatically affect the steady wetting behavior of curtain coating. Ultimately, these findings emphasize the important role of two-fluid displacement mechanics in high-speed wetting systems.

  2. Health information systems: failure, success and improvisation.

    PubMed

    Heeks, Richard

    2006-02-01

    The generalised assumption of health information systems (HIS) success is questioned by a few commentators in the medical informatics field. They point to widespread HIS failure. The purpose of this paper was therefore to develop a better conceptual foundation for, and practical guidance on, health information systems failure (and success). Literature and case analysis plus pilot testing of developed model. Defining HIS failure and success is complex, and the current evidence base on HIS success and failure rates was found to be weak. Nonetheless, the best current estimate is that HIS failure is an important problem. The paper therefore derives and explains the "design-reality gap" conceptual model. This is shown to be robust in explaining multiple cases of HIS success and failure, yet provides a contingency that encompasses the differences which exist in different HIS contexts. The design-reality gap model is piloted to demonstrate its value as a tool for risk assessment and mitigation on HIS projects. It also throws into question traditional, structured development methodologies, highlighting the importance of emergent change and improvisation in HIS. The design-reality gap model can be used to address the problem of HIS failure, both as a post hoc evaluative tool and as a pre hoc risk assessment and mitigation tool. It also validates a set of methods, techniques, roles and competencies needed to support the dynamic improvisations that are found to underpin cases of HIS success.

  3. FY04 Advanced Life Support Architecture and Technology Studies: Mid-Year Presentation

    NASA Technical Reports Server (NTRS)

    Lange, Kevin; Anderson, Molly; Duffield, Bruce; Hanford, Tony; Jeng, Frank

    2004-01-01

    Long-Term Objective: Identify optimal advanced life support system designs that meet existing and projected requirements for future human spaceflight missions. a) Include failure-tolerance, reliability, and safe-haven requirements. b) Compare designs based on multiple criteria including equivalent system mass (ESM), technology readiness level (TRL), simplicity, commonality, etc. c) Develop and evaluate new, more optimal, architecture concepts and technology applications.

  4. Hemoadsorption in cardiac shock with biventricular failure and giant-cell myocarditis: A case report.

    PubMed

    Dogan, Günes; Hanke, Jasmin; Puntigam, Jakob; Haverich, Axel; Schmitto, Jan D

    2018-05-01

    Giant-cell myocarditis represents a rare and often fatal autoimmune disorder. Despite extracorporeal life support being a valid treatment option, alternatives to control the underlying inflammatory response remain sparse. A new hemoadsorption device (CytoSorb) has recently been introduced to treat patients with an excessive inflammatory response. A 57-year-old patient developed fulminant right heart failure, respiratory insufficiency, hemodynamic instability, and oliguric-anuric renal failure. An extracorporeal life support together with an Impella was implanted for circulatory support. Due to non-pulsatility, acontractility of the left ventricle and a heavily reduced right ventricular function, a left ventricular assist device implantation and change from extracorporeal life support to veno-pulmonary arterial extracorporeal membrane oxygenation was performed. Since adequate hemodynamic stabilization could not be achieved and due to increasing inflammatory mediators and bilirubin levels, the decision was made to additionally integrate a CytoSorb hemoadsorber into the system. The combined treatment resulted in a clear and steady improvement in hemodynamics and the inflammatory condition with marked reductions in all measured parameters throughout the treatment period. Metabolic acidosis resolved and liver function improved. Extracorporeal life support therapy represents a bridging approach to heart transplantation or to cardiac recovery and can be complemented by CytoSorb as an independent therapeutic option. The patient described herein with giant-cell myocarditis and fulminant cardiac failure who received substantial extracorporeal support in combination with CytoSorb hemoadsorption therapy benefited in terms of an improvement of organ function and his inflammatory situation.

  5. Flight performance of Skylab attitude and pointing control system

    NASA Technical Reports Server (NTRS)

    Chubb, W. B.; Kennel, H. F.; Rupp, C. C.; Seltzer, S. M.

    1975-01-01

    The Skylab attitude and pointing control system (APCS) requirements are briefly reviewed and the way in which they became altered during the prelaunch phase of development is noted. The actual flight mission (including mission alterations during flight) is described. The serious hardware failures that occurred, beginning during ascent through the atmosphere, also are described. The APCS's ability to overcome these failures and meet mission changes are presented. The large around-the-clock support effort on the ground is discussed. Salient design points and software flexibility that should afford pertinent experience for future spacecraft attitude and pointing control system designs are included.

  6. International Space Station (ISS) Environmental Control and Life Support (ECLS) System Overview of Events: February 2002 - 2004

    NASA Technical Reports Server (NTRS)

    Gentry, Gregory J.; Reysa, Richard P.; Williams, Dave E.

    2004-01-01

    The International Space Station continues to build up its life support equipment capability. Several ECLS equipment failures have occurred since Lab activation in February 2001. Major problems occurring between February 2001 and February 2002 were discussed in other works. Major problems occurring between February 2002 and February 2003 are discussed in this paper, as are updates from previously ongoing unresolved problems. This paper addresses failures, and root cause, with particular emphasis on likely micro-gravity causes. Impact to overall station operations and proposed and accomplished fixes will also be discussed.

  7. Hybrid Modeling for Testing Intelligent Software for Lunar-Mars Closed Life Support

    NASA Technical Reports Server (NTRS)

    Malin, Jane T.; Nicholson, Leonard S. (Technical Monitor)

    1999-01-01

    Intelligent software is being developed for closed life support systems with biological components, for human exploration of the Moon and Mars. The intelligent software functions include planning/scheduling, reactive discrete control and sequencing, management of continuous control, and fault detection, diagnosis, and management of failures and errors. Four types of modeling information have been essential to system modeling and simulation to develop and test the software and to provide operational model-based what-if analyses: discrete component operational and failure modes; continuous dynamic performance within component modes, modeled qualitatively or quantitatively; configuration of flows and power among components in the system; and operations activities and scenarios. CONFIG, a multi-purpose discrete event simulation tool that integrates all four types of models for use throughout the engineering and operations life cycle, has been used to model components and systems involved in the production and transfer of oxygen and carbon dioxide in a plant-growth chamber and between that chamber and a habitation chamber with physicochemical systems for gas processing.

  8. Individual versus systemic risk and the Regulator's Dilemma.

    PubMed

    Beale, Nicholas; Rand, David G; Battey, Heather; Croxson, Karen; May, Robert M; Nowak, Martin A

    2011-08-02

    The global financial crisis of 2007-2009 exposed critical weaknesses in the financial system. Many proposals for financial reform address the need for systemic regulation--that is, regulation focused on the soundness of the whole financial system and not just that of individual institutions. In this paper, we study one particular problem faced by a systemic regulator: the tension between the distribution of assets that individual banks would like to hold and the distribution across banks that best supports system stability if greater weight is given to avoiding multiple bank failures. By diversifying its risks, a bank lowers its own probability of failure. However, if many banks diversify their risks in similar ways, then the probability of multiple failures can increase. As more banks fail simultaneously, the economic disruption tends to increase disproportionately. We show that, in model systems, the expected systemic cost of multiple failures can be largely explained by two global parameters of risk exposure and diversity, which can be assessed in terms of the risk exposures of individual actors. This observation hints at the possibility of regulatory intervention to promote systemic stability by incentivizing a more diverse diversification among banks. Such intervention offers the prospect of an additional lever in the armory of regulators, potentially allowing some combination of improved system stability and reduced need for additional capital.

  9. EXTRACORPOREAL MEMBRANE OXYGENATION vs. COUNTERPULSATILE, PULSATILE, AND CONTINUOUS LEFT VENTRICULAR UNLOADING FOR PEDIATRIC MECHANICAL CIRCULATORY SUPPORT

    PubMed Central

    Bartoli, Carlo R.; Koenig, Steven C.; Ionan, Constantine; Gillars, Kevin J.; Mitchell, Mike E.; Austin, Erle H.; Gray, Laman A.; Pantalos, George M.

    2014-01-01

    OBJECTIVE Despite progress with adult ventricular assist devices (VADs), limited options exist to support pediatric patients with life-threatening heart disease. Extracorporeal membrane oxygenation (ECMO) remains the clinical standard. To characterize (patho)physiologic responses to different modes of mechanical unloading of the failing pediatric heart, ECMO was compared to either intraaortic balloon pump (IABP), pulsatile-flow (PF)VAD, or continuous-flow (CF)VAD support in a pediatric heart failure model. DESIGN Experimental. SETTING Large animal laboratory operating room. SUBJECTS Yorkshire piglets (n=47, 11.7±2.6 kg). INTERVENTIONS In piglets with coronary ligation-induced cardiac dysfunction, mechanical circulatory support devices were implanted and studied during maximum support. MEASUREMENTS and MAIN RESULTS Left ventricular, right ventricular, coronary, carotid, systemic arterial, and pulmonary arterial hemodynamics were measured with pressure and flow transducers. Myocardial oxygen consumption and total-body oxygen consumption (VO2) were calculated from arterial, venous, and coronary sinus blood sampling. Blood flow was measured in 17 organs with microspheres. Paired student t-tests compared baseline and heart failure conditions. One-way repeated-measures ANOVA compared heart failure, device support mode(s), and ECMO. Statistically significant (p<0.05) findings included: 1) improved left ventricular blood supply/demand ratio during PFVAD, CFVAD, and ECMO but not IABP support, 2) improved global myocardial blood supply/demand ratio during PFVAD, and CFVAD but not IABP or ECMO support, and 3) diminished pulsatility during ECMO and CFVAD but not IABP and PFVAD support. A profile of systems-based responses was established for each type of support. CONCLUSIONS Each type of pediatric VAD provided hemodynamic support by unloading the heart with a different mechanism that created a unique profile of physiological changes. These data contribute novel, clinically relevant insight into pediatric mechanical circulatory support and establish an important resource for pediatric device development and patient selection. PMID:24108116

  10. Role of the Renin–Angiotensin System in the Pathogenesis of Intimal Hyperplasia: Therapeutic Potential for Prevention of Vein Graft Failure?

    PubMed Central

    Osgood, Michael J.; Harrison, David G.; Sexton, Kevin W.; Hocking, Kyle M.; Voskresensky, Igor V.; Komalavilas, Padmini; Cheung-Flynn, Joyce; Guzman, Raul J.; Brophy, Colleen M.

    2014-01-01

    The saphenous vein remains the most widely used conduit for peripheral and coronary revascularization despite a high rate of vein graft failure. The most common cause of vein graft failure is intimal hyperplasia. No agents have been proven to be successful for the prevention of intimal hyperplasia in human subjects. The rennin–angiotensin system is essential in the regulation of vascular tone and blood pressure in physiologic conditions. However, this system mediates cardiovascular remodeling in pathophysiologic states. Angiotensin II is becoming increasingly recognized as a potential mediator of intimal hyperplasia. Drugs modulating the renin–angiotensin system include angiotensin-converting enzyme inhibitors and angiotensin receptor blockers. These drugs are powerful inhibitors of atherosclerosis and cardiovascular remodeling, and they are first-line agents for management of several medical conditions based on class I evidence that they delay progression of cardiovascular disease and improve survival. Several experimental models have demonstrated that these agents are capable of inhibiting intimal hyperplasia. However, there are no data supporting their role in prevention of intimal hyperplasia in patients with vein grafts. This review summarizes the physiology of the rennin–angiotensin system, the role of angiotensin II in the pathogenesis of cardiovascular remodeling, the medical indications for these agents, and the experimental data supporting an important role of the rennin–angiotensin system in the pathogenesis of intimal hyperplasia. PMID:22445245

  11. Monitoring System for Storm Readiness and Recovery of Test Facilities: Integrated System Health Management (ISHM) Approach

    NASA Technical Reports Server (NTRS)

    Figueroa, Fernando; Morris, Jon; Turowski, Mark; Franzl, Richard; Walker, Mark; Kapadia, Ravi; Venkatesh, Meera; Schmalzel, John

    2010-01-01

    Severe weather events are likely occurrences on the Mississippi Gulf Coast. It is important to rapidly diagnose and mitigate the effects of storms on Stennis Space Center's rocket engine test complex to avoid delays to critical test article programs, reduce costs, and maintain safety. An Integrated Systems Health Management (ISHM) approach and technologies are employed to integrate environmental (weather) monitoring, structural modeling, and the suite of available facility instrumentation to provide information for readiness before storms, rapid initial damage assessment to guide mitigation planning, and then support on-going assurance as repairs are effected and finally support recertification. The system is denominated Katrina Storm Monitoring System (KStorMS). Integrated Systems Health Management (ISHM) describes a comprehensive set of capabilities that provide insight into the behavior the health of a system. Knowing the status of a system allows decision makers to effectively plan and execute their mission. For example, early insight into component degradation and impending failures provides more time to develop work around strategies and more effectively plan for maintenance. Failures of system elements generally occur over time. Information extracted from sensor data, combined with system-wide knowledge bases and methods for information extraction and fusion, inference, and decision making, can be used to detect incipient failures. If failures do occur, it is critical to detect and isolate them, and suggest an appropriate course of action. ISHM enables determining the condition (health) of every element in a complex system-of-systems or SoS (detect anomalies, diagnose causes, predict future anomalies), and provide data, information, and knowledge (DIaK) to control systems for safe and effective operation. ISHM capability is achieved by using a wide range of technologies that enable anomaly detection, diagnostics, prognostics, and advise for control: (1) anomaly detection algorithms and strategies, (2) fusion of DIaK for anomaly detection (model-based, numerical, statistical, empirical, expert-based, qualitative, etc.), (3) diagnostics/prognostics strategies and methods, (4) user interface, (5) advanced control strategies, (6) integration architectures/frameworks, (7) embedding of intelligence. Many of these technologies are mature, and they are being used in the KStorMS. The paper will describe the design, implementation, and operation of the KStorMS; and discuss further evolution to support other needs such as condition-based maintenance (CBM).

  12. 48 CFR 19.701 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...-based system for small business subcontracting program reporting. Failure to make a good faith effort to... planned subcontracting in support of the specific contract, except that indirect costs incurred for common...

  13. The SMART personalised self-management system for congestive heart failure: results of a realist evaluation.

    PubMed

    Bartlett, Yvonne K; Haywood, Annette; Bentley, Claire L; Parker, Jack; Hawley, Mark S; Mountain, Gail A; Mawson, Susan

    2014-11-25

    Technology has the potential to provide support for self-management to people with congestive heart failure (CHF). This paper describes the results of a realist evaluation of the SMART Personalised Self-Management System (PSMS) for CHF. The PSMS was used, at home, by seven people with CHF. Data describing system usage and usability as well as questionnaire and interview data were evaluated in terms of the context, mechanism and outcome hypotheses (CMOs) integral to realist evaluation. The CHF PSMS improved heart failure related knowledge in those with low levels of knowledge at baseline, through providing information and quizzes. Furthermore, participants perceived the self-regulatory aspects of the CHF PSMS as being useful in encouraging daily walking. The CMOs were revised to describe the context of use, and how this influences both the mechanisms and the outcomes. Participants with CHF engaged with the PSMS despite some technological problems. Some positive effects on knowledge were observed as well as the potential to assist with changing physical activity behaviour. Knowledge of CHF and physical activity behaviour change are important self-management targets for CHF, and this study provides evidence to direct the further development of a technology to support these targets.

  14. Reliability and Maintainability Engineering - A Major Driver for Safety and Affordability

    NASA Technical Reports Server (NTRS)

    Safie, Fayssal M.

    2011-01-01

    The United States National Aeronautics and Space Administration (NASA) is in the midst of an effort to design and build a safe and affordable heavy lift vehicle to go to the moon and beyond. To achieve that, NASA is seeking more innovative and efficient approaches to reduce cost while maintaining an acceptable level of safety and mission success. One area that has the potential to contribute significantly to achieving NASA safety and affordability goals is Reliability and Maintainability (R&M) engineering. Inadequate reliability or failure of critical safety items may directly jeopardize the safety of the user(s) and result in a loss of life. Inadequate reliability of equipment may directly jeopardize mission success. Systems designed to be more reliable (fewer failures) and maintainable (fewer resources needed) can lower the total life cycle cost. The Department of Defense (DOD) and industry experience has shown that optimized and adequate levels of R&M are critical for achieving a high level of safety and mission success, and low sustainment cost. Also, lessons learned from the Space Shuttle program clearly demonstrated the importance of R&M engineering in designing and operating safe and affordable launch systems. The Challenger and Columbia accidents are examples of the severe impact of design unreliability and process induced failures on system safety and mission success. These accidents demonstrated the criticality of reliability engineering in understanding component failure mechanisms and integrated system failures across the system elements interfaces. Experience from the shuttle program also shows that insufficient Reliability, Maintainability, and Supportability (RMS) engineering analyses upfront in the design phase can significantly increase the sustainment cost and, thereby, the total life cycle cost. Emphasis on RMS during the design phase is critical for identifying the design features and characteristics needed for time efficient processing, improved operational availability, and optimized maintenance and logistic support infrastructure. This paper discusses the role of R&M in a program acquisition phase and the potential impact of R&M on safety, mission success, operational availability, and affordability. This includes discussion of the R&M elements that need to be addressed and the R&M analyses that need to be performed in order to support a safe and affordable system design. The paper also provides some lessons learned from the Space Shuttle program on the impact of R&M on safety and affordability.

  15. Negative-Pressure Ventilation in Pediatric Acute Respiratory Failure.

    PubMed

    Hassinger, Amanda B; Breuer, Ryan K; Nutty, Kirsten; Ma, Chang-Xing; Al Ibrahim, Omar S

    2017-12-01

    The objective of this work was to describe the use of negative-pressure ventilation (NPV) in a heterogeneous critically ill, pediatric population. A retrospective chart review was conducted of all patients admitted to a pediatric ICU with acute respiratory failure supported with NPV from January 1, 2012 to May 15, 2015. Two hundred thirty-three subjects at a median age of 15.5 months were supported with NPV for various etiologies, most commonly bronchiolitis (70%). Median (interquartile range) duration of support was 18.7 (8.7-34.3) h. The majority were NPV responders (70%), defined as not needing escalation to any form of positive-pressure ventilation. In non-responders, escalation occurred at a median (interquartile range) of 6.9 (3.3-16.6) h. More NPV non-responders had upper-airway obstruction ( P = .02), and fewer had bronchiolitis ( P = .008) compared with responders. A bedside scoring system developed on these data was 98% specific in predicting NPV failure by 4 h after NPV start (area under the curve 0.759, 95% CI 0.675-0.843, P < .001). Complications from NPV were rare (3%); however, delayed enteral nutrition (33%) and continuous intravenous sedation use (51%) in children while receiving NPV were more frequent. The annual percentage of pediatric ICU admissions requiring intubation declined by 28% in the 3 y after NPV introduction, compared with the 3 y prior. NPV is a noninvasive respiratory support for pediatric acute respiratory failure from all causes with few complications and a 70% response rate. Children receiving NPV often required intravenous sedation for comfort, and one third received delayed enteral nutrition. Those who required escalation from NPV worsened within 6 h; this may be predictable with a bedside scoring system. Copyright © 2017 by Daedalus Enterprises.

  16. Engineering for reliability in at-home chronic disease management

    PubMed Central

    Kendall, Logan; Eschler, Jordan; Lozano, Paula; McClure, Jennifer B.; Vizer, Lisa M.; Ralston, James D.; Pratt, Wanda

    2014-01-01

    Individuals with chronic conditions face challenges with maintaining lifelong adherence to self-management activities. Although reminders can help support the cognitive demands of managing daily and future health tasks, we understand little of how they fit into people’s daily lives. Utilizing a maximum variation sampling method, we interviewed and compared the experiences of 20 older adults with diabetes and 19 mothers of children with asthma to understand reminder use for at-home chronic disease management. Based on our participants’ experiences, we contend that many self-management failures should be viewed as systems failures, rather than individual failures and non-compliance. Furthermore, we identify key principles from reliability engineering that both explain current behavior and suggest strategies to improve patient reminder systems. PMID:25954384

  17. Engineering for reliability in at-home chronic disease management.

    PubMed

    Kendall, Logan; Eschler, Jordan; Lozano, Paula; McClure, Jennifer B; Vizer, Lisa M; Ralston, James D; Pratt, Wanda

    2014-01-01

    Individuals with chronic conditions face challenges with maintaining lifelong adherence to self-management activities. Although reminders can help support the cognitive demands of managing daily and future health tasks, we understand little of how they fit into people's daily lives. Utilizing a maximum variation sampling method, we interviewed and compared the experiences of 20 older adults with diabetes and 19 mothers of children with asthma to understand reminder use for at-home chronic disease management. Based on our participants' experiences, we contend that many self-management failures should be viewed as systems failures, rather than individual failures and non-compliance. Furthermore, we identify key principles from reliability engineering that both explain current behavior and suggest strategies to improve patient reminder systems.

  18. User's guide to the Reliability Estimation System Testbed (REST)

    NASA Technical Reports Server (NTRS)

    Nicol, David M.; Palumbo, Daniel L.; Rifkin, Adam

    1992-01-01

    The Reliability Estimation System Testbed is an X-window based reliability modeling tool that was created to explore the use of the Reliability Modeling Language (RML). RML was defined to support several reliability analysis techniques including modularization, graphical representation, Failure Mode Effects Simulation (FMES), and parallel processing. These techniques are most useful in modeling large systems. Using modularization, an analyst can create reliability models for individual system components. The modules can be tested separately and then combined to compute the total system reliability. Because a one-to-one relationship can be established between system components and the reliability modules, a graphical user interface may be used to describe the system model. RML was designed to permit message passing between modules. This feature enables reliability modeling based on a run time simulation of the system wide effects of a component's failure modes. The use of failure modes effects simulation enhances the analyst's ability to correctly express system behavior when using the modularization approach to reliability modeling. To alleviate the computation bottleneck often found in large reliability models, REST was designed to take advantage of parallel processing on hypercube processors.

  19. Failure probability analysis of optical grid

    NASA Astrophysics Data System (ADS)

    Zhong, Yaoquan; Guo, Wei; Sun, Weiqiang; Jin, Yaohui; Hu, Weisheng

    2008-11-01

    Optical grid, the integrated computing environment based on optical network, is expected to be an efficient infrastructure to support advanced data-intensive grid applications. In optical grid, the faults of both computational and network resources are inevitable due to the large scale and high complexity of the system. With the optical network based distributed computing systems extensive applied in the processing of data, the requirement of the application failure probability have been an important indicator of the quality of application and an important aspect the operators consider. This paper will present a task-based analysis method of the application failure probability in optical grid. Then the failure probability of the entire application can be quantified, and the performance of reducing application failure probability in different backup strategies can be compared, so that the different requirements of different clients can be satisfied according to the application failure probability respectively. In optical grid, when the application based DAG (directed acyclic graph) is executed in different backup strategies, the application failure probability and the application complete time is different. This paper will propose new multi-objective differentiated services algorithm (MDSA). New application scheduling algorithm can guarantee the requirement of the failure probability and improve the network resource utilization, realize a compromise between the network operator and the application submission. Then differentiated services can be achieved in optical grid.

  20. Machine learning in heart failure: ready for prime time.

    PubMed

    Awan, Saqib Ejaz; Sohel, Ferdous; Sanfilippo, Frank Mario; Bennamoun, Mohammed; Dwivedi, Girish

    2018-03-01

    The aim of this review is to present an up-to-date overview of the application of machine learning methods in heart failure including diagnosis, classification, readmissions and medication adherence. Recent studies have shown that the application of machine learning techniques may have the potential to improve heart failure outcomes and management, including cost savings by improving existing diagnostic and treatment support systems. Recently developed deep learning methods are expected to yield even better performance than traditional machine learning techniques in performing complex tasks by learning the intricate patterns hidden in big medical data. The review summarizes the recent developments in the application of machine and deep learning methods in heart failure management.

  1. Experimental and Numerical Investigation on the Bearing and Failure Mechanism of Multiple Pillars Under Overburden

    NASA Astrophysics Data System (ADS)

    Zhou, Zilong; Chen, Lu; Zhao, Yuan; Zhao, Tongbin; Cai, Xin; Du, Xueming

    2017-04-01

    To reveal the mechanical response of a multi-pillar supporting system under external loads, compressive tests were carried out on single-pillar and double-pillar specimens. The digital speckle correlation method and acoustic emission technique were applied to record and analyse information of the deformation and failure processes. Numerical simulations with the software programme PFC2D were also conducted. In the compressive process of the double-pillar system, if both individual pillars have the same mechanical properties, each pillar deforms similarly and reaches the critical stable state almost simultaneously by sharing equal loads. If the two individual pillars have different mechanical properties, the pillar with higher elastic modulus or lower strength would be damaged and lose its bearing capacity firstly. The load would then be transferred to the other pillar under a load redistribution process. When the pillar with higher strength is strong enough, the load carried by the pillar system would increase again. However, the maximum bearing load of the double-pillar system is smaller than the sum of peak load of individual pillars. The study also indicates that the strength, elastic modulus, and load state of pillars all influence the supporting capacity of the pillar system. In underground space engineering, the appropriate choice of pillar dimensions and layout may play a great role in preventing the occurrence of cascading pillar failure.

  2. Overview of the Smart Network Element Architecture and Recent Innovations

    NASA Technical Reports Server (NTRS)

    Perotti, Jose M.; Mata, Carlos T.; Oostdyk, Rebecca L.

    2008-01-01

    In industrial environments, system operators rely on the availability and accuracy of sensors to monitor processes and detect failures of components and/or processes. The sensors must be networked in such a way that their data is reported to a central human interface, where operators are tasked with making real-time decisions based on the state of the sensors and the components that are being monitored. Incorporating health management functions at this central location aids the operator by automating the decision-making process to suggest, and sometimes perform, the action required by current operating conditions. Integrated Systems Health Management (ISHM) aims to incorporate data from many sources, including real-time and historical data and user input, and extract information and knowledge from that data to diagnose failures and predict future failures of the system. By distributing health management processing to lower levels of the architecture, there is less bandwidth required for ISHM, enhanced data fusion, make systems and processes more robust, and improved resolution for the detection and isolation of failures in a system, subsystem, component, or process. The Smart Network Element (SNE) has been developed at NASA Kennedy Space Center to perform intelligent functions at sensors and actuators' level in support of ISHM.

  3. Life support systems for Mars transit

    NASA Technical Reports Server (NTRS)

    Macelroy, R. D.; Kliss, M.; Straight, C.

    1992-01-01

    The structural elements of life-support systems are reviewed in order to assess the suitability of specific features for use during a Mars mission. Life-support requirements are estimated by means of an approximate input/output analysis, and the advantages are listed relating to the use of recycling and regeneration techniques. The technological options for regeneration are presented in categories such as CO2 reduction, organics removal, polishing, food production, and organics oxidation. These data form the basis of proposed mission requirements and constraints as well as the definition of what constitutes an adequate reserve. Regenerative physical/chemical life-support systems are championed based exclusively on the mass savings inherent in the technology. The resiliency and 'soft' failure modes of bioregenerative life-support systems are identified as areas of investigation.

  4. Parametric Testing of Launch Vehicle FDDR Models

    NASA Technical Reports Server (NTRS)

    Schumann, Johann; Bajwa, Anupa; Berg, Peter; Thirumalainambi, Rajkumar

    2011-01-01

    For the safe operation of a complex system like a (manned) launch vehicle, real-time information about the state of the system and potential faults is extremely important. The on-board FDDR (Failure Detection, Diagnostics, and Response) system is a software system to detect and identify failures, provide real-time diagnostics, and to initiate fault recovery and mitigation. The ERIS (Evaluation of Rocket Integrated Subsystems) failure simulation is a unified Matlab/Simulink model of the Ares I Launch Vehicle with modular, hierarchical subsystems and components. With this model, the nominal flight performance characteristics can be studied. Additionally, failures can be injected to see their effects on vehicle state and on vehicle behavior. A comprehensive test and analysis of such a complicated model is virtually impossible. In this paper, we will describe, how parametric testing (PT) can be used to support testing and analysis of the ERIS failure simulation. PT uses a combination of Monte Carlo techniques with n-factor combinatorial exploration to generate a small, yet comprehensive set of parameters for the test runs. For the analysis of the high-dimensional simulation data, we are using multivariate clustering to automatically find structure in this high-dimensional data space. Our tools can generate detailed HTML reports that facilitate the analysis.

  5. A Bullying Intervention System: Reducing Risk and Creating Support for Aggressive Students

    ERIC Educational Resources Information Center

    Allen, Kathleen P.

    2010-01-01

    Involvement in bullying is a contributor to student failure. The author describes a bullying intervention system that has been developed and implemented in a high school that aimed to interrupt bullying, conflict, and aggression before it escalates. A high school tried to reduce student involvement with the school's disciplinary system and…

  6. A modular BLSS simulation model

    NASA Technical Reports Server (NTRS)

    Rummel, John D.; Volk, Tyler

    1987-01-01

    A bioregenerative life support system (BLSS) for extraterrestrial use will be faced with coordination problems more acute than those in any ecosystem found on Earth. A related problem in BLSS design is providing an interface between the various life support processors, one that will allow for their coordination while still allowing for system expansion. A modular model is presented of a BLSS that interfaces system processors only with the material storage reservoirs, allowing those reservoirs to act as the principal buffers in the system and thus minimizing difficulties with processor coordination. The modular nature of the model allows independent development of the detailed submodels that exist within the model framework. Using this model, BLSS dynamics were investigated under normal conditions and under various failure modes. Partial and complete failures of various components, such as the waste processors or the plants themselves, drive transient responses in the model system, allowing the examination of the effectiveness of the system reservoirs as buffers. The results from simulations help to determine control strategies and BLSS design requirements. An evolved version could be used as an interactive control aid in a future BLSS.

  7. Failure Accommodation Tested in Magnetic Suspension Systems for Rotating Machinery

    NASA Technical Reports Server (NTRS)

    Provenza, Andy J.

    2000-01-01

    The NASA Glenn Research Center at Lewis Field and Texas A&M University are developing techniques for accommodating certain types of failures in magnetic suspension systems used in rotating machinery. In recent years, magnetic bearings have become a viable alternative to rolling element bearings for many applications. For example, industrial machinery such as machine tool spindles and turbomolecular pumps can today be bought off the shelf with magnetically supported rotating components. Nova Gas Transmission Ltd. has large gas compressors in Canada that have been running flawlessly for years on magnetic bearings. To help mature this technology and quiet concerns over the reliability of magnetic bearings, NASA researchers have been investigating ways of making the bearing system tolerant to faults. Since the potential benefits from an oil-free, actively controlled bearing system are so attractive, research that is focused on assuring system reliability and safety is justifiable. With support from the Fast Quiet Engine program, Glenn's Structural Mechanics and Dynamics Branch is working to demonstrate fault-tolerant magnetic suspension systems targeted for aerospace engine applications. The Flywheel Energy Storage Program is also helping to fund this research.

  8. Extracorporeal Membrane Oxygenation for Refractory Severe Respiratory Failure in Acute Interstitial Pneumonia.

    PubMed

    Gonçalves-Venade, Gabriela; Lacerda-Príncipe, Nuno; Roncon-Albuquerque, Roberto; Paiva, José Artur

    2018-05-01

    Acute interstitial pneumonia (AIP) is a rare idiopathic interstitial lung disease with rapid progressive respiratory failure and high mortality. In the present report, three cases of AIP complicated by refractory respiratory failure supported with extracorporeal membrane oxygenation (ECMO) are presented. One male and two female patients (ages 27-59) were included. Venovenous ECMO support was provided using miniaturized systems, with two-site femoro-jugular circuit configuration. Despite lung protective ventilation, prone position and neuromuscular blockade, refractory respiratory failure of unknown etiology supervened (ratio of arterial oxygen partial pressure to fractional inspired oxygen 46-130) and ECMO was initiated after 3-7 days of mechanical ventilation. AIP diagnosis was established after exclusion of infectious and noninfectious acute respiratory distress syndrome on the basis of clinical and analytical data, bronchoalveolar lavage analysis and lung imaging, with a confirmatory surgical lung biopsy revealing diffuse alveolar damage of unknown etiology. Immunosuppressive treatment consisted in high-dose corticosteroids and cyclophosphamide in one case. Two patients survived to hospital discharge. ECMO allowed AIP diagnosis and treatment in the presence of refractory respiratory failure, therefore reducing ventilator-induced lung injury and bridging lung recovery in two patients. ECMO referral should be considered in refractory respiratory failure if AIP is suspected. © 2018 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  9. The fundamentals of extra-corporeal membrane oxygenation.

    PubMed

    Aghili, N; Kang, S; Kapur, N K

    2015-02-01

    During the past 50 years, pharmacologic advancements for cardiovascular risk factors and device innovation for the management of coronary disease, including acute myocardial infarction have radically changed the landscape of heart disease. At present, nearly 25% of individuals develop chronic heart failure after an acute myocardial infarction. It is estimated that nearly 2.6% of the American population suffers from heart failure. In the modern era, miniaturized continuous flow ventricular assist devices are now demonstrating nearly 75% 2-year survival rates with improved patient functionality. As a result, elderly patients with cardiogenic shock for whom medical treatment held minimal promise, may now be viable candidates for advanced mechanical therapies. Given this option, there is a need for more approaches to salvage patients from cardiogenic shock with percutaneously delivered mechanical circulatory support (pMCS) systems. The use of pMCS is growing and now includes patients with acute and chronic heart failure as well as patients undergoing high risk interventional and electrophysiology procedures. Each of these devices has a unique hemodynamic effect and therefore an in-depth understanding of device characteristics is required for optimal patient management. Extracorporeal membrane oxygenation (ECMO) is one of the earliest types of pMCS systems primarily used for cardiorespiratory failure. ECMO can be used in different configurations, which makes it a versatile hemodynamic support device for different patient scenarios. In this paper, the authors review different configurations, indications, and hemodynamic profile of ECMO in respiratory and cardiac failure patients.

  10. Reliability Impacts in Life Support Architecture and Technology Selection

    NASA Technical Reports Server (NTRS)

    Lange, Kevin E.; Anderson, Molly S.

    2011-01-01

    Equivalent System Mass (ESM) and reliability estimates were performed for different life support architectures based primarily on International Space Station (ISS) technologies. The analysis was applied to a hypothetical 1-year deep-space mission. High-level fault trees were initially developed relating loss of life support functionality to the Loss of Crew (LOC) top event. System reliability was then expressed as the complement (nonoccurrence) this event and was increased through the addition of redundancy and spares, which added to the ESM. The reliability analysis assumed constant failure rates and used current projected values of the Mean Time Between Failures (MTBF) from an ISS database where available. Results were obtained showing the dependence of ESM on system reliability for each architecture. Although the analysis employed numerous simplifications and many of the input parameters are considered to have high uncertainty, the results strongly suggest that achieving necessary reliabilities for deep-space missions will add substantially to the life support system mass. As a point of reference, the reliability for a single-string architecture using the most regenerative combination of ISS technologies without unscheduled replacement spares was estimated to be less than 1%. The results also demonstrate how adding technologies in a serial manner to increase system closure forces the reliability of other life support technologies to increase in order to meet the system reliability requirement. This increase in reliability results in increased mass for multiple technologies through the need for additional spares. Alternative parallel architecture approaches and approaches with the potential to do more with less are discussed. The tall poles in life support ESM are also reexamined in light of estimated reliability impacts.

  11. Functional correlation approach to operational risk in banking organizations

    NASA Astrophysics Data System (ADS)

    Kühn, Reimer; Neu, Peter

    2003-05-01

    A Value-at-Risk-based model is proposed to compute the adequate equity capital necessary to cover potential losses due to operational risks, such as human and system process failures, in banking organizations. Exploring the analogy to a lattice gas model from physics, correlations between sequential failures are modeled by as functionally defined, heterogeneous couplings between mutually supportive processes. In contrast to traditional risk models for market and credit risk, where correlations are described as equal-time-correlations by a covariance matrix, the dynamics of the model shows collective phenomena such as bursts and avalanches of process failures.

  12. ISS Regenerative Life Support: Challenges and Success in the Quest for Long-Term Habitability in Space

    NASA Technical Reports Server (NTRS)

    Bazley, Jesse A.

    2011-01-01

    This presentation will discuss the International Space Station s (ISS) Regenerative Environmental Control and Life Support System (ECLSS) operations with discussion of the on-orbit lessons learned, specifically regarding the challenges that have been faced as the system has expanded with a growing ISS crew. Over the 10 year history of the ISS, there have been numerous challenges, failures, and triumphs in the quest to keep the crew alive and comfortable. Successful operation of the ECLSS not only requires maintenance of the hardware, but also management of the station resources in case of hardware failure or missed re-supply. This involves effective communication between the primary International Partners (NASA and Roskosmos) and the secondary partners (JAXA and ESA) in order to keep a reserve of the contingency consumables and allow for re-supply of failed hardware. The ISS ECLSS utilizes consumables storage for contingency usage as well as longer-term regenerative systems, which allow for conservation of the expensive resources brought up by re-supply vehicles. This long-term hardware, and the interactions with software, was a challenge for Systems Engineers when they were designed and require multiple operational workarounds in order to function continuously. On a day-to-day basis, the ECLSS provides big challenges to the on console controllers. Main challenges involve the utilization of the resources that have been brought up by the visiting vehicles prior to undocking, balance of contributions between the International Partners for both systems and resources, and maintaining balance between the many interdependent systems, which includes providing the resources they need when they need it. The current biggest challenge for ECLSS is the Regenerative ECLSS system, which continuously recycles urine and condensate water into drinking water and oxygen. These systems were brought to full functionality on STS-126 (ULF-2) mission. Through system failures and recovery, the ECLSS console has learned how to balance the water within the systems, store and use water for contingencies, and continue to work with the International Partners for short-term failures. Through these challenges and the system failures, the most important lesson learned has been the importance of redundancy and operational workarounds. It is only because of the flexibility of the hardware and the software that flight controllers have the opportunity to continue operating the system as a whole for mission success.

  13. Individual versus systemic risk and the Regulator's Dilemma

    PubMed Central

    Beale, Nicholas; Rand, David G.; Battey, Heather; Croxson, Karen; May, Robert M.; Nowak, Martin A.

    2011-01-01

    The global financial crisis of 2007–2009 exposed critical weaknesses in the financial system. Many proposals for financial reform address the need for systemic regulation—that is, regulation focused on the soundness of the whole financial system and not just that of individual institutions. In this paper, we study one particular problem faced by a systemic regulator: the tension between the distribution of assets that individual banks would like to hold and the distribution across banks that best supports system stability if greater weight is given to avoiding multiple bank failures. By diversifying its risks, a bank lowers its own probability of failure. However, if many banks diversify their risks in similar ways, then the probability of multiple failures can increase. As more banks fail simultaneously, the economic disruption tends to increase disproportionately. We show that, in model systems, the expected systemic cost of multiple failures can be largely explained by two global parameters of risk exposure and diversity, which can be assessed in terms of the risk exposures of individual actors. This observation hints at the possibility of regulatory intervention to promote systemic stability by incentivizing a more diverse diversification among banks. Such intervention offers the prospect of an additional lever in the armory of regulators, potentially allowing some combination of improved system stability and reduced need for additional capital. PMID:21768387

  14. Parametric instabilities of rotor-support systems with application to industrial ventilators

    NASA Technical Reports Server (NTRS)

    Parszewski, Z.; Krodkiemski, T.; Marynowski, K.

    1980-01-01

    Rotor support systems interaction with parametric excitation is considered for both unequal principal shaft stiffness (generators) and offset disc rotors (ventilators). Instability regions and types of instability are computed in the first case, and parametric resonances in the second case. Computed and experimental results are compared for laboratory machine models. A field case study of parametric vibrations in industrial ventilators is reported. Computed parametric resonances are confirmed in field measurements, and some industrial failures are explained. Also the dynamic influence and gyroscopic effect of supporting structures are shown and computed.

  15. Scanning electron microscopy observations of failures of implant overdenture bars: a case series report.

    PubMed

    Waddell, J Neil; Payne, Alan G T; Swain, Michael V; Kieser, Jules A

    2010-03-01

    Soldered or cast bars are used as a standard of care in attachment systems supporting maxillary and mandibular implant overdentures. When failures of these bars occur, currently there is a lack of evidence in relation to their specific etiology, location, or nature. To investigate the failure process of a case series of six failed soldered bars, four intact soldered bars, and one intact cast milled bar, which had been supporting implant overdentures. A total of 11 different overdenture bars were removed from patients with different configuration of opposing arches. A failed bar (FB) group (n = 6) had failed soldered overdenture bars, which were recovered from patients following up to 2 years of wear before requiring prosthodontic maintenance and repair. An intact bar (IB) group (n = 5) had both soldered bars and a single cast milled bar, which had been worn by patients for 2 to 5 years prior to receiving other aspects of prosthodontic maintenance. All bars were examined using scanning electron microscopy to establish the possible mode of failure (FB) or to identify evidence of potential failure in the future (IB). Evidence of a progressive failure mode of corrosion fatigue and creep were observed on all the FB and IB usually around the solder areas and nonoxidizing gold cylinder. Fatigue and creep were also observed in all the IB. Where the level of corrosion was substantial, there was no evidence of wear from the matrices of the attachment system. Evidence of an instantaneous failure mode, ductile and brittle overload, was observed on the fracture surfaces of all the FB, within the solder and the nonoxidizing gold cylinders, at the solder/cylinder interface. Corrosion, followed by corrosion fatigue, appears to be a key factor in the onset of the failure process for overdenture bars in this case series of both maxillary and mandibular overdentures. Limited sample size and lack of standardization identify trends only but prevent broad interpretation of the findings.

  16. Towards a Personal Health Management Assistant.

    PubMed

    Ferguson, G; Quinn, J; Horwitz, C; Swift, M; Allen, J; Galescu, L

    2010-10-01

    We describe design and prototyping efforts for a Personal Health Management Assistant for heart failure patients as part of Project HealthDesign. An assistant is more than simply an application. An assistant understands what its users need to do, interacts naturally with them, reacts to what they say and do, and is proactive in helping them manage their health. In this project, we focused on heart failure, which is not only a prevalent and economically significant disease, but also one that is very amenable to self-care. Working with patients, and building on our prior experience with conversational assistants, we designed and developed a prototype system that helps heart failure patients record objective and subjective observations using spoken natural language conversation. Our experience suggests that it is feasible to build such systems and that patients would use them. The system is designed to support rapid application to other self-care settings. Copyright © 2010 Elsevier Inc. All rights reserved.

  17. Nurses' attitudes toward family importance in heart failure care.

    PubMed

    Gusdal, Annelie K; Josefsson, Karin; Thors Adolfsson, Eva; Martin, Lene

    2017-03-01

    Support from the family positively affects self-management, patient outcomes and the incidence of hospitalizations among patients with heart failure. To involve family members in heart failure care is thus valuable for the patients. Registered nurses frequently meet family members of patients with heart failure and the quality of these encounters is likely to be influenced by the attitudes registered nurses hold toward families. To explore registered nurses' attitudes toward the importance of families' involvement in heart failure nursing care and to identify factors that predict the most supportive attitudes. Cross-sectional, multicentre web-survey study. A sample of 303 registered nurses from 47 hospitals and 30 primary health care centres completed the instrument Families' Importance in Nursing Care - Nurses' Attitudes. Overall, registered nurses were supportive of families' involvement. Nonetheless, attitudes toward inviting families to actively take part in heart failure nursing care and involve families in planning of care were less supportive. Factors predicting the most supportive attitudes were to work in a primary health care centre, a heart failure clinic, a workplace with a general approach toward families, to have a postgraduate specialization, education in cardiac and/or heart failure nursing care, and a competence to work with families. Experienced registered nurses in heart failure nursing care can be encouraged to mentor their younger and less experienced colleagues to strengthen their supportive attitudes toward families. Registered nurses who have designated consultation time with patients and families, as in a nurse-led heart failure clinic, may have the most favourable condition for implementing a more supportive approach to families.

  18. Altair Lander Life Support: Design Analysis Cycles 1, 2, and 3

    NASA Technical Reports Server (NTRS)

    Anderson, Molly; Rotter, Hank; Stambaugh, Imelda; Curley, Su

    2009-01-01

    NASA is working to develop a new lunar lander to support lunar exploration. The development process that the Altair project is using for this vehicle is unlike most others. In Lander Design Analysis Cycle 1 (LDAC-1), a single-string, minimum functionality design concept was developed, including life support systems for different vehicle configuration concepts, first for a combination of an ascent vehicle and a habitat with integral airlocks, and then for a combined ascent vehicle-habitat with a detachable airlock. In LDAC-2, the Altair team took the ascent vehicle-habitat with detachable airlock and analyzed the design for the components that were the largest contributors to the risk of loss of crew (LOC). For life support, the largest drivers were related to oxygen supply and carbon dioxide control. Integrated abort options were developed at the vehicle level. Many life support failures were not considered to result in LOC because they had a long enough time to effect that abort was considered a feasible option to safely end the mission before the situation became life threatening. These failures were then classified as loss of mission (LOM) failures. Many options to reduce LOC risk were considered, and mass efficient solutions to the LOC problems were added to the vehicle design at the end of LDAC-2. In LDAC-3, the new design was analyzed for large contributors to the risk of LOM. To avoid ending the mission early or being unable to accomplish goals like performing all planned extravehicular activities (EVAs), various options were assessed for their combination of risk reduction and mass cost. This paper outlines the major assumptions, design features, and decisions related to the development of the life support system for the Altair project through LDAC-3.

  19. Determination of failure limits for sterilizable solid rocket motor

    NASA Technical Reports Server (NTRS)

    Lambert, W. L.; Mastrolia, E. J.; Mcconnell, J. D.

    1974-01-01

    A structural evaluation to establish probable failure limits and a series of environmental tests involving temperature cycling, sustained acceleration, and vibration were conducted on an 18-inch diameter solid rocket motor. Despite the fact that thermal, acceleration and vibration loads representing a severe overtest of conventional environmental requirements were imposed on the sterilizable motor, no structural failure of the grain or flexible support system was detected. The following significant conclusions are considered justified. It is concluded that: (1) the flexible grain retention system, which permitted heat sterilization at 275 F on the test motor, can readily be adopted to meet the environmental requirements of an operational motor design, and (2) if further substantiation of structural integrity is desired, the motor used is considered acceptable for static firing.

  20. The effects of heart failure on renal function.

    PubMed

    Udani, Suneel M; Koyner, Jay L

    2010-08-01

    Heart-kidney interactions have been increasingly recognized by clinicians and researchers who study and treat heart failure and kidney disease. A classification system has been developed to categorize the different manifestations of cardiac and renal dysfunction. Work has highlighted the significant negative prognostic effect of worsening renal function on outcomes for individuals with heart failure. The etiology of concomitant cardiac and renal dysfunction remains unclear; however, evidence supports alternatives to the established theory of underfilling, including effects of venous congestion and changes in intra-abdominal pressure. Conventional therapy focuses on blockade of the renin-angiotensin-aldosterone system with expanding use of direct renin and aldosterone antagonists. Novel therapeutic interventions using extracorporeal therapy and antagonists of the adenosine pathway show promise and require further investigation. 2010 Elsevier Inc. All rights reserved.

  1. The Effects of Heart Failure on Renal Function

    PubMed Central

    Udani, Suneel M; Koyner, Jay L

    2010-01-01

    Summary Heart-kidney interactions have been increasingly recognized by clinicians and researchers involved in the study and treatment of heart failure and kidney disease. A classification system has been developed to categorize the different manifestations of cardiac and renal dysfunction. Recent work has highlighted the significant negative prognostic effect of worsening renal function on outcomes for individuals with heart failure. The etiology of the concomitant cardiac and renal dysfunction remains unclear; however, increasing evidence supports alternatives to the established theory of underfilling, including effects of venous congestion and changes in intra-abdominal pressure. Conventional therapy focuses on blockade of the renin-angiotensin-aldosterone system with expanding use of direct renin and aldosterone antagonists. Novel therapeutic interventions using extracorporeal therapy and antagonists of the adenosine pathway show promise and require further investigation. PMID:20621250

  2. A Generic Modeling Process to Support Functional Fault Model Development

    NASA Technical Reports Server (NTRS)

    Maul, William A.; Hemminger, Joseph A.; Oostdyk, Rebecca; Bis, Rachael A.

    2016-01-01

    Functional fault models (FFMs) are qualitative representations of a system's failure space that are used to provide a diagnostic of the modeled system. An FFM simulates the failure effect propagation paths within a system between failure modes and observation points. These models contain a significant amount of information about the system including the design, operation and off nominal behavior. The development and verification of the models can be costly in both time and resources. In addition, models depicting similar components can be distinct, both in appearance and function, when created individually, because there are numerous ways of representing the failure space within each component. Generic application of FFMs has the advantages of software code reuse: reduction of time and resources in both development and verification, and a standard set of component models from which future system models can be generated with common appearance and diagnostic performance. This paper outlines the motivation to develop a generic modeling process for FFMs at the component level and the effort to implement that process through modeling conventions and a software tool. The implementation of this generic modeling process within a fault isolation demonstration for NASA's Advanced Ground System Maintenance (AGSM) Integrated Health Management (IHM) project is presented and the impact discussed.

  3. Supporting Space Systems Design via Systems Dependency Analysis Methodology

    NASA Astrophysics Data System (ADS)

    Guariniello, Cesare

    The increasing size and complexity of space systems and space missions pose severe challenges to space systems engineers. When complex systems and Systems-of-Systems are involved, the behavior of the whole entity is not only due to that of the individual systems involved but also to the interactions and dependencies between the systems. Dependencies can be varied and complex, and designers usually do not perform analysis of the impact of dependencies at the level of complex systems, or this analysis involves excessive computational cost, or occurs at a later stage of the design process, after designers have already set detailed requirements, following a bottom-up approach. While classical systems engineering attempts to integrate the perspectives involved across the variety of engineering disciplines and the objectives of multiple stakeholders, there is still a need for more effective tools and methods capable to identify, analyze and quantify properties of the complex system as a whole and to model explicitly the effect of some of the features that characterize complex systems. This research describes the development and usage of Systems Operational Dependency Analysis and Systems Developmental Dependency Analysis, two methods based on parametric models of the behavior of complex systems, one in the operational domain and one in the developmental domain. The parameters of the developed models have intuitive meaning, are usable with subjective and quantitative data alike, and give direct insight into the causes of observed, and possibly emergent, behavior. The approach proposed in this dissertation combines models of one-to-one dependencies among systems and between systems and capabilities, to analyze and evaluate the impact of failures or delays on the outcome of the whole complex system. The analysis accounts for cascading effects, partial operational failures, multiple failures or delays, and partial developmental dependencies. The user of these methods can assess the behavior of each system based on its internal status and on the topology of its dependencies on systems connected to it. Designers and decision makers can therefore quickly analyze and explore the behavior of complex systems and evaluate different architectures under various working conditions. The methods support educated decision making both in the design and in the update process of systems architecture, reducing the need to execute extensive simulations. In particular, in the phase of concept generation and selection, the information given by the methods can be used to identify promising architectures to be further tested and improved, while discarding architectures that do not show the required level of global features. The methods, when used in conjunction with appropriate metrics, also allow for improved reliability and risk analysis, as well as for automatic scheduling and re-scheduling based on the features of the dependencies and on the accepted level of risk. This dissertation illustrates the use of the two methods in sample aerospace applications, both in the operational and in the developmental domain. The applications show how to use the developed methodology to evaluate the impact of failures, assess the criticality of systems, quantify metrics of interest, quantify the impact of delays, support informed decision making when scheduling the development of systems and evaluate the achievement of partial capabilities. A larger, well-framed case study illustrates how the Systems Operational Dependency Analysis method and the Systems Developmental Dependency Analysis method can support analysis and decision making, at the mid and high level, in the design process of architectures for the exploration of Mars. The case study also shows how the methods do not replace the classical systems engineering methodologies, but support and improve them.

  4. A System for Fault Management for NASA's Deep Space Habitat

    NASA Technical Reports Server (NTRS)

    Colombano, Silvano P.; Spirkovska, Liljana; Aaseng, Gordon B.; Mccann, Robert S.; Baskaran, Vijayakumar; Ossenfort, John P.; Smith, Irene Skupniewicz; Iverson, David L.; Schwabacher, Mark A.

    2013-01-01

    NASA's exploration program envisions the utilization of a Deep Space Habitat (DSH) for human exploration of the space environment in the vicinity of Mars and/or asteroids. Communication latencies with ground control of as long as 20+ minutes make it imperative that DSH operations be highly autonomous, as any telemetry-based detection of a systems problem on Earth could well occur too late to assist the crew with the problem. A DSH-based development program has been initiated to develop and test the automation technologies necessary to support highly autonomous DSH operations. One such technology is a fault management tool to support performance monitoring of vehicle systems operations and to assist with real-time decision making in connection with operational anomalies and failures. Toward that end, we are developing Advanced Caution and Warning System (ACAWS), a tool that combines dynamic and interactive graphical representations of spacecraft systems, systems modeling, automated diagnostic analysis and root cause identification, system and mission impact assessment, and mitigation procedure identification to help spacecraft operators (both flight controllers and crew) understand and respond to anomalies more effectively. In this paper, we describe four major architecture elements of ACAWS: Anomaly Detection, Fault Isolation, System Effects Analysis, and Graphic User Interface (GUI), and how these elements work in concert with each other and with other tools to provide fault management support to both the controllers and crew. We then describe recent evaluations and tests of ACAWS on the DSH testbed. The results of these tests support the feasibility and strength of our approach to failure management automation and enhanced operational autonomy.

  5. A System for Fault Management and Fault Consequences Analysis for NASA's Deep Space Habitat

    NASA Technical Reports Server (NTRS)

    Colombano, Silvano; Spirkovska, Liljana; Baskaran, Vijaykumar; Aaseng, Gordon; McCann, Robert S.; Ossenfort, John; Smith, Irene; Iverson, David L.; Schwabacher, Mark

    2013-01-01

    NASA's exploration program envisions the utilization of a Deep Space Habitat (DSH) for human exploration of the space environment in the vicinity of Mars and/or asteroids. Communication latencies with ground control of as long as 20+ minutes make it imperative that DSH operations be highly autonomous, as any telemetry-based detection of a systems problem on Earth could well occur too late to assist the crew with the problem. A DSH-based development program has been initiated to develop and test the automation technologies necessary to support highly autonomous DSH operations. One such technology is a fault management tool to support performance monitoring of vehicle systems operations and to assist with real-time decision making in connection with operational anomalies and failures. Toward that end, we are developing Advanced Caution and Warning System (ACAWS), a tool that combines dynamic and interactive graphical representations of spacecraft systems, systems modeling, automated diagnostic analysis and root cause identification, system and mission impact assessment, and mitigation procedure identification to help spacecraft operators (both flight controllers and crew) understand and respond to anomalies more effectively. In this paper, we describe four major architecture elements of ACAWS: Anomaly Detection, Fault Isolation, System Effects Analysis, and Graphic User Interface (GUI), and how these elements work in concert with each other and with other tools to provide fault management support to both the controllers and crew. We then describe recent evaluations and tests of ACAWS on the DSH testbed. The results of these tests support the feasibility and strength of our approach to failure management automation and enhanced operational autonomy

  6. Shared care dyadic intervention: outcome patterns for heart failure care partners.

    PubMed

    Sebern, Margaret D; Woda, Aimee

    2012-04-01

    Up to half of heart failure (HF) patients are readmitted to hospitals within 6 months of discharge. Many readmissions are linked to inadequate self-care or family support. To improve care, practitioners may need to intervene with both the HF patient and family caregiver. Despite the recognition that family interventions improve patient outcomes, there is a lack of evidence to support dyadic interventions in HF. Thus, the purpose of this study was to test the Shared Care Dyadic Intervention (SCDI) designed to improve self-care in HF. The theoretical base of the SCDI was a construct called Shared Care. Shared Care represents a system of processes used in family care to exchange support. Key findings were as follows: the SCDI was acceptable to both care partners and the data supported improved shared care for both. For the patient, there were improvements in self-care. For the caregivers, there were improvements in relationship quality and health.

  7. 29 CFR 1926.652 - Requirements for protective systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... no indication of a potential cave-in. (2) Protective systems shall have the capacity to resist without failure all loads that are intended or could reasonably be expected to be applied or transmitted... person cannot assure the material or equipment is able to support the intended loads or is otherwise...

  8. 29 CFR 1926.652 - Requirements for protective systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... no indication of a potential cave-in. (2) Protective systems shall have the capacity to resist without failure all loads that are intended or could reasonably be expected to be applied or transmitted... person cannot assure the material or equipment is able to support the intended loads or is otherwise...

  9. 29 CFR 1926.652 - Requirements for protective systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... no indication of a potential cave-in. (2) Protective systems shall have the capacity to resist without failure all loads that are intended or could reasonably be expected to be applied or transmitted... person cannot assure the material or equipment is able to support the intended loads or is otherwise...

  10. 29 CFR 1926.652 - Requirements for protective systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... no indication of a potential cave-in. (2) Protective systems shall have the capacity to resist without failure all loads that are intended or could reasonably be expected to be applied or transmitted... person cannot assure the material or equipment is able to support the intended loads or is otherwise...

  11. 29 CFR 1926.652 - Requirements for protective systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... no indication of a potential cave-in. (2) Protective systems shall have the capacity to resist without failure all loads that are intended or could reasonably be expected to be applied or transmitted... person cannot assure the material or equipment is able to support the intended loads or is otherwise...

  12. Supervisors' Role and the Use of Failure in Guatemala's Schools.

    ERIC Educational Resources Information Center

    Lynch, Patrick D.

    National development, a worldwide rationale of mass schooling systems, is both economic and social-integrative and supports the human capital paradigm. The social-integrative objective fosters membership in modern systems of state and money exchange that pull people away from traditional ethnic, cultural, regional, or religious allegiances. This…

  13. Improving Early Warning Systems with Categorized Course Resource Usage

    ERIC Educational Resources Information Center

    Waddington, R. Joseph; Nam, SungJin; Lonn, Steven; Teasley, Stephanie D.

    2016-01-01

    Early Warning Systems (EWSs) aggregate multiple sources of data to provide timely information to stakeholders about students in need of academic support. There is an increasing need to incorporate relevant data about student behaviors into the algorithms underlying EWSs to improve predictors of students' success or failure. Many EWSs currently…

  14. Antithrombin III is associated with acute liver failure in patients with end-stage heart failure undergoing mechanical circulatory support.

    PubMed

    Hoefer, Judith; Ulmer, Hanno; Kilo, Juliane; Margreiter, Raimund; Grimm, Michael; Mair, Peter; Ruttmann, Elfriede

    2017-06-01

    There are few data on the role of liver dysfunction in patients with end-stage heart failure supported by mechanical circulatory support. The aim of our study was to investigate predictors for acute liver failure in patients with end-stage heart failure undergoing mechanical circulatory support. A consecutive 164 patients with heart failure with New York Heart Association class IV undergoing mechanical circulatory support were investigated for acute liver failure using the King's College criteria. Clinical characteristics of heart failure together with hemodynamic and laboratory values were analyzed by logistic regression. A total of 45 patients (27.4%) with heart failure developed subsequent acute liver failure with a hospital mortality of 88.9%. Duration of heart failure, cause, cardiopulmonary resuscitation, use of vasopressors, central venous pressure, pulmonary capillary wedge pressure, pulmonary pulsatility index, cardiac index, and transaminases were not significantly associated with acute liver failure. Repeated decompensation, atrial fibrillation (P < .001) and the use of inotropes (P = .007), mean arterial (P = .005) and pulmonary pressures (P = .042), cholinesterase, international normalized ratio, bilirubin, lactate, and pH (P < .001) were predictive of acute liver failure in univariate analysis only. In multivariable analysis, decreased antithrombin III was the strongest single measurement indicating acute liver failure (relative risk per %, 0.84; 95% confidence interval, 0.77-0.93; P = .001) and remained an independent predictor when adjustment for the Model for End-Stage Liver Disease score was performed (relative risk per %, 0.89; 95% confidence interval, 0.80-0.99; P = .031). Antithrombin III less than 59.5% was identified as a cutoff value to predict acute liver failure with a corresponding sensitivity of 81% and specificity of 87%. In addition to the Model for End-Stage Liver Disease score, decreased antithrombin III activity tends to be superior in predicting acute liver failure compared with traditionally thought predictors. Antithrombin III measurement may help to identify patients more precisely who are developing acute liver failure during mechanical circulatory support. Copyright © 2017 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.

  15. Paralex: An Environment for Parallel Programming in Distributed Systems

    DTIC Science & Technology

    1991-12-07

    distributed systems is coni- parable to assembly language programming for traditional sequential systems - the user must resort to low-level primitives ...to accomplish data encoding/decoding, communication, remote exe- cution, synchronization , failure detection and recovery. It is our belief that... synchronization . Finally, composing parallel programs by interconnecting se- quential computations allows automatic support for heterogeneity and fault tolerance

  16. (Un)Planned Failure: Unsuccessful Succession Planning in an Urban District

    ERIC Educational Resources Information Center

    Peters, April L.

    2011-01-01

    Leader succession is often the result of a broken system, resulting in the loss of leadership gains from the exiting leader and leaving the incoming leader without proper support for success. This system needs replacing, with a system of dynamic succession planning that is carefully planned and an integral part of a school's improvement plan. To…

  17. 77 FR 3833 - Self-Regulatory Organizations; The Depository Trust Company; Order Approving Proposed Rule Change...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-25

    ... To Mitigate Systemic Risk, Specifically Liquidity Related, Associated With DTC End of Day Net Funds... weekend or holiday). In doing so, DTC believes it would reduce the systemic risk associated with a... systemic risk due to Participant failure. \\5\\ These net debit caps are supported by $3.2 billion of...

  18. Preventing Continuous Positive Airway Pressure Failure: Evidence-Based and Physiologically Sound Practices from Delivery Room to the Neonatal Intensive Care Unit.

    PubMed

    Wright, Clyde J; Sherlock, Laurie G; Sahni, Rakesh; Polin, Richard A

    2018-06-01

    Routine use of continuous positive airway pressure (CPAP) to support preterm infants with respiratory distress is an evidenced-based strategy to decrease incidence of bronchopulmonary dysplasia. However, rates of CPAP failure remain unacceptably high in very premature neonates, who are at high risk for developing bronchopulmonary dysplasia. Using the GRADE framework to assess the quality of available evidence, this article reviews strategies aimed at decreasing CPAP failure, starting with delivery room interventions and followed through to system-based efforts in the neonatal intensive care unit. Despite best efforts, some very premature neonates fail CPAP. Also reviewed are predictors of CPAP failure in this vulnerable population. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. AdaFF: Adaptive Failure-Handling Framework for Composite Web Services

    NASA Astrophysics Data System (ADS)

    Kim, Yuna; Lee, Wan Yeon; Kim, Kyong Hoon; Kim, Jong

    In this paper, we propose a novel Web service composition framework which dynamically accommodates various failure recovery requirements. In the proposed framework called Adaptive Failure-handling Framework (AdaFF), failure-handling submodules are prepared during the design of a composite service, and some of them are systematically selected and automatically combined with the composite Web service at service instantiation in accordance with the requirement of individual users. In contrast, existing frameworks cannot adapt the failure-handling behaviors to user's requirements. AdaFF rapidly delivers a composite service supporting the requirement-matched failure handling without manual development, and contributes to a flexible composite Web service design in that service architects never care about failure handling or variable requirements of users. For proof of concept, we implement a prototype system of the AdaFF, which automatically generates a composite service instance with Web Services Business Process Execution Language (WS-BPEL) according to the users' requirement specified in XML format and executes the generated instance on the ActiveBPEL engine.

  20. A computer model of the pediatric circulatory system for testing pediatric assist devices.

    PubMed

    Giridharan, Guruprasad A; Koenig, Steven C; Mitchell, Michael; Gartner, Mark; Pantalos, George M

    2007-01-01

    Lumped parameter computer models of the pediatric circulatory systems for 1- and 4-year-olds were developed to predict hemodynamic responses to mechanical circulatory support devices. Model parameters, including resistance, compliance and volume, were adjusted to match hemodynamic pressure and flow waveforms, pressure-volume loops, percent systole, and heart rate of pediatric patients (n = 6) with normal ventricles. Left ventricular failure was modeled by adjusting the time-varying compliance curve of the left heart to produce aortic pressures and cardiac outputs consistent with those observed clinically. Models of pediatric continuous flow (CF) and pulsatile flow (PF) ventricular assist devices (VAD) and intraaortic balloon pump (IABP) were developed and integrated into the heart failure pediatric circulatory system models. Computer simulations were conducted to predict acute hemodynamic responses to PF and CF VAD operating at 50%, 75% and 100% support and 2.5 and 5 ml IABP operating at 1:1 and 1:2 support modes. The computer model of the pediatric circulation matched the human pediatric hemodynamic waveform morphology to within 90% and cardiac function parameters with 95% accuracy. The computer model predicted PF VAD and IABP restore aortic pressure pulsatility and variation in end-systolic and end-diastolic volume, but diminish with increasing CF VAD support.

  1. Hemodynamic parameters in a surgical devascularization model of fulminant hepatic failure in the minipig.

    PubMed

    Kieslichová, E; Ryska, M; Pantoflícek, T; Ryska, O; Zazula, R; Skobová, J

    2005-01-01

    Animal models of fulminant hepatic failure (FHF) are important for studying the pathophysiology of this process and for evaluation of the efficacy of artificial and bioartificial liver support systems. In experiments, hemodynamic parameters were monitored in a group of minipigs with FHF induced by surgical devascularization, and compared with those in a control group. During the experiment, animals were analgosedated and were on mechanical lung ventilation. Crystalloid and colloidal solutions were administered and norepinephrine in continuous infusion was applied if mean arterial pressure (MAP) decreased below 60 mm Hg despite adequate intravascular volumes. An increase in heart rate, and decreases in MAP and systemic vascular resistance, compared with the baseline, occurred in the FHF group from 6 h after surgery. A comparison of FHF and control groups revealed no significant differences in systemic vascular resistance and MAP until after 12 h after surgery (systemic vascular resistance index: 953 FHF vs. 1658 controls; p < 0.05; MAP: 58.1 FHF vs. 76 controls; p < 0.05). No significant differences in CI were seen between the FHF group and controls. FHF animals survived for about 13 h after surgery, i.e. a period, which we consider long enough to test a support device. The parameters are believed to be quite adequate, as we were able to maintain satisfactory hemodynamic stability in all experimental animals with induced acute hepatic failure.

  2. Scalable Failure Masking for Stencil Computations using Ghost Region Expansion and Cell to Rank Remapping

    DOE PAGES

    Gamell, Marc; Teranishi, Keita; Kolla, Hemanth; ...

    2017-10-26

    In order to achieve exascale systems, application resilience needs to be addressed. Some programming models, such as task-DAG (directed acyclic graphs) architectures, currently embed resilience features whereas traditional SPMD (single program, multiple data) and message-passing models do not. Since a large part of the community's code base follows the latter models, it is still required to take advantage of application characteristics to minimize the overheads of fault tolerance. To that end, this paper explores how recovering from hard process/node failures in a local manner is a natural approach for certain applications to obtain resilience at lower costs in faulty environments.more » In particular, this paper targets enabling online, semitransparent local recovery for stencil computations on current leadership-class systems as well as presents programming support and scalable runtime mechanisms. Also described and demonstrated in this paper is the effect of failure masking, which allows the effective reduction of impact on total time to solution due to multiple failures. Furthermore, we discuss, implement, and evaluate ghost region expansion and cell-to-rank remapping to increase the probability of failure masking. To conclude, this paper shows the integration of all aforementioned mechanisms with the S3D combustion simulation through an experimental demonstration (using the Titan system) of the ability to tolerate high failure rates (i.e., node failures every five seconds) with low overhead while sustaining performance at large scales. In addition, this demonstration also displays the failure masking probability increase resulting from the combination of both ghost region expansion and cell-to-rank remapping.« less

  3. Scalable Failure Masking for Stencil Computations using Ghost Region Expansion and Cell to Rank Remapping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gamell, Marc; Teranishi, Keita; Kolla, Hemanth

    In order to achieve exascale systems, application resilience needs to be addressed. Some programming models, such as task-DAG (directed acyclic graphs) architectures, currently embed resilience features whereas traditional SPMD (single program, multiple data) and message-passing models do not. Since a large part of the community's code base follows the latter models, it is still required to take advantage of application characteristics to minimize the overheads of fault tolerance. To that end, this paper explores how recovering from hard process/node failures in a local manner is a natural approach for certain applications to obtain resilience at lower costs in faulty environments.more » In particular, this paper targets enabling online, semitransparent local recovery for stencil computations on current leadership-class systems as well as presents programming support and scalable runtime mechanisms. Also described and demonstrated in this paper is the effect of failure masking, which allows the effective reduction of impact on total time to solution due to multiple failures. Furthermore, we discuss, implement, and evaluate ghost region expansion and cell-to-rank remapping to increase the probability of failure masking. To conclude, this paper shows the integration of all aforementioned mechanisms with the S3D combustion simulation through an experimental demonstration (using the Titan system) of the ability to tolerate high failure rates (i.e., node failures every five seconds) with low overhead while sustaining performance at large scales. In addition, this demonstration also displays the failure masking probability increase resulting from the combination of both ghost region expansion and cell-to-rank remapping.« less

  4. The use of supportive-educative and mutual goal-setting strategies to improve self-management for patients with heart failure.

    PubMed

    Kline, Kay Setter; Scott, Linda D; Britton, Agnes S

    2007-09-01

    This study examined the effects of 2 home healthcare nursing approaches--supportive-educative and mutual goal setting--on self-management for patients with heart failure. Both approaches are specifically related to participants' understanding of heart failure and self-efficacy in managing the condition. An experimental, longitudinal, repeated-measures design was used with a sample of 88 participants. Although no significant difference was demonstrated in participants' understanding of heart failure, the supportive-educative group showed a significantly increased self-efficacy in managing heart failure symptoms.

  5. Designing a Technology Enhanced Practice for Home Nursing Care of Patients with Congestive Heart Failure

    PubMed Central

    Casper, Gail R.; Karsh, Ben-Tzion; K.L., Calvin; Carayon, Pascale; Grenier, Anne-Sophie; Sebern, Margaret; Burke, Laura J.; Brennan, Patricia F.

    2005-01-01

    This paper describes the process we used to design the HeartCare website to support Technology Enhanced Practice (TEP) for home care nurses engaged in providing care for patients with Congestive Heart Failure (CHF). Composed of communication, information, and self-monitoring functions, the HeartCare website is aimed at supporting best practice nursing care for these patients. Its unique focus is professional practice, thus the scope of this project is greater and more abstract than those focusing on a task or set of activities. A modified macroergonomic analysis, design work system analysis, and focus groups utilizing participatory design methodology were undertaken to characterize the nursing practice model. Design of the HeartCare website required synthesizing the extant practice model and the agency’s evidence-based heart failure protocols, identifying aspects of practice that could be enhanced by supporting technology, and delineation of functional requirements of the Enhanced HeartCare technology. Validation and refinement of the website and planning for user training activities will be accomplished through a two-stage usability testing strategy. PMID:16779013

  6. Medical results of the Skylab program

    NASA Technical Reports Server (NTRS)

    Johnston, R. S.; Dietlein, L. F.

    1974-01-01

    The Skylab food system, waste management system, operational bioinstrumentation, personal hygiene provisions, in-flight medical support system, and the cardiovascular counterpressure garment worn during reentry are described. The medical experiments program provided scientific data and also served as the basis for real-time decisions on flight duration. Premission support, in-flight operational support, and postflight medical activities are surveyed. Measures devised to deal with possible food spoilage, medical instrument damage, and toxic atmosphere caused by the initial failures on the Orbital Workshop (OWS) are discussed. The major medical experiments performed in flight allowed the study of physiological changes as a function of exposure to weightless flight. The experiments included studies of the cardiovascular system, musculoskeletal and fluid/electrolyte balance, sleep, blood, vestibular system, and time and motion studies.

  7. Problem Solving for Volatilizing Situation in Nursing: Developing Thinking Process Supporting System using NursingNAVI® Contents.

    PubMed

    Tsuru, Satoko; Wako, Fumiko; Omori, Miho; Sudo, Kumiko

    2015-01-01

    We have identified three foci of the nursing observation and nursing action respectively. Using these frameworks, we have developed the structured knowledge model for a number of diseases and medical interventions. We developed this structure based NursingNAVI® contents collaborated with some quality centered hospitals. Authors analysed the nursing care documentations of post-gastrectomy patients in light of the standardized nursing care plan in the "NursingNAVI®" developed by ourselves and revealed the "failure to observe" and "failure to document", which leaded to the volatility of the patients' data, conditions and some situation. This phenomenon should have been avoided if nurses had employed a standardized nursing care plan. So, we developed thinking process support system for planning, delivering, recording and evaluating in daily nursing using NursingNAVI® contents. A hospital decided to use NursingNAVI® contents in HIS. It was suggested that the system has availability for nursing OJT and time reduction of planning and recording without volatilizing situation.

  8. Use of failure modes and effects analysis in design of the tracker system for the HET wide-field upgrade

    NASA Astrophysics Data System (ADS)

    Hayes, Richard; Beets, Tim; Beno, Joseph; Booth, John; Cornell, Mark; Good, John; Heisler, James; Hill, Gary; Kriel, Herman; Penney, Charles; Rafal, Marc; Savage, Richard; Soukup, Ian; Worthington, Michael; Zierer, Joseph

    2012-09-01

    In support of the Hobby-Eberly Telescope Dark Energy Experiment (HETDEX), the Center for Electromechanics at The University of Texas at Austin was tasked with developing the new Tracker and control system to support the HETDEX Wide-Field Upgrade. The tracker carries the 3,100 kg Prime Focus Instrument Package and Wide Field Corrector approximately 13 m above the 10 m diameter primary mirror. Its safe and reliable operation by a sophisticated control system, over a 20 year life time is a paramount requirement for the project. To account for all potential failures and potential hazards, to both the equipment and personnel involved, an extensive Failure Modes and Effects Analysis (FMEA) was completed early in the project. This task required participation of all the stakeholders over a multi-day meeting with numerous follow up exchanges. The event drove a number of significant design decisions and requirements that might not have been identified this early in the project without this process. The result is a system that has multiple layers of active and passive safety systems to protect the tens of millions of dollars of hardware involved and the people who operate it. This paper will describe the background of the FMEA process, how it was utilized on HETDEX, the critical outcomes, how the required safety systems were implemented, and how they have worked in operation. It should be of interest to engineers, designers, and managers engaging in complex multi-disciplinary and parallel engineering projects that involve automated hardware and control systems with potentially hazardous operating scenarios.

  9. Static stability of a three-dimensional space truss. M.S. Thesis - Case Western Reserve Univ., 1994

    NASA Technical Reports Server (NTRS)

    Shaker, John F.

    1995-01-01

    In order to deploy large flexible space structures it is necessary to develop support systems that are strong and lightweight. The most recent example of this aerospace design need is vividly evident in the space station solar array assembly. In order to accommodate both weight limitations and strength performance criteria, ABLE Engineering has developed the Folding Articulating Square Truss (FASTMast) support structure. The FASTMast is a space truss/mechanism hybrid that can provide system support while adhering to stringent packaging demands. However, due to its slender nature and anticipated loading, stability characterization is a critical part of the design process. Furthermore, the dire consequences surely to result from a catastrophic instability quickly provide the motivation for careful examination of this problem. The fundamental components of the space station solar array system are the (1) solar array blanket system, (2) FASTMast support structure, and (3) mast canister assembly. The FASTMast once fully deployed from the canister will provide support to the solar array blankets. A unique feature of this structure is that the system responds linearly within a certain range of operating loads and nonlinearly when that range is exceeded. The source of nonlinear behavior in this case is due to a changing stiffness state resulting from an inability of diagonal members to resist applied loads. The principal objective of this study was to establish the failure modes involving instability of the FASTMast structure. Also of great interest during this effort was to establish a reliable analytical approach capable of effectively predicting critical values at which the mast becomes unstable. Due to the dual nature of structural response inherent to this problem, both linear and nonlinear analyses are required to characterize the mast in terms of stability. The approach employed herein is one that can be considered systematic in nature. The analysis begins with one and two-dimensional failure models of the system and its important components. From knowledge gained through preliminary analyses a foundation is developed for three-dimensional analyses of the FASTMast structure. The three-dimensional finite element (FE) analysis presented here involves a FASTMast system one-tenth the size of the actual flight unit. Although this study does not yield failure analysis results that apply directly to the flight article, it does establish a method by which the full-scale mast can be evaluated.

  10. Static stability of a three-dimensional space truss

    NASA Astrophysics Data System (ADS)

    Shaker, John F.

    1995-05-01

    In order to deploy large flexible space structures it is necessary to develop support systems that are strong and lightweight. The most recent example of this aerospace design need is vividly evident in the space station solar array assembly. In order to accommodate both weight limitations and strength performance criteria, ABLE Engineering has developed the Folding Articulating Square Truss (FASTMast) support structure. The FASTMast is a space truss/mechanism hybrid that can provide system support while adhering to stringent packaging demands. However, due to its slender nature and anticipated loading, stability characterization is a critical part of the design process. Furthermore, the dire consequences surely to result from a catastrophic instability quickly provide the motivation for careful examination of this problem. The fundamental components of the space station solar array system are the (1) solar array blanket system, (2) FASTMast support structure, and (3) mast canister assembly. The FASTMast once fully deployed from the canister will provide support to the solar array blankets. A unique feature of this structure is that the system responds linearly within a certain range of operating loads and nonlinearly when that range is exceeded. The source of nonlinear behavior in this case is due to a changing stiffness state resulting from an inability of diagonal members to resist applied loads. The principal objective of this study was to establish the failure modes involving instability of the FASTMast structure. Also of great interest during this effort was to establish a reliable analytical approach capable of effectively predicting critical values at which the mast becomes unstable. Due to the dual nature of structural response inherent to this problem, both linear and nonlinear analyses are required to characterize the mast in terms of stability. The approach employed herein is one that can be considered systematic in nature. The analysis begins with one and two-dimensional failure models of the system and its important components. From knowledge gained through preliminary analyses a foundation is developed for three-dimensional analyses of the FASTMast structure. The three-dimensional finite element (FE) analysis presented here involves a FASTMast system one-tenth the size of the actual flight unit. Although this study does not yield failure analysis results that apply directly to the flight article, it does establish a method by which the full-scale mast can be evaluated.

  11. A bioartificial liver to treat severe acute liver failure.

    PubMed Central

    Rozga, J; Podesta, L; LePage, E; Morsiani, E; Moscioni, A D; Hoffman, A; Sher, L; Villamil, F; Woolf, G; McGrath, M

    1994-01-01

    OBJECTIVE: To test the safety and efficacy of a bioartificial liver support system in patients with severe acute liver failure. SUMMARY BACKGROUND DATA: The authors developed a bioartificial liver using porcine hepatocytes. The system was tested in vitro and shown to have differentiated liver functions (cytochrome P450 activity, synthesis of liver-specific proteins, bilirubin synthesis, and conjugation). When tested in vivo in experimental animals with liver failure, it gave substantial metabolic and hemodynamic support. METHODS: Seven patients with severe acute liver failure received a double lumen catheter in the saphenous vein; blood was removed, plasma was separated and perfused through a cartridge containing 4 to 6 x 10(9) porcine hepatocytes, and plasma and blood cells were reconstituted and reinfused. Each treatment lasted 6 to 7 hours. RESULTS: All patients tolerated the procedure(s) well, with neurologic improvement, decreased intracranial pressure (23.0 +/- 2.3 to 7.8 +/- 1.7 mm Hg; p < 0.005) associated with an increase in cerebral perfusion pressure, decreased plasma ammonia (163.3 +/- 21.3 to 112.2 +/- 9.8 microMoles/L; p < 0.01), and increased encephalopathy index (0.60 +/- 0.17 to 1.24 +/- 0.22; p < 0.03). All patients survived, had a liver transplant, and were discharged from the hospital. CONCLUSIONS: This bioartificial liver is safe and serves as an effective "bridge" to liver transplant in some patients. Images Figure 2. Figure 3. PMID:8185403

  12. Emerging role of liver X receptors in cardiac pathophysiology and heart failure.

    PubMed

    Cannon, Megan V; van Gilst, Wiek H; de Boer, Rudolf A

    2016-01-01

    Liver X receptors (LXRs) are master regulators of metabolism and have been studied for their pharmacological potential in vascular and metabolic disease. Besides their established role in metabolic homeostasis and disease, there is mounting evidence to suggest that LXRs may exert direct beneficial effects in the heart. Here, we aim to provide a conceptual framework to explain the broad mode of action of LXRs and how LXR signaling may be an important local and systemic target for the treatment of heart failure. We discuss the potential role of LXRs in systemic conditions associated with heart failure, such as hypertension, diabetes, and renal and vascular disease. Further, we expound on recent data that implicate a direct role for LXR activation in the heart, for its impact on cardiomyocyte damage and loss due to ischemia, and effects on cardiac hypertrophy, fibrosis, and myocardial metabolism. Taken together, the accumulating evidence supports the notion that LXRs may represent a novel therapeutic target for the treatment of heart failure.

  13. Probabilistic Risk Assessment for Decision Making During Spacecraft Operations

    NASA Technical Reports Server (NTRS)

    Meshkat, Leila

    2009-01-01

    Decisions made during the operational phase of a space mission often have significant and immediate consequences. Without the explicit consideration of the risks involved and their representation in a solid model, it is very likely that these risks are not considered systematically in trade studies. Wrong decisions during the operational phase of a space mission can lead to immediate system failure whereas correct decisions can help recover the system even from faulty conditions. A problem of special interest is the determination of the system fault protection strategies upon the occurrence of faults within the system. Decisions regarding the fault protection strategy also heavily rely on a correct understanding of the state of the system and an integrated risk model that represents the various possible scenarios and their respective likelihoods. Probabilistic Risk Assessment (PRA) modeling is applicable to the full lifecycle of a space mission project, from concept development to preliminary design, detailed design, development and operations. The benefits and utilities of the model, however, depend on the phase of the mission for which it is used. This is because of the difference in the key strategic decisions that support each mission phase. The focus of this paper is on describing the particular methods used for PRA modeling during the operational phase of a spacecraft by gleaning insight from recently conducted case studies on two operational Mars orbiters. During operations, the key decisions relate to the commands sent to the spacecraft for any kind of diagnostics, anomaly resolution, trajectory changes, or planning. Often, faults and failures occur in the parts of the spacecraft but are contained or mitigated before they can cause serious damage. The failure behavior of the system during operations provides valuable data for updating and adjusting the related PRA models that are built primarily based on historical failure data. The PRA models, in turn, provide insight into the effect of various faults or failures on the risk and failure drivers of the system and the likelihood of possible end case scenarios, thereby facilitating the decision making process during operations. This paper describes the process of adjusting PRA models based on observed spacecraft data, on one hand, and utilizing the models for insight into the future system behavior on the other hand. While PRA models are typically used as a decision aid during the design phase of a space mission, we advocate adjusting them based on the observed behavior of the spacecraft and utilizing them for decision support during the operations phase.

  14. Memory function and supportive technology

    PubMed Central

    Charness, Neil; Best, Ryan; Souders, Dustin

    2013-01-01

    Episodic and working memory processes show pronounced age-related decline, with other memory processes such as semantic, procedural, and metamemory less affected. Older adults tend to complain the most about prospective and retrospective memory failures. We introduce a framework for deciding how to mitigate memory decline using augmentation and substitution and discuss techniques that change the user, through mnemonics training, and change the tool or environment, by providing environmental support. We provide examples of low-tech and high-tech memory supports and discuss constraints on the utility of high-tech systems including effectiveness of devices, attitudes toward memory aids, and reliability of systems. PMID:24379752

  15. Model Based Autonomy for Robust Mars Operations

    NASA Technical Reports Server (NTRS)

    Kurien, James A.; Nayak, P. Pandurang; Williams, Brian C.; Lau, Sonie (Technical Monitor)

    1998-01-01

    Space missions have historically relied upon a large ground staff, numbering in the hundreds for complex missions, to maintain routine operations. When an anomaly occurs, this small army of engineers attempts to identify and work around the problem. A piloted Mars mission, with its multiyear duration, cost pressures, half-hour communication delays and two-week blackouts cannot be closely controlled by a battalion of engineers on Earth. Flight crew involvement in routine system operations must also be minimized to maximize science return. It also may be unrealistic to require the crew have the expertise in each mission subsystem needed to diagnose a system failure and effect a timely repair, as engineers did for Apollo 13. Enter model-based autonomy, which allows complex systems to autonomously maintain operation despite failures or anomalous conditions, contributing to safe, robust, and minimally supervised operation of spacecraft, life support, In Situ Resource Utilization (ISRU) and power systems. Autonomous reasoning is central to the approach. A reasoning algorithm uses a logical or mathematical model of a system to infer how to operate the system, diagnose failures and generate appropriate behavior to repair or reconfigure the system in response. The 'plug and play' nature of the models enables low cost development of autonomy for multiple platforms. Declarative, reusable models capture relevant aspects of the behavior of simple devices (e.g. valves or thrusters). Reasoning algorithms combine device models to create a model of the system-wide interactions and behavior of a complex, unique artifact such as a spacecraft. Rather than requiring engineers to all possible interactions and failures at design time or perform analysis during the mission, the reasoning engine generates the appropriate response to the current situation, taking into account its system-wide knowledge, the current state, and even sensor failures or unexpected behavior.

  16. Reliability and Maintainability Data for Lead Lithium Cooling Systems

    DOE PAGES

    Cadwallader, Lee

    2016-11-16

    This article presents component failure rate data for use in assessment of lead lithium cooling systems. Best estimate data applicable to this liquid metal coolant is presented. Repair times for similar components are also referenced in this work. These data support probabilistic safety assessment and reliability, availability, maintainability and inspectability analyses.

  17. The Widening Gap: A New Book on the Struggle To Balance Work and Caregiving. Research-in-Brief.

    ERIC Educational Resources Information Center

    Rahmanou, Hedieh

    This research brief presents some main findings from a study of employer-based support systems in the United States to help families meet their caregiving responsibilities, and focuses on the failure of existing policies to support caregiving responsibilities of low-income parents and women. The brief also presents policy alternatives to help…

  18. Total artificial heart in the pediatric patient with biventricular heart failure.

    PubMed

    Park, S S; Sanders, D B; Smith, B P; Ryan, J; Plasencia, J; Osborn, M B; Wellnitz, C M; Southard, R N; Pierce, C N; Arabia, F A; Lane, J; Frakes, D; Velez, D A; Pophal, S G; Nigro, J J

    2014-01-01

    Mechanical circulatory support emerged for the pediatric population in the late 1980s as a bridge to cardiac transplantation. The Total Artificial Heart (TAH-t) (SynCardia Systems Inc., Tuscon, AZ) has been approved for compassionate use by the Food and Drug Administration for patients with end-stage biventricular heart failure as a bridge to heart transplantation since 1985 and has had FDA approval since 2004. However, of the 1,061 patients placed on the TAH-t, only 21 (2%) were under the age 18. SynCardia Systems, Inc. recommends a minimum patient body surface area (BSA) of 1.7 m(2), thus, limiting pediatric application of this device. This unique case report shares this pediatric institution's first experience with the TAH-t. A 14-year-old male was admitted with dilated cardiomyopathy and severe biventricular heart failure. The patient rapidly decompensated, requiring extracorporeal life support. An echocardiogram revealed severe biventricular dysfunction and diffuse clot formation in the left ventricle and outflow tract. The decision was made to transition to biventricular assist device. The biventricular failure and clot formation helped guide the team to the TAH-t, in spite of a BSA (1.5 m(2)) below the recommendation of 1.7 m(2). A computed tomography (CT) scan of the thorax, in conjunction with a novel three-dimensional (3D) modeling system and team, assisted in determining appropriate fit. Chest CT and 3D modeling following implantation were utilized to determine all major vascular structures were unobstructed and the bronchi were open. The virtual 3D model confirmed appropriate device fit with no evidence of compression to the left pulmonary veins. The postoperative course was complicated by a left lung opacification. The left lung anomalies proved to be atelectasis and improved with aggressive recruitment maneuvers. The patient was supported for 11 days prior to transplantation. Chest CT and 3D modeling were crucial in assessing whether the device would fit, as well as postoperative complications in this smaller pediatric patient.

  19. Failure mechanisms of laminates transversely loaded by bolt push-through

    NASA Technical Reports Server (NTRS)

    Waters, W. A., Jr.; Williams, J. G.

    1985-01-01

    Stiffened composite panels proposed for fuselage and wing design utilize a variety of stiffener-to-skin attachment concepts including mechanical fasteners. The attachment concept is an important factor influencing the panel's strength and can govern its performance following local damage. Mechanical fasteners can be an effective method for preventing stiffener-skin separation. One potential failure mode for bolted panels occurs when the bolts pull through the stiffener attachment flange or skin. The resulting loss of support by the skin to the stiffener and by the stiffener to the skin can result in local buckling and subsequent panel collapse. The characteristic failure modes associated with bolt push-through failure are described and the results of a parametric study of the effects that different material systems, boundary conditions, and laminates have on the forces and displacements required to cause damage and bolt pushthrough failure are presented.

  20. Testing of a variable-stroke Stirling engine

    NASA Technical Reports Server (NTRS)

    Thieme, Lanny G.; Allen, David J.

    1986-01-01

    Testing of a variable-stroke Stirling engine at NASA Lewis has been completed. In support of the DOE Stirling Engine Highway Vehicle Systems Program, the engine was tested for about 70 hours total with both He and H2 as working fluids over a range of pressures and strokes. A direct comparison was made of part-load efficiencies obtained with variable-stroke (VS) and variable-pressure operation. Two failures with the variable-angle swash-plate drive system limited testing to low power levels. These failures are not thought to be caused by problems inherent with the VS concept but do emphasize the need for careful design in the area of the crossheads.

  1. Testing of a variable-stroke Stirling engine

    NASA Technical Reports Server (NTRS)

    Thieme, L. G.; Allen, D. J.

    1986-01-01

    Testing of a variable-stroke Stirling engine at NASA Lewis has been completed. In support of the DOE Stirling Engine Highway Vehicle Systems Program, the engine was tested for about 70 hours total with both He and H2 working fluids over a range of pressures and strokes. A direct comparison was made of part-load efficiencies obtained with variable-stroke (VS) and variable-pressure operation. Two failures with the variable-angle swash-plate drive system limited testing to low power levels. These failures are not thought to be caused by problems inherent with the VS concept but do emphasize the need for careful design in the area of the crossheads.

  2. Protection of health research participants in the United States: a review of two cases.

    PubMed

    Douglass, Alison; Crampton, Peter

    2004-06-01

    Two research-related deaths and controversies in the United States during recent years have raised public concern over the safety of research participants. This paper explores the reasons why, in two studies, there was a failure of ethical oversight. The issues exposed by these failures have international relevance as they could possibly occur anywhere where human health research is carried out. Five factors that contributed to these failures are highlighted: 1. failure to support and resource research ethics committees; 2. failure of the research oversight process to adequately assess the risks and benefits of research, while giving undue emphasis to informed consent; 3. conflicts of interest arising from financial relationships and research ethics committee membership; 4. lack of consistent oversight of privately funded research; and 5. incompetent or intentional failure to adhere by ethical guidelines. There is considerable headway to be made in the United States, as in other countries, in the fostering and maintenance of robust systems of human research oversight.

  3. Optimizing the robustness of electrical power systems against cascading failures.

    PubMed

    Zhang, Yingrui; Yağan, Osman

    2016-06-21

    Electrical power systems are one of the most important infrastructures that support our society. However, their vulnerabilities have raised great concern recently due to several large-scale blackouts around the world. In this paper, we investigate the robustness of power systems against cascading failures initiated by a random attack. This is done under a simple yet useful model based on global and equal redistribution of load upon failures. We provide a comprehensive understanding of system robustness under this model by (i) deriving an expression for the final system size as a function of the size of initial attacks; (ii) deriving the critical attack size after which system breaks down completely; (iii) showing that complete system breakdown takes place through a first-order (i.e., discontinuous) transition in terms of the attack size; and (iv) establishing the optimal load-capacity distribution that maximizes robustness. In particular, we show that robustness is maximized when the difference between the capacity and initial load is the same for all lines; i.e., when all lines have the same redundant space regardless of their initial load. This is in contrast with the intuitive and commonly used setting where capacity of a line is a fixed factor of its initial load.

  4. The Raid distributed database system

    NASA Technical Reports Server (NTRS)

    Bhargava, Bharat; Riedl, John

    1989-01-01

    Raid, a robust and adaptable distributed database system for transaction processing (TP), is described. Raid is a message-passing system, with server processes on each site to manage concurrent processing, consistent replicated copies during site failures, and atomic distributed commitment. A high-level layered communications package provides a clean location-independent interface between servers. The latest design of the package delivers messages via shared memory in a configuration with several servers linked into a single process. Raid provides the infrastructure to investigate various methods for supporting reliable distributed TP. Measurements on TP and server CPU time are presented, along with data from experiments on communications software, consistent replicated copy control during site failures, and concurrent distributed checkpointing. A software tool for evaluating the implementation of TP algorithms in an operating-system kernel is proposed.

  5. Failure mode and effects analysis of witnessing protocols for ensuring traceability during IVF.

    PubMed

    Rienzi, Laura; Bariani, Fiorenza; Dalla Zorza, Michela; Romano, Stefania; Scarica, Catello; Maggiulli, Roberta; Nanni Costa, Alessandro; Ubaldi, Filippo Maria

    2015-10-01

    Traceability of cells during IVF is a fundamental aspect of treatment, and involves witnessing protocols. Failure mode and effects analysis (FMEA) is a method of identifying real or potential breakdowns in processes, and allows strategies to mitigate risks to be developed. To examine the risks associated with witnessing protocols, an FMEA was carried out in a busy IVF centre, before and after implementation of an electronic witnessing system (EWS). A multidisciplinary team was formed and moderated by human factors specialists. Possible causes of failures, and their potential effects, were identified and risk priority number (RPN) for each failure calculated. A second FMEA analysis was carried out after implementation of an EWS. The IVF team identified seven main process phases, 19 associated process steps and 32 possible failure modes. The highest RPN was 30, confirming the relatively low risk that mismatches may occur in IVF when a manual witnessing system is used. The introduction of the EWS allowed a reduction in the moderate-risk failure mode by two-thirds (highest RPN = 10). In our experience, FMEA is effective in supporting multidisciplinary IVF groups to understand the witnessing process, identifying critical steps and planning changes in practice to enable safety to be enhanced. Copyright © 2015 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  6. The nutritional and metabolic support of heart failure in the intensive care unit.

    PubMed

    Meltzer, Joseph S; Moitra, Vivek K

    2008-03-01

    Heart failure and cardiovascular disease are common causes of morbidity and mortality, contributing to many ICU admissions. Nutritional deficiencies have been associated with the development and worsening of chronic heart failure. Nutritional and metabolic support may improve outcomes in critically ill patients with heart failure. This review analyzes the role of this support in the acute care setting of the ICU. Cardiac cachexia is a complex pathophysiologic process. It is characterized by inflammation and anabolic-catabolic imbalance. Nutritional supplements containing selenium, vitamins and antioxidants may provide needed support to the failing myocardium. Evidence shows that there is utility in intensive insulin therapy in the critically ill. Finally, there is an emerging metabolic role for HMG-CoA reductase inhibition, or statin therapy, in the treatment of heart failure. Shifting the metabolic milieu from catabolic to anabolic, reducing free radicals, and quieting inflammation in addition to caloric supplementation may be the key to nutritional support in the heart failure patient. Tight glycemic control with intensive insulin therapy plays an expanding role in the care of the critically ill. Glucose-insulin-potassium therapy probably does not improve the condition of the patient with heart failure or acute myocardial infarction.

  7. Use of extracorporeal life support in patients with congenital heart disease.

    PubMed

    Delius, R E; Bove, E L; Meliones, J N; Custer, J R; Moler, F W; Crowley, D; Amirikia, A; Behrendt, D M; Bartlett, R H

    1992-09-01

    To review a large experience with extracorporeal life support in patients with congenital heart disease. To determine the major causes of mortality and morbidity in order to improve the results of using this technology in this patient population. Retrospective chart review. Twenty-five patients between the ages of 1 day and 8 yrs. These patients had congenital heart disease and were clinically felt to be at high risk for death caused by cardiac failure or by respiratory failure complicated by congenital heart disease. All patients in this report were placed on extracorporeal life support to allow recovery of myocardial or pulmonary function. Of these 25 patients, 52% were weaned from bypass support and 40% survived to discharge. Patients who were not weaned from extracorporeal life support characteristically suffered from irreversible neurologic injury, multiple organ failure, or bleeding complications. Only one patient died of irreversible cardiac failure. Extracorporeal life support can be useful in supporting patients with congenital heart disease with life-threatening cardiac or pulmonary failure. Improvements in limiting neurologic and bleeding complications may lead to improvements in the use of extracorporeal life support for this indication. However, prospective, randomized studies are needed to appreciate the role of extracorporeal life support in these patients.

  8. Ventilatory support in critically ill hematology patients with respiratory failure

    PubMed Central

    2012-01-01

    Introduction Hematology patients admitted to the ICU frequently experience respiratory failure and require mechanical ventilation. Noninvasive mechanical ventilation (NIMV) may decrease the risk of intubation, but NIMV failure poses its own risks. Methods To establish the impact of ventilatory management and NIMV failure on outcome, data from a prospective, multicenter, observational study were analyzed. All hematology patients admitted to one of the 34 participating ICUs in a 17-month period were followed up. Data on demographics, diagnosis, severity, organ failure, and supportive therapies were recorded. A logistic regression analysis was done to evaluate the risk factors associated with death and NIVM failure. Results Of 450 patients, 300 required ventilatory support. A diagnosis of congestive heart failure and the initial use of NIMV significantly improved survival, whereas APACHE II score, allogeneic transplantation, and NIMV failure increased the risk of death. The risk factors associated with NIMV success were age, congestive heart failure, and bacteremia. Patients with NIMV failure experienced a more severe respiratory impairment than did those electively intubated. Conclusions NIMV improves the outcome of hematology patients with respiratory insufficiency, but NIMV failure may have the opposite effect. A careful selection of patients with rapidly reversible causes of respiratory failure may increase NIMV success. PMID:22827955

  9. Fault tolerant system with imperfect coverage, reboot and server vacation

    NASA Astrophysics Data System (ADS)

    Jain, Madhu; Meena, Rakesh Kumar

    2017-06-01

    This study is concerned with the performance modeling of a fault tolerant system consisting of operating units supported by a combination of warm and cold spares. The on-line as well as warm standby units are subject to failures and are send for the repair to a repair facility having single repairman which is prone to failure. If the failed unit is not detected, the system enters into an unsafe state from which it is cleared by the reboot and recovery action. The server is allowed to go for vacation if there is no failed unit present in the system. Markov model is developed to obtain the transient probabilities associated with the system states. Runge-Kutta method is used to evaluate the system state probabilities and queueing measures. To explore the sensitivity and cost associated with the system, numerical simulation is conducted.

  10. NASA-LaRc Flight-Critical Digital Systems Technology Workshop

    NASA Technical Reports Server (NTRS)

    Meissner, C. W., Jr. (Editor); Dunham, J. R. (Editor); Crim, G. (Editor)

    1989-01-01

    The outcome is documented of a Flight-Critical Digital Systems Technology Workshop held at NASA-Langley December 13 to 15 1988. The purpose of the workshop was to elicit the aerospace industry's view of the issues which must be addressed for the practical realization of flight-critical digital systems. The workshop was divided into three parts: an overview session; three half-day meetings of seven working groups addressing aeronautical and space requirements, system design for validation, failure modes, system modeling, reliable software, and flight test; and a half-day summary of the research issues presented by the working group chairmen. Issues that generated the most consensus across the workshop were: (1) the lack of effective design and validation methods with support tools to enable engineering of highly-integrated, flight-critical digital systems, and (2) the lack of high quality laboratory and field data on system failures especially due to electromagnetic environment (EME).

  11. Could Zinc Whiskers Be Impacting Your Electronic Systems? Raise Your Awareness. Revision D

    NASA Technical Reports Server (NTRS)

    Sampson, Michael; Brusse, Jay

    2003-01-01

    During the past several decades electrical short circuits induced by "Zinc Whiskers" have been cited as the root cause of failure for various electronic systems (e.g., apnea monitors, telecom switches). These tiny filaments of zinc that may grow from some zinc-coated items (especially those coated by electroplating processes) have the potential to induce electrical shorts in exposed circuitry. Through this article, the authors describe a particular failure scenario attributed to zinc whiskers that has affected many facilities (including some NASA facilities) that utilized zinc-coated raised "access" floor tiles and support structures. Zinc whiskers that may be growing beneath your raised floor have the potential to wreak havoc on electronic systems operating above the floor.

  12. Maternal and Fetal Recovery After Severe Respiratory Failure: A Case Report of Air Transportation of a Pregnant Woman on ECMO Using the CentriMag Transporter System.

    PubMed

    Kaliyev, Rymbay; Kapyshev, Timur; Goncharov, Alex; Lesbekov, Timur; Pya, Yuri

    2015-01-01

    Use of extracorporeal membrane oxygenation (ECMO) for severe cardiopulmonary failure has increased because of improved outcomes. A specially designed ECMO transport system allows for safe transport of patients over long distances. We report a 28-year-old pregnant woman (26 weeks gestation) with acute respiratory distress syndrome in whom ECMO support was necessary for survival, and she was transported to another facility 1,155 km away with the aid of the portable ECMO system. Transport was uneventful, and the patient's condition remained stable. Acute respiratory distress syndrome improved gradually until the patient was discharged from the hospital with excellent maternal and fetal outcome.

  13. Database recovery using redundant disk arrays

    NASA Technical Reports Server (NTRS)

    Mourad, Antoine N.; Fuchs, W. K.; Saab, Daniel G.

    1992-01-01

    Redundant disk arrays provide a way for achieving rapid recovery from media failures with a relatively low storage cost for large scale database systems requiring high availability. In this paper a method is proposed for using redundant disk arrays to support rapid-recovery from system crashes and transaction aborts in addition to their role in providing media failure recovery. A twin page scheme is used to store the parity information in the array so that the time for transaction commit processing is not degraded. Using an analytical model, it is shown that the proposed method achieves a significant increase in the throughput of database systems using redundant disk arrays by reducing the number of recovery operations needed to maintain the consistency of the database.

  14. Recovery issues in databases using redundant disk arrays

    NASA Technical Reports Server (NTRS)

    Mourad, Antoine N.; Fuchs, W. K.; Saab, Daniel G.

    1993-01-01

    Redundant disk arrays provide a way for achieving rapid recovery from media failures with a relatively low storage cost for large scale database systems requiring high availability. In this paper we propose a method for using redundant disk arrays to support rapid recovery from system crashes and transaction aborts in addition to their role in providing media failure recovery. A twin page scheme is used to store the parity information in the array so that the time for transaction commit processing is not degraded. Using an analytical model, we show that the proposed method achieves a significant increase in the throughput of database systems using redundant disk arrays by reducing the number of recovery operations needed to maintain the consistency of the database.

  15. Future research directions to improve fistula maturation and reduce access failure

    PubMed Central

    Hu, Haidi; Patel, Sandeep; Hanisch, Jesse J.; Santana, Jeans M.; Hashimoto, Takuya; Bai, Hualong; Kudze, Tambudzai; Foster, Trenton R.; Guo, Jianming; Yatsula, Bogdan; Tsui, Janice; Dardik, Alan

    2016-01-01

    With the increasing prevalence of end stage renal disease there is a growing need for hemodialysis. Arteriovenous fistulae (AVF) are the preferred type of vascular access for hemodialysis but maturation and failure continue to present significant barriers to successful fistula use. AVF maturation integrates outward remodeling with vessel wall thickening in response to drastic hemodynamic changes, in the setting of uremia, systemic inflammation, oxidative stress and preexistent vascular pathology. AVF can fail due to both failure to mature adequately to support hemodialysis, as well as development of neointimal hyperplasia (NIH) that narrows the AVF lumen, typically near the fistula anastomosis. Failure due to NIH involves vascular cell activation and migration and extracellular matrix remodeling with complex interactions of growth factors, adhesion molecules, inflammatory mediators, and chemokines, all of which result in maladaptive remodeling. Different strategies have been proposed to prevent and treat AVF failure, based on current understanding of the modes and pathology of access failure; these approaches range from appropriate patient selection and use of alternative surgical strategies for fistula creation, to the use of novel interventional techniques or drugs to treat failing fistulae. Effective treatments to prevent or treat AVF failure requires a multidisciplinary approach involving nephrologists, vascular surgeons and interventional radiologists, allowing careful patient selection and the use of tailored systemic or localized interventions to improve patient-specific outcomes. This review provides contemporary information on the underlying mechanisms of AVF maturation and failure and discusses the broad spectrum of options that can be tailored for specific therapy. PMID:28779782

  16. Future research directions to improve fistula maturation and reduce access failure.

    PubMed

    Hu, Haidi; Patel, Sandeep; Hanisch, Jesse J; Santana, Jeans M; Hashimoto, Takuya; Bai, Hualong; Kudze, Tambudzai; Foster, Trenton R; Guo, Jianming; Yatsula, Bogdan; Tsui, Janice; Dardik, Alan

    2016-12-01

    With the increasing prevalence of end-stage renal disease, there is a growing need for hemodialysis. Arteriovenous fistulae (AVF) are the preferred type of vascular access for hemodialysis, but maturation and failure continue to present significant barriers to successful fistula use. AVF maturation integrates outward remodeling with vessel wall thickening in response to drastic hemodynamic changes in the setting of uremia, systemic inflammation, oxidative stress, and pre-existent vascular pathology. AVF can fail due to both failure to mature adequately to support hemodialysis and development of neointimal hyperplasia that narrows the AVF lumen, typically near the fistula anastomosis. Failure due to neointimal hyperplasia involves vascular cell activation and migration and extracellular matrix remodeling with complex interactions of growth factors, adhesion molecules, inflammatory mediators, and chemokines, all of which result in maladaptive remodeling. Different strategies have been proposed to prevent and treat AVF failure based on current understanding of the modes and pathology of access failure; these approaches range from appropriate patient selection and use of alternative surgical strategies for fistula creation, to the use of novel interventional techniques or drugs to treat failing fistulae. Effective treatments to prevent or treat AVF failure require a multidisciplinary approach involving nephrologists, vascular surgeons, and interventional radiologists, careful patient selection, and the use of tailored systemic or localized interventions to improve patient-specific outcomes. This review provides contemporary information on the underlying mechanisms of AVF maturation and failure and discusses the broad spectrum of options that can be tailored for specific therapy. Published by Elsevier Inc.

  17. Disease management: remote monitoring in heart failure patients with implantable defibrillators, resynchronization devices, and haemodynamic monitors.

    PubMed

    Abraham, William T

    2013-06-01

    Heart failure represents a major public health concern, associated with high rates of morbidity and mortality. A particular focus of contemporary heart failure management is reduction of hospital admission and readmission rates. While optimal medical therapy favourably impacts the natural history of the disease, devices such as cardiac resynchronization therapy devices and implantable cardioverter defibrillators have added incremental value in improving heart failure outcomes. These devices also enable remote patient monitoring via device-based diagnostics. Device-based measurement of physiological parameters, such as intrathoracic impedance and heart rate variability, provide a means to assess risk of worsening heart failure and the possibility of future hospitalization. Beyond this capability, implantable haemodynamic monitors have the potential to direct day-to-day management of heart failure patients to significantly reduce hospitalization rates. The use of a pulmonary artery pressure measurement system has been shown to significantly reduce the risk of heart failure hospitalization in a large randomized controlled study, the CardioMEMS Heart Sensor Allows Monitoring of Pressure to Improve Outcomes in NYHA Class III Heart Failure Patients (CHAMPION) trial. Observations from a pilot study also support the potential use of a left atrial pressure monitoring system and physician-directed patient self-management paradigm; these observations are under further investigation in the ongoing LAPTOP-HF trial. All these devices depend upon high-intensity remote monitoring for successful detection of parameter deviations and for directing and following therapy.

  18. Dynamic modelling and response characteristics of a magnetic bearing rotor system including auxiliary bearings

    NASA Technical Reports Server (NTRS)

    Free, April M.; Flowers, George T.; Trent, Victor S.

    1993-01-01

    Auxiliary bearings are a critical feature of any magnetic bearing system. They protect the soft iron core of the magnetic bearing during an overload or failure. An auxiliary bearing typically consists of a rolling element bearing or bushing with a clearance gap between the rotor and the inner race of the support. The dynamics of such systems can be quite complex. It is desired to develop a rotor-dynamic model and assess the dynamic behavior of a magnetic bearing rotor system which includes the effects of auxiliary bearings. Of particular interest is the effects of introducing sideloading into such a system during failure of the magnetic bearing. A model is developed from an experimental test facility and a number of simulation studies are performed. These results are presented and discussed.

  19. Manipulation of sarcoplasmic reticulum Ca2+ release in heart failure through mechanical intervention

    PubMed Central

    Ibrahim, Michael; Nader, Anas; Yacoub, Magdi H; Terracciano, Cesare

    2015-01-01

    Left ventricular assist devices (LVADs) were developed as a means of temporary circulatory support, but the mechanical unloading they offer also results in significant reverse remodelling. In selected patients, these improvements are sufficient to allow ultimate device explantation without requiring transplantation; this represents a fundamental shift in our understanding of heart failure. Like heart failure itself, LVADs influence multiple biological systems. The transverse tubules are a system of membrane invaginations in ventricular cardiomyocytes which allow rapid propagation of the action potential throughout the cell. Through their dense concentration of L-type Ca2+ channels in close proximity to intracellular ryanodine receptors, the t-tubules enable synchronous Ca2+ release throughout the cell. The t-tubules’ structure appears to be specifically regulated by mechanical load, such that either the overload of heart failure (or the spontaneously hypertensive rat model) or the profound unloading in a chronically unloaded heart result in impaired t-tubule structure, with ineffective Ca2+ release. While there are multiple molecular pathways which underpin t-tubule regulation, Telethonin (Tcap) appears to be important in regulating the effect of altered loading on the t-tubule system. PMID:25922157

  20. Integrated Systems Health Management for Sustainable Habitats (Using Sustainability Base as a Testbed)

    NASA Technical Reports Server (NTRS)

    Martin, Rodney A.

    2017-01-01

    Habitation systems provide a safe place for astronauts to live and work in space and on planetary surfaces. They enable crews to live and work safely in deep space, and include integrated life support systems, radiation protection, fire safety, and systems to reduce logistics and the need for resupply missions. Innovative health management technologies are needed in order to increase the safety and mission-effectiveness for future space habitats on other planets, asteroids, or lunar surfaces. For example, off-nominal or failure conditions occurring in safety-critical life support systems may need to be addressed quickly by the habitat crew without extensive technical support from Earth due to communication delays. If the crew in the habitat must manage, plan and operate much of the mission themselves, operations support must be migrated from Earth to the habitat. Enabling monitoring, tracking, and management capabilities on-board the habitat and related EVA platforms for a small crew to use will require significant automation and decision support software.Traditional caution and warning systems are typically triggered by out-of-bounds sensor values, but can be enhanced by including machine learning and data mining techniques. These methods aim to reveal latent, unknown conditions while still retaining and improving the ability to provide highly accurate alerts for known issues. A few of these techniques will briefly described, along with performance targets for known faults and failures. Specific system health management capabilities required for habitat system elements (environmental control and life support systems, etc.) may include relevant subsystems such as water recycling systems, photovoltaic systems, electrical power systems, and environmental monitoring systems. Sustainability Base, the agency's flagship LEED-platinum certified green building acts as a living laboratory for testing advanced information and sustainable technologies that provides an opportunity to test novel machine learning and controls capabilities. In this talk, key features of Sustainability Base that make it relevant to deep space habitat technology and its use of these kinds of subsystems previously listed will be presented. The fact that all such systems require less power to support human occupancy can be used as a focal point to serve as a testbed for deep space habitats that will need to operate within finite energy budgets.

  1. The effects of heart rate control in chronic heart failure with reduced ejection fraction.

    PubMed

    Grande, Dario; Iacoviello, Massimo; Aspromonte, Nadia

    2018-07-01

    Elevated heart rate has been associated with worse prognosis both in the general population and in patients with heart failure. Heart rate is finely modulated by neurohormonal signals and it reflects the balance between the sympathetic and the parasympathetic limbs of the autonomic nervous system. For this reason, elevated heart rate in heart failure has been considered an epiphenomenon of the sympathetic hyperactivation during heart failure. However, experimental and clinical evidence suggests that high heart rate could have a direct pathogenetic role. Consequently, heart rate might act as a pathophysiological mediator of heart failure as well as a marker of adverse outcome. This hypothesis has been supported by the observation that the positive effect of beta-blockade could be linked to the degree of heart rate reduction. In addition, the selective heart rate control with ivabradine has recently been demonstrated to be beneficial in patients with heart failure and left ventricular systolic dysfunction. The objective of this review is to examine the pathophysiological implications of elevated heart rate in chronic heart failure and explore the mechanisms underlying the effects of pharmacological heart rate control.

  2. Enhanced methods for determining operational capabilities and support costs of proposed space systems

    NASA Technical Reports Server (NTRS)

    Ebeling, Charles

    1993-01-01

    This report documents the work accomplished during the first two years of research to provide support to NASA in predicting operational and support parameters and costs of proposed space systems. The first year's research developed a methodology for deriving reliability and maintainability (R & M) parameters based upon the use of regression analysis to establish empirical relationships between performance and design specifications and corresponding mean times of failure and repair. The second year focused on enhancements to the methodology, increased scope of the model, and software improvements. This follow-on effort expands the prediction of R & M parameters and their effect on the operations and support of space transportation vehicles to include other system components such as booster rockets and external fuel tanks. It also increases the scope of the methodology and the capabilities of the model as implemented by the software. The focus is on the failure and repair of major subsystems and their impact on vehicle reliability, turn times, maintenance manpower, and repairable spares requirements. The report documents the data utilized in this study, outlines the general methodology for estimating and relating R&M parameters, presents the analyses and results of application to the initial data base, and describes the implementation of the methodology through the use of a computer model. The report concludes with a discussion on validation and a summary of the research findings and results.

  3. Studies and analyses of the space shuttle main engine

    NASA Technical Reports Server (NTRS)

    Tischer, Alan E.; Glover, R. C.

    1987-01-01

    The primary objectives were to: evaluate ways to maximize the information yield from the current Space Shuttle Main Engine (SSME) condition monitoring sensors, identify additional sensors or monitoring capabilities which would significantly improve SSME data, and provide continuing support of the Main Engine Cost/Operations (MECO) model. In the area of SSME condition monitoring, the principal tasks were a review of selected SSME failure data, a general survey of condition monitoring, and an evaluation of the current engine monitoring system. A computerized data base was developed to assist in modeling engine failure information propagations. Each of the above items is discussed in detail. Also included is a brief discussion of the activities conducted in support of the MECO model.

  4. Making intelligent systems team players. A guide to developing intelligent monitoring systems

    NASA Technical Reports Server (NTRS)

    Land, Sherry A.; Malin, Jane T.; Thronesberry, Carroll; Schreckenghost, Debra L.

    1995-01-01

    This reference guide for developers of intelligent monitoring systems is based on lessons learned by developers of the DEcision Support SYstem (DESSY), an expert system that monitors Space Shuttle telemetry data in real time. DESSY makes inferences about commands, state transitions, and simple failures. It performs failure detection rather than in-depth failure diagnostics. A listing of rules from DESSY and cue cards from DESSY subsystems are included to give the development community a better understanding of the selected model system. The G-2 programming tool used in developing DESSY provides an object-oriented, rule-based environment, but many of the principles in use here can be applied to any type of monitoring intelligent system. The step-by-step instructions and examples given for each stage of development are in G-2, but can be used with other development tools. This guide first defines the authors' concept of real-time monitoring systems, then tells prospective developers how to determine system requirements, how to build the system through a combined design/development process, and how to solve problems involved in working with real-time data. It explains the relationships among operational prototyping, software evolution, and the user interface. It also explains methods of testing, verification, and validation. It includes suggestions for preparing reference documentation and training users.

  5. Models Extracted from Text for System-Software Safety Analyses

    NASA Technical Reports Server (NTRS)

    Malin, Jane T.

    2010-01-01

    This presentation describes extraction and integration of requirements information and safety information in visualizations to support early review of completeness, correctness, and consistency of lengthy and diverse system safety analyses. Software tools have been developed and extended to perform the following tasks: 1) extract model parts and safety information from text in interface requirements documents, failure modes and effects analyses and hazard reports; 2) map and integrate the information to develop system architecture models and visualizations for safety analysts; and 3) provide model output to support virtual system integration testing. This presentation illustrates the methods and products with a rocket motor initiation case.

  6. Failure analysis of electrolyte-supported solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Fleischhauer, Felix; Tiefenauer, Andreas; Graule, Thomas; Danzer, Robert; Mai, Andreas; Kuebler, Jakob

    2014-07-01

    For solid oxide fuel cells (SOFCs) one key aspect is the structural integrity of the cell and hence its thermo mechanical long term behaviour. The present study investigates the failure mechanisms and the actual causes for fracture of electrolyte supported SOFCs which were run using the current μ-CHP system of Hexis AG, Winterthur - Switzerland under lab conditions or at customer sites for up to 40,000 h. In a first step several operated stacks were demounted for post-mortem inspection, followed by a fractographic evaluation of the failed cells. The respective findings are then set into a larger picture including an analysis of the present stresses acting on the cell like thermal and residual stresses and the measurements regarding the temperature dependent electrolyte strength. For all investigated stacks, the mechanical failure of individual cells can be attributed to locally acting bending loads, which rise due to an inhomogeneous and uneven contact between the metallic interconnect and the cell.

  7. Why do entrepreneurial mHealth ventures in the developing world fail to scale?

    PubMed

    Sundin, Phillip; Callan, Jonathan; Mehta, Khanjan

    Telemedicine is an increasingly common approach to improve healthcare access in developing countries with fledgling healthcare systems. Despite the strong financial, logistical and clinical support from non-governmental organisations (NGOs), government ministries and private actors alike, the majority of telemedicine projects do not survive beyond the initial pilot phase and achieve their full potential. Based on a review of 35 entrepreneurial telemedicine and mHealth ventures, and 17 reports that analyse their operations and challenges, this article provides a narrative review of recurring failure modes, i.e. factors that lead to failure of such venture pilots. Real-world examples of successful and failed ventures are examined for key take-away messages and practical strategies for creating commercial viable telemedicine operations. A better understanding of these failure modes can inform the design of sustainable and scalable telemedicine systems that effectively address the growing healthcare disparities in developing countries.

  8. Continuous internal counterpulsation as a bridge to recovery in acute and chronic heart failure

    PubMed Central

    Kontogiannis, Christos D; Malliaras, Konstantinos; Kapelios, Chris J; Mason, Jay W; Nanas, John N

    2016-01-01

    Cardiac recovery from cardiogenic shock (CS) and end-stage chronic heart failure (HF) remains an often insurmountable therapeutic challenge. The counterpulsation technique exerts numerous beneficial effects on systemic hemodynamics and left ventricular mechanoenergetics, rendering it attractive for promoting myocardial recovery in both acute and chronic HF. Although a recent clinical trial has questioned the clinical effectiveness of short-term hemodynamic support with intra-aortic balloon pump (IABP, the main representative of the counterpulsation technique) in CS complicating myocardial infarction, the issue remains open to further investigation. Moreover, preliminary data suggest that long-term IABP support in patients with end-stage HF is safe and may mediate recovery of left- or/and right-sided cardiac function, facilitating long-term weaning from mechanical support or enabling the application of other permanent, life-saving solutions. The potential of long-term counterpulsation could possibly be enhanced by implementation of novel, fully implantable counterpulsation devices. PMID:27011909

  9. Social support among African Americans with heart failure: is there a role for community health advisors?

    PubMed

    Durant, Raegan W; Brown, Qiana L; Cherrington, Andrea L; Andreae, Lynn J; Hardy, Claudia M; Scarinci, Isabel C

    2013-01-01

    The study had 2 objectives: (1) to gather the observations of community health advisors (CHAs) on the role of social support in the lives of African Americans; and (2) to develop a lay support intervention framework, on the basis of the existing literature and observations of CHAs, depicting how social support may address the needs of African American patients with heart failure. Qualitative data were collected in semistructured interviews among 15 CHAs working in African American communities in Birmingham, Alabama. Prominent themes included the challenge of meeting clients' overlapping health care and general life needs, the variation in social support received from family and friends, and the opportunities for CHAs to provide multiple types of social support to clients. CHAs also believed that their support activities could be implemented among populations with heart failure. The experience of CHAs with social support can inform a potential framework of a lay support intervention among African Americans with heart failure. Published by Mosby, Inc.

  10. Failure and fatigue characteristics of adhesive athletic tape.

    PubMed

    Bragg, Richard W; Macmahon, John M; Overom, Erin K; Yerby, Scott A; Matheson, Gordon O; Carter, Dennis R; Andriacchi, Thomas P

    2002-03-01

    Athletic tape has been commonly reported to lose much of its structural support after 20 min of exercise. Although many studies have addressed the functional performance characteristics of athletic tape, its mechanical properties are poorly understood. This study examines the failure and fatigue properties of several commonly used athletic tapes. A Web-based survey of professional sports trainers was used to select the following three tapes for the study: Zonas (Johnson & Johnson), Leukotape (Beiersdorf), and Jaylastic (Jaybird & Mais). Using a hydraulic material testing system (MTS), eight samples of each tape were compared in three different mechanical tests: load-to-failure, fatigue testing under load control, and fatigue testing under displacement control. Differences in tape microstructure were used to interpret the results of the mechanical tests. Significant differences (P < 0.001) in failure load, elongation at failure, and stiffness were found from failure tests. Significant differences were also found (P < 0.001) in fatigue behavior under both modes of control. As a representative example, in one normalized displacement control fatigue test after 20 min of cycling, 21% (Zonas), 29% (Leukotape), and 57% (Jaylastic) of the mechanical support was lost. After cycling, all tapes loaded to failure showed increased stiffness (P < 0.001), indicating significant energy absorption during cycling. Observed differences in the tapes' microstructure were qualitatively consistent with the measured differences in their mechanical properties. In understanding the shortcomings of currently available tapes, the results of these tests can now be used as benchmarks with which to compare and develop future tape designs. Ultimately, these improved tapes should reduce ankle injuries among athletes.

  11. PROBABILISTIC RISK ANALYSIS OF RADIOACTIVE WASTE DISPOSALS - a case study

    NASA Astrophysics Data System (ADS)

    Trinchero, P.; Delos, A.; Tartakovsky, D. M.; Fernandez-Garcia, D.; Bolster, D.; Dentz, M.; Sanchez-Vila, X.; Molinero, J.

    2009-12-01

    The storage of contaminant material in superficial or sub-superficial repositories, such as tailing piles for mine waste or disposal sites for low and intermediate nuclear waste, poses a potential threat for the surrounding biosphere. The minimization of these risks can be achieved by supporting decision-makers with quantitative tools capable to incorporate all source of uncertainty within a rigorous probabilistic framework. A case study is presented where we assess the risks associated to the superficial storage of hazardous waste close to a populated area. The intrinsic complexity of the problem, involving many events with different spatial and time scales and many uncertainty parameters is overcome by using a formal PRA (probabilistic risk assessment) procedure that allows decomposing the system into a number of key events. Hence, the failure of the system is directly linked to the potential contamination of one of the three main receptors: the underlying karst aquifer, a superficial stream that flows near the storage piles and a protection area surrounding a number of wells used for water supply. The minimal cut sets leading to the failure of the system are obtained by defining a fault-tree that incorporates different events including the failure of the engineered system (e.g. cover of the piles) and the failure of the geological barrier (e.g. clay layer that separates the bottom of the pile from the karst formation). Finally the probability of failure is quantitatively assessed combining individual independent or conditional probabilities that are computed numerically or borrowed from reliability database.

  12. Mechanical Circulatory Support of the Right Ventricle for Adult and Pediatric Patients With Heart Failure.

    PubMed

    Chopski, Steven G; Murad, Nohra M; Fox, Carson S; Stevens, Randy M; Throckmorton, Amy L

    2018-05-10

    The clinical implementation of mechanical circulatory assistance for a significantly dysfunctional or failing left ventricle as a bridge-to-transplant or bridge-to-recovery is on the rise. Thousands of patients with left-sided heart failure are readily benefitting from these life-saving technologies, and left ventricular failure often leads to severe right ventricular dysfunction or failure. Right ventricular failure (RVF) has a high rate of mortality caused by the risk of multisystem organ failure and prolonged hospitalization for patients after treatment. The use of a blood pump to support the left ventricle also typically results in an increase in right ventricular preload and may impair right ventricular contractility during left ventricular unloading. Patients with RVF might also suffer from severe pulmonary dysfunction, cardiac defects, congenital heart disease states, or a heterogeneity of cardiophysiologic challenges because of symptomatic congestive heart failure. Thus, the uniqueness and complexity of RVF is emerging as a new domain of significant clinical interest that motivates the development of right ventricular assist devices. In this review, we present the current state-of-the-art for clinically used blood pumps to support adults and pediatric patients with right ventricular dysfunction or failure concomitant with left ventricular failure. New innovative devices specifically for RVF are also highlighted. There continues to be a compelling need for novel treatment options to support patients with significant right heart dysfunction or failure.

  13. Defective support network: a major obstacle to coping for patients with heart failure: a qualitative study

    PubMed Central

    Shahrbabaki, Parvin Mangolian; Nouhi, Esmat; Kazemi, Majid; Ahmadi, Fazlollah

    2016-01-01

    Background Heart failure as a chronic disease poses many challenges for a patient in his or her everyday life. Support in various aspects of life positively affects coping strategies and influences the well-being and health outcomes of heart failure patients. Inadequate support may lead to a worsening of symptoms, increased hospital readmissions, psychological disorders, and a reduced quality of life. Objective This study explored obstacles to coping related to support for heart failure patients as viewed by the patients themselves and their family members and caregivers. Design This qualitative study was conducted using content analysis. The 20 Iranian participants included 11 patients with heart failure, three cardiologists, three nurses, and three family members of heart failure patients selected through purposive sampling. Data were collected through semi-structured interviews and analyzed using the Lundman and Graneheim qualitative content analysis method. Results During data analysis, ‘defective support network’ developed as the main theme along with four other categories of ‘inadequate family performance’, ‘inadequate support by the healthcare team’, ‘distorted societal social support’, and ‘inadequate welfare support’. Conclusion The findings of the current study can assist health authorities and planners in identifying the needs of patients with heart failure so as to focus and plan on facilitating their coping as much as possible by obviating the existing obstacles. PMID:27041539

  14. Implementing Lumberjacks and Black Swans Into Model-Based Tools to Support Human-Automation Interaction.

    PubMed

    Sebok, Angelia; Wickens, Christopher D

    2017-03-01

    The objectives were to (a) implement theoretical perspectives regarding human-automation interaction (HAI) into model-based tools to assist designers in developing systems that support effective performance and (b) conduct validations to assess the ability of the models to predict operator performance. Two key concepts in HAI, the lumberjack analogy and black swan events, have been studied extensively. The lumberjack analogy describes the effects of imperfect automation on operator performance. In routine operations, an increased degree of automation supports performance, but in failure conditions, increased automation results in more significantly impaired performance. Black swans are the rare and unexpected failures of imperfect automation. The lumberjack analogy and black swan concepts have been implemented into three model-based tools that predict operator performance in different systems. These tools include a flight management system, a remotely controlled robotic arm, and an environmental process control system. Each modeling effort included a corresponding validation. In one validation, the software tool was used to compare three flight management system designs, which were ranked in the same order as predicted by subject matter experts. The second validation compared model-predicted operator complacency with empirical performance in the same conditions. The third validation compared model-predicted and empirically determined time to detect and repair faults in four automation conditions. The three model-based tools offer useful ways to predict operator performance in complex systems. The three tools offer ways to predict the effects of different automation designs on operator performance.

  15. Impact of a clinical decision support system for drug dosage in patients with renal failure.

    PubMed

    Desmedt, Sophie; Spinewine, Anne; Jadoul, Michel; Henrard, Séverine; Wouters, Dominique; Dalleur, Olivia

    2018-05-21

    Background A clinical decision support system (CDSS) linked to the computerized physician order entry may help improve prescription appropriateness in inpatients with renal insufficiency. Objective To evaluate the impact on prescription appropriateness of a CDSS prescriber alert for 85 drugs in renal failure patients. Setting Before-after study in a 975-bed academic hospital. Method Prescriptions of patients with renal failure were reviewed during two comparable periods of 6 days each, before and after the implementation of the CDSS (September 2009 and 2010). Main outcome measure The proportion of inappropriate dosages of 85 drugs included in the CDSS was compared in the pre- and post-implementation group. Results Six hundred and fifteen patients were included in the study (301 in pre- and 314 in post-implementation periods). In the pre- and post-implementation period, respectively 2882 and 3485 prescriptions were evaluated, of which 14.9 and 16.6% triggered an alert. Among these, the dosage was inappropriate in respectively 25.4 and 24.6% of prescriptions in the pre- and post-implementation periods (OR 0.97; 95% CI 0.72-1.29). The most frequently involved drugs were paracetamol, perindopril, tramadol and allopurinol. Conclusion The implementation of a CDSS did not significantly reduce the proportion of inappropriate drug dosages in patients with renal failure. Further research is required to investigate the reasons why prescribers override alerts. Collaboration with clinical pharmacists might improve compliance with the CDSS recommendations.

  16. Derivation of Failure Rates and Probability of Failures for the International Space Station Probabilistic Risk Assessment Study

    NASA Technical Reports Server (NTRS)

    Vitali, Roberto; Lutomski, Michael G.

    2004-01-01

    National Aeronautics and Space Administration s (NASA) International Space Station (ISS) Program uses Probabilistic Risk Assessment (PRA) as part of its Continuous Risk Management Process. It is used as a decision and management support tool to not only quantify risk for specific conditions, but more importantly comparing different operational and management options to determine the lowest risk option and provide rationale for management decisions. This paper presents the derivation of the probability distributions used to quantify the failure rates and the probability of failures of the basic events employed in the PRA model of the ISS. The paper will show how a Bayesian approach was used with different sources of data including the actual ISS on orbit failures to enhance the confidence in results of the PRA. As time progresses and more meaningful data is gathered from on orbit failures, an increasingly accurate failure rate probability distribution for the basic events of the ISS PRA model can be obtained. The ISS PRA has been developed by mapping the ISS critical systems such as propulsion, thermal control, or power generation into event sequences diagrams and fault trees. The lowest level of indenture of the fault trees was the orbital replacement units (ORU). The ORU level was chosen consistently with the level of statistically meaningful data that could be obtained from the aerospace industry and from the experts in the field. For example, data was gathered for the solenoid valves present in the propulsion system of the ISS. However valves themselves are composed of parts and the individual failure of these parts was not accounted for in the PRA model. In other words the failure of a spring within a valve was considered a failure of the valve itself.

  17. Aldosterone antagonists in heart failure.

    PubMed

    Miller, Susan E; Alvarez, René J

    2013-01-01

    Chronic, systolic heart failure is an increasing and costly health problem, and treatments based on pathophysiology have evolved that include the use of aldosterone antagonists. Advances in the understanding of neurohormonal responses to heart failure have led to better pharmacologic treatments. The steroid hormone aldosterone has been associated with detrimental effects on the cardiovascular system, such as ventricular remodeling and endothelial dysfunction. This article will review the literature and guidelines that support the use of aldosterone antagonists in the treatment of chronic, systolic heart failure. Aldosterone antagonists are life-saving drugs that have been shown to decrease mortality in patients with New York Heart Association class III to IV heart failure and in patients with heart failure after an acute myocardial infarction. Additional studies are being conducted to determine if the role of aldosterone antagonists can be expanded to patients with less severe forms of heart failure. Aldosterone antagonists are an important pharmacologic therapy in the neurohormonal blockade necessary in the treatment of systolic heart failure. These drugs have been shown to decrease mortality and reduce hospital readmission rates. The major complication of aldosterone antagonists is hyperkalemia, which can be avoided with appropriate patient selection and diligent monitoring.

  18. Aligning quality and payment for heart failure care: defining the challenges.

    PubMed

    Havranek, Edward P; Krumholz, Harlan M; Dudley, R Adams; Adams, Kirkwood; Gregory, Douglas; Lampert, Steven; Lindenfeld, Joann; Massie, Barry M; Pina, Ileana; Restaino, Susan; Rich, Michael W; Konstam, Marvin A

    2003-08-01

    Hospitals may not support programs that improve the quality of care delivered to heart failure patients because these programs lower readmission rates and empty beds, and therefore further diminish already-declining revenues. A conflict between the highest quality of care and financial solvency does not serve the interests of patients, physicians, hospitals, or payers. In principle, resolution of this conflict is simple: reimbursement systems should reward higher quality care. In practice, resolving the conflict is not simple. A recent roundtable discussion sponsored by the Heart Failure Society of America identified 4 major challenges to the design and implementation of reimbursement schemes that promote higher quality care for heart failure: defining quality, accounting for differences in disease severity, crafting novel payment mechanisms, and overcoming professional parochialism. This article describes each of these challenges in turn.

  19. Fracture Resistance and Mode of Failure of Ceramic versus Titanium Implant Abutments and Single Implant-Supported Restorations.

    PubMed

    Sghaireen, Mohd G

    2015-06-01

    The material of choice for implant-supported restorations is affected by esthetic requirements and type of abutment. This study compares the fracture resistance of different types of implant abutments and implant-supported restorations and their mode of failure. Forty-five Oraltronics Pitt-Easy implants (Oraltronics Dental Implant Technology GmbH, Bremen, Germany) (4 mm diameter, 10 mm length) were embedded in clear autopolymerizing acrylic resin. The implants were randomly divided into three groups, A, B and C, of 15 implants each. In group A, titanium abutments and metal-ceramic crowns were used. In group B, zirconia ceramic abutments and In-Ceram Alumina crowns were used. In group C, zirconia ceramic abutments and IPS Empress Esthetic crowns were used. Specimens were tested to failure by applying load at 130° from horizontal plane using an Instron Universal Testing Machine. Subsequently, the mode of failure of each specimen was identified. Fracture resistance was significantly different between groups (p < .05). The highest fracture loads were associated with metal-ceramic crowns supported by titanium abutments (p = .000). IPS Empress crowns supported by zirconia abutments had the lowest fracture loads (p = .000). Fracture modes of metal-ceramic crowns supported by titanium abutments included screw fracture and screw bending. Fracture of both crown and abutment was the dominant mode of failure of In-Ceram/IPS Empress crowns supported by zirconia abutments. Metal-ceramic crowns supported by titanium abutments were more resistant to fracture than In-Ceram crowns supported by zirconia abutments, which in turn were more resistant to fracture than IPS Empress crowns supported by zirconia abutments. In addition, failure modes of restorations supported by zirconia abutments were more catastrophic than those for restorations supported by titanium abutments. © 2013 Wiley Periodicals, Inc.

  20. Social Support, Heart Failure, and Acute Coronary Syndromes: The Role of Inflammatory Markers

    DTIC Science & Technology

    2008-04-03

    APPROVAL SHEET MasterSDegrees Date Date J-t - L.l - O&, ’t -7- u ¥ 7Yt’A? Date Title of Dissertation: " Social Support, Heart Failure, and Acute Coronary...that the use of any copyrighted material in the thesis manuscript entitled: " Social Support, Heart Failure, and Acute Coronary Syndromes: The Role of...Department of Medical & Clinical Psychology Uniformed Services University Abstract Title of Thesis: “ Social Support, Acute Coronary Syndromes, and Heart

  1. Heat Exchanger Cleaning in Support of Ocean Thermal Energy Conversion (OTEC) - Electronics Subsystems.

    DTIC Science & Technology

    1980-12-01

    exchangers . The performance of heat exchangers will therefore decide the ultimate success or failure of OTEC . BACKGROUND Hardware development in support...8217AD-AG9 216 NAVAL COASTAL SYSTEMS CENTER PANAMA CITY FL F/S 13/10 HEAT EXCHANGER CLEANING IN SUPPORT OF OCEAN THERMAL ENERGY CONV"-ETC(U) DEC 80 D F...block minI ber) Heat Exchangers Chlorination Cleaning Electronics Thermal Energy Conversion 2%AISTRACT (Centhmes en; rewwe ide it neseer end iftefb Op

  2. Tsallis entropy and complexity theory in the understanding of physics of precursory accelerating seismicity.

    NASA Astrophysics Data System (ADS)

    Vallianatos, Filippos; Chatzopoulos, George

    2014-05-01

    Strong observational indications support the hypothesis that many large earthquakes are preceded by accelerating seismic release rates which described by a power law time to failure relation. In the present work, a unified theoretical framework is discussed based on the ideas of non-extensive statistical physics along with fundamental principles of physics such as the energy conservation in a faulted crustal volume undergoing stress loading. We derive the time-to-failure power-law of: a) cumulative number of earthquakes, b) cumulative Benioff strain and c) cumulative energy released in a fault system that obeys a hierarchical distribution law extracted from Tsallis entropy. Considering the analytic conditions near the time of failure, we derive from first principles the time-to-failure power-law and show that a common critical exponent m(q) exists, which is a function of the non-extensive entropic parameter q. We conclude that the cumulative precursory parameters are function of the energy supplied to the system and the size of the precursory volume. In addition the q-exponential distribution which describes the fault system is a crucial factor on the appearance of power-law acceleration in the seismicity. Our results based on Tsallis entropy and the energy conservation gives a new view on the empirical laws derived by other researchers. Examples and applications of this technique to observations of accelerating seismicity will also be presented and discussed. This work was implemented through the project IMPACT-ARC in the framework of action "ARCHIMEDES III-Support of Research Teams at TEI of Crete" (MIS380353) of the Operational Program "Education and Lifelong Learning" and is co-financed by the European Union (European Social Fund) and Greek national funds

  3. Improving Interlaminar Shear Strength

    NASA Technical Reports Server (NTRS)

    Jackson, Justin

    2015-01-01

    To achieve NASA's mission of space exploration, innovative manufacturing processes are being applied to the fabrication of complex propulsion elements.1 Use of fiber-reinforced, polymeric composite tanks are known to reduce weight while increasing performance of propulsion vehicles. Maximizing the performance of these materials is needed to reduce the hardware weight to result in increased performance in support of NASA's missions. NASA has partnered with the Mississippi State University (MSU) to utilize a unique scalable approach of locally improving the critical properties needed for composite structures. MSU is responsible for the primary development of the concept with material and engineering support provided by NASA. The all-composite tank shown in figure 1 is fabricated using a prepreg system of IM7 carbon fiber/CYCOM 5320-1 epoxy resin. This is a resin system developed for out-of-autoclave applications. This new technology is needed to support the fabrication of large, all composite structures and is currently being evaluated on a joint project with Boeing for the Space Launch System (SLS) program. In initial efforts to form an all composite pressure vessel using this prepreg system, a 60% decrease in properties was observed in scarf joint regions. Inspection of these areas identified interlaminar failure in the adjacent laminated structure as the main failure mechanism. This project seeks to improve the interlaminar shear strength (ILSS) within the prepreg layup by locally modifying the interply region shown in figure 2.2

  4. Flight Systems Integration and Test

    NASA Technical Reports Server (NTRS)

    Wright, Michael R.

    2011-01-01

    Topics to be Covered in this presentation are: (1) Integration and Test (I&T) Planning (2) Integration and Test Flows (3) Overview of Typical Mission I&T (4) Supporting Elements (5) Lessons-Learned and Helpful Hints (6) I&T Mishaps and Failures (7) The Lighter Side of I&T and (8) Small-Group Activity. This presentation highlights a typical NASA "in-house" I&T program (1) For flight systems that are developed by NASA at a space flight center (like GSFC) (2) Requirements well-defined: qualification/acceptance, documentation, configuration management. (3) Factors: precedents, human flight, risk-aversion ("failure-phobia"), taxpayer dollars, jobs and (4) Some differences among NASA centers, but generally a resource-intensive process

  5. Restricted Complexity Framework for Nonlinear Adaptive Control in Complex Systems

    NASA Astrophysics Data System (ADS)

    Williams, Rube B.

    2004-02-01

    Control law adaptation that includes implicit or explicit adaptive state estimation, can be a fundamental underpinning for the success of intelligent control in complex systems, particularly during subsystem failures, where vital system states and parameters can be impractical or impossible to measure directly. A practical algorithm is proposed for adaptive state filtering and control in nonlinear dynamic systems when the state equations are unknown or are too complex to model analytically. The state equations and inverse plant model are approximated by using neural networks. A framework for a neural network based nonlinear dynamic inversion control law is proposed, as an extrapolation of prior developed restricted complexity methodology used to formulate the adaptive state filter. Examples of adaptive filter performance are presented for an SSME simulation with high pressure turbine failure to support extrapolations to adaptive control problems.

  6. Elderly women's experiences of support when living with congestive heart failure.

    PubMed

    Sundin, Karin; Bruce, Elisabeth; Barremo, Ann-Sofi

    2010-03-04

    Heart failure is a chronic syndrome that has physiological, psychological and social effects. The aim of the study was to illuminate the meanings of support as experienced by elderly women with chronic heart failure. Narrative interviews were conducted with five elderly women with chronic heart failure. A phenomenological hermeneutic method of interpretation was used. The meanings of support were experienced by the women out of two perspectives, that is, when support is present and when there is a lack of support. The findings were revealed in two themes: "Feeling confident means support" and "Feeling abandoned". The women do not wish to be a burden. They want to be independent as much as possible to defend their dignity. An important support to the women is that they are understood and confirmed in their illness. Supportive relations are most valuable, that is, a relationship that supports the women's independence. If there is no supportive relationship, they feel like a burden to others and they feel lonely; this loneliness creates suffering and counteracts wellbeing and health.

  7. Needs of caregivers in heart failure management: A qualitative study

    PubMed Central

    Frost, Julia; Britten, Nicky; Jolly, Kate; Greaves, Colin; Abraham, Charles; Dalal, Hayes

    2015-01-01

    Objectives To identify the needs of caregivers supporting a person with heart failure and to inform the development of a caregiver resource to be used as part of a home-based self-management programme. Methods A qualitative study informed by thematic analysis involving 26 caregivers in individual interviews or a focus group. Results Three distinct aspects of caregiver support in heart failure management were identified. Firstly, caregivers identified needs about supporting management of heart failure including: coping with the variability of heart failure symptoms, what to do in an emergency, understanding and managing medicines, providing emotional support, promoting exercise and physical activity, providing personal care, living with a cardiac device and supporting depression management. Secondly, as they make the transition to becoming a caregiver, they need to develop skills to undertake difficult discussions about the role; communicate with health professionals; manage their own mental health, well-being and sleep; and manage home and work. Thirdly, caregivers require skills to engage social support, and voluntary and formal services while recognising that the long-term future is uncertain. Discussion The identification of the needs of caregiver has been used to inform the development of a home-based heart failure intervention facilitated by a trained health care practitioner. PMID:25795144

  8. System Certification Procedures and Criteria Manual for Deep Submergence Systems

    DTIC Science & Technology

    1973-07-01

    Certification Milestone Events. The applicant and SCA interplay and negotiations between milestones is stressed . Effective and frequent communication...a series of events beginning with a single failure, often relatively minor, which may place the DSq Personnel or equipments under additional stresses ...for the particular DSS. p. Support ship handling system components such as cranes , brakes, and cables when the DSS is handled with personnel aboard. q

  9. Extracorporeal liver assist device to exchange albumin and remove endotoxin in acute liver failure: Results of a pivotal pre-clinical study.

    PubMed

    Lee, Karla C L; Baker, Luisa A; Stanzani, Giacomo; Alibhai, Hatim; Chang, Yu Mei; Jimenez Palacios, Carolina; Leckie, Pamela J; Giordano, Paola; Priestnall, Simon L; Antoine, Daniel J; Jenkins, Rosalind E; Goldring, Christopher E; Park, B Kevin; Andreola, Fausto; Agarwal, Banwari; Mookerjee, Rajeshwar P; Davies, Nathan A; Jalan, Rajiv

    2015-09-01

    In acute liver failure, severity of liver injury and clinical progression of disease are in part consequent upon activation of the innate immune system. Endotoxaemia contributes to innate immune system activation and the detoxifying function of albumin, critical to recovery from liver injury, is irreversibly destroyed in acute liver failure. University College London-Liver Dialysis Device is a novel artificial extracorporeal liver assist device, which is used with albumin infusion, to achieve removal and replacement of dysfunctional albumin and reduction in endotoxaemia. We aimed to test the effect of this device on survival in a pig model of acetaminophen-induced acute liver failure. Pigs were randomised to three groups: Acetaminophen plus University College London-Liver Dialysis Device (n=9); Acetaminophen plus Control Device (n=7); and Control plus Control Device (n=4). Device treatment was initiated two h after onset of irreversible acute liver failure. The Liver Dialysis Device resulted in 67% reduced risk of death in acetaminophen-induced acute liver failure compared to Control Device (hazard ratio=0.33, p=0.0439). This was associated with 27% decrease in circulating irreversibly oxidised human non-mercaptalbumin-2 throughout treatment (p=0.046); 54% reduction in overall severity of endotoxaemia (p=0.024); delay in development of vasoplegia and acute lung injury; and delay in systemic activation of the TLR4 signalling pathway. Liver Dialysis Device-associated adverse clinical effects were not seen. The survival benefit and lack of adverse effects would support clinical trials of University College London-Liver Dialysis Device in acute liver failure patients. Copyright © 2015 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  10. New approaches to hyperkalemia in patients with indications for renin angiotensin aldosterone inhibitors: Considerations for trial design and regulatory approval.

    PubMed

    Zannad, Faiez; Rossignol, Patrick; Stough, Wendy Gattis; Epstein, Murray; Alonso Garcia, Maria de Los Angeles; Bakris, George L; Butler, Javed; Kosiborod, Mikhail; Berman, Lance; Mebazaa, Alexandre; Rasmussen, Henrik S; Ruilope, Luis M; Stockbridge, Norman; Thompson, Aliza; Wittes, Janet; Pitt, Bertram

    2016-08-01

    Hyperkalemia is a common clinical problem, especially in patients with chronic kidney disease, diabetes mellitus, or heart failure. Treatment with renin angiotensin aldosterone system inhibitors exacerbates the risk of hyperkalemia in these patients. Concern about hyperkalemia can result in the failure to initiate, suboptimal dosing, or discontinuation of renin angiotensin aldosterone system inhibitor therapy in patients; effective treatments for hyperkalemia might mitigate such undertreatment. New treatments for hyperkalemia in development may offer better efficacy, tolerability and safety profiles than do existing approved treatments. These compounds might enable more eligible patients to receive renin angiotensin aldosterone system inhibitor therapy or to receive renin angiotensin aldosterone system inhibitors at target doses. The evidence needed to support a treatment claim (reduction in serum potassium) differs from that needed to support a prevention claim (preventing hyperkalemia to allow renin angiotensin aldosterone system inhibitor treatment). Thus, several issues related to clinical trial design and drug development need to be considered. This paper summarizes and expands upon a discussion at the Global Cardiovascular Clinical Trialists 2014 Forum and examines methodologic considerations for trials of new potassium binders for the prevention and management of hyperkalemia in patients with renin angiotensin aldosterone system inhibitor indications. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. Department of Defense Technology Transfer (T2) Program

    DTIC Science & Technology

    2014-04-08

    January February (1st Monday) Disposal System Performance Spec Production Representative Articles CARD – Cost Analysis Requirements Description CCE...Supportability Objectives Exit Criteria Met APB MTA FMECA FTA LORA RCM MS B Threshold/objective tradeoffs – Revised Performance Attributes MS C MS A...Evaluation FTA – Failure Tree Analysis IOT&E – Initial Operational Test & Evaluation ISR – In-Service Review ISP – Information Support Plan ITR – Initial

  12. Impact of lightning strikes on hospital functions.

    PubMed

    Mortelmans, Luc J M; Van Springel, Gert L J; Van Boxstael, Sam; Herrijgers, Jan; Hoflacks, Stefaan

    2009-01-01

    Two regional hospitals were struck by lightning during a one-month period. The first hospital, which had 236 beds, suffered a direct strike to the building. This resulted in a direct spread of the power peak and temporary failure of the standard power supply. The principle problems, after restoring standard power supply, were with the fire alarm system and peripheral network connections in the digital radiology systems. No direct impact on the hardware could be found. Restarting the servers resolved all problems. The second hospital, which had 436 beds, had a lightning strike on the premises and mainly experienced problems due to induction. All affected installations had a cable connection from outside in one way or another. The power supplies never were endangered. The main problem was the failure of different communication systems (telephone, radio, intercom, fire alarm system). Also, the electronic entrance control went out. During the days after the lightening strike, multiple software problems became apparent, as well as failures of the network connections controlling the technical support systems. There are very few ways to prepare for induction problems. The use of fiber-optic networks can limit damage. To the knowledge of the authors, these are the first cases of lightning striking hospitals in medical literature.

  13. Protoflight photovoltaic power module system-level tests in the space power facility

    NASA Technical Reports Server (NTRS)

    Rivera, Juan C.; Kirch, Luke A.

    1989-01-01

    Work Package Four, which includes the NASA-Lewis and Rocketdyne, has selected an approach for the Space Station Freedom Photovoltaic (PV) Power Module flight certification that combines system level qualification and acceptance testing in the thermal vacuum environment: The protoflight vehicle approach. This approach maximizes ground test verification to assure system level performance and to minimize risk of on-orbit failures. The preliminary plans for system level thermal vacuum environmental testing of the protoflight PV Power Module in the NASA-Lewis Space Power Facility (SPF), are addressed. Details of the facility modifications to refurbish SPF, after 13 years of downtime, are briefly discussed. The results of an evaluation of the effectiveness of system level environmental testing in screening out incipient part and workmanship defects and unique failure modes are discussed. Preliminary test objectives, test hardware configurations, test support equipment, and operations are presented.

  14. Real-time automated failure identification in the Control Center Complex (CCC)

    NASA Technical Reports Server (NTRS)

    Kirby, Sarah; Lauritsen, Janet; Pack, Ginger; Ha, Anhhoang; Jowers, Steven; Mcnenny, Robert; Truong, The; Dell, James

    1993-01-01

    A system which will provide real-time failure management support to the Space Station Freedom program is described. The system's use of a simplified form of model based reasoning qualifies it as an advanced automation system. However, it differs from most such systems in that it was designed from the outset to meet two sets of requirements. First, it must provide a useful increment to the fault management capabilities of the Johnson Space Center (JSC) Control Center Complex (CCC) Fault Detection Management system. Second, it must satisfy CCC operational environment constraints such as cost, computer resource requirements, verification, and validation, etc. The need to meet both requirement sets presents a much greater design challenge than would have been the case had functionality been the sole design consideration. The choice of technology, discussing aspects of that choice and the process for migrating it into the control center is overviewed.

  15. Social Support and Heart Failure: Differing Effects by Race

    DTIC Science & Technology

    2015-05-11

    responses. These compensatory physiologic responses include increased sympathetic nervous system activity, inflammation, and constriction of blood vessels... physiological differences between African Americans and Caucasians. For instance the process by which sodium is processed in the body may vary between...associated cardiovascular and inflammatory diseases (76). One important hormone at work in the cardiovascular system is aldosterone and it may have a

  16. Seeing the Whole Picture: Views from Diverse Participants on Barriers to Educating Foster Youths

    ERIC Educational Resources Information Center

    Zetlin, Andrea G.; Weinberg, Lois A.; Shea, Nancy M.

    2006-01-01

    Many children in the foster care system are at great risk of academic difficulties and school failure. The purpose of this study was to bring together individuals within the foster care system to discuss the challenges to obtaining an appropriate education for foster youths and how best to provide the supports and structures needed for educational…

  17. A machine learning system to improve heart failure patient assistance.

    PubMed

    Guidi, Gabriele; Pettenati, Maria Chiara; Melillo, Paolo; Iadanza, Ernesto

    2014-11-01

    In this paper, we present a clinical decision support system (CDSS) for the analysis of heart failure (HF) patients, providing various outputs such as an HF severity evaluation, HF-type prediction, as well as a management interface that compares the different patients' follow-ups. The whole system is composed of a part of intelligent core and of an HF special-purpose management tool also providing the function to act as interface for the artificial intelligence training and use. To implement the smart intelligent functions, we adopted a machine learning approach. In this paper, we compare the performance of a neural network (NN), a support vector machine, a system with fuzzy rules genetically produced, and a classification and regression tree and its direct evolution, which is the random forest, in analyzing our database. Best performances in both HF severity evaluation and HF-type prediction functions are obtained by using the random forest algorithm. The management tool allows the cardiologist to populate a "supervised database" suitable for machine learning during his or her regular outpatient consultations. The idea comes from the fact that in literature there are a few databases of this type, and they are not scalable to our case.

  18. The future of mechanical circulatory support for advanced heart failure.

    PubMed

    Marinescu, Karolina K; Uriel, Nir; Adatya, Sirtaz

    2016-05-01

    Mechanical circulatory support (MCS) has become the main focus of heart replacement therapy for end stage heart failure patients. Advances in technology are moving towards miniaturization, biventricular support devices, complete internalization, improved hemocompatibility profiles, and responsiveness to cardiac loading conditions. This review will discuss the recent advances and investigational devices in MCS for advanced heart failure. The demand for both short-term and long-term durable devices for advanced heart failure is increasing. The current devices are still fraught with an unacceptably high incidence of gastrointestinal bleeding and thromboembolic and infectious complications. New devices are on the horizon focusing on miniaturization, versatility for biventricular support, improved hemocompatibility, use of alternate energy sources, and incorporation of continuous hemodynamic monitoring. The role for MCS in advanced heart replacement therapy is steadily increasing. With the advent of newer generation devices on the horizon, the potential exists for MCS to surpass heart transplantation as the primary therapy for advanced heart failure.

  19. Validation and Potential Mechanisms of Red Cell Distribution Width as a Prognostic Marker in Heart Failure

    PubMed Central

    ALLEN, LARRY A.; FELKER, G. MICHAEL; MEHRA, MANDEEP R.; CHIONG, JUN R.; DUNLAP, STEPHANIE H.; GHALI, JALAL K.; LENIHAN, DANIEL J.; OREN, RON M.; WAGONER, LYNNE E.; SCHWARTZ, TODD A.; ADAMS, KIRKWOOD F.

    2014-01-01

    Background: Adverse outcomes have recently been linked to elevated red cell distribution width (RDW) in heart failure. Our study sought to validate the prognostic value of RDW in heart failure and to explore the potential mechanisms underlying this association. Methods and Results: Data from the Study of Anemia in a Heart Failure Population (STAMINA-HFP) registry, a prospective, multicenter cohort of ambulatory patients with heart failure supported multivariable modeling to assess relationships between RDW and outcomes. The association between RDW and iron metabolism, inflammation, and neurohormonal activation was studied in a separate cohort of heart failure patients from the United Investigators to Evaluate Heart Failure (UNITE-HF) Biomarker registry. RDW was independently predictive of outcome (for each 1% increase in RDW, hazard ratio for mortality 1.06, 95% CI 1.01-1.12; hazard ratio for hospitalization or mortality 1.06; 95% CI 1.02-1.10) after adjustment for other covariates. Increasing RDW correlated with decreasing hemoglobin, increasing interleukin-6, and impaired iron mobilization. Conclusions: Our results confirm previous observations that RDW is a strong, independent predictor of adverse outcome in chronic heart failure and suggest elevated RDW may indicate inflammatory stress and impaired iron mobilization. These findings encourage further research into the relationship between heart failure and the hematologic system. PMID:20206898

  20. Validation and potential mechanisms of red cell distribution width as a prognostic marker in heart failure.

    PubMed

    Allen, Larry A; Felker, G Michael; Mehra, Mandeep R; Chiong, Jun R; Dunlap, Stephanie H; Ghali, Jalal K; Lenihan, Daniel J; Oren, Ron M; Wagoner, Lynne E; Schwartz, Todd A; Adams, Kirkwood F

    2010-03-01

    Adverse outcomes have recently been linked to elevated red cell distribution width (RDW) in heart failure. Our study sought to validate the prognostic value of RDW in heart failure and to explore the potential mechanisms underlying this association. Data from the Study of Anemia in a Heart Failure Population (STAMINA-HFP) registry, a prospective, multicenter cohort of ambulatory patients with heart failure supported multivariable modeling to assess relationships between RDW and outcomes. The association between RDW and iron metabolism, inflammation, and neurohormonal activation was studied in a separate cohort of heart failure patients from the United Investigators to Evaluate Heart Failure (UNITE-HF) Biomarker registry. RDW was independently predictive of outcome (for each 1% increase in RDW, hazard ratio for mortality 1.06, 95% CI 1.01-1.12; hazard ratio for hospitalization or mortality 1.06; 95% CI 1.02-1.10) after adjustment for other covariates. Increasing RDW correlated with decreasing hemoglobin, increasing interleukin-6, and impaired iron mobilization. Our results confirm previous observations that RDW is a strong, independent predictor of adverse outcome in chronic heart failure and suggest elevated RDW may indicate inflammatory stress and impaired iron mobilization. These findings encourage further research into the relationship between heart failure and the hematologic system. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  1. Peer-to-peer Cooperative Scheduling Architecture for National Grid Infrastructure

    NASA Astrophysics Data System (ADS)

    Matyska, Ludek; Ruda, Miroslav; Toth, Simon

    For some ten years, the Czech National Grid Infrastructure MetaCentrum uses a single central PBSPro installation to schedule jobs across the country. This centralized approach keeps a full track about all the clusters, providing support for jobs spanning several sites, implementation for the fair-share policy and better overall control of the grid environment. Despite a steady progress in the increased stability and resilience to intermittent very short network failures, growing number of sites and processors makes this architecture, with a single point of failure and scalability limits, obsolete. As a result, a new scheduling architecture is proposed, which relies on higher autonomy of clusters. It is based on a peer to peer network of semi-independent schedulers for each site or even cluster. Each scheduler accepts jobs for the whole infrastructure, cooperating with other schedulers on implementation of global policies like central job accounting, fair-share, or submission of jobs across several sites. The scheduling system is integrated with the Magrathea system to support scheduling of virtual clusters, including the setup of their internal network, again eventually spanning several sites. On the other hand, each scheduler is local to one of several clusters and is able to directly control and submit jobs to them even if the connection of other scheduling peers is lost. In parallel to the change of the overall architecture, the scheduling system itself is being replaced. Instead of PBSPro, chosen originally for its declared support of large scale distributed environment, the new scheduling architecture is based on the open-source Torque system. The implementation and support for the most desired properties in PBSPro and Torque are discussed and the necessary modifications to Torque to support the MetaCentrum scheduling architecture are presented, too.

  2. Risk stratification in patients with advanced heart failure requiring biventricular assist device support as a bridge to cardiac transplantation.

    PubMed

    Cheng, Richard K; Deng, Mario C; Tseng, Chi-hong; Shemin, Richard J; Kubak, Bernard M; MacLellan, W Robb

    2012-08-01

    Prior studies have identified risk factors for survival in patients with end-stage heart failure (HF) requiring left ventricular assist device (LVAD) support. However, patients with biventricular HF may represent a unique cohort. We retrospectively evaluated a consecutive cohort of 113 adult, end-stage HF patients at University of California Los Angeles Medical Center who required BIVAD support between 2000 and 2009. Survival to transplant was 66.4%, with 1-year actuarial survival of 62.8%. All patients were Interagency Registry for Mechanically Assisted Circulatory Support (INTERMACS) Level 1 or 2 and received Thoratec (Pleasanton, CA) paracorporeal BIVAD as a bridge to transplant. Univariate analyses showed dialysis use, ventilator use, extracorporal membrane oxygenation use, low cardiac output, preserved LV ejection fraction (restrictive physiology), normal-to-high sodium, low platelet count, low total cholesterol, low high-density and high-density lipoprotein, low albumin, and elevated aspartate aminotransferase were associated with increased risk of death. We generated a scoring system for survival to transplant. Our final model, with age, sex, dialysis, cholesterol, ventilator, and albumin, gave a C-statistic of 0.870. A simplified system preserved a C-statistic of 0.844. Patients were divided into high-risk or highest-risk groups (median respective survival, 367 and 17 days), with strong discrimination between groups for death. We have generated a scoring system that offers high prognostic ability for patients requiring BIVAD support and hope that it may assist in clinical decision making. Further studies are needed to prospectively validate our scoring system. Copyright © 2012 International Society for Heart and Lung Transplantation. Published by Elsevier Inc. All rights reserved.

  3. Too good to be true: when overwhelming evidence fails to convince.

    PubMed

    Gunn, Lachlan J; Chapeau-Blondeau, François; McDonnell, Mark D; Davis, Bruce R; Allison, Andrew; Abbott, Derek

    2016-03-01

    Is it possible for a large sequence of measurements or observations, which support a hypothesis, to counterintuitively decrease our confidence? Can unanimous support be too good to be true? The assumption of independence is often made in good faith; however, rarely is consideration given to whether a systemic failure has occurred. Taking this into account can cause certainty in a hypothesis to decrease as the evidence for it becomes apparently stronger. We perform a probabilistic Bayesian analysis of this effect with examples based on (i) archaeological evidence, (ii) weighing of legal evidence and (iii) cryptographic primality testing. In this paper, we investigate the effects of small error rates in a set of measurements or observations. We find that even with very low systemic failure rates, high confidence is surprisingly difficult to achieve; in particular, we find that certain analyses of cryptographically important numerical tests are highly optimistic, underestimating their false-negative rate by as much as a factor of 2 80 .

  4. Reliable communication in the presence of failures

    NASA Technical Reports Server (NTRS)

    Birman, Kenneth P.; Joseph, Thomas A.

    1987-01-01

    The design and correctness of a communication facility for a distributed computer system are reported on. The facility provides support for fault-tolerant process groups in the form of a family of reliable multicast protocols that can be used in both local- and wide-area networks. These protocols attain high levels of concurrency, while respecting application-specific delivery ordering constraints, and have varying cost and performance that depend on the degree of ordering desired. In particular, a protocol that enforces causal delivery orderings is introduced and shown to be a valuable alternative to conventional asynchronous communication protocols. The facility also ensures that the processes belonging to a fault-tolerant process group will observe consistant orderings of events affecting the group as a whole, including process failures, recoveries, migration, and dynamic changes to group properties like member rankings. A review of several uses for the protocols is the ISIS system, which supports fault-tolerant resilient objects and bulletin boards, illustrates the significant simplification of higher level algorithms made possible by our approach.

  5. Transportable Life Support for Treatment of Acute Lung Failure Due to Smoke Inhalation and Burns

    DTIC Science & Technology

    2014-04-01

    and all vital sign and medical monitor data collected in the animal ICU . The system is in use in the animal ICU daily and we will report on its... Influenza A(H1N1) Acute Respiratory Distress Syndrome. JAMA. Nov 4 2009;302(17):1888-1895. 9. Napolitano LM, Park PK, Raghavendran K, Bartlett RH...Nonventilatory strategies for patients with life-threatening 2009 H1N1 influenza and severe respiratory failure. Crit Care Med. Apr 2010;38(4 Suppl

  6. CONFIG - Adapting qualitative modeling and discrete event simulation for design of fault management systems

    NASA Technical Reports Server (NTRS)

    Malin, Jane T.; Basham, Bryan D.

    1989-01-01

    CONFIG is a modeling and simulation tool prototype for analyzing the normal and faulty qualitative behaviors of engineered systems. Qualitative modeling and discrete-event simulation have been adapted and integrated, to support early development, during system design, of software and procedures for management of failures, especially in diagnostic expert systems. Qualitative component models are defined in terms of normal and faulty modes and processes, which are defined by invocation statements and effect statements with time delays. System models are constructed graphically by using instances of components and relations from object-oriented hierarchical model libraries. Extension and reuse of CONFIG models and analysis capabilities in hybrid rule- and model-based expert fault-management support systems are discussed.

  7. Learning from failure in health care: frequent opportunities, pervasive barriers.

    PubMed

    Edmondson, A C

    2004-12-01

    The notion that hospitals and medical practices should learn from failures, both their own and others', has obvious appeal. Yet, healthcare organisations that systematically and effectively learn from the failures that occur in the care delivery process, especially from small mistakes and problems rather than from consequential adverse events, are rare. This article explores pervasive barriers embedded in healthcare's organisational systems that make shared or organisational learning from failure difficult and then recommends strategies for overcoming these barriers to learning from failure, emphasising the critical role of leadership. Firstly, leaders must create a compelling vision that motivates and communicates urgency for change; secondly, leaders must work to create an environment of psychological safety that fosters open reporting, active questioning, and frequent sharing of insights and concerns; and thirdly, case study research on one hospital's organisational learning initiative suggests that leaders can empower and support team learning throughout their organisations as a way of identifying, analysing, and removing hazards that threaten patient safety.

  8. Learning from failure in health care: frequent opportunities, pervasive barriers

    PubMed Central

    Edmondson, A

    2004-01-01

    The notion that hospitals and medical practices should learn from failures, both their own and others', has obvious appeal. Yet, healthcare organisations that systematically and effectively learn from the failures that occur in the care delivery process, especially from small mistakes and problems rather than from consequential adverse events, are rare. This article explores pervasive barriers embedded in healthcare's organisational systems that make shared or organisational learning from failure difficult and then recommends strategies for overcoming these barriers to learning from failure, emphasising the critical role of leadership. Firstly, leaders must create a compelling vision that motivates and communicates urgency for change; secondly, leaders must work to create an environment of psychological safety that fosters open reporting, active questioning, and frequent sharing of insights and concerns; and thirdly, case study research on one hospital's organisational learning initiative suggests that leaders can empower and support team learning throughout their organisations as a way of identifying, analysing, and removing hazards that threaten patient safety. PMID:15576689

  9. Cheyne-stokes respiration in patients with heart failure.

    PubMed

    AlDabal, Laila; BaHammam, Ahmed S

    2010-01-01

    Cheyne-Stokes respiration (CSR) is a form of central sleep-disordered breathing (SDB) in which there are cyclical fluctuations in breathing that lead to periods of central apneas/hypopnea, which alternate with periods of hyperpnea. The crescendo-decrescendo pattern of respiration in CSR is a compensation for the changing levels of blood oxygen and carbon dioxide. Severe congestive heart failure seems to be the most important risk factor for the development of CSR. A number of pathophysiologic changes, such as sleep disruption, arousals, hypoxemia-reoxygenation, hypercapnia/hypocapnia, and changes in intrathoracic pressure have harmful effects on the cardiovascular system, and the presence of CSR is associated with increased mortality and morbidity in subjects with variable degrees of heart failure. The management of CSR involves optimal control of underlying heart failure, oxygen therapy, and positive airway pressure support. In this review, we initially define and describe the epidemiology of central sleep apnea (CSA) and CSR, its pathogenesis, clinical presentation, diagnostic methods, and then discuss the recent developments in the management in patients with heart failure.

  10. Failure Mechanisms of Hollow Fiber Supported Ionic Liquid Membranes

    PubMed Central

    Zeh, Matthew; Wickramanayake, Shan; Hopkinson, David

    2016-01-01

    Hollow fiber supported ionic liquid membranes (SILMs) were tested using the bubble point method to investigate potential failure modes, including the maximum transmembrane pressure before loss of the ionic liquid from the support. Porous hollow fiber supports were fabricated with different pore morphologies using Matrimid® and Torlon® as the polymeric material and 1-hexyl-3-methylimidalzolium bis(trifluoromethylsulfonyl)imide ([C6mim][Tf2N]) as the ionic liquid (IL) component. Hollow fiber SILMs were tested for their maximum pressure before failure, with pressure applied either from the bore side or shell side. It was found that the membranes exhibited one or more of three different modes of failure when pressurized: liquid loss (occurring at the bubble point), rupture, and collapse. PMID:27023620

  11. Use of a wiki as a radiology departmental knowledge management system.

    PubMed

    Meenan, Christopher; King, Antoinette; Toland, Christopher; Daly, Mark; Nagy, Paul

    2010-04-01

    Information technology teams in health care are tasked with maintaining a variety of information systems with complex support requirements. In radiology, this includes picture archive and communication systems, radiology information systems, speech recognition systems, and other ancillary systems. Hospital information technology (IT) departments are required to provide 24 x 7 support for these mission-critical systems that directly support patient care in emergency and other critical care departments. The practical know-how to keep these systems operational and diagnose problems promptly is difficult to maintain around the clock. Specific details on infrequent failure modes or advanced troubleshooting strategies may reside with only a few senior staff members. Our goal was to reduce diagnosis and recovery times for issues with our mission-critical systems. We created a knowledge base for building and quickly disseminating technical expertise to our entire support staff. We used an open source, wiki-based, collaborative authoring system internally within our IT department to improve our ability to deliver a high level of service to our customers. In this paper, we describe our evaluation of the wiki and the ways in which we used it to organize our support knowledge. We found the wiki to be an effective tool for knowledge management and for improving our ability to provide mission-critical support for health care IT systems.

  12. Performance and reliability of the NASA biomass production chamber

    NASA Technical Reports Server (NTRS)

    Fortson, R. E.; Sager, J. C.; Chetirkin, P. V.

    1994-01-01

    The Biomass Production Chamber (BPC) at the Kennedy Space Center is part of the Controlled Ecological Life Support System (CELSS) Breadboard Project. Plants are grown in a closed environment in an effort to quantify their contributions to the requirements for life support. Performance of this system is described. Also, in building this system, data from component and subsystem failures are being recorded. These data are used to identify problem areas in the design and implementation. The techniques used to measure the reliability will be useful in the design and construction of future CELSS. Possible methods for determining the reliability of a green plant, the primary component of CELSS, are discussed.

  13. Smart Networked Elements in Support of ISHM

    NASA Technical Reports Server (NTRS)

    Oostdyk, Rebecca; Mata, Carlos; Perotti, Jose M.

    2008-01-01

    At the core of ISHM is the ability to extract information and knowledge from raw data. Conventional data acquisition systems sample and convert physical measurements to engineering units, which higher-level systems use to derive health and information about processes and systems. Although health management is essential at the top level, there are considerable advantages to implementing health-related functions at the sensor level. The distribution of processing to lower levels reduces bandwidth requirements, enhances data fusion, and improves the resolution for detection and isolation of failures in a system, subsystem, component, or process. The Smart Networked Element (SNE) has been developed to implement intelligent functions and algorithms at the sensor level in support of ISHM.

  14. Landslide early warning based on failure forecast models: the example of Mt. de La Saxe rockslide, northern Italy

    NASA Astrophysics Data System (ADS)

    Manconi, A.; Giordan, D.

    2015-02-01

    We investigate the use of landslide failure forecast models by exploiting near-real-time monitoring data. Starting from the inverse velocity theory, we analyze landslide surface displacements on different temporal windows, and apply straightforward statistical methods to obtain confidence intervals on the estimated time of failure. Here we describe the main concepts of our method, and show an example of application to a real emergency scenario, the La Saxe rockslide, Aosta Valley region, northern Italy. Based on the herein presented case study, we identify operational thresholds based on the reliability of the forecast models, in order to support the management of early warning systems in the most critical phases of the landslide emergency.

  15. Questioning the Role of Requirements Engineering in the Causes of Safety-Critical Software Failures

    NASA Technical Reports Server (NTRS)

    Johnson, C. W.; Holloway, C. M.

    2006-01-01

    Many software failures stem from inadequate requirements engineering. This view has been supported both by detailed accident investigations and by a number of empirical studies; however, such investigations can be misleading. It is often difficult to distinguish between failures in requirements engineering and problems elsewhere in the software development lifecycle. Further pitfalls arise from the assumption that inadequate requirements engineering is a cause of all software related accidents for which the system fails to meet its requirements. This paper identifies some of the problems that have arisen from an undue focus on the role of requirements engineering in the causes of major accidents. The intention is to provoke further debate within the emerging field of forensic software engineering.

  16. [Analogies between heart and respiratory muscle failure. Importance to clinical practice].

    PubMed

    Köhler, D

    2009-01-01

    Heart failure is an established diagnosis. Respiratory muscle or ventilatory pump failure, however, is less well known. The latter becomes obvious through hypercapnia, caused by hypoventilation. The respiratory centre tunes into hypercapnea in order to prevent the danger of respiratory muscle overload (hypercapnic ventilatory failure). Hypoventilation will consecutively cause hypoxemia but this will not be responsible for performance limitation. One therefore has to distinguish primary hypoxemia evolving from diseases in the lung parenchyma. Here hypoxemia is the key feature and compensatory hyperventilation usually decreases PaCO2 levels. The cardiac as well as the respiratory pump adapt to an inevitable burden caused by chronic disease. In either case organ muscle mass will increase. If the burden exceeds the range of possible physiological adaptation, compensatory mechanisms will set in that are similar in both instances. During periods of overload either muscle system is mainly fueled by muscular glycogen. In the recovery phase (e. g. during sleep) stores are replenished, which can be recognized by down-regulation of the blood pressure in case of the cardiac pumb or by augmentation of hypercapnia through hypoventilation in case of the respiratory pump. The main function of cardiac and respiratory pump is maintenance of oxygen transport. The human body has developed certain compensatory mechanisms to adapt to insufficient oxygen supply especially during periods of overload. These mechanisms include shift of the oxygen binding curve, expression of respiratory chain isoenzymes capable of producing ATP at lower partial pressures of oxygen and the development of polyglobulia. Medically or pharmacologically the cardiac pump can be unloaded with beta blockers, the respiratory pump by application of inspired oxygen. Newer forms of therapy augment the process of recovery. The heart can be supported through bypass surgery or intravascular pump systems, while respiratory muscles may be supported through elective ventilatory support (mainly non-invasive) in the patient's home. The latter treatment in particular will increase patient endurance and quality of life and decrease mortality. Heart and respiratory pump failure share many common features. Since both take care of oxygen supply to the body, their function and compensatory mechanisms are closely related and linked.

  17. Design of a modular digital computer system DRL 4 and 5. [design of airborne/spaceborne computer system

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Design and development efforts for a spaceborne modular computer system are reported. An initial baseline description is followed by an interface design that includes definition of the overall system response to all classes of failure. Final versions for the register level designs for all module types were completed. Packaging, support and control executive software, including memory utilization estimates and design verification plan, were formalized to insure a soundly integrated design of the digital computer system.

  18. Long-Term Durability Test for the Left Ventricular Assist System EVAHEART under the Physiologic Pulsatile Load.

    PubMed

    Kitano, Tomoya; Iwasaki, Kiyotaka

    The EVAHEART Left Ventricular Assist System (LVAS) was designed for the long-term support of a patient with severe heart failure. It has an original water lubrication system for seal and bearing and wear on these parts was considered one of its critical failure modes. A durability test focusing on wear was designed herein. We developed a mock loop, which generates a physiologic pulsatile flow and is sufficiently durable for a long-term test. The pulsatile load and the low fluid viscosity enable the creation of a severe condition for the mechanical seal. A total of 18 EVAHEART blood pumps completed 2 years of operation under the pulsatile condition without any failure. It indicated the EVAHEART blood pump had a greater than 90% reliability with a 88% confidence level. The test was continued with six blood pumps and achieved an average of 8.6 years, which was longer than the longest clinical use in Japan. The test result showed that no catastrophic, critical, marginal, or minor failures of the blood pump or their symptoms were observed. The seal performance was maintained after the test. Moreover, the surface roughness did not change, which showed any burn or abnormal wear occurred. The original water lubrication system equipped in EVAHEART LVAS prevent severe wear on the seal and the bearing, and it can be used in the bridge to transplant and destination therapy.

  19. Rolex: Resilience-oriented language extensions for extreme-scale systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lucas, Robert F.; Hukerikar, Saurabh

    Future exascale high-performance computing (HPC) systems will be constructed from VLSI devices that will be less reliable than those used today, and faults will become the norm, not the exception. This will pose significant problems for system designers and programmers, who for half-a-century have enjoyed an execution model that assumed correct behavior by the underlying computing system. The mean time to failure (MTTF) of the system scales inversely to the number of components in the system and therefore faults and resultant system level failures will increase, as systems scale in terms of the number of processor cores and memory modulesmore » used. However every error detected need not cause catastrophic failure. Many HPC applications are inherently fault resilient. Yet it is the application programmers who have this knowledge but lack mechanisms to convey it to the system. In this paper, we present new Resilience Oriented Language Extensions (Rolex) which facilitate the incorporation of fault resilience as an intrinsic property of the application code. We describe the syntax and semantics of the language extensions as well as the implementation of the supporting compiler infrastructure and runtime system. Furthermore, our experiments show that an approach that leverages the programmer's insight to reason about the context and significance of faults to the application outcome significantly improves the probability that an application runs to a successful conclusion.« less

  20. Rolex: Resilience-oriented language extensions for extreme-scale systems

    DOE PAGES

    Lucas, Robert F.; Hukerikar, Saurabh

    2016-05-26

    Future exascale high-performance computing (HPC) systems will be constructed from VLSI devices that will be less reliable than those used today, and faults will become the norm, not the exception. This will pose significant problems for system designers and programmers, who for half-a-century have enjoyed an execution model that assumed correct behavior by the underlying computing system. The mean time to failure (MTTF) of the system scales inversely to the number of components in the system and therefore faults and resultant system level failures will increase, as systems scale in terms of the number of processor cores and memory modulesmore » used. However every error detected need not cause catastrophic failure. Many HPC applications are inherently fault resilient. Yet it is the application programmers who have this knowledge but lack mechanisms to convey it to the system. In this paper, we present new Resilience Oriented Language Extensions (Rolex) which facilitate the incorporation of fault resilience as an intrinsic property of the application code. We describe the syntax and semantics of the language extensions as well as the implementation of the supporting compiler infrastructure and runtime system. Furthermore, our experiments show that an approach that leverages the programmer's insight to reason about the context and significance of faults to the application outcome significantly improves the probability that an application runs to a successful conclusion.« less

  1. The function and failure of sensory predictions.

    PubMed

    Bansal, Sonia; Ford, Judith M; Spering, Miriam

    2018-04-23

    Humans and other primates are equipped with neural mechanisms that allow them to automatically make predictions about future events, facilitating processing of expected sensations and actions. Prediction-driven control and monitoring of perceptual and motor acts are vital to normal cognitive functioning. This review provides an overview of corollary discharge mechanisms involved in predictions across sensory modalities and discusses consequences of predictive coding for cognition and behavior. Converging evidence now links impairments in corollary discharge mechanisms to neuropsychiatric symptoms such as hallucinations and delusions. We review studies supporting a prediction-failure hypothesis of perceptual and cognitive disturbances. We also outline neural correlates underlying prediction function and failure, highlighting similarities across the visual, auditory, and somatosensory systems. In linking basic psychophysical and psychophysiological evidence of visual, auditory, and somatosensory prediction failures to neuropsychiatric symptoms, our review furthers our understanding of disease mechanisms. © 2018 New York Academy of Sciences.

  2. Rescuing Students from the Slow Learner Trap

    ERIC Educational Resources Information Center

    Shaw, Steven R.

    2010-01-01

    Slow learners, such as students with borderline intellectual functioning, represent one of the most challenging student populations for administrators and teachers. Standard systems and supports are often ineffective--even counterproductive--because they fail to meet students' specific learning needs and instead create a cycle of failure. This…

  3. 14 CFR 29.917 - Design.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... conditions for which certification is sought. The design assessment must include a detailed failure analysis..., supporting bearings for shafting, any attendant accessory pads or drives, and any cooling fans that are a part of, attached to, or mounted on the rotor drive system. (b) Design assessment. A design assessment...

  4. 14 CFR 29.917 - Design.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... conditions for which certification is sought. The design assessment must include a detailed failure analysis..., supporting bearings for shafting, any attendant accessory pads or drives, and any cooling fans that are a part of, attached to, or mounted on the rotor drive system. (b) Design assessment. A design assessment...

  5. 14 CFR 29.917 - Design.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... conditions for which certification is sought. The design assessment must include a detailed failure analysis..., supporting bearings for shafting, any attendant accessory pads or drives, and any cooling fans that are a part of, attached to, or mounted on the rotor drive system. (b) Design assessment. A design assessment...

  6. Mathematical modelling of flow in disc friction LVAD pump

    NASA Astrophysics Data System (ADS)

    Medvedev, A. E.; Fomin, V. M.; Prikhodko, Yu. M.; Cherniavskiy, A. M.; Fomichev, V. P.; Fomichev, A. V.; Chekhov, V. P.; Ruzmatov, T. M.

    2017-10-01

    The need for blood circulation support systems in the treatment of chronic heart failure is constantly increasing as 20% of patients on the waiting list die every year. Despite the great need for mechanical heart support systems the use of available systems is limited by the high cost. Therefore, further research in the field of circulatory support systems is appropriate taking into account medical and technical requirements. One of the new research areas is viscous friction disk pumps for transporting liquids based on the Tesla pump principle. The experimental model of LVAD disk pump is developed. Analytical dependencies are obtained to optimize the hydraulic parameters of the pump. On their basis, the experimental model of LVAD disk pump was designed and created. The results of analytical and experimental studies of such a pump are presented.

  7. J-2X Turbopump Cavitation Diagnostics

    NASA Technical Reports Server (NTRS)

    Santi, I. Michael; Butas, John P.; Tyler, Thomas R., Jr.; Aguilar, Robert; Sowers, T. Shane

    2010-01-01

    The J-2X is the upper stage engine currently being designed by Pratt & Whitney Rocketdyne (PWR) for the Ares I Crew Launch Vehicle (CLV). Propellant supply requirements for the J-2X are defined by the Ares Upper Stage to J-2X Interface Control Document (ICD). Supply conditions outside ICD defined start or run boxes can induce turbopump cavitation leading to interruption of J-2X propellant flow during hot fire operation. In severe cases, cavitation can lead to uncontained engine failure with the potential to cause a vehicle catastrophic event. Turbopump and engine system performance models supported by system design information and test data are required to predict existence, severity, and consequences of a cavitation event. A cavitation model for each of the J-2X fuel and oxidizer turbopumps was developed using data from pump water flow test facilities at Pratt & Whitney Rocketdyne (PWR) and Marshall Space Flight Center (MSFC) together with data from Powerpack 1A testing at Stennis Space Center (SSC) and from heritage systems. These component models were implemented within the PWR J-2X Real Time Model (RTM) to provide a foundation for predicting system level effects following turbopump cavitation. The RTM serves as a general failure simulation platform supporting estimation of J-2X redline system effectiveness. A study to compare cavitation induced conditions with component level structural limit thresholds throughout the engine was performed using the RTM. Results provided insight into system level turbopump cavitation effects and redline system effectiveness in preventing structural limit violations. A need to better understand structural limits and redline system failure mitigation potential in the event of fuel side cavitation was indicated. This paper examines study results, efforts to mature J-2X turbopump cavitation models and structural limits, and issues with engine redline detection of cavitation and the use of vehicle-side abort triggers to augment the engine redline system.

  8. Award ER25750: Coordinated Infrastructure for Fault Tolerance Systems Indiana University Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lumsdaine, Andrew

    2013-03-08

    The main purpose of the Coordinated Infrastructure for Fault Tolerance in Systems initiative has been to conduct research with a goal of providing end-to-end fault tolerance on a systemwide basis for applications and other system software. While fault tolerance has been an integral part of most high-performance computing (HPC) system software developed over the past decade, it has been treated mostly as a collection of isolated stovepipes. Visibility and response to faults has typically been limited to the particular hardware and software subsystems in which they are initially observed. Little fault information is shared across subsystems, allowing little flexibility ormore » control on a system-wide basis, making it practically impossible to provide cohesive end-to-end fault tolerance in support of scientific applications. As an example, consider faults such as communication link failures that can be seen by a network library but are not directly visible to the job scheduler, or consider faults related to node failures that can be detected by system monitoring software but are not inherently visible to the resource manager. If information about such faults could be shared by the network libraries or monitoring software, then other system software, such as a resource manager or job scheduler, could ensure that failed nodes or failed network links were excluded from further job allocations and that further diagnosis could be performed. As a founding member and one of the lead developers of the Open MPI project, our efforts over the course of this project have been focused on making Open MPI more robust to failures by supporting various fault tolerance techniques, and using fault information exchange and coordination between MPI and the HPC system software stack from the application, numeric libraries, and programming language runtime to other common system components such as jobs schedulers, resource managers, and monitoring tools.« less

  9. Improving hemodynamics of cardiovascular system under a novel intraventricular assist device support via modeling and simulations.

    PubMed

    Zhu, Shidong; Luo, Lin; Yang, Bibo; Li, Xinghui; Wang, Xiaohao

    2017-12-01

    Ventricular assist devices (LVADs) are increasingly recognized for supporting blood circulation in heart failure patients who are non-transplant eligible. Because of its volume, the traditional pulsatile device is not easy to implant intracorporeally. Continuous flow LVADs (CF-LVADs) reduce arterial pulsatility and only offer continuous flow, which is different from physiological flow, and may cause long-term complications in the cardiovascular system. The aim of this study was to design a new pulsatile assist device that overcomes this disadvantage, and to test this device in the cardiovascular system. Firstly, the input and output characteristics of the new device were tested in a simple cardiovascular mock system. A detailed mathematical model was established by fitting the experimental data. Secondly, the model was tested in four pathological cases, and was simulated and coupled with a fifth-order cardiovascular system and a new device model using Matlab software. Using assistance of the new device, we demonstrated that the left ventricle pressure, aortic pressure, and aortic flow of heart failure patients improved to the levels of a healthy individual. Especially, in state IV level heart failure patients, the systolic blood pressure increased from 81.34 mmHg to 132.1 mmHg, whereas the diastolic blood pressure increased from 54.28 mmHg to 78.7 mmHg. Cardiac output increased from 3.21 L/min to 5.16 L/min. The newly-developed assist device not only provided a physiological flow that was similar to healthy individuals, but also effectively improved the ability of the pathological ventricular volume. Finally, the effects of the new device on other hemodynamic parameters are discussed.

  10. Shuttle remote manipulator system mission preparation and operations

    NASA Technical Reports Server (NTRS)

    Smith, Ernest E., Jr.

    1989-01-01

    The preflight planning, analysis, procedures development, and operations support for the Space Transportation System payload deployment and retrieval missions utilizing the Shuttle Remote Manipulator System are summarized. Analysis of the normal operational loads and failure induced loads and motion are factored into all procedures. Both the astronaut flight crews and the Mission Control Center flight control teams receive considerable training for standard and mission specific operations. The real time flight control team activities are described.

  11. Factors associated with quality of life in Arab patients with heart failure.

    PubMed

    Alaloul, Fawwaz; AbuRuz, Mohannad E; Moser, Debra K; Hall, Lynne A; Al-Sadi, Ahmad

    2017-03-01

    The aim of this study was to examine the relationships of demographic characteristics, medical variables and perceived social support with quality of life (QOL) in Arab patients with heart failure. A cross-sectional study was conducted to identify factors associated with QOL in Arab patients with heart failure. Participants with heart failure (N = 99) were enrolled from a nonprofit hospital and an educational hospital. Data were collected on QOL using the Short Form-36 survey. Perceived social support was measured with the Medical Outcomes Study Social Support Survey. The majority of the patients reported significant impairment in QOL as evidenced by subscale scored. Left ventricular ejection fraction was the strongest correlate of most QOL domains. Tangible support was significantly associated with most QOL domains. Other social support dimensions were not significantly related to QOL domains. Most patients with heart failure had significant disrupting pain and limitations in performing activities which interfered with their usual role. Due to the importance of understanding QOL and its determinants within the context of culture, the outcomes of this study may provide valuable guidance to healthcare providers in Arabic countries as well as Western society in caring for these patients. Further studies are needed to explore the relationship between social support and QOL among patients with heart failure in the Arabic culture. © 2016 Nordic College of Caring Science.

  12. Developing a supportive-educative program for patients with advanced heart failure within Orem's general theory of nursing.

    PubMed

    Jaarsma, T; Halfens, R; Senten, M; Abu Saad, H H; Dracup, K

    1998-01-01

    Recovery from heart failure and coping with the effects of this serious condition has a major impact on the self-care demand of patients with heart failure. To prevent potential self-care deficits, education and support are important issues in nursing care. The purpose of this article is to describe the development of a supportive-educative program that is designed to enhance self-care abilities of patients with heart failure. To structure nursing care for these patients and their families in a consistent systematized way, Orem's general theory of nursing is used as a frame of reference.

  13. Study of effects of space power satellites on life support functions of the earth's magnetosphere

    NASA Technical Reports Server (NTRS)

    Douglas, M.; Laquey, R.; Deforest, S. E.; Lindsey, C.; Warshaw, H.

    1977-01-01

    The effects of the Satellite Solar Power System (SSPS) on the life support functions of the earth's magnetosphere were investigated. Topics considered include: (1) thruster effluent effects on the magnetosphere; (2) biological consequences of SSPS reflected light; (3) impact on earth bound astronomy; (4) catastrophic failure and debris; (5) satellite induced processes; and (6) microwave power transmission. Several impacts are identified and recommendations for further studies are provided.

  14. Extracorporeal Organ Support following Trauma: The Dawn of a New Era in Combat Casualty Critical Care

    DTIC Science & Technology

    2013-01-01

    course may confer a survival benefit for trauma patients if started before fulminate renal failure.54 During the wars in Afghanistan and Iraq, RRT...effects, such that any subsequent insult, particularly infectious, can lead to fulminant systemic inflam- matory response syndrome and death.68,69...detoxifi- cation and synthesis of proteins) and increased capacity. In addition, refinements in mechanisms and engineering of extra- corporeal organ support

  15. Reliability and failure modes of implant-supported zirconium-oxide fixed dental prostheses related to veneering techniques

    PubMed Central

    Baldassarri, Marta; Zhang, Yu; Thompson, Van P.; Rekow, Elizabeth D.; Stappert, Christian F. J.

    2011-01-01

    Summary Objectives To compare fatigue failure modes and reliability of hand-veneered and over-pressed implant-supported three-unit zirconium-oxide fixed-dental-prostheses(FDPs). Methods Sixty-four custom-made zirconium-oxide abutments (n=32/group) and thirty-two zirconium-oxide FDP-frameworks were CAD/CAM manufactured. Frameworks were veneered with hand-built up or over-pressed porcelain (n=16/group). Step-stress-accelerated-life-testing (SSALT) was performed in water applying a distributed contact load at the buccal cusp-pontic-area. Post failure examinations were carried out using optical (polarized-reflected-light) and scanning electron microscopy (SEM) to visualize crack propagation and failure modes. Reliability was compared using cumulative-damage step-stress analysis (Alta-7-Pro, Reliasoft). Results Crack propagation was observed in the veneering porcelain during fatigue. The majority of zirconium-oxide FDPs demonstrated porcelain chipping as the dominant failure mode. Nevertheless, fracture of the zirconium-oxide frameworks was also observed. Over-pressed FDPs failed earlier at a mean failure load of 696 ± 149 N relative to hand-veneered at 882 ± 61 N (profile I). Weibull-stress-number of cycles-unreliability-curves were generated. The reliability (2-sided at 90% confidence bounds) for a 400N load at 100K cycles indicated values of 0.84 (0.98-0.24) for the hand-veneered FDPs and 0.50 (0.82-0.09) for their over-pressed counterparts. Conclusions Both zirconium-oxide FDP systems were resistant under accelerated-life-time-testing. Over-pressed specimens were more susceptible to fatigue loading with earlier veneer chipping. PMID:21557985

  16. Patent ductus arteriosus: patho-physiology, hemodynamic effects and clinical complications.

    PubMed

    Capozzi, Giovanbattista; Santoro, Giuseppe

    2011-10-01

    During fetal life, patent arterial duct diverts placental oxygenated blood from the pulmonary artery into the aorta by-passing lungs. After birth, decrease of prostacyclins and prostaglandins concentration usually causes arterial duct closure. This process may be delayed, or may even completely fail in preterm infants with arterial duct still remaining patent. If that happens, blood flow by-pass of the systemic circulation through the arterial duct results in pulmonary overflow and systemic hypoperfusion. When pulmonary flow is 50% higher than systemic flow, a hemodynamic "paradox" results, with an increase of left ventricular output without a subsequent increase of systemic output. Cardiac overload support neuro-humoral effects (activation of sympathetic nervous system and renin-angiotensin system) that finally promote heart failure. Moreover, increased pulmonary blood flow can cause vascular congestion and pulmonary edema. However, the most dangerous effect is cerebral under-perfusion due to diastolic reverse-flow and resulting in cerebral hypoxia. At last, blood flow decreases through the abdominal aorta, reducing perfusion of liver, gut and kidneys and may cause hepatic failure, renal insufficiency and necrotizing enterocolitis. Conclusions Large patent arterial duct may cause life-threatening multi-organ effects. In pre-term infant early diagnosis and timely effective treatment are cornerstones in the prevention of cerebral damage and long-term multi-organ failure.

  17. Relearning in Semantic Dementia Reflects Contributions from Both Medial Temporal Lobe Episodic and Degraded Neocortical Semantic Systems: Evidence in Support of the Complementary Learning Systems Theory

    ERIC Educational Resources Information Center

    Mayberry, Emily J.; Sage, Karen; Ehsan, Sheeba; Ralph, Matthew A. Lambon

    2011-01-01

    When relearning words, patients with semantic dementia (SD) exhibit a characteristic rigidity, including a failure to generalise names to untrained exemplars of trained concepts. This has been attributed to an over-reliance on the medial temporal region which captures information in sparse, non-overlapping and therefore rigid representations. The…

  18. Information Extraction for System-Software Safety Analysis: Calendar Year 2007 Year-End Report

    NASA Technical Reports Server (NTRS)

    Malin, Jane T.

    2008-01-01

    This annual report describes work to integrate a set of tools to support early model-based analysis of failures and hazards due to system-software interactions. The tools perform and assist analysts in the following tasks: 1) extract model parts from text for architecture and safety/hazard models; 2) combine the parts with library information to develop the models for visualization and analysis; 3) perform graph analysis on the models to identify possible paths from hazard sources to vulnerable entities and functions, in nominal and anomalous system-software configurations; 4) perform discrete-time-based simulation on the models to investigate scenarios where these paths may play a role in failures and mishaps; and 5) identify resulting candidate scenarios for software integration testing. This paper describes new challenges in a NASA abort system case, and enhancements made to develop the integrated tool set.

  19. Professional failure to thrive: a threat to high-quality care?

    PubMed

    Stamler, Lynnette Leeseberg; Gabriel, Aaron M

    2010-03-01

    The term professional failure to thrive arose from descriptions of non-organic failure to thrive in infants and observations of nurses' behaviours. First coined by Stamler in 1997, subsequent unrelated research results have supported the theoretical construct. In an era when patient safety and high-quality care have never been more important, and nursing retention has reached heretofore unknown levels of global concern, critical examination of factors that may alleviate professional issues and support high-quality healthcare is especially useful. In this paper, we suggest theoretical causes for professional failure to thrive (PFTT) and associated behaviours exhibited by nurses, and draw links to current research to support the theory. Given the theoretical support, PFTT represents an additional avenue that should be considered and explored through research studies.

  20. A Survey of Logic Formalisms to Support Mishap Analysis

    NASA Technical Reports Server (NTRS)

    Johnson, Chris; Holloway, C. M.

    2003-01-01

    Mishap investigations provide important information about adverse events and near miss incidents. They are intended to help avoid any recurrence of previous failures. Over time, they can also yield statistical information about incident frequencies that helps to detect patterns of failure and can validate risk assessments. However, the increasing complexity of many safety critical systems is posing new challenges for mishap analysis. Similarly, the recognition that many failures have complex, systemic causes has helped to widen the scope of many mishap investigations. These two factors have combined to pose new challenges for the analysis of adverse events. A new generation of formal and semi-formal techniques have been proposed to help investigators address these problems. We introduce the term mishap logics to collectively describe these notations that might be applied to support the analysis of mishaps. The proponents of these notations have argued that they can be used to formally prove that certain events created the necessary and sufficient causes for a mishap to occur. These proofs can be used to reduce the bias that is often perceived to effect the interpretation of adverse events. Others have argued that one cannot use logic formalisms to prove causes in the same way that one might prove propositions or theorems. Such mechanisms cannot accurately capture the wealth of inductive, deductive and statistical forms of inference that investigators must use in their analysis of adverse events. This paper provides an overview of these mishap logics. It also identifies several additional classes of logic that might also be used to support mishap analysis.

  1. Integrated health system for chronic disease management: lessons learned from France.

    PubMed

    Stuart, Mary; Weinrich, Michael

    2004-02-01

    Rated number one in overall health system performance by the World Health Organization, the French spend less than half the amount on annual health care per capita that the United States spends. One contributing factor may be the attention given to chronic care. Since the mid-1900s, the French have developed regional community-based specialty systems for patients with chronic respiratory insufficiency or failure. COPD is the major cause of respiratory failure, the fourth leading cause of death in the United States, and its prevalence is increasing. Despite the clinical success of home mechanical ventilation and the potential for cost savings, providing such services in the United States remains a challenge. Lessons from France can inform the development of cost-effective chronic care models in the United States In this article, we review the French experience in the context of the United States Supreme Court's Olmstead decision, mandating that people in "more restrictive settings" such as nursing homes be offered community-based supports. We suggest that regional demonstration projects for patients with chronic respiratory failure or insufficiency can provide an important step in the development of effective chronic care systems in the United States

  2. Effects of carbon/graphite fiber contamination on high voltage electrical insulation

    NASA Technical Reports Server (NTRS)

    Garrity, T.; Eichler, C.

    1980-01-01

    The contamination mechanics and resulting failure modes of high voltage electrical insulation due to carbon/graphite fibers were examined. The high voltage insulation vulnerability to carbon/graphite fiber induced failure was evaluated using a contamination system which consisted of a fiber chopper, dispersal chamber, a contamination chamber, and air ducts and suction blower. Tests were conducted to evaluate the effects of fiber length, weathering, and wetness on the insulator's resistance to carbon/graphite fibers. The ability of nuclear, fossil, and hydro power generating stations to maintain normal power generation when the surrounding environment is contaminated by an accidental carbon fiber release was investigated. The vulnerability assessment included only the power plant generating equipment and its associated controls, instrumentation, and auxiliary and support systems.

  3. Latest Development in Advanced Sensors at Kennedy Space Center (KSC)

    NASA Technical Reports Server (NTRS)

    Perotti, Jose M.; Eckhoff, Anthony J.; Voska, N. (Technical Monitor)

    2002-01-01

    Inexpensive space transportation system must be developed in order to make spaceflight more affordable. To achieve this goal, there is a need to develop inexpensive smart sensors to allow autonomous checking of the health of the vehicle and associated ground support equipment, warn technicians or operators of an impending problem and facilitate rapid vehicle pre-launch operations. The Transducers and Data Acquisition group at Kennedy Space Center has initiated an effort to study, research, develop and prototype inexpensive smart sensors to accomplish these goals. Several technological challenges are being investigated and integrated in this project multi-discipline sensors; self-calibration, health self-diagnosis capabilities embedded in sensors; advanced data acquisition systems with failure prediction algorithms and failure correction (self-healing) capabilities.

  4. 29 CFR 1917.46 - Load indicating devices.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) Except as provided in paragraph (a)(1)(viii) of this section, every crane after October 3, 1984 shall be... this by referencing a weight indication to crane ratings posted and visible to the operator, except... the supporting system (crane structure) that its failure could cause the load to be dropped, its...

  5. Online Teacher Training: The Early Childhood Technology Integrated Instructional System--Phase 3

    ERIC Educational Resources Information Center

    Daytner, Gary; Robinson, Linda; Schneider, Carol; Johanson, Joyce

    2009-01-01

    Legislation, research, and practice support access to technology by young children with disabilities. Yet barriers to technology use--lack of training, inadequate funding, failure to acknowledge technology as a relevant issue, or disbelief that technology can positively impact young children with disabilities--often prevail among many disciplines…

  6. Intelligence Architecture, Echelons Corps and Below (ECB): Some Near Term Alternatives

    DTIC Science & Technology

    1991-04-05

    intelligence missions. - Failure to have an annual "MI Table VIII" type evaluation system keeps MI units in the business of supporting other Table...Division) CAC: Combined Arms Center (Ft Leavenworth) CEWI: Combat Electronic Warfare Inteligence C&GSC: Command and General Staff College CI

  7. 29 CFR 1917.46 - Load indicating devices.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) Except as provided in paragraph (a)(1)(viii) of this section, every crane after October 3, 1984 shall be... this by referencing a weight indication to crane ratings posted and visible to the operator, except... the supporting system (crane structure) that its failure could cause the load to be dropped, its...

  8. A Bayesian least squares support vector machines based framework for fault diagnosis and failure prognosis

    NASA Astrophysics Data System (ADS)

    Khawaja, Taimoor Saleem

    A high-belief low-overhead Prognostics and Health Management (PHM) system is desired for online real-time monitoring of complex non-linear systems operating in a complex (possibly non-Gaussian) noise environment. This thesis presents a Bayesian Least Squares Support Vector Machine (LS-SVM) based framework for fault diagnosis and failure prognosis in nonlinear non-Gaussian systems. The methodology assumes the availability of real-time process measurements, definition of a set of fault indicators and the existence of empirical knowledge (or historical data) to characterize both nominal and abnormal operating conditions. An efficient yet powerful Least Squares Support Vector Machine (LS-SVM) algorithm, set within a Bayesian Inference framework, not only allows for the development of real-time algorithms for diagnosis and prognosis but also provides a solid theoretical framework to address key concepts related to classification for diagnosis and regression modeling for prognosis. SVM machines are founded on the principle of Structural Risk Minimization (SRM) which tends to find a good trade-off between low empirical risk and small capacity. The key features in SVM are the use of non-linear kernels, the absence of local minima, the sparseness of the solution and the capacity control obtained by optimizing the margin. The Bayesian Inference framework linked with LS-SVMs allows a probabilistic interpretation of the results for diagnosis and prognosis. Additional levels of inference provide the much coveted features of adaptability and tunability of the modeling parameters. The two main modules considered in this research are fault diagnosis and failure prognosis. With the goal of designing an efficient and reliable fault diagnosis scheme, a novel Anomaly Detector is suggested based on the LS-SVM machines. The proposed scheme uses only baseline data to construct a 1-class LS-SVM machine which, when presented with online data is able to distinguish between normal behavior and any abnormal or novel data during real-time operation. The results of the scheme are interpreted as a posterior probability of health (1 - probability of fault). As shown through two case studies in Chapter 3, the scheme is well suited for diagnosing imminent faults in dynamical non-linear systems. Finally, the failure prognosis scheme is based on an incremental weighted Bayesian LS-SVR machine. It is particularly suited for online deployment given the incremental nature of the algorithm and the quick optimization problem solved in the LS-SVR algorithm. By way of kernelization and a Gaussian Mixture Modeling (GMM) scheme, the algorithm can estimate "possibly" non-Gaussian posterior distributions for complex non-linear systems. An efficient regression scheme associated with the more rigorous core algorithm allows for long-term predictions, fault growth estimation with confidence bounds and remaining useful life (RUL) estimation after a fault is detected. The leading contributions of this thesis are (a) the development of a novel Bayesian Anomaly Detector for efficient and reliable Fault Detection and Identification (FDI) based on Least Squares Support Vector Machines, (b) the development of a data-driven real-time architecture for long-term Failure Prognosis using Least Squares Support Vector Machines, (c) Uncertainty representation and management using Bayesian Inference for posterior distribution estimation and hyper-parameter tuning, and finally (d) the statistical characterization of the performance of diagnosis and prognosis algorithms in order to relate the efficiency and reliability of the proposed schemes.

  9. Trade Studies of Space Launch Architectures using Modular Probabilistic Risk Analysis

    NASA Technical Reports Server (NTRS)

    Mathias, Donovan L.; Go, Susie

    2006-01-01

    A top-down risk assessment in the early phases of space exploration architecture development can provide understanding and intuition of the potential risks associated with new designs and technologies. In this approach, risk analysts draw from their past experience and the heritage of similar existing systems as a source for reliability data. This top-down approach captures the complex interactions of the risk driving parts of the integrated system without requiring detailed knowledge of the parts themselves, which is often unavailable in the early design stages. Traditional probabilistic risk analysis (PRA) technologies, however, suffer several drawbacks that limit their timely application to complex technology development programs. The most restrictive of these is a dependence on static planning scenarios, expressed through fault and event trees. Fault trees incorporating comprehensive mission scenarios are routinely constructed for complex space systems, and several commercial software products are available for evaluating fault statistics. These static representations cannot capture the dynamic behavior of system failures without substantial modification of the initial tree. Consequently, the development of dynamic models using fault tree analysis has been an active area of research in recent years. This paper discusses the implementation and demonstration of dynamic, modular scenario modeling for integration of subsystem fault evaluation modules using the Space Architecture Failure Evaluation (SAFE) tool. SAFE is a C++ code that was originally developed to support NASA s Space Launch Initiative. It provides a flexible framework for system architecture definition and trade studies. SAFE supports extensible modeling of dynamic, time-dependent risk drivers of the system and functions at the level of fidelity for which design and failure data exists. The approach is scalable, allowing inclusion of additional information as detailed data becomes available. The tool performs a Monte Carlo analysis to provide statistical estimates. Example results of an architecture system reliability study are summarized for an exploration system concept using heritage data from liquid-fueled expendable Saturn V/Apollo launch vehicles.

  10. Effects of comprehensive educational reforms on academic success in a diverse student body.

    PubMed

    Lieberman, Steven A; Ainsworth, Michael A; Asimakis, Gregory K; Thomas, Lauree; Cain, Lisa D; Mancuso, Melodee G; Rabek, Jeffrey P; Zhang, Ni; Frye, Ann W

    2010-12-01

    Calls for medical curriculum reform and increased student diversity in the USA have seen mixed success: performance outcomes following curriculum revisions have been inconsistent and national matriculation of under-represented minority (URM) students has not met aspirations. Published innovations in curricula, academic support and pipeline programmes usually describe isolated interventions that fail to affect curriculum-level outcomes. United States Medical Licensing Examination (USMLE) Step 1 performance and graduation rates were analysed for three classes of medical students before (matriculated 1995-1997, n=517) and after (matriculated 2003-2005, n=597) implementing broad-based reforms in our education system. The changes in pipeline recruitment and preparation programmes, instructional methods, assessment systems, academic support and board preparation were based on sound educational principles and best practices. Post-reform classes were diverse with respect to ethnicity (25.8% URM students), gender (51.8% female), and Medical College Admissions Test (MCAT) score (range 20-40; 24.1% scored ≤ 25). Mean±standard deviation MCAT scores were minimally changed (from 27.2±4.7 to 27.8±3.6). The Step 1 failure rate decreased by 69.3% and mean score increased by 14.0 points (effect size: d=0.67) overall. Improvements were greater among women (failure rate decreased by 78.9%, mean score increased by 15.6 points; d=0.76) and URM students (failure rate decreased by 76.5%, mean score increased by 14.6 points; d=0.74), especially African-American students (failure rate decreased by 93.6%, mean score increased by 20.8 points; d=1.12). Step 1 scores increased across the entire MCAT range. Four- and 5-year graduation rates increased by 7.1% and 5.8%, respectively. The effect sizes in these performance improvements surpassed those previously reported for isolated interventions in curriculum and student support. This success is likely to have resulted from the broad-based, mutually reinforcing nature of reforms in multiple components of the education system. The results suggest that a narrow reductionist view of educational programme reform is less likely to result in improved educational outcomes than a system perspective that addresses the coordinated functioning of multiple aspects of the academic enterprise. © Blackwell Publishing Ltd 2010.

  11. A comparative study of a new wireless continuous cardiorespiratory monitor for the diagnosis and management of patients with congestive heart failure at home.

    PubMed

    Andrews, D; Gouda, M S; Higgins, S; Johnson, P; Williams, A; Vandenburg, M

    2002-01-01

    Congestive heart failure (CHF) is a major and increasing chronic disease in Western society, with a high mortality, morbidity and cost for unplanned hospital admissions. Continuous cardiorespiratory monitoring is required to detect Cheyne-Stokes respiration (CSR). We have tested a new wireless monitoring system and compared it with polysomnography (PSG) and respiratory inductance plethysmography (RIP) in six CHF patients with CSR in a sleep laboratory. The wireless system compared well with RIP for the detection of CSR but less well with PSG, which had unexpected but significant respiratory sensing errors that led to misclassification of the respiratory disorder present. The wireless system could be used to select CHF patients for better-customized treatment at home as part of a specialist-supported community telemedicine programme.

  12. The development of control and monitoring system on marine current renewable energy Case study: strait of Toyapakeh - Nusa Penida, Bali

    NASA Astrophysics Data System (ADS)

    Arief, I. S.; Suherman, I. H.; Wardani, A. Y.; Baidowi, A.

    2017-05-01

    Control and monitoring system is a continuous process of securing the asset in the Marine Current Renewable Energy. A control and monitoring system is existed each critical components which is embedded in Failure Mode Effect Analysis (FMEA) method. As the result, the process in this paper developed through a matrix sensor. The matrix correlated to critical components and monitoring system which supported by sensors to conduct decision-making.

  13. A.I.-based real-time support for high performance aircraft operations

    NASA Technical Reports Server (NTRS)

    Vidal, J. J.

    1985-01-01

    Artificial intelligence (AI) based software and hardware concepts are applied to the handling system malfunctions during flight tests. A representation of malfunction procedure logic using Boolean normal forms are presented. The representation facilitates the automation of malfunction procedures and provides easy testing for the embedded rules. It also forms a potential basis for a parallel implementation in logic hardware. The extraction of logic control rules, from dynamic simulation and their adaptive revision after partial failure are examined. It uses a simplified 2-dimensional aircraft model with a controller that adaptively extracts control rules for directional thrust that satisfies a navigational goal without exceeding pre-established position and velocity limits. Failure recovery (rule adjusting) is examined after partial actuator failure. While this experiment was performed with primitive aircraft and mission models, it illustrates an important paradigm and provided complexity extrapolations for the proposed extraction of expertise from simulation, as discussed. The use of relaxation and inexact reasoning in expert systems was also investigated.

  14. Impact of Distributed Energy Resources on the Reliability of Critical Telecommunications Facilities: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, D. G.; Arent, D. J.; Johnson, L.

    2006-06-01

    This paper documents a probabilistic risk assessment of existing and alternative power supply systems at a large telecommunications office. The analysis characterizes the increase in the reliability of power supply through the use of two alternative power configurations. Failures in the power systems supporting major telecommunications service nodes are a main contributor to significant telecommunications outages. A logical approach to improving the robustness of telecommunication facilities is to increase the depth and breadth of technologies available to restore power during power outages. Distributed energy resources such as fuel cells and gas turbines could provide additional on-site electric power sources tomore » provide backup power, if batteries and diesel generators fail. The analysis is based on a hierarchical Bayesian approach and focuses on the failure probability associated with each of three possible facility configurations, along with assessment of the uncertainty or confidence level in the probability of failure. A risk-based characterization of final best configuration is presented.« less

  15. Reduction of severe mitral regurgitation with the MitraClip system improves renal function in two patients presenting with acute kidney injury and progressive renal failure due to cardio renal syndrome.

    PubMed

    Asdonk, T; Nickenig, G; Hammerstingl, C

    2014-10-01

    Mitral regurgitation (MR) is a frequent valve disorder in elderly patients, often accompanied by multiple comorbidities such as renal impairment. In these patients percutaneous mitral valve (MV) repair has become an established treatment option but the role of MR on renal dysfunction is not yet well defined. We here report on two cases presenting with severe MR and progressive renal failure caused by cardio renal syndrome, in which percutaneous MV treatment with the MitraClip system significantly improved renal function. These findings suggest that interventional MV repair can prevent progression of renal deterioration in patients suffering from combined advanced heart and renal failure. Further clinical studies are necessary to support our finding and to answer the question whether optimizing renal function by implantation of the MitraClip device is also of prognostic relevance in these patients. © 2014 Wiley Periodicals, Inc.

  16. External quality assurance performance of clinical research laboratories in sub-saharan Africa.

    PubMed

    Amukele, Timothy K; Michael, Kurt; Hanes, Mary; Miller, Robert E; Jackson, J Brooks

    2012-11-01

    Patient Safety Monitoring in International Laboratories (JHU-SMILE) is a resource at Johns Hopkins University that supports and monitors laboratories in National Institutes of Health-funded international clinical trials. To determine the impact of the JHU-SMILE quality assurance scheme in sub-Saharan African laboratories, we reviewed 40 to 60 months of external quality assurance (EQA) results of the College of American Pathologists (CAP) in these laboratories. We reviewed the performance of 8 analytes: albumin, alanine aminotransferase, creatinine, sodium, WBC, hemoglobin, hematocrit, and the human immunodeficiency virus antibody rapid test. Over the 40- to 60-month observation period, the sub-Saharan laboratories had a 1.63% failure rate, which was 40% lower than the 2011 CAP-wide rate of 2.8%. Seventy-six percent of the observed EQA failures occurred in 4 of the 21 laboratories. These results demonstrate that a system of remote monitoring, feedback, and audits can support quality in low-resource settings, even in places without strong regulatory support for laboratory quality.

  17. Water system hardware and management rehabilitation: Qualitative evidence from Ghana, Kenya, and Zambia.

    PubMed

    Klug, Tori; Shields, Katherine F; Cronk, Ryan; Kelly, Emma; Behnke, Nikki; Lee, Kristen; Bartram, Jamie

    2017-05-01

    Sufficient, safe, continuously available drinking water is important for human health and development, yet one in three handpumps in sub-Saharan Africa are non-functional at any given time. Community management, coupled with access to external technical expertise and spare parts, is a widely promoted model for rural water supply management. However, there is limited evidence describing how community management can address common hardware and management failures of rural water systems in sub-Saharan Africa. We identified hardware and management rehabilitation pathways using qualitative data from 267 interviews and 57 focus group discussions in Ghana, Kenya, and Zambia. Study participants were water committee members, community members, and local leaders in 18 communities (six in each study country) with water systems managed by a water committee and supported by World Vision (WV), an international non-governmental organization (NGO). Government, WV or private sector employees engaged in supporting the water systems were also interviewed. Inductive analysis was used to allow for pathways to emerge from the data, based on the perspectives and experiences of study participants. Four hardware rehabilitation pathways were identified, based on the types of support used in rehabilitation. Types of support were differentiated as community or external. External support includes financial and/or technical support from government or WV employees. Community actor understanding of who to contact when a hardware breakdown occurs and easy access to technical experts were consistent reasons for rapid rehabilitation for all hardware rehabilitation pathways. Three management rehabilitation pathways were identified. All require the involvement of community leaders and were best carried out when the action was participatory. The rehabilitation pathways show how available resources can be leveraged to restore hardware breakdowns and management failures for rural water systems in sub-Saharan Africa. Governments, NGOs, and private sector actors can better build capacity of community actors by focusing on their role in rehabilitating hardware and management and to ensure that they are able to quickly contact external support actors when needed for rehabilitation. Using qualitative and participatory methods allows for insight into rapid rehabilitation of hardware and management. Copyright © 2017 Elsevier GmbH. All rights reserved.

  18. Safety consequences of local initiating events in an LMFBR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crawford, R.M.; Marr, W.W.; Padilla, A. Jr.

    1975-12-01

    The potential for fuel-failure propagation in an LMFBR at or near normal conditions is examined. Results are presented to support the conclusion that although individual fuel-pin failure may occur, rapid failure-propagation spreading among a large number of fuel pins in a subassembly is unlikely in an operating LMFBR. This conclusion is supported by operating experience, mechanistic analyses of failure-propagation phenomena, and experiments. In addition, some of the consequences of continued operation with defected fuel are considered.

  19. The Shuttle processing contractors (SPC) reliability program at the Kennedy Space Center - The real world

    NASA Astrophysics Data System (ADS)

    McCrea, Terry

    The Shuttle Processing Contract (SPC) workforce consists of Lockheed Space Operations Co. as prime contractor, with Grumman, Thiokol Corporation, and Johnson Controls World Services as subcontractors. During the design phase, reliability engineering is instrumental in influencing the development of systems that meet the Shuttle fail-safe program requirements. Reliability engineers accomplish this objective by performing FMEA (failure modes and effects analysis) to identify potential single failure points. When technology, time, or resources do not permit a redesign to eliminate a single failure point, the single failure point information is formatted into a change request and presented to senior management of SPC and NASA for risk acceptance. In parallel with the FMEA, safety engineering conducts a hazard analysis to assure that potential hazards to personnel are assessed. The combined effort (FMEA and hazard analysis) is published as a system assurance analysis. Special ground rules and techniques are developed to perform and present the analysis. The reliability program at KSC is vigorously pursued, and has been extremely successful. The ground support equipment and facilities used to launch and land the Space Shuttle maintain an excellent reliability record.

  20. Acute-on-chronic liver failure: an update

    PubMed Central

    Solà, Elsa; Moreau, Richard; Ginès, Pere

    2017-01-01

    Acute-on-chronic liver failure (ACLF) is a syndrome characterised by acute decompensation of chronic liver disease associated with organ failures and high short-term mortality. Alcohol and chronic viral hepatitis are the most common underlying liver diseases. Up to 40%–50% of the cases of ACLF have no identifiable trigger; in the remaining patients, sepsis, active alcoholism and relapse of chronic viral hepatitis are the most common reported precipitating factors. An excessive systemic inflammatory response seems to play a crucial role in the development of ACLF. Using a liver-adapted sequential organ assessment failure score, it is possible to triage and prognosticate the outcome of patients with ACLF. The course of ACLF is dynamic and changes over the course of hospital admission. Most of the patients will have a clear prognosis between day 3 and 7 of hospital admission and clinical decisions such as evaluation for liver transplant or discussion over goals of care could be tailored using clinical scores. Bioartificial liver support systems, granulocyte-colony stimulating factors or stem-cell transplant are in the horizon of medical care of this patient population; however, data are too premature to implement them as standard of care. PMID:28053053

  1. Clinical challenges in mechanical ventilation.

    PubMed

    Goligher, Ewan C; Ferguson, Niall D; Brochard, Laurent J

    2016-04-30

    Mechanical ventilation supports gas exchange and alleviates the work of breathing when the respiratory muscles are overwhelmed by an acute pulmonary or systemic insult. Although mechanical ventilation is not generally considered a treatment for acute respiratory failure per se, ventilator management warrants close attention because inappropriate ventilation can result in injury to the lungs or respiratory muscles and worsen morbidity and mortality. Key clinical challenges include averting intubation in patients with respiratory failure with non-invasive techniques for respiratory support; delivering lung-protective ventilation to prevent ventilator-induced lung injury; maintaining adequate gas exchange in severely hypoxaemic patients; avoiding the development of ventilator-induced diaphragm dysfunction; and diagnosing and treating the many pathophysiological mechanisms that impair liberation from mechanical ventilation. Personalisation of mechanical ventilation based on individual physiological characteristics and responses to therapy can further improve outcomes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Aircraft Transparency Failure and Logistical Cost Analysis. Volume I. Program Summary

    DTIC Science & Technology

    1978-12-01

    Hours liv LIST OF ABBREVIATIONS (Continued) SFMC Field Maintenance Cost FMEA Failure Modes and Effect Analysis SFMS Field Maintenance Squadron FSN...3, CH-53, AND UH -1 Figure 3. Study Aircraft 10 I. 1. WINDSHIELDS 2. CANOPIES 3. WINDOWS INTERACTIVE SUPPORT SYSTEMS 1. ANTI-ICING 2. DEFOGGING 3...52,947 13,761 UH /TH-1F, 1P 73,431 73,640 Total helicopters 339,690 113,492 2.99 Bombers B-S2G 138,348 64,431 B-S2P 93,000 36,936 B-57 34,527 19,552

  3. Representing functions/procedures and processes/structures for analysis of effects of failures on functions and operations

    NASA Technical Reports Server (NTRS)

    Malin, Jane T.; Leifker, Daniel B.

    1991-01-01

    Current qualitative device and process models represent only the structure and behavior of physical systems. However, systems in the real world include goal-oriented activities that generally cannot be easily represented using current modeling techniques. An extension of a qualitative modeling system, known as functional modeling, which captures goal-oriented activities explicitly is proposed and how they may be used to support intelligent automation and fault management is shown.

  4. Spaceflight Ground Support Equipment Reliability & System Safety Data

    NASA Technical Reports Server (NTRS)

    Fernandez, Rene; Riddlebaugh, Jeffrey; Brinkman, John; Wilkinson, Myron

    2012-01-01

    Presented were Reliability Analysis, consisting primarily of Failure Modes and Effects Analysis (FMEA), and System Safety Analysis, consisting of Preliminary Hazards Analysis (PHA), performed to ensure that the CoNNeCT (Communications, Navigation, and Networking re- Configurable Testbed) Flight System was safely and reliably operated during its Assembly, Integration and Test (AI&T) phase. A tailored approach to the NASA Ground Support Equipment (GSE) standard, NASA-STD-5005C, involving the application of the appropriate Requirements, S&MA discipline expertise, and a Configuration Management system (to retain a record of the analysis and documentation) were presented. Presented were System Block Diagrams of selected GSE and the corresponding FMEA, as well as the PHAs. Also discussed are the specific examples of the FMEAs and PHAs being used during the AI&T phase to drive modifications to the GSE (via "redlining" of test procedures, and the placement of warning stickers to protect the flight hardware) before being interfaced to the Flight System. These modifications were necessary because failure modes and hazards were identified during the analysis that had not been properly mitigated. Strict Configuration Management was applied to changes (whether due to upgrades or expired calibrations) in the GSE by revisiting the FMEAs and PHAs to reflect the latest System Block Diagrams and Bill Of Material. The CoNNeCT flight system has been successfully assembled, integrated, tested, and shipped to the launch site without incident. This demonstrates that the steps taken to safeguard the flight system when it was interfaced to the various GSE were successful.

  5. Some challenges in designing a lunar, Martian, or microgravity CELSS.

    PubMed

    Salisbury, F B

    1992-01-01

    The design of a bioregenerative life-support system (a Controlled Ecological Life-Support System or CELSS) for long-duration stays on the moon, Mars, or in a space craft poses formidable problems in engineering and in theory. Technological (hardware) problems include: (1) Creation and control of gas composition and pressure, temperature, light, humidity, and air circulation, especially in microgravity to 1/3 xg and in the vacuum of space. Light (energy demanding), CO2 levels, and the rooting media are special problems for plants. (2) Developing specialized equipment for food preparation. (3) Equipment development for waste recycling. (4) Development of computer systems for environmental monitoring and control as well as several other functions. Problems of theory (software) include: (1) Determining crop species and cultivars (some bred especially for CELSS). (2) Optimum environments and growing and harvesting techniques for each crop. (3) Best and most efficient food-preparation techniques and required equipment. (4) Best and most efficient waste-recycling techniques and equipment. This topic includes questions about the extent of closure, resupply, and waste storage. (5) How to achieve long-term stability. (6) How to avoid catastrophic failures--and how to recover from near-catastrophic failures (for example, plant diseases). Many problems must be solved.

  6. Some challenges in designing a lunar, Martian, or microgravity CELSS

    NASA Astrophysics Data System (ADS)

    Salisbury, Frank B.

    The design of a bioregenerative life-support system (a Controlled Ecological Life-Support System or CELSS) for long-duration stays on the moon, Mars, or in a space craft poses formidable problems in engineering and in theory. Technological (hardware) problems include: (1) Creation and control of gas composition and pressure, temperature, light, humidity, and air circulation, especially in microgravity to 1/3xg and in the vacuum of space. Light (energy demanding), CO 2 levels, and the rooting media are special problems for plants. (2) Developing specialized equipment for food preparation. (3) Equipment development for waste recycling. (4) Development of computer systems for environmental monitoring and control as well as several other functions. Problems of theory (software) include: (1) Determining crop species and cultivars (some bred especially for CELSS). (2) Optimum environments and growing and harvesting techniques for each crop. (3) Best and most efficient food-preparation techniques and required equipment. (4) Best and most efficient waste-recycling techniques and equipment. This topic includes questions about the extent of closure, resupply, and waste storage. (5) How to achieve long-term stability. (6) How to avoid catastrophic failures-and how to recover from near-catastrophic failures (for example, plant diseases). Many problems must be solved.

  7. Role of total artificial heart in the management of heart transplant rejection and retransplantation: case report and review.

    PubMed

    Kalya, Anantharam; Jaroszewski, Dawn; Pajaro, Octavio; Scott, Robert; Gopalan, Radha; Kasper, Diane; Arabia, Francisco

    2013-01-01

    Cardiac allograft rejection and failure may require mechanical circulatory support as bridge-to-retransplantation. Prognosis in this patient group is poor and implantable ventricular assist devices have had limited success due to organ failure associated with the high dose immunosuppression required to treat ongoing rejection. We present a case from our institution and the world-wide experience utilizing the SynCardia CardioWest Total Artificial Heart (TAH-t; SynCardia Systems, Inc., Tucson, AZ, USA) for replacement of the failing graft, recovery of patient and end-organ failure with ultimate bridge to retransplantation. We present our experience and review of world-wide experience for use of TAH-t in this type patient. © 2013 John Wiley & Sons A/S.

  8. Landslide early warning based on failure forecast models: the example of the Mt. de La Saxe rockslide, northern Italy

    NASA Astrophysics Data System (ADS)

    Manconi, A.; Giordan, D.

    2015-07-01

    We apply failure forecast models by exploiting near-real-time monitoring data for the La Saxe rockslide, a large unstable slope threatening Aosta Valley in northern Italy. Starting from the inverse velocity theory, we analyze landslide surface displacements automatically and in near real time on different temporal windows and apply straightforward statistical methods to obtain confidence intervals on the estimated time of failure. Here, we present the result obtained for the La Saxe rockslide, a large unstable slope located in Aosta Valley, northern Italy. Based on this case study, we identify operational thresholds that are established on the reliability of the forecast models. Our approach is aimed at supporting the management of early warning systems in the most critical phases of the landslide emergency.

  9. Research on Application of FMECA in Missile Equipment Maintenance Decision

    NASA Astrophysics Data System (ADS)

    Kun, Wang

    2018-03-01

    Fault mode effects and criticality analysis (FMECA) is a method widely used in engineering. Studying the application of FMEA technology in military equipment maintenance decision-making, can help us build a better equipment maintenance support system, and increase the using efficiency of weapons and equipment. Through Failure Modes, Effects and Criticality Analysis (FMECA) of equipment, known and potential failure modes and their causes are found out, and the influence on the equipment performance, operation success, personnel security are determined. Furthermore, according to the synthetical effects of the severity of effects and the failure probability, possible measures for prevention and correction are put forward. Through replacing or adjusting the corresponding parts, corresponding maintenance strategy is decided for preventive maintenance of equipment, which helps improve the equipment reliability.

  10. Using software metrics and software reliability models to attain acceptable quality software for flight and ground support software for avionic systems

    NASA Technical Reports Server (NTRS)

    Lawrence, Stella

    1992-01-01

    This paper is concerned with methods of measuring and developing quality software. Reliable flight and ground support software is a highly important factor in the successful operation of the space shuttle program. Reliability is probably the most important of the characteristics inherent in the concept of 'software quality'. It is the probability of failure free operation of a computer program for a specified time and environment.

  11. A Physical Heart Failure Simulation System Utilizing the Total Artificial Heart and Modified Donovan Mock Circulation.

    PubMed

    Crosby, Jessica R; DeCook, Katrina J; Tran, Phat L; Betterton, Edward; Smith, Richard G; Larson, Douglas F; Khalpey, Zain I; Burkhoff, Daniel; Slepian, Marvin J

    2017-07-01

    With the growth and diversity of mechanical circulatory support (MCS) systems entering clinical use, a need exists for a robust mock circulation system capable of reliably emulating and reproducing physiologic as well as pathophysiologic states for use in MCS training and inter-device comparison. We report on the development of such a platform utilizing the SynCardia Total Artificial Heart and a modified Donovan Mock Circulation System, capable of being driven at normal and reduced output. With this platform, clinically relevant heart failure hemodynamics could be reliably reproduced as evidenced by elevated left atrial pressure (+112%), reduced aortic flow (-12.6%), blunted Starling-like behavior, and increased afterload sensitivity when compared with normal function. Similarly, pressure-volume relationships demonstrated enhanced sensitivity to afterload and decreased Starling-like behavior in the heart failure model. Lastly, the platform was configured to allow the easy addition of a left ventricular assist device (HeartMate II at 9600 RPM), which upon insertion resulted in improvement of hemodynamics. The present configuration has the potential to serve as a viable system for training and research, aimed at fostering safe and effective MCS device use. © 2016 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  12. Extracellular Vesicles from Bone Marrow‐Derived Mesenchymal Stem Cells Improve Survival from Lethal Hepatic Failure in Mice

    PubMed Central

    Haga, Hiroaki; Yan, Irene K.; Takahashi, Kenji; Matsuda, Akiko

    2017-01-01

    Abstract Stem cell‐based therapies have potential for treatment of liver injury by contributing to regenerative responses, through functional tissue replacement or paracrine effects. The release of extracellular vesicles (EV) from cells has been implicated in intercellular communication, and may contribute to beneficial paracrine effects of stem cell‐based therapies. Therapeutic effects of bone‐marrow derived mesenchymal stem cells (MSC) and vesicles released by these cells were examined in a lethal murine model of hepatic failure induced by d‐galactosamine/tumor necrosis factor‐α (TNF‐α). Systemically administered EV derived from MSC accumulated within the injured liver following systemic administration, reduced hepatic injury, and modulated cytokine expression. Moreover, survival was dramatically increased by EV derived from either murine or human MSC. Similar results were observed with the use of cryopreserved mMSC‐EV after 3 months. Y‐RNA‐1 was identified as a highly enriched noncoding RNA within hMSC‐EV compared to cells of origin. Moreover, siRNA mediated knockdown of Y‐RNA‐1 reduced the protective effects of MSC‐EV on TNF‐α/ActD‐mediated hepatocyte apoptosis in vitro. These data support a critical role for MSC‐derived EV in mediating reparative responses following hepatic injury, and provide compelling evidence to support the therapeutic use of MSC‐derived EV in fulminant hepatic failure. Stem Cells Translational Medicine 2017;6:1262–1272 PMID:28213967

  13. Scaling Impacts in Life Support Architecture and Technology Selection

    NASA Technical Reports Server (NTRS)

    Lange, Kevin

    2016-01-01

    For long-duration space missions outside of Earth orbit, reliability considerations will drive higher levels of redundancy and/or on-board spares for life support equipment. Component scaling will be a critical element in minimizing overall launch mass while maintaining an acceptable level of system reliability. Building on an earlier reliability study (AIAA 2012-3491), this paper considers the impact of alternative scaling approaches, including the design of technology assemblies and their individual components to maximum, nominal, survival, or other fractional requirements. The optimal level of life support system closure is evaluated for deep-space missions of varying duration using equivalent system mass (ESM) as the comparative basis. Reliability impacts are included in ESM by estimating the number of component spares required to meet a target system reliability. Common cause failures are included in the analysis. ISS and ISS-derived life support technologies are considered along with selected alternatives. This study focusses on minimizing launch mass, which may be enabling for deep-space missions.

  14. Performance and reliability of the NASA Biomass Production Chamber

    NASA Technical Reports Server (NTRS)

    Sager, J. C.; Chetirkin, P. V.

    1994-01-01

    The Biomass Production Chamber (BPC) at the Kennedy Space Center is part of the Controlled Ecological Life Support System (CELSS) Breadboard Project. Plants are grown in a closed environment in an effort to quantify their contributions to the requirements for life support. Performance of this system is described. Also, in building this system, data from component and subsystem failures are being recorded. These data are used to identify problem areas in the design and implementation. The techniques used to measure the reliability will be useful in the design and construction of future CELSS. Possible methods for determining the reliability of a green plant, the primary component of a CELSS, are discussed.

  15. Extracorporeal Respiratory Support With a Miniature Integrated Pediatric Pump-Lung Device in an Acute Ovine Respiratory Failure Model.

    PubMed

    Wei, Xufeng; Sanchez, Pablo G; Liu, Yang; Claire Watkins, A; Li, Tieluo; Griffith, Bartley P; Wu, Zhongjun J

    2016-11-01

    Respiratory failure is one of the major causes of mortality and morbidity all over the world. Therapeutic options to treat respiratory failure remain limited. The objective of this study was to evaluate the gas transfer performance of a newly developed miniature portable integrated pediatric pump-lung device (PediPL) with small membrane surface for respiratory support in an acute ovine respiratory failure model. The respiratory failure was created in six adult sheep using intravenous anesthesia and reduced mechanical ventilation at 2 breaths/min. The PediPL device was surgically implanted and evaluated for respiratory support in a venovenous configuration between the right atrium and pulmonary artery. The hemodynamics and respiratory status of the animals during support with the device gas transfer performance of the PediPL were studied for 4 h. The animals exhibited respiratory failure 30 min after mechanical ventilation was reduced to 2 breaths/min, indicated by low oxygen partial pressure, low oxygen saturation, and elevated carbon dioxide in arterial blood. The failure was reversed by establishing respiratory support with the PediPL after 30 min. The rates of O 2 transfer and CO 2 removal of the PediPL were 86.8 and 139.1 mL/min, respectively. The results demonstrated that the PediPL (miniature integrated pump-oxygenator) has the potential to provide respiratory support as a novel treatment for both hypoxia and hypercarbia. The compact size of the PediPL could allow portability and potentially be used in many emergency settings to rescue patients suffering acute lung injury. Copyright © 2016 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  16. Inductive System Monitors Tasks

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The Inductive Monitoring System (IMS) software developed at Ames Research Center uses artificial intelligence and data mining techniques to build system-monitoring knowledge bases from archived or simulated sensor data. This information is then used to detect unusual or anomalous behavior that may indicate an impending system failure. Currently helping analyze data from systems that help fly and maintain the space shuttle and the International Space Station (ISS), the IMS has also been employed by data classes are then used to build a monitoring knowledge base. In real time, IMS performs monitoring functions: determining and displaying the degree of deviation from nominal performance. IMS trend analyses can detect conditions that may indicate a failure or required system maintenance. The development of IMS was motivated by the difficulty of producing detailed diagnostic models of some system components due to complexity or unavailability of design information. Successful applications have ranged from real-time monitoring of aircraft engine and control systems to anomaly detection in space shuttle and ISS data. IMS was used on shuttle missions STS-121, STS-115, and STS-116 to search the Wing Leading Edge Impact Detection System (WLEIDS) data for signs of possible damaging impacts during launch. It independently verified findings of the WLEIDS Mission Evaluation Room (MER) analysts and indicated additional points of interest that were subsequently investigated by the MER team. In support of the Exploration Systems Mission Directorate, IMS is being deployed as an anomaly detection tool on ISS mission control consoles in the Johnson Space Center Mission Operations Directorate. IMS has been trained to detect faults in the ISS Control Moment Gyroscope (CMG) systems. In laboratory tests, it has already detected several minor anomalies in real-time CMG data. When tested on archived data, IMS was able to detect precursors of the CMG1 failure nearly 15 hours in advance of the actual failure event. In the Aeronautics Research Mission Directorate, IMS successfully performed real-time engine health analysis. IMS was able to detect simulated failures and actual engine anomalies in an F/A-18 aircraft during the course of 25 test flights. IMS is also being used in colla

  17. Design for Safety - The Ares Launch Vehicles Paradigm Change

    NASA Technical Reports Server (NTRS)

    Safie, Fayssal M.; Maggio, Gaspare

    2010-01-01

    The lessons learned from the S&MA early involvement in the Ares I launch vehicle design phases proved that performing an in-line function jointly with engineering is critical for S&MA to have an effective role in supporting the system, element, and component design. These lessons learned were used to effectively support the Ares V conceptual design phase and planning for post conceptual design phases. The Top level Conceptual LOM assessment for Ares V performed by the S&MA community jointly with the engineering Advanced Concept Office (ACO) was influential in the final selection of the Ares V system configuration. Post conceptual phase, extensive reliability effort should be planned to support future Heavy Lift Launch Vehicles (HLLV) design. In-depth reliability analysis involving the design, manufacturing, and system engineering communities is critical to understand design and process uncertainties and system integrated failures.

  18. Ion Thruster Support and Positioning System

    NASA Technical Reports Server (NTRS)

    Haag, Thomas W. (Inventor)

    1996-01-01

    A system for supporting and selectively positioning an ion thruster relative to a surface of a spacecraft includes three angularly spaced thruster support assemblies. Each thruster support assembly includes a frame which has a rotary actuator mounted thereon. The rotary actuator is connected to an actuator member which is rotatably connected to a thruster attachment member connected to a body of the thruster. A stabilizer member is rotatably mounted to the frame and to the thruster attachment member. The thruster is selectively movable in the pitch and yaw directions responsive to movement of the actuator members by the actuators on the thruster support assemblies. A failure of any one actuator on a thruster support assembly will generally still enable limited thruster positioning capability in two directions. In a retracted position the thruster attachment members are held in nested relation in saddles supported on the frames of the thruster support assemblies. The thruster is securely held in the retracted position during periods of high loading such as during launch of the spacecraft.

  19. Ion Thruster Support and Positioning System

    NASA Technical Reports Server (NTRS)

    Haag, Thomas W. (Inventor)

    1998-01-01

    A system for supporting and selectively positioning an ion thruster relative to a surface of a spacecraft includes three angularly spaced thruster support assemblies. Each thruster support assembly includes a frame which has a rotary actuator mounted thereon. The rotary actuator is connected to an actuator member which is rotatably connected to a thruster attachment member connected to a body of the thruster. A stabilizer member is rotatably mounted to the frame and to the thruster attachment member. The thruster is selectively movable in the pitch and yaw directions responsive to movement of the actuator members by the actuators on the thruster support assemblies. A failure of any one actuator on a thruster support assembly will generally still enable limited thruster positioning capability in two directions. In a retracted position the thruster attachment members are held in nested relation in saddles supported on the frames of the thruster support assemblies. The thruster is securely held in the retracted position during periods of high loading such as during launch of the spacecraft.

  20. Impact of a comprehensive supportive care team on management of hopelessly ill patients with multiple organ failure.

    PubMed

    Field, B E; Devich, L E; Carlson, R W

    1989-08-01

    We developed a supportive care team for hopelessly ill patients in an urban emergency/trauma hospital. The team includes a clinical nurse specialist and a faculty physician as well as a chaplain and social worker. The supportive care team provides an alternative to intensive care or conventional ward management of hopelessly ill patients and concentrates on the physical and psychosocial comfort needs of patients and their families. We describe our experience with 20 hopelessly ill patients with multiple organ failure vs a similar group treated before the development of the supportive care team. Although there was no difference in mortality (100 percent), the length of stay in the medical ICU for patients with multiple organ failure decreased by 12 days to 6 days. Additionally, there were 50 percent fewer therapeutic interventions provided by the supportive care team vs intensive care or conventional ward treatment of multiple organ failure patients. We describe the methods that the supportive care team uses in an attempt to meet the physical and psychosocial comfort needs of hopelessly ill multiple organ failure patients and their families. This multidisciplinary approach to the care of the hopelessly ill may have applications in other institutions facing the ethical, medical, and administrative challenges raised by these patients.

  1. Mission Data System Java Edition Version 7

    NASA Technical Reports Server (NTRS)

    Reinholtz, William K.; Wagner, David A.

    2013-01-01

    The Mission Data System framework defines closed-loop control system abstractions from State Analysis including interfaces for state variables, goals, estimators, and controllers that can be adapted to implement a goal-oriented control system. The framework further provides an execution environment that includes a goal scheduler, execution engine, and fault monitor that support the expression of goal network activity plans. Using these frameworks, adapters can build a goal-oriented control system where activity coordination is verified before execution begins (plan time), and continually during execution. Plan failures including violations of safety constraints expressed in the plan can be handled through automatic re-planning. This version optimizes a number of key interfaces and features to minimize dependencies, performance overhead, and improve reliability. Fault diagnosis and real-time projection capabilities are incorporated. This version enhances earlier versions primarily through optimizations and quality improvements that raise the technology readiness level. Goals explicitly constrain system states over explicit time intervals to eliminate ambiguity about intent, as compared to command-oriented control that only implies persistent intent until another command is sent. A goal network scheduling and verification process ensures that all goals in the plan are achievable before starting execution. Goal failures at runtime can be detected (including predicted failures) and handled by adapted response logic. Responses can include plan repairs (try an alternate tactic to achieve the same goal), goal shedding, ignoring the fault, cancelling the plan, or safing the system.

  2. Deficiencies in the uterine environment and failure to support embryo development

    USDA-ARS?s Scientific Manuscript database

    Pregnancy failure in livestock can result from failure to fertilize the oocyte or embryonic loss during gestation. Although fertilization failure occurs, embryonic mortality has a greater contribution to pregnancy failure. The focus of this review is on cattle and factors affecting, and mechanisms r...

  3. Desktop software to identify patients eligible for recruitment into a clinical trial: using SARMA to recruit to the ROAD feasibility trial.

    PubMed

    Treweek, Shaun; Pearson, Ewan; Smith, Natalie; Neville, Ron; Sargeant, Paul; Boswell, Brian; Sullivan, Frank

    2010-01-01

    Recruitment to trials in primary care is often difficult, particularly when practice staff need to identify study participants with acute conditions during consultations. The Scottish Acute Recruitment Management Application (SARMA) system is linked to general practice electronic medical record (EMR) systems and is designed to provide recruitment support to multi-centre trials by screening patients against trial inclusion criteria and alerting practice staff if the patient appears eligible. For patients willing to learn more about the trial, the software allows practice staff to send the patient's contact details to the research team by text message. To evaluate the ability of the software to support trial recruitment. Software evaluation embedded in a randomised controlled trial. Five general practices in Tayside and Fife, Scotland. SARMA was used to support recruitment to a feasibility trial (the Response to Oral Agents in Diabetes, or ROAD trial) looking at users of oral therapy in diabetes. The technical performance of the software and its utility as a recruitment tool were evaluated. The software was successfully installed at four of the five general practices and recruited 11 of the 29 participants for ROAD (other methods were letter and direct invitation by a practice nurse) and had a recruitment return of 35% (11 of 31 texts sent led to a recruitment). Screen failures were relatively low (7 of 31 referred). Practice staff members were positive about the system. An automated recruitment tool can support primary care trials in Scotland and has the potential to support recruitment in other jurisdictions. It offers a low-cost supplement to other trial recruitment methods and is likely to have a much lower screen failure rate than blanket approaches such as mailshots and newspaper campaigns.

  4. Scalable and Resilient Middleware to Handle Information Exchange during Environment Crisis

    NASA Astrophysics Data System (ADS)

    Tao, R.; Poslad, S.; Moßgraber, J.; Middleton, S.; Hammitzsch, M.

    2012-04-01

    The EU FP7 TRIDEC project focuses on enabling real-time, intelligent, information management of collaborative, complex, critical decision processes for earth management. A key challenge is to promote a communication infrastructure to facilitate interoperable environment information services during environment events and crises such as tsunamis and drilling, during which increasing volumes and dimensionality of disparate information sources, including sensor-based and human-based ones, can result, and need to be managed. Such a system needs to support: scalable, distributed messaging; asynchronous messaging; open messaging to handling changing clients such as new and retired automated system and human information sources becoming online or offline; flexible data filtering, and heterogeneous access networks (e.g., GSM, WLAN and LAN). In addition, the system needs to be resilient to handle the ICT system failures, e.g. failure, degradation and overloads, during environment events. There are several system middleware choices for TRIDEC based upon a Service-oriented-architecture (SOA), Event-driven-Architecture (EDA), Cloud Computing, and Enterprise Service Bus (ESB). In an SOA, everything is a service (e.g. data access, processing and exchange); clients can request on demand or subscribe to services registered by providers; more often interaction is synchronous. In an EDA system, events that represent significant changes in state can be processed simply, or as streams or more complexly. Cloud computing is a virtualization, interoperable and elastic resource allocation model. An ESB, a fundamental component for enterprise messaging, supports synchronous and asynchronous message exchange models and has inbuilt resilience against ICT failure. Our middleware proposal is an ESB based hybrid architecture model: an SOA extension supports more synchronous workflows; EDA assists the ESB to handle more complex event processing; Cloud computing can be used to increase and decrease the ESB resources on demand. To reify this hybrid ESB centric architecture, we will adopt two complementary approaches: an open source one for scalability and resilience improvement while a commercial one can be used for ultra-speed messaging, whilst we can bridge between these two to support interoperability. In TRIDEC, to manage such a hybrid messaging system, overlay and underlay management techniques will be adopted. The managers (both global and local) will collect, store and update status information (e.g. CPU utilization, free space, number of clients) and balance the usage, throughput, and delays to improve resilience and scalability. The expected resilience improvement includes dynamic failover, self-healing, pre-emptive load balancing, and bottleneck prediction while the expected improvement for scalability includes capacity estimation, Http Bridge, and automatic configuration and reconfiguration (e.g. add or delete clients and servers).

  5. Left ventricular assist device management in patients chronically supported for advanced heart failure.

    PubMed

    Cowger, Jennifer; Romano, Matthew A; Stulak, John; Pagani, Francis D; Aaronson, Keith D

    2011-03-01

    This review summarizes management strategies to reduce morbidity and mortality in heart failure patients supported chronically with implantable left ventricular assist devices (LVADs). As the population of patients supported with long-term LVADs has grown, patient selection, operative technique, and patient management strategies have been refined, leading to improved outcomes. This review summarizes recent findings on LVAD candidate selection, and discusses outpatient strategies to optimize device performance and heart failure management. It also reviews important device complications that warrant close outpatient monitoring. Managing patients on chronic LVAD support requires regular patient follow-up, multidisciplinary care teams, and frequent laboratory and echocardiographic surveillance to ensure optimal outcomes.

  6. Deranged Cardiac Metabolism and the Pathogenesis of Heart Failure

    PubMed Central

    2016-01-01

    Activation of the neuro-hormonal system is a pathophysiological consequence of heart failure. Neuro-hormonal activation promotes metabolic changes, such as insulin resistance, and determines an increased use of non-carbohydrate substrates for energy production. Fasting blood ketone bodies as well as fat oxidation are increased in patients with heart failure, yielding a state of metabolic inefficiency. The net result is additional depletion of myocardial adenosine triphosphate, phosphocreatine and creatine kinase levels with further decreased efficiency of mechanical work. In this context, manipulation of cardiac energy metabolism by modification of substrate use by the failing heart has produced positive clinical results. The results of current research support the concept that shifting the energy substrate preference away from fatty acid metabolism and towards glucose metabolism could be an effective adjunctive treatment in patients with heart failure. The additional use of drugs able to partially inhibit fatty acids oxidation in patients with heart failure may therefore yield a significant protective effect for clinical symptoms and cardiac function improvement, and simultaneously ameliorate left ventricular remodelling. Certainly, to clarify the exact therapeutic role of metabolic therapy in heart failure, a large multicentre, randomised controlled trial should be performed. PMID:28785448

  7. PRO-Elicere: A Study for Create a New Process of Dependability Analysis of Space Computer Systems

    NASA Astrophysics Data System (ADS)

    da Silva, Glauco; Netto Lahoz, Carlos Henrique

    2013-09-01

    This paper presents the new approach to the computer system dependability analysis, called PRO-ELICERE, which introduces data mining concepts and intelligent mechanisms to decision support to analyze the potential hazards and failures of a critical computer system. Also, are presented some techniques and tools that support the traditional dependability analysis and briefly discusses the concept of knowledge discovery and intelligent databases for critical computer systems. After that, introduces the PRO-ELICERE process, an intelligent approach to automate the ELICERE, a process created to extract non-functional requirements for critical computer systems. The PRO-ELICERE can be used in the V&V activities in the projects of Institute of Aeronautics and Space, such as the Brazilian Satellite Launcher (VLS-1).

  8. A Possible Approach for Addressing Neglected Human Factors Issues of Systems Engineering

    NASA Technical Reports Server (NTRS)

    Johnson, Christopher W.; Holloway, C. Michael

    2011-01-01

    The increasing complexity of safety-critical applications has led to the introduction of decision support tools in the transportation and process industries. Automation has also been introduced to support operator intervention in safety-critical applications. These innovations help reduce overall operator workload, and filter application data to maximize the finite cognitive and perceptual resources of system operators. However, these benefits do not come without a cost. Increased computational support for the end-users of safety-critical applications leads to increased reliance on engineers to monitor and maintain automated systems and decision support tools. This paper argues that by focussing on the end-users of complex applications, previous research has tended to neglect the demands that are being placed on systems engineers. The argument is illustrated through discussing three recent accidents. The paper concludes by presenting a possible strategy for building and using highly automated systems based on increased attention by management and regulators, improvements in competency and training for technical staff, sustained support for engineering team resource management, and the development of incident reporting systems for infrastructure failures. This paper represents preliminary work, about which we seek comments and suggestions.

  9. Data Applicability of Heritage and New Hardware for Launch Vehicle System Reliability Models

    NASA Technical Reports Server (NTRS)

    Al Hassan Mohammad; Novack, Steven

    2015-01-01

    Many launch vehicle systems are designed and developed using heritage and new hardware. In most cases, the heritage hardware undergoes modifications to fit new functional system requirements, impacting the failure rates and, ultimately, the reliability data. New hardware, which lacks historical data, is often compared to like systems when estimating failure rates. Some qualification of applicability for the data source to the current system should be made. Accurately characterizing the reliability data applicability and quality under these circumstances is crucial to developing model estimations that support confident decisions on design changes and trade studies. This presentation will demonstrate a data-source classification method that ranks reliability data according to applicability and quality criteria to a new launch vehicle. This method accounts for similarities/dissimilarities in source and applicability, as well as operating environments like vibrations, acoustic regime, and shock. This classification approach will be followed by uncertainty-importance routines to assess the need for additional data to reduce uncertainty.

  10. Renal function monitoring in heart failure – what is the optimal frequency? A narrative review

    PubMed Central

    Wright, David; Devonald, Mark Alexander John; Pirmohamed, Munir

    2017-01-01

    The second most common cause of hospitalization due to adverse drug reactions in the UK is renal dysfunction due to diuretics, particularly in patients with heart failure, where diuretic therapy is a mainstay of treatment regimens. Therefore, the optimal frequency for monitoring renal function in these patients is an important consideration for preventing renal failure and hospitalization. This review looks at the current evidence for optimal monitoring practices of renal function in patients with heart failure according to national and international guidelines on the management of heart failure (AHA/NICE/ESC/SIGN). Current guidance of renal function monitoring is in large part based on expert opinion, with a lack of clinical studies that have specifically evaluated the optimal frequency of renal function monitoring in patients with heart failure. Furthermore, there is variability between guidelines, and recommendations are typically nonspecific. Safer prescribing of diuretics in combination with other antiheart failure treatments requires better evidence for frequency of renal function monitoring. We suggest developing more personalized monitoring rather than from the current medication‐based guidance. Such flexible clinical guidelines could be implemented using intelligent clinical decision support systems. Personalized renal function monitoring would be more effective in preventing renal decline, rather than reacting to it. PMID:28901643

  11. Outcome and Management of Refractory Respiratory Failure With Timely Extracorporeal Membrane OxygenationSingle-Center Experience With Legionella Pneumonia.

    PubMed

    Roncon-Albuquerque, Roberto; Vilares-Morgado, Rodrigo; van der Heijden, Gert-Jan; Ferreira-Coimbra, João; Mergulhão, Paulo; Paiva, José Artur

    2017-01-01

    To analyze the management and outcome of patients with refractory respiratory failure complicating severe Legionella pneumonia rescued with extracorporeal membrane oxygenation (ECMO) in our Center. Observational study of patients with refractory respiratory failure treated with ECMO in Hospital S.João (Porto, Portugal), between November 2009 and September 2016. A total of 112 patients rescued with ECMO, of which 14 had Legionella pneumonia. Patients with Legionella pneumonia were slightly older than patients with acute respiratory failure of other etiologies (51 [48-56] vs 45 [35-54]), but with no significant differences in acute respiratory failure severity between groups: Pao 2 /Fio 2 ratio 67 (60-75) versus 69 (55-85) and Respiratory Extracorporeal Membrane Oxygenation Survival Prediction score 4 (1-5) versus 2 (-1-4), respectively. Legionella pneumonia was associated with earlier ECMO initiation (days of invasive mechanical ventilation [IMV] before ECMO: 2.0 [1.0-4.0] vs 5.0 [2.0-9.5]). After IMV adjustment to "lung rest" settings, this group presented higher respiratory system (RS) static compliance (28.7 [18.8-37.4] vs 16.0 [10.0-20.8] mL/cmH 2 O) but required higher ECMO support (blood flow 5.0 [4.3-5.4] vs 4.2 [3.6-4.8]). Patients with Legionella pneumonia had shorter IMV (16 [14-23] vs 27 [20-42] days) and lower incidence of intensive care unit nosocomial infections (35.7% vs 64.3%), with a trend to higher hospital survival (85.7% vs 62.2%; P = .13). In Legionella pneumonia complicated by refractory respiratory failure, ECMO support allowed patient stabilization under lung protective ventilation and high survival rates. Timely ECMO referral should be considered for Legionella pneumonia failing conventional treatment.

  12. Why Can't We Bet on ISD Outcomes: ISD ``Form'' as a Predictor of Success

    NASA Astrophysics Data System (ADS)

    Newman, Mike; Pan, Shan L.; Pan, Gary

    The record of failure to deliver large-scale information systems (IS) in a timely fashion that offer value to major commercial and public organizations is legendary. Just looking to critical success factors such as top management support and user involvement in order to understand how to deliver better systems can at best be a partial solution. We seem to overlook an obvious area in our organizations: what can we learn from our information system development (ISD) historical patterns? In order to develop this idea we draw on parallels in sport where current performance and behaviour are believed to be closely linked to historical precedents, or “form”. In that domain, historical patterns are a fallible but valuable predictor of success. Our thesis is that past negative patterns in ISD will tend to repeat themselves without radical intervention. Put another way, failure begets failure. After examining the game of football as an allegory for ISD, we look briefly at two organizations that have experienced a pattern of failure in the IS area in the past but have transformed the way they build IS, moving from negative patterns to successful ones. This chapter ends with suggestions for managers charged with developing new IS as to how they might use their understanding of ISD “form” to improve their chances of success.

  13. Causal Modeling of Secondary Science Students' Intentions to Enroll in Physics.

    ERIC Educational Resources Information Center

    Crawley, Frank E.; Black, Carolyn B.

    1992-01-01

    Reports a study using the causal modeling method to verify underlying causes of student interest in enrolling in physics as predicted by the theory of planned behavior. Families were identified as major referents in the social support system for physics enrollment. Course and extracurricular conflicts and fear of failure were primary beliefs…

  14. Roadblocks on the Way to School Reform in West Virginia.

    ERIC Educational Resources Information Center

    Meckley, Richard; Hazi, Helen M.

    1998-01-01

    West Virginia has yet to satisfy its circuit and supreme courts, despite massive efforts to reform the K-12 system and its financial support plan. Reasons for failure include lack of statewide financial commitment to public education, a resistant cultural climate, downsizing of staff, decreasing enrollments, lack of consensus about educational…

  15. From Dissemination to Propagation: A New Paradigm for Education Developers

    ERIC Educational Resources Information Center

    Froyd, Jeffrey E.; Henderson, Charles; Cole, Renée S.; Friedrichsen, Debra; Khatri, Raina; Stanford, Courtney

    2017-01-01

    Scholarly studies and national reports document failure of current efforts to achieve broad, sustained adoption of research-based instructional practices, despite compelling bodies of evidence supporting efficacy of many of these practices. The authors of this paper argue that many change agents who are working to promote systemic adoption of…

  16. Using Research-Based Instruction to Improve Math Outcomes with Underprepared Students

    ERIC Educational Resources Information Center

    Pearce, Lee R.; Pearce, Kristi L.; Siewert, Daluss J.

    2017-01-01

    The authors used a mixed-methods research design to evaluate a multi-tiered system of supports model to address the disturbing failure rates of underprepared college students placed in developmental mathematics at a small state university. While qualitative data gathered from using Participatory Action Research methods directed the two-year…

  17. Tethered Satellite System Contingency Investigation Board

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The Tethered Satellite System (TSS-1) was launched aboard the Space Shuttle Atlantis (STS-46) on July 31, 1992. During the attempted on-orbit operations, the Tethered Satellite System failed to deploy successfully beyond 256 meters. The satellite was retrieved successfully and was returned on August 6, 1992. The National Aeronautics and Space Administration (NASA) Associate Administrator for Space Flight formed the Tethered Satellite System (TSS-1) Contingency Investigation Board on August 12, 1992. The TSS-1 Contingency Investigation Board was asked to review the anomalies which occurred, to determine the probable cause, and to recommend corrective measures to prevent recurrence. The board was supported by the TSS Systems Working group as identified in MSFC-TSS-11-90, 'Tethered Satellite System (TSS) Contingency Plan'. The board identified five anomalies for investigation: initial failure to retract the U2 umbilical; initial failure to flyaway; unplanned tether deployment stop at 179 meters; unplanned tether deployment stop at 256 meters; and failure to move tether in either direction at 224 meters. Initial observations of the returned flight hardware revealed evidence of mechanical interference by a bolt with the level wind mechanism travel as well as a helical shaped wrap of tether which indicated that the tether had been unwound from the reel beyond the travel by the level wind mechanism. Examination of the detailed mission events from flight data and mission logs related to the initial failure to flyaway and the failure to move in either direction at 224 meters, together with known preflight concerns regarding slack tether, focused the assessment of these anomalies on the upper tether control mechanism. After the second meeting, the board requested the working group to complete and validate a detailed integrated mission sequence to focus the fault tree analysis on a stuck U2 umbilical, level wind mechanical interference, and slack tether in upper tether control mechanism and to prepare a detailed plan for hardware inspection, test, and analysis including any appropriate hardware disassembly.

  18. Tethered Satellite System Contingency Investigation Board

    NASA Astrophysics Data System (ADS)

    1992-11-01

    The Tethered Satellite System (TSS-1) was launched aboard the Space Shuttle Atlantis (STS-46) on July 31, 1992. During the attempted on-orbit operations, the Tethered Satellite System failed to deploy successfully beyond 256 meters. The satellite was retrieved successfully and was returned on August 6, 1992. The National Aeronautics and Space Administration (NASA) Associate Administrator for Space Flight formed the Tethered Satellite System (TSS-1) Contingency Investigation Board on August 12, 1992. The TSS-1 Contingency Investigation Board was asked to review the anomalies which occurred, to determine the probable cause, and to recommend corrective measures to prevent recurrence. The board was supported by the TSS Systems Working group as identified in MSFC-TSS-11-90, 'Tethered Satellite System (TSS) Contingency Plan'. The board identified five anomalies for investigation: initial failure to retract the U2 umbilical; initial failure to flyaway; unplanned tether deployment stop at 179 meters; unplanned tether deployment stop at 256 meters; and failure to move tether in either direction at 224 meters. Initial observations of the returned flight hardware revealed evidence of mechanical interference by a bolt with the level wind mechanism travel as well as a helical shaped wrap of tether which indicated that the tether had been unwound from the reel beyond the travel by the level wind mechanism. Examination of the detailed mission events from flight data and mission logs related to the initial failure to flyaway and the failure to move in either direction at 224 meters, together with known preflight concerns regarding slack tether, focused the assessment of these anomalies on the upper tether control mechanism. After the second meeting, the board requested the working group to complete and validate a detailed integrated mission sequence to focus the fault tree analysis on a stuck U2 umbilical, level wind mechanical interference, and slack tether in upper tether control mechanism and to prepare a detailed plan for hardware inspection, test, and analysis including any appropriate hardware disassembly.

  19. Nephrogenic Systemic Fibrosis Manifesting a Decade After Exposure to Gadolinium.

    PubMed

    Larson, Krista N; Gagnon, Amy L; Darling, Melissa D; Patterson, James W; Cropley, Thomas G

    2015-10-01

    Nephrogenic systemic fibrosis (NSF) is a fibrosing skin disorder that develops in patients with kidney failure and has been linked to exposure to gadolinium-containing contrast agents. The time between exposure to gadolinium and the initial presentation of NSF is typically weeks to months but has been documented to be as long as 3½ years. We report a case of NSF developing 10 years after exposure to gadolinium. A long-term hemodialysis patient was exposed to gadolinium several times between 1998 and 2004 during magnetic resonance angiography of his abdominal vessels and arteriovenous fistula. In 2014, he was seen at our clinic with new dermal papules and plaques. Biopsy of affected skin showed thickening of collagen, CD34+ spindle cells, and increased mucin in the dermis, supporting the diagnosis of NSF. The clinical history and histopathological features of this case support the diagnosis of NSF 10 years after exposure to gadolinium. Although the use of gadolinium contrast agents in patients with kidney failure has markedly decreased, patients with exposure to gadolinium years to decades previously may manifest the disease.

  20. Trends and problems in development of the power plants electrical part

    NASA Astrophysics Data System (ADS)

    Gusev, Yu. P.

    2015-03-01

    The article discusses some problems relating to development of the electrical part of modern nuclear and thermal power plants, which are stemming from the use of new process and electrical equipment, such as gas turbine units, power converters, and intellectual microprocessor devices in relay protection and automated control systems. It is pointed out that the failure rates of electrical equipment at Russian and foreign power plants tend to increase. The ongoing power plant technical refitting and innovative development processes generate the need to significantly widen the scope of research works on the electrical part of power plants and rendering scientific support to works on putting in use innovative equipment. It is indicated that one of main factors causing the growth of electrical equipment failures is that some of components of this equipment have insufficiently compatible dynamic characteristics. This, in turn may be due to lack or obsolescence of regulatory documents specifying the requirements for design solutions and operation of electric power equipment that incorporates electronic and microprocessor control and protection devices. It is proposed to restore the system of developing new and updating existing departmental regulatory technical documents that existed in the 1970s, one of the fundamental principles of which was placing long-term responsibility on higher schools and leading design institutions for rendering scientific-technical support to innovative development of components and systems forming the electrical part of power plants. This will make it possible to achieve lower failure rates of electrical equipment and to steadily improve the competitiveness of the Russian electric power industry and energy efficiency of generating companies.

  1. 75 FR 52290 - Airworthiness Directives; Bombardier, Inc. Model DHC-8-300 Series Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-25

    ... support brackets that were manufactured using sheet metal have been found cracked on DHC-8 Series 300 aircraft. Investigation revealed that the failure of the support bracket was due to fatigue. Failure of the aileron terminal quadrant support bracket could result in an adverse reduction of aircraft roll control...

  2. Quantifying Pilot Contribution to Flight Safety During Dual Generator Failure

    NASA Technical Reports Server (NTRS)

    Etherington, Timothy J.; Kramer, Lynda J.; Kennedy, Kellie D.; Bailey, Randall E.; Last, Mary Carolyn

    2017-01-01

    Accident statistics cite flight crew error in over 60% of accidents involving transport category aircraft. Yet, a well-trained and well-qualified pilot is acknowledged as the critical center point of aircraft systems safety and an integral safety component of the entire commercial aviation system. No data currently exists that quantifies the contribution of the flight crew in this role. Neither does data exist for how often the flight crew handles non-normal procedures or system failures on a daily basis in the National Airspace System. A pilot-in-the-loop high fidelity motion simulation study was conducted by the NASA Langley Research Center in partnership with the Federal Aviation Administration (FAA) to evaluate the pilot's contribution to flight safety during normal flight and in response to aircraft system failures. Eighteen crews flew various normal and non-normal procedures over a two-day period and their actions were recorded in response to failures. To quantify the human's contribution, crew complement was used as the experiment independent variable in a between-subjects design. Pilot actions and performance when one of the flight crew was unavailable were also recorded for comparison against the nominal two-crew operations. This paper details diversion decisions, perceived safety of flight, workload, time to complete pertinent checklists, and approach and landing results while dealing with a complete loss of electrical generators. Loss of electrical power requires pilots to complete the flight without automation support of autopilots, flight directors, or auto throttles. For reduced crew complements, the additional workload and perceived safety of flight was considered unacceptable.

  3. Reliability and Failure Modes of a Hybrid Ceramic Abutment Prototype.

    PubMed

    Silva, Nelson Rfa; Teixeira, Hellen S; Silveira, Lucas M; Bonfante, Estevam A; Coelho, Paulo G; Thompson, Van P

    2018-01-01

    A ceramic and metal abutment prototype was fatigue tested to determine the probability of survival at various loads. Lithium disilicate CAD-milled abutments (n = 24) were cemented to titanium sleeve inserts and then screw attached to titanium fixtures. The assembly was then embedded at a 30° angle in polymethylmethacrylate. Each (n = 24) was restored with a resin-cemented machined lithium disilicate all-ceramic central incisor crown. Single load (lingual-incisal contact) to failure was determined for three specimens. Fatigue testing (n = 21) was conducted employing the step-stress method with lingual mouth motion loading. Failures were recorded, and reliability calculations were performed using proprietary software. Probability Weibull curves were calculated with 90% confidence bounds. Fracture modes were classified with a stereomicroscope, and representative samples imaged with scanning electron microscopy. Fatigue results indicated that the limiting factor in the current design is the fatigue strength of the abutment screw, where screw fracture often leads to failure of the abutment metal sleeve and/or cracking in the implant fixture. Reliability for completion of a mission at 200 N load for 50K cycles was 0.38 (0.52% to 0.25 90% CI) and for 100K cycles was only 0.12 (0.26 to 0.05)-only 12% predicted to survive. These results are similar to those from previous studies on metal to metal abutment/fixture systems where screw failure is a limitation. No ceramic crown or ceramic abutment initiated fractures occurred, supporting the research hypothesis. The limiting factor in performance was the screw failure in the metal-to-metal connection between the prototyped abutment and the fixture, indicating that this configuration should function clinically with no abutment ceramic complications. The combined ceramic with titanium sleeve abutment prototype performance was limited by the fatigue degradation of the abutment screw. In fatigue, no ceramic crown or ceramic abutment components failed, supporting the research hypothesis with a reliability similar to that of all-metal abutment fixture systems. A lithium disilcate abutment with a Ti alloy sleeve in combination with an all-ceramic crown should be expected to function clinically in a satisfactory manner. © 2016 by the American College of Prosthodontists.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Hara, J.M.; W. Gunther, G. Martinez-Guridi

    New and advanced reactors will use integrated digital instrumentation and control (I&C) systems to support operators in their monitoring and control functions. Even though digital systems are typically highly reliable, their potential for degradation or failure could significantly affect operator performance and, consequently, impact plant safety. The U.S. Nuclear Regulatory Commission (NRC) supported this research project to investigate the effects of degraded I&C systems on human performance and plant operations. The objective was to develop human factors engineering (HFE) review guidance addressing the detection and management of degraded digital I&C conditions by plant operators. We reviewed pertinent standards and guidelines,more » empirical studies, and plant operating experience. In addition, we conducted an evaluation of the potential effects of selected failure modes of the digital feedwater system on human-system interfaces (HSIs) and operator performance. The results indicated that I&C degradations are prevalent in plants employing digital systems and the overall effects on plant behavior can be significant, such as causing a reactor trip or causing equipment to operate unexpectedly. I&C degradations can impact the HSIs used by operators to monitor and control the plant. For example, sensor degradations can make displays difficult to interpret and can sometimes mislead operators by making it appear that a process disturbance has occurred. We used the information obtained as the technical basis upon which to develop HFE review guidance. The guidance addresses the treatment of degraded I&C conditions as part of the design process and the HSI features and functions that support operators to monitor I&C performance and manage I&C degradations when they occur. In addition, we identified topics for future research.« less

  5. An Appropriate Population for Acute Inpatient Rehabilitation? A Case Series of Three Patients With Advanced Heart Failure on Continuous Inotropic Support.

    PubMed

    McCormick, Zachary L; Chu, Samuel K; Goodman, Daniel; Oswald, Matthew; Reger, Christopher; Sliwa, James

    2015-06-01

    The number of individuals with heart failure and the treatment modalities available to manage heart failure are increasing. Continuous inotropic support is a treatment modality used in cases of severe heart failure. Although most patients initiated on continuous inotropic support are discharged home, those with greater functional compromise, comorbid conditions that cause disability, or other significant medical complexity may be referred to acute inpatient rehabilitation. The feasibility and benefits of acute inpatient rehabilitation in this population, however, has yet to be investigated. We report the functional progress and medical complications of 3 patients on continuous inotropic support who participated in acute inpatient rehabilitation. The patients demonstrated varying levels of success, highlighting a need for evidence-based, preadmission screening criteria for this population. Copyright © 2015 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  6. Perceived caring needs in patient-partner dyads affected by heart failure: a qualitative study.

    PubMed

    Liljeroos, Maria; Agren, Susanna; Jaarsma, Tiny; Strömberg, Anna

    2014-10-01

    To explore the perceived caring needs in patient-partner dyads affected by heart failure to develop an understanding of potential areas of support. Being affected by heart failure has a great impact on both the patient and the partner but until now contemporary care has remained patient focused. A qualitative study design was used. Eight focus group interviews were performed, which included nineteen patients diagnosed with heart failure and their cohabiting partner. Patients were aged between 55-89 years and partners' ages ranged from 48-87 years. Data were analysed using qualitative content analyses. The dyads perceived that caring needs could be summarised in two themes 'Dyads perceive a need for continuous guidance through the different phases of the illness trajectory' and 'Dyads perceive a need to share burden and support with each other and others'. The dyads described a need to learn more about heart failure to be able to manage everyday life. Regular outpatient clinic visits and access to telephone support were vital, and having someone who cared about the well-being of the partners was perceived as comforting. Both the patient and the partner need to be present at the clinic visits. Receiving the same information and being able to ask questions reduce insecurity. Meeting others in the same situation and sharing the burden in group sessions were proposed as an opportunity to support each other and others. There is a need to improve education and support for patient-partner dyads affected by heart failure. The result shows the importance to provide continuous healthcare contacts throughout the illness trajectory. Furthermore, partners should be included at follow-up, and support groups should be organised so that dyads can meet and support each other. © 2014 John Wiley & Sons Ltd.

  7. Evaluation of the Effect of Perceived Social Support on Promoting Self-Care Behaviors of Heart Failure Patients Referred to The Cardiovascular Research Center of Isfahan

    PubMed Central

    Khaledi, Gholam Hassan; Mostafavi, Firoozeh; Eslami, Ahmad Ali; Rooh Afza, Hamidreza; Mostafavi, Firoozeh; Akbar, Hassanzadeh

    2015-01-01

    Background: Self-care is one of the most important aspects of treatment in patients with heart failure and ranks among the most important coping strategies against the events and stresses of life. Perceived social support plays an important role in performing self-care behaviors in these patients. Objectives: This study was conducted to evaluate the effect of perceived social support on promoting self-care behaviors among heart failure patients. Patients and Methods: This educational intervention with a randomized control group was performed on 64 heart failure patients referred to The Cardiovascular Research Center of Isfahan. The study population was divided randomly into two groups of intervention and control. The indicators of self-care behavior and perceived social support (before, immediately after, and 2 months after the intervention) were completed by the two groups. The intervention group received educational interventions in 120-minute sessions once a week for 4 weeks. SPSS software (version 20) was used for data analysis in addition to methods of descriptive and inferential statistics. Results: Based on the obtained results, educational intervention was effective in the improvement of perceived social support among our heart failure patients. The results also showed that an increase in perceived social support significantly promoted self-care behaviors in the case group after the intervention compared with the control group (P < 0.001). Conclusions: Perceived social support played an important role in improving the performance of self-care behaviors in our heart failure patients. Given the strengths of the present study, these findings can be considered in future research in this domain. PMID:26328063

  8. Security threats categories in healthcare information systems.

    PubMed

    Samy, Ganthan Narayana; Ahmad, Rabiah; Ismail, Zuraini

    2010-09-01

    This article attempts to investigate the various types of threats that exist in healthcare information systems (HIS). A study has been carried out in one of the government-supported hospitals in Malaysia.The hospital has been equipped with a Total Hospital Information System (THIS). The data collected were from three different departments, namely the Information Technology Department (ITD), the Medical Record Department (MRD), and the X-Ray Department, using in-depth structured interviews. The study identified 22 types of threats according to major threat categories based on ISO/IEC 27002 (ISO 27799:2008). The results show that the most critical threat for the THIS is power failure followed by acts of human error or failure and other technological factors. This research holds significant value in terms of providing a complete taxonomy of threat categories in HIS and also an important component in the risk analysis stage.

  9. Technical-Induced Hemolysis in Patients with Respiratory Failure Supported with Veno-Venous ECMO - Prevalence and Risk Factors.

    PubMed

    Lehle, Karla; Philipp, Alois; Zeman, Florian; Lunz, Dirk; Lubnow, Matthias; Wendel, Hans-Peter; Göbölös, Laszlo; Schmid, Christof; Müller, Thomas

    2015-01-01

    The aim of the study was to explore the prevalence and risk factors for technical-induced hemolysis in adults supported with veno-venous extracorporeal membrane oxygenation (vvECMO) and to analyze the effect of hemolytic episodes on outcome. This was a retrospective, single-center study that included 318 adult patients (Regensburg ECMO Registry, 2009-2014) with acute respiratory failure treated with different modern miniaturized ECMO systems. Free plasma hemoglobin (fHb) was used as indicator for hemolysis. Throughout a cumulative support duration of 4,142 days on ECMO only 1.7% of the fHb levels were above a critical value of 500 mg/l. A grave rise in fHb indicated pumphead thrombosis (n = 8), while acute oxygenator thrombosis (n = 15) did not affect fHb. Replacement of the pumphead normalized fHb within two days. Neither pump or cannula type nor duration on the first system was associated with hemolysis. Multiple trauma, need for kidney replacement therapy, increased daily red blood cell transfusion requirements, and high blood flow (3.0-4.5 L/min) through small-sized cannulas significantly resulted in augmented blood cell trauma. Survivors were characterized by lower peak levels of fHb [90 (60, 142) mg/l] in comparison to non-survivors [148 (91, 256) mg/l, p≤0.001]. In conclusion, marked hemolysis is not common in vvECMO with modern devices. Clinically obvious hemolysis often is caused by pumphead thrombosis. High flow velocity through small cannulas may also cause technical-induced hemolysis. In patients who developed lung failure due to trauma, fHb was elevated independantly of ECMO. In our cohort, the occurance of hemolysis was associated with increased mortality.

  10. Technical-Induced Hemolysis in Patients with Respiratory Failure Supported with Veno-Venous ECMO – Prevalence and Risk Factors

    PubMed Central

    Lehle, Karla; Philipp, Alois; Zeman, Florian; Lunz, Dirk; Lubnow, Matthias; Wendel, Hans-Peter; Göbölös, Laszlo; Schmid, Christof; Müller, Thomas

    2015-01-01

    The aim of the study was to explore the prevalence and risk factors for technical-induced hemolysis in adults supported with veno-venous extracorporeal membrane oxygenation (vvECMO) and to analyze the effect of hemolytic episodes on outcome. This was a retrospective, single-center study that included 318 adult patients (Regensburg ECMO Registry, 2009–2014) with acute respiratory failure treated with different modern miniaturized ECMO systems. Free plasma hemoglobin (fHb) was used as indicator for hemolysis. Throughout a cumulative support duration of 4,142 days on ECMO only 1.7% of the fHb levels were above a critical value of 500 mg/l. A grave rise in fHb indicated pumphead thrombosis (n = 8), while acute oxygenator thrombosis (n = 15) did not affect fHb. Replacement of the pumphead normalized fHb within two days. Neither pump or cannula type nor duration on the first system was associated with hemolysis. Multiple trauma, need for kidney replacement therapy, increased daily red blood cell transfusion requirements, and high blood flow (3.0–4.5 L/min) through small-sized cannulas significantly resulted in augmented blood cell trauma. Survivors were characterized by lower peak levels of fHb [90 (60, 142) mg/l] in comparison to non-survivors [148 (91, 256) mg/l, p≤0.001]. In conclusion, marked hemolysis is not common in vvECMO with modern devices. Clinically obvious hemolysis often is caused by pumphead thrombosis. High flow velocity through small cannulas may also cause technical-induced hemolysis. In patients who developed lung failure due to trauma, fHb was elevated independantly of ECMO. In our cohort, the occurance of hemolysis was associated with increased mortality. PMID:26606144

  11. 7.3 Communications and Navigation

    NASA Technical Reports Server (NTRS)

    Manning, Rob

    2005-01-01

    This presentation gives an overview of the networks NASA currently uses to support space communications and navigation, and the requirements for supporting future deep space missions, including manned lunar and Mars missions. The presentation addresses the Space Network, Deep Space Network, and Ground Network, why new support systems are needed, and the potential for catastrophic failure of aging antennas. Space communications and navigation are considered during Aerocapture, Entry, Descent and Landing (AEDL) only in order to precisely position, track and interact with the spacecraft at its destination (moon, Mars and Earth return) arrival. The presentation recommends a combined optical/radio frequency strategy for deep space communications.

  12. Instrumentation Cables Test Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muna, Alice Baca; LaFleur, Chris Bensdotter

    A fire at a nuclear power plant (NPP) has the potential to damage structures, systems, and components important to safety, if not promptly detected and suppressed. At Browns Ferry Nuclear Power Plant on March 22, 1975, a fire in the reactor building damaged electrical power and control systems. Damage to instrumentation cables impeded the function of both normal and standby reactor coolant systems, and degraded the operators’ plant monitoring capability. This event resulted in additional NRC involvement with utilities to ensure that NPPs are properly protected from fire as intended by the NRC principle design criteria (i.e., general design criteriamore » 3, Fire Protection). Current guidance and methods for both deterministic and performance based approaches typically make conservative (bounding) assumptions regarding the fire-induced failure modes of instrumentation cables and those failure modes effects on component and system response. Numerous fire testing programs have been conducted in the past to evaluate the failure modes and effects of electrical cables exposed to severe thermal conditions. However, that testing has primarily focused on control circuits with only a limited number of tests performed on instrumentation circuits. In 2001, the Nuclear Energy Institute (NEI) and the Electric Power Research Institute (EPRI) conducted a series of cable fire tests designed to address specific aspects of the cable failure and circuit fault issues of concern1. The NRC was invited to observe and participate in that program. The NRC sponsored Sandia National Laboratories to support this participation, whom among other things, added a 4-20 mA instrumentation circuit and instrumentation cabling to six of the tests. Although limited, one insight drawn from those instrumentation circuits tests was that the failure characteristics appeared to depend on the cable insulation material. The results showed that for thermoset insulated cables, the instrument reading tended to drift and fluctuate, while the thermoplastic insulated cables, the instrument reading fell off-scale rapidly. From an operational point of view, the latter failure characteristics would likely be identified as a failure from the effects of fire, while the former may result in inaccurate readings.« less

  13. Reliability and availability evaluation of Wireless Sensor Networks for industrial applications.

    PubMed

    Silva, Ivanovitch; Guedes, Luiz Affonso; Portugal, Paulo; Vasques, Francisco

    2012-01-01

    Wireless Sensor Networks (WSN) currently represent the best candidate to be adopted as the communication solution for the last mile connection in process control and monitoring applications in industrial environments. Most of these applications have stringent dependability (reliability and availability) requirements, as a system failure may result in economic losses, put people in danger or lead to environmental damages. Among the different type of faults that can lead to a system failure, permanent faults on network devices have a major impact. They can hamper communications over long periods of time and consequently disturb, or even disable, control algorithms. The lack of a structured approach enabling the evaluation of permanent faults, prevents system designers to optimize decisions that minimize these occurrences. In this work we propose a methodology based on an automatic generation of a fault tree to evaluate the reliability and availability of Wireless Sensor Networks, when permanent faults occur on network devices. The proposal supports any topology, different levels of redundancy, network reconfigurations, criticality of devices and arbitrary failure conditions. The proposed methodology is particularly suitable for the design and validation of Wireless Sensor Networks when trying to optimize its reliability and availability requirements.

  14. Reliability and Availability Evaluation of Wireless Sensor Networks for Industrial Applications

    PubMed Central

    Silva, Ivanovitch; Guedes, Luiz Affonso; Portugal, Paulo; Vasques, Francisco

    2012-01-01

    Wireless Sensor Networks (WSN) currently represent the best candidate to be adopted as the communication solution for the last mile connection in process control and monitoring applications in industrial environments. Most of these applications have stringent dependability (reliability and availability) requirements, as a system failure may result in economic losses, put people in danger or lead to environmental damages. Among the different type of faults that can lead to a system failure, permanent faults on network devices have a major impact. They can hamper communications over long periods of time and consequently disturb, or even disable, control algorithms. The lack of a structured approach enabling the evaluation of permanent faults, prevents system designers to optimize decisions that minimize these occurrences. In this work we propose a methodology based on an automatic generation of a fault tree to evaluate the reliability and availability of Wireless Sensor Networks, when permanent faults occur on network devices. The proposal supports any topology, different levels of redundancy, network reconfigurations, criticality of devices and arbitrary failure conditions. The proposed methodology is particularly suitable for the design and validation of Wireless Sensor Networks when trying to optimize its reliability and availability requirements. PMID:22368497

  15. Transition wave in the collapse of the San Saba bridge

    NASA Astrophysics Data System (ADS)

    Brun, Michele; Giaccu, Gian Felice; Movchan, Alexander; Slepyan, Leonid

    2014-09-01

    A domino wave is a well-known illustration of a transition wave, which appears to reach a stable regime of propagation. Nature also provides spectacular cases of gravity driven transition waves at large scale, observed in snow avalanches and landslides. On a different scale, the micro-structure level interaction between different constituents of the macro-system may influence critical regimes leading to instabilities in avalanche-like flow systems. Most transition waves observed in systems such as bulletproof vests, racing helmets under impact, shock-wave driven fracture in solids, are transient. For some structured waveguides a transition wave may stabilize to achieve a steady regime. Here we show that the failure of a long bridge is also driven by a transition wave that may allow for steady-state regimes. The recent observation of a failure of the San Saba Bridge in Texas provides experimental evidence supporting an elegant theory based on the notion of transition failure wave. No one would think of an analogy between a snow avalanche and a collapsing bridge. Despite an apparent controversy of such a comparison, these two phenomena can both be described in the framework of a model of the dynamic gravity driven transition fault.

  16. Shuttle Ground Support Equipment (GSE) T-0 Umbilical to Space Shuttle Program (SSP) Flight Elements Consultation

    NASA Technical Reports Server (NTRS)

    Wilson, Timmy R.; Kichak, Robert A.; McManamen, John P.; Kramer-White, Julie; Raju, Ivatury S.; Beil, Robert J.; Weeks, John F.; Elliott, Kenny B.

    2009-01-01

    The NASA Engineering and Safety Center (NESC) was tasked with assessing the validity of an alternate opinion that surfaced during the investigation of recurrent failures at the Space Shuttle T-0 umbilical interface. The most visible problem occurred during the Space Transportation System (STS)-112 launch when pyrotechnics used to separate Solid Rocket Booster (SRB) Hold-Down Post (HDP) frangible nuts failed to fire. Subsequent investigations recommended several improvements to the Ground Support Equipment (GSE) and processing changes were implemented, including replacement of ground-half cables and connectors between flights, along with wiring modifications to make critical circuits quad-redundant across the interface. The alternate opinions maintained that insufficient data existed to exonerate the design, that additional data needed to be gathered under launch conditions, and that the interface should be further modified to ensure additional margin existed to preclude failure. The results of the assessment are contained in this report.

  17. Devices as destination therapy.

    PubMed

    Kukuy, Eugene L; Oz, Mehmet C; Rose, Eric A; Naka, Yoshifumi

    2003-02-01

    The use of circulatory support as destination therapy has been a goal for the treatment of endstage heart failure for several decades. Current investigations are evaluating several circulatory pumps with that particular objective. With continued modification of design, the current and future pumps will become more reliable and provide improved quality of life to patients in need of mechanical circulatory assistance. The new pumps on the horizon specifically address reliability, size, and cost, and are based on the centrifugal system. These devices use the Maglev (Magnetic Levitation) concept that allows for frictionless pumping, low thrombogenicity, minimal noise, and increased durability. Further research with this goal in mind and support from the federal government will be the key to the future use of circulatory assistance as destination therapy for heart failure patients. In addition, the cost-effectiveness of these devices will need to be maintained as the technology improves, as in any new technology that confronts a more intuitive option like the native heart.

  18. Submarine slope failures due to pipe structure formation.

    PubMed

    Elger, Judith; Berndt, Christian; Rüpke, Lars; Krastel, Sebastian; Gross, Felix; Geissler, Wolfram H

    2018-02-19

    There is a strong spatial correlation between submarine slope failures and the occurrence of gas hydrates. This has been attributed to the dynamic nature of gas hydrate systems and the potential reduction of slope stability due to bottom water warming or sea level drop. However, 30 years of research into this process found no solid supporting evidence. Here we present new reflection seismic data from the Arctic Ocean and numerical modelling results supporting a different link between hydrates and slope stability. Hydrates reduce sediment permeability and cause build-up of overpressure at the base of the gas hydrate stability zone. Resulting hydro-fracturing forms pipe structures as pathways for overpressured fluids to migrate upward. Where these pipe structures reach shallow permeable beds, this overpressure transfers laterally and destabilises the slope. This process reconciles the spatial correlation of submarine landslides and gas hydrate, and it is independent of environmental change and water depth.

  19. Apollo 16 Mission Anomaly Report No. 1: Oxidizer Deservicing Tank Failure

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The command module reaction control system is emptied of all remaining propellant using ground support equipment designed to provide an acid/base neutralization of the propellant in both the liquid and gaseous phases so that it may be disposed of safely. During the deactivation operation of the oxidizer from the Apollo 16 command module on 7 May 1972, the scrubber tank of the decontamination unit exploded, destroying the ground support equipment unit and damaging the building that housed the operation. Only minor injuries were received by the personnel in the area and the command module was not damaged. Test results show that the failure was caused by an insufficient quantity of neutralizer for the quantity of oxidizer. This insufficiency lead to exothermic nitration-type reactions which produced large quantities of gas at a very high rate and failed the decontamination tank.

  20. Service Life Extension of the Propulsion System of Long-Term Manned Orbital Stations

    NASA Technical Reports Server (NTRS)

    Kamath, Ulhas; Kuznetsov, Sergei; Spencer, Victor

    2014-01-01

    One of the critical non-replaceable systems of a long-term manned orbital station is the propulsion system. Since the propulsion system operates beginning with the launch of station elements into orbit, its service life determines the service life of the station overall. Weighing almost a million pounds, the International Space Station (ISS) is about four times as large as the Russian space station Mir and about five times as large as the U.S. Skylab. Constructed over a span of more than a decade with the help of over 100 space flights, elements and modules of the ISS provide more research space than any spacecraft ever built. Originally envisaged for a service life of fifteen years, this Earth orbiting laboratory has been in orbit since 1998. Some elements that have been launched later in the assembly sequence were not yet built when the first elements were placed in orbit. Hence, some of the early modules that were launched at the inception of the program were already nearing the end of their design life when the ISS was finally ready and operational. To maximize the return on global investments on ISS, it is essential for the valuable research on ISS to continue as long as the station can be sustained safely in orbit. This paper describes the work performed to extend the service life of the ISS propulsion system. A system comprises of many components with varying failure rates. Reliability of a system is the probability that it will perform its intended function under encountered operating conditions, for a specified period of time. As we are interested in finding out how reliable a system would be in the future, reliability expressed as a function of time provides valuable insight. In a hypothetical bathtub shaped failure rate curve, the failure rate, defined as the number of failures per unit time that a currently healthy component will suffer in a given future time interval, decreases during infant-mortality period, stays nearly constant during the service life and increases at the end when the design service life ends and wear-out phase begins. However, the component failure rates do not remain constant over the entire cycle life. The failure rate depends on various factors such as design complexity, current age of the component, operating conditions, severity of environmental stress factors, etc. Development, qualification and acceptance test processes provide rigorous screening of components to weed out imperfections that might otherwise cause infant mortality failures. If sufficient samples are tested to failure, the failure time versus failure quantity can be analyzed statistically to develop a failure probability distribution function (PDF), a statistical model of the probability of failure versus time. Driven by cost and schedule constraints however, spacecraft components are generally not tested in large numbers. Uncertainties in failure rate and remaining life estimates increase when fewer units are tested. To account for this, spacecraft operators prefer to limit useful operations to a period shorter than the maximum demonstrated service life of the weakest component. Running each component to its failure to determine the maximum possible service life of a system can become overly expensive and impractical. Spacecraft operators therefore, specify the required service life and an acceptable factor of safety (FOS). The designers use these requirements to limit the life test duration. Midway through the design life, when benefits justify additional investments, supplementary life test may be performed to demonstrate the capability to safely extend the service life of the system. An innovative approach is required to evaluate the entire system, without having to go through an elaborate test program of propulsion system elements. Evaluating every component through a brute force test program would be a cost prohibitive and time consuming endeavor. ISS propulsion system components were designed and built decades ago. There are no representative ground test articles for some of the components. A 'test everything' approach would require manufacturing new test articles. The paper outlines some of the techniques used for selective testing, by way of cherry picking candidate components based on failure mode effects analysis, system level impacts, hazard analysis, etc. The type of testing required for extending the service life depends on the design and criticality of the component, failure modes and failure mechanisms, life cycle margin provided by the original certification, operational and environmental stresses encountered, etc. When specific failure mechanism being considered and the underlying relationship of that mode to the stresses provided in the test can be correlated by supporting analysis, time and effort required for conducting life extension testing can be significantly reduced. Exposure to corrosive propellants over long periods of time, for instance, lead to specific failure mechanisms in several components used in the propulsion system. Using Arrhenius model, which is tied to chemically dependent failure mechanisms such as corrosion or chemical reactions, it is possible to subject carefully selected test articles to accelerated life test. Arrhenius model reflects the proportional relationship between time to failure of a component and the exponential of the inverse of absolute temperature acting on the component. The acceleration factor is used to perform tests at higher stresses that allow direct correlation between the times to failure at a high test temperature to the temperatures to be expected in actual use. As long as the temperatures are such that new failure mechanisms are not introduced, this becomes a very useful method for testing to failure a relatively small sample of items for a much shorter amount of time. In this article, based on the example of the propulsion system of the first ISS module Zarya, theoretical approaches and practical activities of extending the service life of the propulsion system are reviewed with the goal of determining the maximum duration of its safe operation.

  1. Extracorporeal membrane oxygenation and severe acute respiratory distress secondary to Legionella: 10 year experience.

    PubMed

    Noah, Moronke A; Ramachandra, Geethanjali; Hickey, Margaret M; Jenkins, David R; Harvey, Chris J; Westrope, Claire A; Firmin, Richard K; Peek, Giles J

    2013-01-01

    Legionella-associated respiratory failure has a high mortality, despite modern ventilation modalities. Extracorporeal membrane oxygenation (ECMO) is used to achieve gas exchange independent of pulmonary function in patients with severe respiratory failure. This was a retrospective review of the management and outcome of patients with Legionella-associated respiratory failure treated with ECMO support in a large ECMO center over the past 10 years. A retrospective review of patients with confirmed Legionella-associated severe respiratory failure managed with ECMO support at a single center. Between 2000 and 2010, 19 patients with severe respiratory failure caused by Legionella were managed with ECMO after failure to respond to conventional intensive care management. Median PaO2/FiO2 ratio was 66 and median pCO2 was 60 torr. Sixteen patients (84%) survived to hospital discharge. Extracorporeal membrane oxygenation should be considered in patients with Legionella-associated respiratory failure, who have failed conventional ventilation.

  2. Automated Diagnosis Of Conditions In A Plant-Growth Chamber

    NASA Technical Reports Server (NTRS)

    Clinger, Barry R.; Damiano, Alfred L.

    1995-01-01

    Biomass Production Chamber Operations Assistant software and hardware constitute expert system that diagnoses mechanical failures in controlled-environment hydroponic plant-growth chamber and recommends corrective actions to be taken by technicians. Subjects of continuing research directed toward development of highly automated closed life-support systems aboard spacecraft to process animal (including human) and plant wastes into food and oxygen. Uses Microsoft Windows interface to give technicians intuitive, efficient access to critical data. In diagnostic mode, system prompts technician for information. When expert system has enough information, it generates recovery plan.

  3. CONFIG: Qualitative simulation tool for analyzing behavior of engineering devices

    NASA Technical Reports Server (NTRS)

    Malin, Jane T.; Basham, Bryan D.; Harris, Richard A.

    1987-01-01

    To design failure management expert systems, engineers mentally analyze the effects of failures and procedures as they propagate through device configurations. CONFIG is a generic device modeling tool for use in discrete event simulation, to support such analyses. CONFIG permits graphical modeling of device configurations and qualitative specification of local operating modes of device components. Computation requirements are reduced by focussing the level of component description on operating modes and failure modes, and specifying qualitative ranges of variables relative to mode transition boundaries. Simulation processing occurs only when modes change or variables cross qualitative boundaries. Device models are built graphically, using components from libraries. Components are connected at ports by graphical relations that define data flow. The core of a component model is its state transition diagram, which specifies modes of operation and transitions among them.

  4. Design and implementation of the standards-based personal intelligent self-management system (PICS).

    PubMed

    von Bargen, Tobias; Gietzelt, Matthias; Britten, Matthias; Song, Bianying; Wolf, Klaus-Hendrik; Kohlmann, Martin; Marschollek, Michael; Haux, Reinhold

    2013-01-01

    Against the background of demographic change and a diminishing care workforce there is a growing need for personalized decision support. The aim of this paper is to describe the design and implementation of the standards-based personal intelligent care systems (PICS). PICS makes consistent use of internationally accepted standards such as the Health Level 7 (HL7) Arden syntax for the representation of the decision logic, HL7 Clinical Document Architecture for information representation and is based on a open-source service-oriented architecture framework and a business process management system. Its functionality is exemplified for the application scenario of a patient suffering from congestive heart failure. Several vital signs sensors provide data for the decision support system, and a number of flexible communication channels are available for interaction with patient or caregiver. PICS is a standards-based, open and flexible system enabling personalized decision support. Further development will include the implementation of components on small computers and sensor nodes.

  5. Design of high pressure oxygen filter for extravehicular activity life support system, volume 1

    NASA Technical Reports Server (NTRS)

    Wilson, B. A.

    1977-01-01

    The experience of the National Aeronautics and Space Administration (NASA) with extravehicular activity life support emergency oxygen supply subsystems has shown a large number of problems associated with particulate contamination. These problems have resulted in failures of high pressure oxygen component sealing surfaces. A high pressure oxygen filter was designed which would (a) control the particulate contamination level in the oxygen system to a five-micron glass bead rating, ten-micron absolute condition (b) withstand the dynamic shock condition resulting from the sudden opening of 8000 psi oxygen system shutoff valve. Results of the following program tasks are reported: (1) contaminant source identification tests, (2) dynamic system tests, (3) high pressure oxygen filter concept evaluation, (4) design, (5) fabrication, (6) test, and (7) application demonstration.

  6. Challenges on non-invasive ventilation to treat acute respiratory failure in the elderly.

    PubMed

    Scala, Raffaele

    2016-11-15

    Acute respiratory failure is a frequent complication in elderly patients especially if suffering from chronic cardio-pulmonary diseases. Non-invasive mechanical ventilation constitutes a successful therapeutic tool in the elderly as, like in younger patients, it is able to prevent endotracheal intubation in a wide range of acute conditions; moreover, this ventilator technique is largely applied in the elderly in whom invasive mechanical ventilation is considered not appropriated. Furthermore, the integration of new technological devices, ethical issues and environment of treatment are still largely debated in the treatment of acute respiratory failure in the elderly.This review aims at reporting and critically analyzing the peculiarities in the management of acute respiratory failure in elderly people, the role of noninvasive mechanical ventilation, the potential advantages of applying alternative or integrated therapeutic tools (i.e. high-flow nasal cannula oxygen therapy, non-invasive and invasive cough assist devices and low-flow carbon-dioxide extracorporeal systems), drawbacks in physician's communication and "end of life" decisions. As several areas of this topic are not supported by evidence-based data, this report takes in account also "real-life" data as well as author's experience.The choice of the setting and of the timing of non-invasive mechanical ventilation in elderly people with advanced cardiopulmonary disease should be carefully evaluated together with the chance of using integrated or alternative supportive devices. Last but not least, economic and ethical issues may often challenges the behavior of the physicians towards elderly people who are hospitalized for acute respiratory failure at the end stage of their cardiopulmonary and neoplastic diseases.

  7. Cardiac Arrest Secondary to Lightning Strike: Case Report and Review of the Literature.

    PubMed

    Rotariu, Elena L; Manole, Mioara D

    2017-08-01

    Lightning strike injuries, although less common than electrical injuries, have a higher morbidity rate because of critical alterations of the circulatory system, respiratory system, and central nervous system. Most lightning-related deaths occur immediately after injury because of arrhythmia or respiratory failure. We describe the case of a pediatric patient who experienced cardiorespiratory arrest secondary to a lightning strike, where the Advanced Cardiac Life Support and Basic Life Support chain of survival was well executed, leading to return of spontaneous circulation and intact neurological survival. We review the pathophysiology of lightning injuries, prognostic factors of favorable outcome after cardiac arrest, including bystander cardiopulmonary resuscitation, shockable rhythm, and automatic external defibrillator use, and the importance of temperature management after cardiac arrest.

  8. Hemlock (Conium Maculatum) Poisoning In A Child.

    PubMed

    Konca, Capan; Kahramaner, Zelal; Bosnak, Mehmet; Kocamaz, Halil

    2014-03-01

    Poison hemlock (Conium maculatum) is a plant that is poisonous for humans and animals. Accidental ingestion of the plant may result in central nervous system depression, respiratory failure, acute rhabdomyolysis, acute renal failure and even death. The main treatment of hemlock poisoning is supportive care. The case of a 6-year-old girl who was admitted to the emergency department with complaints of burning sensation in mouth, hypersalivation, tremor in hands and ataxia after ingestion of poison hemlock is presented here with clinical and laboratory features. In this case, we aim to report that accidental ingestion of plants resembling vegetables that are consumed daily can lead to serious complications and even death.

  9. NASA requirements and applications environments for electrical power wiring

    NASA Technical Reports Server (NTRS)

    Stavnes, Mark W.; Hammoud, Ahmad N.

    1992-01-01

    Serious problems can occur from insulation failures in the wiring harnesses of aerospace vehicles. In most recorded incidents, the failures have been identified to be the result of arc tracking, the propagation of an arc along wiring bundles through degradation of insulation. Propagation of the arc can lead to the loss of the entire wiring harness and the functions which it supports. While an extensive database of testing for arc track resistant wire insulations has been developed for aircraft applications, the counterpart requirements for spacecraft are very limited. The electrical, thermal, mechanical, chemical, and operational requirements for specification and testing of candidate wiring systems for spacecraft applications is presented.

  10. ISS Regenerative Life Support: Challenges and Success in the Quest for Long-Term Habitability in Space

    NASA Technical Reports Server (NTRS)

    Bazley, Jesse

    2015-01-01

    The International Space Station's (ISS) Regenerative Environmental Control and Life Support System (ECLSS) was launched in 2008 to continuously recycle urine and crew sweat into drinking water and oxygen using brand new technologies. This functionality was highly important to the ability of the ISS to transition to the long-term goal of 6-crew operations as well as being critical tests for long-term space habitability. Through the initial activation and long-term operations of these systems, important lessons were learned about the importance of system redundancy and operational workarounds that allow Systems Engineers to maintain functionality with limited on-orbit spares. This presentation will share some of these lessons learned including how to balance water through the different systems, store and use water for use in system failures and creating procedures to operate the systems in ways that they were not initially designed to do.

  11. SLFP: a stochastic linear fractional programming approach for sustainable waste management.

    PubMed

    Zhu, H; Huang, G H

    2011-12-01

    A stochastic linear fractional programming (SLFP) approach is developed for supporting sustainable municipal solid waste management under uncertainty. The SLFP method can solve ratio optimization problems associated with random information, where chance-constrained programming is integrated into a linear fractional programming framework. It has advantages in: (1) comparing objectives of two aspects, (2) reflecting system efficiency, (3) dealing with uncertainty expressed as probability distributions, and (4) providing optimal-ratio solutions under different system-reliability conditions. The method is applied to a case study of waste flow allocation within a municipal solid waste (MSW) management system. The obtained solutions are useful for identifying sustainable MSW management schemes with maximized system efficiency under various constraint-violation risks. The results indicate that SLFP can support in-depth analysis of the interrelationships among system efficiency, system cost and system-failure risk. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Real-time diagnostics of the reusable rocket engine using on-line system identification

    NASA Technical Reports Server (NTRS)

    Guo, T.-H.; Merrill, W.; Duyar, A.

    1990-01-01

    A model-based failure diagnosis system has been proposed for real-time diagnosis of SSME failures. Actuation, sensor, and system degradation failure modes are all considered by the proposed system. In the case of SSME actuation failures, it was shown that real-time identification can effectively be used for failure diagnosis purposes. It is a direct approach since it reduces the detection, isolation, and the estimation of the extent of the failures to the comparison of parameter values before and after the failure. As with any model-based failure detection system, the proposed approach requires a fault model that embodies the essential characteristics of the failure process. The proposed diagnosis approach has the added advantage that it can be used as part of an intelligent control system for failure accommodation purposes.

  13. Using Landslide Failure Forecast Models in Near Real Time: the Mt. de La Saxe case-study

    NASA Astrophysics Data System (ADS)

    Manconi, Andrea; Giordan, Daniele

    2014-05-01

    Forecasting the occurrence of landslide phenomena in space and time is a major scientific challenge. The approaches used to forecast landslides mainly depend on the spatial scale analyzed (regional vs. local), the temporal range of forecast (long- vs. short-term), as well as the triggering factor and the landslide typology considered. By focusing on short-term forecast methods for large, deep seated slope instabilities, the potential time of failure (ToF) can be estimated by studying the evolution of the landslide deformation over time (i.e., strain rate) provided that, under constant stress conditions, landslide materials follow creep mechanism before reaching rupture. In the last decades, different procedures have been proposed to estimate ToF by considering simplified empirical and/or graphical methods applied to time series of deformation data. Fukuzono, 1985 proposed a failure forecast method based on the experience performed during large scale laboratory experiments, which were aimed at observing the kinematic evolution of a landslide induced by rain. This approach, known also as the inverse-velocity method, considers the evolution over time of the inverse value of the surface velocity (v) as an indicator of the ToF, by assuming that failure approaches while 1/v tends to zero. Here we present an innovative method to aimed at achieving failure forecast of landslide phenomena by considering near-real-time monitoring data. Starting from the inverse velocity theory, we analyze landslide surface displacements on different temporal windows, and then apply straightforward statistical methods to obtain confidence intervals on the time of failure. Our results can be relevant to support the management of early warning systems during landslide emergency conditions, also when the predefined displacement and/or velocity thresholds are exceeded. In addition, our statistical approach for the definition of confidence interval and forecast reliability can be applied also to different failure forecast methods. We applied for the first time the herein presented approach in near real time during the emergency scenario relevant to the reactivation of the La Saxe rockslide, a large mass wasting menacing the population of Courmayeur, northern Italy, and the important European route E25. We show how the application of simplified but robust forecast models can be a convenient method to manage and support early warning systems during critical situations. References: Fukuzono T. (1985), A New Method for Predicting the Failure Time of a Slope, Proc. IVth International Conference and Field Workshop on Landslides, Tokyo.

  14. Maintenance and Logistics Support for the International Monitoring System Network of the CTBTO

    NASA Astrophysics Data System (ADS)

    Haslinger, F.; Brely, N.; Akrawy, M.

    2007-05-01

    The global network of the International Monitoring System (IMS) of the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), once completed, will consist of 321 monitoring facilities of four different technologies: hydroacoustic, seismic, infrasonic, and radionuclide. As of today, about 65% of the installations are completed and contribute data to the products issued by the International Data Centre (IDC) of the CTBTO. In order to accomplish the task to reliably collect evidence for any potential nuclear test explosion anywhere on the planet, all stations are required to perform to very high data availability requirements (at least 98% data availability over a 12-month period). To enable reaching this requirement, a three-layer concept has been developed to allow efficient support of the IMS stations: Operations, Maintenance and Logistics, and Engineering. Within this concept Maintenance and Logistics provide second level support of the stations, whereby problems arising at the station are assigned through the IMS ticket system to Maintenance if they cannot be resolved on the Operations level. Maintenance will then activate the required resources to appropriately address and ultimately resolve the problem. These resources may be equipment support contracts, other third party contracts, or the dispatch of a maintenance team. Engineering Support will be activated if the problem requires redesign of the station or after catastrophic failures when a total rebuild of a station may be necessary. In this model, Logistics Support is responsible for parts replenishment and support contract management. Logistics Support also collects and analyzes relevant failure mode and effect information, develops supportability models, and has the responsibility for document management, obsolescence, risk & quality, and configuration management, which are key elements for efficient station support. Maintenance Support in addition is responsible for maintenance strategies, for planning and oversight of the execution of preventive maintenance programs by the Station Operators, and for review of operational troubleshooting procedures used in first level support. Particular challenges for the efficient and successful Maintenance and Logistics Support of the IMS network lie in the specific political boundary conditions regulating its implementation, in the fact that all IMS facilities and their equipment are owned by the respective host countries, and in finding the appropriate balance between outsourcing services and retaining essential in-house expertise.

  15. Overseas Trained Teachers in England: A Policy Framework for Social and Professional Integration

    ERIC Educational Resources Information Center

    Miller, Paul Washington

    2008-01-01

    Overseas trained teachers (OTTs) have become an important part of the make-up of England's primary and secondary education system. Through inadequate, and in some cases a lack of, initial induction and support for professional development, many are at risk of performing sub-optimally and some have become an endangered species. Failure to integrate…

  16. Factors Affecting University Instructors' Adoption of Web-Based Learning Systems: Case Study of Iran

    ERIC Educational Resources Information Center

    Motaghian, Hediyeh; Hassanzadeh, Alireza; Moghadam, Davood Karimzadgan

    2013-01-01

    In many societies e-learning has become the main mechanism supporting distance education. Although e-learning efforts are considered to be a significant corporate investment, many surveys indicate high drop-out rates or failures. This research uses an integrated model in order to assessing the influence of IS-oriented, psychological and behavioral…

  17. Failure rate of single-unit restorations on posterior vital teeth: A systematic review.

    PubMed

    Afrashtehfar, Kelvin I; Emami, Elham; Ahmadi, Motahareh; Eilayyan, Owis; Abi-Nader, Samer; Tamimi, Faleh

    2017-03-01

    No knowledge synthesis exists concerning when to use a direct restoration versus a complete-coverage indirect restoration in posterior vital teeth. The purpose of this systematic review was to identify the failure rate of conventional single-unit tooth-supported restorations in posterior permanent vital teeth as a function of remaining tooth structure. Four databases were searched electronically, and 8 selected journals were searched manually up to February 2015. Clinical studies of tooth-supported single-unit restorative treatments with a mean follow-up period of at least 3 years were selected. The outcome measured was the restorations' clinical or radiological failure. Following the Preferred Reporting Items for Systematic reviews and Meta-Analyses guidelines, the Cochrane Collaboration procedures for randomized control trials, the Strengthening the Reporting of Observational Studies in Epidemiology criteria for observational studies, 2 reviewers independently applied eligibility criteria, extracted data, and assessed the quality of the evidence of the included studies using the American Association of Critical Care Nurses' system. The weighted-mean group 5-year failure rates of the restorations were reported according to the type of treatment and remaining tooth structure. A metaregression model was used to assess the correlation between the number of remaining tooth walls and the weighted-mean 5-year failure rates. Five randomized controlled trials and 9 observational studies were included and their quality ranged from low to moderate. These studies included a total of 358 crowns, 4804 composite resins, and 303582 amalgams. Data obtained from the randomized controlled trials showed that, regardless of the amount of remaining tooth structure, amalgams presented better outcomes than composite resins. Furthermore, in teeth with fewer than 2 remaining walls, high-quality observational studies demonstrated that crowns were better than amalgams. A clear inverse correlation was found between the amount of remaining tooth structure and restoration failure. Insufficient high-quality data are available to support one restorative treatment or material over another for the restoration of vital posterior teeth. However, the current evidence suggests that the failure rates of treatments may depend on the amount of remaining tooth structure and types of treatment. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  18. Exploring the Use of Enterprise Content Management Systems in Unification Types of Organizations

    NASA Astrophysics Data System (ADS)

    Izza Arshad, Noreen; Mehat, Mazlina; Ariff, Mohamed Imran Mohamed

    2014-03-01

    The aim of this paper is to better understand how highly standardized and integrated businesses known as unification types of organizations use Enterprise Content Management Systems (ECMS) to support their business processes. Multiple case study approach was used to study the ways two unification organizations use their ECMS in their daily work practices. Arising from these case studies are insights into the differing ways in which ECMS is used to support businesses. Based on the comparisons of the two cases, this study proposed that unification organizations may use ECMS in four ways, for: (1) collaboration, (2) information sharing that supports a standardized process structure, (3) building custom workflows that support integrated and standardized processes, and (4) providing links and access to information systems. These findings may guide organizations that are highly standardized and integrated in fashion, to achieve their intended ECMS-use, to understand reasons for ECMS failures and underutilization and to exploit technologies investments.

  19. Diagnostic workup, etiologies and management of acute right ventricle failure : A state-of-the-art paper.

    PubMed

    Vieillard-Baron, Antoine; Naeije, R; Haddad, F; Bogaard, H J; Bull, T M; Fletcher, N; Lahm, T; Magder, S; Orde, S; Schmidt, G; Pinsky, M R

    2018-05-09

    This is a state-of-the-art article of the diagnostic process, etiologies and management of acute right ventricular (RV) failure in critically ill patients. It is based on a large review of previously published articles in the field, as well as the expertise of the authors. The authors propose the ten key points and directions for future research in the field. RV failure (RVF) is frequent in the ICU, magnified by the frequent need for positive pressure ventilation. While no universal definition of RVF is accepted, we propose that RVF may be defined as a state in which the right ventricle is unable to meet the demands for blood flow without excessive use of the Frank-Starling mechanism (i.e. increase in stroke volume associated with increased preload). Both echocardiography and hemodynamic monitoring play a central role in the evaluation of RVF in the ICU. Management of RVF includes treatment of the causes, respiratory optimization and hemodynamic support. The administration of fluids is potentially deleterious and unlikely to lead to improvement in cardiac output in the majority of cases. Vasopressors are needed in the setting of shock to restore the systemic pressure and avoid RV ischemia; inotropic drug or inodilator therapies may also be needed. In the most severe cases, recent mechanical circulatory support devices are proposed to unload the RV and improve organ perfusion CONCLUSION: RV function evaluation is key in the critically-ill patients for hemodynamic management, as fluid optimization, vasopressor strategy and respiratory support. RV failure may be diagnosed by the association of different devices and parameters, while echocardiography is crucial.

  20. Recovery of Serum Cholesterol Predicts Survival After Left Ventricular Assist Device Implantation

    PubMed Central

    Vest, Amanda R.; Kennel, Peter J.; Maldonado, Dawn; Young, James B.; Mountis, Maria M.; Naka, Yoshifumi; Colombo, Paolo C.; Mancini, Donna M.; Starling, Randall C.; Schulze, P. Christian

    2017-01-01

    Background Advanced systolic heart failure is associated with myocardial and systemic metabolic abnormalities, including low levels of total cholesterol and low-density lipoprotein. Low cholesterol and low-density lipoprotein have been associated with greater mortality in heart failure. Implantation of a left ventricular assist device (LVAD) reverses some of the metabolic derangements of advanced heart failure. Methods and Results A cohort was retrospectively assembled from 2 high-volume implantation centers, totaling 295 continuous-flow LVAD recipients with ≥2 cholesterol values available. The cohort was predominantly bridge-to-transplantation (67%), with median age of 59 years and 49% ischemic heart failure cause. Total cholesterol, low-density lipoprotein, high-density lipoprotein, and triglyceride levels all significantly increased after LVAD implantation (median values from implantation to 3 months post implantation 125–150 mg/dL, 67–85 mg/dL, 32–42 mg/dL, and 97–126 mg/dL, respectively). On Cox proportional hazards modeling, patients achieving recovery of total cholesterol levels, defined as a median or greater change from pre implantation to 3 months post-LVAD implantation, had significantly better unadjusted survival (hazard ratio, 0.445; 95% confidence interval, 0.212–0.932) and adjusted survival (hazard ratio, 0.241; 95% confidence interval, 0.092–0.628) than those without cholesterol recovery after LVAD implantation. The continuous variable of total cholesterol at 3 months post implantation and the cholesterol increase from pre implantation to 3 months were also both significantly associated with survival during LVAD support. Conclusions Initiation of continuous-flow LVAD support was associated with significant recovery of all 4 lipid variables. Patients with a greater increase in total cholesterol by 3 months post implantation had superior survival during LVAD support. PMID:27623768

  1. General Purpose Data-Driven Online System Health Monitoring with Applications to Space Operations

    NASA Technical Reports Server (NTRS)

    Iverson, David L.; Spirkovska, Lilly; Schwabacher, Mark

    2010-01-01

    Modern space transportation and ground support system designs are becoming increasingly sophisticated and complex. Determining the health state of these systems using traditional parameter limit checking, or model-based or rule-based methods is becoming more difficult as the number of sensors and component interactions grows. Data-driven monitoring techniques have been developed to address these issues by analyzing system operations data to automatically characterize normal system behavior. System health can be monitored by comparing real-time operating data with these nominal characterizations, providing detection of anomalous data signatures indicative of system faults, failures, or precursors of significant failures. The Inductive Monitoring System (IMS) is a general purpose, data-driven system health monitoring software tool that has been successfully applied to several aerospace applications and is under evaluation for anomaly detection in vehicle and ground equipment for next generation launch systems. After an introduction to IMS application development, we discuss these NASA online monitoring applications, including the integration of IMS with complementary model-based and rule-based methods. Although the examples presented in this paper are from space operations applications, IMS is a general-purpose health-monitoring tool that is also applicable to power generation and transmission system monitoring.

  2. Common Cause Failures and Ultra Reliability

    NASA Technical Reports Server (NTRS)

    Jones, Harry W.

    2012-01-01

    A common cause failure occurs when several failures have the same origin. Common cause failures are either common event failures, where the cause is a single external event, or common mode failures, where two systems fail in the same way for the same reason. Common mode failures can occur at different times because of a design defect or a repeated external event. Common event failures reduce the reliability of on-line redundant systems but not of systems using off-line spare parts. Common mode failures reduce the dependability of systems using off-line spare parts and on-line redundancy.

  3. Intelligent failure-tolerant control

    NASA Technical Reports Server (NTRS)

    Stengel, Robert F.

    1991-01-01

    An overview of failure-tolerant control is presented, beginning with robust control, progressing through parallel and analytical redundancy, and ending with rule-based systems and artificial neural networks. By design or implementation, failure-tolerant control systems are 'intelligent' systems. All failure-tolerant systems require some degrees of robustness to protect against catastrophic failure; failure tolerance often can be improved by adaptivity in decision-making and control, as well as by redundancy in measurement and actuation. Reliability, maintainability, and survivability can be enhanced by failure tolerance, although each objective poses different goals for control system design. Artificial intelligence concepts are helpful for integrating and codifying failure-tolerant control systems, not as alternatives but as adjuncts to conventional design methods.

  4. Security Informatics Research Challenges for Mitigating Cyber Friendly Fire

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carroll, Thomas E.; Greitzer, Frank L.; Roberts, Adam D.

    This paper addresses cognitive implications and research needs surrounding the problem of cyber friendly re (FF). We dene cyber FF as intentional o*ensive or defensive cyber/electronic actions intended to protect cyber systems against enemy forces or to attack enemy cyber systems, which unintentionally harms the mission e*ectiveness of friendly or neutral forces. We describe examples of cyber FF and discuss how it ts within a general conceptual framework for cyber security failures. Because it involves human failure, cyber FF may be considered to belong to a sub-class of cyber security failures characterized as unintentional insider threats. Cyber FF is closelymore » related to combat friendly re in that maintaining situation awareness (SA) is paramount to avoiding unintended consequences. Cyber SA concerns knowledge of a system's topology (connectedness and relationships of the nodes in a system), and critical knowledge elements such as the characteristics and vulnerabilities of the components that comprise the system and its nodes, the nature of the activities or work performed, and the available defensive and o*ensive countermeasures that may be applied to thwart network attacks. We describe a test bed designed to support empirical research on factors a*ecting cyber FF. Finally, we discuss mitigation strategies to combat cyber FF, including both training concepts and suggestions for decision aids and visualization approaches.« less

  5. A structured analysis of in vitro failure loads and failure modes of fiber, metal, and ceramic post-and-core systems.

    PubMed

    Fokkinga, Wietske A; Kreulen, Cees M; Vallittu, Pekka K; Creugers, Nico H J

    2004-01-01

    This study sought to aggregate literature data on in vitro failure loads and failure modes of prefabricated fiber-reinforced composite (FRC) post systems and to compare them to those of prefabricated metal, custom-cast, and ceramic post systems. The literature was searched using MEDLINE from 1984 to 2003 for dental articles in English. Keywords used were (post or core or buildup or dowel) and (teeth or tooth). Additional inclusion/exclusion steps were conducted, each step by two independent readers: (1) Abstracts describing post-and-core techniques to reconstruct endodontically treated teeth and their mechanical and physical characteristics were included (descriptive studies or reviews were excluded); (2) articles that included FRC post systems were selected; (3) in vitro studies, single-rooted human teeth, prefabricated FRC posts, and composite as the core material were the selection criteria; and (4) failure loads and modes were extracted from the selected papers, and failure modes were dichotomized (distinction was made between "favorable failures," defined as reparable failures, and "unfavorable failures,"defined as irreparable [root] fractures). The literature search revealed 1,984 abstracts. Included were 244, 42, and 12 articles in the first, second, and third selection steps, respectively. Custom-cast post systems showed higher failure loads than prefabricated FRC post systems, whereas ceramic showed lower failure loads. Significantly more favorable failures occurred with prefabricated FRC post systems than with prefabricated and custom-cast metal post systems. The variable "post system" had a significant effect on mean failure loads. FRC post systems more frequently showed favorable failure modes than did metal post systems.

  6. Impact of distributed energy resources on the reliability of a critical telecommunications facility.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, David; Zuffranieri, Jason V.; Atcitty, Christopher B.

    2006-03-01

    This report documents a probabilistic risk assessment of an existing power supply system at a large telecommunications office. The focus is on characterizing the increase in the reliability of power supply through the use of two alternative power configurations. Telecommunications has been identified by the Department of Homeland Security as a critical infrastructure to the United States. Failures in the power systems supporting major telecommunications service nodes are a main contributor to major telecommunications outages. A logical approach to improve the robustness of telecommunication facilities would be to increase the depth and breadth of technologies available to restore power inmore » the face of power outages. Distributed energy resources such as fuel cells and gas turbines could provide one more onsite electric power source to provide backup power, if batteries and diesel generators fail. The analysis is based on a hierarchical Bayesian approach and focuses on the failure probability associated with each of three possible facility configurations, along with assessment of the uncertainty or confidence level in the probability of failure. A risk-based characterization of final best configuration is presented.« less

  7. Comparison of two different modes of molecular adsorbent recycling systems for liver dialysis.

    PubMed

    Soo, Euan; Sanders, Anja; Heckert, Karlheinz; Vinke, Tobias; Schaefer, Franz; Schmitt, Claus Peter

    2016-11-01

    In children acute liver failure is a rare but life-threatening condition from which two-thirds do not recover with supportive therapy. Treatment is limited by the availability of liver transplants. Molecular adsorbent recirculating system (MARS) dialysis is a bridge to transplantation that enhances the chances of survival during the waiting period for a transplant, although it cannot improve survival. Open albumin dialysis (OPAL) is a new mode of albumin dialysis developed to further improve dialysis efficiency. We report a paediatric case of acute-on-chronic liver failure and compare the two modes of albumin dialysis, namely, the MARS and OPAL, used to treat this patient's cholestatic pruritus. Removal of total and direct bilirubin, ammonia and bile acids were measured by serial blood tests. There was an increased removal of bile acids with the OPAL mode, whereas the removal of total and direct bilirubin and ammonia was similar in both modes. The patient reported better improvement in pruritus following OPAL compared to dialysis with the MARS. OPAL may offer a better solution than the MARS in the treatment of refractory pruritus in liver failure.

  8. Reliability and Probabilistic Risk Assessment - How They Play Together

    NASA Technical Reports Server (NTRS)

    Safie, Fayssal; Stutts, Richard; Huang, Zhaofeng

    2015-01-01

    Since the Space Shuttle Challenger accident in 1986, NASA has extensively used probabilistic analysis methods to assess, understand, and communicate the risk of space launch vehicles. Probabilistic Risk Assessment (PRA), used in the nuclear industry, is one of the probabilistic analysis methods NASA utilizes to assess Loss of Mission (LOM) and Loss of Crew (LOC) risk for launch vehicles. PRA is a system scenario based risk assessment that uses a combination of fault trees, event trees, event sequence diagrams, and probability distributions to analyze the risk of a system, a process, or an activity. It is a process designed to answer three basic questions: 1) what can go wrong that would lead to loss or degraded performance (i.e., scenarios involving undesired consequences of interest), 2) how likely is it (probabilities), and 3) what is the severity of the degradation (consequences). Since the Challenger accident, PRA has been used in supporting decisions regarding safety upgrades for launch vehicles. Another area that was given a lot of emphasis at NASA after the Challenger accident is reliability engineering. Reliability engineering has been a critical design function at NASA since the early Apollo days. However, after the Challenger accident, quantitative reliability analysis and reliability predictions were given more scrutiny because of their importance in understanding failure mechanism and quantifying the probability of failure, which are key elements in resolving technical issues, performing design trades, and implementing design improvements. Although PRA and reliability are both probabilistic in nature and, in some cases, use the same tools, they are two different activities. Specifically, reliability engineering is a broad design discipline that deals with loss of function and helps understand failure mechanism and improve component and system design. PRA is a system scenario based risk assessment process intended to assess the risk scenarios that could lead to a major/top undesirable system event, and to identify those scenarios that are high-risk drivers. PRA output is critical to support risk informed decisions concerning system design. This paper describes the PRA process and the reliability engineering discipline in detail. It discusses their differences and similarities and how they work together as complementary analyses to support the design and risk assessment processes. Lessons learned, applications, and case studies in both areas are also discussed in the paper to demonstrate and explain these differences and similarities.

  9. Make Program Failures Work for You.

    ERIC Educational Resources Information Center

    Keller, M. Jean; Mills, Helen H.

    1984-01-01

    Recreation program planners can learn from program failures. Failures should not be viewed as negative statements about personnel. Examining feelings in a supportive staff environment is suggested as a technique for developing competence. (DF)

  10. A Taxonomy of Fallacies in System Safety Arguments

    NASA Technical Reports Server (NTRS)

    Greenwell, William S.; Knight, John C.; Holloway, C. Michael; Pease, Jacob J.

    2006-01-01

    Safety cases are gaining acceptance as assurance vehicles for safety-related systems. A safety case documents the evidence and argument that a system is safe to operate; however, logical fallacies in the underlying argument may undermine a system s safety claims. Removing these fallacies is essential to reduce the risk of safety-related system failure. We present a taxonomy of common fallacies in safety arguments that is intended to assist safety professionals in avoiding and detecting fallacious reasoning in the arguments they develop and review. The taxonomy derives from a survey of general argument fallacies and a separate survey of fallacies in real-world safety arguments. Our taxonomy is specific to safety argumentation, and it is targeted at professionals who work with safety arguments but may lack formal training in logic or argumentation. We discuss the rationale for the selection and categorization of fallacies in the taxonomy. In addition to its applications to the development and review of safety cases, our taxonomy could also support the analysis of system failures and promote the development of more robust safety case patterns.

  11. Severe group A streptococcal infections in a paediatric intensive care unit.

    PubMed

    Lithgow, Anna; Duke, Trevor; Steer, Andrew; Smeesters, Pierre Robert

    2014-09-01

    To describe the clinical presentation, management and outcomes for children with invasive group A streptococcal (GAS) infection in a paediatric intensive care unit (PICU). We reviewed the clinical and laboratory records of patients admitted to a PICU in Melbourne with invasive GAS infection from April 2010 to April 2013. Outcomes recorded included survival, organ failure, need for extracorporeal support, renal replacement therapy and prolonged neuromuscular weakness. Twelve cases of invasive GAS infection were identified. The most common clinical presentations were pneumonia (n=5), bacteraemia with no septic focus (n=4) and septic arthritis (n=3). Necrotising fasciitis occurred in one patient and another patient presented with ischaemic lower limbs requiring amputation. Of the eight isolates with available emm typing results, the most common emm type was emm1 (n=4) followed by emm4, 12 and 22. Nine patients had multi-organ failure. Ten patients required mechanical ventilation for a median duration of 8 days. Nine patients required inotropic and/or vasopressor support and four patients extracorporeal membrane oxygenation support. Eleven patients survived. A prolonged period of neuromuscular weakness following the initial severe illness was common (n=5), but most children returned to normal or near normal neurological function. Invasive GAS disease in children may cause severe multi-organ failure with resultant prolonged intensive care stay and significant morbidity. However, a high rate of survival and return to normal functioning may be achieved with multi-system intensive care support and multi-disciplinary rehabilitation. © 2014 The Authors. Journal of Paediatrics and Child Health © 2014 Paediatrics and Child Health Division (Royal Australasian College of Physicians).

  12. Extracorporeal Life Support in Critically Ill Adults

    PubMed Central

    Muratore, Christopher S.

    2014-01-01

    Extracorporeal life support (ECLS) has become increasingly popular as a salvage strategy for critically ill adults. Major advances in technology and the severe acute respiratory distress syndrome that characterized the 2009 influenza A(H1N1) pandemic have stimulated renewed interest in the use of venovenous extracorporeal membrane oxygenation (ECMO) and extracorporeal carbon dioxide removal to support the respiratory system. Theoretical advantages of ECLS for respiratory failure include the ability to rest the lungs by avoiding injurious mechanical ventilator settings and the potential to facilitate early mobilization, which may be advantageous for bridging to recovery or to lung transplantation. The use of venoarterial ECMO has been expanded and applied to critically ill adults with hemodynamic compromise from a variety of etiologies, beyond postcardiotomy failure. Although technology and general care of the ECLS patient have evolved, ECLS is not without potentially serious complications and remains unproven as a treatment modality. The therapy is now being tested in clinical trials, although numerous questions remain about the application of ECLS and its impact on outcomes in critically ill adults. PMID:25046529

  13. Extracorporeal respiratory support in adult patients

    PubMed Central

    Romano, Thiago Gomes; Mendes, Pedro Vitale; Park, Marcelo; Costa, Eduardo Leite Vieira

    2017-01-01

    ABSTRACT In patients with severe respiratory failure, either hypoxemic or hypercapnic, life support with mechanical ventilation alone can be insufficient to meet their needs, especially if one tries to avoid ventilator settings that can cause injury to the lungs. In those patients, extracorporeal membrane oxygenation (ECMO), which is also very effective in removing carbon dioxide from the blood, can provide life support, allowing the application of protective lung ventilation. In this review article, we aim to explore some of the most relevant aspects of using ECMO for respiratory support. We discuss the history of respiratory support using ECMO in adults, as well as the clinical evidence; costs; indications; installation of the equipment; ventilator settings; daily care of the patient and the system; common troubleshooting; weaning; and discontinuation. PMID:28380189

  14. Some Non-FDA Approved Uses for Neuromodulation in Treating Autonomic Nervous System Disorders: A Discussion of the Preliminary Support.

    PubMed

    Lee, Samuel; Abd-Elsayed, Alaa

    2016-12-01

    Neuromodulation, including cavernous nerve stimulation, gastric electrical stimulation, deep brain stimulation, and vagus nerve stimulation, has been used with success in treating several functional disease conditions. The FDA has approved the use of neuromodulation for a few indications. We discuss in our review article the evidence of using neuromodulation for treating some important disorders involving the autonomic nervous system that are not currently FDA approved. This was a review article that included a systematic online web search for human clinical studies testing the efficacy of neuromodulation in treating erectile dysfunction, gastroparesis, gastroesophageal reflux disease, obesity, asthma, and heart failure. Our review includes all feasibility studies, nonrandomized clinical trials, and randomized controlled trials. Our systematic literature search found 3, 4, 5, 4, 1, and 4 clinical studies relating to erectile dysfunction, gastroparesis, gastroesophageal reflux disease, obesity, asthma, and heart failure, respectively. This review article shows preliminary support based on clinical studies that neuromodulation can be of benefit for patients with important autonomic nervous system disease conditions that are not currently approved by the FDA. All of these investigational uses are encouraging; further studies are necessary and warranted for all indications discussed in this review before achieving FDA approval. © 2016 International Neuromodulation Society.

  15. Spacelab Life Sciences-1 electrical diagnostic expert system

    NASA Technical Reports Server (NTRS)

    Kao, C. Y.; Morris, W. S.

    1989-01-01

    The Spacelab Life Sciences-1 (SLS-1) Electrical Diagnostic (SLED) expert system is a continuous, real time knowledge-based system to monitor and diagnose electrical system problems in the Spacelab. After fault isolation, the SLED system provides corrective procedures and advice to the ground-based console operator. The SLED system updates its knowledge about the status of Spacelab every 3 seconds. The system supports multiprocessing of malfunctions and allows multiple failures to be handled simultaneously. Information which is readily available via a mouse click includes: general information about the system and each component, the electrical schematics, the recovery procedures of each malfunction, and an explanation of the diagnosis.

  16. Intelligent command and control systems for satellite ground operations

    NASA Technical Reports Server (NTRS)

    Mitchell, Christine M.

    1994-01-01

    The Georgia Tech portion of the Intelligent Control Center project includes several complementary activities. Two major activities entail thesis level research; the other activities are either support activities or preliminary explorations (e.g., task analyses) to support the research. The first research activity is the development of principles for the design of active interfaces to support monitoring during real-time supports. It is well known that as the operator's task becomes less active, i.e., more monitoring and less active control, there is concern that the operator will be less involved and less able to rapidly identify anomalous or failure situations. The research project to design active monitoring interfaces is an attempt to remediate this undesirable side-effect of increasingly automated control systems that still depend ultimately on operator supervision. The second research activity is the exploration of the use of case-based reasoning as a way to accumulate operator experience and make it available in computational form.

  17. Frequency and predictors of courses repetition, probation, and delayed graduation in kashan faculty of nursing and midwifery.

    PubMed

    Tagharrobi, Zahra; Masoudi Alavi, Negin; Fakharian, Esmail; Mirhoseini, Fakhrossadat; Rasoulinejad, Sayyed Asghar; Akbari, Hossein; Ameli, Hossein

    2013-12-01

    Course failing and delayed graduation are important concerns in educational systems. The reasons of these educational failures need to be clarified. This study was designed to determine the academic failure rate and its predictors in Nursing and Midwifery Students in Kashan University of Medical Sciences. In this cross-sectional study, the records of all the students graduated in Nursing and Midwifery faculty during 18 years (1986 - 2003) were evaluated (1174 graduates). The demographic variables and the educational situation were recorded. The frequency of course repetition, probation, and delayed graduation were determined and the data were analyzed using the chi-square and logistic regression tests. The frequency of course repetition, probation, and delayed graduation was reported to be 19.25%, 3.9% and 19.85%, respectively. Gaining Low grade in high school, transferring from other universities, having special quota, and transferring temporarily to other universities were mentioned as the risk factors of academic failure. The major had a significant relationship with academic failure. Day time students had more course failure and night time students stayed longer in the university. The individual characteristics, educational background and admission criteria had showed relation with academic failure. Vulnerable students should be identified and educational supports should be provided for these students.

  18. Cultural factors influencing dietary and fluid restriction behaviour: perceptions of older Chinese patients with heart failure.

    PubMed

    Rong, Xiaoshan; Peng, Youqing; Yu, Hai-Ping; Li, Dan

    2017-03-01

    To explore the cultural factors related to dietary and fluid restriction behaviours among older Chinese patients. Excess dietary sodium and fluid intake are risk factors contributing to the worsening and rehospitalisation for heart failure in older patients. Managing the complex fluid and diet requirements of heart failure patients is challenging and is made more complicated by cultural variations in self-management behaviours in response to a health threat. Qualitative study using semi-structured in interviews and framework analysis. The design of this study is qualitative descriptive. Semi-structured in-depth interviews were conducted with 15 heart failure patients. Data were analysed through content analysis. Seven cultural themes emerged from the qualitative data: the values placed on health and illness, customary way of life, preference for folk care and the Chinese healthcare system, and factors related to kinship and social ties, religion, economics and education. Dietary change and management in response to illness, including heart failure, is closely related to individuals' cultural background. Healthcare providers should have a good understanding of cultural aspects that can influence patients' conformity to medical recommendations. Heart failure patients need support that considers their cultural needs. Healthcare providers must have a good understanding of the experiences of people from diverse cultural backgrounds. © 2016 John Wiley & Sons Ltd.

  19. Renal function monitoring in heart failure - what is the optimal frequency? A narrative review.

    PubMed

    Al-Naher, Ahmed; Wright, David; Devonald, Mark Alexander John; Pirmohamed, Munir

    2018-01-01

    The second most common cause of hospitalization due to adverse drug reactions in the UK is renal dysfunction due to diuretics, particularly in patients with heart failure, where diuretic therapy is a mainstay of treatment regimens. Therefore, the optimal frequency for monitoring renal function in these patients is an important consideration for preventing renal failure and hospitalization. This review looks at the current evidence for optimal monitoring practices of renal function in patients with heart failure according to national and international guidelines on the management of heart failure (AHA/NICE/ESC/SIGN). Current guidance of renal function monitoring is in large part based on expert opinion, with a lack of clinical studies that have specifically evaluated the optimal frequency of renal function monitoring in patients with heart failure. Furthermore, there is variability between guidelines, and recommendations are typically nonspecific. Safer prescribing of diuretics in combination with other antiheart failure treatments requires better evidence for frequency of renal function monitoring. We suggest developing more personalized monitoring rather than from the current medication-based guidance. Such flexible clinical guidelines could be implemented using intelligent clinical decision support systems. Personalized renal function monitoring would be more effective in preventing renal decline, rather than reacting to it. © 2017 The Authors. British Journal of Clinical Pharmacology published by John Wiley & Sons Ltd on behalf of British Pharmacological Society.

  20. Integrated tracking of components by engineering and logistics utilizing logistics asset tracking system

    NASA Technical Reports Server (NTRS)

    Renfroe, Michael B.; Mcdonald, Edward J.; Bradshaw, Kimberly

    1988-01-01

    The Logistics Asset Tracking System (LATS) devised by NASA contains data on Space Shuttle LRUs that are daily updated to reflect such LRU status changes as repair due to failure or modification due to changing engineering requirements. The implementation of LATS has substantially increased personnel responsiveness, preventing costly delays in Space Shuttle processing and obviating hardware cannibalization. An evaluation is presented of LATS achievements in the direction of an integrated logistical support posture.

  1. Data Mining for ISHM of Liquid Rocket Propulsion Status Update

    NASA Technical Reports Server (NTRS)

    Srivastava, Ashok; Schwabacher, Mark; Oza, Nijunj; Martin, Rodney; Watson, Richard; Matthews, Bryan

    2006-01-01

    This document consists of presentation slides that review the current status of data mining to support the work with the Integrated Systems Health Management (ISHM) for the systems associated with Liquid Rocket Propulsion. The aim of this project is to have test stand data from Rocketdyne to design algorithms that will aid in the early detection of impending failures during operation. These methods will be extended and improved for future platforms (i.e., CEV/CLV).

  2. System-of-Systems Acquisition: Alignment and Collaboration

    DTIC Science & Technology

    2011-10-11

    motivational theory as well as empirical evidence, such as the Eureka case. Maslow’s motivational theory ( Maslow , 1943) supports the = = ^Åèìáëáíáçå=oÉëÉ...externalities a new source of market failure? Research in Law and Economics, 17, 1–22. Maslow , A. H. (1943). A theory of human motivation . Psychological...of satisfied needs are motivated by peer recognition. Lawrence and Nohria (2002) identify a four drives theory of individual motivation :

  3. Quantifying Pilot Contribution to Flight Safety During an In-Flight Airspeed Failure

    NASA Technical Reports Server (NTRS)

    Etherington, Timothy J.; Kramer, Lynda J.; Bailey, Randall E.; Kennedey, Kellie D.

    2017-01-01

    Accident statistics cite the flight crew as a causal factor in over 60% of large transport fatal accidents. Yet a well-trained and well-qualified crew is acknowledged as the critical center point of aircraft systems safety and an integral component of the entire commercial aviation system. A human-in-the-loop test was conducted using a Level D certified Boeing 737-800 simulator to evaluate the pilot's contribution to safety-of-flight during routine air carrier flight operations and in response to system failures. To quantify the human's contribution, crew complement was used as an independent variable in a between-subjects design. This paper details the crew's actions and responses while dealing with an in-flight airspeed failure. Accident statistics often cite flight crew error (Baker, 2001) as the primary contributor in accidents and incidents in transport category aircraft. However, the Air Line Pilots Association (2011) suggests "a well-trained and well-qualified pilot is acknowledged as the critical center point of the aircraft systems safety and an integral safety component of the entire commercial aviation system." This is generally acknowledged but cannot be verified because little or no quantitative data exists on how or how many accidents/incidents are averted by crew actions. Anecdotal evidence suggest crews handle failures on a daily basis and Aviation Safety Action Program data generally supports this assertion, even if the data is not released to the public. However without hard evidence, the contribution and means by which pilots achieve safety of flight is difficult to define. Thus, ways to improve the human ability to contribute or overcome deficiencies are ill-defined.

  4. Quantifying Pilot Contribution to Flight Safety during Drive Shaft Failure

    NASA Technical Reports Server (NTRS)

    Kramer, Lynda J.; Etherington, Tim; Last, Mary Carolyn; Bailey, Randall E.; Kennedy, Kellie D.

    2017-01-01

    Accident statistics cite the flight crew as a causal factor in over 60% of large transport aircraft fatal accidents. Yet, a well-trained and well-qualified pilot is acknowledged as the critical center point of aircraft systems safety and an integral safety component of the entire commercial aviation system. The latter statement, while generally accepted, cannot be verified because little or no quantitative data exists on how and how many accidents/incidents are averted by crew actions. A joint NASA/FAA high-fidelity motion-base simulation experiment specifically addressed this void by collecting data to quantify the human (pilot) contribution to safety-of-flight and the methods they use in today's National Airspace System. A human-in-the-loop test was conducted using the FAA's Oklahoma City Flight Simulation Branch Level D-certified B-737-800 simulator to evaluate the pilot's contribution to safety-of-flight during routine air carrier flight operations and in response to aircraft system failures. These data are fundamental to and critical for the design and development of future increasingly autonomous systems that can better support the human in the cockpit. Eighteen U.S. airline crews flew various normal and non-normal procedures over a two-day period and their actions were recorded in response to failures. To quantify the human's contribution to safety of flight, crew complement was used as the experiment independent variable in a between-subjects design. Pilot actions and performance during single pilot and reduced crew operations were measured for comparison against the normal two-crew complement during normal and non-normal situations. This paper details the crew's actions, including decision-making, and responses while dealing with a drive shaft failure - one of 6 non-normal events that were simulated in this experiment.

  5. Rate of occurrence of failures based on a nonhomogeneous Poisson process: an ozone analyzer case study.

    PubMed

    de Moura Xavier, José Carlos; de Andrade Azevedo, Irany; de Sousa Junior, Wilson Cabral; Nishikawa, Augusto

    2013-02-01

    Atmospheric pollutant monitoring constitutes a primordial activity in public policies concerning air quality. In São Paulo State, Brazil, the São Paulo State Environment Company (CETESB) maintains an automatic network which continuously monitors CO, SO(2), NO(x), O(3), and particulate matter concentrations in the air. The monitoring process accuracy is a fundamental condition for the actions to be taken by CETESB. As one of the support systems, a preventive maintenance program for the different analyzers used is part of the data quality strategy. Knowledge of the behavior of analyzer failure times could help optimize the program. To achieve this goal, the failure times of an ozone analyzer-considered a repairable system-were modeled by means of the nonhomogeneous Poisson process. The rate of occurrence of failures (ROCOF) was estimated for the intervals 0-70,800 h and 0-88,320 h, in which six and seven failures were observed, respectively. The results showed that the ROCOF estimate is influenced by the choice of the observation period, t(0) = 70,800 h and t(7) = 88,320 h in the cases analyzed. Identification of preventive maintenance actions, mainly when parts replacement occurs in the last interval of observation, is highlighted, justifying the alteration in the behavior of the inter-arrival times. The performance of a follow-up on each analyzer is recommended in order to record the impact of the performed preventive maintenance program on the enhancement of its useful life.

  6. Investigation of International Space Station Major Constituent Analyzer Anomalous ORU 02 Performance

    NASA Technical Reports Server (NTRS)

    Gardner, Ben D.; Burchfield, David E.; Pargellis, Andrew; Tissandier, Amber; Erwin, Phillip M.; Thoresen, Souzan; Gentry, Greg; Granahan, John; Matty, Chris

    2012-01-01

    The Major Constituent Analyzer (MCA) is a mass spectrometer-based instrument designed to provide critical monitoring of six major atmospheric constituents; nitrogen, oxygen, hydrogen, carbon dioxide, methane, and water vapor on-board the International Space Station. It is an integral part of the Environmental Control and Life Support System (ECLSS). The MCA system is comprised of seven orbit-replaceable units (ORUs) that provide flexibility in maintaining the MCA. Of these, ORU 02, the analyzer assembly requires replacement every 1 to 2 years due to the consumption of limited life components including the ion pump and ion source filaments. Typically, ORU 02s that reach end of life are swapped out of the MCA on orbit and replaced with the on-orbit spare. The replaced ORU 02 is then cycled through the OEM for refurbishment and returned to service. Recently, two refurbished ORU 02s, serial numbers F0001 and F0003, failed on orbit shortly after being installed into the MCA. Both ORU 02s were returned to ground for TT&E and a failure investigation. The failure signatures were reproduced on the ground and the investigation determined that both ORU 02 failures involve either the ion source or the ion source control electronics. This paper discusses the results of the failure investigation, the steps required to refurbish the ORU 02s, and the corrective actions that are being incorporated into the build and refurbishment process to preclude the reoccurrence of these failures in the future.

  7. Automated fault-management in a simulated spaceflight micro-world

    NASA Technical Reports Server (NTRS)

    Lorenz, Bernd; Di Nocera, Francesco; Rottger, Stefan; Parasuraman, Raja

    2002-01-01

    BACKGROUND: As human spaceflight missions extend in duration and distance from Earth, a self-sufficient crew will bear far greater onboard responsibility and authority for mission success. This will increase the need for automated fault management (FM). Human factors issues in the use of such systems include maintenance of cognitive skill, situational awareness (SA), trust in automation, and workload. This study examine the human performance consequences of operator use of intelligent FM support in interaction with an autonomous, space-related, atmospheric control system. METHODS: An expert system representing a model-base reasoning agent supported operators at a low level of automation (LOA) by a computerized fault finding guide, at a medium LOA by an automated diagnosis and recovery advisory, and at a high LOA by automate diagnosis and recovery implementation, subject to operator approval or veto. Ten percent of the experimental trials involved complete failure of FM support. RESULTS: Benefits of automation were reflected in more accurate diagnoses, shorter fault identification time, and reduced subjective operator workload. Unexpectedly, fault identification times deteriorated more at the medium than at the high LOA during automation failure. Analyses of information sampling behavior showed that offloading operators from recovery implementation during reliable automation enabled operators at high LOA to engage in fault assessment activities CONCLUSIONS: The potential threat to SA imposed by high-level automation, in which decision advisories are automatically generated, need not inevitably be counteracted by choosing a lower LOA. Instead, freeing operator cognitive resources by automatic implementation of recover plans at a higher LOA can promote better fault comprehension, so long as the automation interface is designed to support efficient information sampling.

  8. Minimum Control Requirements for Advanced Life Support Systems

    NASA Technical Reports Server (NTRS)

    Boulange, Richard; Jones, Harry; Jones, Harry

    2002-01-01

    Advanced control technologies are not necessary for the safe, reliable and continuous operation of Advanced Life Support (ALS) systems. ALS systems can and are adequately controlled by simple, reliable, low-level methodologies and algorithms. The automation provided by advanced control technologies is claimed to decrease system mass and necessary crew time by reducing buffer size and minimizing crew involvement. In truth, these approaches increase control system complexity without clearly demonstrating an increase in reliability across the ALS system. Unless these systems are as reliable as the hardware they control, there is no savings to be had. A baseline ALS system is presented with the minimal control system required for its continuous safe reliable operation. This baseline control system uses simple algorithms and scheduling methodologies and relies on human intervention only in the event of failure of the redundant backup equipment. This ALS system architecture is designed for reliable operation, with minimal components and minimal control system complexity. The fundamental design precept followed is "If it isn't there, it can't fail".

  9. A study of unstable rock failures using finite difference and discrete element methods

    NASA Astrophysics Data System (ADS)

    Garvey, Ryan J.

    Case histories in mining have long described pillars or faces of rock failing violently with an accompanying rapid ejection of debris and broken material into the working areas of the mine. These unstable failures have resulted in large losses of life and collapses of entire mine panels. Modern mining operations take significant steps to reduce the likelihood of unstable failure, however eliminating their occurrence is difficult in practice. Researchers over several decades have supplemented studies of unstable failures through the application of various numerical methods. The direction of the current research is to extend these methods and to develop improved numerical tools with which to study unstable failures in underground mining layouts. An extensive study is first conducted on the expression of unstable failure in discrete element and finite difference methods. Simulated uniaxial compressive strength tests are run on brittle rock specimens. Stable or unstable loading conditions are applied onto the brittle specimens by a pair of elastic platens with ranging stiffnesses. Determinations of instability are established through stress and strain histories taken for the specimen and the system. Additional numerical tools are then developed for the finite difference method to analyze unstable failure in larger mine models. Instability identifiers are established for assessing the locations and relative magnitudes of unstable failure through measures of rapid dynamic motion. An energy balance is developed which calculates the excess energy released as a result of unstable equilibria in rock systems. These tools are validated through uniaxial and triaxial compressive strength tests and are extended to models of coal pillars and a simplified mining layout. The results of the finite difference simulations reveal that the instability identifiers and excess energy calculations provide a generalized methodology for assessing unstable failures within potentially complex mine models. These combined numerical tools may be applied in future studies to design primary and secondary supports in bump-prone conditions, evaluate retreat mining cut sequences, asses pillar de-stressing techniques, or perform backanalyses on unstable failures in select mining layouts.

  10. Adjustable Autonomy Testbed

    NASA Technical Reports Server (NTRS)

    Malin, Jane T.; Schrenkenghost, Debra K.

    2001-01-01

    The Adjustable Autonomy Testbed (AAT) is a simulation-based testbed located in the Intelligent Systems Laboratory in the Automation, Robotics and Simulation Division at NASA Johnson Space Center. The purpose of the testbed is to support evaluation and validation of prototypes of adjustable autonomous agent software for control and fault management for complex systems. The AA T project has developed prototype adjustable autonomous agent software and human interfaces for cooperative fault management. This software builds on current autonomous agent technology by altering the architecture, components and interfaces for effective teamwork between autonomous systems and human experts. Autonomous agents include a planner, flexible executive, low level control and deductive model-based fault isolation. Adjustable autonomy is intended to increase the flexibility and effectiveness of fault management with an autonomous system. The test domain for this work is control of advanced life support systems for habitats for planetary exploration. The CONFIG hybrid discrete event simulation environment provides flexible and dynamically reconfigurable models of the behavior of components and fluids in the life support systems. Both discrete event and continuous (discrete time) simulation are supported, and flows and pressures are computed globally. This provides fast dynamic simulations of interacting hardware systems in closed loops that can be reconfigured during operations scenarios, producing complex cascading effects of operations and failures. Current object-oriented model libraries support modeling of fluid systems, and models have been developed of physico-chemical and biological subsystems for processing advanced life support gases. In FY01, water recovery system models will be developed.

  11. Veno-arterial extracorporeal membrane oxygenation for adult cardiovascular failure.

    PubMed

    Pellegrino, Vincent; Hockings, Lisen E; Davies, Andrew

    2014-10-01

    To examine the utility and technical challenges of applying veno-arterial extracorporeal membrane oxygenation for acute cardiovascular failure in adults with acute and chronic causes of heart failure. The role of mechanical circulatory support in acute cardiovascular continues to evolve as technology and clinical experience develop. There is increasing interest in the role of veno-arterial extracorporeal membrane oxygenation as a bridging therapy and as an adjunct to conventional cardiopulmonary resuscitation. Veno-arterial extracorporeal membrane oxygenation is an expensive, complex, resource intensive support. It is essential that its future use be guided by evidence obtained from centres that have demonstrated timely, safe support.

  12. Tardive Dyskinesia, Oral Parafunction, and Implant-Supported Rehabilitation.

    PubMed

    Lumetti, S; Ghiacci, G; Macaluso, G M; Amore, M; Galli, C; Calciolari, E; Manfredi, E

    2016-01-01

    Oral movement disorders may lead to prosthesis and implant failure due to excessive loading. We report on an edentulous patient suffering from drug-induced tardive dyskinesia (TD) and oral parafunction (OP) rehabilitated with implant-supported screw-retained prostheses. The frequency and intensity of the movements were high, and no pharmacological intervention was possible. Moreover, the patient refused night-time splint therapy. A series of implant and prosthetic failures were experienced. Implant failures were all in the maxilla and stopped when a rigid titanium structure was placed to connect implants. Ad hoc designed studies are desirable to elucidate the mutual influence between oral movement disorders and implant-supported rehabilitation.

  13. Tardive Dyskinesia, Oral Parafunction, and Implant-Supported Rehabilitation

    PubMed Central

    Amore, M.

    2016-01-01

    Oral movement disorders may lead to prosthesis and implant failure due to excessive loading. We report on an edentulous patient suffering from drug-induced tardive dyskinesia (TD) and oral parafunction (OP) rehabilitated with implant-supported screw-retained prostheses. The frequency and intensity of the movements were high, and no pharmacological intervention was possible. Moreover, the patient refused night-time splint therapy. A series of implant and prosthetic failures were experienced. Implant failures were all in the maxilla and stopped when a rigid titanium structure was placed to connect implants. Ad hoc designed studies are desirable to elucidate the mutual influence between oral movement disorders and implant-supported rehabilitation. PMID:28050290

  14. Novel Therapeutic Strategies for Reducing Right Heart Failure Associated Mortality in Fibrotic Lung Diseases

    PubMed Central

    Levy, Matthew; Oyenuga, Olusegun

    2015-01-01

    Fibrotic lung diseases carry a significant mortality burden worldwide. A large proportion of these deaths are due to right heart failure and pulmonary hypertension. Underlying contributory factors which appear to play a role in the mechanism of progression of right heart dysfunction include chronic hypoxia, defective calcium handling, hyperaldosteronism, pulmonary vascular alterations, cyclic strain of pressure and volume changes, elevation of circulating TGF-β, and elevated systemic NO levels. Specific therapies targeting pulmonary hypertension include calcium channel blockers, endothelin (ET-1) receptor antagonists, prostacyclin analogs, phosphodiesterase type 5 (PDE5) inhibitors, and rho-kinase (ROCK) inhibitors. Newer antifibrotic and anti-inflammatory agents may exert beneficial effects on heart failure in idiopathic pulmonary fibrosis. Furthermore, right ventricle-targeted therapies, aimed at mitigating the effects of functional right ventricular failure, include β-adrenoceptor (β-AR) blockers, angiotensin-converting enzyme (ACE) inhibitors, antioxidants, modulators of metabolism, and 5-hydroxytryptamine-2B (5-HT2B) receptor antagonists. Newer nonpharmacologic modalities for right ventricular support are increasingly being implemented. Early, effective, and individualized therapy may prevent overt right heart failure in fibrotic lung disease leading to improved outcomes and quality of life. PMID:26583148

  15. Automated Decision-Support Technologies for Prehospital Care of Trauma Casualties

    DTIC Science & Technology

    2010-04-01

    insensitive to prehospital major traumatic pathology . Second, there are numerous potential sources of decision-support failure, and it is not possible...been speculated to be insensitive to prehospital major traumatic pathology . Second, there are numerous potential sources of decision-support failure...the soldiers, and the diagnostic value of prehospital vital signs for major traumatic pathologies has often been questioned [4-8]. Indeed, our

  16. Spacecraft Parachute Recovery System Testing from a Failure Rate Perspective

    NASA Technical Reports Server (NTRS)

    Stewart, Christine E.

    2013-01-01

    Spacecraft parachute recovery systems, especially those with a parachute cluster, require testing to identify and reduce failures. This is especially important when the spacecraft in question is human-rated. Due to the recent effort to make spaceflight affordable, the importance of determining a minimum requirement for testing has increased. The number of tests required to achieve a mature design, with a relatively constant failure rate, can be estimated from a review of previous complex spacecraft recovery systems. Examination of the Apollo parachute testing and the Shuttle Solid Rocket Booster recovery chute system operation will clarify at which point in those programs the system reached maturity. This examination will also clarify the risks inherent in not performing a sufficient number of tests prior to operation with humans on-board. When looking at complex parachute systems used in spaceflight landing systems, a pattern begins to emerge regarding the need for a minimum amount of testing required to wring out the failure modes and reduce the failure rate of the parachute system to an acceptable level for human spaceflight. Not only a sufficient number of system level testing, but also the ability to update the design as failure modes are found is required to drive the failure rate of the system down to an acceptable level. In addition, sufficient data and images are necessary to identify incipient failure modes or to identify failure causes when a system failure occurs. In order to demonstrate the need for sufficient system level testing prior to an acceptable failure rate, the Apollo Earth Landing System (ELS) test program and the Shuttle Solid Rocket Booster Recovery System failure history will be examined, as well as some experiences in the Orion Capsule Parachute Assembly System will be noted.

  17. Distributed decision-making in electric power system transmission maintenance scheduling using multi-agent systems (MAS)

    NASA Astrophysics Data System (ADS)

    Zhang, Zhong

    In this work, motivated by the need to coordinate transmission maintenance scheduling among a multiplicity of self-interested entities in restructured power industry, a distributed decision support framework based on multiagent negotiation systems (MANS) is developed. An innovative risk-based transmission maintenance optimization procedure is introduced. Several models for linking condition monitoring information to the equipment's instantaneous failure probability are presented, which enable quantitative evaluation of the effectiveness of maintenance activities in terms of system cumulative risk reduction. Methodologies of statistical processing, equipment deterioration evaluation and time-dependent failure probability calculation are also described. A novel framework capable of facilitating distributed decision-making through multiagent negotiation is developed. A multiagent negotiation model is developed and illustrated that accounts for uncertainty and enables social rationality. Some issues of multiagent negotiation convergence and scalability are discussed. The relationships between agent-based negotiation and auction systems are also identified. A four-step MAS design methodology for constructing multiagent systems for power system applications is presented. A generic multiagent negotiation system, capable of inter-agent communication and distributed decision support through inter-agent negotiations, is implemented. A multiagent system framework for facilitating the automated integration of condition monitoring information and maintenance scheduling for power transformers is developed. Simulations of multiagent negotiation-based maintenance scheduling among several independent utilities are provided. It is shown to be a viable alternative solution paradigm to the traditional centralized optimization approach in today's deregulated environment. This multiagent system framework not only facilitates the decision-making among competing power system entities, but also provides a tool to use in studying competitive industry relative to monopolistic industry.

  18. The Direction of Fluid Dynamics for Liquid Propulsion at NASA Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Griffin, Lisa W.

    2012-01-01

    The Fluid Dynamics Branch's (ER42) at MSFC mission is to support NASA and other customers with discipline expertise to enable successful accomplishment of program/project goals. The branch is responsible for all aspects of the discipline of fluid dynamics, analysis and testing, applied to propulsion or propulsion-induced loads and environments, which includes the propellant delivery system, combustion devices, coupled systems, and launch and separation events. ER42 supports projects from design through development, and into anomaly and failure investigations. ER42 is committed to continually improving the state-of-its-practice to provide accurate, effective, and timely fluid dynamics assessments and in extending the state-of-the-art of the discipline.

  19. Hepatic dysfunction.

    PubMed

    McCord, Kelly W; Webb, Craig B

    2011-07-01

    This article reviews the common pathophysiology that constitutes hepatic dysfunction, regardless of the inciting cause. The systemic consequences of liver failure and the impact of this condition on other organ systems are highlighted. The diagnostic tests available for determining the cause and extent of liver dysfunction are outlined, treatment strategies aimed at supporting hepatic health and recovery are discussed, and prognosis is briefly covered. The article emphasizes the fact that because of the central role of the liver in maintaining normal systemic homeostasis, hepatic dysfunction cannot be effectively addressed as an isolated entity. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Generic Health Management: A System Engineering Process Handbook Overview and Process

    NASA Technical Reports Server (NTRS)

    Wilson, Moses Lee; Spruill, Jim; Hong, Yin Paw

    1995-01-01

    Health Management, a System Engineering Process, is one of those processes-techniques-and-technologies used to define, design, analyze, build, verify, and operate a system from the viewpoint of preventing, or minimizing, the effects of failure or degradation. It supports all ground and flight elements during manufacturing, refurbishment, integration, and operation through combined use of hardware, software, and personnel. This document will integrate Health Management Processes (six phases) into five phases in such a manner that it is never a stand alone task/effort which separately defines independent work functions.

  1. Probability of loss of assured safety in temperature dependent systems with multiple weak and strong links.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Jay Dean; Oberkampf, William Louis; Helton, Jon Craig

    2004-12-01

    Relationships to determine the probability that a weak link (WL)/strong link (SL) safety system will fail to function as intended in a fire environment are investigated. In the systems under study, failure of the WL system before failure of the SL system is intended to render the overall system inoperational and thus prevent the possible occurrence of accidents with potentially serious consequences. Formal developments of the probability that the WL system fails to deactivate the overall system before failure of the SL system (i.e., the probability of loss of assured safety, PLOAS) are presented for several WWSL configurations: (i) onemore » WL, one SL, (ii) multiple WLs, multiple SLs with failure of any SL before any WL constituting failure of the safety system, (iii) multiple WLs, multiple SLs with failure of all SLs before any WL constituting failure of the safety system, and (iv) multiple WLs, multiple SLs and multiple sublinks in each SL with failure of any sublink constituting failure of the associated SL and failure of all SLs before failure of any WL constituting failure of the safety system. The indicated probabilities derive from time-dependent temperatures in the WL/SL system and variability (i.e., aleatory uncertainty) in the temperatures at which the individual components of this system fail and are formally defined as multidimensional integrals. Numerical procedures based on quadrature (i.e., trapezoidal rule, Simpson's rule) and also on Monte Carlo techniques (i.e., simple random sampling, importance sampling) are described and illustrated for the evaluation of these integrals. Example uncertainty and sensitivity analyses for PLOAS involving the representation of uncertainty (i.e., epistemic uncertainty) with probability theory and also with evidence theory are presented.« less

  2. Heroic Reliability Improvement in Manned Space Systems

    NASA Technical Reports Server (NTRS)

    Jones, Harry W.

    2017-01-01

    System reliability can be significantly improved by a strong continued effort to identify and remove all the causes of actual failures. Newly designed systems often have unexpected high failure rates which can be reduced by successive design improvements until the final operational system has an acceptable failure rate. There are many causes of failures and many ways to remove them. New systems may have poor specifications, design errors, or mistaken operations concepts. Correcting unexpected problems as they occur can produce large early gains in reliability. Improved technology in materials, components, and design approaches can increase reliability. The reliability growth is achieved by repeatedly operating the system until it fails, identifying the failure cause, and fixing the problem. The failure rate reduction that can be obtained depends on the number and the failure rates of the correctable failures. Under the strong assumption that the failure causes can be removed, the decline in overall failure rate can be predicted. If a failure occurs at the rate of lambda per unit time, the expected time before the failure occurs and can be corrected is 1/lambda, the Mean Time Before Failure (MTBF). Finding and fixing a less frequent failure with the rate of lambda/2 per unit time requires twice as long, time of 1/(2 lambda). Cutting the failure rate in half requires doubling the test and redesign time and finding and eliminating the failure causes.Reducing the failure rate significantly requires a heroic reliability improvement effort.

  3. Space Infrared Telescope Facility (SIRTF) - Operations concept. [decreasing development and operations cost

    NASA Technical Reports Server (NTRS)

    Miller, Richard B.

    1992-01-01

    The development and operations costs of the Space IR Telescope Facility (SIRTF) are discussed in the light of minimizing total outlays and optimizing efficiency. The development phase cannot extend into the post-launch segment which is planned to only support system verification and calibration followed by operations with a 70-percent efficiency goal. The importance of reducing the ground-support staff is demonstrated, and the value of the highly sensitive observations to the general astronomical community is described. The Failure Protection Algorithm for the SIRTF is designed for the 5-yr lifetime and the continuous venting of cryogen, and a science driven ground/operations system is described. Attention is given to balancing cost and performance, prototyping during the development phase, incremental development, the utilization of standards, and the integration of ground system/operations with flight system integration and test.

  4. Telemonitoring and Medical Care of Heart Failure Patients Supported by Left Ventricular Assist Devices - The Medolution Project.

    PubMed

    Reiss, Nils; Schmidt, Thomas; Müller-von Aschwege, Frerk; Thronicke, Wolfgang; Hoffmann, Jan-Dirk; Röbesaat, Jenny Inge; Deniz, Ezin; Hein, Andreas; Krumm, Heiko; Stewing, Franz-Josef; Willemsen, Detlev; Schmitto, Jan Dieter; Feldmann, Christina

    2017-01-01

    Long-term survival after left ventricular assist device (LVAD) implantation in heart failure patients is mainly determined by a sophisticated after-care. Ambulatory visits only take place every 12 weeks. In case of life-threatening complications (pump thrombosis, driveline infection) this might lead to delayed diagnosis and delayed intervention. It is the intention of the international project Medolution (Medical care evolution) to develop new approaches in order to create best structures for telemonitoring of LVAD patients. In the very early period of the project a questionnaire was sent to 180 LVAD patients to evaluate the need and acceptance of telemonitoring. Thereafter, a graphical user interface (GUI) mockup was developed as one of the first steps to improve the continuous contact between the LVAD patient and the physician. As a final goal the Medolution project aims to bundle all relevant informations from different data sources into one platform in order to provide the physician a comprehensive overview of a patient's situation. In the systems background a big data analysis should run permanently and should try to detect abnormalities and correlations as well. At crucial events, a notification system should inform the physician and should provide the causing data via a decision support system. With this new system we are expecting early detection and prevention of common and partially life-threatening complications, less readmissions to the hospital, an increase in quality of life for the patients and less costs for the health care system as well.

  5. [Platforms are needed for innovative basic research in ophthalmology].

    PubMed

    Wang, Yi-qiang

    2012-07-01

    Basic research poses the cornerstone of technical innovation in all lines including medical sciences. Currently, there are shortages of professional scientists as well as technical supporting teams and facilities in the field of basic research of ophthalmology and visual science in China. Evaluation system and personnel policies are not supportive for innovative but high-risk-of-failure research projects. Discussion of reasons and possible solutions are given here to address these problems, aiming at promoting buildup of platforms hosting novel and important basic research in eye science in this country.

  6. How Miniature/Microminiature (2M) Repair Capabilities Can Reduce the Impact of No Evidence of Failure (NEOF) Among Repairables on the Navy’s Operations and Maintenance Account

    DTIC Science & Technology

    1988-06-01

    and PCBs. The pilot program involved screening, testing , and repairing of EMs/PCBs for both COMNAVSEASYSCOM and Commander, Naval Electronic Systems...were chosen from the Support and Test Equipment Engineering Program (STEEP) tests rformed by"IMA San Diego duringl987. A statistical analysis and a Level...were chosen from the Support and Test Equipment Engineering Program (STEEP) tests performed by SIMA San Diego during 1987. A statistical analysis and a

  7. Implementing Journaling in a Linux Shared Disk File System

    NASA Technical Reports Server (NTRS)

    Preslan, Kenneth W.; Barry, Andrew; Brassow, Jonathan; Cattelan, Russell; Manthei, Adam; Nygaard, Erling; VanOort, Seth; Teigland, David; Tilstra, Mike; O'Keefe, Matthew; hide

    2000-01-01

    In computer systems today, speed and responsiveness is often determined by network and storage subsystem performance. Faster, more scalable networking interfaces like Fibre Channel and Gigabit Ethernet provide the scaffolding from which higher performance computer systems implementations may be constructed, but new thinking is required about how machines interact with network-enabled storage devices. In this paper we describe how we implemented journaling in the Global File System (GFS), a shared-disk, cluster file system for Linux. Our previous three papers on GFS at the Mass Storage Symposium discussed our first three GFS implementations, their performance, and the lessons learned. Our fourth paper describes, appropriately enough, the evolution of GFS version 3 to version 4, which supports journaling and recovery from client failures. In addition, GFS scalability tests extending to 8 machines accessing 8 4-disk enclosures were conducted: these tests showed good scaling. We describe the GFS cluster infrastructure, which is necessary for proper recovery from machine and disk failures in a collection of machines sharing disks using GFS. Finally, we discuss the suitability of Linux for handling the big data requirements of supercomputing centers.

  8. In Support of Failure

    ERIC Educational Resources Information Center

    Carr, Allison

    2013-01-01

    In this essay, I propose a concerted effort to begin devising a theory and pedagogy of failure. I review the discourse of failure in Western culture as well as in composition pedagogy, ultimately suggesting that failure is not simply a judgement or indication of rank but is a relational, affect-bearing concept with tremendous relevance to…

  9. Command module/service module reaction control subsystem assessment

    NASA Technical Reports Server (NTRS)

    Weary, D. P.

    1971-01-01

    Detailed review of component failure histories, qualification adequacy, manufacturing flow, checkout requirements and flow, ground support equipment interfaces, subsystem interface verification, protective devices, and component design did not reveal major weaknesses in the command service module (CSM) reaction control system (RCS). No changes to the CSM RCS were recommended. The assessment reaffirmed the adequacy of the CSM RCS for future Apollo missions.

  10. ME Cares: a statewide system engaging providers in disease management.

    PubMed

    Wexler, Richard; Bean, Claudette; Ito, Diane; Kopp, Zoe; LaCasse, John A; Rea, Vicki

    2004-01-01

    ME Cares (Maine Cares) is a coalition of 32 Maine hospitals that offer community-based, telephonic care support (disease management) programs for patients with heart failure and/or coronary heart disease. We describe the steps, challenges, and lessons learned in coalition development and maintenance. We also present a pre- and post-analysis of our clinical outcomes after enrolling 2145 patients.

  11. Acquisition Environment, Safety, and Occupational Health: Lessons Learned From DoD Acquisition Systems Engineering Program Support Reviews

    DTIC Science & Technology

    2011-05-01

    not integrated Lack of emphasis on implementing ESOH mitigations Failure to address USD (AT&L) hexavalent chrome policy 12 ODUSD(I&E) / CMRM Value of...4.1, Design Considerations Factor 4.1.4, ESOH Factor 4.1.7, Corrosion ( Hexavalent Chromium) 6 ODUSD(I&E) / CMRM 1. Mission Capabilities – Clarity and

  12. Decision support for mitigating the risk of tree induced transmission line failure in utility rights-of-way.

    PubMed

    Poulos, H M; Camp, A E

    2010-02-01

    Vegetation management is a critical component of rights-of-way (ROW) maintenance for preventing electrical outages and safety hazards resulting from tree contact with conductors during storms. Northeast Utility's (NU) transmission lines are a critical element of the nation's power grid; NU is therefore under scrutiny from federal agencies charged with protecting the electrical transmission infrastructure of the United States. We developed a decision support system to focus right-of-way maintenance and minimize the potential for a tree fall episode that disables transmission capacity across the state of Connecticut. We used field data on tree characteristics to develop a system for identifying hazard trees (HTs) in the field using limited equipment to manage Connecticut power line ROW. Results from this study indicated that the tree height-to-diameter ratio, total tree height, and live crown ratio were the key characteristics that differentiated potential risk trees (danger trees) from trees with a high probability of tree fall (HTs). Products from this research can be transferred to adaptive right-of-way management, and the methods we used have great potential for future application to other regions of the United States and elsewhere where tree failure can disrupt electrical power.

  13. Fault Tree Analysis Application for Safety and Reliability

    NASA Technical Reports Server (NTRS)

    Wallace, Dolores R.

    2003-01-01

    Many commercial software tools exist for fault tree analysis (FTA), an accepted method for mitigating risk in systems. The method embedded in the tools identifies a root as use in system components, but when software is identified as a root cause, it does not build trees into the software component. No commercial software tools have been built specifically for development and analysis of software fault trees. Research indicates that the methods of FTA could be applied to software, but the method is not practical without automated tool support. With appropriate automated tool support, software fault tree analysis (SFTA) may be a practical technique for identifying the underlying cause of software faults that may lead to critical system failures. We strive to demonstrate that existing commercial tools for FTA can be adapted for use with SFTA, and that applied to a safety-critical system, SFTA can be used to identify serious potential problems long before integrator and system testing.

  14. A near miss: the importance of context in a public health informatics project in a New Zealand case study.

    PubMed

    Wells, Stewart; Bullen, Chris

    2008-01-01

    This article describes the near failure of an information technology (IT) system designed to support a government-funded, primary care-based hepatitis B screening program in New Zealand. Qualitative methods were used to collect data and construct an explanatory model. Multiple incorrect assumptions were made about participants, primary care workflows and IT capacity, software vendor user knowledge, and the health IT infrastructure. Political factors delayed system development and it was implemented untested, almost failing. An intensive rescue strategy included system modifications, relaxation of data validity rules, close engagement with software vendors, and provision of intensive on-site user support. This case study demonstrates that consideration of the social, political, technological, and health care contexts is important for successful implementation of public health informatics projects.

  15. A design support simulation of the augmentor wing jet STOL research aircraft

    NASA Technical Reports Server (NTRS)

    Rumsey, P. C.; Spitzer, R. E.; Glende, W. L. B.

    1972-01-01

    The modification of a C-8A (De Havilland Buffalo) aircraft to a STOL configuration is discussed. The modification consisted of the installation of an augmentor-wing jet flap system. System design requirements were investigated for the lateral and directional flight control systems, the lateral and directional axes stability augmentation systems, the engine and Pegasus nozzle control systems, and the hydraulic systems. Operational techniques for STOL landings, control of engine failures, and pilot techniques for improving engine-out go-around performance were examined. Design changes have been identified to correct deficiencies in areas of the airplane control sytems and to improve the airplane flying qualities.

  16. Probability of loss of assured safety in systems with multiple time-dependent failure modes.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Helton, Jon Craig; Pilch, Martin.; Sallaberry, Cedric Jean-Marie.

    2012-09-01

    Weak link (WL)/strong link (SL) systems are important parts of the overall operational design of high-consequence systems. In such designs, the SL system is very robust and is intended to permit operation of the entire system under, and only under, intended conditions. In contrast, the WL system is intended to fail in a predictable and irreversible manner under accident conditions and render the entire system inoperable before an accidental operation of the SL system. The likelihood that the WL system will fail to deactivate the entire system before the SL system fails (i.e., degrades into a configuration that could allowmore » an accidental operation of the entire system) is referred to as probability of loss of assured safety (PLOAS). Representations for PLOAS for situations in which both link physical properties and link failure properties are time-dependent are derived and numerically evaluated for a variety of WL/SL configurations, including PLOAS defined by (i) failure of all SLs before failure of any WL, (ii) failure of any SL before failure of any WL, (iii) failure of all SLs before failure of all WLs, and (iv) failure of any SL before failure of all WLs. The effects of aleatory uncertainty and epistemic uncertainty in the definition and numerical evaluation of PLOAS are considered.« less

  17. System reliability approaches for advanced propulsion system structures

    NASA Technical Reports Server (NTRS)

    Cruse, T. A.; Mahadevan, S.

    1991-01-01

    This paper identifies significant issues that pertain to the estimation and use of system reliability in the design of advanced propulsion system structures. Linkages between the reliabilities of individual components and their effect on system design issues such as performance, cost, availability, and certification are examined. The need for system reliability computation to address the continuum nature of propulsion system structures and synergistic progressive damage modes has been highlighted. Available system reliability models are observed to apply only to discrete systems. Therefore a sequential structural reanalysis procedure is formulated to rigorously compute the conditional dependencies between various failure modes. The method is developed in a manner that supports both top-down and bottom-up analyses in system reliability.

  18. Risk Based Reliability Centered Maintenance of DOD Fire Protection Systems

    DTIC Science & Technology

    1999-01-01

    2.2.3 Failure Mode and Effect Analysis ( FMEA )............................ 2.2.4 Failure Mode Risk Characterization...Step 2 - System functions and functional failures definition Step 3 - Failure mode and effect analysis ( FMEA ) Step 4 - Failure mode risk...system). The Interface Location column identifies the location where the FMEA of the fire protection system began or stopped. For example, for the fire

  19. Quality Issues in Propulsion

    NASA Technical Reports Server (NTRS)

    McCarty, John P.; Lyles, Garry M.

    1997-01-01

    Propulsion system quality is defined in this paper as having high reliability, that is, quality is a high probability of within-tolerance performance or operation. Since failures are out-of-tolerance performance, the probability of failures and their occurrence is the difference between high and low quality systems. Failures can be described at 3 levels: the system failure (which is the detectable end of a failure), the failure mode (which is the failure process), and the failure cause (which is the start). Failure causes can be evaluated & classified by type. The results of typing flight history failures shows that most failures are in unrecognized modes and result from human error or noise, i.e. failures are when engineers learn how things really work. Although the study based on US launch vehicles, a sampling of failures from other countries indicates the finding has broad application. The parameters of the design of a propulsion system are not single valued, but have dispersions associated with the manufacturing of parts. Many tests are needed to find failures, if the dispersions are large relative to tolerances, which could contribute to the large number of failures in unrecognized modes.

  20. Adaptive Flight Control for Aircraft Safety Enhancements

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.; Gregory, Irene M.; Joshi, Suresh M.

    2008-01-01

    This poster presents the current adaptive control research being conducted at NASA ARC and LaRC in support of the Integrated Resilient Aircraft Control (IRAC) project. The technique "Approximate Stability Margin Analysis of Hybrid Direct-Indirect Adaptive Control" has been developed at NASA ARC to address the needs for stability margin metrics for adaptive control that potentially enables future V&V of adaptive systems. The technique "Direct Adaptive Control With Unknown Actuator Failures" is developed at NASA LaRC to deal with unknown actuator failures. The technique "Adaptive Control with Adaptive Pilot Element" is being researched at NASA LaRC to investigate the effects of pilot interactions with adaptive flight control that can have implications of stability and performance.

  1. Reducing the Risk of Human Space Missions with INTEGRITY

    NASA Technical Reports Server (NTRS)

    Jones, Harry W.; Dillon-Merill, Robin L.; Tri, Terry O.; Henninger, Donald L.

    2003-01-01

    The INTEGRITY Program will design and operate a test bed facility to help prepare for future beyond-LEO missions. The purpose of INTEGRITY is to enable future missions by developing, testing, and demonstrating advanced human space systems. INTEGRITY will also implement and validate advanced management techniques including risk analysis and mitigation. One important way INTEGRITY will help enable future missions is by reducing their risk. A risk analysis of human space missions is important in defining the steps that INTEGRITY should take to mitigate risk. This paper describes how a Probabilistic Risk Assessment (PRA) of human space missions will help support the planning and development of INTEGRITY to maximize its benefits to future missions. PRA is a systematic methodology to decompose the system into subsystems and components, to quantify the failure risk as a function of the design elements and their corresponding probability of failure. PRA provides a quantitative estimate of the probability of failure of the system, including an assessment and display of the degree of uncertainty surrounding the probability. PRA provides a basis for understanding the impacts of decisions that affect safety, reliability, performance, and cost. Risks with both high probability and high impact are identified as top priority. The PRA of human missions beyond Earth orbit will help indicate how the risk of future human space missions can be reduced by integrating and testing systems in INTEGRITY.

  2. Access to Heart Transplantation: A Proper Analysis of the Competing Risks of Death and Transplantation Is Required to Optimize Graft Allocation.

    PubMed

    Cantrelle, Christelle; Legeai, Camille; Latouche, Aurélien; Tuppin, Philippe; Jasseron, Carine; Sebbag, Laurent; Bastien, Olivier; Dorent, Richard

    2017-08-01

    Heart allocation systems are usually urgency-based, offering grafts to candidates at high risk of waitlist mortality. In the context of a revision of the heart allocation rules, we determined observed predictors of 1-year waitlist mortality in France, considering the competing risk of transplantation, to determine which candidate subgroups are favored or disadvantaged by the current allocation system. Patients registered on the French heart waitlist between 2010 and 2013 were included. Cox cause-specific hazards and Fine and Gray subdistribution hazards were used to determine candidate characteristics associated with waitlist mortality and access to transplantation. Of the 2053 candidates, 7 variables were associated with 1-year waitlist mortality by the Fine and Gray method including 4 candidate characteristics related to heart failure severity (hospitalization at listing, serum natriuretic peptide level, systolic pulmonary artery pressure, and glomerular filtration rate) and 3 characteristics not associated with heart failure severity but with lower access to transplantation (blood type, age, and body mass index). Observed waitlist mortality for candidates on mechanical circulatory support was like that of others. The heart allocation system strongly modifies the risk of pretransplant mortality related to heart failure severity. An in-depth competing risk analysis is therefore a more appropriate method to evaluate graft allocation systems. This knowledge should help to prioritize candidates in the context of a limited donor pool.

  3. Prototyping a Web-Enabled Decision Support System to Improve Capacity Management of Aviation Training

    DTIC Science & Technology

    2005-09-01

    sharing, cooperation, and cost optimization International Journal of Production Economics Amsterdam, 93,94, 41-52. Retrieved July 13, 2005, from the... Journal of Production Economics , 59(1-3), 53-64. Calogero, B. (2000). Who is to blame for ERP failure? SunServer, 14(6), 8-9. Retrieved July 24...database. Bonney, M. C., Zhang, Z., Head, M. A., Tien, C. C., & Barson, R. J. (1999). Are push and pull systems really so different? International

  4. Architecture Specification for PAVE PILLAR Avionics

    DTIC Science & Technology

    1987-01-01

    PAVE PILLAR system is 99% fault detection. The percent fault detection is determined by the following computation. The number of verified failures de ...reconfiguration or reparameterization requi’red to support manual operations rests w’ith the Mission Supervi’sor. 3.3.8 corm~utr _ De in 3.3.8.1 Hither...1Order Ti.rie Su ’, .S.yStem The Operational Flight Program (OFP) will be de - veloped in accordance with the requirements of the Ada (ANSI/ MIL-STD

  5. The failure of AHERF: 5 important lessons.

    PubMed

    Goldstein, Lisa

    2008-08-01

    Important lessons from AHERF's downfall: Strong governance and oversight of management are needed to ensure accountability; Disciplined growth strategies need to be supported by rigorous financial planning and feasibility analysis; Physician integration is critical to grow market share, but needs to be methodical and measured; Robust information systems are necessary to manage costs, maximize revenue, and provide differentiation in quality and clinical outcomes; Disclosure of the financial performance of all of a health system's operations creates greater transparency and builds credibility.

  6. USAF Evaluation of an Automated Adaptive Flight Training System

    DTIC Science & Technology

    1975-10-01

    system. C. What is the most effective wav to utilize the system in ^jierational training’ Student opinion for this question JS equally divided...None Utility hydraulic failure Flap failure left engine failure Right engine failure Stah 2 aug failure No g\\ ro approach procedure, no MIDI

  7. Vertebral body spread in thoracolumbar burst fractures can predict posterior construct failure.

    PubMed

    De Iure, Federico; Lofrese, Giorgio; De Bonis, Pasquale; Cultrera, Francesco; Cappuccio, Michele; Battisti, Sofia

    2018-06-01

    The load sharing classification (LSC) laid foundations for a scoring system able to indicate which thoracolumbar fractures, after short-segment posterior-only fixations, would need longer instrumentations or additional anterior supports. We analyzed surgically treated thoracolumbar fractures, quantifying the vertebral body's fragment displacement with the aim of identifying a new parameter that could predict the posterior-only construct failure. This is a retrospective cohort study from a single institution. One hundred twenty-one consecutive patients were surgically treated for thoracolumbar burst fractures. Grade of kyphosis correction (GKC) expressed radiological outcome; Oswestry Disability Index and visual analog scale were considered. One hundred twenty-one consecutive patients who underwent posterior fixation for unstable thoracolumbar burst fractures were retrospectively evaluated clinically and radiologically. Supplementary anterior fixations were performed in 34 cases with posterior instrumentation failure, determined on clinic-radiological evidence or symptomatic loss of kyphosis correction. Segmental kyphosis angle and GKC were calculated according to the Cobb method. The displacement of fracture fragments was obtained from the mean of the adjacent end plate areas subtracted from the area enclosed by the maximum contour of vertebral fragmentation. The "spread" was derived from the ratio between this subtraction and the mean of the adjacent end plate areas. Analysis of variance, Mann-Whitney, and receiver operating characteristic were performed for statistical analysis. The authors report no conflict of interest concerning the materials or methods used in the present study or the findings specified in this paper. No funds or grants have been received for the present study. The spread revealed to be a helpful quantitative measurement of vertebral body fragment displacement, easily reproducible with the current computed tomography (CT) imaging technologies. There were no failures of posterior fixations with preoperative spreads <42% and losses of correction (LOC)<10°, whereas spreads >62.7% required supplementary anterior supports whenever LOC>10° were recorded. Most of the patients in a "gray zone," with spreads between 42% and 62.7%, needed additional anterior supports because of clinical-radiological evidence of impending mechanical failures, which developed independently from the GKC. Preoperative kyphosis (p<.001), load sharing score (p=.002), and spread (p<.001) significantly affected the final surgical treatment (posterior or circumferential). Twenty-two years after the LSC, both improvements in spinal stabilization systems and software imaging innovations have modified surgical concepts and approach on spinal trauma care. Spread was found to be an additional tool that could help in predicting the posterior construct failure, providing an objective preoperative indicator, easily reproducible with the modern viewers for CT images. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Circular pump support of blood circulation in the human body

    NASA Astrophysics Data System (ADS)

    Medvedev, A. E.; Fomin, V. M.; Prikhodko, Yu. M.; Cherniavskiy, A. M.; Fomichev, V. P.; Fomichev, A. V.; Chekhov, V. P.; Ruzmatov, T. M.

    2016-10-01

    The need of circulatory support systems in the treatment of chronic heart failure is increasing constantly, as 20% of patients in the waiting list die every year. Despite the great need for mechanical heart support systems, using of available systems is limited by the expensiveness. In addition, there is no one system that is 100% responsible to all medical and technical requirements, and would be completely safe for patient. Therefore, further research in the field of circu-latory support systems, considering health and technical requirements is relevant. One of the new directions in the study are disc pumps of viscous friction for liquid transporting, based on the Tesla pump principle. The operation principle of pumps based on the phenomenon of the boundary layer which is formed on the disk rotating in a fluid. There are experimental studies results of models with different variants of the rotor suspension, the various forms and the number of disks, forms the pump housing. However, none of the above samples was not brought to clinical trials. Furthermore, despite the promise of this model is still used today in some circulatory support systems are no similar type pump. Published data provide a basis for further development and testing of the pump model and allow to hope for leveling a number of significant shortcomings of modern left ventricular bypass systems.

  9. Stress Transfer and Structural Failure of Bilayered Material Systems

    NASA Astrophysics Data System (ADS)

    Prieto-Munoz, Pablo Arthur

    Bilayered material systems are common in naturally formed or artificially engineered structures. Understanding how loads transfer within these structural systems is necessary to predict failure and develop effective designs. Existing methods for evaluating the stress transfer in bilayered materials are limited to overly simplified models or require experimental calibration. As a result, these methods have failed to accurately account for such structural failures as the creep induced roofing panel collapse of Boston's I-90 connector tunnel, which was supported by adhesive anchors. The one-dimensional stress analyses currently used for adhesive anchor design cannot account for viscoelastic creep failure, and consequently results in dangerously under-designed structural systems. In this dissertation, a method for determining the two-dimensional stress and displacement fields for a generalized bilayered material system is developed, and proposes a closed-form analytical solution. A general linear-elastic solution is first proposed by decoupling the elastic governing equations from one another through the so-called plane assumption. Based on this general solution, an axisymmetric problem and a plane strain problem are formulated. These are applied to common bilayered material systems such as: (1) concrete adhesive anchors, (2) material coatings, (3) asphalt pavements, and (4) layered sedimentary rocks. The stress and displacement fields determined by this analytical analysis are validated through the use of finite element models. Through the correspondence principle, the linear-elastic solution is extended to consider time-dependent viscoelastic material properties, thus facilitating the analysis of adhesive anchors and asphalt pavements while incorporating their viscoelastic material behavior. Furthermore, the elastic stress analysis can explain the fracturing phenomenon of material coatings, pavements, and layered rocks, successfully predicting their fracture saturation ratio---which is the ratio of fracture spacing to the thickness of the weak layer where an increase in load will not cause any new fractures to form. Moreover, these specific material systems are looked at in the context of existing and novel experimental results, further demonstrating the advantage of the stress transfer analysis proposed. This research provides a closed-form stress solution for various structural systems that is applied to different failure analyses. The versatility of this method is in the flexibility and the ease upon which the stress and displacement field results can be applied to existing stress- or displacement-based structural failure criteria. As presented, this analysis can be directly used to: (1) design adhesive anchoring systems for long-term creep loading, (2) evaluate the fracture mechanics behind bilayered material coatings and pavement overlay systems, and (3) determine the fracture spacing to layer thickness ratio of layered sedimentary rocks. As is shown in the four material systems presented, this general solution has far reaching applications in facilitating design and analysis of typical bilayered structural systems.

  10. Device monitoring strategies in acute heart failure syndromes.

    PubMed

    Samara, Michael A; Tang, W H Wilson

    2011-09-01

    Acute heart failure syndromes (AHFS) represent the most common discharge diagnoses in adults over age 65 and translate into dramatically increased heart failure-associated morbidity and mortality. Conventional approaches to the early detection of pulmonary and systemic congestion have been shown to be of limited sensitivity. Despite their proven efficacy, disease management and structured telephone support programs have failed to achieve widespread use in part due to their resource intensiveness and reliance upon motivated patients. While once thought to hold great promise, results from recent prospective studies on telemonitoring strategies have proven disappointing. Implantable devices with their capacity to monitor electrophysiologic and hemodynamic parameters over long periods of time and with minimal reliance on patient participation may provide solutions to some of these problems. Conventional electrophysiologic parameters and intrathoracic impedance data are currently available in the growing population of heart failure patients with equipped devices. A variety of implantable hemodynamic monitors are currently under investigation. How best to integrate these devices into a systematic approach to the management of patients before, during, and after AHFS is yet to be established.

  11. Acute kidney injury in the ICU: from injury to recovery: reports from the 5th Paris International Conference.

    PubMed

    Bellomo, Rinaldo; Ronco, Claudio; Mehta, Ravindra L; Asfar, Pierre; Boisramé-Helms, Julie; Darmon, Michael; Diehl, Jean-Luc; Duranteau, Jacques; Hoste, Eric A J; Olivier, Joannes-Boyau; Legrand, Matthieu; Lerolle, Nicolas; Malbrain, Manu L N G; Mårtensson, Johan; Oudemans-van Straaten, Heleen M; Parienti, Jean-Jacques; Payen, Didier; Perinel, Sophie; Peters, Esther; Pickkers, Peter; Rondeau, Eric; Schetz, Miet; Vinsonneau, Christophe; Wendon, Julia; Zhang, Ling; Laterre, Pierre-François

    2017-12-01

    The French Intensive Care Society organized its yearly Paris International Conference in intensive care on June 18-19, 2015. The main purpose of this meeting is to gather the best experts in the field in order to provide the highest quality update on a chosen topic. In 2015, the selected theme was: "Acute Renal Failure in the ICU: from injury to recovery." The conference program covered multiple aspects of renal failure, including epidemiology, diagnosis, treatment and kidney support system, prognosis and recovery together with acute renal failure in specific settings. The present report provides a summary of every presentation including the key message and references and is structured in eight sections: (a) diagnosis and evaluation, (b) old and new diagnosis tools, (c) old and new treatments, (d) renal replacement therapy and management, (e) acute renal failure witness of other conditions, (f) prognosis and recovery, (g) extracorporeal epuration beyond the kidney, (h) the use of biomarkers in clinical practice http://www.srlf.org/5th-paris-international-conference-jeudi-18-et-vendredi-19-juin-2015/ .

  12. Psychoeducational support to post cardiac surgery heart failure patients and their partners--a randomised pilot study.

    PubMed

    Ågren, Susanna; Berg, Sören; Svedjeholm, Rolf; Strömberg, Anna

    2015-02-01

    Postoperative heart failure is a serious complication that changes the lives of both the person who is critically ill and family in many ways. The purpose of this study was to evaluate the effects of an intervention in postoperative heart failure patient-partner dyads regarding health, symptoms of depression and perceived control. Pilot study with a randomised controlled design evaluating psychosocial support and education from an interdisciplinary team. Patients with postoperative heart failure and their partners. SF-36, Beck Depression Inventory, Perceived Control at baseline, 3 and 12 months. A total of 42 patient-partner completed baseline assessment. Partners in the intervention group increased health in the role emotional and mental health dimensions and patients increased health in vitality, social function and mental health dimensions compared with the control group. Patients' perceived control improved significantly in the intervention group over time. Psychoeducational support to post cardiac surgery heart failure dyads improved health in both patients and partners at short term follow-up and improved patients' perceived control at both short and long-term follow-up. Psychoeducational support appears to be a promising intervention but the results need to be confirmed in larger studies. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Living Arrangements Modify the Relationship Between Depressive Symptoms and Self-care in Patients With Heart Failure.

    PubMed

    Lee, Kyoung Suk; Lennie, Terry A; Yoon, Ju Young; Wu, Jia-Rong; Moser, Debra K

    Depressive symptoms hinder heart failure patients' engagement in self-care. As social support helps improve self-care and decrease depressive symptoms, it is possible that social support buffers the negative impact of depressive symptoms on self-care. The purpose of this study is to examine the effect of living arrangements as an indicator of social support on the relationship between depressive symptoms and self-care in heart failure patients. Stable heart failure patients (N = 206) completed the Patient Health Questionnaire-9 to measure depressive symptoms. Self-care (maintenance, management, and confidence) was measured with the Self-Care of Heart Failure Index. Path analyses were used to examine associations among depressive symptoms and the self-care constructs by living arrangements. Depressive symptoms had a direct effect on self-care maintenance and management (standardized β = -0.362 and -0.351, respectively), but not on self-care confidence in patients living alone. Depressive symptoms had no direct or indirect effect on any of the 3 self-care constructs in patients living with someone. Depressive symptoms had negative effects on self-care in patients living alone, but were not related to self-care in patients living with someone. Our results suggest that negative effects of depressive symptoms on self-care are buffered by social support.

  14. Comparison of different modelling approaches of drive train temperature for the purposes of wind turbine failure detection

    NASA Astrophysics Data System (ADS)

    Tautz-Weinert, J.; Watson, S. J.

    2016-09-01

    Effective condition monitoring techniques for wind turbines are needed to improve maintenance processes and reduce operational costs. Normal behaviour modelling of temperatures with information from other sensors can help to detect wear processes in drive trains. In a case study, modelling of bearing and generator temperatures is investigated with operational data from the SCADA systems of more than 100 turbines. The focus is here on automated training and testing on a farm level to enable an on-line system, which will detect failures without human interpretation. Modelling based on linear combinations, artificial neural networks, adaptive neuro-fuzzy inference systems, support vector machines and Gaussian process regression is compared. The selection of suitable modelling inputs is discussed with cross-correlation analyses and a sensitivity study, which reveals that the investigated modelling techniques react in different ways to an increased number of inputs. The case study highlights advantages of modelling with linear combinations and artificial neural networks in a feedforward configuration.

  15. Heart Transplant and Mechanical Circulatory Support in Patients With Advanced Heart Failure.

    PubMed

    Sánchez-Enrique, Cristina; Jorde, Ulrich P; González-Costello, José

    2017-05-01

    Patients with advanced heart failure have a poor prognosis and heart transplant is still the best treatment option. However, the scarcity of donors, long waiting times, and an increasing number of unstable patients have favored the development of mechanical circulatory support. This review summarizes the indications for heart transplant, candidate evaluation, current immunosuppression strategies, the evaluation and treatment of rejection, infectious prophylaxis, and short and long-term outcomes. Regarding mechanical circulatory support, we distinguish between short- and long-term support and the distinct strategies that can be used: bridge to decision, recovery, candidacy, transplant, and destination therapy. We then discuss indications, risk assessment, management of complications, especially with long-term support, and outcomes. Finally, we discuss future challenges and how the widespread use of long-term support for patients with advanced heart failure will only be viable if their complications and costs are reduced. Copyright © 2017 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.

  16. Tailored educational supportive care programme on sleep quality and psychological distress in patients with heart failure: A randomised controlled trial.

    PubMed

    Chang, Yia-Ling; Chiou, Ai-Fu; Cheng, Shu-Meng; Lin, Kuan-Chia

    2016-09-01

    Up to 74% of patients with heart failure report poor sleep in Taiwan. Poor symptom management or sleep hygiene may affect patients' sleep quality. An effective educational programme was important to improve patients' sleep quality and psychological distress. However, research related to sleep disturbance in patients with heart failure is limited in Taiwan. To examine the effects of a tailored educational supportive care programme on sleep disturbance and psychological distress in patients with heart failure. randomised controlled trial. Eighty-four patients with heart failure were recruited from an outpatient department of a medical centre in Taipei, Taiwan. Patients were randomly assigned to the intervention group (n=43) or the control group (n=41). Patients in the intervention group received a 12-week tailored educational supportive care programme including individualised education on sleep hygiene, self-care, emotional support through a monthly nursing visit at home, and telephone follow-up counselling every 2 weeks. The control group received routine nursing care. Data were collected at baseline, the 4th, 8th, and 12th weeks after patients' enrollment. Outcome measures included sleep quality, daytime sleepiness, anxiety, and depression. The intervention group exhibited significant improvement in the level of sleep quality and daytime sleepiness after 12 weeks of the supportive nursing care programme, whereas the control group exhibited no significant differences. Anxiety and depression scores were increased significantly in the control group at the 12th week (p<.001). However, anxiety and depression scores in the intervention group remained unchanged after 12 weeks of the supportive nursing care programme (p>.05). Compared with the control group, the intervention group had significantly greater improvement in sleep quality (β=-2.22, p<.001), daytime sleepiness (β=-4.23, p<.001), anxiety (β=-1.94, p<.001), and depression (β=-3.05, p<.001) after 12 weeks of the intervention. This study confirmed that a supportive nursing care programme could effectively improve sleep quality and psychological distress in patients with heart failure. We suggested that this supportive nursing care programme should be applied to clinical practice in cardiovascular nursing. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Psychometrics of the PHQ-9 as a measure of depressive symptoms in patients with heart failure.

    PubMed

    Hammash, Muna H; Hall, Lynne A; Lennie, Terry A; Heo, Seongkum; Chung, Misook L; Lee, Kyoung Suk; Moser, Debra K

    2013-10-01

    Depression in patients with heart failure commonly goes undiagnosed and untreated. The Patient Health Questionnaire-9 (PHQ-9) is a simple, valid measure of depressive symptoms that may facilitate clinical assessment. It has not been validated in patients with heart failure. To test the reliability, and concurrent and construct validity of the PHQ-9 in patients with heart failure. A total of 322 heart failure patients (32% female, 61 ± 12 years, 56% New York Heart Association class III/IV) completed the PHQ-9, the Beck Depression Inventory-II (BDI-II), and the Control Attitudes Scale (CAS). Cronbach's alpha of .83 supported the internal consistency reliability of the PHQ-9 in this sample. Inter-item correlations (range .22-.66) and item-total correlation (except item 9) supported homogeneity of the PHQ-9. Spearman's rho of .80, (p < .001) between the PHQ-9 and the BDI-II supported the concurrent validity as did the agreement between the PHQ-9 and the BDI-II (Kappa = 0.64, p < .001). At cut-off score of 10, the PHQ-9 was 70% sensitive and 92% specific in identifying depressive symptoms, using the BDI-II scores as the criterion for comparison. Differences in PHQ-9 scores by level of perceived control measured by CAS (t(318) = -5.05, p < .001) supported construct validity. The PHQ-9 is a reliable, valid measure of depressive symptoms in patients with heart failure.

  18. Towards a geophysical decision-support system for monitoring and managing unstable slopes

    NASA Astrophysics Data System (ADS)

    Chambers, J. E.; Meldrum, P.; Wilkinson, P. B.; Uhlemann, S.; Swift, R. T.; Inauen, C.; Gunn, D.; Kuras, O.; Whiteley, J.; Kendall, J. M.

    2017-12-01

    Conventional approaches for condition monitoring, such as walk over surveys, remote sensing or intrusive sampling, are often inadequate for predicting instabilities in natural and engineered slopes. Surface observations cannot detect the subsurface precursors to failure events; instead they can only identify failure once it has begun. On the other hand, intrusive investigations using boreholes only sample a very small volume of ground and hence small scale deterioration process in heterogeneous ground conditions can easily be missed. It is increasingly being recognised that geophysical techniques can complement conventional approaches by providing spatial subsurface information. Here we describe the development and testing of a new geophysical slope monitoring system. It is built around low-cost electrical resistivity tomography instrumentation, combined with integrated geotechnical logging capability, and coupled with data telemetry. An automated data processing and analysis workflow is being developed to streamline information delivery. The development of this approach has provided the basis of a decision-support tool for monitoring and managing unstable slopes. The hardware component of the system has been operational at a number of field sites associated with a range of natural and engineered slopes for up to two years. We report on the monitoring results from these sites, discuss the practicalities of installing and maintaining long-term geophysical monitoring infrastructure, and consider the requirements of a fully automated data processing and analysis workflow. We propose that the result of this development work is a practical decision-support tool that can provide near-real-time information relating to the internal condition of problematic slopes.

  19. Evaluation of wheelchair back support crashworthiness: combination wheelchair back support surfaces and attachment hardware.

    PubMed

    Ha, D; Bertocci, G; Deemer, E; van Roosmalen, L; Karg, P

    2000-01-01

    Automotive seats are tested for compliance with federal motor vehicle safety standards (FMVSS) to assure safety during impact. Many wheelchair users rely upon their wheelchairs to serve as vehicle seats. However, the crashworthiness of these wheelchairs during impact is often unknown. This study evaluated the crashworthiness of five combinations of wheelchair back support surfaces and attachment hardware using a static test procedure simulating crash loading conditions. The crashworthiness was tested by applying a simulated rearward load to each seat-back system. The magnitude of the applied load was established through computer simulation and biodynamic calculations. None of the five tested wheelchair back supports withstood the simulated crash loads. All failures were associated with attachment hardware.

  20. CPLOAS_2 user manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sallaberry, Cedric Jean-Marie.; Helton, Jon Craig

    2012-10-01

    Weak link (WL)/strong link (SL) systems are important parts of the overall operational design of high-consequence systems. In such designs, the SL system is very robust and is intended to permit operation of the entire system under, and only under, intended conditions. In contrast, the WL system is intended to fail in a predictable and irreversible manner under accident conditions and render the entire system inoperable before an accidental operation of the SL system. The likelihood that the WL system will fail to deactivate the entire system before the SL system fails (i.e., degrades into a configuration that could allowmore » an accidental operation of the entire system) is referred to as probability of loss of assured safety (PLOAS). This report describes the Fortran 90 program CPLOAS_2 that implements the following representations for PLOAS for situations in which both link physical properties and link failure properties are time-dependent: (i) failure of all SLs before failure of any WL, (ii) failure of any SL before failure of any WL, (iii) failure of all SLs before failure of all WLs, and (iv) failure of any SL before failure of all WLs. The effects of aleatory uncertainty and epistemic uncertainty in the definition and numerical evaluation of PLOAS can be included in the calculations performed by CPLOAS_2.« less

  1. Program Helps In Analysis Of Failures

    NASA Technical Reports Server (NTRS)

    Stevenson, R. W.; Austin, M. E.; Miller, J. G.

    1993-01-01

    Failure Environment Analysis Tool (FEAT) computer program developed to enable people to see and better understand effects of failures in system. User selects failures from either engineering schematic diagrams or digraph-model graphics, and effects or potential causes of failures highlighted in color on same schematic-diagram or digraph representation. Uses digraph models to answer two questions: What will happen to system if set of failure events occurs? and What are possible causes of set of selected failures? Helps design reviewers understand exactly what redundancies built into system and where there is need to protect weak parts of system or remove them by redesign. Program also useful in operations, where it helps identify causes of failure after they occur. FEAT reduces costs of evaluation of designs, training, and learning how failures propagate through system. Written using Macintosh Programmers Workshop C v3.1. Can be linked with CLIPS 5.0 (MSC-21927, available from COSMIC).

  2. Critical review: medical students' motivation after failure.

    PubMed

    Holland, Chris

    2016-08-01

    About 10 % of students in each years' entrants to medical school will encounter academic failure at some stage in their programme. The usual approach to supporting these students is to offer them short term remedial study programmes that often enhance approaches to study that are orientated towards avoiding failure. In this critical review I will summarise the current theories about student motivation that are most relevant to this group of students and describe how they are enhanced or not by various contextual factors that medical students experience during their programme. I will conclude by suggesting ways in which support programmes for students who have encountered academic failure might be better designed and researched in the future.

  3. Mapping Systemic Risk: Critical Degree and Failures Distribution in Financial Networks.

    PubMed

    Smerlak, Matteo; Stoll, Brady; Gupta, Agam; Magdanz, James S

    2015-01-01

    The financial crisis illustrated the need for a functional understanding of systemic risk in strongly interconnected financial structures. Dynamic processes on complex networks being intrinsically difficult to model analytically, most recent studies of this problem have relied on numerical simulations. Here we report analytical results in a network model of interbank lending based on directly relevant financial parameters, such as interest rates and leverage ratios. We obtain a closed-form formula for the "critical degree" (the number of creditors per bank below which an individual shock can propagate throughout the network), and relate failures distributions to network topologies, in particular scalefree ones. Our criterion for the onset of contagion turns out to be isomorphic to the condition for cooperation to evolve on graphs and social networks, as recently formulated in evolutionary game theory. This remarkable connection supports recent calls for a methodological rapprochement between finance and ecology.

  4. Development of an Ontology to Model Medical Errors, Information Needs, and the Clinical Communication Space

    PubMed Central

    Stetson, Peter D.; McKnight, Lawrence K.; Bakken, Suzanne; Curran, Christine; Kubose, Tate T.; Cimino, James J.

    2002-01-01

    Medical errors are common, costly and often preventable. Work in understanding the proximal causes of medical errors demonstrates that systems failures predispose to adverse clinical events. Most of these systems failures are due to lack of appropriate information at the appropriate time during the course of clinical care. Problems with clinical communication are common proximal causes of medical errors. We have begun a project designed to measure the impact of wireless computing on medical errors. We report here on our efforts to develop an ontology representing the intersection of medical errors, information needs and the communication space. We will use this ontology to support the collection, storage and interpretation of project data. The ontology’s formal representation of the concepts in this novel domain will help guide the rational deployment of our informatics interventions. A real-life scenario is evaluated using the ontology in order to demonstrate its utility.

  5. Nodal failure index approach to groundwater remediation design

    USGS Publications Warehouse

    Lee, J.; Reeves, H.W.; Dowding, C.H.

    2008-01-01

    Computer simulations often are used to design and to optimize groundwater remediation systems. We present a new computationally efficient approach that calculates the reliability of remedial design at every location in a model domain with a single simulation. The estimated reliability and other model information are used to select a best remedial option for given site conditions, conceptual model, and available data. To evaluate design performance, we introduce the nodal failure index (NFI) to determine the number of nodal locations at which the probability of success is below the design requirement. The strength of the NFI approach is that selected areas of interest can be specified for analysis and the best remedial design determined for this target region. An example application of the NFI approach using a hypothetical model shows how the spatial distribution of reliability can be used for a decision support system in groundwater remediation design. ?? 2008 ASCE.

  6. Design and Control of Small Neutral Beam Arc Chamber for Investigations of DIII-D Neutral Beam Failure During Helium Operation

    NASA Astrophysics Data System (ADS)

    Fremlin, Carl; Beckers, Jasper; Crowley, Brendan; Rauch, Joseph; Scoville, Jim

    2017-10-01

    The Neutral Beam system on the DIII-D tokamak consists of eight ion sources using the Common Long Pulse Source (CLPS) design. During helium operation, desired for research regarding the ITER pre-nuclear phase, it has been observed that the ion source arc chamber performance steadily deteriorates, eventually failing due to electrical breakdown of the insulation. A significant investment of manpower and time is required for repairs. To study the cause of failure a small analogue of the DIII-D neutral beam arc chamber has been constructed. This poster presents the design and analysis of the arc chamber including the PLC based operational control system for the experiment, analysis of the magnetic confinement and details of the diagnostic suite. Work supported in part by US DoE under the Science Undergraduate Laboratory Internship (SULI) program and under DE-FC02-04ER54698.

  7. Mapping Systemic Risk: Critical Degree and Failures Distribution in Financial Networks

    PubMed Central

    Smerlak, Matteo; Stoll, Brady; Gupta, Agam; Magdanz, James S.

    2015-01-01

    The financial crisis illustrated the need for a functional understanding of systemic risk in strongly interconnected financial structures. Dynamic processes on complex networks being intrinsically difficult to model analytically, most recent studies of this problem have relied on numerical simulations. Here we report analytical results in a network model of interbank lending based on directly relevant financial parameters, such as interest rates and leverage ratios. We obtain a closed-form formula for the “critical degree” (the number of creditors per bank below which an individual shock can propagate throughout the network), and relate failures distributions to network topologies, in particular scalefree ones. Our criterion for the onset of contagion turns out to be isomorphic to the condition for cooperation to evolve on graphs and social networks, as recently formulated in evolutionary game theory. This remarkable connection supports recent calls for a methodological rapprochement between finance and ecology. PMID:26207631

  8. Smart Sensors' Role in Integrated System Health Management

    NASA Technical Reports Server (NTRS)

    Perotti, Jose M.; Mata, Carlos

    2005-01-01

    During the last decade, there has been a major effort in the aerospace industry to reduce the cost per pond of payload and become competitive in the international market. Competition from Europe, Japan, and China has reduced this cost to almost a third from 1990 to 2000. This cost has leveled in recent years to an average price of around $12,000/pound of payload. One of NASA's goals is to promote the development of technologies to reduce this cost by a factor of 10 or more Exploration of space, specially manned exploration missions, involves very complex launch and flight vehicles, associated ground support systems, and extensive human support during all phases of the mission. When considering the Space Shuttle Program, we can see that vehicle and ground support systems' processing, operation, and maintenance represent a large percentage of the program cost and time. Reducing operating, processing and maintenance costs will greatly reduce the cost of Exploration programs. The Integrated System Health Management (ISHM) concept is one of the technologies that will help reduce these operating, processing and maintenance costs. ISHM is an integrated health monitoring system applicable to both flight and ground systems. It automatically and autonomously acquires information from sensors and actuators and processes that information using the ISHM-embedded knowledge. As a result, it establishes the health of the system based on the acquired information and its prior knowledge. When this concept is fully implemented, ISHM systems shall be able to perform failure prediction and remediation before actual hard failures occurs, preventing its costly consequences. Data sources, sensors, and their associated data acquisition systems, constitute the foundation of the system. A smart sensing architecture is required to support the acquisition of reliable, high quality data, required by the ISHM. A thorough definition of the smart sensor architectures, their embedded diagnostic agents, and communication protocols need to be established and standardized to allow the embedding and exchange of health information among sensors and ISHM. This workshop is aimed to foster the exchange of ideas and lessons learned between government, industry and academia to aid in the establishment of ISHM (and smart sensors) standards and guidelines as well as to identify present technology gaps that will have to be overcome to successfully achieve this goal.

  9. Higher levels of salivary alpha-amylase predict failure of cessation efforts in male smokers.

    PubMed

    Dušková, M; Simůnková, K; Hill, M; Hruškovičová, H; Hoskovcová, P; Králíková, E; Stárka, L

    2010-01-01

    The ability to predict the success or failure of smoking cessation efforts will be useful for clinical practice. Stress response is regulated by two primary neuroendocrine systems. Salivary cortisol has been used as a marker for the hypothalamus-pituitary-adrenocortical axis and salivary alpha-amylase as a marker for the sympathetic adrenomedullary system. We studied 62 chronic smokers (34 women and 28 men with an average age of 45.2+/-12.9 years). The levels of salivary cortisol and salivary alpha-amylase were measured during the period of active smoking, and 6 weeks and 24 weeks after quitting. We analyzed the men separately from the women. The men who were unsuccessful in cessation showed significantly higher levels of salivary alpha-amylase over the entire course of the cessation attempt. Before stopping smoking, salivary cortisol levels were higher among the men who were unsuccessful in smoking cessation. After quitting, there were no differences between this group and the men who were successful in cessation. In women we found no differences between groups of successful and unsuccessful ex-smokers during cessation. In conclusions, increased levels of salivary alpha-amylase before and during smoking cessation may predict failure to quit in men. On the other hand, no advantage was found in predicting the failure to quit in women. The results of our study support previously described gender differences in smoking cessation.

  10. Mechanical ventilation during extracorporeal membrane oxygenation.

    PubMed

    Schmidt, Matthieu; Pellegrino, Vincent; Combes, Alain; Scheinkestel, Carlos; Cooper, D Jamie; Hodgson, Carol

    2014-01-21

    The timing of extracorporeal membrane oxygenation (ECMO) initiation and its outcome in the management of respiratory and cardiac failure have received considerable attention, but very little attention has been given to mechanical ventilation during ECMO. Mechanical ventilation settings in non-ECMO studies have been shown to have an effect on survival and may also have contributed to a treatment effect in ECMO trials. Protective lung ventilation strategies established for non-ECMO-supported respiratory failure patients may not be optimal for more severe forms of respiratory failure requiring ECMO support. The influence of positive end-expiratory pressure on the reduction of the left ventricular compliance may be a matter of concern for patients receiving ECMO support for cardiac failure. The objectives of this review were to describe potential mechanisms for lung injury during ECMO for respiratory or cardiac failure, to assess the possible benefits from the use of ultra-protective lung ventilation strategies and to review published guidelines and expert opinions available on mechanical ventilation-specific management of patients requiring ECMO, including mode and ventilator settings. Articles were identified through a detailed search of PubMed, Ovid, Cochrane databases and Google Scholar. Additional references were retrieved from the selected studies. Growing evidence suggests that mechanical ventilation settings are important in ECMO patients to minimize further lung damage and improve outcomes. An ultra-protective ventilation strategy may be optimal for mechanical ventilation during ECMO for respiratory failure. The effects of airway pressure on right and left ventricular afterload should be considered during venoarterial ECMO support of cardiac failure. Future studies are needed to better understand the potential impact of invasive mechanical ventilation modes and settings on outcomes.

  11. Mechanical ventilation during extracorporeal membrane oxygenation

    PubMed Central

    2014-01-01

    The timing of extracorporeal membrane oxygenation (ECMO) initiation and its outcome in the management of respiratory and cardiac failure have received considerable attention, but very little attention has been given to mechanical ventilation during ECMO. Mechanical ventilation settings in non-ECMO studies have been shown to have an effect on survival and may also have contributed to a treatment effect in ECMO trials. Protective lung ventilation strategies established for non-ECMO-supported respiratory failure patients may not be optimal for more severe forms of respiratory failure requiring ECMO support. The influence of positive end-expiratory pressure on the reduction of the left ventricular compliance may be a matter of concern for patients receiving ECMO support for cardiac failure. The objectives of this review were to describe potential mechanisms for lung injury during ECMO for respiratory or cardiac failure, to assess the possible benefits from the use of ultra-protective lung ventilation strategies and to review published guidelines and expert opinions available on mechanical ventilation-specific management of patients requiring ECMO, including mode and ventilator settings. Articles were identified through a detailed search of PubMed, Ovid, Cochrane databases and Google Scholar. Additional references were retrieved from the selected studies. Growing evidence suggests that mechanical ventilation settings are important in ECMO patients to minimize further lung damage and improve outcomes. An ultra-protective ventilation strategy may be optimal for mechanical ventilation during ECMO for respiratory failure. The effects of airway pressure on right and left ventricular afterload should be considered during venoarterial ECMO support of cardiac failure. Future studies are needed to better understand the potential impact of invasive mechanical ventilation modes and settings on outcomes. PMID:24447458

  12. Refining the Use of Nasal High-Flow Therapy as Primary Respiratory Support for Preterm Infants.

    PubMed

    Manley, Brett J; Roberts, Calum T; Frøisland, Dag H; Doyle, Lex W; Davis, Peter G; Owen, Louise S

    2018-05-01

    To identify clinical and demographic variables that predict nasal high-flow (nHF) treatment failure when used as a primary respiratory support for preterm infants. This secondary analysis used data from a multicenter, randomized, controlled trial comparing nHF with continuous positive airway pressure as primary respiratory support in preterm infants 28-36 completed weeks of gestation. Treatment success or failure with nHF was determined using treatment failure criteria within the first 72 hours after randomization. Infants in whom nHF treatment failed received continuous positive airway pressure, and were then intubated if failure criteria were again met. There were 278 preterm infants included, with a mean gestational age (GA) of 32.0 ± 2.1 weeks and a birth weight of 1737 ± 580 g; of these, nHF treatment failed in 71 infants (25.5%). Treatment failure was moderately predicted by a lower GA and higher prerandomization fraction of inspired oxygen (FiO 2 ): area under a receiver operating characteristic curve of 0.76 (95% CI, 0.70-0.83). Nasal HF treatment success was more likely in infants born at ≥30 weeks GA and with prerandomization FiO 2 <0.30. In preterm infants ≥28 weeks' GA enrolled in a randomized, controlled trial, lower GA and higher FiO 2 before randomization predicted early nHF treatment failure. Infants were more likely to be successfully treated with nHF from soon after birth if they were born at ≥30 weeks GA and had a prerandomization FiO 2 <0.30. However, even in this select population, continuous positive airway pressure remains superior to nHF as early respiratory support in preventing treatment failure. Australian New Zealand Clinical Trials Registry: ACTRN12613000303741. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Background and design of the profiling biobehavioral responses to mechanical support in advanced heart failure study.

    PubMed

    Lee, Christopher S; Mudd, James O; Gelow, Jill M; Nguyen, Thuan; Hiatt, Shirin O; Green, Jennifer K; Denfeld, Quin E; Bidwell, Julie T; Grady, Kathleen L

    2014-01-01

    Unexplained heterogeneity in response to ventricular assist device (VAD) implantation for the management of advanced heart failure impedes our ability to predict favorable outcomes, provide adequate patient and family education, and personalize monitoring and symptom management strategies. The purpose of this article was to describe the background and the design of a study entitled "Profiling Biobehavioral Responses to Mechanical Support in Advanced Heart Failure" (PREMISE). PREMISE is a prospective cohort study designed to (1) identify common and distinct trajectories of change in physical and psychological symptom burden; (2) characterize common trajectories of change in serum biomarkers of myocardial stress, systemic inflammation, and endothelial dysfunction; and (3) quantify associations between symptoms and biomarkers of pathogenesis in adults undergoing VAD implantation. Latent growth mixture modeling, including parallel process and cross-classification modeling, will be used to address the study aims and will entail identifying trajectories, quantifying associations between trajectories and both clinical and quality-of-life outcomes, and identifying predictors of favorable symptom and biomarker responses to VAD implantation. Research findings from the PREMISE study will be used to enhance shared patient and provider decision making and to shape a much-needed new breed of interventions and clinical management strategies that are tailored to differential symptom and pathogenic responses to VAD implantation.

  14. Design and Evaluation of a Web-Based Symptom Monitoring Tool for Heart Failure.

    PubMed

    Wakefield, Bonnie J; Alexander, Gregory; Dohrmann, Mary; Richardson, James

    2017-05-01

    Heart failure is a chronic condition where symptom recognition and between-visit communication with providers are critical. Patients are encouraged to track disease-specific data, such as weight and shortness of breath. Use of a Web-based tool that facilitates data display in graph form may help patients recognize exacerbations and more easily communicate out-of-range data to clinicians. The purposes of this study were to (1) design a Web-based tool to facilitate symptom monitoring and symptom recognition in patients with chronic heart failure and (2) conduct a usability evaluation of the Web site. Patient participants generally had a positive view of the Web site and indicated it would support recording their health status and communicating with their doctors. Clinician participants generally had a positive view of the Web site and indicated it would be a potentially useful adjunct to electronic health delivery systems. Participants expressed a need to incorporate decision support within the site and wanted to add other data, for example, blood pressure, and have the ability to adjust font size. A few expressed concerns about data privacy and security. Technologies require careful design and testing to ensure they are useful, usable, and safe for patients and do not add to the burden of busy providers.

  15. Structural design and performance of a rear support walking frame.

    PubMed

    Woollam, P J; Miller, K; McLeod, N; Batty, D; Stallard, J

    2002-01-01

    Rear support walking frames provide predetermined vertical support for patients with dysfunctional lower limbs that have limited active control; the support is provided through a spring-loaded boom hinged on an upright stanchion mounted at the rear of a wheeled frame within which the patient ambulates. The application of these frames for total-body-involved cerebral palsy patients, in combination with a walking orthosis, has highlighted a number of practical problems that need to be addressed for the system to become fully viable. A composite material prototype walking frame has been developed that permits the patient to be transferred by a single carer without the need to use inappropriate manual handling techniques. The frame has improved structural properties, with stiffness in the sagittal and coronal planes increasing by between 50 and 100 per cent. Evaluation with patients showed that the greater structural stiffness permitted the objective of improved continuity of walking to be achieved. The strength of the frame is such that it can accommodate patients of up to 80 kg, more than twice that possible in the earlier system. Since the structural yield point is approximately twice the maximum working load, the device should not be prone to unacceptable fatigue characteristics. Despite the use of carbon composite materials (which have brittle failure characteristics), the mode of failure is of progressive collapse and is therefore inherently safe. The successful outcome of prototype testing has justified production development. Work is now proceeding on a design that incorporates further improvements in structural performance and ease of manufacture.

  16. Design and evaluation of a failure detection and isolation algorithm for restructurable control systems

    NASA Technical Reports Server (NTRS)

    Weiss, Jerold L.; Hsu, John Y.

    1986-01-01

    The use of a decentralized approach to failure detection and isolation for use in restructurable control systems is examined. This work has produced: (1) A method for evaluating fundamental limits to FDI performance; (2) Application using flight recorded data; (3) A working control element FDI system with maximal sensitivity to critical control element failures; (4) Extensive testing on realistic simulations; and (5) A detailed design methodology involving parameter optimization (with respect to model uncertainties) and sensitivity analyses. This project has concentrated on detection and isolation of generic control element failures since these failures frequently lead to emergency conditions and since knowledge of remaining control authority is essential for control system redesign. The failures are generic in the sense that no temporal failure signature information was assumed. Thus, various forms of functional failures are treated in a unified fashion. Such a treatment results in a robust FDI system (i.e., one that covers all failure modes) but sacrifices some performance when detailed failure signature information is known, useful, and employed properly. It was assumed throughout that all sensors are validated (i.e., contain only in-spec errors) and that only the first failure of a single control element needs to be detected and isolated. The FDI system which has been developed will handle a class of multiple failures.

  17. Factors influencing self-care behaviors of African Americans with heart failure: a photovoice project.

    PubMed

    Woda, Aimee; Belknap, Ruth Ann; Haglund, Kristin; Sebern, Margaret; Lawrence, Ashley

    2015-01-01

    The purpose of this study was to understand the influences of heart failure (HF) self-care among low income, African Americans. Compared to all other racial groups, African Americans have the highest risk of developing HF, coupled with high mortality and morbidity rates. Using the photovoice method, participants related important lifestyle factors through photography. The participants and researcher met for reflection and discussion 2 h per week for six weeks. Four themes emerged: family support gives me the push I need, social interaction lifts me up, improving my mind to lift depression can improve my heart, and it is important but challenging to follow the HF diet. The findings from this study may assist policy makers, health care professionals, patients, and support systems in understanding the complexity of engaging in HF self-care. This understanding may lead to the development of appropriate patient-centered assessments and interventions. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Addressing Control Research Issues Leading to Piloted Simulations in Support of the IFCS F-15

    NASA Technical Reports Server (NTRS)

    Napolitano, Marcello; Perhinschi, Mario; Campa, Giampiero; Seanor, Brad

    2004-01-01

    This report summarizes the research effort by a team of researchers at West Virginia University in support of the NASA Intelligent Flight Control System (IFCS) F-15 program. In particular, WVU researchers assisted NASA Dryden researchers in the following technical tasks leading to piloted simulation of the 'Gen_2' IFCS control laws. Task #1- Performance comparison of different neural network (NN) augmentation for the Dynamic Inversion (DI) -based VCAS 'Gen_2' control laws. Task #2- Development of safety monitor criteria for transition to research control laws with and without failure during flight test. Task #3- Fine-tuning of the 'Gen_2' control laws for cross-coupling reduction at post-failure conditions. Matlab/Simulink-based simulation codes were provided to the technical monitor on a regular basis throughout the duration of the project. Additional deliverables for the project were Power Point-based slides prepared for different project meetings. This document provides a description of the methodology and discusses the general conclusions from the simulation results.

  19. The effect of the sequential therapy in end-stage heart failure (ESHF)--from ECMO, through the use of implantable pump for a pneumatic heart assist system, Religa Heart EXT, as a bridge for orthotopic heart transplant (OHT). Case study.

    PubMed

    Religa, Grzegorz; Jasińska, Małgorzata; Czyżewski, Łukasz; Torba, Krzysztof; Różański, Jacek

    2014-10-21

    Modern Polish medicine offers patients various treatments for end-stage treatment-resistant heart failure. Methods applied at the right time before the occurrence of irreversible changes in organs give a chance for survival and prolong life. Here, we report on the safety and efficacy of the sequential use of the above treatments in a 58-year old patient with heart failure in dilatative cardiomyopathy (DCM). A 7-day mechanical blood circulatory support and extracorporeal membrane oxygenation of blood (ECMO), followed by a 13-day implantation of a left ventricular assist device, Religa Heart EXT, was used as a bridge to a successful orthotopic heart transplant (OHT). On Day 40 after OHT, the patient was discharged home with stable function of the circulatory system. We describe our experiences with the qualification, preparation, and procedure of sequential ECMO, Religa Heart EXT, and OHT. Application of short-term ECMO as a bridge-to-bridge helped save the patient from severe cardiogenic shock caused by increased left ventricular afterload. The experimental implantation of an innovative Religa Heart EXT prosthesis was a safe and efficacious bridge to transplantation. Too short time of Religa Heart EXT implantation in the discussed patient prevented the possibility to evaluate the occurrence of thromboembolic complications and infections compared to the documented complications of POLVAD implanted until now. OHT is a safe and efficacious method of treatment of patients previously supported by ECMO and Religa Heart EXT.

  20. Failure detection system risk reduction assessment

    NASA Technical Reports Server (NTRS)

    Aguilar, Robert B. (Inventor); Huang, Zhaofeng (Inventor)

    2012-01-01

    A process includes determining a probability of a failure mode of a system being analyzed reaching a failure limit as a function of time to failure limit, determining a probability of a mitigation of the failure mode as a function of a time to failure limit, and quantifying a risk reduction based on the probability of the failure mode reaching the failure limit and the probability of the mitigation.

  1. Automatic Tube Compensation versus Pressure Support Ventilation and Extubation Outcome in Children: A Randomized Controlled Study

    PubMed Central

    El-beleidy, Ahmed Saad El-din; Khattab, Asser Abd EL-Hamied; El-Sherbini, Seham Awad; Al-gebaly, Hebatalla Fadel

    2013-01-01

    Background. Automatic tube compensation (ATC) has been developed to overcome the imposed work of breathing due to artificial airways during spontaneous breathing trials (SBTs). Objectives. This study aimed to assess extubation outcome after an SBT (spontaneous breathing trial) with ATC compared with pressure support ventilation (PSV) and to determine the risk factors for extubation failure. Methods. Patients ready for extubation were randomly assigned to two-hour spontaneous breathing trial with either ATC or pressure support ventilation. Results. In the ATC group (n = 17), 11 (65%) patients passed the SBT with subsequent extubation failure (9%). While in PSV group (n = 19), 10 (53%) patients passed the SBT with subsequent extubation failure (10%). This represented a positive predictive value for ATC of 91% and PSV of 90% (P = 0.52). Five (83%) of the patients who failed the SBT in ATC group were reintubated. This represented a higher negative predictive value for ATC of 83% than for PSV which was 56%. None of the assessed risk factors were independently associated with extubation failure including failed trial. Conclusion. ATC was equivalent to PSV in predicting patients with successful extubation. A trial failure in ATC group is associated with but does not definitely predict extubation failure. PMID:23533800

  2. Development of an Electronic Medical Record Based Alert for Risk of HIV Treatment Failure in a Low-Resource Setting

    PubMed Central

    Puttkammer, Nancy; Zeliadt, Steven; Balan, Jean Gabriel; Baseman, Janet; Destiné, Rodney; Domerçant, Jean Wysler; France, Garilus; Hyppolite, Nathaelf; Pelletier, Valérie; Raphael, Nernst Atwood; Sherr, Kenneth; Yuhas, Krista; Barnhart, Scott

    2014-01-01

    Background The adoption of electronic medical record systems in resource-limited settings can help clinicians monitor patients' adherence to HIV antiretroviral therapy (ART) and identify patients at risk of future ART failure, allowing resources to be targeted to those most at risk. Methods Among adult patients enrolled on ART from 2005–2013 at two large, public-sector hospitals in Haiti, ART failure was assessed after 6–12 months on treatment, based on the World Health Organization's immunologic and clinical criteria. We identified models for predicting ART failure based on ART adherence measures and other patient characteristics. We assessed performance of candidate models using area under the receiver operating curve, and validated results using a randomly-split data sample. The selected prediction model was used to generate a risk score, and its ability to differentiate ART failure risk over a 42-month follow-up period was tested using stratified Kaplan Meier survival curves. Results Among 923 patients with CD4 results available during the period 6–12 months after ART initiation, 196 (21.2%) met ART failure criteria. The pharmacy-based proportion of days covered (PDC) measure performed best among five possible ART adherence measures at predicting ART failure. Average PDC during the first 6 months on ART was 79.0% among cases of ART failure and 88.6% among cases of non-failure (p<0.01). When additional information including sex, baseline CD4, and duration of enrollment in HIV care prior to ART initiation were added to PDC, the risk score differentiated between those who did and did not meet failure criteria over 42 months following ART initiation. Conclusions Pharmacy data are most useful for new ART adherence alerts within iSanté. Such alerts offer potential to help clinicians identify patients at high risk of ART failure so that they can be targeted with adherence support interventions, before ART failure occurs. PMID:25390044

  3. Development of an electronic medical record based alert for risk of HIV treatment failure in a low-resource setting.

    PubMed

    Puttkammer, Nancy; Zeliadt, Steven; Balan, Jean Gabriel; Baseman, Janet; Destiné, Rodney; Domerçant, Jean Wysler; France, Garilus; Hyppolite, Nathaelf; Pelletier, Valérie; Raphael, Nernst Atwood; Sherr, Kenneth; Yuhas, Krista; Barnhart, Scott

    2014-01-01

    The adoption of electronic medical record systems in resource-limited settings can help clinicians monitor patients' adherence to HIV antiretroviral therapy (ART) and identify patients at risk of future ART failure, allowing resources to be targeted to those most at risk. Among adult patients enrolled on ART from 2005-2013 at two large, public-sector hospitals in Haiti, ART failure was assessed after 6-12 months on treatment, based on the World Health Organization's immunologic and clinical criteria. We identified models for predicting ART failure based on ART adherence measures and other patient characteristics. We assessed performance of candidate models using area under the receiver operating curve, and validated results using a randomly-split data sample. The selected prediction model was used to generate a risk score, and its ability to differentiate ART failure risk over a 42-month follow-up period was tested using stratified Kaplan Meier survival curves. Among 923 patients with CD4 results available during the period 6-12 months after ART initiation, 196 (21.2%) met ART failure criteria. The pharmacy-based proportion of days covered (PDC) measure performed best among five possible ART adherence measures at predicting ART failure. Average PDC during the first 6 months on ART was 79.0% among cases of ART failure and 88.6% among cases of non-failure (p<0.01). When additional information including sex, baseline CD4, and duration of enrollment in HIV care prior to ART initiation were added to PDC, the risk score differentiated between those who did and did not meet failure criteria over 42 months following ART initiation. Pharmacy data are most useful for new ART adherence alerts within iSanté. Such alerts offer potential to help clinicians identify patients at high risk of ART failure so that they can be targeted with adherence support interventions, before ART failure occurs.

  4. Frequency and Predictors of Courses Repetition, Probation, and Delayed Graduation in Kashan Faculty of Nursing and Midwifery

    PubMed Central

    Tagharrobi, Zahra; Masoudi Alavi, Negin; Fakharian, Esmail; Mirhoseini, Fakhrossadat; Rasoulinejad, Sayyed Asghar; Akbari, Hossein; Ameli, Hossein

    2013-01-01

    Background: Course failing and delayed graduation are important concerns in educational systems. The reasons of these educational failures need to be clarified. Objectives: This study was designed to determine the academic failure rate and its predictors in Nursing and Midwifery Students in Kashan University of Medical Sciences. Materials and Methods: In this cross-sectional study, the records of all the students graduated in Nursing and Midwifery faculty during 18 years (1986 - 2003) were evaluated (1174 graduates). The demographic variables and the educational situation were recorded. The frequency of course repetition, probation, and delayed graduation were determined and the data were analyzed using the chi-square and logistic regression tests. Results: The frequency of course repetition, probation, and delayed graduation was reported to be 19.25%, 3.9% and 19.85%, respectively. Gaining Low grade in high school, transferring from other universities, having special quota, and transferring temporarily to other universities were mentioned as the risk factors of academic failure. The major had a significant relationship with academic failure. Day time students had more course failure and night time students stayed longer in the university. Conclusions: The individual characteristics, educational background and admission criteria had showed relation with academic failure. Vulnerable students should be identified and educational supports should be provided for these students. PMID:25414885

  5. Failure analysis of parameter-induced simulation crashes in climate models

    NASA Astrophysics Data System (ADS)

    Lucas, D. D.; Klein, R.; Tannahill, J.; Ivanova, D.; Brandon, S.; Domyancic, D.; Zhang, Y.

    2013-01-01

    Simulations using IPCC-class climate models are subject to fail or crash for a variety of reasons. Quantitative analysis of the failures can yield useful insights to better understand and improve the models. During the course of uncertainty quantification (UQ) ensemble simulations to assess the effects of ocean model parameter uncertainties on climate simulations, we experienced a series of simulation crashes within the Parallel Ocean Program (POP2) component of the Community Climate System Model (CCSM4). About 8.5% of our CCSM4 simulations failed for numerical reasons at combinations of POP2 parameter values. We apply support vector machine (SVM) classification from machine learning to quantify and predict the probability of failure as a function of the values of 18 POP2 parameters. A committee of SVM classifiers readily predicts model failures in an independent validation ensemble, as assessed by the area under the receiver operating characteristic (ROC) curve metric (AUC > 0.96). The causes of the simulation failures are determined through a global sensitivity analysis. Combinations of 8 parameters related to ocean mixing and viscosity from three different POP2 parameterizations are the major sources of the failures. This information can be used to improve POP2 and CCSM4 by incorporating correlations across the relevant parameters. Our method can also be used to quantify, predict, and understand simulation crashes in other complex geoscientific models.

  6. Failure analysis of parameter-induced simulation crashes in climate models

    NASA Astrophysics Data System (ADS)

    Lucas, D. D.; Klein, R.; Tannahill, J.; Ivanova, D.; Brandon, S.; Domyancic, D.; Zhang, Y.

    2013-08-01

    Simulations using IPCC (Intergovernmental Panel on Climate Change)-class climate models are subject to fail or crash for a variety of reasons. Quantitative analysis of the failures can yield useful insights to better understand and improve the models. During the course of uncertainty quantification (UQ) ensemble simulations to assess the effects of ocean model parameter uncertainties on climate simulations, we experienced a series of simulation crashes within the Parallel Ocean Program (POP2) component of the Community Climate System Model (CCSM4). About 8.5% of our CCSM4 simulations failed for numerical reasons at combinations of POP2 parameter values. We applied support vector machine (SVM) classification from machine learning to quantify and predict the probability of failure as a function of the values of 18 POP2 parameters. A committee of SVM classifiers readily predicted model failures in an independent validation ensemble, as assessed by the area under the receiver operating characteristic (ROC) curve metric (AUC > 0.96). The causes of the simulation failures were determined through a global sensitivity analysis. Combinations of 8 parameters related to ocean mixing and viscosity from three different POP2 parameterizations were the major sources of the failures. This information can be used to improve POP2 and CCSM4 by incorporating correlations across the relevant parameters. Our method can also be used to quantify, predict, and understand simulation crashes in other complex geoscientific models.

  7. Failure and life cycle evaluation of watering valves.

    PubMed

    Gonzalez, David M; Graciano, Sandy J; Karlstad, John; Leblanc, Mathias; Clark, Tom; Holmes, Scott; Reuter, Jon D

    2011-09-01

    Automated watering systems provide a reliable source of ad libitum water to animal cages. Our facility uses an automated water delivery system to support approximately 95% of the housed population (approximately 14,000 mouse cages). Drinking valve failure rates from 2002 through 2006 never exceeded the manufacturer standard of 0.1% total failure, based on monthly cage census and the number of floods. In 2007, we noted an increase in both flooding and cases of clinical dehydration in our mouse population. Using manufacturer's specifications for a water flow rate of 25 to 50 mL/min, we initiated a wide-scale screening of all valves used. During a 4-mo period, approximately 17,000 valves were assessed, of which 2200 failed according to scoring criteria (12.9% overall; 7.2% low flow; 1.6% no flow; 4.1% leaky). Factors leading to valve failures included residual metal shavings, silicone flash, introduced debris or bedding, and (most common) distortion of the autoclave-rated internal diaphragm and O-ring. Further evaluation revealed that despite normal autoclave conditions of heat, pressure, and steam, an extreme negative vacuum pull caused the valves' internal silicone components (diaphragm and O-ring) to become distorted and water-permeable. Normal flow rate often returned after a 'drying out' period, but components then reabsorbed water while on the animal rack or during subsequent autoclave cycles to revert to a variable flow condition. On the basis of our findings, we recalibrated autoclaves and initiated a preventative maintenance program to mitigate the risk of future valve failure.

  8. Failure and Life Cycle Evaluation of Watering Valves

    PubMed Central

    Gonzalez, David M; Graciano, Sandy J; Karlstad, John; Leblanc, Mathias; Clark, Tom; Holmes, Scott; Reuter, Jon D

    2011-01-01

    Automated watering systems provide a reliable source of ad libitum water to animal cages. Our facility uses an automated water delivery system to support approximately 95% of the housed population (approximately 14,000 mouse cages). Drinking valve failure rates from 2002 through 2006 never exceeded the manufacturer standard of 0.1% total failure, based on monthly cage census and the number of floods. In 2007, we noted an increase in both flooding and cases of clinical dehydration in our mouse population. Using manufacturer's specifications for a water flow rate of 25 to 50 mL/min, we initiated a wide-scale screening of all valves used. During a 4-mo period, approximately 17,000 valves were assessed, of which 2200 failed according to scoring criteria (12.9% overall; 7.2% low flow; 1.6% no flow; 4.1% leaky). Factors leading to valve failures included residual metal shavings, silicone flash, introduced debris or bedding, and (most common) distortion of the autoclave-rated internal diaphragm and O-ring. Further evaluation revealed that despite normal autoclave conditions of heat, pressure, and steam, an extreme negative vacuum pull caused the valves’ internal silicone components (diaphragm and O-ring) to become distorted and water-permeable. Normal flow rate often returned after a ‘drying out’ period, but components then reabsorbed water while on the animal rack or during subsequent autoclave cycles to revert to a variable flow condition. On the basis of our findings, we recalibrated autoclaves and initiated a preventative maintenance program to mitigate the risk of future valve failure. PMID:22330720

  9. Investigation of International Space Station Major Constituent Analyzer Anomalous ORU 02 Performance

    NASA Technical Reports Server (NTRS)

    Gardner, Ben D.; Burchfield, David E.; Trubey, Richard; Denson, Steve; Tissandier, Amber; Gentry, Greg; Granahan, John; Matty, Chris

    2011-01-01

    The Major Constituent Analyzer (MCA) is a mass spectrometer-based instrument designed to provide critical monitoring of six major atmospheric constituents; nitrogen, oxygen, hydrogen, carbon dioxide, methane, and water vapor on-board the International Space Station. It is an integral part of the Environmental Control and Life Support System (ECLSS). The MCA system is comprised of seven orbit-replaceable units (ORUs) that provide flexibility in maintaining the MCA. Of these, ORU 02, the analyzer assembly requires replacement every 1 to 2 years due to the consumption of limited life components including the ion pump and ion source filaments. Typically, ORU 02s that reach end of life are swapped out of the MCA on orbit and replaced with the on-orbit spare. The replaced ORU 02 is then returned to the OEM for refurbishment and is then return to service. Recently, 2 refurbished ORU 02s, serial numbers F0001 and F0003, failed on orbit shortly after being installed into the MCA. Both ORU 02s have been returned to ground for TT&E, and a failure investigation is underway. The failure signatures have been reproduced on the ground and an initial investigation has determined that both ORU 02 failures involve either the ion source or the ion source control electronics. This paper discusses the results of the failure investigation, the steps required to refurbish the ORU 02s, and the risk mitigation steps that are being incorporated into the refurbishment process to preclude the reoccurrence of these failures in the future

  10. The Future of Adult Cardiac Assist Devices: Novel Systems and Mechanical Circulatory Support Strategies

    PubMed Central

    Bartoli, Carlo R.; Dowling, Robert D.

    2011-01-01

    Synopsis The recent, widespread success of mechanical circulatory support has ushered in a new era of cardiovascular medicine in which numerous implantable devices exist to treat advanced heart failure. As cardiac assist devices gain prevalence in the clinical management of cardiovascular disease, it is increasingly important to raise awareness of novel device systems, the unique mechanisms by which they function, and implications for patient management. In this article, we present state-of-the-art devices that are currently under development or in clinical trials. Devices are categorized as Standard Full-Support (HeartMate III, CorAide, Evaheart LVAS), Less-Invasive Full-Support (MVAD), Partial-Support (CircuLite Synergy Pocket Micro-Pump, Reitan Catheter Pump, Procyrion CAD, C-Pulse, Symphony Counterpulsation Device) Right Ventricular Assist Device (RVAD; DexAide, Impella RD Recover, Impella RP), and Total Artificial Heart (TAH; CardioWest, AbioCor II, Continuous-Flow TAH, Continuous-Flow BiVAD). Implantation strategy, mechanism of action, durability, efficacy, hemocompatibility, and human factors such as quality of life during device support are considered. The feasibility of novel strategies for unloading the failing heart is examined. PMID:22062206

  11. D0 General Support: The Use of Programmable Logic Controllers (PLCS) at D0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hance, R.; /Fermilab

    With the exception of control of heating, ventilation, and air conditioning (HVAC) ventilation fans, and their shutdown in the case of smoke in the ducts, all implementations of Programmable Logic Controllers (PLCs) in Dzero have been made within the fundamental premise that no uncertified PLC apparatus shall be entrusted with the safety of equipment or personnel. Thus although PLCs are used to control and monitor all manner of intricate equipment, simple hardware interlocks and relief devices provide basic protection against component failure, control failure, or inappropriate control operation. Nevertheless, this report includes two observations as follows: (1) It may bemore » prudent to reconfigure the link between the Pyrotronics system and the HVAC system such that the Pyrotronics system provides interlocks to the ventilation fans instead of control inputs to the uncertified HVAC PLCs. Although the Pyrotronics system is certified and maintained to life safety standards, the HVAC system is not. A hardware or software failure of the HVAC system probably should not be allowed to result in the situation where the ventilation fans in a smoke filled duct continue to operate. Dan Markley is investigating this matter. (2) It may also be prudent to examine the network security of those systems connected to the Fermilab WAN (HVAC, Cryo, and Solenoid Controls). Even though the impact of a successful hack might only be to operations, it might nevertheless be disruptive and could be expensive. The risks should perhaps be analyzed. One of the most attractive features of these systems, from a user's viewpoint, is their unlimited networking. The unlimited networking that makes the systems so convenient to legitimate access also makes them vulnerable to illegitimate access.« less

  12. Coliform non-compliance nightmares in water-supply distribution systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geldreich, E.E.

    1988-01-01

    Coliform occurrences in distribution systems have created a great concern for both utilities and water authorities because of the implied public-health implications and failure to meet Federal regulations. Many of the known cases involve systems in the east and midwest. The common denominator being systems that have significant amounts of pipe networks over 75 years old and all are treating surface waters. Origins for these contamination events can be found in source-water fluctuations, failures in treatment-barrier protection, or loss of pipe-network integrity. Once passage into the distribution network has been achieved, some of the coliforms (Klebsiella, Enterobacter, Citrobacter) and othermore » heterotrophic bacteria adapt to the pipe environment, finding protection and nutrient support in pipe sediments. Under conditions of seasonal warm waters (10 degC) and availability of assimilable organics in the pipe sediments and tubercles, colonization grows into biofilms that may slough-off into the water supply, creating a coliform non-compliance problem. Significance of these occurrences and control measures are part of a realistic action plan presented for guidance.« less

  13. Coaching Quality and Teachers' Implementation of the 4Rs Social-Emotional and Literacy Curriculum: Testing the Link between Two Levels of Intervention Fidelity

    ERIC Educational Resources Information Center

    Downer, Jason; Brown, Josh; Herrera, Manuela Jimenez; Stuhlman, Megan; Bourassa, Kyle; Gologor, Ben; Wong, Pamela

    2013-01-01

    Teacher-educators and policy-makers recognize that ongoing training and support for high quality implementation of curricula can be a vital component of systems that ensure the value of education experiences, particularly for students at-risk of school failure (Meisels, 2007; Pew Charitable Trusts, 2007; Pianta, 2005). In particular, there is…

  14. Status of e-Learning Quality in Kenya: Case of Jomo Kenyatta University of Agriculture and Technology Postgraduate Students

    ERIC Educational Resources Information Center

    Hadullo, Kennedy; Oboko, Robert; Omwenga, Elijah

    2018-01-01

    There is a substantial increase in the use of learning management systems (LMSs) to support e-learning in higher education institutions, particularly in developing countries. This has been done with some measures of success and failure as well. There is evidence from literature that the provision of e-learning faces several quality issues relating…

  15. Human Support Issues and Systems for the Space Exploration Initiative: Results from Project Outreach

    DTIC Science & Technology

    1991-01-01

    that human factors were responsible for mission failure more often than equipment factors. Spacecraft habitability and ergonomics also require more...substantial challenges for designing reliable, flexible joints and dexterous, reliable gloves. Submission #100701 dealt with the ergonomics of work...perception that human factors deals primarily with cockpit displays and ergonomics . The success of long-duration missions will be highly dependent on

  16. How change management can prevent the failure of information systems implementation among Malaysian government hospitals?

    NASA Astrophysics Data System (ADS)

    ChePa, Noraziah; Jasin, Noorhayati Md; Bakar, Nur Azzah Abu

    2017-10-01

    Fail to prevent or control challenges of Information System (IS) implementation have led to the failure of its implementation. Successful implementation of IS has been a challenging task to any organization including government hospitals. Government has invested a big amount of money on information system (IS) projects to improve service delivery in healthcare. However, several of them failed to be implemented successfully due to several factors. This article proposes a prevention model which incorporated Change Management (CM) concepts to avoid the failure of IS implementation, hence ensuring the success of it. Challenges of IS implementation in government hospitals have been discovered. Extensive literature review and deep interview approaches were employed to discover these challenges. A prevention model has been designed to cater the challenges. The model caters three main phases of implementation; pre-implementation, during implementation, and post-implementation by adopting CM practices of Lewin's, Kotter's and Prosci's CM model. Six elements of CM comprising thirteen sub-elements adopted from the three CM models have been used to handle CFFs of Human and Support issues; guiding team, resistance avoidance, IS adoption, enforcement, monitoring, and IS sustainability. Successful practice of the proposed mapping is expected to prevent CFFs to occur, hence ensuring a successful implementation of IS in the hospitals. The proposed model has been presented and successfully evaluated by the domain experts from the selected hospitals. The proposed model is believed to be beneficial for top management, IT practitioners and medical practitioners in preventing IS implementation failure among government hospitals towards ensuring the success implementation.

  17. What Can We Apply to Manage Acute Exacerbation of Chronic Obstructive Pulmonary Disease with Acute Respiratory Failure?

    PubMed

    Kim, Deog Kyeom; Lee, Jungsil; Park, Ju Hee; Yoo, Kwang Ha

    2018-04-01

    Acute exacerbation(s) of chronic obstructive pulmonary disease (AECOPD) tend to be critical and debilitating events leading to poorer outcomes in relation to chronic obstructive pulmonary disease (COPD) treatment modalities, and contribute to a higher and earlier mortality rate in COPD patients. Besides pro-active preventative measures intended to obviate acquisition of AECOPD, early recovery from severe AECOPD is an important issue in determining the long-term prognosis of patients diagnosed with COPD. Updated GOLD guidelines and recently published American Thoracic Society/European Respiratory Society clinical recommendations emphasize the importance of use of pharmacologic treatment including bronchodilators, systemic steroids and/or antibiotics. As a non-pharmacologic strategy to combat the effects of AECOPD, noninvasive ventilation (NIV) is recommended as the treatment of choice as this therapy is thought to be most effective in reducing intubation risk in patients diagnosed with AECOPD with acute respiratory failure. Recently, a few adjunctive modalities, including NIV with helmet and helium-oxygen mixture, have been tried in cases of AECOPD with respiratory failure. As yet, insufficient documentation exists to permit recommendation of this therapy without qualification. Although there are too few findings, as yet, to allow for regular andr routine application of those modalities in AECOPD, there is anecdotal evidence to indicate both mechanical and physiological benefits connected with this therapy. High-flow nasal cannula oxygen therapy is another supportive strategy which serves to improve the symptoms of hypoxic respiratory failure. The therapy also produced improvement in ventilatory variables, and it may be successfully applied in cases of hypercapnic respiratory failure. Extracorporeal carbon dioxide removal has been successfully attempted in cases of adult respiratory distress syndrome, with protective hypercapnic ventilatory strategy. Nowadays, it is reported that it was also effective in reducing intubation in AECOPD with hypercapnic respiratory failure. Despite the apparent need for more supporting evidence, efforts to improve efficacy of NIV have continued unabated. It is anticipated that these efforts will, over time, serve toprogressively decrease the risk of intubation and invasive mechanical ventilation in cases of AECOPD with acute respiratory failure. Copyright©2018. The Korean Academy of Tuberculosis and Respiratory Diseases.

  18. E-precision agriculture for small scale cash crops in Tobasa regency

    NASA Astrophysics Data System (ADS)

    Putra Simanjuntak, Panca; Tiurniari Napitupulu, Pangeran; Pratama Silalahi, Soni; Kisno; Pasaribu, Norlina; Valešová, Libuše

    2017-09-01

    Cash crop is a promising sector in Tobasa regency; however, the trend showed a negative change of the cash crop production in. This research aims to develop an application which is based on Arduino for watering and fertilizing corn land. The result of using e-precision agriculture based on embedded system is 100% higher than the conventional one and the risk of harvesting failure using the embedded system decreased to 50%. Embedded system in this study acquired critical environment measurements which at last affected the yield raising and risk reduction. As the result, the use of e-precision agriculture provided a framework to be used by different stakeholders to implement e-agriculture platform that supports marketing of agricultural production since the system is proven to save the material and time which finally reduces the risk of harvesting failure and increases the yield. In other words, the system is able to economize the use of water and fertilizer on a small corn land. The system will be developed for more efficiency in material loss and the mobile-based application development to reach sustainable rural development particularly for cash-crop farmers.

  19. An approach to the design of operations systems

    NASA Technical Reports Server (NTRS)

    Chafin, Roy L.; Curran, Patrick S.

    1993-01-01

    The MultiMission Control Team (MMCT) consists of mission controllers which provides Real-Time operations support for the Mars Observer project. The Real-Time Operations task is to insure the integrity of the ground data system, to insure that the configuration is correct to support the mission, and to monitor the spacecraft for the Spacecraft Team. Operations systems are typically developed by adapting operations systems from previous projects. Problems tend to be solved empirically when they are either anticipated or observed in testing. This development method has worked in the past when time was available for extensive Ops testing. In the present NASA budget environment, a more cost conscious design approach has become necessary. Cost is a concern because operations is an ongoing, continuous activity. Reducing costs entails reducing staff. Reducing staffing levels potentially increases the risk of mission failure. Therefore, keeping track of the risk level is necessary.

  20. Incidence and Outcome of CPAP Failure in Preterm Infants.

    PubMed

    Dargaville, Peter A; Gerber, Angela; Johansson, Stefan; De Paoli, Antonio G; Kamlin, C Omar F; Orsini, Francesca; Davis, Peter G

    2016-07-01

    Data from clinical trials support the use of continuous positive airway pressure (CPAP) for initial respiratory management in preterm infants, but there is concern regarding the potential failure of CPAP support. We aimed to examine the incidence and explore the outcomes of CPAP failure in Australian and New Zealand Neonatal Network data from 2007 to 2013. Data from inborn preterm infants managed on CPAP from the outset were analyzed in 2 gestational age ranges (25-28 and 29-32 completed weeks). Outcomes after CPAP failure (need for intubation <72 hours) were compared with those succeeding on CPAP using adjusted odds ratios (AORs). Within the cohort of 19 103 infants, 11 684 were initially managed on CPAP. Failure of CPAP occurred in 863 (43%) of 1989 infants commencing on CPAP at 25-28 weeks' gestation and 2061 (21%) of 9695 at 29-32 weeks. CPAP failure was associated with a substantially higher rate of pneumothorax, and a heightened risk of death, bronchopulmonary dysplasia (BPD) and other morbidities compared with those managed successfully on CPAP. The incidence of death or BPD was also increased: (25-28 weeks: 39% vs 20%, AOR 2.30, 99% confidence interval 1.71-3.10; 29-32 weeks: 12% vs 3.1%, AOR 3.62 [2.76-4.74]). The CPAP failure group had longer durations of respiratory support and hospitalization. CPAP failure in preterm infants is associated with increased risk of mortality and major morbidities, including BPD. Strategies to promote successful CPAP application should be pursued vigorously. Copyright © 2016 by the American Academy of Pediatrics.

Top