Sample records for support system model

  1. Computer-aided operations engineering with integrated models of systems and operations

    NASA Technical Reports Server (NTRS)

    Malin, Jane T.; Ryan, Dan; Fleming, Land

    1994-01-01

    CONFIG 3 is a prototype software tool that supports integrated conceptual design evaluation from early in the product life cycle, by supporting isolated or integrated modeling, simulation, and analysis of the function, structure, behavior, failures and operation of system designs. Integration and reuse of models is supported in an object-oriented environment providing capabilities for graph analysis and discrete event simulation. Integration is supported among diverse modeling approaches (component view, configuration or flow path view, and procedure view) and diverse simulation and analysis approaches. Support is provided for integrated engineering in diverse design domains, including mechanical and electro-mechanical systems, distributed computer systems, and chemical processing and transport systems. CONFIG supports abstracted qualitative and symbolic modeling, for early conceptual design. System models are component structure models with operating modes, with embedded time-related behavior models. CONFIG supports failure modeling and modeling of state or configuration changes that result in dynamic changes in dependencies among components. Operations and procedure models are activity structure models that interact with system models. CONFIG is designed to support evaluation of system operability, diagnosability and fault tolerance, and analysis of the development of system effects of problems over time, including faults, failures, and procedural or environmental difficulties.

  2. Metric half-span model support system

    NASA Technical Reports Server (NTRS)

    Jackson, C. M., Jr.; Dollyhigh, S. M.; Shaw, D. S. (Inventor)

    1982-01-01

    A model support system used to support a model in a wind tunnel test section is described. The model comprises a metric, or measured, half-span supported by a nonmetric, or nonmeasured half-span which is connected to a sting support. Moments and forces acting on the metric half-span are measured without interference from the support system during a wind tunnel test.

  3. Mathematical Modeling Of Life-Support Systems

    NASA Technical Reports Server (NTRS)

    Seshan, Panchalam K.; Ganapathi, Balasubramanian; Jan, Darrell L.; Ferrall, Joseph F.; Rohatgi, Naresh K.

    1994-01-01

    Generic hierarchical model of life-support system developed to facilitate comparisons of options in design of system. Model represents combinations of interdependent subsystems supporting microbes, plants, fish, and land animals (including humans). Generic model enables rapid configuration of variety of specific life support component models for tradeoff studies culminating in single system design. Enables rapid evaluation of effects of substituting alternate technologies and even entire groups of technologies and subsystems. Used to synthesize and analyze life-support systems ranging from relatively simple, nonregenerative units like aquariums to complex closed-loop systems aboard submarines or spacecraft. Model, called Generic Modular Flow Schematic (GMFS), coded in such chemical-process-simulation languages as Aspen Plus and expressed as three-dimensional spreadsheet.

  4. Model Based Mission Assurance: Emerging Opportunities for Robotic Systems

    NASA Technical Reports Server (NTRS)

    Evans, John W.; DiVenti, Tony

    2016-01-01

    The emergence of Model Based Systems Engineering (MBSE) in a Model Based Engineering framework has created new opportunities to improve effectiveness and efficiencies across the assurance functions. The MBSE environment supports not only system architecture development, but provides for support of Systems Safety, Reliability and Risk Analysis concurrently in the same framework. Linking to detailed design will further improve assurance capabilities to support failures avoidance and mitigation in flight systems. This also is leading new assurance functions including model assurance and management of uncertainty in the modeling environment. Further, the assurance cases, a structured hierarchal argument or model, are emerging as a basis for supporting a comprehensive viewpoint in which to support Model Based Mission Assurance (MBMA).

  5. Rhode Island Model Evaluation & Support System: Teacher. Edition III

    ERIC Educational Resources Information Center

    Rhode Island Department of Education, 2015

    2015-01-01

    Rhode Island educators believe that implementing a fair, accurate, and meaningful educator evaluation and support system will help improve teaching and learning. The primary purpose of the Rhode Island Model Teacher Evaluation and Support System (Rhode Island Model) is to help all teachers improve. Through the Model, the goal is to help create a…

  6. Generic Modeling of a Life Support System for Process Technology Comparison

    NASA Technical Reports Server (NTRS)

    Ferrall, J. F.; Seshan, P. K.; Rohatgi, N. K.; Ganapathi, G. B.

    1993-01-01

    This paper describes a simulation model called the Life Support Systems Analysis Simulation Tool (LiSSA-ST), the spreadsheet program called the Life Support Systems Analysis Trade Tool (LiSSA-TT), and the Generic Modular Flow Schematic (GMFS) modeling technique. Results of using the LiSSA-ST and the LiSSA-TT will be presented for comparing life support system and process technology options for a Lunar Base with a crew size of 4 and mission lengths of 90 and 600 days. System configurations to minimize the life support system weight and power are explored.

  7. Control and modeling of a CELSS (Controlled Ecological Life Support System)

    NASA Technical Reports Server (NTRS)

    Auslander, D. M.; Spear, R. C.; Babcock, P. S.; Nadel, M.

    1983-01-01

    Research topics that arise from the conceptualization of control for closed life support systems which are life support systems in which all or most of the mass is recycled are discussed. Modeling and control of uncertain and poorly defined systems, resource allocation in closed life support systems, and control structures or systems with delay and closure are emphasized.

  8. The 12-foot pressure wind tunnel restoration project model support systems

    NASA Technical Reports Server (NTRS)

    Sasaki, Glen E.

    1992-01-01

    The 12 Foot Pressure Wind Tunnel is a variable density, low turbulence wind tunnel that operates at subsonic speeds, and up to six atmospheres total pressure. The restoration of this facility is of critical importance to the future of the U.S. aerospace industry. As part of this project, several state of the art model support systems are furnished to provide an optimal balance between aerodynamic and operational efficiency parameters. Two model support systems, the Rear Strut Model Support, and the High Angle of Attack Model Support are discussed. This paper covers design parameters, constraints, development, description, and component selection.

  9. Rhode Island Model Evaluation & Support System: Building Administrator. Edition III

    ERIC Educational Resources Information Center

    Rhode Island Department of Education, 2015

    2015-01-01

    Rhode Island educators believe that implementing a fair, accurate, and meaningful educator evaluation and support system will help improve teaching, learning, and school leadership. The primary purpose of the Rhode Island Model Building Administrator Evaluation and Support System (Rhode Island Model) is to help all building administrators improve.…

  10. A prototype computer-aided modelling tool for life-support system models

    NASA Technical Reports Server (NTRS)

    Preisig, H. A.; Lee, Tae-Yeong; Little, Frank

    1990-01-01

    Based on the canonical decomposition of physical-chemical-biological systems, a prototype kernel has been developed to efficiently model alternative life-support systems. It supports (1) the work in an interdisciplinary group through an easy-to-use mostly graphical interface, (2) modularized object-oriented model representation, (3) reuse of models, (4) inheritance of structures from model object to model object, and (5) model data base. The kernel is implemented in Modula-II and presently operates on an IBM PC.

  11. (abstract) Generic Modeling of a Life Support System for Process Technology Comparisons

    NASA Technical Reports Server (NTRS)

    Ferrall, J. F.; Seshan, P. K.; Rohatgi, N. K.; Ganapathi, G. B.

    1993-01-01

    This paper describes a simulation model called the Life Support Systems Analysis Simulation Tool (LiSSA-ST), the spreadsheet program called the Life Support Systems Analysis Trade Tool (LiSSA-TT), and the Generic Modular Flow Schematic (GMFS) modeling technique. Results of using the LiSSA-ST and the LiSSA-TT will be presented for comparing life support systems and process technology options for a Lunar Base and a Mars Exploration Mission.

  12. The ASCA Model and a Multi-Tiered System of Supports: A Framework to Support Students of Color with Problem Behavior

    ERIC Educational Resources Information Center

    Belser, Christopher T.; Shillingford, M. Ann; Joe, J. Richelle

    2016-01-01

    The American School Counselor Association (ASCA) National Model and a multi-tiered system of supports (MTSS) both provide frameworks for systematically solving problems in schools, including student behavior concerns. The authors outline a model that integrates overlapping elements of the National Model and MTSS as a support for marginalized…

  13. An approach to the mathematical modelling of a controlled ecological life support system

    NASA Technical Reports Server (NTRS)

    Averner, M. M.

    1981-01-01

    An approach to the design of a computer based model of a closed ecological life-support system suitable for use in extraterrestrial habitats is presented. The model is based on elemental mass balance and contains representations of the metabolic activities of biological components. The model can be used as a tool in evaluating preliminary designs for closed regenerative life support systems and as a method for predicting the behavior of such systems.

  14. Regenerative life support system research and concepts

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Life support systems that involve recycling of atmospheres, water, food and waste are so complex that models incorporating all the interactions and relationships are vital to design, development, simulations, and ultimately to control of space qualified systems. During early modeling studies, FORTRAN and BASIC programs were used to obtain numerical comparisons of the performance of different regenerative concepts. Recently, models were made by combining existing capabilities with expert systems to establish an Intelligent Design Support Environment for simpliflying user interfaces and to address the need for the engineering aspects. Progress was also made toward modeling and evaluating the operational aspects of closed loop life support systems using Time-step and Dynamic simulations over a period of time. Example models are presented which show the status and potential of developed modeling techniques. For instance, closed loop systems involving algae systeMs for atmospheric purification and food supply augmentation, plus models employing high plants and solid waste electrolysis are described and results of initial evaluations are presented.

  15. CONFIG: Integrated engineering of systems and their operation

    NASA Technical Reports Server (NTRS)

    Malin, Jane T.; Ryan, Dan; Fleming, Land

    1994-01-01

    This article discusses CONFIG 3, a prototype software tool that supports integrated conceptual design evaluation from early in the product life cycle, by supporting isolated or integrated modeling, simulation, and analysis of the function, structure, behavior, failures and operations of system designs. Integration and reuse of models is supported in an object-oriented environment providing capabilities for graph analysis and discrete event simulation. CONFIG supports integration among diverse modeling approaches (component view, configuration or flow path view, and procedure view) and diverse simulation and analysis approaches. CONFIG is designed to support integrated engineering in diverse design domains, including mechanical and electro-mechanical systems, distributed computer systems, and chemical processing and transport systems.

  16. Biological life-support systems

    NASA Technical Reports Server (NTRS)

    Shepelev, Y. Y.

    1975-01-01

    The establishment of human living environments by biologic methods, utilizing the appropriate functions of autotrophic and heterotrophic organisms is examined. Natural biologic systems discussed in terms of modeling biologic life support systems (BLSS), the structure of biologic life support systems, and the development of individual functional links in biologic life support systems are among the factors considered. Experimental modeling of BLSS in order to determine functional characteristics, mechanisms by which stability is maintained, and principles underlying control and regulation is also discussed.

  17. Modeling and control design of a wind tunnel model support

    NASA Technical Reports Server (NTRS)

    Howe, David A.

    1990-01-01

    The 12-Foot Pressure Wind Tunnel at Ames Research Center is being restored. A major part of the restoration is the complete redesign of the aircraft model supports and their associated control systems. An accurate trajectory control servo system capable of positioning a model (with no measurable overshoot) is needed. Extremely small errors in scaled-model pitch angle can increase airline fuel costs for the final aircraft configuration by millions of dollars. In order to make a mechanism sufficiently accurate in pitch, a detailed structural and control-system model must be created and then simulated on a digital computer. The model must contain linear representations of the mechanical system, including masses, springs, and damping in order to determine system modes. Electrical components, both analog and digital, linear and nonlinear must also be simulated. The model of the entire closed-loop system must then be tuned to control the modes of the flexible model-support structure. The development of a system model, the control modal analysis, and the control-system design are discussed.

  18. Space Station Freedom ECLSS: A step toward autonomous regenerative life support systems

    NASA Technical Reports Server (NTRS)

    Dewberry, Brandon S.

    1990-01-01

    The Environmental Control and Life Support System (ECLSS) is a Freedom Station distributed system with inherent applicability to extensive automation primarily due to its comparatively long control system latencies. These allow longer contemplation times in which to form a more intelligent control strategy and to prevent and diagnose faults. The regenerative nature of the Space Station Freedom ECLSS will contribute closed loop complexities never before encountered in life support systems. A study to determine ECLSS automation approaches has been completed. The ECLSS baseline software and system processes could be augmented with more advanced fault management and regenerative control systems for a more autonomous evolutionary system, as well as serving as a firm foundation for future regenerative life support systems. Emerging advanced software technology and tools can be successfully applied to fault management, but a fully automated life support system will require research and development of regenerative control systems and models. The baseline Environmental Control and Life Support System utilizes ground tests in development of batch chemical and microbial control processes. Long duration regenerative life support systems will require more active chemical and microbial feedback control systems which, in turn, will require advancements in regenerative life support models and tools. These models can be verified using ground and on orbit life support test and operational data, and used in the engineering analysis of proposed intelligent instrumentation feedback and flexible process control technologies for future autonomous regenerative life support systems, including the evolutionary Space Station Freedom ECLSS.

  19. Support System Effects on the NASA Common Research Model

    NASA Technical Reports Server (NTRS)

    Rivers, S. Melissa B.; Hunter, Craig A.

    2012-01-01

    An experimental investigation of the NASA Common Research Model was conducted in the NASA Langley National Transonic Facility and NASA Ames 11-Foot Transonic Wind Tunnel Facility for use in the Drag Prediction Workshop. As data from the experimental investigations was collected, a large difference in moment values was seen between the experimental and the computational data from the 4th Drag Prediction Workshop. This difference led to the present work. In this study, a computational assessment has been undertaken to investigate model support system interference effects on the Common Research Model. The configurations computed during this investigation were the wing/body/tail=0deg without the support system and the wing/body/tail=0deg with the support system. The results from this investigation confirm that the addition of the support system to the computational cases does shift the pitching moment in the direction of the experimental results.

  20. Watershed System Model: The Essentials to Model Complex Human-Nature System at the River Basin Scale

    NASA Astrophysics Data System (ADS)

    Li, Xin; Cheng, Guodong; Lin, Hui; Cai, Ximing; Fang, Miao; Ge, Yingchun; Hu, Xiaoli; Chen, Min; Li, Weiyue

    2018-03-01

    Watershed system models are urgently needed to understand complex watershed systems and to support integrated river basin management. Early watershed modeling efforts focused on the representation of hydrologic processes, while the next-generation watershed models should represent the coevolution of the water-land-air-plant-human nexus in a watershed and provide capability of decision-making support. We propose a new modeling framework and discuss the know-how approach to incorporate emerging knowledge into integrated models through data exchange interfaces. We argue that the modeling environment is a useful tool to enable effective model integration, as well as create domain-specific models of river basin systems. The grand challenges in developing next-generation watershed system models include but are not limited to providing an overarching framework for linking natural and social sciences, building a scientifically based decision support system, quantifying and controlling uncertainties, and taking advantage of new technologies and new findings in the various disciplines of watershed science. The eventual goal is to build transdisciplinary, scientifically sound, and scale-explicit watershed system models that are to be codesigned by multidisciplinary communities.

  1. Systems Engineering Model for ART Energy Conversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mendez Cruz, Carmen Margarita; Rochau, Gary E.; Wilson, Mollye C.

    The near-term objective of the EC team is to establish an operating, commercially scalable Recompression Closed Brayton Cycle (RCBC) to be constructed for the NE - STEP demonstration system (demo) with the lowest risk possible. A systems engineering approach is recommended to ensure adequate requirements gathering, documentation, and mode ling that supports technology development relevant to advanced reactors while supporting crosscut interests in potential applications. A holistic systems engineering model was designed for the ART Energy Conversion program by leveraging Concurrent Engineering, Balance Model, Simplified V Model, and Project Management principles. The resulting model supports the identification and validation ofmore » lifecycle Brayton systems requirements, and allows designers to detail system-specific components relevant to the current stage in the lifecycle, while maintaining a holistic view of all system elements.« less

  2. Adjustable Autonomy Testbed

    NASA Technical Reports Server (NTRS)

    Malin, Jane T.; Schrenkenghost, Debra K.

    2001-01-01

    The Adjustable Autonomy Testbed (AAT) is a simulation-based testbed located in the Intelligent Systems Laboratory in the Automation, Robotics and Simulation Division at NASA Johnson Space Center. The purpose of the testbed is to support evaluation and validation of prototypes of adjustable autonomous agent software for control and fault management for complex systems. The AA T project has developed prototype adjustable autonomous agent software and human interfaces for cooperative fault management. This software builds on current autonomous agent technology by altering the architecture, components and interfaces for effective teamwork between autonomous systems and human experts. Autonomous agents include a planner, flexible executive, low level control and deductive model-based fault isolation. Adjustable autonomy is intended to increase the flexibility and effectiveness of fault management with an autonomous system. The test domain for this work is control of advanced life support systems for habitats for planetary exploration. The CONFIG hybrid discrete event simulation environment provides flexible and dynamically reconfigurable models of the behavior of components and fluids in the life support systems. Both discrete event and continuous (discrete time) simulation are supported, and flows and pressures are computed globally. This provides fast dynamic simulations of interacting hardware systems in closed loops that can be reconfigured during operations scenarios, producing complex cascading effects of operations and failures. Current object-oriented model libraries support modeling of fluid systems, and models have been developed of physico-chemical and biological subsystems for processing advanced life support gases. In FY01, water recovery system models will be developed.

  3. Gridded Model Information Support System (GMISS) user's guide. Volume 3. Model-concentration data-retrieval subsystem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The Gridded Model Information Support System (GMISS) is a data base management system for selected Regional Oxidant Model (ROM) input data and species concentrations produced by gridded photochemical air pollution models. The Model Concentration Data Retrieval Subsystem allows State and local air pollution control agencies to retrieve these hourly data for use in support of their regulatory programs. These hourly data may be used to calculate initial and boundary conditions for the Empirical Kinetics Modeling Approach (EKMA). They may be used for other modeling application needs as well as to support evaluation of regional emission controls strategies. Both temporal andmore » spatial subsets of the data may be retrieved. The document describes how to invoke and execute the Model Concentration Data Retrieval Subsystem using the full screen menus.« less

  4. A new security model for collaborative environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agarwal, Deborah; Lorch, Markus; Thompson, Mary

    Prevalent authentication and authorization models for distributed systems provide for the protection of computer systems and resources from unauthorized use. The rules and policies that drive the access decisions in such systems are typically configured up front and require trust establishment before the systems can be used. This approach does not work well for computer software that moderates human-to-human interaction. This work proposes a new model for trust establishment and management in computer systems supporting collaborative work. The model supports the dynamic addition of new users to a collaboration with very little initial trust placed into their identity and supportsmore » the incremental building of trust relationships through endorsements from established collaborators. It also recognizes the strength of a users authentication when making trust decisions. By mimicking the way humans build trust naturally the model can support a wide variety of usage scenarios. Its particular strength lies in the support for ad-hoc and dynamic collaborations and the ubiquitous access to a Computer Supported Collaboration Workspace (CSCW) system from locations with varying levels of trust and security.« less

  5. System Dynamics Approach for Critical Infrastructure and Decision Support. A Model for a Potable Water System.

    NASA Astrophysics Data System (ADS)

    Pasqualini, D.; Witkowski, M.

    2005-12-01

    The Critical Infrastructure Protection / Decision Support System (CIP/DSS) project, supported by the Science and Technology Office, has been developing a risk-informed Decision Support System that provides insights for making critical infrastructure protection decisions. The system considers seventeen different Department of Homeland Security defined Critical Infrastructures (potable water system, telecommunications, public health, economics, etc.) and their primary interdependencies. These infrastructures have been modeling in one model called CIP/DSS Metropolitan Model. The modeling approach used is a system dynamics modeling approach. System dynamics modeling combines control theory and the nonlinear dynamics theory, which is defined by a set of coupled differential equations, which seeks to explain how the structure of a given system determines its behavior. In this poster we present a system dynamics model for one of the seventeen critical infrastructures, a generic metropolitan potable water system (MPWS). Three are the goals: 1) to gain a better understanding of the MPWS infrastructure; 2) to identify improvements that would help protect MPWS; and 3) to understand the consequences, interdependencies, and impacts, when perturbations occur to the system. The model represents raw water sources, the metropolitan water treatment process, storage of treated water, damage and repair to the MPWS, distribution of water, and end user demand, but does not explicitly represent the detailed network topology of an actual MPWS. The MPWS model is dependent upon inputs from the metropolitan population, energy, telecommunication, public health, and transportation models as well as the national water and transportation models. We present modeling results and sensitivity analysis indicating critical choke points, negative and positive feedback loops in the system. A general scenario is also analyzed where the potable water system responds to a generic disruption.

  6. Development of body weight support gait training system using antagonistic bi-articular muscle model.

    PubMed

    Shibata, Yoshiyuki; Imai, Shingo; Nobutomo, Tatsuya; Miyoshi, Tasuku; Yamamoto, Shin-Ichiroh

    2010-01-01

    The purpose of this study is to develop a body weight support gait training system for stroke and spinal cord injury. This system consists of a powered orthosis, treadmill and equipment of body weight support. Attachment of the powered orthosis is able to fit subject who has difference of body size. This powered orthosis is driven by pneumatic McKibben actuator. Actuators are arranged as pair of antagonistic bi-articular muscle model and two pairs of antagonistic mono-articular muscle model like human musculoskeletal system. Part of the equipment of body weight support suspend subject by wire harness, and body weight of subject is supported continuously by counter weight. The powered orthosis is attached equipment of body weight support by parallel linkage, and movement of the powered orthosis is limited at sagittal plane. Weight of the powered orthosis is compensated by parallel linkage with gas-spring. In this study, we developed system that has orthosis powered by pneumatic McKibben actuators and equipment of body weight support. We report detail of our developed body weight support gait training system.

  7. A study on spatial decision support systems for HIV/AIDS prevention based on COM GIS technology

    NASA Astrophysics Data System (ADS)

    Yang, Kun; Luo, Huasong; Peng, Shungyun; Xu, Quanli

    2007-06-01

    Based on the deeply analysis of the current status and the existing problems of GIS technology applications in Epidemiology, this paper has proposed the method and process for establishing the spatial decision support systems of AIDS epidemic prevention by integrating the COM GIS, Spatial Database, GPS, Remote Sensing, and Communication technologies, as well as ASP and ActiveX software development technologies. One of the most important issues for constructing the spatial decision support systems of AIDS epidemic prevention is how to integrate the AIDS spreading models with GIS. The capabilities of GIS applications in the AIDS epidemic prevention have been described here in this paper firstly. Then some mature epidemic spreading models have also been discussed for extracting the computation parameters. Furthermore, a technical schema has been proposed for integrating the AIDS spreading models with GIS and relevant geospatial technologies, in which the GIS and model running platforms share a common spatial database and the computing results can be spatially visualized on Desktop or Web GIS clients. Finally, a complete solution for establishing the decision support systems of AIDS epidemic prevention has been offered in this paper based on the model integrating methods and ESRI COM GIS software packages. The general decision support systems are composed of data acquisition sub-systems, network communication sub-systems, model integrating sub-systems, AIDS epidemic information spatial database sub-systems, AIDS epidemic information querying and statistical analysis sub-systems, AIDS epidemic dynamic surveillance sub-systems, AIDS epidemic information spatial analysis and decision support sub-systems, as well as AIDS epidemic information publishing sub-systems based on Web GIS.

  8. A prototype knowledge-based simulation support system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hill, T.R.; Roberts, S.D.

    1987-04-01

    As a preliminary step toward the goal of an intelligent automated system for simulation modeling support, we explore the feasibility of the overall concept by generating and testing a prototypical framework. A prototype knowledge-based computer system was developed to support a senior level course in industrial engineering so that the overall feasibility of an expert simulation support system could be studied in a controlled and observable setting. The system behavior mimics the diagnostic (intelligent) process performed by the course instructor and teaching assistants, finding logical errors in INSIGHT simulation models and recommending appropriate corrective measures. The system was programmed inmore » a non-procedural language (PROLOG) and designed to run interactively with students working on course homework and projects. The knowledge-based structure supports intelligent behavior, providing its users with access to an evolving accumulation of expert diagnostic knowledge. The non-procedural approach facilitates the maintenance of the system and helps merge the roles of expert and knowledge engineer by allowing new knowledge to be easily incorporated without regard to the existing flow of control. The background, features and design of the system are describe and preliminary results are reported. Initial success is judged to demonstrate the utility of the reported approach and support the ultimate goal of an intelligent modeling system which can support simulation modelers outside the classroom environment. Finally, future extensions are suggested.« less

  9. National Transonic Facility model and model support vibration problems

    NASA Technical Reports Server (NTRS)

    Young, Clarence P., Jr.; Popernack, Thomas G., Jr.; Gloss, Blair B.

    1990-01-01

    Vibrations of models and model support system were encountered during testing in the National Transonic Facility. Model support system yaw plane vibrations have resulted in model strain gage balance design load limits being reached. These high levels of vibrations resulted in limited aerodynamic testing for several wind tunnel models. The yaw vibration problem was the subject of an intensive experimental and analytical investigation which identified the primary source of the yaw excitation and resulted in attenuation of the yaw oscillations to acceptable levels. This paper presents the principal results of analyses and experimental investigation of the yaw plane vibration problems. Also, an overview of plans for development and installation of a permanent model system dynamic and aeroelastic response measurement and monitoring system for the National Transonic Facility is presented.

  10. Online model-based diagnosis to support autonomous operation of an advanced life support system.

    PubMed

    Biswas, Gautam; Manders, Eric-Jan; Ramirez, John; Mahadevan, Nagabhusan; Abdelwahed, Sherif

    2004-01-01

    This article describes methods for online model-based diagnosis of subsystems of the advanced life support system (ALS). The diagnosis methodology is tailored to detect, isolate, and identify faults in components of the system quickly so that fault-adaptive control techniques can be applied to maintain system operation without interruption. We describe the components of our hybrid modeling scheme and the diagnosis methodology, and then demonstrate the effectiveness of this methodology by building a detailed model of the reverse osmosis (RO) system of the water recovery system (WRS) of the ALS. This model is validated with real data collected from an experimental testbed at NASA JSC. A number of diagnosis experiments run on simulated faulty data are presented and the results are discussed.

  11. Online model-based diagnosis to support autonomous operation of an advanced life support system

    NASA Technical Reports Server (NTRS)

    Biswas, Gautam; Manders, Eric-Jan; Ramirez, John; Mahadevan, Nagabhusan; Abdelwahed, Sherif

    2004-01-01

    This article describes methods for online model-based diagnosis of subsystems of the advanced life support system (ALS). The diagnosis methodology is tailored to detect, isolate, and identify faults in components of the system quickly so that fault-adaptive control techniques can be applied to maintain system operation without interruption. We describe the components of our hybrid modeling scheme and the diagnosis methodology, and then demonstrate the effectiveness of this methodology by building a detailed model of the reverse osmosis (RO) system of the water recovery system (WRS) of the ALS. This model is validated with real data collected from an experimental testbed at NASA JSC. A number of diagnosis experiments run on simulated faulty data are presented and the results are discussed.

  12. NED-IIS: An Intelligent Information System for Forest Ecosystem Management

    Treesearch

    W.D. Potter; S. Somasekar; R. Kommineni; H.M. Rauscher

    1999-01-01

    We view Intelligent Information System (IIS) as composed of a unified knowledge base, database, and model base. The model base includes decision support models, forecasting models, and cvsualization models for example. In addition, we feel that the model base should include domain specific porblems solving modules as well as decision support models. This, then,...

  13. Integrated Information Support System (IISS). Volume 5. Common Data Model Subsystem. Part 2. CDMP Test Case Report.

    DTIC Science & Technology

    1985-11-01

    As a o11066v. nlstle VSuSY £6I5PSAY I’ Iu PAS 11. Title Integrated Information Support System (1SS) Vol V - Common Data Model Subsystem Part 2 - CIMP ...AD-Mel1 236 INTEGRATED INFORMATION SUPPORT SYSTEM (IISS) VOLUME 5 1/2 COMMON DATA MODEL S.. (U) GENERAL ELECTRIC CO SCHENECTADY NY PRODUCTION...Volume V - Common Data Model Subsystem Part 2 - CDMP Test Case Report General Electric Company Production Resources Consulting One River Road

  14. Biological systems for human life support: Review of the research in the USSR

    NASA Technical Reports Server (NTRS)

    Shepelev, Y. Y.

    1979-01-01

    Various models of biological human life support systems are surveyed. Biological structures, dimensions, and functional parameters of man-chlorella-microorganism models are described. Significant observations and the results obtained from these models are reported.

  15. Combat Service Support Model Development: BRASS - TRANSLOG - Army 21

    DTIC Science & Technology

    1984-07-01

    throughout’the system. Transitional problems may address specific hardware and related software , such as the Standard Army Ammunition System ( SAAS ...FILE. 00 Cabat Service Support Model Development .,PASS TRANSLOG -- ARMY 21 0 Contract Number DAAK11-84-D-0004 Task Order #1 DRAFT REPOkT July 1984 D...Armament Systems, Inc. 211 West Bel Air Avenue P.O. Box 158 Aberdeen, MD 21001 8 8 8 2 1 S CORMIT SERVICE SUPPORT MODEL DEVELOPMENT BRASS -- TRANSLOG

  16. Operational modes, health, and status monitoring

    NASA Astrophysics Data System (ADS)

    Taljaard, Corrie

    2016-08-01

    System Engineers must fully understand the system, its support system and operational environment to optimise the design. Operations and Support Managers must also identify the correct metrics to measure the performance and to manage the operations and support organisation. Reliability Engineering and Support Analysis provide methods to design a Support System and to optimise the Availability of a complex system. Availability modelling and Failure Analysis during the design is intended to influence the design and to develop an optimum maintenance plan for a system. The remote site locations of the SKA Telescopes place emphasis on availability, failure identification and fault isolation. This paper discusses the use of Failure Analysis and a Support Database to design a Support and Maintenance plan for the SKA Telescopes. It also describes the use of modelling to develop an availability dashboard and performance metrics.

  17. Artificial intelligence techniques for modeling database user behavior

    NASA Technical Reports Server (NTRS)

    Tanner, Steve; Graves, Sara J.

    1990-01-01

    The design and development of the adaptive modeling system is described. This system models how a user accesses a relational database management system in order to improve its performance by discovering use access patterns. In the current system, these patterns are used to improve the user interface and may be used to speed data retrieval, support query optimization and support a more flexible data representation. The system models both syntactic and semantic information about the user's access and employs both procedural and rule-based logic to manipulate the model.

  18. Optimization of life support systems and their systems reliability

    NASA Technical Reports Server (NTRS)

    Fan, L. T.; Hwang, C. L.; Erickson, L. E.

    1971-01-01

    The identification, analysis, and optimization of life support systems and subsystems have been investigated. For each system or subsystem that has been considered, the procedure involves the establishment of a set of system equations (or mathematical model) based on theory and experimental evidences; the analysis and simulation of the model; the optimization of the operation, control, and reliability; analysis of sensitivity of the system based on the model; and, if possible, experimental verification of the theoretical and computational results. Research activities include: (1) modeling of air flow in a confined space; (2) review of several different gas-liquid contactors utilizing centrifugal force: (3) review of carbon dioxide reduction contactors in space vehicles and other enclosed structures: (4) application of modern optimal control theory to environmental control of confined spaces; (5) optimal control of class of nonlinear diffusional distributed parameter systems: (6) optimization of system reliability of life support systems and sub-systems: (7) modeling, simulation and optimal control of the human thermal system: and (8) analysis and optimization of the water-vapor eletrolysis cell.

  19. The Community WRF-Hydro Modeling System Version 4 Updates: Merging Toward Capabilities of the National Water Model

    NASA Astrophysics Data System (ADS)

    McAllister, M.; Gochis, D.; Dugger, A. L.; Karsten, L. R.; McCreight, J. L.; Pan, L.; Rafieeinasab, A.; Read, L. K.; Sampson, K. M.; Yu, W.

    2017-12-01

    The community WRF-Hydro modeling system is publicly available and provides researchers and operational forecasters a flexible and extensible capability for performing multi-scale, multi-physics options for hydrologic modeling that can be run independent or fully-interactive with the WRF atmospheric model. The core WRF-Hydro physics model contains very high-resolution descriptions of terrestrial hydrologic process representations such as land-atmosphere exchanges of energy and moisture, snowpack evolution, infiltration, terrain routing, channel routing, basic reservoir representation and hydrologic data assimilation. Complementing the core physics components of WRF-Hydro are an ecosystem of pre- and post-processing tools that facilitate the preparation of terrain and meteorological input data, an open-source hydrologic model evaluation toolset (Rwrfhydro), hydrologic data assimilation capabilities with DART and advanced model visualization capabilities. The National Center for Atmospheric Research (NCAR), through collaborative support from the National Science Foundation and other funding partners, provides community support for the entire WRF-Hydro system through a variety of mechanisms. This presentation summarizes the enhanced user support capabilities that are being developed for the community WRF-Hydro modeling system. These products and services include a new website, open-source code repositories, documentation and user guides, test cases, online training materials, live, hands-on training sessions, an email list serve, and individual user support via email through a new help desk ticketing system. The WRF-Hydro modeling system and supporting tools which now include re-gridding scripts and model calibration have recently been updated to Version 4 and are merging toward capabilities of the National Water Model.

  20. BioModels: expanding horizons to include more modelling approaches and formats

    PubMed Central

    Nguyen, Tung V N; Graesslin, Martin; Hälke, Robert; Ali, Raza; Schramm, Jochen; Wimalaratne, Sarala M; Kothamachu, Varun B; Rodriguez, Nicolas; Swat, Maciej J; Eils, Jurgen; Eils, Roland; Laibe, Camille; Chelliah, Vijayalakshmi

    2018-01-01

    Abstract BioModels serves as a central repository of mathematical models representing biological processes. It offers a platform to make mathematical models easily shareable across the systems modelling community, thereby supporting model reuse. To facilitate hosting a broader range of model formats derived from diverse modelling approaches and tools, a new infrastructure for BioModels has been developed that is available at http://www.ebi.ac.uk/biomodels. This new system allows submitting and sharing of a wide range of models with improved support for formats other than SBML. It also offers a version-control backed environment in which authors and curators can work collaboratively to curate models. This article summarises the features available in the current system and discusses the potential benefit they offer to the users over the previous system. In summary, the new portal broadens the scope of models accepted in BioModels and supports collaborative model curation which is crucial for model reproducibility and sharing. PMID:29106614

  1. Aerodynamic results of a support system interference effects test conducted at NASA/LaRC UPWT using an 0.015-scale model of the configuration 140A/B SSV orbiter (0A20B)

    NASA Technical Reports Server (NTRS)

    Campbell, J. H., II; Embury, W. R.

    1974-01-01

    An experimental aerodynamic investigation was conducted to determine the interference effects of a wind tunnel support system. The test article was a 0.015 scale model of the space shuttle orbiter. The primary objective of the test was to determine the extent that aerodynamic simulation of the space shuttle orbiter is affected by base mounting the model, without nozzles, on a straight sting. Two support systems were tested. The characteristics of the support systems are described. Data from the tests are presented in the form of graphs and tables.

  2. Psychosocial work environment and health in U.S. metropolitan areas: a test of the demand-control and demand-control-support models.

    PubMed

    Muntaner, C; Schoenbach, C

    1994-01-01

    The authors use confirmatory factor analysis to investigate the psychosocial dimensions of work environments relevant to health outcomes, in a representative sample of five U.S. metropolitan areas. Through an aggregated inference system, scales from Schwartz and associates' job scoring system and from the Dictionary of Occupational Titles (DOT) were employed to examine two alternative models: the demand-control model of Karasek and Theorell and Johnson's demand-control-support model. Confirmatory factor analysis was used to test the two models. The two multidimensional models yielded better fits than an unstructured model. After allowing for the measurement error variance due to the method of assessment (Schwartz and associates' system or DOT), both models yielded acceptable goodness-of-fit indices, but the fit of the demand-control-support model was significantly better. Overall these results indicate that the dimensions of Control (substantive complexity of work, skill discretion, decision authority), Demands (physical exertion, physical demands and hazards), and Social Support (coworker and supervisor social supports) provide an acceptable account of the psychosocial dimensions of work associated with health outcomes.

  3. Diagnostics in the Extendable Integrated Support Environment (EISE)

    NASA Technical Reports Server (NTRS)

    Brink, James R.; Storey, Paul

    1988-01-01

    Extendable Integrated Support Environment (EISE) is a real-time computer network consisting of commercially available hardware and software components to support systems level integration, modifications, and enhancement to weapons systems. The EISE approach offers substantial potential savings by eliminating unique support environments in favor of sharing common modules for the support of operational weapon systems. An expert system is being developed that will help support diagnosing faults in this network. This is a multi-level, multi-expert diagnostic system that uses experiential knowledge relating symptoms to faults and also reasons from structural and functional models of the underlying physical model when experiential reasoning is inadequate. The individual expert systems are orchestrated by a supervisory reasoning controller, a meta-level reasoner which plans the sequence of reasoning steps to solve the given specific problem. The overall system, termed the Diagnostic Executive, accesses systems level performance checks and error reports, and issues remote test procedures to formulate and confirm fault hypotheses.

  4. COMMUNITY MULTISCALE AIR QUALITY MODELING SYSTEM (ONE ATMOSPHERE)

    EPA Science Inventory

    This task supports ORD's strategy by providing responsive technical support of EPA's mission and provides credible state of the art air quality models and guidance. This research effort is to develop and improve the Community Multiscale Air Quality (CMAQ) modeling system, a mu...

  5. An agent architecture for an integrated forest ecosystem management decision support system

    Treesearch

    Donald Nute; Walter D. Potter; Mayukh Dass; Astrid Glende; Frederick Maier; Hajime Uchiyama; Jin Wang; Mark Twery; Peter Knopp; Scott Thomasma; H. Michael Rauscher

    2003-01-01

    A wide variety of software tools are available to support decision in the management of forest ecosystems. These tools include databases, growth and yield models, wildlife models, silvicultural expert systems, financial models, geographical informations systems, and visualization tools. Typically, each of these tools has its own complex interface and data format. To...

  6. Modeling and performance analysis of QoS data

    NASA Astrophysics Data System (ADS)

    Strzeciwilk, Dariusz; Zuberek, Włodzimierz M.

    2016-09-01

    The article presents the results of modeling and analysis of data transmission performance on systems that support quality of service. Models are designed and tested, taking into account multiservice network architecture, i.e. supporting the transmission of data related to different classes of traffic. Studied were mechanisms of traffic shaping systems, which are based on the Priority Queuing with an integrated source of data and the various sources of data that is generated. Discussed were the basic problems of the architecture supporting QoS and queuing systems. Designed and built were models based on Petri nets, supported by temporal logics. The use of simulation tools was to verify the mechanisms of shaping traffic with the applied queuing algorithms. It is shown that temporal models of Petri nets can be effectively used in the modeling and analysis of the performance of computer networks.

  7. Mathematical Modeling of Food Supply for Long Term Space Missions Using Advanced Life Support

    NASA Technical Reports Server (NTRS)

    Cruthirds, John E.

    2003-01-01

    A habitat for long duration missions which utilizes Advanced Life Support (ALS), the Bioregenerative Planetary Life Support Systems Test Complex (BIO-Plex), is currently being built at JSC. In this system all consumables will be recycled and reused. In support of this effort, a menu is being planned utilizing ALS crops that will meet nutritional and psychological requirements. The need exists in the food system to identify specific physical quantities that define life support systems from an analysis and modeling perspective. Once these quantities are defined, they need to be fed into a mathematical model that takes into consideration other systems in the BIO-Plex. This model, if successful, will be used to understand the impacts of changes in the food system on the other systems and vice versa. The Equivalent System Mass (ESM) metric has been used to describe systems and subsystems, including the food system options, in terms of the single parameter, mass. There is concern that this approach might not adequately address the important issues of food quality and psychological impact on crew morale of a supply of fiesh food items. In fact, the mass of food can also depend on the quality of the food. This summer faculty fellow project will involve creating an appropriate mathematical model for the food plan developed by the Food Processing System for BIO-Plex. The desired outcome of this work will be a quantitative model that can be applied to the various options of supplying food on long-term space missions.

  8. Intelligent Model Management in a Forest Ecosystem Management Decision Support System

    Treesearch

    Donald Nute; Walter D. Potter; Frederick Maier; Jin Wang; Mark Twery; H. Michael Rauscher; Peter Knopp; Scott Thomasma; Mayukh Dass; Hajime Uchiyama

    2002-01-01

    Decision making for forest ecosystem management can include the use of a wide variety of modeling tools. These tools include vegetation growth models, wildlife models, silvicultural models, GIS, and visualization tools. NED-2 is a robust, intelligent, goal-driven decision support system that integrates tools in each of these categories. NED-2 uses a blackboard...

  9. Applications of system dynamics modelling to support health policy.

    PubMed

    Atkinson, Jo-An M; Wells, Robert; Page, Andrew; Dominello, Amanda; Haines, Mary; Wilson, Andrew

    2015-07-09

    The value of systems science modelling methods in the health sector is increasingly being recognised. Of particular promise is the potential of these methods to improve operational aspects of healthcare capacity and delivery, analyse policy options for health system reform and guide investments to address complex public health problems. Because it lends itself to a participatory approach, system dynamics modelling has been a particularly appealing method that aims to align stakeholder understanding of the underlying causes of a problem and achieve consensus for action. The aim of this review is to determine the effectiveness of system dynamics modelling for health policy, and explore the range and nature of its application. A systematic search was conducted to identify articles published up to April 2015 from the PubMed, Web of Knowledge, Embase, ScienceDirect and Google Scholar databases. The grey literature was also searched. Papers eligible for inclusion were those that described applications of system dynamics modelling to support health policy at any level of government. Six papers were identified, comprising eight case studies of the application of system dynamics modelling to support health policy. No analytic studies were found that examined the effectiveness of this type of modelling. Only three examples engaged multidisciplinary stakeholders in collective model building. Stakeholder participation in model building reportedly facilitated development of a common 'mental map' of the health problem, resulting in consensus about optimal policy strategy and garnering support for collaborative action. The paucity of relevant papers indicates that, although the volume of descriptive literature advocating the value of system dynamics modelling is considerable, its practical application to inform health policy making is yet to be routinely applied and rigorously evaluated. Advances in software are allowing the participatory model building approach to be extended to more sophisticated multimethod modelling that provides policy makers with more powerful tools to support the design of targeted, effective and equitable policy responses for complex health problems. Building capacity and investing in communication to promote these modelling methods, as well as documenting and evaluating their applications, will be vital to supporting uptake by policy makers.

  10. Top-level modeling of an als system utilizing object-oriented techniques

    NASA Astrophysics Data System (ADS)

    Rodriguez, L. F.; Kang, S.; Ting, K. C.

    The possible configuration of an Advanced Life Support (ALS) System capable of supporting human life for long-term space missions continues to evolve as researchers investigate potential technologies and configurations. To facilitate the decision process the development of acceptable, flexible, and dynamic mathematical computer modeling tools capable of system level analysis is desirable. Object-oriented techniques have been adopted to develop a dynamic top-level model of an ALS system.This approach has several advantages; among these, object-oriented abstractions of systems are inherently modular in architecture. Thus, models can initially be somewhat simplistic, while allowing for adjustments and improvements. In addition, by coding the model in Java, the model can be implemented via the World Wide Web, greatly encouraging the utilization of the model. Systems analysis is further enabled with the utilization of a readily available backend database containing information supporting the model. The subsystem models of the ALS system model include Crew, Biomass Production, Waste Processing and Resource Recovery, Food Processing and Nutrition, and the Interconnecting Space. Each subsystem model and an overall model have been developed. Presented here is the procedure utilized to develop the modeling tool, the vision of the modeling tool, and the current focus for each of the subsystem models.

  11. Applying Service-Oriented Architecture on The Development of Groundwater Modeling Support System

    NASA Astrophysics Data System (ADS)

    Li, C. Y.; WANG, Y.; Chang, L. C.; Tsai, J. P.; Hsiao, C. T.

    2016-12-01

    Groundwater simulation has become an essential step on the groundwater resources management and assessment. There are many stand-alone pre- and post-processing software packages to alleviate the model simulation loading, but the stand-alone software do not consider centralized management of data and simulation results neither do they provide network sharing functions. Hence, it is difficult to share and reuse the data and knowledge (simulation cases) systematically within or across companies. Therefore, this study develops a centralized and network based groundwater modeling support system to assist model construction. The system is based on service-oriented architecture and allows remote user to develop their modeling cases on internet. The data and cases (knowledge) are thus easy to manage centralized. MODFLOW is the modeling engine of the system, which is the most popular groundwater model in the world. The system provides a data warehouse to restore groundwater observations, MODFLOW Support Service, MODFLOW Input File & Shapefile Convert Service, MODFLOW Service, and Expert System Service to assist researchers to build models. Since the system architecture is service-oriented, it is scalable and flexible. The system can be easily extended to include the scenarios analysis and knowledge management to facilitate the reuse of groundwater modeling knowledge.

  12. CONFIG - Adapting qualitative modeling and discrete event simulation for design of fault management systems

    NASA Technical Reports Server (NTRS)

    Malin, Jane T.; Basham, Bryan D.

    1989-01-01

    CONFIG is a modeling and simulation tool prototype for analyzing the normal and faulty qualitative behaviors of engineered systems. Qualitative modeling and discrete-event simulation have been adapted and integrated, to support early development, during system design, of software and procedures for management of failures, especially in diagnostic expert systems. Qualitative component models are defined in terms of normal and faulty modes and processes, which are defined by invocation statements and effect statements with time delays. System models are constructed graphically by using instances of components and relations from object-oriented hierarchical model libraries. Extension and reuse of CONFIG models and analysis capabilities in hybrid rule- and model-based expert fault-management support systems are discussed.

  13. Nuclear Engine System Simulation (NESS) version 2.0

    NASA Technical Reports Server (NTRS)

    Pelaccio, Dennis G.; Scheil, Christine M.; Petrosky, Lyman J.

    1993-01-01

    The topics are presented in viewgraph form and include the following; nuclear thermal propulsion (NTP) engine system analysis program development; nuclear thermal propulsion engine analysis capability requirements; team resources used to support NESS development; expanded liquid engine simulations (ELES) computer model; ELES verification examples; NESS program development evolution; past NTP ELES analysis code modifications and verifications; general NTP engine system features modeled by NESS; representative NTP expander, gas generator, and bleed engine system cycles modeled by NESS; NESS program overview; NESS program flow logic; enabler (NERVA type) nuclear thermal rocket engine; prismatic fuel elements and supports; reactor fuel and support element parameters; reactor parameters as a function of thrust level; internal shield sizing; and reactor thermal model.

  14. 1992 NASA Life Support Systems Analysis workshop

    NASA Technical Reports Server (NTRS)

    Evanich, Peggy L.; Crabb, Thomas M.; Gartrell, Charles F.

    1992-01-01

    The 1992 Life Support Systems Analysis Workshop was sponsored by NASA's Office of Aeronautics and Space Technology (OAST) to integrate the inputs from, disseminate information to, and foster communication among NASA, industry, and academic specialists. The workshop continued discussion and definition of key issues identified in the 1991 workshop, including: (1) modeling and experimental validation; (2) definition of systems analysis evaluation criteria; (3) integration of modeling at multiple levels; and (4) assessment of process control modeling approaches. Through both the 1991 and 1992 workshops, NASA has continued to seek input from industry and university chemical process modeling and analysis experts, and to introduce and apply new systems analysis approaches to life support systems. The workshop included technical presentations, discussions, and interactive planning, with sufficient time allocated for discussion of both technology status and technology development recommendations. Key personnel currently involved with life support technology developments from NASA, industry, and academia provided input to the status and priorities of current and future systems analysis methods and requirements.

  15. DAWN (Design Assistant Workstation) for advanced physical-chemical life support systems

    NASA Technical Reports Server (NTRS)

    Rudokas, Mary R.; Cantwell, Elizabeth R.; Robinson, Peter I.; Shenk, Timothy W.

    1989-01-01

    This paper reports the results of a project supported by the National Aeronautics and Space Administration, Office of Aeronautics and Space Technology (NASA-OAST) under the Advanced Life Support Development Program. It is an initial attempt to integrate artificial intelligence techniques (via expert systems) with conventional quantitative modeling tools for advanced physical-chemical life support systems. The addition of artificial intelligence techniques will assist the designer in the definition and simulation of loosely/well-defined life support processes/problems as well as assist in the capture of design knowledge, both quantitative and qualitative. Expert system and conventional modeling tools are integrated to provide a design workstation that assists the engineer/scientist in creating, evaluating, documenting and optimizing physical-chemical life support systems for short-term and extended duration missions.

  16. Research on support effectiveness modeling and simulating of aviation materiel autonomic logistics system

    NASA Astrophysics Data System (ADS)

    Zhou, Yan; Zhou, Yang; Yuan, Kai; Jia, Zhiyu; Li, Shuo

    2018-05-01

    Aiming at the demonstration of autonomic logistics system to be used at the new generation of aviation materiel in our country, the modeling and simulating method of aviation materiel support effectiveness considering autonomic logistics are studied. Firstly, this paper introduced the idea of JSF autonomic logistics and analyzed the influence of autonomic logistics on support effectiveness from aspects of reliability, false alarm rate, troubleshooting time, and support delay time and maintenance level. On this basis, the paper studies the modeling and simulating methods of support effectiveness considering autonomic logistics, and puts forward the maintenance support simulation process considering autonomic logistics. Finally, taking the typical aviation materiel as an example, this paper analyzes and verifies the above-mentioned support effectiveness modeling and simulating method of aviation materiel considering autonomic logistics.

  17. A task-based support architecture for developing point-of-care clinical decision support systems for the emergency department.

    PubMed

    Wilk, S; Michalowski, W; O'Sullivan, D; Farion, K; Sayyad-Shirabad, J; Kuziemsky, C; Kukawka, B

    2013-01-01

    The purpose of this study was to create a task-based support architecture for developing clinical decision support systems (CDSSs) that assist physicians in making decisions at the point-of-care in the emergency department (ED). The backbone of the proposed architecture was established by a task-based emergency workflow model for a patient-physician encounter. The architecture was designed according to an agent-oriented paradigm. Specifically, we used the O-MaSE (Organization-based Multi-agent System Engineering) method that allows for iterative translation of functional requirements into architectural components (e.g., agents). The agent-oriented paradigm was extended with ontology-driven design to implement ontological models representing knowledge required by specific agents to operate. The task-based architecture allows for the creation of a CDSS that is aligned with the task-based emergency workflow model. It facilitates decoupling of executable components (agents) from embedded domain knowledge (ontological models), thus supporting their interoperability, sharing, and reuse. The generic architecture was implemented as a pilot system, MET3-AE--a CDSS to help with the management of pediatric asthma exacerbation in the ED. The system was evaluated in a hospital ED. The architecture allows for the creation of a CDSS that integrates support for all tasks from the task-based emergency workflow model, and interacts with hospital information systems. Proposed architecture also allows for reusing and sharing system components and knowledge across disease-specific CDSSs.

  18. Structural Analysis and Optimization of the Support Device Used for a Proximal Fracture of the Femur

    DTIC Science & Technology

    2008-12-01

    support system and bone , the models were considered under two different load conditions. From these results, a recommendation can be made to the...support system and bone , the models were considered under two different load conditions. From these results, a recommendation can be made to the...nail with coordinate reference ............................................................30  Figure 27.  Model with bone and Nail

  19. Effective model development of internal auditors in the village financial institution

    NASA Astrophysics Data System (ADS)

    Arsana, I. M. M.; Sugiarta, I. N.

    2018-01-01

    Designing an effective audit system is complex and challenging, and a focus on examining how internal audit drive improvement in three core performance dimensions ethicality, efficiency, and effectiveness in organization is needed. The problem of research is how the desain model and peripheral of supporter of effective supervation Village Credit Institution? Research of objectives is yielding the desain model and peripheral of supporter of effective supervation Village Credit Institution. Method Research use data collecting technique interview, observation and enquette. Data analysis, data qualitative before analysed to be turned into quantitative data in the form of scale. Each variable made to become five classificat pursuant to scale of likert. Data analysed descriptively to find supervation level, Structural Equation Model (SEM) to find internal and eksternal factor. So that desain model supervation with descriptive analysis. Result of research desain model and peripheral of supporter of effective supervation Village Credit Institution. The conclusion desain model supported by three sub system: sub system institute yield body supervisor of Village Credit Institution, sub system standardization and working procedure yield standard operating procedure supervisor of Village Credit Institution, sub system education and training yield supervisor professional of Village Credit Institution.

  20. A pattern-based analysis of clinical computer-interpretable guideline modeling languages.

    PubMed

    Mulyar, Nataliya; van der Aalst, Wil M P; Peleg, Mor

    2007-01-01

    Languages used to specify computer-interpretable guidelines (CIGs) differ in their approaches to addressing particular modeling challenges. The main goals of this article are: (1) to examine the expressive power of CIG modeling languages, and (2) to define the differences, from the control-flow perspective, between process languages in workflow management systems and modeling languages used to design clinical guidelines. The pattern-based analysis was applied to guideline modeling languages Asbru, EON, GLIF, and PROforma. We focused on control-flow and left other perspectives out of consideration. We evaluated the selected CIG modeling languages and identified their degree of support of 43 control-flow patterns. We used a set of explicitly defined evaluation criteria to determine whether each pattern is supported directly, indirectly, or not at all. PROforma offers direct support for 22 of 43 patterns, Asbru 20, GLIF 17, and EON 11. All four directly support basic control-flow patterns, cancellation patterns, and some advance branching and synchronization patterns. None support multiple instances patterns. They offer varying levels of support for synchronizing merge patterns and state-based patterns. Some support a few scenarios not covered by the 43 control-flow patterns. CIG modeling languages are remarkably close to traditional workflow languages from the control-flow perspective, but cover many fewer workflow patterns. CIG languages offer some flexibility that supports modeling of complex decisions and provide ways for modeling some decisions not covered by workflow management systems. Workflow management systems may be suitable for clinical guideline applications.

  1. GIS-based spatial decision support system for grain logistics management

    NASA Astrophysics Data System (ADS)

    Zhen, Tong; Ge, Hongyi; Jiang, Yuying; Che, Yi

    2010-07-01

    Grain logistics is the important component of the social logistics, which can be attributed to frequent circulation and the great quantity. At present time, there is no modern grain logistics distribution management system, and the logistics cost is the high. Geographic Information Systems (GIS) have been widely used for spatial data manipulation and model operations and provide effective decision support through its spatial database management capabilities and cartographic visualization. In the present paper, a spatial decision support system (SDSS) is proposed to support policy makers and to reduce the cost of grain logistics. The system is composed of two major components: grain logistics goods tracking model and vehicle routing problem optimization model and also allows incorporation of data coming from external sources. The proposed system is an effective tool to manage grain logistics in order to increase the speed of grain logistics and reduce the grain circulation cost.

  2. Regenerative life support system research

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Sections on modeling, experimental activities during the grant period, and topics under consideration for the future are contained. The sessions contain discussions of: four concurrent modeling approaches that were being integrated near the end of the period (knowledge-based modeling support infrastructure and data base management, object-oriented steady state simulations for three concepts, steady state mass-balance engineering tradeoff studies, and object-oriented time-step, quasidynamic simulations of generic concepts); interdisciplinary research activities, beginning with a discussion of RECON lab development and use, and followed with discussions of waste processing research, algae studies and subsystem modeling, low pressure growth testing of plants, subsystem modeling of plants, control of plant growth using lighting and CO2 supply as variables, search for and development of lunar soil simulants, preliminary design parameters for a lunar base life support system, and research considerations for food processing in space; and appendix materials, including a discussion of the CELSS Conference, detailed analytical equations for mass-balance modeling, plant modeling equations, and parametric data on existing life support systems for use in modeling.

  3. OASIS: PARAMETER ESTIMATION SYSTEM FOR AQUIFER RESTORATION MODELS, USER'S MANUAL VERSION 2.0

    EPA Science Inventory

    OASIS, a decision support system for ground water contaminant modeling, has been developed for the CPA by Rice University, through the National Center for Ground Water Research. As a decision support system, OASIS was designed to provide a set of tools which will help scientists ...

  4. Robust Modeling of Stellar Triples in PHOEBE

    NASA Astrophysics Data System (ADS)

    Conroy, Kyle E.; Prsa, Andrej; Horvat, Martin; Stassun, Keivan G.

    2017-01-01

    The number of known mutually-eclipsing stellar triple and multiple systems has increased greatly during the Kepler era. These systems provide significant opportunities to both determine fundamental stellar parameters of benchmark systems to unprecedented precision as well as to study the dynamical interaction and formation mechanisms of stellar and planetary systems. Modeling these systems to their full potential, however, has not been feasible until recently. Most existing available codes are restricted to the two-body binary case and those that do provide N-body support for more components make sacrifices in precision by assuming no stellar surface distortion. We have completely redesigned and rewritten the PHOEBE binary modeling code to incorporate support for triple and higher-order systems while also robustly modeling data with Kepler precision. Here we present our approach, demonstrate several test cases based on real data, and discuss the current status of PHOEBE's support for modeling these types of systems. PHOEBE is funded in part by NSF grant #1517474.

  5. Decision support systems in health economics.

    PubMed

    Quaglini, S; Dazzi, L; Stefanelli, M; Barosi, G; Marchetti, M

    1999-08-01

    This article describes a system addressed to different health care professionals for building, using, and sharing decision support systems for resource allocation. The system deals with selected areas, namely the choice of diagnostic tests, the therapy planning, and the instrumentation purchase. Decision support is based on decision-analytic models, incorporating an explicit knowledge representation of both the medical domain knowledge and the economic evaluation theory. Application models are built on top of meta-models, that are used as guidelines for making explicit both the cost and effectiveness components. This approach improves the transparency and soundness of the collaborative decision-making process and facilitates the result interpretation.

  6. Dynamism in Electronic Performance Support Systems.

    ERIC Educational Resources Information Center

    Laffey, James

    1995-01-01

    Describes a model for dynamic electronic performance support systems based on NNAble, a system developed by the training group at Apple Computer. Principles for designing dynamic performance support are discussed, including a systems approach, performer-centered design, awareness of situated cognition, organizational memory, and technology use.…

  7. Thinking Together: Modeling Clinical Decision-Support as a Sociotechnical System

    PubMed Central

    Hussain, Mustafa I.; Reynolds, Tera L.; Mousavi, Fatemeh E.; Chen, Yunan; Zheng, Kai

    2017-01-01

    Computerized clinical decision-support systems are members of larger sociotechnical systems, composed of human and automated actors, who send, receive, and manipulate artifacts. Sociotechnical consideration is rare in the literature. This makes it difficult to comparatively evaluate the success of CDS implementations, and it may also indicate that sociotechnical context receives inadequate consideration in practice. To facilitate sociotechnical consideration, we developed the Thinking Together model, a flexible diagrammatical means of representing CDS systems as sociotechnical systems. To develop this model, we examined the literature with the lens of Distributed Cognition (DCog) theory. We then present two case studies of vastly different CDSSs, one almost fully automated and the other with minimal automation, to illustrate the flexibility of the Thinking Together model. We show that this model, informed by DCog and the CDS literature, are capable of supporting both research, by enabling comparative evaluation, and practice, by facilitating explicit sociotechnical planning and communication. PMID:29854164

  8. Modeling Advance Life Support Systems

    NASA Technical Reports Server (NTRS)

    Pitts, Marvin; Sager, John; Loader, Coleen; Drysdale, Alan

    1996-01-01

    Activities this summer consisted of two projects that involved computer simulation of bioregenerative life support systems for space habitats. Students in the Space Life Science Training Program (SLSTP) used the simulation, space station, to learn about relationships between humans, fish, plants, and microorganisms in a closed environment. One student complete a six week project to modify the simulation by converting the microbes from anaerobic to aerobic, and then balancing the simulation's life support system. A detailed computer simulation of a closed lunar station using bioregenerative life support was attempted, but there was not enough known about system restraints and constants in plant growth, bioreactor design for space habitats and food preparation to develop an integrated model with any confidence. Instead of a completed detailed model with broad assumptions concerning the unknown system parameters, a framework for an integrated model was outlined and work begun on plant and bioreactor simulations. The NASA sponsors and the summer Fell were satisfied with the progress made during the 10 weeks, and we have planned future cooperative work.

  9. Models of Human Information Requirements: "When Reasonable Aiding Systems Disagree"

    NASA Technical Reports Server (NTRS)

    Corker, Kevin; Pisanich, Gregory; Shafto, Michael (Technical Monitor)

    1994-01-01

    Aircraft flight management and Air Traffic Control (ATC) automation are under development to maximize the economy of flight and to increase the capacity of the terminal area airspace while maintaining levels of flight safety equal to or better than current system performance. These goals are being realized by the introduction of flight management automation aiding and operations support systems on the flight deck and by new developments of ATC aiding systems that seek to optimize scheduling of aircraft while potentially reducing required separation and accounting for weather and wake vortex turbulence. Aiding systems on both the flight deck and the ground operate through algorithmic functions on models of the aircraft and of the airspace. These models may differ from each other as a result of variations in their models of the immediate environment. The resultant flight operations or ATC commands may differ in their response requirements (e.g. different preferred descent speeds or descent initiation points). The human operators in the system must then interact with the automation to reconcile differences and resolve conflicts. We have developed a model of human performance including cognitive functions (decision-making, rule-based reasoning, procedural interruption recovery and forgetting) that supports analysis of the information requirements for resolution of flight aiding and ATC conflicts. The model represents multiple individuals in the flight crew and in ATC. The model is supported in simulation on a Silicon Graphics' workstation using Allegro Lisp. Design guidelines for aviation automation aiding systems have been developed using the model's specification of information and team procedural requirements. Empirical data on flight deck operations from full-mission flight simulation are provided to support the model's predictions. The paper describes the model, its development and implementation, the simulation test of the model predictions, and the empirical validation process. The model and its supporting data provide a generalizable tool that is being expanded to include air/ground compatibility and ATC crew interactions in air traffic management.

  10. Vibration modelling and verifications for whole aero-engine

    NASA Astrophysics Data System (ADS)

    Chen, G.

    2015-08-01

    In this study, a new rotor-ball-bearing-casing coupling dynamic model for a practical aero-engine is established. In the coupling system, the rotor and casing systems are modelled using the finite element method, support systems are modelled as lumped parameter models, nonlinear factors of ball bearings and faults are included, and four types of supports and connection models are defined to model the complex rotor-support-casing coupling system of the aero-engine. A new numerical integral method that combines the Newmark-β method and the improved Newmark-β method (Zhai method) is used to obtain the system responses. Finally, the new model is verified in three ways: (1) modal experiment based on rotor-ball bearing rig, (2) modal experiment based on rotor-ball-bearing-casing rig, and (3) fault simulations for a certain type of missile turbofan aero-engine vibration. The results show that the proposed model can not only simulate the natural vibration characteristics of the whole aero-engine but also effectively perform nonlinear dynamic simulations of a whole aero-engine with faults.

  11. Modular Architecture for Integrated Model-Based Decision Support.

    PubMed

    Gaebel, Jan; Schreiber, Erik; Oeser, Alexander; Oeltze-Jafra, Steffen

    2018-01-01

    Model-based decision support systems promise to be a valuable addition to oncological treatments and the implementation of personalized therapies. For the integration and sharing of decision models, the involved systems must be able to communicate with each other. In this paper, we propose a modularized architecture of dedicated systems for the integration of probabilistic decision models into existing hospital environments. These systems interconnect via web services and provide model sharing and processing capabilities for clinical information systems. Along the lines of IHE integration profiles from other disciplines and the meaningful reuse of routinely recorded patient data, our approach aims for the seamless integration of decision models into hospital infrastructure and the physicians' daily work.

  12. A Methodology for Multiple Rule System Integration and Resolution Within a Singular Knowledge Base

    NASA Technical Reports Server (NTRS)

    Kautzmann, Frank N., III

    1988-01-01

    Expert Systems which support knowledge representation by qualitative modeling techniques experience problems, when called upon to support integrated views embodying description and explanation, especially when other factors such as multiple causality, competing rule model resolution, and multiple uses of knowledge representation are included. A series of prototypes are being developed to demonstrate the feasibility of automating the process of systems engineering, design and configuration, and diagnosis and fault management. A study involves not only a generic knowledge representation; it must also support multiple views at varying levels of description and interaction between physical elements, systems, and subsystems. Moreover, it will involve models of description and explanation for each level. This multiple model feature requires the development of control methods between rule systems and heuristics on a meta-level for each expert system involved in an integrated and larger class of expert system. The broadest possible category of interacting expert systems is described along with a general methodology for the knowledge representation and control of mutually exclusive rule systems.

  13. Advancing Collaboration through Hydrologic Data and Model Sharing

    NASA Astrophysics Data System (ADS)

    Tarboton, D. G.; Idaszak, R.; Horsburgh, J. S.; Ames, D. P.; Goodall, J. L.; Band, L. E.; Merwade, V.; Couch, A.; Hooper, R. P.; Maidment, D. R.; Dash, P. K.; Stealey, M.; Yi, H.; Gan, T.; Castronova, A. M.; Miles, B.; Li, Z.; Morsy, M. M.

    2015-12-01

    HydroShare is an online, collaborative system for open sharing of hydrologic data, analytical tools, and models. It supports the sharing of and collaboration around "resources" which are defined primarily by standardized metadata, content data models for each resource type, and an overarching resource data model based on the Open Archives Initiative's Object Reuse and Exchange (OAI-ORE) standard and a hierarchical file packaging system called "BagIt". HydroShare expands the data sharing capability of the CUAHSI Hydrologic Information System by broadening the classes of data accommodated to include geospatial and multidimensional space-time datasets commonly used in hydrology. HydroShare also includes new capability for sharing models, model components, and analytical tools and will take advantage of emerging social media functionality to enhance information about and collaboration around hydrologic data and models. It also supports web services and server/cloud based computation operating on resources for the execution of hydrologic models and analysis and visualization of hydrologic data. HydroShare uses iRODS as a network file system for underlying storage of datasets and models. Collaboration is enabled by casting datasets and models as "social objects". Social functions include both private and public sharing, formation of collaborative groups of users, and value-added annotation of shared datasets and models. The HydroShare web interface and social media functions were developed using the Django web application framework coupled to iRODS. Data visualization and analysis is supported through the Tethys Platform web GIS software stack. Links to external systems are supported by RESTful web service interfaces to HydroShare's content. This presentation will introduce the HydroShare functionality developed to date and describe ongoing development of functionality to support collaboration and integration of data and models.

  14. An engineering approach to modelling, decision support and control for sustainable systems.

    PubMed

    Day, W; Audsley, E; Frost, A R

    2008-02-12

    Engineering research and development contributes to the advance of sustainable agriculture both through innovative methods to manage and control processes, and through quantitative understanding of the operation of practical agricultural systems using decision models. This paper describes how an engineering approach, drawing on mathematical models of systems and processes, contributes new methods that support decision making at all levels from strategy and planning to tactics and real-time control. The ability to describe the system or process by a simple and robust mathematical model is critical, and the outputs range from guidance to policy makers on strategic decisions relating to land use, through intelligent decision support to farmers and on to real-time engineering control of specific processes. Precision in decision making leads to decreased use of inputs, less environmental emissions and enhanced profitability-all essential to sustainable systems.

  15. A Web-Based Learning Support System for Inquiry-Based Learning

    NASA Astrophysics Data System (ADS)

    Kim, Dong Won; Yao, Jingtao

    The emergence of the Internet and Web technology makes it possible to implement the ideals of inquiry-based learning, in which students seek truth, information, or knowledge by questioning. Web-based learning support systems can provide a good framework for inquiry-based learning. This article presents a study on a Web-based learning support system called Online Treasure Hunt. The Web-based learning support system mainly consists of a teaching support subsystem, a learning support subsystem, and a treasure hunt game. The teaching support subsystem allows instructors to design their own inquiry-based learning environments. The learning support subsystem supports students' inquiry activities. The treasure hunt game enables students to investigate new knowledge, develop ideas, and review their findings. Online Treasure Hunt complies with a treasure hunt model. The treasure hunt model formalizes a general treasure hunt game to contain the learning strategies of inquiry-based learning. This Web-based learning support system empowered with the online-learning game and founded on the sound learning strategies furnishes students with the interactive and collaborative student-centered learning environment.

  16. Human life support during interplanetary travel and domicile. II - Generic Modular Flow Schematic modeling

    NASA Technical Reports Server (NTRS)

    Farral, Joseph F.; Seshan, P. K.; Rohatgi, Naresh K.

    1991-01-01

    This paper describes the Generic Modular Flow Schematic (GMFS) architecture capable of encompassing all functional elements of a physical/chemical life support system (LSS). The GMFS can be implemented to synthesize, model, analyze, and quantitatively compare many configurations of LSSs, from a simple, completely open-loop to a very complex closed-loop. The GMFS model is coded in ASPEN, a state-of-the-art chemical process simulation program, to accurately compute the material, heat, and power flow quantities for every stream in each of the subsystem functional elements (SFEs) in the chosen configuration of a life support system. The GMFS approach integrates the various SFEs and subsystems in a hierarchical and modular fashion facilitating rapid substitutions and reconfiguration of a life support system. The comprehensive ASPEN material and energy balance output is transferred to a systems and technology assessment spreadsheet for rigorous system analysis and trade studies.

  17. Using A Model-Based Systems Engineering Approach For Exploration Medical System Development

    NASA Technical Reports Server (NTRS)

    Hanson, A.; Mindock, J.; McGuire, K.; Reilly, J.; Cerro, J.; Othon, W.; Rubin, D.; Urbina, M.; Canga, M.

    2017-01-01

    NASA's Human Research Program's Exploration Medical Capabilities (ExMC) element is defining the medical system needs for exploration class missions. ExMC's Systems Engineering (SE) team will play a critical role in successful design and implementation of the medical system into exploration vehicles. The team's mission is to "Define, develop, validate, and manage the technical system design needed to implement exploration medical capabilities for Mars and test the design in a progression of proving grounds." Development of the medical system is being conducted in parallel with exploration mission architecture and vehicle design development. Successful implementation of the medical system in this environment will require a robust systems engineering approach to enable technical communication across communities to create a common mental model of the emergent engineering and medical systems. Model-Based Systems Engineering (MBSE) improves shared understanding of system needs and constraints between stakeholders and offers a common language for analysis. The ExMC SE team is using MBSE techniques to define operational needs, decompose requirements and architecture, and identify medical capabilities needed to support human exploration. Systems Modeling Language (SysML) is the specific language the SE team is utilizing, within an MBSE approach, to model the medical system functional needs, requirements, and architecture. Modeling methods are being developed through the practice of MBSE within the team, and tools are being selected to support meta-data exchange as integration points to other system models are identified. Use of MBSE is supporting the development of relationships across disciplines and NASA Centers to build trust and enable teamwork, enhance visibility of team goals, foster a culture of unbiased learning and serving, and be responsive to customer needs. The MBSE approach to medical system design offers a paradigm shift toward greater integration between vehicle and the medical system and directly supports the transition of Earth-reliant ISS operations to the Earth-independent operations envisioned for Mars. Here, we describe the methods and approach to building this integrated model.

  18. Web-based decision support system to predict risk level of long term rice production

    NASA Astrophysics Data System (ADS)

    Mukhlash, Imam; Maulidiyah, Ratna; Sutikno; Setiyono, Budi

    2017-09-01

    Appropriate decision making in risk management of rice production is very important in agricultural planning, especially for Indonesia which is an agricultural country. Good decision would be obtained if the supporting data required are satisfied and using appropriate methods. This study aims to develop a Decision Support System that can be used to predict the risk level of rice production in some districts which are central of rice production in East Java. Web-based decision support system is constructed so that the information can be easily accessed and understood. Components of the system are data management, model management, and user interface. This research uses regression models of OLS and Copula. OLS model used to predict rainfall while Copula model used to predict harvested area. Experimental results show that the models used are successfully predict the harvested area of rice production in some districts which are central of rice production in East Java at any given time based on the conditions and climate of a region. Furthermore, it can predict the amount of rice production with the level of risk. System generates prediction of production risk level in the long term for some districts that can be used as a decision support for the authorities.

  19. Persuasive Technology in Mobile Applications Promoting Physical Activity: a Systematic Review.

    PubMed

    Matthews, John; Win, Khin Than; Oinas-Kukkonen, Harri; Freeman, Mark

    2016-03-01

    Persuasive technology in mobile applications can be used to influence the behaviour of users. A framework known as the Persuasive Systems Design model has been developed for designing and evaluating systems that influence the attitudes or behaviours of users. This paper reviews the current state of mobile applications for health behavioural change with an emphasis on applications that promote physical activity. The inbuilt persuasive features of mobile applications were evaluated using the Persuasive Systems Design model. A database search was conducted to identify relevant articles. Articles were then reviewed using the Persuasive Systems Design model as a framework for analysis. Primary task support, dialogue support, and social support were found to be moderately represented in the selected articles. However, system credibility support was found to have only low levels of representation as a persuasive systems design feature in mobile applications for supporting physical activity. To ensure that available mobile technology resources are best used to improve the wellbeing of people, it is important that the design principles that influence the effectiveness of persuasive technology be understood.

  20. Multi-model-based interactive authoring environment for creating shareable medical knowledge.

    PubMed

    Ali, Taqdir; Hussain, Maqbool; Ali Khan, Wajahat; Afzal, Muhammad; Hussain, Jamil; Ali, Rahman; Hassan, Waseem; Jamshed, Arif; Kang, Byeong Ho; Lee, Sungyoung

    2017-10-01

    Technologically integrated healthcare environments can be realized if physicians are encouraged to use smart systems for the creation and sharing of knowledge used in clinical decision support systems (CDSS). While CDSSs are heading toward smart environments, they lack support for abstraction of technology-oriented knowledge from physicians. Therefore, abstraction in the form of a user-friendly and flexible authoring environment is required in order for physicians to create shareable and interoperable knowledge for CDSS workflows. Our proposed system provides a user-friendly authoring environment to create Arden Syntax MLM (Medical Logic Module) as shareable knowledge rules for intelligent decision-making by CDSS. Existing systems are not physician friendly and lack interoperability and shareability of knowledge. In this paper, we proposed Intelligent-Knowledge Authoring Tool (I-KAT), a knowledge authoring environment that overcomes the above mentioned limitations. Shareability is achieved by creating a knowledge base from MLMs using Arden Syntax. Interoperability is enhanced using standard data models and terminologies. However, creation of shareable and interoperable knowledge using Arden Syntax without abstraction increases complexity, which ultimately makes it difficult for physicians to use the authoring environment. Therefore, physician friendliness is provided by abstraction at the application layer to reduce complexity. This abstraction is regulated by mappings created between legacy system concepts, which are modeled as domain clinical model (DCM) and decision support standards such as virtual medical record (vMR) and Systematized Nomenclature of Medicine - Clinical Terms (SNOMED CT). We represent these mappings with a semantic reconciliation model (SRM). The objective of the study is the creation of shareable and interoperable knowledge using a user-friendly and flexible I-KAT. Therefore we evaluated our system using completeness and user satisfaction criteria, which we assessed through the system- and user-centric evaluation processes. For system-centric evaluation, we compared the implementation of clinical information modelling system requirements in our proposed system and in existing systems. The results suggested that 82.05% of the requirements were fully supported, 7.69% were partially supported, and 10.25% were not supported by our system. In the existing systems, 35.89% of requirements were fully supported, 28.20% were partially supported, and 35.89% were not supported. For user-centric evaluation, the assessment criterion was 'ease of use'. Our proposed system showed 15 times better results with respect to MLM creation time than the existing systems. Moreover, on average, the participants made only one error in MLM creation using our proposed system, but 13 errors per MLM using the existing systems. We provide a user-friendly authoring environment for creation of shareable and interoperable knowledge for CDSS to overcome knowledge acquisition complexity. The authoring environment uses state-of-the-art decision support-related clinical standards with increased ease of use. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Performance modeling & simulation of complex systems (A systems engineering design & analysis approach)

    NASA Technical Reports Server (NTRS)

    Hall, Laverne

    1995-01-01

    Modeling of the Multi-mission Image Processing System (MIPS) will be described as an example of the use of a modeling tool to design a distributed system that supports multiple application scenarios. This paper examines: (a) modeling tool selection, capabilities, and operation (namely NETWORK 2.5 by CACl), (b) pointers for building or constructing a model and how the MIPS model was developed, (c) the importance of benchmarking or testing the performance of equipment/subsystems being considered for incorporation the design/architecture, (d) the essential step of model validation and/or calibration using the benchmark results, (e) sample simulation results from the MIPS model, and (f) how modeling and simulation analysis affected the MIPS design process by having a supportive and informative impact.

  2. In-House Communication Support System Based on the Information Propagation Model Utilizes Social Network

    NASA Astrophysics Data System (ADS)

    Takeuchi, Susumu; Teranishi, Yuuichi; Harumoto, Kaname; Shimojo, Shinji

    Almost all companies are now utilizing computer networks to support speedier and more effective in-house information-sharing and communication. However, existing systems are designed to support communications only within the same department. Therefore, in our research, we propose an in-house communication support system which is based on the “Information Propagation Model (IPM).” The IPM is proposed to realize word-of-mouth communication in a social network, and to support information-sharing on the network. By applying the system in a real company, we found that information could be exchanged between different and unrelated departments, and such exchanges of information could help to build new relationships between the users who are apart on the social network.

  3. Integrating climatic and fuels information into National Fire Risk Decision Support Tools

    Treesearch

    W. Cooke; V. Anantharaj; C. Wax; J. Choi; K. Grala; M. Jolly; G.P. Dixon; J. Dyer; D.L. Evans; G.B. Goodrich

    2007-01-01

    The Wildland Fire Assessment System (WFAS) is a component of the U.S. Department of Agriculture, Forest Service Decision Support Systems (DSS) that support fire potential modeling. Fire potential models for Mississippi and for Eastern fire environments have been developed as part of a National Aeronautic and Space Agency-funded study aimed at demonstrating the utility...

  4. The Modular Modeling System (MMS): A modeling framework for water- and environmental-resources management

    USGS Publications Warehouse

    Leavesley, G.H.; Markstrom, S.L.; Viger, R.J.

    2004-01-01

    The interdisciplinary nature and increasing complexity of water- and environmental-resource problems require the use of modeling approaches that can incorporate knowledge from a broad range of scientific disciplines. The large number of distributed hydrological and ecosystem models currently available are composed of a variety of different conceptualizations of the associated processes they simulate. Assessment of the capabilities of these distributed models requires evaluation of the conceptualizations of the individual processes, and the identification of which conceptualizations are most appropriate for various combinations of criteria, such as problem objectives, data constraints, and spatial and temporal scales of application. With this knowledge, "optimal" models for specific sets of criteria can be created and applied. The U.S. Geological Survey (USGS) Modular Modeling System (MMS) is an integrated system of computer software that has been developed to provide these model development and application capabilities. MMS supports the integration of models and tools at a variety of levels of modular design. These include individual process models, tightly coupled models, loosely coupled models, and fully-integrated decision support systems. A variety of visualization and statistical tools are also provided. MMS has been coupled with the Bureau of Reclamation (BOR) object-oriented reservoir and river-system modeling framework, RiverWare, under a joint USGS-BOR program called the Watershed and River System Management Program. MMS and RiverWare are linked using a shared relational database. The resulting database-centered decision support system provides tools for evaluating and applying optimal resource-allocation and management strategies to complex, operational decisions on multipurpose reservoir systems and watersheds. Management issues being addressed include efficiency of water-resources management, environmental concerns such as meeting flow needs for endangered species, and optimizing operations within the constraints of multiple objectives such as power generation, irrigation, and water conservation. This decision support system approach is being developed, tested, and implemented in the Gunni-son, Yakima, San Juan, Rio Grande, and Truckee River basins of the western United States. Copyright ASCE 2004.

  5. A prototype knowledge-based decision support system for industrial waste management. Part 1: The decision support system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyle, C.A.; Baetz, B.W.

    1998-12-31

    Although there are a number of expert systems available which are designed to assist in resolving environmental problems, there is still a need for a system which would assist managers in determining waste management options for all types of wastes from one or more industrial plants, giving priority to sustainable use of resources, reuse and recycling. A prototype model was developed to determine the potentials for reuse and recycling of waste materials, to select the treatments needed to recycle waste materials or for treatment before disposal, and to determine potentials for co-treatment of wastes. A knowledge-based decision support system wasmore » then designed using this model. This paper describes the prototype model, the developed knowledge-based decision support system, the input and storage of data within the system and the inference engine developed for the system to determine the treatment options for the wastes. Options for sorting and selecting treatment trains are described, along with a discussion of the limitations of the approach and future developments needed for the system.« less

  6. System Dynamics Modeling of Transboundary Systems: The Bear River Basin Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerald Sehlke; Jake Jacobson

    2005-09-01

    System dynamics is a computer-aided approach to evaluating the interrelationships of different components and activities within complex systems. Recently, system dynamics models have been developed in areas such as policy design, biological and medical modeling, energy and the environmental analysis, and in various other areas in the natural and social sciences. The Idaho National Engineering and Environmental Laboratory, a multi-purpose national laboratory managed by the Department of Energy, has developed a systems dynamics model in order to evaluate its utility for modeling large complex hydrological systems. We modeled the Bear River Basin, a transboundary basin that includes portions of Idaho,more » Utah and Wyoming. We found that system dynamics modeling is very useful for integrating surface water and groundwater data and for simulating the interactions between these sources within a given basin. In addition, we also found system dynamics modeling is useful for integrating complex hydrologic data with other information (e.g., policy, regulatory and management criteria) to produce a decision support system. Such decision support systems can allow managers and stakeholders to better visualize the key hydrologic elements and management constraints in the basin, which enables them to better understand the system via the simulation of multiple “what-if” scenarios. Although system dynamics models can be developed to conduct traditional hydraulic/hydrologic surface water or groundwater modeling, we believe that their strength lies in their ability to quickly evaluate trends and cause–effect relationships in large-scale hydrological systems; for integrating disparate data; for incorporating output from traditional hydraulic/hydrologic models; and for integration of interdisciplinary data, information and criteria to support better management decisions.« less

  7. System Dynamics Modeling of Transboundary Systems: the Bear River Basin Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerald Sehlke; Jacob J. Jacobson

    2005-09-01

    System dynamics is a computer-aided approach to evaluating the interrelationships of different components and activities within complex systems. Recently, system dynamics models have been developed in areas such as policy design, biological and medical modeling, energy and the environmental analysis, and in various other areas in the natural and social sciences. The Idaho National Engineering and Environmental Laboratory, a multi-purpose national laboratory managed by the Department of Energy, has developed a systems dynamics model in order to evaluate its utility for modeling large complex hydrological systems. We modeled the Bear River Basin, a transboundary basin that includes portions of Idaho,more » Utah and Wyoming. We found that system dynamics modeling is very useful for integrating surface water and ground water data and for simulating the interactions between these sources within a given basin. In addition, we also found system dynamics modeling is useful for integrating complex hydrologic data with other information (e.g., policy, regulatory and management criteria) to produce a decision support system. Such decision support systems can allow managers and stakeholders to better visualize the key hydrologic elements and management constraints in the basin, which enables them to better understand the system via the simulation of multiple “what-if” scenarios. Although system dynamics models can be developed to conduct traditional hydraulic/hydrologic surface water or ground water modeling, we believe that their strength lies in their ability to quickly evaluate trends and cause–effect relationships in large-scale hydrological systems; for integrating disparate data; for incorporating output from traditional hydraulic/hydrologic models; and for integration of interdisciplinary data, information and criteria to support better management decisions.« less

  8. Integrating Engineering Data Systems for NASA Spaceflight Projects

    NASA Technical Reports Server (NTRS)

    Carvalho, Robert E.; Tollinger, Irene; Bell, David G.; Berrios, Daniel C.

    2012-01-01

    NASA has a large range of custom-built and commercial data systems to support spaceflight programs. Some of the systems are re-used by many programs and projects over time. Management and systems engineering processes require integration of data across many of these systems, a difficult problem given the widely diverse nature of system interfaces and data models. This paper describes an ongoing project to use a central data model with a web services architecture to support the integration and access of linked data across engineering functions for multiple NASA programs. The work involves the implementation of a web service-based middleware system called Data Aggregator to bring together data from a variety of systems to support space exploration. Data Aggregator includes a central data model registry for storing and managing links between the data in disparate systems. Initially developed for NASA's Constellation Program needs, Data Aggregator is currently being repurposed to support the International Space Station Program and new NASA projects with processes that involve significant aggregating and linking of data. This change in user needs led to development of a more streamlined data model registry for Data Aggregator in order to simplify adding new project application data as well as standardization of the Data Aggregator query syntax to facilitate cross-application querying by client applications. This paper documents the approach from a set of stand-alone engineering systems from which data are manually retrieved and integrated, to a web of engineering data systems from which the latest data are automatically retrieved and more quickly and accurately integrated. This paper includes the lessons learned through these efforts, including the design and development of a service-oriented architecture and the evolution of the data model registry approaches as the effort continues to evolve and adapt to support multiple NASA programs and priorities.

  9. Architectural approaches for HL7-based health information systems implementation.

    PubMed

    López, D M; Blobel, B

    2010-01-01

    Information systems integration is hard, especially when semantic and business process interoperability requirements need to be met. To succeed, a unified methodology, approaching different aspects of systems architecture such as business, information, computational, engineering and technology viewpoints, has to be considered. The paper contributes with an analysis and demonstration on how the HL7 standard set can support health information systems integration. Based on the Health Information Systems Development Framework (HIS-DF), common architectural models for HIS integration are analyzed. The framework is a standard-based, consistent, comprehensive, customizable, scalable methodology that supports the design of semantically interoperable health information systems and components. Three main architectural models for system integration are analyzed: the point to point interface, the messages server and the mediator models. Point to point interface and messages server models are completely supported by traditional HL7 version 2 and version 3 messaging. The HL7 v3 standard specification, combined with service-oriented, model-driven approaches provided by HIS-DF, makes the mediator model possible. The different integration scenarios are illustrated by describing a proof-of-concept implementation of an integrated public health surveillance system based on Enterprise Java Beans technology. Selecting the appropriate integration architecture is a fundamental issue of any software development project. HIS-DF provides a unique methodological approach guiding the development of healthcare integration projects. The mediator model - offered by the HIS-DF and supported in HL7 v3 artifacts - is the more promising one promoting the development of open, reusable, flexible, semantically interoperable, platform-independent, service-oriented and standard-based health information systems.

  10. Composition and analysis of a model waste for a CELSS (Controlled Ecological Life Support System)

    NASA Technical Reports Server (NTRS)

    Wydeven, T. J.

    1983-01-01

    A model waste based on a modest vegetarian diet is given, including composition and elemental analysis. Its use is recommended for evaluation of candidate waste treatment processes for a Controlled Ecological Life Support System (CELSS).

  11. Mirror system activity for action and language is embedded in the integration of dorsal and ventral pathways.

    PubMed

    Arbib, Michael A

    2010-01-01

    We develop the view that the involvement of mirror neurons in embodied experience grounds brain structures that underlie language, but that many other brain regions are involved. We stress the cooperation between the dorsal and ventral streams in praxis and language. Both have perceptual and motor schemas but the perceptual schemas in the dorsal path are affordances linked to specific motor schemas for detailed motor control, whereas the ventral path supports planning and decision making. This frames the hypothesis that the mirror system for words evolved from the mirror system for actions to support words-as-phonological-actions, with semantics provided by the linkage to neural systems supporting perceptual and motor schemas. We stress the importance of computational models which can be linked to the parametric analysis of data and conceptual analysis of these models to support new patterns of understanding of the data. In the domain of praxis, we assess the FARS model of the canonical system for grasping, the MNS models for the mirror system for grasping, and the Augmented Competitive Queuing model that extends the control of action to the opportunistic scheduling of action sequences and also offers a new hypothesis on the role of mirror neurons in self action. Turning to language, we use Construction Grammar as our linguistic framework to get beyond single words to phrases and sentences, and initiate analysis of what brain functions must complement mirror systems to support this functionality. 2009 Elsevier Inc. All rights reserved.

  12. Using CONFIG for Simulation of Operation of Water Recovery Subsystems for Advanced Control Software Evaluation

    NASA Technical Reports Server (NTRS)

    Malin, Jane T.; Flores, Luis; Fleming, Land; Throop, Daiv

    2002-01-01

    A hybrid discrete/continuous simulation tool, CONFIG, has been developed to support evaluation of the operability life support systems. CON FIG simulates operations scenarios in which flows and pressures change continuously while system reconfigurations occur as discrete events. In simulations, intelligent control software can interact dynamically with hardware system models. CONFIG simulations have been used to evaluate control software and intelligent agents for automating life support systems operations. A CON FIG model of an advanced biological water recovery system has been developed to interact with intelligent control software that is being used in a water system test at NASA Johnson Space Center

  13. Using explanatory crop models to develop simple tools for Advanced Life Support system studies

    NASA Technical Reports Server (NTRS)

    Cavazzoni, J.

    2004-01-01

    System-level analyses for Advanced Life Support require mathematical models for various processes, such as for biomass production and waste management, which would ideally be integrated into overall system models. Explanatory models (also referred to as mechanistic or process models) would provide the basis for a more robust system model, as these would be based on an understanding of specific processes. However, implementing such models at the system level may not always be practicable because of their complexity. For the area of biomass production, explanatory models were used to generate parameters and multivariable polynomial equations for basic models that are suitable for estimating the direction and magnitude of daily changes in canopy gas-exchange, harvest index, and production scheduling for both nominal and off-nominal growing conditions. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.

  14. A family systems-based model of organizational intervention.

    PubMed

    Shumway, Sterling T; Kimball, Thomas G; Korinek, Alan W; Arredondo, Rudy

    2007-04-01

    Employee assistance professionals are expected to be proficient at intervening in organizations and creating meaningful behavioral change in interpersonal functioning. Because of their training in family systems theories and concepts, marriage and family therapists (MFTs) are well suited to serve organizations as "systems consultants." Unfortunately, the authors were unable to identify any family systems-based models for organizational intervention that have been empirically tested and supported. In this article, the authors present a family systems-based model of intervention that they developed while working in an employee assistance program (EAP). They also present research that was used to refine the model and to provide initial support for its effectiveness.

  15. Task Delegation Based Access Control Models for Workflow Systems

    NASA Astrophysics Data System (ADS)

    Gaaloul, Khaled; Charoy, François

    e-Government organisations are facilitated and conducted using workflow management systems. Role-based access control (RBAC) is recognised as an efficient access control model for large organisations. The application of RBAC in workflow systems cannot, however, grant permissions to users dynamically while business processes are being executed. We currently observe a move away from predefined strict workflow modelling towards approaches supporting flexibility on the organisational level. One specific approach is that of task delegation. Task delegation is a mechanism that supports organisational flexibility, and ensures delegation of authority in access control systems. In this paper, we propose a Task-oriented Access Control (TAC) model based on RBAC to address these requirements. We aim to reason about task from organisational perspectives and resources perspectives to analyse and specify authorisation constraints. Moreover, we present a fine grained access control protocol to support delegation based on the TAC model.

  16. Detailed Modeling of Distillation Technologies for Closed-Loop Water Recovery Systems

    NASA Technical Reports Server (NTRS)

    Allada, Rama Kumar; Lange, Kevin E.; Anderson, Molly S.

    2011-01-01

    Detailed chemical process simulations are a useful tool in designing and optimizing complex systems and architectures for human life support. Dynamic and steady-state models of these systems help contrast the interactions of various operating parameters and hardware designs, which become extremely useful in trade-study analyses. NASA?s Exploration Life Support technology development project recently made use of such models to compliment a series of tests on different waste water distillation systems. This paper presents efforts to develop chemical process simulations for three technologies: the Cascade Distillation System (CDS), the Vapor Compression Distillation (VCD) system and the Wiped-Film Rotating Disk (WFRD) using the Aspen Custom Modeler and Aspen Plus process simulation tools. The paper discusses system design, modeling details, and modeling results for each technology and presents some comparisons between the model results and recent test data. Following these initial comparisons, some general conclusions and forward work are discussed.

  17. OASIS: A GEOGRAPHICAL DECISION SUPPORT SYSTEM FOR GROUND-WATER CONTAMINANT MODELING

    EPA Science Inventory

    Three new software technologies were applied to develop an efficient and easy to use decision support system for ground-water contaminant modeling. Graphical interfaces create a more intuitive and effective form of communication with the computer compared to text-based interfaces...

  18. Support Networks of Single Puerto Rican Mothers of Children with Disabilities

    ERIC Educational Resources Information Center

    Correa, Vivian I.; Bonilla, Zobeida E.; Reyes-MacPherson, Maria E.

    2011-01-01

    The social support networks of 25 Puerto Rican single mothers of young children with disabilities were examined and compared with current models of family support for children with disabilities. This study was designed to assess the support systems of Latino single mothers in light of dominant models of family support. The Family Support Scale,…

  19. Enhanced semantic interoperability by profiling health informatics standards.

    PubMed

    López, Diego M; Blobel, Bernd

    2009-01-01

    Several standards applied to the healthcare domain support semantic interoperability. These standards are far from being completely adopted in health information system development, however. The objective of this paper is to provide a method and suggest the necessary tooling for reusing standard health information models, by that way supporting the development of semantically interoperable systems and components. The approach is based on the definition of UML Profiles. UML profiling is a formal modeling mechanism to specialize reference meta-models in such a way that it is possible to adapt those meta-models to specific platforms or domains. A health information model can be considered as such a meta-model. The first step of the introduced method identifies the standard health information models and tasks in the software development process in which healthcare information models can be reused. Then, the selected information model is formalized as a UML Profile. That Profile is finally applied to system models, annotating them with the semantics of the information model. The approach is supported on Eclipse-based UML modeling tools. The method is integrated into a comprehensive framework for health information systems development, and the feasibility of the approach is demonstrated in the analysis, design, and implementation of a public health surveillance system, reusing HL7 RIM and DIMs specifications. The paper describes a method and the necessary tooling for reusing standard healthcare information models. UML offers several advantages such as tooling support, graphical notation, exchangeability, extensibility, semi-automatic code generation, etc. The approach presented is also applicable for harmonizing different standard specifications.

  20. Further Investigation of the Support System Effects and Wing Twist on the NASA Common Research Model

    NASA Technical Reports Server (NTRS)

    Rivers, Melissa B.; Hunter, Craig A.; Campbell, Richard L.

    2012-01-01

    An experimental investigation of the NASA Common Research Model was conducted in the NASA Langley National Transonic Facility and NASA Ames 11-foot Transonic Wind Tunnel Facility for use in the Drag Prediction Workshop. As data from the experimental investigations was collected, a large difference in moment values was seen between the experiment and computational data from the 4th Drag Prediction Workshop. This difference led to a computational assessment to investigate model support system interference effects on the Common Research Model. The results from this investigation showed that the addition of the support system to the computational cases did increase the pitching moment so that it more closely matched the experimental results, but there was still a large discrepancy in pitching moment. This large discrepancy led to an investigation into the shape of the as-built model, which in turn led to a change in the computational grids and re-running of all the previous support system cases. The results of these cases are the focus of this paper.

  1. Whole systems shared governance: a model for the integrated health system.

    PubMed

    Evan, K; Aubry, K; Hawkins, M; Curley, T A; Porter-O'Grady, T

    1995-05-01

    The healthcare system is under renovation and renewal. In the process, roles and structures are shifting to support a subscriber-based continuum of care. Alliances and partnerships are emerging as the models of integration for the future. But how do we structure to support these emerging integrated partnerships? As the nurse executive expands the role and assumes increasing responsibility for creating new frameworks for care, a structure that sustains the point-of-care innovations and interdisciplinary relationships must be built. Whole systems models of organization, such as shared governance, are expanding as demand grows for a sustainable structure for horizontal and partnered systems of healthcare delivery. The executive will have to apply these newer frameworks to the delivery of care to provide adequate support for the clinically integrated environment.

  2. An Operating Environment for the Jellybean Machine

    DTIC Science & Technology

    1988-05-01

    MODEL 48 5.4.4 Restarting a Context The operating system provides one primitive message (RESTART-CONTEXT) and two system calls (XFERID and XFER.ADDR) to...efficient, powerful services is reqired to support this "stem. To provide this supportive operating environment, I developed an operating system kernel that...serves many of the initial needs of our machine. This Jellybean Operating System Software provides an object- based storage model, where typed

  3. Enhancement of the Acquisition Process for a Combat System-A Case Study to Model the Workflow Processes for an Air Defense System Acquisition

    DTIC Science & Technology

    2009-12-01

    Business Process Modeling BPMN Business Process Modeling Notation SoA Service-oriented Architecture UML Unified Modeling Language CSP...system developers. Supporting technologies include Business Process Modeling Notation ( BPMN ), Unified Modeling Language (UML), model-driven architecture

  4. Assessing Online Textual Feedback to Support Student Intrinsic Motivation Using a Collaborative Text-Based Dialogue System: A Qualitative Study

    ERIC Educational Resources Information Center

    Shroff, Ronnie H.; Deneen, Christopher

    2011-01-01

    This paper assesses textual feedback to support student intrinsic motivation using a collaborative text-based dialogue system. A research model is presented based on research into intrinsic motivation, and the specific construct of feedback provides a framework for the model. A qualitative research methodology is used to validate the model.…

  5. Space Life Support Engineering Program

    NASA Technical Reports Server (NTRS)

    Seagrave, Richard C.

    1993-01-01

    This report covers the second year of research relating to the development of closed-loop long-term life support systems. Emphasis was directed toward concentrating on the development of dynamic simulation techniques and software and on performing a thermodynamic systems analysis in an effort to begin optimizing the system needed for water purification. Four appendices are attached. The first covers the ASPEN modeling of the closed loop Environmental Control Life Support System (ECLSS) and its thermodynamic analysis. The second is a report on the dynamic model development for water regulation in humans. The third regards the development of an interactive computer-based model for determining exercise limitations. The fourth attachment is an estimate of the second law thermodynamic efficiency of the various units comprising an ECLSS.

  6. The integration of quantitative information with an intelligent decision support system for residential energy retrofits

    NASA Astrophysics Data System (ADS)

    Mo, Yunjeong

    The purpose of this research is to support the development of an intelligent Decision Support System (DSS) by integrating quantitative information with expert knowledge in order to facilitate effective retrofit decision-making. To achieve this goal, the Energy Retrofit Decision Process Framework is analyzed. Expert system shell software, a retrofit measure cost database, and energy simulation software are needed for developing the DSS; Exsys Corvid, the NREM database and BEopt were chosen for implementing an integration model. This integration model demonstrates the holistic function of a residential energy retrofit system for existing homes, by providing a prioritized list of retrofit measures with cost information, energy simulation and expert advice. The users, such as homeowners and energy auditors, can acquire all of the necessary retrofit information from this unified system without having to explore several separate systems. The integration model plays the role of a prototype for the finalized intelligent decision support system. It implements all of the necessary functions for the finalized DSS, including integration of the database, energy simulation and expert knowledge.

  7. Air Force Reusable Booster System A Quick-look, Design Focused Modeling and Cost Analysis Study

    NASA Technical Reports Server (NTRS)

    Zapata, Edgar

    2011-01-01

    Presents work supporting the Air force Reusable Booster System (RBS) - A Cost Study with Goals as follows: Support US launch systems decision makers, esp. in regards to the research, technology and demonstration investments required for reusable systems to succeed. Encourage operable directions in Reusable Booster / Launch Vehicle Systems technology choices, system design and product and process developments. Perform a quick-look cost study, while developing a cost model for more refined future analysis.

  8. DEVELOPMENT OF AN URBAN FOOD LEADERSHIP COOP IN SUPPORT OF A LOCAL FOOD SYSTEM

    EPA Science Inventory

    A need shared by all communities is a clean environment that supports a sustainable food system and promotes human health. The current food system does not model environmental, social, or economic sustainability. Therefore, the challenge is to develop and support a new food ...

  9. Moving toward climate-informed agricultural decision support - can we use PRISM data for more than just monthly averages?

    USDA-ARS?s Scientific Manuscript database

    Decision support systems/models for agriculture are varied in target application and complexity, ranging from simple worksheets to near real-time forecast systems requiring significant computational and manpower resources. Until recently, most such decision support systems have been constructed with...

  10. A hybrid system dynamics and optimization approach for supporting sustainable water resources planning in Zhengzhou City, China

    NASA Astrophysics Data System (ADS)

    Li, Zhi; Li, Chunhui; Wang, Xuan; Peng, Cong; Cai, Yanpeng; Huang, Weichen

    2018-01-01

    Problems with water resources restrict the sustainable development of a city with water shortages. Based on system dynamics (SD) theory, a model of sustainable utilization of water resources using the STELLA software has been established. This model consists of four subsystems: population system, economic system, water supply system and water demand system. The boundaries of the four subsystems are vague, but they are closely related and interdependent. The model is applied to Zhengzhou City, China, which has a serious water shortage. The difference between the water supply and demand is very prominent in Zhengzhou City. The model was verified with data from 2009 to 2013. The results show that water demand of Zhengzhou City will reach 2.57 billion m3 in 2020. A water resources optimization model is developed based on interval-parameter two-stage stochastic programming. The objective of the model is to allocate water resources to each water sector and make the lowest cost under the minimum water demand. Using the simulation results, decision makers can easily weigh the costs of the system, the water allocation objectives, and the system risk. The hybrid system dynamics method and optimization model is a rational try to support water resources management in many cities, particularly for cities with potential water shortage and it is solidly supported with previous studies and collected data.

  11. Developing a Model Component

    NASA Technical Reports Server (NTRS)

    Fields, Christina M.

    2013-01-01

    The Spaceport Command and Control System (SCCS) Simulation Computer Software Configuration Item (CSCI) is,. responsible for providing simulations to support test and verification of SCCS hardware and software. The Universal Coolant Transporter System (UCTS) is a Space Shuttle Orbiter support piece of the Ground Servicing Equipment (GSE). The purpose of the UCTS is to provide two support services to the Space Shuttle Orbiter immediately after landing at the Shuttle Landing Facility. The Simulation uses GSE Models to stand in for the actual systems to support testing of SCCS systems s:luring their development. As an intern at KSC, my assignment was to develop a model component for the UCTS. I was given a fluid component (drier) to model in Matlab. The drier was a Catch All replaceable core type filter-drier. The filter-drier provides maximum protection for the thermostatic expansion valve and solenoid valve from dirt that may be in the system. The filter-drier also protects the valves from freezing up. I researched fluid dynamics to understand the function of my component. I completed training for UNIX and Simulink to help aid in my assignment. The filter-drier was modeled by determining affects it has on the pressure, velocity and temperature of the system. I used Bernoulli's Equation to calculate the pressure and velocity differential through the dryer. I created my model filter-drier in Simulink and wrote the test script to test the component. I completed component testing and captured test data. The finalized model was sent for peer review for any improvements.

  12. The determination of operational and support requirements and costs during the conceptual design of space systems

    NASA Technical Reports Server (NTRS)

    Ebeling, Charles; Beasley, Kenneth D.

    1992-01-01

    The first year of research to provide NASA support in predicting operational and support parameters and costs of proposed space systems is reported. Some of the specific research objectives were (1) to develop a methodology for deriving reliability and maintainability parameters and, based upon their estimates, determine the operational capability and support costs, and (2) to identify data sources and establish an initial data base to implement the methodology. Implementation of the methodology is accomplished through the development of a comprehensive computer model. While the model appears to work reasonably well when applied to aircraft systems, it was not accurate when used for space systems. The model is dynamic and should be updated as new data become available. It is particularly important to integrate the current aircraft data base with data obtained from the Space Shuttle and other space systems since subsystems unique to a space vehicle require data not available from aircraft. This research only addressed the major subsystems on the vehicle.

  13. Data Services in Support of High Performance Computing-Based Distributed Hydrologic Models

    NASA Astrophysics Data System (ADS)

    Tarboton, D. G.; Horsburgh, J. S.; Dash, P. K.; Gichamo, T.; Yildirim, A. A.; Jones, N.

    2014-12-01

    We have developed web-based data services to support the application of hydrologic models on High Performance Computing (HPC) systems. The purposes of these services are to provide hydrologic researchers, modelers, water managers, and users access to HPC resources without requiring them to become HPC experts and understanding the intrinsic complexities of the data services, so as to reduce the amount of time and effort spent in finding and organizing the data required to execute hydrologic models and data preprocessing tools on HPC systems. These services address some of the data challenges faced by hydrologic models that strive to take advantage of HPC. Needed data is often not in the form needed by such models, requiring researchers to spend time and effort on data preparation and preprocessing that inhibits or limits the application of these models. Another limitation is the difficult to use batch job control and queuing systems used by HPC systems. We have developed a REST-based gateway application programming interface (API) for authenticated access to HPC systems that abstracts away many of the details that are barriers to HPC use and enhances accessibility from desktop programming and scripting languages such as Python and R. We have used this gateway API to establish software services that support the delineation of watersheds to define a modeling domain, then extract terrain and land use information to automatically configure the inputs required for hydrologic models. These services support the Terrain Analysis Using Digital Elevation Model (TauDEM) tools for watershed delineation and generation of hydrology-based terrain information such as wetness index and stream networks. These services also support the derivation of inputs for the Utah Energy Balance snowmelt model used to address questions such as how climate, land cover and land use change may affect snowmelt inputs to runoff generation. To enhance access to the time varying climate data used to drive hydrologic models, we have developed services to downscale and re-grid nationally available climate analysis data from systems such as NLDAS and MERRA. These cases serve as examples for how this approach can be extended to other models to enhance the use of HPC for hydrologic modeling.

  14. A database perspective of the transition from single-use (ancillary-based) systems to integrated models supporting clinical care and research in a MUMPS-based system.

    PubMed

    Siegel, J; Kirkland, D

    1991-01-01

    The Composite Health Care System (CHCS), a MUMPS-based hospital information system (HIS), has evolved from the Decentralized Hospital Computer Program (DHCP) installed within VA Hospitals. The authors explore the evolution of an ancillary-based system toward an integrated model with a look at its current state and possible future. The history and relationships between orders of different types tie specific patient-related data into a logical and temporal model. Diagrams demonstrate how the database structure has evolved to support clinical needs for integration. It is suggested that a fully integrated model is capable of meeting traditional HIS needs.

  15. Measuring the Resilience of Advanced Life Support Systems

    NASA Technical Reports Server (NTRS)

    Bell, Ann Maria; Dearden, Richard; Levri, Julie A.

    2002-01-01

    Despite the central importance of crew safety in designing and operating a life support system, the metric commonly used to evaluate alternative Advanced Life Support (ALS) technologies does not currently provide explicit techniques for measuring safety. The resilience of a system, or the system s ability to meet performance requirements and recover from component-level faults, is fundamentally a dynamic property. This paper motivates the use of computer models as a tool to understand and improve system resilience throughout the design process. Extensive simulation of a hybrid computational model of a water revitalization subsystem (WRS) with probabilistic, component-level faults provides data about off-nominal behavior of the system. The data can then be used to test alternative measures of resilience as predictors of the system s ability to recover from component-level faults. A novel approach to measuring system resilience using a Markov chain model of performance data is also developed. Results emphasize that resilience depends on the complex interaction of faults, controls, and system dynamics, rather than on simple fault probabilities.

  16. A simulation based optimization approach to model and design life support systems for manned space missions

    NASA Astrophysics Data System (ADS)

    Aydogan, Selen

    This dissertation considers the problem of process synthesis and design of life-support systems for manned space missions. A life-support system is a set of technologies to support human life for short and long-term spaceflights, via providing the basic life-support elements, such as oxygen, potable water, and food. The design of the system needs to meet the crewmember demand for the basic life-support elements (products of the system) and it must process the loads generated by the crewmembers. The system is subject to a myriad of uncertainties because most of the technologies involved are still under development. The result is high levels of uncertainties in the estimates of the model parameters, such as recovery rates or process efficiencies. Moreover, due to the high recycle rates within the system, the uncertainties are amplified and propagated within the system, resulting in a complex problem. In this dissertation, two algorithms have been successfully developed to help making design decisions for life-support systems. The algorithms utilize a simulation-based optimization approach that combines a stochastic discrete-event simulation and a deterministic mathematical programming approach to generate multiple, unique realizations of the controlled evolution of the system. The timelines are analyzed using time series data mining techniques and statistical tools to determine the necessary technologies, their deployment schedules and capacities, and the necessary basic life-support element amounts to support crew life and activities for the mission duration.

  17. Models Extracted from Text for System-Software Safety Analyses

    NASA Technical Reports Server (NTRS)

    Malin, Jane T.

    2010-01-01

    This presentation describes extraction and integration of requirements information and safety information in visualizations to support early review of completeness, correctness, and consistency of lengthy and diverse system safety analyses. Software tools have been developed and extended to perform the following tasks: 1) extract model parts and safety information from text in interface requirements documents, failure modes and effects analyses and hazard reports; 2) map and integrate the information to develop system architecture models and visualizations for safety analysts; and 3) provide model output to support virtual system integration testing. This presentation illustrates the methods and products with a rocket motor initiation case.

  18. Update on the NASA GEOS-5 Aerosol Forecasting and Data Assimilation System

    NASA Technical Reports Server (NTRS)

    Colarco, Peter; da Silva, Arlindo; Aquila, Valentina; Bian, Huisheng; Buchard, Virginie; Castellanos, Patricia; Darmenov, Anton; Follette-Cook, Melanie; Govindaraju, Ravi; Keller, Christoph; hide

    2017-01-01

    GEOS-5 is the Goddard Earth Observing System model. GEOS-5 is maintained by the NASA Global Modeling and Assimilation Office. Core development is within GMAO,Goddard Atmospheric Chemistry and Dynamics Laboratory, and with external partners. Primary GEOS-5 functions: Earth system model for studying climate variability and change, provide research quality reanalyses for supporting NASA instrument teams and scientific community, provide near-real time forecasts of meteorology,aerosols, and other atmospheric constituents to support NASA airborne campaigns.

  19. Decision support systems and the healthcare strategic planning process: a case study.

    PubMed

    Lundquist, D L; Norris, R M

    1991-01-01

    The repertoire of applications that comprises health-care decision support systems (DSS) includes analyses of clinical, financial, and operational activities. As a whole, these applications facilitate developing comprehensive and interrelated business and medical models that support the complex decisions required to successfully manage today's health-care organizations. Kennestone Regional Health Care System's use of DSS to facilitate strategic planning has precipitated marked changes in the organization's method of determining capital allocations. This case study discusses Kennestone's use of DSS in the strategic planning process, including profiles of key DSS modeling components.

  20. Coupled Waves on a Periodically Supported Timoshenko Beam

    NASA Astrophysics Data System (ADS)

    HECKL, MARIA A.

    2002-05-01

    A mathematical model is presented for the propagation of structural waves on an infinitely long, periodically supported Timoshenko beam. The wave types that can exist on the beam are bending waves with displacements in the horizontal and vertical directions, compressional waves and torsional waves. These waves are affected by the periodic supports in two ways: their dispersion relation spectra show passing and stopping bands, and coupling of the different wave types tends to occur. The model in this paper could represent a railway track where the beam represents the rail and an appropriately chosen support type represents the pad/sleeper/ballast system of a railway track. Hamilton's principle is used to calculate the Green function matrix of the free Timoshenko beam without supports. The supports are incorporated into the model by combining the Green function matrix with the superposition principle. Bloch's theorem is applied to describe the periodicity of the supports. This leads to polynomials with several solutions for the Bloch wave number. These solutions are obtained numerically for different combinations of wave types. Two support types are examined in detail: mass supports and spring supports. More complex support types, such as mass/spring systems, can be incorporated easily into the model.

  1. Accident/Mishap Investigation System

    NASA Technical Reports Server (NTRS)

    Keller, Richard; Wolfe, Shawn; Gawdiak, Yuri; Carvalho, Robert; Panontin, Tina; Williams, James; Sturken, Ian

    2007-01-01

    InvestigationOrganizer (IO) is a Web-based collaborative information system that integrates the generic functionality of a database, a document repository, a semantic hypermedia browser, and a rule-based inference system with specialized modeling and visualization functionality to support accident/mishap investigation teams. This accessible, online structure is designed to support investigators by allowing them to make explicit, shared, and meaningful links among evidence, causal models, findings, and recommendations.

  2. Process Improvement Should Link to Security: SEPG 2007 Security Track Recap

    DTIC Science & Technology

    2007-09-01

    the Systems Security Engineering Capability Maturity Model (SSE- CMM / ISO 21827) and its use in system software developments ...software development life cycle ( SDLC )? 6. In what ways should process improvement support security in the SDLC ? 1.2 10BPANEL RESOURCES For each... project management, and support practices through the use of the capability maturity models including the CMMI and the Systems Security

  3. Verification of a computational cardiovascular system model comparing the hemodynamics of a continuous flow to a synchronous valveless pulsatile flow left ventricular assist device.

    PubMed

    Gohean, Jeffrey R; George, Mitchell J; Pate, Thomas D; Kurusz, Mark; Longoria, Raul G; Smalling, Richard W

    2013-01-01

    The purpose of this investigation is to use a computational model to compare a synchronized valveless pulsatile left ventricular assist device with continuous flow left ventricular assist devices at the same level of device flow, and to verify the model with in vivo porcine data. A dynamic system model of the human cardiovascular system was developed to simulate the support of a healthy or failing native heart from a continuous flow left ventricular assist device or a synchronous pulsatile valveless dual-piston positive displacement pump. These results were compared with measurements made during in vivo porcine experiments. Results from the simulation model and from the in vivo counterpart show that the pulsatile pump provides higher cardiac output, left ventricular unloading, cardiac pulsatility, and aortic valve flow as compared with the continuous flow model at the same level of support. The dynamic system model developed for this investigation can effectively simulate human cardiovascular support by a synchronous pulsatile or continuous flow ventricular assist device.

  4. Verification of a computational cardiovascular system model comparing the hemodynamics of a continuous flow to a synchronous valveless pulsatile flow left ventricular assist device

    PubMed Central

    Gohean, Jeffrey R.; George, Mitchell J.; Pate, Thomas D.; Kurusz, Mark; Longoria, Raul G.; Smalling, Richard W.

    2012-01-01

    The purpose of this investigation is to utilize a computational model to compare a synchronized valveless pulsatile left ventricular assist device to continuous flow left ventricular assist devices at the same level of device flow, and to verify the model with in vivo porcine data. A dynamic system model of the human cardiovascular system was developed to simulate support of a healthy or failing native heart from a continuous flow left ventricular assist device or a synchronous, pulsatile, valveless, dual piston positive displacement pump. These results were compared to measurements made during in vivo porcine experiments. Results from the simulation model and from the in vivo counterpart show that the pulsatile pump provides higher cardiac output, left ventricular unloading, cardiac pulsatility, and aortic valve flow as compared to the continuous flow model at the same level of support. The dynamic system model developed for this investigation can effectively simulate human cardiovascular support by a synchronous pulsatile or continuous flow ventricular assist device. PMID:23438771

  5. Modeling of Global BEAM Structure for Evaluation of MMOD Impacts to Support Development of a Health Monitoring System

    NASA Technical Reports Server (NTRS)

    Lyle, Karen H.; Vassilakos, Gregory J.

    2015-01-01

    This report summarizes the initial modeling of the global response of the Bigelow Expandable Activity Module (BEAM) to micrometeorite and orbital debris(MMOD) impacts using a structural, nonlinear, transient dynamic, finite element code. These models complement the on-orbit deployment of the Distributed Impact Detection System (DIDS) to support structural health monitoring studies. Two global models were developed. The first focused exclusively on impacts on the soft-goods (fabric-envelop) portion of BEAM. The second incorporates the bulkhead to support understanding of bulkhead impacts. These models were exercised for random impact locations and responses monitored at the on-orbit sensor locations. The report concludes with areas for future study.

  6. A 1-D Model of the 4 Bed Molecular Sieve of the Carbon Dioxide Removal Assembly

    NASA Technical Reports Server (NTRS)

    Coker, Robert; Knox, Jim

    2015-01-01

    Developments to improve system efficiency and reliability for water and carbon dioxide separation systems on crewed vehicles combine sub-scale systems testing and multi-physics simulations. This paper describes the development of COMSOL simulations in support of the Life Support Systems (LSS) project within NASA's Advanced Exploration Systems (AES) program. Specifically, we model the 4 Bed Molecular Sieve (4BMS) of the Carbon Dioxide Removal Assembly (CDRA) operating on the International Space Station (ISS).

  7. Simulating Sustainment for an Unmanned Logistics System Concept of Operation in Support of Distributed Operations

    DTIC Science & Technology

    2017-06-01

    designed experiment to model and explore a ship-to-shore logistics process supporting dispersed units via three types of ULSs, which vary primarily in...systems, simulation, discrete event simulation, design of experiments, data analysis, simplekit, nearly orthogonal and balanced designs 15. NUMBER OF... designed experiment to model and explore a ship-to-shore logistics process supporting dispersed units via three types of ULSs, which vary primarily

  8. A Simulation Study Comparing Incineration and Composting in a Mars-Based Advanced Life Support System

    NASA Technical Reports Server (NTRS)

    Hogan, John; Kang, Sukwon; Cavazzoni, Jim; Levri, Julie; Finn, Cory; Luna, Bernadette (Technical Monitor)

    2000-01-01

    The objective of this study is to compare incineration and composting in a Mars-based advanced life support (ALS) system. The variables explored include waste pre-processing requirements, reactor sizing and buffer capacities. The study incorporates detailed mathematical models of biomass production and waste processing into an existing dynamic ALS system model. The ALS system and incineration models (written in MATLAB/SIMULINK(c)) were developed at the NASA Ames Research Center. The composting process is modeled using first order kinetics, with different degradation rates for individual waste components (carbohydrates, proteins, fats, cellulose and lignin). The biomass waste streams are generated using modified "Eneray Cascade" crop models, which use light- and dark-cycle temperatures, irradiance, photoperiod, [CO2], planting density, and relative humidity as model inputs. The study also includes an evaluation of equivalent system mass (ESM).

  9. Agent-based paradigm for integration of interactive cable television operations and business support systems

    NASA Astrophysics Data System (ADS)

    Wattawa, Scott

    1995-11-01

    Offering interactive services and data in a hybrid fiber/coax cable system requires the coordination of a host of operations and business support systems. New service offerings and network growth and evolution create never-ending changes in the network infrastructure. Agent-based enterprise models provide a flexible mechanism for systems integration of service and support systems. Agent models also provide a mechanism to decouple interactive services from network architecture. By using the Java programming language, agents may be made safe, portable, and intelligent. This paper investigates the application of the Object Management Group's Common Object Request Brokering Architecture to the integration of a multiple services metropolitan area network.

  10. Sandboxes for Model-Based Inquiry

    NASA Astrophysics Data System (ADS)

    Brady, Corey; Holbert, Nathan; Soylu, Firat; Novak, Michael; Wilensky, Uri

    2015-04-01

    In this article, we introduce a class of constructionist learning environments that we call Emergent Systems Sandboxes ( ESSs), which have served as a centerpiece of our recent work in developing curriculum to support scalable model-based learning in classroom settings. ESSs are a carefully specified form of virtual construction environment that support students in creating, exploring, and sharing computational models of dynamic systems that exhibit emergent phenomena. They provide learners with "entity"-level construction primitives that reflect an underlying scientific model. These primitives can be directly "painted" into a sandbox space, where they can then be combined, arranged, and manipulated to construct complex systems and explore the emergent properties of those systems. We argue that ESSs offer a means of addressing some of the key barriers to adopting rich, constructionist model-based inquiry approaches in science classrooms at scale. Situating the ESS in a large-scale science modeling curriculum we are implementing across the USA, we describe how the unique "entity-level" primitive design of an ESS facilitates knowledge system refinement at both an individual and social level, we describe how it supports flexible modeling practices by providing both continuous and discrete modes of executability, and we illustrate how it offers students a variety of opportunities for validating their qualitative understandings of emergent systems as they develop.

  11. Dynamic Modeling of ALS Systems

    NASA Technical Reports Server (NTRS)

    Jones, Harry

    2002-01-01

    The purpose of dynamic modeling and simulation of Advanced Life Support (ALS) systems is to help design them. Static steady state systems analysis provides basic information and is necessary to guide dynamic modeling, but static analysis is not sufficient to design and compare systems. ALS systems must respond to external input variations and internal off-nominal behavior. Buffer sizing, resupply scheduling, failure response, and control system design are aspects of dynamic system design. We develop two dynamic mass flow models and use them in simulations to evaluate systems issues, optimize designs, and make system design trades. One model is of nitrogen leakage in the space station, the other is of a waste processor failure in a regenerative life support system. Most systems analyses are concerned with optimizing the cost/benefit of a system at its nominal steady-state operating point. ALS analysis must go beyond the static steady state to include dynamic system design. All life support systems exhibit behavior that varies over time. ALS systems must respond to equipment operating cycles, repair schedules, and occasional off-nominal behavior or malfunctions. Biological components, such as bioreactors, composters, and food plant growth chambers, usually have operating cycles or other complex time behavior. Buffer sizes, material stocks, and resupply rates determine dynamic system behavior and directly affect system mass and cost. Dynamic simulation is needed to avoid the extremes of costly over-design of buffers and material reserves or system failure due to insufficient buffers and lack of stored material.

  12. A Data Analytical Framework for Improving Real-Time, Decision Support Systems in Healthcare

    ERIC Educational Resources Information Center

    Yahav, Inbal

    2010-01-01

    In this dissertation we develop a framework that combines data mining, statistics and operations research methods for improving real-time decision support systems in healthcare. Our approach consists of three main concepts: data gathering and preprocessing, modeling, and deployment. We introduce the notion of offline and semi-offline modeling to…

  13. The Integrated Medical Model - A Risk Assessment and Decision Support Tool for Human Space Flight Missions

    NASA Technical Reports Server (NTRS)

    Kerstman, Eric; Minard, Charles G.; Saile, Lynn; FreiredeCarvalho, Mary; Myers, Jerry; Walton, Marlei; Butler, Douglas; Lopez, Vilma

    2010-01-01

    The Integrated Medical Model (IMM) is a decision support tool that is useful to space flight mission planners and medical system designers in assessing risks and optimizing medical systems. The IMM employs an evidence-based, probabilistic risk assessment (PRA) approach within the operational constraints of space flight.

  14. Treatment of CELSS and PCELSS waste to produce nutrients for plant growth. [Controlled Ecological Life Support Systems and Partially Controlled Ecological Life Support Systems

    NASA Technical Reports Server (NTRS)

    Modell, M.; Meissner, H.; Karel, M.; Carden, J.; Lewis, S.

    1981-01-01

    The research program entitled 'Development of a Prototype Experiment for Treating CELSS (Controlled Ecological Life Support Systems) and PCELSS (Partially Controlled Ecological Life Support Systems) Wastes to Produce Nutrients for Plant Growth' consists of two phases: (1) the development of the neccessary facilities, chemical methodologies and models for meaningful experimentation, and (2) the application of what methods and devices are developed to the interfacing of waste oxidation with plant growth. Homogeneous samples of freeze-dried human feces and urine have been prepared to ensure comparability of test results between CELSS waste treatment research groups. A model of PCELSS food processing wastes has been developed, and an automated gas chromatographic system to analyze oxidizer effluents was designed and brought to operational status. Attention is given the component configuration of the wet oxidation system used by the studies.

  15. Particle Tracking Model (PTM) with Coastal Modeling System (CMS)

    DTIC Science & Technology

    2015-11-04

    Coastal Inlets Research Program Particle Tracking Model (PTM) with Coastal Modeling System ( CMS ) The Particle Tracking Model (PTM) is a Lagrangian...currents and waves. The Coastal Inlets Research Program (CIRP) supports the PTM with the Coastal Modeling System ( CMS ), which provides coupled wave...and current forcing for PTM simulations. CMS -PTM is implemented in the Surface-water Modeling System, a GUI environment for input development

  16. Modeling the Delivery Physiology of Distributed Learning Systems.

    ERIC Educational Resources Information Center

    Paquette, Gilbert; Rosca, Ioan

    2003-01-01

    Discusses instructional delivery models and their physiology in distributed learning systems. Highlights include building delivery models; types of delivery models, including distributed classroom, self-training on the Web, online training, communities of practice, and performance support systems; and actors (users) involved, including experts,…

  17. System analysis for the Huntsville Operational Support Center distributed computer system

    NASA Technical Reports Server (NTRS)

    Ingels, F. M.; Mauldin, J.

    1984-01-01

    The Huntsville Operations Support Center (HOSC) is a distributed computer system used to provide real time data acquisition, analysis and display during NASA space missions and to perform simulation and study activities during non-mission times. The primary purpose is to provide a HOSC system simulation model that is used to investigate the effects of various HOSC system configurations. Such a model would be valuable in planning the future growth of HOSC and in ascertaining the effects of data rate variations, update table broadcasting and smart display terminal data requirements on the HOSC HYPERchannel network system. A simulation model was developed in PASCAL and results of the simulation model for various system configuraions were obtained. A tutorial of the model is presented and the results of simulation runs are presented. Some very high data rate situations were simulated to observe the effects of the HYPERchannel switch over from contention to priority mode under high channel loading.

  18. OFMTutor: An operator function model intelligent tutoring system

    NASA Technical Reports Server (NTRS)

    Jones, Patricia M.

    1989-01-01

    The design, implementation, and evaluation of an Operator Function Model intelligent tutoring system (OFMTutor) is presented. OFMTutor is intended to provide intelligent tutoring in the context of complex dynamic systems for which an operator function model (OFM) can be constructed. The human operator's role in such complex, dynamic, and highly automated systems is that of a supervisory controller whose primary responsibilities are routine monitoring and fine-tuning of system parameters and occasional compensation for system abnormalities. The automated systems must support the human operator. One potentially useful form of support is the use of intelligent tutoring systems to teach the operator about the system and how to function within that system. Previous research on intelligent tutoring systems (ITS) is considered. The proposed design for OFMTutor is presented, and an experimental evaluation is described.

  19. Toward the Modularization of Decision Support Systems

    NASA Astrophysics Data System (ADS)

    Raskin, R. G.

    2009-12-01

    Decision support systems are typically developed entirely from scratch without the use of modular components. This “stovepiped” approach is inefficient and costly because it prevents a developer from leveraging the data, models, tools, and services of other developers. Even when a decision support component is made available, it is difficult to know what problem it solves, how it relates to other components, or even that the component exists, The Spatial Decision Support (SDS) Consortium was formed in 2008 to organize the body of knowledge in SDS within a common portal. The portal identifies the canonical steps in the decision process and enables decision support components to be registered, categorized, and searched. This presentation describes how a decision support system can be assembled from modular models, data, tools and services, based on the needs of the Earth science application.

  20. Publically accessible decision support system of the spatially referenced regressions on watershed attributes (SPARROW) model and model enhancements in South Carolina

    Treesearch

    Celeste Journey; Anne B. Hoos; David E. Ladd; John W. brakebill; Richard A. Smith

    2016-01-01

    The U.S. Geological Survey (USGS) National Water Quality Assessment program has developed a web-based decision support system (DSS) to provide free public access to the steady-stateSPAtially Referenced Regressions On Watershed attributes (SPARROW) model simulation results on nutrient conditions in streams and rivers and to offer scenario testing capabilities for...

  1. Visual Simulation of Microalgae Growth in Bioregenerative Life Support System

    NASA Astrophysics Data System (ADS)

    Zhao, Ming

    Bioregenerative life support system is one of the key technologies for future human deep space exploration and long-term space missions. BLSS use biological system as its core unit in combination with other physical and chemical equipments, under the proper control and manipulation by crew to complete a specific task to support life. Food production, waste treatment, oxygen and water regeneration are all conducted by higher plants or microalgae in BLSS, which is the most import characteristic different from other kinds of life support systems. Microalgae is light autotrophic micro-organisms, light undoubtedly is the most import factor which limits its growth and reproduction. Increasing or decreasing the light intensity changes the growth rate of microalgae, and then regulates the concentration of oxygen and carbon dioxide in the system. In this paper, based on the mathematical model of microalgae which grew under the different light intensity, three-dimensional visualization model was built and realized through using 3ds max, Virtools and some other three dimensional software, in order to display its change and impacting on oxygen and carbon dioxide intuitively. We changed its model structure and parameters, such as establishing closed-loop control system, light intensity, temperature and Nutrient fluid’s velocity and so on, carried out computer virtual simulation, and observed dynamic change of system with the aim of providing visualization support for system research.

  2. Multiscale asymmetric orthogonal wavelet kernel for linear programming support vector learning and nonlinear dynamic systems identification.

    PubMed

    Lu, Zhao; Sun, Jing; Butts, Kenneth

    2014-05-01

    Support vector regression for approximating nonlinear dynamic systems is more delicate than the approximation of indicator functions in support vector classification, particularly for systems that involve multitudes of time scales in their sampled data. The kernel used for support vector learning determines the class of functions from which a support vector machine can draw its solution, and the choice of kernel significantly influences the performance of a support vector machine. In this paper, to bridge the gap between wavelet multiresolution analysis and kernel learning, the closed-form orthogonal wavelet is exploited to construct new multiscale asymmetric orthogonal wavelet kernels for linear programming support vector learning. The closed-form multiscale orthogonal wavelet kernel provides a systematic framework to implement multiscale kernel learning via dyadic dilations and also enables us to represent complex nonlinear dynamics effectively. To demonstrate the superiority of the proposed multiscale wavelet kernel in identifying complex nonlinear dynamic systems, two case studies are presented that aim at building parallel models on benchmark datasets. The development of parallel models that address the long-term/mid-term prediction issue is more intricate and challenging than the identification of series-parallel models where only one-step ahead prediction is required. Simulation results illustrate the effectiveness of the proposed multiscale kernel learning.

  3. Development of a support software system for real-time HAL/S applications

    NASA Technical Reports Server (NTRS)

    Smith, R. S.

    1984-01-01

    Methodologies employed in defining and implementing a software support system for the HAL/S computer language for real-time operations on the Shuttle are detailed. Attention is also given to the management and validation techniques used during software development and software maintenance. Utilities developed to support the real-time operating conditions are described. With the support system being produced on Cyber computers and executable code then processed through Cyber or PDP machines, the support system has a production level status and can serve as a model for other software development projects.

  4. Dynamic Modeling of Process Technologies for Closed-Loop Water Recovery Systems

    NASA Technical Reports Server (NTRS)

    Allada, Rama Kumar; Lange, Kevin; Anderson, Molly

    2011-01-01

    Detailed chemical process simulations are a useful tool in designing and optimizing complex systems and architectures for human life support. Dynamic and steady-state models of these systems help contrast the interactions of various operating parameters and hardware designs, which become extremely useful in trade-study analyses. NASA s Exploration Life Support technology development project recently made use of such models to compliment a series of tests on different waste water distillation systems. This paper presents dynamic simulations of chemical process for primary processor technologies including: the Cascade Distillation System (CDS), the Vapor Compression Distillation (VCD) system, the Wiped-Film Rotating Disk (WFRD), and post-distillation water polishing processes such as the Volatiles Removal Assembly (VRA) that were developed using the Aspen Custom Modeler and Aspen Plus process simulation tools. The results expand upon previous work for water recovery technology models and emphasize dynamic process modeling and results. The paper discusses system design, modeling details, and model results for each technology and presents some comparisons between the model results and available test data. Following these initial comparisons, some general conclusions and forward work are discussed.

  5. System capacity and economic modeling computer tool for satellite mobile communications systems

    NASA Technical Reports Server (NTRS)

    Wiedeman, Robert A.; Wen, Doong; Mccracken, Albert G.

    1988-01-01

    A unique computer modeling tool that combines an engineering tool with a financial analysis program is described. The resulting combination yields a flexible economic model that can predict the cost effectiveness of various mobile systems. Cost modeling is necessary in order to ascertain if a given system with a finite satellite resource is capable of supporting itself financially and to determine what services can be supported. Personal computer techniques using Lotus 123 are used for the model in order to provide as universal an application as possible such that the model can be used and modified to fit many situations and conditions. The output of the engineering portion of the model consists of a channel capacity analysis and link calculations for several qualities of service using up to 16 types of earth terminal configurations. The outputs of the financial model are a revenue analysis, an income statement, and a cost model validation section.

  6. A web platform for integrated surface water - groundwater modeling and data management

    NASA Astrophysics Data System (ADS)

    Fatkhutdinov, Aybulat; Stefan, Catalin; Junghanns, Ralf

    2016-04-01

    Model-based decision support systems are considered to be reliable and time-efficient tools for resources management in various hydrology related fields. However, searching and acquisition of the required data, preparation of the data sets for simulations as well as post-processing, visualization and publishing of the simulations results often requires significantly more work and time than performing the modeling itself. The purpose of the developed software is to combine data storage facilities, data processing instruments and modeling tools in a single platform which potentially can reduce time required for performing simulations, hence decision making. The system is developed within the INOWAS (Innovative Web Based Decision Support System for Water Sustainability under a Changing Climate) project. The platform integrates spatially distributed catchment scale rainfall - runoff, infiltration and groundwater flow models with data storage, processing and visualization tools. The concept is implemented in a form of a web-GIS application and is build based on free and open source components, including the PostgreSQL database management system, Python programming language for modeling purposes, Mapserver for visualization and publishing the data, Openlayers for building the user interface and others. Configuration of the system allows performing data input, storage, pre- and post-processing and visualization in a single not disturbed workflow. In addition, realization of the decision support system in the form of a web service provides an opportunity to easily retrieve and share data sets as well as results of simulations over the internet, which gives significant advantages for collaborative work on the projects and is able to significantly increase usability of the decision support system.

  7. Development of gait training system powered by pneumatic actuator like human musculoskeletal system.

    PubMed

    Yamamoto, Shin-ichiroh; Shibata, Yoshiyuki; Imai, Shingo; Nobutomo, Tatsuya; Miyoshi, Tasuku

    2011-01-01

    The purpose of this study was to develop a body weight support gait training system for stroke and spinal cord injury (SCI) patient. This system consists of an orthosis powered by pneumatic McKibben actuators and a piece of equipment of body weight support. The attachment of powered orthosis can be fit to individual subjects with different body size. This powered orthosis is driven by pneumatic McKibben actuators arranged as a pair of agonistic and antagonistic bi-articular muscle models and two pairs of agonistic and antagonistic mono-articular muscle models like the human musculoskeletal system. The body weight support equipment suspends the subject's body in a wire harness, with the body weight is supported continuously by a counterweight. The powered orthosis is attached to the body weight support equipment by a parallel linkage, and its movement of powered orthosis is limited at the sagittal plane. The weight of the powered orthosis is compensated by a parallel linkage with a gas-spring. In this paper, we report the detailed mechanics of this body weight support gait training system and the results of several experiments for evaluating the system. © 2011 IEEE

  8. The FoReVer Methodology: A MBSE Framework for Formal Verification

    NASA Astrophysics Data System (ADS)

    Baracchi, Laura; Mazzini, Silvia; Cimatti, Alessandro; Tonetta, Stefano; Garcia, Gerald

    2013-08-01

    The need for high level of confidence and operational integrity in critical space (software) systems is well recognized in the Space industry and has been addressed so far through rigorous System and Software Development Processes and stringent Verification and Validation regimes. The Model Based Space System Engineering process (MBSSE) derived in the System and Software Functional Requirement Techniques study (SSFRT) focused on the application of model based engineering technologies to support the space system and software development processes, from mission level requirements to software implementation through model refinements and translations. In this paper we report on our work in the ESA-funded FoReVer project where we aim at developing methodological, theoretical and technological support for a systematic approach to the space avionics system development, in phases 0/A/B/C. FoReVer enriches the MBSSE process with contract-based formal verification of properties, at different stages from system to software, through a step-wise refinement approach, with the support for a Software Reference Architecture.

  9. A support architecture for reliable distributed computing systems

    NASA Technical Reports Server (NTRS)

    Dasgupta, Partha; Leblanc, Richard J., Jr.

    1988-01-01

    The Clouds project is well underway to its goal of building a unified distributed operating system supporting the object model. The operating system design uses the object concept of structuring software at all levels of the system. The basic operating system was developed and work is under progress to build a usable system.

  10. System analysis for the Huntsville Operation Support Center distributed computer system

    NASA Technical Reports Server (NTRS)

    Ingels, F. M.

    1986-01-01

    A simulation model of the NASA Huntsville Operational Support Center (HOSC) was developed. This simulation model emulates the HYPERchannel Local Area Network (LAN) that ties together the various computers of HOSC. The HOSC system is a large installation of mainframe computers such as the Perkin Elmer 3200 series and the Dec VAX series. A series of six simulation exercises of the HOSC model is described using data sets provided by NASA. The analytical analysis of the ETHERNET LAN and the video terminals (VTs) distribution system are presented. An interface analysis of the smart terminal network model which allows the data flow requirements due to VTs on the ETHERNET LAN to be estimated, is presented.

  11. Semantic Clinical Guideline Documents

    PubMed Central

    Eriksson, Henrik; Tu, Samson W.; Musen, Mark

    2005-01-01

    Decision-support systems based on clinical practice guidelines can support physicians and other health-care personnel in the process of following best practice consistently. A knowledge-based approach to represent guidelines makes it possible to encode computer-interpretable guidelines in a formal manner, perform consistency checks, and use the guidelines directly in decision-support systems. Decision-support authors and guideline users require guidelines in human-readable formats in addition to computer-interpretable ones (e.g., for guideline review and quality assurance). We propose a new document-oriented information architecture that combines knowledge-representation models with electronic and paper documents. The approach integrates decision-support modes with standard document formats to create a combined clinical-guideline model that supports on-line viewing, printing, and decision support. PMID:16779037

  12. Collaborative modelling and integrated decision support system analysis of a developed terminal lake basin

    USGS Publications Warehouse

    Niswonger, Richard G.; Allander, Kip K.; Jeton, Anne E.

    2014-01-01

    A terminal lake basin in west-central Nevada, Walker Lake, has undergone drastic change over the past 90 yrs due to upstream water use for agriculture. Decreased inflows to the lake have resulted in 100 km2 decrease in lake surface area and a total loss of fisheries due to salinization. The ecologic health of Walker Lake is of great concern as the lake is a stopover point on the Pacific route for migratory birds from within and outside the United States. Stakeholders, water institutions, and scientists have engaged in collaborative modeling and the development of a decision support system that is being used to develop and analyze management change options to restore the lake. Here we use an integrated management and hydrologic model that relies on state-of-the-art simulation capabilities to evaluate the benefits of using integrated hydrologic models as components of a decision support system. Nonlinear feedbacks among climate, surface-water and groundwater exchanges, and water use present challenges for simulating realistic outcomes associated with management change. Integrated management and hydrologic modeling provides a means of simulating benefits associated with management change in the Walker River basin where drastic changes in the hydrologic landscape have taken place over the last century. Through the collaborative modeling process, stakeholder support is increasing and possibly leading to management change options that result in reductions in Walker Lake salt concentrations, as simulated by the decision support system.

  13. Evaluation of bone insertion level of support teeth in class I mandibular removable partial denture associated with an osseointegrated implant: a study using finite element analysis.

    PubMed

    Verri, Fellippo Ramos; Pellizzer, Eduardo Piza; Pereira, João Antônio; Zuim, Paulo Renato Junqueira; Santiago Júnior, Joel Ferreira

    2011-06-01

    : This study evaluated the influence of distal extension removable partial denture associated with implant in cases of different bone level of abutment tooth, using 2D finite element analysis. : Eight hemiarch models were simulated: model A-presenting tooth 33 and distal extension removable partial denture replacing others teeth, using distal rest connection and no bone lost; model B-similar to model A but presenting distal guide plate connection; model C- similar to model A but presenting osseointegrated implant with ERA retention system associated under prosthetic base; model D-similar to model B but presenting osseointegrated implant as described in model C; models E, F, G, and H were similar to models A, B, C, and D but presenting reduced periodontal support around tooth 33. Using ANSYS 9.0 software, the models were loaded vertically with 50 N on each cusp tip. For results, von Mises Stress Maps were plotted. : Maximum stress value was encountered in model G (201.023 MPa). Stress distribution was concentrated on implant and retention system. The implant/removable partial denture association decreases stress levels on alveolar mucosa for all models. : Use of implant and ERA system decreased stress concentrations on supporting structures in all models. Use of distal guide plate decreased stress levels on abutment tooth and cortical and trabecular bone. Tooth apex of models with reduced periodontal support presented increased stress when using distal rest.

  14. Error Generation in CATS-Based Agents

    NASA Technical Reports Server (NTRS)

    Callantine, Todd

    2003-01-01

    This research presents a methodology for generating errors from a model of nominally preferred correct operator activities, given a particular operational context, and maintaining an explicit link to the erroneous contextual information to support analyses. It uses the Crew Activity Tracking System (CATS) model as the basis for error generation. This report describes how the process works, and how it may be useful for supporting agent-based system safety analyses. The report presents results obtained by applying the error-generation process and discusses implementation issues. The research is supported by the System-Wide Accident Prevention Element of the NASA Aviation Safety Program.

  15. Conceptual Model of Quantities, Units, Dimensions, and Values

    NASA Technical Reports Server (NTRS)

    Rouquette, Nicolas F.; DeKoenig, Hans-Peter; Burkhart, Roger; Espinoza, Huascar

    2011-01-01

    JPL collaborated with experts from industry and other organizations to develop a conceptual model of quantities, units, dimensions, and values based on the current work of the ISO 80000 committee revising the International System of Units & Quantities based on the International Vocabulary of Metrology (VIM). By providing support for ISO 80000 in SysML via the International Vocabulary of Metrology (VIM), this conceptual model provides, for the first time, a standard-based approach for addressing issues of unit coherence and dimensional analysis into the practice of systems engineering with SysML-based tools. This conceptual model provides support for two kinds of analyses specified in the International Vocabulary of Metrology (VIM): coherence of units as well as of systems of units, and dimension analysis of systems of quantities. To provide a solid and stable foundation, the model for defining quantities, units, dimensions, and values in SysML is explicitly based on the concepts defined in VIM. At the same time, the model library is designed in such a way that extensions to the ISQ (International System of Quantities) and SI Units (Systeme International d Unites) can be represented, as well as any alternative systems of quantities and units. The model library can be used to support SysML user models in various ways. A simple approach is to define and document libraries of reusable systems of units and quantities for reuse across multiple projects, and to link units and quantity kinds from these libraries to Unit and QuantityKind stereotypes defined in SysML user models.

  16. Software Tools For Building Decision-support Models For Flood Emergency Situations

    NASA Astrophysics Data System (ADS)

    Garrote, L.; Molina, M.; Ruiz, J. M.; Mosquera, J. C.

    The SAIDA decision-support system was developed by the Spanish Ministry of the Environment to provide assistance to decision-makers during flood situations. SAIDA has been tentatively implemented in two test basins: Jucar and Guadalhorce, and the Ministry is currently planning to have it implemented in all major Spanish basins in a few years' time. During the development cycle of SAIDA, the need for providing as- sistance to end-users in model definition and calibration was clearly identified. System developers usually emphasise abstraction and generality with the goal of providing a versatile software environment. End users, on the other hand, require concretion and specificity to adapt the general model to their local basins. As decision-support models become more complex, the gap between model developers and users gets wider: Who takes care of model definition, calibration and validation?. Initially, model developers perform these tasks, but the scope is usually limited to a few small test basins. Before the model enters operational stage, end users must get involved in model construction and calibration, in order to gain confidence in the model recommendations. However, getting the users involved in these activities is a difficult task. The goal of this re- search is to develop representation techniques for simulation and management models in order to define, develop and validate a mechanism, supported by a software envi- ronment, oriented to provide assistance to the end-user in building decision models for the prediction and management of river floods in real time. The system is based on three main building blocks: A library of simulators of the physical system, an editor to assist the user in building simulation models, and a machine learning method to calibrate decision models based on the simulation models provided by the user.

  17. Using Work Action Analysis to Identify Web-Portal Requirements for a Professional Development Program

    ERIC Educational Resources Information Center

    Nickles, George

    2007-01-01

    This article describes using Work Action Analysis (WAA) as a method for identifying requirements for a web-based portal that supports a professional development program. WAA is a cognitive systems engineering method for modeling multi-agent systems to support design and evaluation. A WAA model of the professional development program of the…

  18. Formulation of advanced consumables management models: Executive summary. [modeling spacecraft environmental control, life support, and electric power supply systems

    NASA Technical Reports Server (NTRS)

    Daly, J. K.; Torian, J. G.

    1979-01-01

    An overview of studies conducted to establish the requirements for advanced subsystem analytical tools is presented. Modifications are defined for updating current computer programs used to analyze environmental control, life support, and electric power supply systems so that consumables for future advanced spacecraft may be managed.

  19. Space Station Environment Control and Life Support System Pressure Control Pump Assembly Modeling and Analysis

    NASA Technical Reports Server (NTRS)

    Schunk, R. Gregory

    2002-01-01

    This paper presents the Modeling and Analysis of the Space Station Environment Control and Life Support System Pressure Control Pump Assembly (PCPA). The contents include: 1) Integrated PCPA/Manifold Analyses; 2) Manifold Performance Analysis; 3) PCPA Motor Heat Leak Study; and 4) Future Plans. This paper is presented in viewgraph form.

  20. Influence of backup bearings and support structure dynamics on the behavior of rotors with active supports

    NASA Technical Reports Server (NTRS)

    Flowers, George T.

    1995-01-01

    Progress made in the current year is listed, and the following papers are included in the appendix: Steady-State Dynamic Behavior of an Auxiliary Bearing Supported Rotor System; Dynamic Behavior of a Magnetic Bearing Supported Jet Engine Rotor with Auxiliary Bearings; Dynamic Modelling and Response Characteristics of a Magnetic Bearing Rotor System with Auxiliary Bearings; and Synchronous Dynamics of a Coupled Shaft/Bearing/Housing System with Auxiliary Support from a Clearance Bearing: Analysis and Experiment.

  1. RAM simulation model for SPH/RSV systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schryver, J.C.; Primm, A.H.; Nelson, S.C.

    1995-12-31

    The US Army`s Project Manager, Crusader is sponsoring the development of technologies that apply to the Self-Propelled Howitzer (SPH), formerly the Advanced Field Artillery System (AFAS), and Resupply Vehicle (RSV), formerly the Future Armored Resupply Vehicle (FARV), weapon system. Oak Ridge National Laboratory (ORNL) is currently performing developmental work in support of the SPH/PSV Crusader system. Supportive analyses of reliability, availability, and maintainability (RAM) aspects were also performed for the SPH/RSV effort. During FY 1994 and FY 1995 OPNL conducted a feasibility study to demonstrate the application of simulation modeling for RAM analysis of the Crusader system. Following completion ofmore » the feasibility study, a full-scale RAM simulation model of the Crusader system was developed for both the SPH and PSV. This report provides documentation for the simulation model as well as instructions in the proper execution and utilization of the model for the conduct of RAM analyses.« less

  2. Mathematical modelling of flow in disc friction LVAD pump

    NASA Astrophysics Data System (ADS)

    Medvedev, A. E.; Fomin, V. M.; Prikhodko, Yu. M.; Cherniavskiy, A. M.; Fomichev, V. P.; Fomichev, A. V.; Chekhov, V. P.; Ruzmatov, T. M.

    2017-10-01

    The need for blood circulation support systems in the treatment of chronic heart failure is constantly increasing as 20% of patients on the waiting list die every year. Despite the great need for mechanical heart support systems the use of available systems is limited by the high cost. Therefore, further research in the field of circulatory support systems is appropriate taking into account medical and technical requirements. One of the new research areas is viscous friction disk pumps for transporting liquids based on the Tesla pump principle. The experimental model of LVAD disk pump is developed. Analytical dependencies are obtained to optimize the hydraulic parameters of the pump. On their basis, the experimental model of LVAD disk pump was designed and created. The results of analytical and experimental studies of such a pump are presented.

  3. Effective Team Support: From Task and Cognitive Modeling to Software Agents for Time-Critical Complex Work Environments

    NASA Technical Reports Server (NTRS)

    Remington, Roger W. (Technical Monitor); John, Bonnie E.; Sycara, Katia

    2005-01-01

    The purpose of this research contract was to perform multidisciplinary research between CMU psychologists, computer scientists and NASA researchers to design a next generation collaborative system to support a team of human experts and intelligent agents. To achieve robust performance enhancement of such a system, we had proposed to perform task and cognitive modeling to thoroughly understand the impact technology makes on the organization and on key individual personnel. Guided by cognitively-inspired requirements, we would then develop software agents that support the human team in decision making, information filtering, information distribution and integration to enhance team situational awareness. During the period covered by this final report, we made substantial progress in completing a system for empirical data collection, cognitive modeling, and the building of software agents to support a team's tasks, and in running experiments for the collection of baseline data.

  4. Model implementation for dynamic computation of system cost for advanced life support

    NASA Technical Reports Server (NTRS)

    Levri, J. A.; Vaccari, D. A.

    2004-01-01

    Life support system designs for long-duration space missions have a multitude of requirements drivers, such as mission objectives, political considerations, cost, crew wellness, inherent mission attributes, as well as many other influences. Evaluation of requirements satisfaction can be difficult, particularly at an early stage of mission design. Because launch cost is a critical factor and relatively easy to quantify, it is a point of focus in early mission design. The method used to determine launch cost influences the accuracy of the estimate. This paper discusses the appropriateness of dynamic mission simulation in estimating the launch cost of a life support system. This paper also provides an abbreviated example of a dynamic simulation life support model and possible ways in which such a model might be utilized for design improvement. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.

  5. Multidisciplinary model-based-engineering for laser weapon systems: recent progress

    NASA Astrophysics Data System (ADS)

    Coy, Steve; Panthaki, Malcolm

    2013-09-01

    We are working to develop a comprehensive, integrated software framework and toolset to support model-based engineering (MBE) of laser weapons systems. MBE has been identified by the Office of the Director, Defense Science and Engineering as one of four potentially "game-changing" technologies that could bring about revolutionary advances across the entire DoD research and development and procurement cycle. To be effective, however, MBE requires robust underlying modeling and simulation technologies capable of modeling all the pertinent systems, subsystems, components, effects, and interactions at any level of fidelity that may be required in order to support crucial design decisions at any point in the system development lifecycle. Very often the greatest technical challenges are posed by systems involving interactions that cut across two or more distinct scientific or engineering domains; even in cases where there are excellent tools available for modeling each individual domain, generally none of these domain-specific tools can be used to model the cross-domain interactions. In the case of laser weapons systems R&D these tools need to be able to support modeling of systems involving combined interactions among structures, thermal, and optical effects, including both ray optics and wave optics, controls, atmospheric effects, target interaction, computational fluid dynamics, and spatiotemporal interactions between lasing light and the laser gain medium. To address this problem we are working to extend Comet™, to add the addition modeling and simulation capabilities required for this particular application area. In this paper we will describe our progress to date.

  6. A computer model of the pediatric circulatory system for testing pediatric assist devices.

    PubMed

    Giridharan, Guruprasad A; Koenig, Steven C; Mitchell, Michael; Gartner, Mark; Pantalos, George M

    2007-01-01

    Lumped parameter computer models of the pediatric circulatory systems for 1- and 4-year-olds were developed to predict hemodynamic responses to mechanical circulatory support devices. Model parameters, including resistance, compliance and volume, were adjusted to match hemodynamic pressure and flow waveforms, pressure-volume loops, percent systole, and heart rate of pediatric patients (n = 6) with normal ventricles. Left ventricular failure was modeled by adjusting the time-varying compliance curve of the left heart to produce aortic pressures and cardiac outputs consistent with those observed clinically. Models of pediatric continuous flow (CF) and pulsatile flow (PF) ventricular assist devices (VAD) and intraaortic balloon pump (IABP) were developed and integrated into the heart failure pediatric circulatory system models. Computer simulations were conducted to predict acute hemodynamic responses to PF and CF VAD operating at 50%, 75% and 100% support and 2.5 and 5 ml IABP operating at 1:1 and 1:2 support modes. The computer model of the pediatric circulation matched the human pediatric hemodynamic waveform morphology to within 90% and cardiac function parameters with 95% accuracy. The computer model predicted PF VAD and IABP restore aortic pressure pulsatility and variation in end-systolic and end-diastolic volume, but diminish with increasing CF VAD support.

  7. Circular pump support of blood circulation in the human body

    NASA Astrophysics Data System (ADS)

    Medvedev, A. E.; Fomin, V. M.; Prikhodko, Yu. M.; Cherniavskiy, A. M.; Fomichev, V. P.; Fomichev, A. V.; Chekhov, V. P.; Ruzmatov, T. M.

    2016-10-01

    The need of circulatory support systems in the treatment of chronic heart failure is increasing constantly, as 20% of patients in the waiting list die every year. Despite the great need for mechanical heart support systems, using of available systems is limited by the expensiveness. In addition, there is no one system that is 100% responsible to all medical and technical requirements, and would be completely safe for patient. Therefore, further research in the field of circu-latory support systems, considering health and technical requirements is relevant. One of the new directions in the study are disc pumps of viscous friction for liquid transporting, based on the Tesla pump principle. The operation principle of pumps based on the phenomenon of the boundary layer which is formed on the disk rotating in a fluid. There are experimental studies results of models with different variants of the rotor suspension, the various forms and the number of disks, forms the pump housing. However, none of the above samples was not brought to clinical trials. Furthermore, despite the promise of this model is still used today in some circulatory support systems are no similar type pump. Published data provide a basis for further development and testing of the pump model and allow to hope for leveling a number of significant shortcomings of modern left ventricular bypass systems.

  8. A total design and implementation of an intelligent mobile chemotherapy medication administration.

    PubMed

    Kuo, Ming-Chuan; Chang, Polun

    2014-01-01

    The chemotherapy medication administration is a process involved many stakeholders and efforts. Therefore, the information support system cannot be well designed if the entire process was not carefully examined and reengineered first. We, from a 805-teaching medical center, did a process reengineering and involved physicians, pharmacists and IT engineers to work together to design a mobile support solution. System was implemented in March to July, 2013. A 6" android handheld device with 1D BCR was used as the main hardware. 18 nurses were invited to evaluate their perceived acceptance of system based on Technology Acceptance Model for Mobile Service Model. Time saved was also calculated to measure the effectiveness of system. The results showed positive support from nurses. The estimated time saved every year was about 288 nursing days. We believe our mobile chemotherapy medication administration support system is successful in terms of acceptance and real impacts.

  9. Rejuvenation of Spent Media via Supported Emulsion Liquid Membranes

    NASA Technical Reports Server (NTRS)

    Wiencek, John M.

    2002-01-01

    The overall goal of this project was to maximize the reuseability of spent fermentation media. Supported emulsion liquid membrane separation, a highly efficient extraction technique, was used to remove inhibitory byproducts during fermentation; thus, improve the yield while reducing the need for fresh water. The key objectives of this study were: (1) Develop an emulsion liquid membrane system targeting low molecular weight organic acids which has minimal toxicity on a variety of microbial systems. (2) Conduct mass transfer studies to allow proper modeling and design of a supported emulsion liquid membrane system. (3) Investigate the effect of gravity on emulsion coalescence within the membrane unit. (4) Access the effect of water re-use on fermentation yields in a model microbial system. and (5) Develop a perfusion-type fermentor utilizing a supported emulsion liquid membrane system to control inhibitory fermentation byproducts (not completed due to lack of funds)

  10. A Lifecycle Approach to Brokered Data Management for Hydrologic Modeling Data Using Open Standards.

    NASA Astrophysics Data System (ADS)

    Blodgett, D. L.; Booth, N.; Kunicki, T.; Walker, J.

    2012-12-01

    The U.S. Geological Survey Center for Integrated Data Analytics has formalized an information management-architecture to facilitate hydrologic modeling and subsequent decision support throughout a project's lifecycle. The architecture is based on open standards and open source software to decrease the adoption barrier and to build on existing, community supported software. The components of this system have been developed and evaluated to support data management activities of the interagency Great Lakes Restoration Initiative, Department of Interior's Climate Science Centers and WaterSmart National Water Census. Much of the research and development of this system has been in cooperation with international interoperability experiments conducted within the Open Geospatial Consortium. Community-developed standards and software, implemented to meet the unique requirements of specific disciplines, are used as a system of interoperable, discipline specific, data types and interfaces. This approach has allowed adoption of existing software that satisfies the majority of system requirements. Four major features of the system include: 1) assistance in model parameter and forcing creation from large enterprise data sources; 2) conversion of model results and calibrated parameters to standard formats, making them available via standard web services; 3) tracking a model's processes, inputs, and outputs as a cohesive metadata record, allowing provenance tracking via reference to web services; and 4) generalized decision support tools which rely on a suite of standard data types and interfaces, rather than particular manually curated model-derived datasets. Recent progress made in data and web service standards related to sensor and/or model derived station time series, dynamic web processing, and metadata management are central to this system's function and will be presented briefly along with a functional overview of the applications that make up the system. As the separate pieces of this system progress, they will be combined and generalized to form a sort of social network for nationally consistent hydrologic modeling.

  11. Coupling sensing to crop models for closed-loop plant production in advanced life support systems

    NASA Astrophysics Data System (ADS)

    Cavazzoni, James; Ling, Peter P.

    1999-01-01

    We present a conceptual framework for coupling sensing to crop models for closed-loop analysis of plant production for NASA's program in advanced life support. Crop status may be monitored through non-destructive observations, while models may be independently applied to crop production planning and decision support. To achieve coupling, environmental variables and observations are linked to mode inputs and outputs, and monitoring results compared with model predictions of plant growth and development. The information thus provided may be useful in diagnosing problems with the plant growth system, or as a feedback to the model for evaluation of plant scheduling and potential yield. In this paper, we demonstrate this coupling using machine vision sensing of canopy height and top projected canopy area, and the CROPGRO crop growth model. Model simulations and scenarios are used for illustration. We also compare model predictions of the machine vision variables with data from soybean experiments conducted at New Jersey Agriculture Experiment Station Horticulture Greenhouse Facility, Rutgers University. Model simulations produce reasonable agreement with the available data, supporting our illustration.

  12. Human Support Technology Research to Enable Exploration

    NASA Technical Reports Server (NTRS)

    Joshi, Jitendra

    2003-01-01

    Contents include the following: Advanced life support. System integration, modeling, and analysis. Progressive capabilities. Water processing. Air revitalization systems. Why advanced CO2 removal technology? Solid waste resource recovery systems: lyophilization. ISRU technologies for Mars life support. Atmospheric resources of Mars. N2 consumable/make-up for Mars life. Integrated test beds. Monitoring and controlling the environment. Ground-based commercial technology. Optimizing size vs capability. Water recovery systems. Flight verification topics.

  13. Enhancing Interdisciplinary Human System Risk Research Through Modeling and Network Approaches

    NASA Technical Reports Server (NTRS)

    Mindock, Jennifer; Lumpkins, Sarah; Shelhamer, Mark

    2015-01-01

    NASA's Human Research Program (HRP) supports research to reduce human health and performance risks inherent in future human space exploration missions. Understanding risk outcomes and contributing factors in an integrated manner allows HRP research to support development of efficient and effective mitigations from cross-disciplinary perspectives, and to enable resilient human and engineered systems for spaceflight. The purpose of this work is to support scientific collaborations and research portfolio management by utilizing modeling for analysis and visualization of current and potential future interdisciplinary efforts.

  14. The Application of Modeling and Simulation in Capacity Management within the ITIL Framework

    NASA Technical Reports Server (NTRS)

    Rahmani, Sonya; vonderHoff, Otto

    2010-01-01

    Tightly integrating modeling and simulation techniques into Information Technology Infrastructure Library (ITIL) practices can be one of the driving factors behind a successful and cost-effective capacity management effort for any Information Technology (IT) system. ITIL is a best practices framework for managing IT infrastructure, development and operations. Translating ITIL theory into operational reality can be a challenge. This paper aims to highlight how to best integrate modeling and simulation into an ITIL implementation. For cases where the project team initially has difficulty gaining consensus on investing in modeling and simulation resources, a clear definition for M&S implementation into the ITIL framework, specifically its role in supporting Capacity Management, is critical to gaining the support required to garner these resources. This implementation should also help to clearly define M&S support to the overall system mission. This paper will describe the development of an integrated modeling approach and how best to tie M&S to definitive goals for evaluating system capacity and performance requirements. Specifically the paper will discuss best practices for implementing modeling and simulation into ITIL. These practices hinge on implementing integrated M&S methods that 1) encompass at least two or more predictive modeling techniques, 2) complement each one's respective strengths and weaknesses to support the validation of predicted results, and 3) are tied to the system's performance and workload monitoring efforts. How to structure two forms of modeling: statistical and simUlation in the development of "As Is" and "To Be" efforts will be used to exemplify the integrated M&S methods. The paper will show how these methods can better support the project's overall capacity management efforts.

  15. Demands on Intranets — Viable System Model as a Foundation for Intranet Design

    NASA Astrophysics Data System (ADS)

    Amcoff Nyström, Christina

    2006-06-01

    The number of Intranets increases in organizations but their potential to support viability is not fully exploited. The cybernetic model, the Viable System Model, has not been connected to the Intranet concept before. Characteristics of the VSM, such as highlighting the importance of production, monitoring of production units through Early Warning Systems, autonomy and empowerment, are used as patterns and a base for de-signing essential parts and/or functions of an Intranet. The result is a brief description of functions vital to the operational parts of organizations. Examples are Early Warning Systems, control systems, "gate-keepers," amplifying and damping information to and from the organization and "agents" supporting search abilities on an Intranet.

  16. Development of Open Brain Simulator for Human Biomechatronics

    NASA Astrophysics Data System (ADS)

    Otake, Mihoko; Takagi, Toshihisa; Asama, Hajime

    Modeling and simulation based on mechanisms is important in order to design and control mechatronic systems. In particular, in-depth understanding and realistic modeling of biological systems is indispensable for biomechatronics. This paper presents open brain simulator, which estimates the neural state of human through external measurement for the purpose of improving motor and social skills. Macroscopic anatomical nervous systems model was built which can be connected to the musculoskeletal model. Microscopic anatomical and physiological neural models were interfaced to the macroscopic model. Neural activities of somatosensory area and Purkinje cell were calculated from motion capture data. The simulator provides technical infrastructure for human biomechatronics, which is promising for the novel diagnosis of neurological disorders and their treatments through medication and movement therapy, and for motor learning support system supporting acquisition of motor skill considering neural mechanism.

  17. Controlled Ecological Life Support System: Regenerative Life Support Systems in Space

    NASA Technical Reports Server (NTRS)

    Macelroy, Robert D.; Smernoff, David T.

    1987-01-01

    A wide range of topics related to the extended support of humans in space are covered. Overviews of research conducted in Japan, Europe, and the U.S. are presented. The methods and technologies required to recycle materials, especially respiratory gases, within a closed system are examined. Also presented are issues related to plant and algal productivity, efficiency, and processing methods. Computer simulation of closed systems, discussions of radiation effects on systems stability, and modeling of a computer bioregenerative system are also covered.

  18. Dynamic Modeling of Process Technologies for Closed-Loop Water Recovery Systems

    NASA Technical Reports Server (NTRS)

    Allada, Rama Kumar; Lange, Kevin E.; Anderson, Molly S.

    2012-01-01

    Detailed chemical process simulations are a useful tool in designing and optimizing complex systems and architectures for human life support. Dynamic and steady-state models of these systems help contrast the interactions of various operating parameters and hardware designs, which become extremely useful in trade-study analyses. NASA s Exploration Life Support technology development project recently made use of such models to compliment a series of tests on different waste water distillation systems. This paper presents dynamic simulations of chemical process for primary processor technologies including: the Cascade Distillation System (CDS), the Vapor Compression Distillation (VCD) system, the Wiped-Film Rotating Disk (WFRD), and post-distillation water polishing processes such as the Volatiles Removal Assembly (VRA). These dynamic models were developed using the Aspen Custom Modeler (Registered TradeMark) and Aspen Plus(Registered TradeMark) process simulation tools. The results expand upon previous work for water recovery technology models and emphasize dynamic process modeling and results. The paper discusses system design, modeling details, and model results for each technology and presents some comparisons between the model results and available test data. Following these initial comparisons, some general conclusions and forward work are discussed.

  19. Efficient GIS-based model-driven method for flood risk management and its application in central China

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Zhou, J.; Song, L.; Zou, Q.; Guo, J.; Wang, Y.

    2014-02-01

    In recent years, an important development in flood management has been the focal shift from flood protection towards flood risk management. This change greatly promoted the progress of flood control research in a multidisciplinary way. Moreover, given the growing complexity and uncertainty in many decision situations of flood risk management, traditional methods, e.g., tight-coupling integration of one or more quantitative models, are not enough to provide decision support for managers. Within this context, this paper presents a beneficial methodological framework to enhance the effectiveness of decision support systems, through the dynamic adaptation of support regarding the needs of the decision-maker. In addition, we illustrate a loose-coupling technical prototype for integrating heterogeneous elements, such as multi-source data, multidisciplinary models, GIS tools and existing systems. The main innovation is the application of model-driven concepts, which put the system in a state of continuous iterative optimization. We define the new system as a model-driven decision support system (MDSS ). Two characteristics that differentiate the MDSS are as follows: (1) it is made accessible to non-technical specialists; and (2) it has a higher level of adaptability and compatibility. Furthermore, the MDSS was employed to manage the flood risk in the Jingjiang flood diversion area, located in central China near the Yangtze River. Compared with traditional solutions, we believe that this model-driven method is efficient, adaptable and flexible, and thus has bright prospects of application for comprehensive flood risk management.

  20. Use of decision support systems as a drought management tool

    USGS Publications Warehouse

    Frevert, D.; Lins, H.; ,

    2005-01-01

    Droughts present a unique challenge to water managers throughout the world and the current drought in the western United States is taxing facilities to the limit. Coping with this severe drought requires state of the art decision support systems including efficient and accurate hydrologic process models, detailed hydrologic data bases and effective river systems management modeling frameworks. This paper will outline a system of models developed by the Bureau of Reclamation, the US Geological Survey, the University of Colorado and a number of other governmental and university partners. The application of the technology to drought management in several key western river basins will be discussed.

  1. Model implementation for dynamic computation of system cost

    NASA Astrophysics Data System (ADS)

    Levri, J.; Vaccari, D.

    The Advanced Life Support (ALS) Program metric is the ratio of the equivalent system mass (ESM) of a mission based on International Space Station (ISS) technology to the ESM of that same mission based on ALS technology. ESM is a mission cost analog that converts the volume, power, cooling and crewtime requirements of a mission into mass units to compute an estimate of the life support system emplacement cost. Traditionally, ESM has been computed statically, using nominal values for system sizing. However, computation of ESM with static, nominal sizing estimates cannot capture the peak sizing requirements driven by system dynamics. In this paper, a dynamic model for a near-term Mars mission is described. The model is implemented in Matlab/Simulink' for the purpose of dynamically computing ESM. This paper provides a general overview of the crew, food, biomass, waste, water and air blocks in the Simulink' model. Dynamic simulations of the life support system track mass flow, volume and crewtime needs, as well as power and cooling requirement profiles. The mission's ESM is computed, based upon simulation responses. Ultimately, computed ESM values for various system architectures will feed into an optimization search (non-derivative) algorithm to predict parameter combinations that result in reduced objective function values.

  2. Development of a decision support system for analysis and solutions of prolonged standing in the workplace.

    PubMed

    Halim, Isa; Arep, Hambali; Kamat, Seri Rahayu; Abdullah, Rohana; Omar, Abdul Rahman; Ismail, Ahmad Rasdan

    2014-06-01

    Prolonged standing has been hypothesized as a vital contributor to discomfort and muscle fatigue in the workplace. The objective of this study was to develop a decision support system that could provide systematic analysis and solutions to minimize the discomfort and muscle fatigue associated with prolonged standing. The integration of object-oriented programming and a Model Oriented Simultaneous Engineering System were used to design the architecture of the decision support system. Validation of the decision support system was carried out in two manufacturing companies. The validation process showed that the decision support system produced reliable results. The decision support system is a reliable advisory tool for providing analysis and solutions to problems related to the discomfort and muscle fatigue associated with prolonged standing. Further testing of the decision support system is suggested before it is used commercially.

  3. Development of a Decision Support System for Analysis and Solutions of Prolonged Standing in the Workplace

    PubMed Central

    Halim, Isa; Arep, Hambali; Kamat, Seri Rahayu; Abdullah, Rohana; Omar, Abdul Rahman; Ismail, Ahmad Rasdan

    2014-01-01

    Background Prolonged standing has been hypothesized as a vital contributor to discomfort and muscle fatigue in the workplace. The objective of this study was to develop a decision support system that could provide systematic analysis and solutions to minimize the discomfort and muscle fatigue associated with prolonged standing. Methods The integration of object-oriented programming and a Model Oriented Simultaneous Engineering System were used to design the architecture of the decision support system. Results Validation of the decision support system was carried out in two manufacturing companies. The validation process showed that the decision support system produced reliable results. Conclusion The decision support system is a reliable advisory tool for providing analysis and solutions to problems related to the discomfort and muscle fatigue associated with prolonged standing. Further testing of the decision support system is suggested before it is used commercially. PMID:25180141

  4. The evaluator as technical assistant: A model for systemic reform support

    NASA Astrophysics Data System (ADS)

    Century, Jeanne Rose

    This study explored evaluation of systemic reform. Specifically, it focused on the evaluation of a systemic effort to improve K-8 science, mathematics and technology education. The evaluation was of particular interest because it used both technical assistance and evaluation strategies. Through studying the combination of these roles, this investigation set out to increase understanding of potentially new evaluator roles, distinguish important characteristics of the evaluator/project participant relationship, and identify how these roles and characteristics contribute to effective evaluation of systemic science education reform. This qualitative study used interview, document analysis, and participant observation as methods of data collection. Interviews were conducted with project leaders, project participants, and evaluators and focused on the evaluation strategies and process, the use of the evaluation, and technical assistance. Documents analyzed included transcripts of evaluation team meetings and reports, memoranda and other print materials generated by the project leaders and the evaluators. Data analysis consisted of analytic and interpretive procedures consistent with the qualitative data collected and entailed a combined process of coding transcripts of interviews and meetings, field notes, and other documents; analyzing and organizing findings; writing of reflective and analytic memos; and designing and diagramming conceptual relationships. The data analysis resulted in the development of the Multi-Function Model for Systemic Reform Support. This model organizes systemic reform support into three functions: evaluation, technical assistance, and a third, named here as "systemic perspective." These functions work together to support the project's educational goals as well as a larger goal--building capacity in project participants. This model can now serve as an informed starting point or "blueprint" for strategically supporting systemic reform.

  5. Representative Model of the Learning Process in Virtual Spaces Supported by ICT

    ERIC Educational Resources Information Center

    Capacho, José

    2014-01-01

    This paper shows the results of research activities for building the representative model of the learning process in virtual spaces (e-Learning). The formal basis of the model are supported in the analysis of models of learning assessment in virtual spaces and specifically in Dembo´s teaching learning model, the systemic approach to evaluating…

  6. Energy Systems Integration Newsletter | Energy Systems Integration Facility

    Science.gov Websites

    simulated sequences based on a model network. The competitive procurement process provided comparative , procurement help, design reviews, and now construction support. Miramar project support is part of integrated

  7. Drivers' communicative interactions: on-road observations and modelling for integration in future automation systems.

    PubMed

    Portouli, Evangelia; Nathanael, Dimitris; Marmaras, Nicolas

    2014-01-01

    Social interactions with other road users are an essential component of the driving activity and may prove critical in view of future automation systems; still up to now they have received only limited attention in the scientific literature. In this paper, it is argued that drivers base their anticipations about the traffic scene to a large extent on observations of social behaviour of other 'animate human-vehicles'. It is further argued that in cases of uncertainty, drivers seek to establish a mutual situational awareness through deliberate communicative interactions. A linguistic model is proposed for modelling these communicative interactions. Empirical evidence from on-road observations and analysis of concurrent running commentary by 25 experienced drivers support the proposed model. It is suggested that the integration of a social interactions layer based on illocutionary acts in future driving support and automation systems will improve their performance towards matching human driver's expectations. Practitioner Summary: Interactions between drivers on the road may play a significant role in traffic coordination. On-road observations and running commentaries are presented as empirical evidence to support a model of such interactions; incorporation of drivers' interactions in future driving support and automation systems may improve their performance towards matching driver's expectations.

  8. In-Flight Aeroelastic Stability of the Thermal Protection System on the NASA HIAD, Part I: Linear Theory

    NASA Technical Reports Server (NTRS)

    Goldman, Benjamin D.; Dowell, Earl H.; Scott, Robert C.

    2014-01-01

    Conical shell theory and piston theory aerodynamics are used to study the aeroelastic stability of the thermal protection system (TPS) on the NASA Hypersonic Inflatable Aerodynamic Decelerator (HIAD). Structural models of the TPS consist of single or multiple orthotropic conical shell systems resting on several circumferential linear elastic supports. The shells in each model may have pinned (simply-supported) or elastically-supported edges. The Lagrangian is formulated in terms of the generalized coordinates for all displacements and the Rayleigh-Ritz method is used to derive the equations of motion. The natural modes of vibration and aeroelastic stability boundaries are found by calculating the eigenvalues and eigenvectors of a large coefficient matrix. When the in-flight configuration of the TPS is approximated as a single shell without elastic supports, asymmetric flutter in many circumferential waves is observed. When the elastic supports are included, the shell flutters symmetrically in zero circumferential waves. Structural damping is found to be important in this case. Aeroelastic models that consider the individual TPS layers as separate shells tend to flutter asymmetrically at high dynamic pressures relative to the single shell models. Several parameter studies also examine the effects of tension, orthotropicity, and elastic support stiffness.

  9. Analysis of the possibility of SysML and BPMN application in formal data acquisition system description

    NASA Astrophysics Data System (ADS)

    Ćwikła, G.; Gwiazda, A.; Banaś, W.; Monica, Z.; Foit, K.

    2017-08-01

    The article presents the study of possible application of selected methods of complex description, that can be used as a support of the Manufacturing Information Acquisition System (MIAS) methodology, describing how to design a data acquisition system, allowing for collecting and processing real-time data on the functioning of a production system, necessary for management of a company. MIAS can allow conversion into Cyber-Physical Production System. MIAS is gathering and pre-processing data on the state of production system, including e.g. realisation of production orders, state of machines, materials and human resources. Systematised approach and model-based development is proposed for improving the quality of the design of MIAS methodology-based complex systems supporting data acquisition in various types of companies. Graphical specification can be the baseline for any model-based development in specified areas. The possibility of application of SysML and BPMN, both being UML-based languages, representing different approaches to modelling of requirements, architecture and implementation of the data acquisition system, as a tools supporting description of required features of MIAS, were considered.

  10. Analysis, modeling, and simulation (AMS) testbed development and evaluation to support dynamic mobility applications (DMA) and active transportation and demand management (ATDM) programs — summary report for the Chicago testbed. [supporting datasets - Chicago Testbed

    DOT National Transportation Integrated Search

    2017-04-01

    The datasets in this zip file are in support of Intelligent Transportation Systems Joint Program Office (ITS JPO) report FHWA-JPO-16-385, "Analysis, Modeling, and Simulation (AMS) Testbed Development and Evaluation to Support Dynamic Mobility Applica...

  11. Analysis, modeling, and simulation (AMS) testbed development and evaluation to support dynamic mobility applications (DMA) and active transportation and demand management (ATDM) programs : Dallas testbed analysis plan. [supporting datasets - Dallas Testbed

    DOT National Transportation Integrated Search

    2017-07-26

    The datasets in this zip file are in support of Intelligent Transportation Systems Joint Program Office (ITS JPO) report FHWA-JPO-16-385, "Analysis, Modeling, and Simulation (AMS) Testbed Development and Evaluation to Support Dynamic Mobility Applica...

  12. An Elaborated Model of Student Support to Allow for Gender Considerations in Asian Distance Education

    ERIC Educational Resources Information Center

    Jung, Insung; Seongyoun, Hong

    2014-01-01

    Research indicates that distance education (DE) students regard learner support systems as the key element in quality provision. This study sought to identify the key concerns of Asian DE students regarding support provision in different types of DE and dual-mode providers and formulate a student support model which took account of gender issues.…

  13. In vitro comparison of support capabilities of intra-aortic balloon pump and Impella 2.5 left percutaneous.

    PubMed

    Schampaert, Stéphanie; van't Veer, Marcel; van de Vosse, Frans N; Pijls, Nico H J; de Mol, Bas A; Rutten, Marcel C M

    2011-09-01

    The Impella 2.5 left percutaneous (LP), a relatively new transvalvular assist device, challenges the position of the intra-aortic balloon pump (IABP), which has a long record in supporting patients after myocardial infarction and cardiac surgery. However, while more costly and more demanding in management, the advantages of the Impella 2.5 LP are yet to be established. The aim of this study was to evaluate the benefits of the 40 cc IABP and the Impella 2.5 LP operating at 47,000 rpm in vitro, and compare their circulatory support capabilities in terms of cardiac output, coronary flow, cardiac stroke work, and arterial blood pressure. Clinical scenarios of cardiogenic preshock and cardiogenic shock (CS), with blood pressure depression, lowered cardiac output, and constant heart rate of 80 bpm, were modeled in a model-controlled mock circulation, featuring a systemic, pulmonary, and coronary vascular bed. The ventricles, represented by servomotor-operated piston pumps, included the Frank-Starling mechanism. The systemic circulation was modeled with a flexible tube having close-to-human aortic dimensions and compliance properties. Proximally, it featured a branch mimicking the brachiocephalic arteries and a physiological correct coronary flow model. The rest of the systemic and pulmonary impedance was modeled by four-element Windkessel models. In this system, the enhancement of coronary flow and blood pressure was tested with both support systems under healthy and pathological conditions. Hemodynamic differences between the IABP and the Impella 2.5 LP were small. In our laboratory model, both systems approximately yielded a 10% cardiac output increase and a 10% coronary flow increase. However, since the Impella 2.5 LP provided significantly better left ventricular unloading, the circulatory support capabilities were slightly in favor of the Impella 2.5 LP. On the other hand, pulsatility was enhanced with the IABP and lowered with the Impella 2.5 LP. The support capabilities of both the IABP and the Impella 2.5 LP strongly depended on the simulated hemodynamic conditions. Maximum hemodynamic benefits were achieved when mechanical circulatory support was applied on a simulated scenario of deep CS. © 2011, Copyright Eindhoven University of Technology (TU/e). Artificial Organs © 2011, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  14. Information system and website design to support theautomotive manufacture ERP system

    NASA Astrophysics Data System (ADS)

    Amran, T. G.; Azmi, N.; Surjawati, A. A.

    2017-12-01

    This research is to create an on-time production system design with Heijunka model so that the product diversity for all models could meet time and capacity requirements, own production flexibility, high quality, meet the customers’ demands, realistic in production as well as creating a web-based local components’ order information system that supports the Enterprise Resource Planning (ERP) system. The Heijunka model for equalization with heuristic and stochastic model has been implemented for productions up to 3000 units by implementing Suzuki International Manufacturing. The inefficiency in the local order information system demanded the need for a new information system design that is integrated in ERP. Kaizen needs to be done is the Supplier Network that all vendors can download and utilize those data to deliver the components to the company and for vendors’ internal uses as well. The model design is presumed effective where the model is able to be utilized as a solution so that the production can run according to the schedule and presumed efficient were the model is able to show the reduction of loss time and stock.

  15. Developing a Model Component

    NASA Technical Reports Server (NTRS)

    Fields, Christina M.

    2013-01-01

    The Spaceport Command and Control System (SCCS) Simulation Computer Software Configuration Item (CSCI) is responsible for providing simulations to support test and verification of SCCS hardware and software. The Universal Coolant Transporter System (UCTS) was a Space Shuttle Orbiter support piece of the Ground Servicing Equipment (GSE). The initial purpose of the UCTS was to provide two support services to the Space Shuttle Orbiter immediately after landing at the Shuttle Landing Facility. The UCTS is designed with the capability of servicing future space vehicles; including all Space Station Requirements necessary for the MPLM Modules. The Simulation uses GSE Models to stand in for the actual systems to support testing of SCCS systems during their development. As an intern at Kennedy Space Center (KSC), my assignment was to develop a model component for the UCTS. I was given a fluid component (dryer) to model in Simulink. I completed training for UNIX and Simulink. The dryer is a Catch All replaceable core type filter-dryer. The filter-dryer provides maximum protection for the thermostatic expansion valve and solenoid valve from dirt that may be in the system. The filter-dryer also protects the valves from freezing up. I researched fluid dynamics to understand the function of my component. The filter-dryer was modeled by determining affects it has on the pressure and velocity of the system. I used Bernoulli's Equation to calculate the pressure and velocity differential through the dryer. I created my filter-dryer model in Simulink and wrote the test script to test the component. I completed component testing and captured test data. The finalized model was sent for peer review for any improvements. I participated in Simulation meetings and was involved in the subsystem design process and team collaborations. I gained valuable work experience and insight into a career path as an engineer.

  16. Simulation Model for DVB-SH Systems Based on OFDM for Analyzing Quasi-error-free Communication over Different Channel Models

    NASA Astrophysics Data System (ADS)

    Bačić, Iva; Malarić, Krešimir; Dumić, Emil

    2014-05-01

    Mobile users today expect wide range of multimedia services to be available in different mobility scenarios, and among the others is mobile TV service. The Digital Video Broadcasting - Satellite services to Handheld (DVB-SH) is designed to provide mobile TV services, supporting a wide range of mobile multimedia services, like audio and data broadcasting as well as file downloading services. In this paper we present our simulation model for the performance evaluation of the DVB-SH system following the ETSI standard EN 302 583. Simulation model includes complete DVB-SH system, supporting all standardized system modes and parameters. From transmitter to receiver, the information may be sent over different channel models, thus simulating real case scenarios. To the best of authors' knowledge, this is the first complete model of DVB-SH system that includes all standardized system parameters and may be used for examining real DVB-SH communication as well as for educational purposes.

  17. An Approach to Comprehensive and Sustainable Solar Wind Model Validation

    NASA Astrophysics Data System (ADS)

    Rastaetter, L.; MacNeice, P. J.; Mays, M. L.; Boblitt, J. M.; Wiegand, C.

    2017-12-01

    The number of models of the corona and inner heliosphere and of their updates and upgrades grows steadily, as does the number and character of the model inputs. Maintaining up to date validation of these models, in the face of this constant model evolution, is a necessary but very labor intensive activity. In the last year alone, both NASA's LWS program and the CCMC's ongoing support of model forecasting activities at NOAA SWPC have sought model validation reports on the quality of all aspects of the community's coronal and heliospheric models, including both ambient and CME related wind solutions at L1. In this presentation I will give a brief review of the community's previous model validation results of L1 wind representation. I will discuss the semi-automated web based system we are constructing at the CCMC to present comparative visualizations of all interesting aspects of the solutions from competing models.This system is designed to be easily queried to provide the essential comprehensive inputs to repeat andupdate previous validation studies and support extensions to them. I will illustrate this by demonstrating how the system is being used to support the CCMC/LWS Model Assessment Forum teams focused on the ambient and time dependent corona and solar wind, including CME arrival time and IMF Bz.I will also discuss plans to extend the system to include results from the Forum teams addressing SEP model validation.

  18. The Watershed and River Systems Management Program: Decision Support for Water- and Environmental-Resource Management

    NASA Astrophysics Data System (ADS)

    Leavesley, G.; Markstrom, S.; Frevert, D.; Fulp, T.; Zagona, E.; Viger, R.

    2004-12-01

    Increasing demands for limited fresh-water supplies, and increasing complexity of water-management issues, present the water-resource manager with the difficult task of achieving an equitable balance of water allocation among a diverse group of water users. The Watershed and River System Management Program (WARSMP) is a cooperative effort between the U.S. Geological Survey (USGS) and the Bureau of Reclamation (BOR) to develop and deploy a database-centered, decision-support system (DSS) to address these multi-objective, resource-management problems. The decision-support system couples the USGS Modular Modeling System (MMS) with the BOR RiverWare tools using a shared relational database. MMS is an integrated system of computer software that provides a research and operational framework to support the development and integration of a wide variety of hydrologic and ecosystem models, and their application to water- and ecosystem-resource management. RiverWare is an object-oriented reservoir and river-system modeling framework developed to provide tools for evaluating and applying water-allocation and management strategies. The modeling capabilities of MMS and Riverware include simulating watershed runoff, reservoir inflows, and the impacts of resource-management decisions on municipal, agricultural, and industrial water users, environmental concerns, power generation, and recreational interests. Forecasts of future climatic conditions are a key component in the application of MMS models to resource-management decisions. Forecast methods applied in MMS include a modified version of the National Weather Service's Extended Streamflow Prediction Program (ESP) and statistical downscaling from atmospheric models. The WARSMP DSS is currently operational in the Gunnison River Basin, Colorado; Yakima River Basin, Washington; Rio Grande Basin in Colorado and New Mexico; and Truckee River Basin in California and Nevada.

  19. Real-time automated failure analysis for on-orbit operations

    NASA Technical Reports Server (NTRS)

    Kirby, Sarah; Lauritsen, Janet; Pack, Ginger; Ha, Anhhoang; Jowers, Steven; Mcnenny, Robert; Truong, The; Dell, James

    1993-01-01

    A system which is to provide real-time failure analysis support to controllers at the NASA Johnson Space Center Control Center Complex (CCC) for both Space Station and Space Shuttle on-orbit operations is described. The system employs monitored systems' models of failure behavior and model evaluation algorithms which are domain-independent. These failure models are viewed as a stepping stone to more robust algorithms operating over models of intended function. The described system is designed to meet two sets of requirements. It must provide a useful failure analysis capability enhancement to the mission controller. It must satisfy CCC operational environment constraints such as cost, computer resource requirements, verification, and validation. The underlying technology and how it may be used to support operations is also discussed.

  20. A Proposed Systems Model for Socializing the Graduate Writer

    ERIC Educational Resources Information Center

    Jones, David R.

    2018-01-01

    Although researchers chorus the need to support graduate students toward higher levels of writing proficiency, their findings lack a holistic model for doing so. A model emerges upon scrutiny of the factors that have been implicated in supporting writing proficiency. In the proposed model, a socialization theory fits as a proximal process into the…

  1. Multiscale Methods for Accurate, Efficient, and Scale-Aware Models of the Earth System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldhaber, Steve; Holland, Marika

    The major goal of this project was to contribute improvements to the infrastructure of an Earth System Model in order to support research in the Multiscale Methods for Accurate, Efficient, and Scale-Aware models of the Earth System project. In support of this, the NCAR team accomplished two main tasks: improving input/output performance of the model and improving atmospheric model simulation quality. Improvement of the performance and scalability of data input and diagnostic output within the model required a new infrastructure which can efficiently handle the unstructured grids common in multiscale simulations. This allows for a more computationally efficient model, enablingmore » more years of Earth System simulation. The quality of the model simulations was improved by reducing grid-point noise in the spectral element version of the Community Atmosphere Model (CAM-SE). This was achieved by running the physics of the model using grid-cell data on a finite-volume grid.« less

  2. LaPlace Transform1 Adaptive Control Law in Support of Large Flight Envelope Modeling Work

    NASA Technical Reports Server (NTRS)

    Gregory, Irene M.; Xargay, Enric; Cao, Chengyu; Hovakimyan, Naira

    2011-01-01

    This paper presents results of a flight test of the L1 adaptive control architecture designed to directly compensate for significant uncertain cross-coupling in nonlinear systems. The flight test was conducted on the subscale turbine powered Generic Transport Model that is an integral part of the Airborne Subscale Transport Aircraft Research system at the NASA Langley Research Center. The results presented are in support of nonlinear aerodynamic modeling and instrumentation calibration.

  3. Analysis of methods. [information systems evolution environment

    NASA Technical Reports Server (NTRS)

    Mayer, Richard J. (Editor); Ackley, Keith A.; Wells, M. Sue; Mayer, Paula S. D.; Blinn, Thomas M.; Decker, Louis P.; Toland, Joel A.; Crump, J. Wesley; Menzel, Christopher P.; Bodenmiller, Charles A.

    1991-01-01

    Information is one of an organization's most important assets. For this reason the development and maintenance of an integrated information system environment is one of the most important functions within a large organization. The Integrated Information Systems Evolution Environment (IISEE) project has as one of its primary goals a computerized solution to the difficulties involved in the development of integrated information systems. To develop such an environment a thorough understanding of the enterprise's information needs and requirements is of paramount importance. This document is the current release of the research performed by the Integrated Development Support Environment (IDSE) Research Team in support of the IISEE project. Research indicates that an integral part of any information system environment would be multiple modeling methods to support the management of the organization's information. Automated tool support for these methods is necessary to facilitate their use in an integrated environment. An integrated environment makes it necessary to maintain an integrated database which contains the different kinds of models developed under the various methodologies. In addition, to speed the process of development of models, a procedure or technique is needed to allow automatic translation from one methodology's representation to another while maintaining the integrity of both. The purpose for the analysis of the modeling methods included in this document is to examine these methods with the goal being to include them in an integrated development support environment. To accomplish this and to develop a method for allowing intra-methodology and inter-methodology model element reuse, a thorough understanding of multiple modeling methodologies is necessary. Currently the IDSE Research Team is investigating the family of Integrated Computer Aided Manufacturing (ICAM) DEFinition (IDEF) languages IDEF(0), IDEF(1), and IDEF(1x), as well as ENALIM, Entity Relationship, Data Flow Diagrams, and Structure Charts, for inclusion in an integrated development support environment.

  4. Development of a model-based flood emergency management system in Yujiang River Basin, South China

    NASA Astrophysics Data System (ADS)

    Zeng, Yong; Cai, Yanpeng; Jia, Peng; Mao, Jiansu

    2014-06-01

    Flooding is the most frequent disaster in China. It affects people's lives and properties, causing considerable economic loss. Flood forecast and operation of reservoirs are important in flood emergency management. Although great progress has been achieved in flood forecast and reservoir operation through using computer, network technology, and geographic information system technology in China, the prediction accuracy of models are not satisfactory due to the unavailability of real-time monitoring data. Also, real-time flood control scenario analysis is not effective in many regions and can seldom provide online decision support function. In this research, a decision support system for real-time flood forecasting in Yujiang River Basin, South China (DSS-YRB) is introduced in this paper. This system is based on hydrological and hydraulic mathematical models. The conceptual framework and detailed components of the proposed DSS-YRB is illustrated, which employs real-time rainfall data conversion, model-driven hydrologic forecasting, model calibration, data assimilation methods, and reservoir operational scenario analysis. Multi-tiered architecture offers great flexibility, portability, reusability, and reliability. The applied case study results show the development and application of a decision support system for real-time flood forecasting and operation is beneficial for flood control.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elia, Valerio; Gnoni, Maria Grazia, E-mail: mariagrazia.gnoni@unisalento.it; Tornese, Fabiana

    Highlights: • Pay-As-You-Throw (PAYT) schemes are becoming widespread in several countries. • Economic, organizational and technological issues have to be integrated in an efficient PAYT model design. • Efficiency refers to a PAYT system which support high citizen participation rates as well as economic sustainability. • Different steps and constraints have to be evaluated from collection services to type technologies. • An holistic approach is discussed to support PAYT systems diffusion. - Abstract: Pay-As-You-Throw (PAYT) strategies are becoming widely applied in solid waste management systems; the main purpose is to support a more sustainable – from economic, environmental and socialmore » points of view – management of waste flows. Adopting PAYT charging models increases the complexity level of the waste management service as new organizational issues have to be evaluated compared to flat charging models. In addition, innovative technological solutions could also be adopted to increase the overall efficiency of the service. Unit pricing, user identification and waste measurement represent the three most important processes to be defined in a PAYT system. The paper proposes a holistic framework to support an effective design and management process. The framework defines most critical processes and effective organizational and technological solutions for supporting waste managers as well as researchers.« less

  6. Hybrid Modeling for Testing Intelligent Software for Lunar-Mars Closed Life Support

    NASA Technical Reports Server (NTRS)

    Malin, Jane T.; Nicholson, Leonard S. (Technical Monitor)

    1999-01-01

    Intelligent software is being developed for closed life support systems with biological components, for human exploration of the Moon and Mars. The intelligent software functions include planning/scheduling, reactive discrete control and sequencing, management of continuous control, and fault detection, diagnosis, and management of failures and errors. Four types of modeling information have been essential to system modeling and simulation to develop and test the software and to provide operational model-based what-if analyses: discrete component operational and failure modes; continuous dynamic performance within component modes, modeled qualitatively or quantitatively; configuration of flows and power among components in the system; and operations activities and scenarios. CONFIG, a multi-purpose discrete event simulation tool that integrates all four types of models for use throughout the engineering and operations life cycle, has been used to model components and systems involved in the production and transfer of oxygen and carbon dioxide in a plant-growth chamber and between that chamber and a habitation chamber with physicochemical systems for gas processing.

  7. An integrated health sector response to violence against women in Malaysia: lessons for supporting scale up

    PubMed Central

    2012-01-01

    Background Malaysia has been at the forefront of the development and scale up of One-Stop Crisis Centres (OSCC) - an integrated health sector model that provides comprehensive care to women and children experiencing physical, emotional and sexual abuse. This study explored the strengths and challenges faced during the scaling up of the OSCC model to two States in Malaysia in order to identify lessons for supporting successful scale-up. Methods In-depth interviews were conducted with health care providers, policy makers and key informants in 7 hospital facilities. This was complemented by a document analysis of hospital records and protocols. Data were coded and analysed using NVivo 7. Results The implementation of the OSCC model differed between hospital settings, with practise being influenced by organisational systems and constraints. Health providers generally tried to offer care to abused women, but they are not fully supported within their facility due to lack of training, time constraints, limited allocated budget, or lack of referral system to external support services. Non-specialised hospitals in both States struggled with a scarcity of specialised staff and limited referral options for abused women. Despite these challenges, even in more resource-constrained settings staff who took the initiative found it was possible to adapt to provide some level of OSCC services, such as referring women to local NGOs or community support groups, or training nurses to offer basic counselling. Conclusions The national implementation of OSCC provides a potentially important source of support for women experiencing violence. Our findings confirm that pilot interventions for health sector responses to gender based violence can be scaled up only when there is a sound health infrastructure in place – in other words a supportive health system. Furthermore, the successful replication of the OSCC model in other similar settings requires that the model – and the system supporting it – needs to be flexible enough to allow adaptation of the service model to different types of facilities and levels of care, and to available resources and thus better support providers committed to delivering care to abused women. PMID:22828240

  8. An integrated health sector response to violence against women in Malaysia: lessons for supporting scale up.

    PubMed

    Colombini, Manuela; Mayhew, Susannah H; Ali, Siti Hawa; Shuib, Rashidah; Watts, Charlotte

    2012-07-24

    Malaysia has been at the forefront of the development and scale up of One-Stop Crisis Centres (OSCC) - an integrated health sector model that provides comprehensive care to women and children experiencing physical, emotional and sexual abuse. This study explored the strengths and challenges faced during the scaling up of the OSCC model to two States in Malaysia in order to identify lessons for supporting successful scale-up. In-depth interviews were conducted with health care providers, policy makers and key informants in 7 hospital facilities. This was complemented by a document analysis of hospital records and protocols. Data were coded and analysed using NVivo 7. The implementation of the OSCC model differed between hospital settings, with practise being influenced by organisational systems and constraints. Health providers generally tried to offer care to abused women, but they are not fully supported within their facility due to lack of training, time constraints, limited allocated budget, or lack of referral system to external support services. Non-specialised hospitals in both States struggled with a scarcity of specialised staff and limited referral options for abused women. Despite these challenges, even in more resource-constrained settings staff who took the initiative found it was possible to adapt to provide some level of OSCC services, such as referring women to local NGOs or community support groups, or training nurses to offer basic counselling. The national implementation of OSCC provides a potentially important source of support for women experiencing violence. Our findings confirm that pilot interventions for health sector responses to gender based violence can be scaled up only when there is a sound health infrastructure in place - in other words a supportive health system. Furthermore, the successful replication of the OSCC model in other similar settings requires that the model - and the system supporting it - needs to be flexible enough to allow adaptation of the service model to different types of facilities and levels of care, and to available resources and thus better support providers committed to delivering care to abused women.

  9. Online Hydrologic Impact Assessment Decision Support System using Internet and Web-GIS Capability

    NASA Astrophysics Data System (ADS)

    Choi, J.; Engel, B. A.; Harbor, J.

    2002-05-01

    Urban sprawl and the corresponding land use change from lower intensity uses, such as agriculture and forests, to higher intensity uses including high density residential and commercial has various long- and short-term environment impacts on ground water recharge, water pollution, and storm water drainage. A web-based Spatial Decision Support System, SDSS, for Web-based operation of long-term hydrologic impact modeling and analysis was developed. The system combines a hydrologic model, databases, web-GIS capability and HTML user interfaces to create a comprehensive hydrologic analysis system. The hydrologic model estimates daily direct runoff using the NRCS Curve Number technique and annual nonpoint source pollution loading by an event mean concentration approach. This is supported by a rainfall database with over 30 years of daily rainfall for the continental US. A web-GIS interface and a robust Web-based watershed delineation capability were developed to simplify the spatial data preparation task that is often a barrier to hydrologic model operation. The web-GIS supports browsing of map layers including hydrologic soil groups, roads, counties, streams, lakes and railroads, as well as on-line watershed delineation for any geographic point the user selects with a simple mouse click. The watershed delineation results can also be used to generate data for the hydrologic and water quality models available in the DSS. This system is already being used by city and local government planners for hydrologic impact evaluation of land use change from urbanization, and can be found at http://pasture.ecn.purdue.edu/~watergen/hymaps. This system can assist local community, city and watershed planners, and even professionals when they are examining impacts of land use change on water resources. They can estimate the hydrologic impact of possible land use changes using this system with readily available data supported through the Internet. This system provides a cost effective approach to serve potential users who require easy-to-use tools.

  10. Influence of backup bearings and support structure dynamics on the behavior of rotors with active supports

    NASA Technical Reports Server (NTRS)

    Flowers, George T.

    1995-01-01

    This semiannual status report lists specific accomplishments made on the research of the influence of backup bearings and support structure dynamics on the behavior of rotors with active supports. Papers have been presented representing work done on the T-501 engine model; an experimental/simulation study of auxiliary bearing rotordynamics; and a description of a rotordynamical model for a magnetic bearing supported rotor system, including auxiliary bearing effects. A finite element model for a foil bearing has been developed. Additional studies of rotor/bearing/housing dynamics are currently being performed as are studies of the effects of sideloading on auxiliary bearing rotordynamics using the magnetic bearing supported rotor model.

  11. Lateral-Torsional Buckling Instability Caused by Individuals Walking on Wood Composite I-Joists

    NASA Astrophysics Data System (ADS)

    Villasenor Aguilar, Jose Maria

    Recent research has shown that a significant number of the falls from elevation occur when laborers are working on unfinished structures. Workers walking on wood I-joists on roofs and floors are prone to fall hazards. Wood I-joists have been replacing dimension lumber for many floor systems and a substantial number of roof systems in light-frame construction. Wood I-joists are designed to resist axial stresses on the flanges and shear stresses on the web while minimizing material used. However, wood I-joists have poor resistance to applied lateral and torsional loads and are susceptible to lateral-torsional buckling instability. Workers walking on unbraced or partially braced wood I-joists can induce axial and lateral forces as well as twist. Experimental testing demonstrated that workers cause lateral-torsional buckling instability in wood I-joists. However, no research was found related to the lateral-torsional buckling instability induced by individuals walking on the wood I-joists. Furthermore, no research was found considering the effects of the supported end conditions and partial bracing in the lateral-torsional buckling instability of wood I-joists. The goal of this research was to derive mathematical models to predict the dynamic lateral-torsional buckling instability of wood composite I-joists loaded by individuals walking considering different supported end conditions and bracing system configurations. The dynamic lateral-torsional buckling instability was analyzed by linearly combining the static lateral-torsional buckling instability with the lateral bending motion of the wood Ijoists. Mathematical models were derived to calculate the static critical loads for the simply supported end condition and four wood I-joist hanger supported end conditions. Additionally, mathematical models were derived to calculate the dynamic maximum lateral displacements and positions of the individual walking on the wood Ijoists for the same five different supported end conditions. Three different lean-on bracing systems were investigated, non-bracing, one-bracing, and two-bracing systems. Mathematical models were derived to calculate the amount of constraint due to the lean-on bracing system. The derived mathematical models were validated by comparison to data from testing for all supported end conditions and bracing systems. The predicted critical loads using the static buckling theoretical models for the non-bracing system and the static buckling theoretical models combined with the bracing theoretical models for the simply and hanger supported end conditions agreed well with the critical loads obtained from testing for the two wood I-joist sizes investigated. The predicted maximum lateral displacements and individual positions using the bending motion theoretical models for the simply and hanger supported end conditions agreed well with the corresponding maximum lateral displacements and individual positions obtained from testing for both wood I-joist sizes. Results showed that; a) the supported end condition influenced the critical loads, maximum lateral displacements and individual positions, b) the bracing system increased the critical loads and reduced the maximum lateral displacements, c) the critical load increased as the load position displaced away from the wood I-joist mid-span, d) the critical load reduced as the initial lateral displacement of the wood I-joist increased and e) the wood I-joist mid-span was the critical point in the dynamic lateral-torsional buckling instability.

  12. Implementing Lumberjacks and Black Swans Into Model-Based Tools to Support Human-Automation Interaction.

    PubMed

    Sebok, Angelia; Wickens, Christopher D

    2017-03-01

    The objectives were to (a) implement theoretical perspectives regarding human-automation interaction (HAI) into model-based tools to assist designers in developing systems that support effective performance and (b) conduct validations to assess the ability of the models to predict operator performance. Two key concepts in HAI, the lumberjack analogy and black swan events, have been studied extensively. The lumberjack analogy describes the effects of imperfect automation on operator performance. In routine operations, an increased degree of automation supports performance, but in failure conditions, increased automation results in more significantly impaired performance. Black swans are the rare and unexpected failures of imperfect automation. The lumberjack analogy and black swan concepts have been implemented into three model-based tools that predict operator performance in different systems. These tools include a flight management system, a remotely controlled robotic arm, and an environmental process control system. Each modeling effort included a corresponding validation. In one validation, the software tool was used to compare three flight management system designs, which were ranked in the same order as predicted by subject matter experts. The second validation compared model-predicted operator complacency with empirical performance in the same conditions. The third validation compared model-predicted and empirically determined time to detect and repair faults in four automation conditions. The three model-based tools offer useful ways to predict operator performance in complex systems. The three tools offer ways to predict the effects of different automation designs on operator performance.

  13. People: Creativity and Quality with Technology. Proceedings of the CAUSE National Conference (St. Louis, Missouri, December 1-4, 1981).

    ERIC Educational Resources Information Center

    Walsh, R. Brian, Ed.; Thomas, Charles R., Ed.

    Proceedings of the 1981 CAUSE conference include both professional and vendor presentations. Track 1, on decision support systems, examines such areas as system design, the EDUCOM Financial Planning Model System (EFPM), the evolution of support systems, and a Mississippi approach. Track 2, "Managing the Information Systems Resource,"…

  14. Dynamic load-sharing characteristic analysis of face gear power-split gear system based on tooth contact characteristics

    NASA Astrophysics Data System (ADS)

    Dong, Hao; Hu, Yahui

    2018-04-01

    The bend-torsion coupling dynamics load-sharing model of the helicopter face gear split torque transmission system is established by using concentrated quality standard, to analyzing the dynamic load-sharing characteristic. The mathematical models include nonlinear support stiffness, time-varying meshing stiffness, damping, gear backlash. The results showed that the errors collectively influenced the load sharing characteristics, only reduce a certain error, it is never fully reached the perfect loading sharing characteristics. The system load-sharing performance can be improved through floating shaft support. The above-method will provide a theoretical basis and data support for its dynamic performance optimization design.

  15. Automated CPX support system preliminary design phase

    NASA Technical Reports Server (NTRS)

    Bordeaux, T. A.; Carson, E. T.; Hepburn, C. D.; Shinnick, F. M.

    1984-01-01

    The development of the Distributed Command and Control System (DCCS) is discussed. The development of an automated C2 system stimulated the development of an automated command post exercise (CPX) support system to provide a more realistic stimulus to DCCS than could be achieved with the existing manual system. An automated CPX system to support corps-level exercise was designed. The effort comprised four tasks: (1) collecting and documenting user requirements; (2) developing a preliminary system design; (3) defining a program plan; and (4) evaluating the suitability of the TRASANA FOURCE computer model.

  16. Logic Model Checking of Time-Periodic Real-Time Systems

    NASA Technical Reports Server (NTRS)

    Florian, Mihai; Gamble, Ed; Holzmann, Gerard

    2012-01-01

    In this paper we report on the work we performed to extend the logic model checker SPIN with built-in support for the verification of periodic, real-time embedded software systems, as commonly used in aircraft, automobiles, and spacecraft. We first extended the SPIN verification algorithms to model priority based scheduling policies. Next, we added a library to support the modeling of periodic tasks. This library was used in a recent application of the SPIN model checker to verify the engine control software of an automobile, to study the feasibility of software triggers for unintended acceleration events.

  17. Decision-support systems for natural-hazards and land-management issues

    USGS Publications Warehouse

    Dinitz, Laura; Forney, William; Byrd, Kristin

    2012-01-01

    Scientists at the USGS Western Geographic Science Center are developing decision-support systems (DSSs) for natural-hazards and land-management issues. DSSs are interactive computer-based tools that use data and models to help identify and solve problems. These systems can provide crucial support to policymakers, planners, and communities for making better decisions about long-term natural hazards mitigation and land-use planning.

  18. Alternative model for administration and analysis of research-based assessments

    NASA Astrophysics Data System (ADS)

    Wilcox, Bethany R.; Zwickl, Benjamin M.; Hobbs, Robert D.; Aiken, John M.; Welch, Nathan M.; Lewandowski, H. J.

    2016-06-01

    Research-based assessments represent a valuable tool for both instructors and researchers interested in improving undergraduate physics education. However, the historical model for disseminating and propagating conceptual and attitudinal assessments developed by the physics education research (PER) community has not resulted in widespread adoption of these assessments within the broader community of physics instructors. Within this historical model, assessment developers create high quality, validated assessments, make them available for a wide range of instructors to use, and provide minimal (if any) support to assist with administration or analysis of the results. Here, we present and discuss an alternative model for assessment dissemination, which is characterized by centralized data collection and analysis. This model provides a greater degree of support for both researchers and instructors in order to more explicitly support adoption of research-based assessments. Specifically, we describe our experiences developing a centralized, automated system for an attitudinal assessment we previously created to examine students' epistemologies and expectations about experimental physics. This system provides a proof of concept that we use to discuss the advantages associated with centralized administration and data collection for research-based assessments in PER. We also discuss the challenges that we encountered while developing, maintaining, and automating this system. Ultimately, we argue that centralized administration and data collection for standardized assessments is a viable and potentially advantageous alternative to the default model characterized by decentralized administration and analysis. Moreover, with the help of online administration and automation, this model can support the long-term sustainability of centralized assessment systems.

  19. Integrating Reliability Analysis with a Performance Tool

    NASA Technical Reports Server (NTRS)

    Nicol, David M.; Palumbo, Daniel L.; Ulrey, Michael

    1995-01-01

    A large number of commercial simulation tools support performance oriented studies of complex computer and communication systems. Reliability of these systems, when desired, must be obtained by remodeling the system in a different tool. This has obvious drawbacks: (1) substantial extra effort is required to create the reliability model; (2) through modeling error the reliability model may not reflect precisely the same system as the performance model; (3) as the performance model evolves one must continuously reevaluate the validity of assumptions made in that model. In this paper we describe an approach, and a tool that implements this approach, for integrating a reliability analysis engine into a production quality simulation based performance modeling tool, and for modeling within such an integrated tool. The integrated tool allows one to use the same modeling formalisms to conduct both performance and reliability studies. We describe how the reliability analysis engine is integrated into the performance tool, describe the extensions made to the performance tool to support the reliability analysis, and consider the tool's performance.

  20. Integrating hydrologic modeling web services with online data sharing to prepare, store, and execute models in hydrology

    NASA Astrophysics Data System (ADS)

    Gan, T.; Tarboton, D. G.; Dash, P. K.; Gichamo, T.; Horsburgh, J. S.

    2017-12-01

    Web based apps, web services and online data and model sharing technology are becoming increasingly available to support research. This promises benefits in terms of collaboration, platform independence, transparency and reproducibility of modeling workflows and results. However, challenges still exist in real application of these capabilities and the programming skills researchers need to use them. In this research we combined hydrologic modeling web services with an online data and model sharing system to develop functionality to support reproducible hydrologic modeling work. We used HydroDS, a system that provides web services for input data preparation and execution of a snowmelt model, and HydroShare, a hydrologic information system that supports the sharing of hydrologic data, model and analysis tools. To make the web services easy to use, we developed a HydroShare app (based on the Tethys platform) to serve as a browser based user interface for HydroDS. In this integration, HydroDS receives web requests from the HydroShare app to process the data and execute the model. HydroShare supports storage and sharing of the results generated by HydroDS web services. The snowmelt modeling example served as a use case to test and evaluate this approach. We show that, after the integration, users can prepare model inputs or execute the model through the web user interface of the HydroShare app without writing program code. The model input/output files and metadata describing the model instance are stored and shared in HydroShare. These files include a Python script that is automatically generated by the HydroShare app to document and reproduce the model input preparation workflow. Once stored in HydroShare, inputs and results can be shared with other users, or published so that other users can directly discover, repeat or modify the modeling work. This approach provides a collaborative environment that integrates hydrologic web services with a data and model sharing system to enable model development and execution. The entire system comprised of the HydroShare app, HydroShare and HydroDS web services is open source and contributes to capability for web based modeling research.

  1. Examining the Relationships Between Education, Social Networks and Democratic Support With ABM

    NASA Technical Reports Server (NTRS)

    Drucker, Nick; Campbell, Kenyth

    2011-01-01

    This paper introduces an agent-based model that explores the relationships between education, social networks, and support for democratic ideals. This study examines two factors thai affect democratic support, education, and social networks. Current theory concerning these two variables suggests that positive relationships exist between education and democratic support and between social networks and the spread of ideas. The model contains multiple variables of democratic support, two of which are evaluated through experimentation. The model allows individual entities within the system to make "decisions" about their democratic support independent of one another. The agent based approach also allows entities to utilize their social networks to spread ideas. Current theory supports experimentation results. In addion , these results show the model is capable of reproducing real world outcomes. This paper addresses the model creation process and the experimentation procedure, as well as future research avenues and potential shortcomings of the model

  2. Investigation of Models and Estimation Techniques for GPS Attitude Determination

    NASA Technical Reports Server (NTRS)

    Garrick, J.

    1996-01-01

    Much work has been done in the Flight Dynamics Analysis Branch (FDAB) in developing algorithms to met the new and growing field of attitude determination using the Global Positioning SYstem (GPS) constellation of satellites. Flight Dynamics has the responsibility to investigate any new technology and incorporate the innovations in the attitude ground support systems developed to support future missions. The work presented here is an investigative analysis that will produce the needed adaptation to allow the Flight Dynamics Support System (FDSS) to incorporate GPS phase measurements and produce observation measurements compatible with the FDSS. A simulator was developed to produce the necessary measurement data to test the models developed for the different estimation techniques used by FDAB. This paper gives an overview of the current modeling capabilities of the simulator models and algorithms for the adaptation of GPS measurement data and results from each of the estimation techniques. Future analysis efforts to evaluate the simulator and models against inflight GPS measurement data are also outlined.

  3. Bridge deterioration models to support Indiana's bridge management system.

    DOT National Transportation Integrated Search

    2016-02-01

    An effective bridge management system that is equipped with reliable deterioration models enables agency engineers to carry out : monitoring and long-term programming of bridge repair actions. At the project level, deterioration models help the agenc...

  4. Effective Team Support: From Modeling to Software Agents

    NASA Technical Reports Server (NTRS)

    Remington, Roger W. (Technical Monitor); John, Bonnie; Sycara, Katia

    2003-01-01

    The purpose of this research contract was to perform multidisciplinary research between CMU psychologists, computer scientists and engineers and NASA researchers to design a next generation collaborative system to support a team of human experts and intelligent agents. To achieve robust performance enhancement of such a system, we had proposed to perform task and cognitive modeling to thoroughly understand the impact technology makes on the organization and on key individual personnel. Guided by cognitively-inspired requirements, we would then develop software agents that support the human team in decision making, information filtering, information distribution and integration to enhance team situational awareness. During the period covered by this final report, we made substantial progress in modeling infrastructure and task infrastructure. Work is continuing under a different contract to complete empirical data collection, cognitive modeling, and the building of software agents to support the teams task.

  5. Plug-and -Play Model Architecture and Development Environment for Powertrain/Propulsion System - Final CRADA Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rousseau, Aymeric

    2013-02-01

    Several tools already exist to develop detailed plant model, including GT-Power, AMESim, CarSim, and SimScape. The objective of Autonomie is not to provide a language to develop detailed models; rather, Autonomie supports the assembly and use of models from design to simulation to analysis with complete plug-and-play capabilities. Autonomie provides a plug-and-play architecture to support this ideal use of modeling and simulation for math-based automotive control system design. Models in the standard format create building blocks, which are assembled at runtime into a simulation model of a vehicle, system, subsystem, or component to simulate. All parts of the graphical usermore » interface (GUI) are designed to be flexible to support architectures, systems, components, and processes not yet envisioned. This allows the software to be molded to individual uses, so it can grow as requirements and technical knowledge expands. This flexibility also allows for implementation of legacy code, including models, controller code, processes, drive cycles, and post-processing equations. A library of useful and tested models and processes is included as part of the software package to support a full range of simulation and analysis tasks, immediately. Autonomie also includes a configuration and database management front end to facilitate the storage, versioning, and maintenance of all required files, such as the models themselves, the model’s supporting files, test data, and reports. During the duration of the CRADA, Argonne has worked closely with GM to implement and demonstrate each one of their requirements. A use case was developed by GM for every requirement and demonstrated by Argonne. Each of the new features were verified by GM experts through a series of Gate. Once all the requirements were validated they were presented to the directors as part of GM Gate process.« less

  6. Analysis, Modeling, and Simulation (AMS) Testbed Development and Evaluation to Support Dynamic Mobility Applications (DMA) and Active Transportation and Demand Management (ATDM) Programs : Evaluation Report for the San Diego Testbed : Draft Report. [supporting datasets - San Diego

    DOT National Transportation Integrated Search

    2016-06-26

    The datasets in this zip file are in support of Intelligent Transportation Systems Joint Program Office (ITS JPO) report FHWA-JPO-16-385, "Analysis, Modeling, and Simulation (AMS) Testbed Development and Evaluation to Support Dynamic Mobility Applica...

  7. Visualization of Surface Flow on a Prolate Spheroid Model Suspended by Magnetic Suspension and Balance System

    NASA Astrophysics Data System (ADS)

    Ambo, Takumi; Nakamura, Yuki; Ochiai, Taku; Nonomura, Taku; Asai, Keisuke

    2017-11-01

    In this study, the surface flow on a 6:1 prolate spheroid model was visualized by oil flow method in the magnetic suspension and balance system (MSBS). The MSBS is a support-free system for wind-tunnel test in that a model is levitated by magnetic force. In this experiment, the 0.3-m MSBS was installed in the low-speed wind tunnel. The Reynolds number was 0.5 million and the angle of attack was set 0 and 5 degrees. In addition to free-levitation tests, a thin rod simulating disturbance of a support system was placed on the model surface and the influence of support interference was evaluated. The obtained results indicate that complicated separation patterns are present even at zero angle of attack. At α = 5°, separation pattern becomes more complicated than that at α = 0° and the streamlines form a highly three-dimensional structure. A characteristic pattern of open separation is observed and a focal point is formed at the end of the separation line. In evaluation of the support interference, the separation is delayed in the downstream of the rod, suggesting that the change of separation pattern is caused by the transition of laminar boundary layer behind the rod. These results indicate that one must take particular care to the support interference in studying three-dimensional separation on a prolate spheroid.

  8. Analysis of an algae-based CELSS. I - Model development

    NASA Technical Reports Server (NTRS)

    Holtzapple, Mark T.; Little, Frank E.; Makela, Merry E.; Patterson, C. O.

    1989-01-01

    A steady state chemical model and computer program have been developed for a life support system and applied to trade-off studies. The model is based on human demand for food and oxygen determined from crew metabolic needs. The model includes modules for water recycle, waste treatment, CO2 removal and treatment, and food production. The computer program calculates rates of use and material balance for food, O2, the recycle of human waste and trash, H2O, N2, and food production/supply. A simple noniterative solution for the model has been developed using the steady state rate equations for the chemical reactions. The model and program have been used in system sizing and subsystem trade-off studies of a partially closed life support system.

  9. Analysis of an algae-based CELSS. Part 1: model development

    NASA Technical Reports Server (NTRS)

    Holtzapple, M. T.; Little, F. E.; Makela, M. E.; Patterson, C. O.

    1989-01-01

    A steady state chemical model and computer program have been developed for a life support system and applied to trade-off studies. The model is based on human demand for food and oxygen determined from crew metabolic needs. The model includes modules for water recycle, waste treatment, CO2 removal and treatment, and food production. The computer program calculates rates of use and material balance for food. O2, the recycle of human waste and trash, H2O, N2, and food production supply. A simple non-iterative solution for the model has been developed using the steady state rate equations for the chemical reactions. The model and program have been used in system sizing and subsystem trade-off studies of a partially closed life support system.

  10. Identifying the decision to be supported: a review of papers from environmental modelling and software

    USGS Publications Warehouse

    Sojda, Richard S.; Chen, Serena H.; El Sawah, Sondoss; Guillaume, Joseph H.A.; Jakeman, A.J.; Lautenbach, Sven; McIntosh, Brian S.; Rizzoli, A.E.; Seppelt, Ralf; Struss, Peter; Voinov, Alexey; Volk, Martin

    2012-01-01

    Two of the basic tenets of decision support system efforts are to help identify and structure the decisions to be supported, and to then provide analysis in how those decisions might be best made. One example from wetland management would be that wildlife biologists must decide when to draw down water levels to optimise aquatic invertebrates as food for breeding ducks. Once such a decision is identified, a system or tool to help them make that decision in the face of current and projected climate conditions could be developed. We examined a random sample of 100 papers published from 2001-2011 in Environmental Modelling and Software that used the phrase “decision support system” or “decision support tool”, and which are characteristic of different sectors. In our review, 41% of the systems and tools related to the water resources sector, 34% were related to agriculture, and 22% to the conservation of fish, wildlife, and protected area management. Only 60% of the papers were deemed to be reporting on DSS. This was based on the papers reviewed not having directly identified a specific decision to be supported. We also report on the techniques that were used to identify the decisions, such as formal survey, focus group, expert opinion, or sole judgment of the author(s). The primary underlying modelling system, e.g., expert system, agent based model, Bayesian belief network, geographical information system (GIS), and the like was categorised next. Finally, since decision support typically should target some aspect of unstructured decisions, we subjectively determined to what degree this was the case. In only 23% of the papers reviewed, did the system appear to tackle unstructured decisions. This knowledge should be useful in helping workers in the field develop more effective systems and tools, especially by being exposed to the approaches in different, but related, disciplines. We propose that a standard blueprint for reporting on DSS be developed for consideration by journal editors to aid them in filtering papers that use the term, “decision support”.

  11. Development of an integrated medical supply information system

    NASA Astrophysics Data System (ADS)

    Xu, Eric; Wermus, Marek; Blythe Bauman, Deborah

    2011-08-01

    The integrated medical supply inventory control system introduced in this study is a hybrid system that is shaped by the nature of medical supply, usage and storage capacity limitations of health care facilities. The system links demand, service provided at the clinic, health care service provider's information, inventory storage data and decision support tools into an integrated information system. ABC analysis method, economic order quantity model, two-bin method and safety stock concept are applied as decision support models to tackle inventory management issues at health care facilities. In the decision support module, each medical item and storage location has been scrutinised to determine the best-fit inventory control policy. The pilot case study demonstrates that the integrated medical supply information system holds several advantages for inventory managers, since it entails benefits of deploying enterprise information systems to manage medical supply and better patient services.

  12. Mass balances for a biological life support system simulation model

    NASA Technical Reports Server (NTRS)

    Volk, Tyler; Rummel, John D.

    1987-01-01

    Design decisions to aid the development of future space based biological life support systems (BLSS) can be made with simulation models. The biochemistry stoichiometry was developed for: (1) protein, carbohydrate, fat, fiber, and lignin production in the edible and inedible parts of plants; (2) food consumption and production of organic solids in urine, feces, and wash water by the humans; and (3) operation of the waste processor. Flux values for all components are derived for a steady state system with wheat as the sole food source. The large scale dynamics of a materially closed (BLSS) computer model is described in a companion paper. An extension of this methodology can explore multifood systems and more complex biochemical dynamics while maintaining whole system closure as a focus.

  13. Quantitative Systems Pharmacology: A Case for Disease Models.

    PubMed

    Musante, C J; Ramanujan, S; Schmidt, B J; Ghobrial, O G; Lu, J; Heatherington, A C

    2017-01-01

    Quantitative systems pharmacology (QSP) has emerged as an innovative approach in model-informed drug discovery and development, supporting program decisions from exploratory research through late-stage clinical trials. In this commentary, we discuss the unique value of disease-scale "platform" QSP models that are amenable to reuse and repurposing to support diverse clinical decisions in ways distinct from other pharmacometrics strategies. © 2016 The Authors Clinical Pharmacology & Therapeutics published by Wiley Periodicals, Inc. on behalf of The American Society for Clinical Pharmacology and Therapeutics.

  14. Force Measurement Improvements to the National Transonic Facility Sidewall Model Support System

    NASA Technical Reports Server (NTRS)

    Goodliff, Scott L.; Balakrishna, Sundareswara; Butler, David; Cagle, C. Mark; Chan, David; Jones, Gregory S.; Milholen, William E., II

    2016-01-01

    The National Transonic Facility is a transonic pressurized cryogenic facility. The development of the high Reynolds number semi-span capability has advanced over the years to include transonic active flow control and powered testing using the sidewall model support system. While this system can be used in total temperatures down to -250Â F for conventional unpowered configurations, it is limited to temperatures above -60Â F when used with powered models that require the use of the high-pressure air delivery system. Thermal instabilities and non-repeatable mechanical arrangements revealed several data quality shortfalls by the force and moment measurement system. Recent modifications to the balance cavity recirculation system have improved the temperature stability of the balance and metric model-to-balance hardware. Changes to the mechanical assembly of the high-pressure air delivery system, particularly hardware that interfaces directly with the model and balance, have improved the repeatability of the force and moment measurement system. Drag comparisons with the high-pressure air system removed will also be presented in this paper.

  15. SYSTEM INSTALLATION AND OPERATION MANUAL FOR THE EPA THIRD-GENERATION AIR QUALITY MODELING SYSTEM (MODELS-3) VERSION 3.0

    EPA Science Inventory

    Models-3 is a flexible software system designed to simplify the development and use of environmental assessment and other decision support tools. It is designed for applications ranging from regulatory and policy analysis to understanding the complex interactions of atmospheri...

  16. Quantitative Systems Pharmacology: A Case for Disease Models

    PubMed Central

    Ramanujan, S; Schmidt, BJ; Ghobrial, OG; Lu, J; Heatherington, AC

    2016-01-01

    Quantitative systems pharmacology (QSP) has emerged as an innovative approach in model‐informed drug discovery and development, supporting program decisions from exploratory research through late‐stage clinical trials. In this commentary, we discuss the unique value of disease‐scale “platform” QSP models that are amenable to reuse and repurposing to support diverse clinical decisions in ways distinct from other pharmacometrics strategies. PMID:27709613

  17. Teaching Mathematics with Intelligent Support in Natural Language. Tertiary Education Students Working with Parametrized Modelling Activities

    ERIC Educational Resources Information Center

    Rojano, Teresa; García-Campos, Montserrat

    2017-01-01

    This article reports the outcomes of a study that seeks to investigate the role of feedback, by way of an intelligent support system in natural language, in parametrized modelling activities carried out by a group of tertiary education students. With such a system, it is possible to simultaneously display on a computer screen a dialogue window and…

  18. Advanced cathode materials for polymer electrolyte fuel cells based on pt/ metal oxides: from model electrodes to catalyst systems.

    PubMed

    Fabbri, Emiliana; Pătru, Alexandra; Rabis, Annett; Kötz, Rüdiger; Schmidt, Thomas J

    2014-01-01

    The development of stable catalyst systems for application at the cathode side of polymer electrolyte fuel cells (PEFCs) requires the substitution of the state-of-the-art carbon supports with materials showing high corrosion resistance in a strongly oxidizing environment. Metal oxides in their highest oxidation state can represent viable support materials for the next generation PEFC cathodes. In the present work a multilevel approach has been adopted to investigate the kinetics and the activity of Pt nanoparticles supported on SnO2-based metal oxides. Particularly, model electrodes made of SnO2 thin films supporting Pt nanoparticles, and porous catalyst systems made of Pt nanoparticles supported on Sb-doped SnO2 high surface area powders have been investigated. The present results indicate that SnO2-based supports do not modify the oxygen reduction reaction mechanism on the Pt nanoparticle surface, but rather lead to catalysts with enhanced specific activity compared to Pt/carbon systems. Different reasons for the enhancement in the specific activity are considered and discussed.

  19. netherland hydrological modeling instrument

    NASA Astrophysics Data System (ADS)

    Hoogewoud, J. C.; de Lange, W. J.; Veldhuizen, A.; Prinsen, G.

    2012-04-01

    Netherlands Hydrological Modeling Instrument A decision support system for water basin management. J.C. Hoogewoud , W.J. de Lange ,A. Veldhuizen , G. Prinsen , The Netherlands Hydrological modeling Instrument (NHI) is the center point of a framework of models, to coherently model the hydrological system and the multitude of functions it supports. Dutch hydrological institutes Deltares, Alterra, Netherlands Environmental Assessment Agency, RWS Waterdienst, STOWA and Vewin are cooperating in enhancing the NHI for adequate decision support. The instrument is used by three different ministries involved in national water policy matters, for instance the WFD, drought management, manure policy and climate change issues. The basis of the modeling instrument is a state-of-the-art on-line coupling of the groundwater system (MODFLOW), the unsaturated zone (metaSWAP) and the surface water system (MOZART-DM). It brings together hydro(geo)logical processes from the column to the basin scale, ranging from 250x250m plots to the river Rhine and includes salt water flow. The NHI is validated with an eight year run (1998-2006) with dry and wet periods. For this run different parts of the hydrology have been compared with measurements. For instance, water demands in dry periods (e.g. for irrigation), discharges at outlets, groundwater levels and evaporation. A validation alone is not enough to get support from stakeholders. Involvement from stakeholders in the modeling process is needed. There fore to gain sufficient support and trust in the instrument on different (policy) levels a couple of actions have been taken: 1. a transparent evaluation of modeling-results has been set up 2. an extensive program is running to cooperate with regional waterboards and suppliers of drinking water in improving the NHI 3. sharing (hydrological) data via newly setup Modeling Database for local and national models 4. Enhancing the NHI with "local" information. The NHI is and has been used for many decision supports and evaluations. The main focus of the instrument is operational drought management and evaluating adaptive measures for different climate scenario's. It has also been used though as a basis to evaluate water quality of WFD-water bodies and measures, nutrient-leaching and describing WFD groundwater bodies. There is a toolkit to translate the hydrological NHI results to values for different water users. For instance with the NHI results agricultural yields can be calculated, effects on ground water dependant ecosystems, subsidence, shipping, drinking water supply. This makes NHI a valuable decision support system in Dutch water management.

  20. Linking customisation of ERP systems to support effort: an empirical study

    NASA Astrophysics Data System (ADS)

    Koch, Stefan; Mitteregger, Kurt

    2016-01-01

    The amount of customisation to an enterprise resource planning (ERP) system has always been a major concern in the context of the implementation. This article focuses on the phase of maintenance and presents an empirical study about the relationship between the amount of customising and the resulting support effort. We establish a structural equation modelling model that explains support effort using customisation effort, organisational characteristics and scope of implementation. The findings using data from an ERP provider show that there is a statistically significant effect: with an increasing amount of customisation, the quantity of telephone calls to support increases, as well as the duration of each call.

  1. Advanced Life Support Research and Technology Development

    NASA Technical Reports Server (NTRS)

    Kliss, Mark

    2001-01-01

    A videograph outlining life support research. The Human Exploration and Development of Space (HEDS) Enterprise's goals are to provide life support self-sufficiency for human beings to carry out research and exploration productively in space, to open the door for planetary exploration, and for benefits on Earth. Topics presented include the role of NASA Ames, funding, and technical monitoring. The focused research areas discussed include air regeneration, carbon dioxide removal, Mars Life Support, water recovery, Vapor Phase Catalytic Ammonia Removal (VPCAR), solid waste treatment, and Supercritical Water Oxidation (SCWC). Focus is placed on the utilization of Systems Integration, Modeling and Analysis (SIMA) and Dynamic Systems Modeling in this research.

  2. Analysis of Advanced Respiratory Support Onboard ISS and CCV

    NASA Technical Reports Server (NTRS)

    Shah, Ronak V.; Kertsman, Eric L.; Alexander, David J.; Duchesne, Ted; Law, Jennifer; Roden, Sean K.

    2014-01-01

    NASA is collaborating with private entities for the development of commercial space vehicles. The Space and Clinical Operations Division was tasked to review the oxygen and respiratory support system and recommend what capabilities, if any, the vehicle should have to support the return of an ill or injured crewmember. The Integrated Medical Model (IMM) was utilized as a data source for the development of these recommendations. The Integrated Medical Model (IMM) was used to simulate a six month, six crew, International Space Station (ISS) mission. Three medical system scenarios were considered based on the availability of (1) oxygen only, (2) oxygen and a ventilator, or (3) neither oxygen nor ventilator. The IMM analysis provided probability estimates of medical events that would require either oxygen or ventilator support. It also provided estimates of crew health, the probability of evacuation, and the probability of loss of crew life secondary to medical events for each of the three medical system scenarios. These IMM outputs were used as objective data to enable evidence-based decisions regarding oxygen and respiratory support system requirements for commercial crew vehicles. The IMM provides data that may be utilized to support informed decisions regarding the development of medical systems for commercial crew vehicles.

  3. Utility of an emulation and simulation computer model for air revitalization system hardware design, development, and test

    NASA Technical Reports Server (NTRS)

    Yanosy, J. L.; Rowell, L. F.

    1985-01-01

    Efforts to make increasingly use of suitable computer programs in the design of hardware have the potential to reduce expenditures. In this context, NASA has evaluated the benefits provided by software tools through an application to the Environmental Control and Life Support (ECLS) system. The present paper is concerned with the benefits obtained by an employment of simulation tools in the case of the Air Revitalization System (ARS) of a Space Station life support system. Attention is given to the ARS functions and components, a computer program overview, a SAND (solid amine water desorbed) bed model description, a model validation, and details regarding the simulation benefits.

  4. Study of a tracking and data acquisition system for the 1990's. Volume 3: TDAS Communication Mission Model

    NASA Technical Reports Server (NTRS)

    Mccreary, T.

    1983-01-01

    A parametric description of the communication channels required between the user spacecraft to be supported and the user ground data systems is developed. Scenarios of mission models, which reflect a range of free flyers vs space platform usage as well as levels of NASA activity and potential support for military missions, and potential channel requirements which identify: (1) bounds on TDAS forward and return link data communication demand, and (2) the additional demand for providing navigation/tracking support are covered.

  5. Providing Real-time Sea Ice Modeling Support to the U.S. Coast Guard

    NASA Astrophysics Data System (ADS)

    Allard, Richard; Dykes, James; Hebert, David; Posey, Pamela; Rogers, Erick; Wallcraft, Alan; Phelps, Michael; Smedstad, Ole Martin; Wang, Shouping; Geiszler, Dan

    2016-04-01

    The Naval Research Laboratory (NRL) supported the U.S. Coast Guard Research Development Center (RDC) through a demonstration project during the summer and autumn of 2015. Specifically, a modeling system composed of a mesoscale atmospheric model, regional sea ice model, and regional wave model were loosely coupled to provide real-time 72-hr forecasts of environmental conditions for the Beaufort/Chukchi Seas. The system components included a 2-km regional Community Ice CodE (CICE) sea ice model, 15-km Coupled Ocean Atmosphere Mesoscale Prediction System (COAMPS) atmospheric model, and a 5-km regional WAVEWATCH III wave model. The wave model utilized modeled sea ice concentration fields to incorporate the effects of sea ice on waves. The other modeling components assimilated atmosphere, ocean, and ice observations available from satellite and in situ sources. The modeling system generated daily 72-hr forecasts of synoptic weather (including visibility), ice drift, ice thickness, ice concentration and ice strength for missions within the economic exclusion zone off the coast of Alaska and a transit to the North Pole in support of the National Science Foundation GEOTRACES cruise. Model forecasts graphics were shared on a common web page with selected graphical products made available via ftp for bandwidth limited users. Model ice thickness and ice drift show very good agreement compared with Cold Regions Research and Engineering Laboratory (CRREL) Ice Mass Balance buoys. This demonstration served as a precursor to a fully coupled atmosphere-ocean-wave-ice modeling system under development. National Ice Center (NIC) analysts used these model data products (CICE and COAMPS) along with other existing model and satellite data to produce the predicted 48-hr position of the ice edge. The NIC served as a liaison with the RDC and NRL to provide feedback on the model predictions. This evaluation provides a baseline analysis of the current models for future comparison studies with the fully coupled modeling system.

  6. Design and Implementation of an Intelligent Cost Estimation Model for Decision Support System Software

    DTIC Science & Technology

    1990-09-01

    following two chapters. 28 V. COCOMO MODEL A. OVERVIEW The COCOMO model which stands for COnstructive COst MOdel was developed by Barry Boehm and is...estimation model which uses an expert system to automate the Intermediate COnstructive Cost Estimation MOdel (COCOMO), developed by Barry W. Boehm and...cost estimation model which uses an expert system to automate the Intermediate COnstructive Cost Estimation MOdel (COCOMO), developed by Barry W

  7. Community And Stakeholder Engagement With A University-Based Storm Research Team And Program During Events: Progressive Awareness, Cooperation And Mutual Support.

    NASA Astrophysics Data System (ADS)

    Gayes, P. T.; Bao, S.; Yan, T.; Pietrafesa, L. J.; Hallstrom, J.; Stirling, D.; Mullikin, T.; McClam, M.; Byrd, M.; Aucoin, K.; Marosites, B.

    2017-12-01

    HUGO: The HUrricane Genesis and Outlook program is a research initiative spanning new approaches to Atlantic tropical season outlooking to a storm event-related interactively coupled model system. In addition to supporting faculty and student academic research it has progressively been engaged by diverse regional interests in the public and private sector. The seasonal outlook incorporates 22 regional-to-global climate drivers developed from the historical storm database and has shown good skill related to historical storm seasons within the development of the model as well as the last several years in an outlook capacity. The event scale model is a based upon a fully interactively coupled model system incorporating ocean, atmosphere, wave and surge/flood models. The recent cluster of storms impacting the Southeast US provided an opportunity to test the model system and helped develop strong collaborative interests across diverse groups seeking to facilitate local capacity and access to additional storm-related information, observations and expertise. The SC State Guard has actively engaged the HUGO team in carrying out their charge in emergency responders planning and activities during several recent storms and flooding events. They were instrumental in developing support to expand observational systems aiding model validation and development as well as develop access pathways for deployment of new observational technology developed through NSF sponsored projects (Intelligent River and Hurricane-RAPID) with ISENSE at Florida Atlantic University to advance observational capability and density especially during or immediately following events. At the same time an increasing number of county-level emergency and environmental managers and private sector interests have similarly been working collaborately towards expanding observational systems contributing to the goals of the growing storm-oriented cooperative and as well as broader national MesoUS goals. Collectively, the interaction and partnering have aided and advanced diverse interests, enabled direct and in-kind support towards mutual goals and enabled considerable leverage of resources focused on science and supporting applications.

  8. THE EPA MULTIMEDIA INTEGRATED MODELING SYSTEM SOFTWARE SUITE

    EPA Science Inventory

    The U.S. EPA is developing a Multimedia Integrated Modeling System (MIMS) framework that will provide a software infrastructure or environment to support constructing, composing, executing, and evaluating complex modeling studies. The framework will include (1) common software ...

  9. A Model for the Departmental Quality Management Infrastructure Within an Academic Health System.

    PubMed

    Mathews, Simon C; Demski, Renee; Hooper, Jody E; Biddison, Lee Daugherty; Berry, Stephen A; Petty, Brent G; Chen, Allen R; Hill, Peter M; Miller, Marlene R; Witter, Frank R; Allen, Lisa; Wick, Elizabeth C; Stierer, Tracey S; Paine, Lori; Puttgen, Hans A; Tamargo, Rafael J; Pronovost, Peter J

    2017-05-01

    As quality improvement and patient safety come to play a larger role in health care, academic medical centers and health systems are poised to take a leadership role in addressing these issues. Academic medical centers can leverage their large integrated footprint and have the ability to innovate in this field. However, a robust quality management infrastructure is needed to support these efforts. In this context, quality and safety are often described at the executive level and at the unit level. Yet, the role of individual departments, which are often the dominant functional unit within a hospital, in realizing health system quality and safety goals has not been addressed. Developing a departmental quality management infrastructure is challenging because departments are diverse in composition, size, resources, and needs.In this article, the authors describe the model of departmental quality management infrastructure that has been implemented at the Johns Hopkins Hospital. This model leverages the fractal approach, linking departments horizontally to support peer and organizational learning and connecting departments vertically to support accountability to the hospital, health system, and board of trustees. This model also provides both structure and flexibility to meet individual departmental needs, recognizing that independence and interdependence are needed for large academic medical centers. The authors describe the structure, function, and support system for this model as well as the practical and essential steps for its implementation. They also provide examples of its early success.

  10. Bringing Chatbots into education: Towards Natural Language Negotiation of Open Learner Models

    NASA Astrophysics Data System (ADS)

    Kerlyl, Alice; Hall, Phil; Bull, Susan

    There is an extensive body of work on Intelligent Tutoring Systems: computer environments for education, teaching and training that adapt to the needs of the individual learner. Work on personalisation and adaptivity has included research into allowing the student user to enhance the system's adaptivity by improving the accuracy of the underlying learner model. Open Learner Modelling, where the system's model of the user's knowledge is revealed to the user, has been proposed to support student reflection on their learning. Increased accuracy of the learner model can be obtained by the student and system jointly negotiating the learner model. We present the initial investigations into a system to allow people to negotiate the model of their understanding of a topic in natural language. This paper discusses the development and capabilities of both conversational agents (or chatbots) and Intelligent Tutoring Systems, in particular Open Learner Modelling. We describe a Wizard-of-Oz experiment to investigate the feasibility of using a chatbot to support negotiation, and conclude that a fusion of the two fields can lead to developing negotiation techniques for chatbots and the enhancement of the Open Learner Model. This technology, if successful, could have widespread application in schools, universities and other training scenarios.

  11. A LANGUAGE FOR MODULAR SPATIO-TEMPORAL SIMULATION (R824766)

    EPA Science Inventory

    Creating an effective environment for collaborative spatio-temporal model development will require computational systems that provide support for the user in three key areas: (1) Support for modular, hierarchical model construction and archiving/linking of simulation modules; (2)...

  12. Simulating traffic for incident management and ITS investment decisions

    DOT National Transportation Integrated Search

    1998-08-01

    UTPS-type models were designed to adequately support planning activities typical of the 1960s and 1970s. However, these packages were not designed to model intelligent transportation systems (ITS) and support incident management planning. To ov...

  13. A Prototype Symbolic Model of Canonical Functional Neuroanatomy of the Motor System

    PubMed Central

    Rubin, Daniel L.; Halle, Michael; Musen, Mark; Kikinis, Ron

    2008-01-01

    Recent advances in bioinformatics have opened entire new avenues for organizing, integrating and retrieving neuroscientific data, in a digital, machine-processable format, which can be at the same time understood by humans, using ontological, symbolic data representations. Declarative information stored in ontological format can be perused and maintained by domain experts, interpreted by machines, and serve as basis for a multitude of decision-support, computerized simulation, data mining, and teaching applications. We have developed a prototype symbolic model of canonical neuroanatomy of the motor system. Our symbolic model is intended to support symbolic lookup, logical inference and mathematical modeling by integrating descriptive, qualitative and quantitative functional neuroanatomical knowledge. Furthermore, we show how our approach can be extended to modeling impaired brain connectivity in disease states, such as common movement disorders. In developing our ontology, we adopted a disciplined modeling approach, relying on a set of declared principles, a high-level schema, Aristotelian definitions, and a frame-based authoring system. These features, along with the use of the Unified Medical Language System (UMLS) vocabulary, enable the alignment of our functional ontology with an existing comprehensive ontology of human anatomy, and thus allow for combining the structural and functional views of neuroanatomy for clinical decision support and neuroanatomy teaching applications. Although the scope of our current prototype ontology is limited to a particular functional system in the brain, it may be possible to adapt this approach for modeling other brain functional systems as well. PMID:18164666

  14. Biological Life Support Systems

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Session MP2 includes short reports on: (1) Crew Regenerative Life Support in Long Duration Space Missions; (2) Bioconversion Systems for Food and Water on Long Term Space Missions; (3) Novel Laboratory Approaches to Multi-purpose Aquatic Biogenerative Closed-Loop Food Production Systems; and (4) Artificial Neural Network Derived Plant Growth Models.

  15. Multi-Tiered Systems of Support Preservice Residency: A Pilot Undergraduate Teacher Preparation Model

    ERIC Educational Resources Information Center

    Ross, Scott Warren; Lignugaris-Kraft, Ben

    2015-01-01

    This case study examined the implementation of a novel nontraditional teacher preparation program, "Multi-Tiered Systems of Support Preservice Residency Project" (MTSS-PR). The two-year program placed general and special education composite undergraduate majors full time in high-need schools implementing evidence-based systems of…

  16. A Framework to Manage Information Models

    NASA Astrophysics Data System (ADS)

    Hughes, J. S.; King, T.; Crichton, D.; Walker, R.; Roberts, A.; Thieman, J.

    2008-05-01

    The Information Model is the foundation on which an Information System is built. It defines the entities to be processed, their attributes, and the relationships that add meaning. The development and subsequent management of the Information Model is the single most significant factor for the development of a successful information system. A framework of tools has been developed that supports the management of an information model with the rigor typically afforded to software development. This framework provides for evolutionary and collaborative development independent of system implementation choices. Once captured, the modeling information can be exported to common languages for the generation of documentation, application databases, and software code that supports both traditional and semantic web applications. This framework is being successfully used for several science information modeling projects including those for the Planetary Data System (PDS), the International Planetary Data Alliance (IPDA), the National Cancer Institute's Early Detection Research Network (EDRN), and several Consultative Committee for Space Data Systems (CCSDS) projects. The objective of the Space Physics Archive Search and Exchange (SPASE) program is to promote collaboration and coordination of archiving activity for the Space Plasma Physics community and ensure the compatibility of the architectures used for a global distributed system and the individual data centers. Over the past several years, the SPASE data model working group has made great progress in developing the SPASE Data Model and supporting artifacts including a data dictionary, XML Schema, and two ontologies. The authors have captured the SPASE Information Model in this framework. This allows the generation of documentation that presents the SPASE Information Model in object-oriented notation including UML class diagrams and class hierarchies. The modeling information can also be exported to semantic web languages such as OWL and RDF and written to XML Metadata Interchange (XMI) files for import into UML tools.

  17. Bioinformatics for transporter pharmacogenomics and systems biology: data integration and modeling with UML.

    PubMed

    Yan, Qing

    2010-01-01

    Bioinformatics is the rational study at an abstract level that can influence the way we understand biomedical facts and the way we apply the biomedical knowledge. Bioinformatics is facing challenges in helping with finding the relationships between genetic structures and functions, analyzing genotype-phenotype associations, and understanding gene-environment interactions at the systems level. One of the most important issues in bioinformatics is data integration. The data integration methods introduced here can be used to organize and integrate both public and in-house data. With the volume of data and the high complexity, computational decision support is essential for integrative transporter studies in pharmacogenomics, nutrigenomics, epigenetics, and systems biology. For the development of such a decision support system, object-oriented (OO) models can be constructed using the Unified Modeling Language (UML). A methodology is developed to build biomedical models at different system levels and construct corresponding UML diagrams, including use case diagrams, class diagrams, and sequence diagrams. By OO modeling using UML, the problems of transporter pharmacogenomics and systems biology can be approached from different angles with a more complete view, which may greatly enhance the efforts in effective drug discovery and development. Bioinformatics resources of membrane transporters and general bioinformatics databases and tools that are frequently used in transporter studies are also collected here. An informatics decision support system based on the models presented here is available at http://www.pharmtao.com/transporter . The methodology developed here can also be used for other biomedical fields.

  18. Nuclear thermal propulsion engine system design analysis code development

    NASA Astrophysics Data System (ADS)

    Pelaccio, Dennis G.; Scheil, Christine M.; Petrosky, Lyman J.; Ivanenok, Joseph F.

    1992-01-01

    A Nuclear Thermal Propulsion (NTP) Engine System Design Analyis Code has recently been developed to characterize key NTP engine system design features. Such a versatile, standalone NTP system performance and engine design code is required to support ongoing and future engine system and vehicle design efforts associated with proposed Space Exploration Initiative (SEI) missions of interest. Key areas of interest in the engine system modeling effort were the reactor, shielding, and inclusion of an engine multi-redundant propellant pump feed system design option. A solid-core nuclear thermal reactor and internal shielding code model was developed to estimate the reactor's thermal-hydraulic and physical parameters based on a prescribed thermal output which was integrated into a state-of-the-art engine system design model. The reactor code module has the capability to model graphite, composite, or carbide fuels. Key output from the model consists of reactor parameters such as thermal power, pressure drop, thermal profile, and heat generation in cooled structures (reflector, shield, and core supports), as well as the engine system parameters such as weight, dimensions, pressures, temperatures, mass flows, and performance. The model's overall analysis methodology and its key assumptions and capabilities are summarized in this paper.

  19. Two-Degree-of-Freedom Mount System for Flutter Models

    NASA Technical Reports Server (NTRS)

    Farmer, M. G.

    1983-01-01

    Flexible rods replace conventional bearing supports to minimize structural damping. Aerodynamic damping not masked by effects of mount system, making more accurate studies possible of how aerodynamic damping varies as flow over model changed. New system called PAPA.

  20. Building a Decision Support System for Inpatient Admission Prediction With the Manchester Triage System and Administrative Check-in Variables.

    PubMed

    Zlotnik, Alexander; Alfaro, Miguel Cuchí; Pérez, María Carmen Pérez; Gallardo-Antolín, Ascensión; Martínez, Juan Manuel Montero

    2016-05-01

    The usage of decision support tools in emergency departments, based on predictive models, capable of estimating the probability of admission for patients in the emergency department may give nursing staff the possibility of allocating resources in advance. We present a methodology for developing and building one such system for a large specialized care hospital using a logistic regression and an artificial neural network model using nine routinely collected variables available right at the end of the triage process.A database of 255.668 triaged nonobstetric emergency department presentations from the Ramon y Cajal University Hospital of Madrid, from January 2011 to December 2012, was used to develop and test the models, with 66% of the data used for derivation and 34% for validation, with an ordered nonrandom partition. On the validation dataset areas under the receiver operating characteristic curve were 0.8568 (95% confidence interval, 0.8508-0.8583) for the logistic regression model and 0.8575 (95% confidence interval, 0.8540-0. 8610) for the artificial neural network model. χ Values for Hosmer-Lemeshow fixed "deciles of risk" were 65.32 for the logistic regression model and 17.28 for the artificial neural network model. A nomogram was generated upon the logistic regression model and an automated software decision support system with a Web interface was built based on the artificial neural network model.

  1. Goal-Directed Behavior and Instrumental Devaluation: A Neural System-Level Computational Model

    PubMed Central

    Mannella, Francesco; Mirolli, Marco; Baldassarre, Gianluca

    2016-01-01

    Devaluation is the key experimental paradigm used to demonstrate the presence of instrumental behaviors guided by goals in mammals. We propose a neural system-level computational model to address the question of which brain mechanisms allow the current value of rewards to control instrumental actions. The model pivots on and shows the computational soundness of the hypothesis for which the internal representation of instrumental manipulanda (e.g., levers) activate the representation of rewards (or “action-outcomes”, e.g., foods) while attributing to them a value which depends on the current internal state of the animal (e.g., satiation for some but not all foods). The model also proposes an initial hypothesis of the integrated system of key brain components supporting this process and allowing the recalled outcomes to bias action selection: (a) the sub-system formed by the basolateral amygdala and insular cortex acquiring the manipulanda-outcomes associations and attributing the current value to the outcomes; (b) three basal ganglia-cortical loops selecting respectively goals, associative sensory representations, and actions; (c) the cortico-cortical and striato-nigro-striatal neural pathways supporting the selection, and selection learning, of actions based on habits and goals. The model reproduces and explains the results of several devaluation experiments carried out with control rats and rats with pre- and post-training lesions of the basolateral amygdala, the nucleus accumbens core, the prelimbic cortex, and the dorso-medial striatum. The results support the soundness of the hypotheses of the model and show its capacity to integrate, at the system-level, the operations of the key brain structures underlying devaluation. Based on its hypotheses and predictions, the model also represents an operational framework to support the design and analysis of new experiments on the motivational aspects of goal-directed behavior. PMID:27803652

  2. Implementing a Multi-Tiered System of Support (MTSS): Collaboration between School Psychologists and Administrators to Promote Systems-Level Change

    ERIC Educational Resources Information Center

    Eagle, John W.; Dowd-Eagle, Shannon E.; Snyder, Andrew; Holtzman, Elizabeth Gibbons

    2015-01-01

    Current educational reform mandates the implementation of school-based models for early identification and intervention, progress monitoring, and data-based assessment of student progress. This article provides an overview of interdisciplinary collaboration for systems-level consultation within a Multi-Tiered System of Support (MTSS) framework.…

  3. Rejuvenation of Spent Media via Supported Emulsion Liquid Membranes

    NASA Technical Reports Server (NTRS)

    Wiencek, John M.

    2002-01-01

    The overall goal of this project is to maximize the reuseability of spent fermentation media. Supported emulsion liquid membrane separation, a highly efficient extraction technique, is used to remove inhibitory byproducts during fermentation; thus, improving the yield while reducing the need for fresh water. The key objectives of this study are: Develop an emulsion liquid membrane system targeting low molecular weight organic acids which has minimal toxicity on a variety of microbial systems; Conduct mass transfer studies to allow proper modeling and design of a supported emulsion liquid membrane system; Investigate the effect of gravity on emulsion coalescence within the membrane unit; Access the effect of water re-use on fermentation yields in a model microbial system; Develop a perfusion-type fermentor utilizing a supported emulsion liquid membrane system to control inhibitory fermentation byproducts; Work for the coming year will focus on the determination of toxicity of various solvents, selection of the emulsifying agents, as well as characterizing the mass transfer of hollow-fiber contactors.

  4. Characterization of Model-Based Reasoning Strategies for Use in IVHM Architectures

    NASA Technical Reports Server (NTRS)

    Poll, Scott; Iverson, David; Patterson-Hine, Ann

    2003-01-01

    Open architectures are gaining popularity for Integrated Vehicle Health Management (IVHM) applications due to the diversity of subsystem health monitoring strategies in use and the need to integrate a variety of techniques at the system health management level. The basic concept of an open architecture suggests that whatever monitoring or reasoning strategy a subsystem wishes to deploy, the system architecture will support the needs of that subsystem and will be capable of transmitting subsystem health status across subsystem boundaries and up to the system level for system-wide fault identification and diagnosis. There is a need to understand the capabilities of various reasoning engines and how they, coupled with intelligent monitoring techniques, can support fault detection and system level fault management. Researchers in IVHM at NASA Ames Research Center are supporting the development of an IVHM system for liquefying-fuel hybrid rockets. In the initial stage of this project, a few readily available reasoning engines were studied to assess candidate technologies for application in next generation launch systems. Three tools representing the spectrum of model-based reasoning approaches, from a quantitative simulation based approach to a graph-based fault propagation technique, were applied to model the behavior of the Hybrid Combustion Facility testbed at Ames. This paper summarizes the characterization of the modeling process for each of the techniques.

  5. Preliminary results of Physiological plant growth modelling for human life support in space

    NASA Astrophysics Data System (ADS)

    Sasidharan L, Swathy; Dussap, Claude-Gilles; Hezard, Pauline

    2012-07-01

    Human life support is fundamental and crucial in any kind of space explorations. MELiSSA project of European Space Agency aims at developing a closed, artificial ecological life support system involving human, plants and micro organisms. Consuming carbon dioxide and water from the life support system, plants grow in one of the chambers and convert it into food and oxygen along with potable water. The environmental conditions, nutrient availability and its consumption of plants should be studied and necessarily modeled to predict the amount of food, oxygen and water with respect to the environmental changes and limitations. The reliability of a completely closed system mainly depends on the control laws and strategies used. An efficient control can occur, only if the system to control is itself well known, described and ideally if the responses of the system to environmental changes are predictable. In this aspect, the general structure of plant growth model has been designed together with physiological modelling.The physiological model consists of metabolic models of leaves, stem and roots, of which concern specific metabolisms of the associated plant parts. On the basis of the carbon source transport (eg. sucrose) through stem, the metabolic models (leaf and root) can be interconnected to each other and finally coupled to obtain the entire plant model. For the first step, leaf metabolic model network was built using stoichiometric, mass and energy balanced metabolic equations under steady state approach considering all necessary plant pathways for growth and maintenance of leaves. As the experimental data for lettuce plants grown in closed and controlled environmental chambers were available, the leaf metabolic model has been established for lettuce leaves. The constructed metabolic network is analyzed using known stoichiometric metabolic technique called metabolic flux analysis (MFA). Though, the leaf metabolic model alone is not sufficient to achieve the physiological plant model, in the case of lettuce (since the leaf metabolic model predominates), the developed model was verified with the carbon consumption of plant, as input. The model predicts the biomass production (as output) with respect to the quantum of light absorbed by the plant. The obtained result was found satisfying for the first initiation in the physiological plant modelling.

  6. The conceptual design of a hybrid life support system based on the evaluation and comparison of terrestrial testbeds

    NASA Astrophysics Data System (ADS)

    Czupalla, M.; Horneck, G.; Blome, H. J.

    This report summarizes a trade study of different options of a bioregenerative Life Support System (LSS) and a subsequent conceptual design of a hybrid LSS. The evaluation was based mainly on the terrestrial testbed projects MELISSA (ESA) and BIOS (Russia). In addition, some methods suggested by the Advanced Life Support Project (NASA) were considered. Computer models, including mass flows were established for each of the systems with the goal of closing system loops to the extent possible. In order to cope with the differences in the supported crew size and provided nutrition, all systems were scaled for supporting a crew of six for a 780 day Mars mission (180 days transport to Mars; 600 days surface period) as given in the NASA Design Reference Mission Scenario [Hoffman, S.J., Kaplan, D.L. Human exploration of Mars: the Reference Mission of the NASA Mars Exploratory Study, 1997]. All models were scaled to provide the same daily allowances, as of calories, to the crew. Equivalent System Mass (ESM) analysis was used to compare the investigated system models against each other. Following the comparison of the terrestrial systems, the system specific subsystem options for Food Supply, Solid Waste Processing, Water Management and Atmosphere Revitalization were evaluated in a separate trade study. The best subsystem technologies from the trade study were integrated into an overall design solution based on mass flow relationships. The optimized LSS is mainly a bioregenerative system, complemented by a few physico-chemical elements, with a total ESM of 18,088 kg, which is about 4 times higher than that of a pure physico-chemical LSS, as designed in an earlier study.

  7. The conceptual design of a hybrid life support system based on the evaluation and comparison of terrestrial testbeds.

    PubMed

    Czupalla, M; Horneck, G; Blome, H J

    2005-01-01

    This report summarizes a trade study of different options of a bioregenerative Life Support System (LSS) and a subsequent conceptual design of a hybrid LSS. The evaluation was based mainly on the terrestrial testbed projects MELISSA (ESA) and BIOS (Russia). In addition, some methods suggested by the Advanced Life Support Project (NASA) were considered. Computer models, including mass flows were established for each of the systems with the goal of closing system loops to the extent possible. In order to cope with the differences in the supported crew size and provided nutrition, all systems were scaled for supporting a crew of six for a 780 day Mars mission (180 days transport to Mars; 600 days surface period) as given in the NASA Design Reference Mission Scenario [Hoffman, S.J., Kaplan, D.L. Human exploration of Mars: the Reference Mission of the NASA Mars Exploratory Study, 1997]. All models were scaled to provide the same daily allowances, as of calories, to the crew. Equivalent System Mass (ESM) analysis was used to compare the investigated system models against each other. Following the comparison of the terrestrial systems, the system specific subsystem options for Food Supply, Solid Waste Processing, Water Management and Atmosphere Revitalization were evaluated in a separate trade study. The best subsystem technologies from the trade study were integrated into an overall design solution based on mass flow relationships. The optimized LSS is mainly a bioregenerative system, complemented by a few physico-chemical elements, with a total ESM of 18,088 kg, which is about 4 times higher than that of a pure physico-chemical LSS, as designed in an earlier study. c2005 COSPAR. Published by Elsevier Ltd. All rights reserved.

  8. Memory mechanisms supporting syntactic comprehension.

    PubMed

    Caplan, David; Waters, Gloria

    2013-04-01

    Efforts to characterize the memory system that supports sentence comprehension have historically drawn extensively on short-term memory as a source of mechanisms that might apply to sentences. The focus of these efforts has changed significantly in the past decade. As a result of changes in models of short-term working memory (ST-WM) and developments in models of sentence comprehension, the effort to relate entire components of an ST-WM system, such as those in the model developed by Baddeley (Nature Reviews Neuroscience 4: 829-839, 2003) to sentence comprehension has largely been replaced by an effort to relate more specific mechanisms found in modern models of ST-WM to memory processes that support one aspect of sentence comprehension--the assignment of syntactic structure (parsing) and its use in determining sentence meaning (interpretation) during sentence comprehension. In this article, we present the historical background to recent studies of the memory mechanisms that support parsing and interpretation and review recent research into this relation. We argue that the results of this research do not converge on a set of mechanisms derived from ST-WM that apply to parsing and interpretation. We argue that the memory mechanisms supporting parsing and interpretation have features that characterize another memory system that has been postulated to account for skilled performance-long-term working memory. We propose a model of the relation of different aspects of parsing and interpretation to ST-WM and long-term working memory.

  9. What Works? Toward a New Classification System for Mental Health Supported Accommodation Services: The Simple Taxonomy for Supported Accommodation (STAX-SA)

    PubMed Central

    McPherson, Peter; Krotofil, Joanna

    2018-01-01

    Inconsistent terminology and variation in service models have made synthesis of the supported accommodation literature challenging. To overcome this, we developed a brief, categorical taxonomy that aimed to capture the defining features of different supported accommodation models: the simple taxonomy for supported accommodation (STAX-SA). Data from a previous review of existing classification systems were used to develop the taxonomy structure. After initial testing and amendments, the STAX-SA and an existing taxonomy were applied to 132 supported accommodation service descriptions drawn from two systematic reviews and their performance compared. To assess external validity, the STAX-SA was distributed to a sample of supported accommodation managers in England and they were asked to use it to classify their services. The final version of the STAX-SA comprised of five supported accommodation ‘types’, based on four domains; Staffing location; Level of support; Emphasis on move-on; and Physical setting. The STAX-SA accurately categorized 71.1% (n = 94) of service descriptions, outperforming the comparison tool, and was not affected by publication date or research design. The STAX-SA effectively discriminated between ‘real world’ service models in England and 53.2% (n = 17) of service managers indicated that the taxonomy was ‘Very effective’ or ‘Extremely effective’ in capturing key characteristics of their service. The STAX-SA is an effective tool for classifying supported accommodation models and represents a promising approach to synthesizing the extant effectiveness literature. The authors recommend the development of reporting guidelines for future supported accommodation publications to facilitate comparison between models. PMID:29364171

  10. What Works? Toward a New Classification System for Mental Health Supported Accommodation Services: The Simple Taxonomy for Supported Accommodation (STAX-SA).

    PubMed

    McPherson, Peter; Krotofil, Joanna; Killaspy, Helen

    2018-01-24

    Inconsistent terminology and variation in service models have made synthesis of the supported accommodation literature challenging. To overcome this, we developed a brief, categorical taxonomy that aimed to capture the defining features of different supported accommodation models: the simple taxonomy for supported accommodation (STAX-SA). Data from a previous review of existing classification systems were used to develop the taxonomy structure. After initial testing and amendments, the STAX-SA and an existing taxonomy were applied to 132 supported accommodation service descriptions drawn from two systematic reviews and their performance compared. To assess external validity, the STAX-SA was distributed to a sample of supported accommodation managers in England and they were asked to use it to classify their services. The final version of the STAX-SA comprised of five supported accommodation 'types', based on four domains; Staffing location ; Level of support ; Emphasis on move-on ; and Physical setting . The STAX-SA accurately categorized 71.1% ( n = 94) of service descriptions, outperforming the comparison tool, and was not affected by publication date or research design. The STAX-SA effectively discriminated between 'real world' service models in England and 53.2% ( n = 17) of service managers indicated that the taxonomy was ' Very effective ' or ' Extremely effective ' in capturing key characteristics of their service. The STAX-SA is an effective tool for classifying supported accommodation models and represents a promising approach to synthesizing the extant effectiveness literature. The authors recommend the development of reporting guidelines for future supported accommodation publications to facilitate comparison between models.

  11. Closed-loop Habitation Air Revitalization Model for Regenerative Life Support Systems

    NASA Technical Reports Server (NTRS)

    Hart, Maxwell M.

    1991-01-01

    The primary function of any life support system is to keep the crew alive by providing breathable air, potable water, edible food, and for disposal of waste. In a well-balanced or regenerative life support system, the various components are each using what is available and producing what is needed by other components so that there will always be enough chemicals in the form in which they are needed. Humans are not just users, but also one of the participating parts of the system. If a system could continuously recycle the original chemicals, this would make it virtually a Closed-loop Habitation (CH). Some difficulties in trying to create a miniature version of a CH are briefly discussed. In a miniature CH, a minimal structure must be provided and the difference must be made up by artificial parts such as physicochemical systems that perform the conversions that the Earth can achieve naturally. To study the interactions of these parts, a computer model was designed that simulates a miniature CH with emphasis on the air revitalization part. It is called the Closed-loop Habitation Air Revitalization Model (CHARM).

  12. Dynamic Modeling of Solar Dynamic Components and Systems

    NASA Technical Reports Server (NTRS)

    Hochstein, John I.; Korakianitis, T.

    1992-01-01

    The purpose of this grant was to support NASA in modeling efforts to predict the transient dynamic and thermodynamic response of the space station solar dynamic power generation system. In order to meet the initial schedule requirement of providing results in time to support installation of the system as part of the initial phase of space station, early efforts were executed with alacrity and often in parallel. Initially, methods to predict the transient response of a Rankine as well as a Brayton cycle were developed. Review of preliminary design concepts led NASA to select a regenerative gas-turbine cycle using a helium-xenon mixture as the working fluid and, from that point forward, the modeling effort focused exclusively on that system. Although initial project planning called for a three year period of performance, revised NASA schedules moved system installation to later and later phases of station deployment. Eventually, NASA selected to halt development of the solar dynamic power generation system for space station and to reduce support for this project to two-thirds of the original level.

  13. Overview of EPA tools for supporting local-, state- and regional-level decision makers addressing energy and environmental issues: NYC MARKAL Energy Systems Model and Municipal Solid Waste Decision Support Tool

    EPA Science Inventory

    A workshop will be conducted to demonstrate and focus on two decision support tools developed at EPA/ORD: 1. Community-scale MARKAL model: an energy-water technology evaluation tool and 2. Municipal Solid Waste Decision Support Tool (MSW DST). The Workshop will be part of Southea...

  14. A decision support system for real-time hydropower scheduling in a competitive power market environment

    NASA Astrophysics Data System (ADS)

    Shawwash, Ziad Khaled Elias

    2000-10-01

    The electricity supply market is rapidly changing from a monopolistic to a competitive environment. Being able to operate their system of reservoirs and generating facilities to get maximum benefits out of existing assets and resources is important to the British Columbia Hydro Authority (B.C. Hydro). A decision support system has been developed to help B.C. Hydro operate their system in an optimal way. The system is operational and is one of the tools that are currently used by the B.C. Hydro system operations engineers to determine optimal schedules that meet the hourly domestic load and also maximize the value B.C. Hydro obtains from spot transactions in the Western U.S. and Alberta electricity markets. This dissertation describes the development and implementation of the decision support system in production mode. The decision support system consists of six components: the input data preparation routines, the graphical user interface (GUI), the communication protocols, the hydraulic simulation model, the optimization model, and the results display software. A major part of this work involved the development and implementation of a practical and detailed large-scale optimization model that determines the optimal tradeoff between the long-term value of water and the returns from spot trading transactions in real-time operations. The postmortem-testing phase showed that the gains in value from using the model accounted for 0.25% to 1.0% of the revenues obtained. The financial returns from using the decision support system greatly outweigh the costs of building it. Other benefits are the savings in the time needed to prepare the generation and trading schedules. The system operations engineers now can use the time saved to focus on other important aspects of their job. The operators are currently experimenting with the system in production mode, and are gradually gaining confidence that the advice it provides is accurate, reliable and sensible. The main lesson learned from developing and implementing the system was that there is no alternative to working very closely with the intended end-users of the system, and with the people who have deep knowledge, experience and understanding of how the system is and should be operated.

  15. Vibration signature analysis of multistage gear transmission

    NASA Technical Reports Server (NTRS)

    Choy, F. K.; Tu, Y. K.; Savage, M.; Townsend, D. P.

    1989-01-01

    An analysis is presented for multistage multimesh gear transmission systems. The analysis predicts the overall system dynamics and the transmissibility to the gear box or the enclosed structure. The modal synthesis approach of the analysis treats the uncoupled lateral/torsional model characteristics of each stage or component independently. The vibration signature analysis evaluates the global dynamics coupling in the system. The method synthesizes the interaction of each modal component or stage with the nonlinear gear mesh dynamics and the modal support geometry characteristics. The analysis simulates transient and steady state vibration events to determine the resulting torque variations, speeds, changes, rotor imbalances, and support gear box motion excitations. A vibration signature analysis examines the overall dynamic characteristics of the system, and the individual model component responses. The gear box vibration analysis also examines the spectral characteristics of the support system.

  16. Metering Best Practices Applied in the National Renewable Energy Laboratory's Research Support Facility: A Primer to the 2011 Measured and Modeled Energy Consumption Datasets

    DOE Data Explorer

    Sheppy, Michael; Beach, A.; Pless, Shanti

    2016-08-09

    Modern buildings are complex energy systems that must be controlled for energy efficiency. The Research Support Facility (RSF) at the National Renewable Energy Laboratory (NREL) has hundreds of controllers -- computers that communicate with the building's various control systems -- to control the building based on tens of thousands of variables and sensor points. These control strategies were designed for the RSF's systems to efficiently support research activities. Many events that affect energy use cannot be reliably predicted, but certain decisions (such as control strategies) must be made ahead of time. NREL researchers modeled the RSF systems to predict how they might perform. They then monitor these systems to understand how they are actually performing and reacting to the dynamic conditions of weather, occupancy, and maintenance.

  17. Application of System Operational Effectiveness Methodology to Space Launch Vehicle Development and Operations

    NASA Technical Reports Server (NTRS)

    Watson, Michael D.; Kelley, Gary W.

    2012-01-01

    The Department of Defense (DoD) defined System Operational Effectiveness (SOE) model provides an exceptional framework for an affordable approach to the development and operation of space launch vehicles and their supporting infrastructure. The SOE model provides a focal point from which to direct and measure technical effectiveness and process efficiencies of space launch vehicles. The application of the SOE model to a space launch vehicle's development and operation effort leads to very specific approaches and measures that require consideration during the design phase. This paper provides a mapping of the SOE model to the development of space launch vehicles for human exploration by addressing the SOE model key points of measurement including System Performance, System Availability, Technical Effectiveness, Process Efficiency, System Effectiveness, Life Cycle Cost, and Affordable Operational Effectiveness. In addition, the application of the SOE model to the launch vehicle development process is defined providing the unique aspects of space launch vehicle production and operations in lieu of the traditional broader SOE context that examines large quantities of fielded systems. The tailoring and application of the SOE model to space launch vehicles provides some key insights into the operational design drivers, capability phasing, and operational support systems.

  18. ITS impacts assessment for Seattle MMDI evaluation : modeling methodology and results

    DOT National Transportation Integrated Search

    1999-09-01

    At the request of the Joint Program Office (JPO) for Intelligent Transportation Systems (ITS) of the Federal Highway Administration (FHWA), Mitretek Systems has conducted a modeling : analysis of ITS impacts in support of the Metropolitan Model Deplo...

  19. An Integrated Decision Support System for Water Quality Management of Songhua River Basin

    NASA Astrophysics Data System (ADS)

    Zhang, Haiping; Yin, Qiuxiao; Chen, Ling

    2010-11-01

    In the Songhua River Basin of China, many water resource and water environment conflicts interact. A Decision Support System (DSS) for the water quality management has been established for the Basin. The System is featured by the incorporation of a numerical water quality model system into a conventional water quality management system which usually consists of geographic information system (GIS), WebGIS technology, database system and network technology. The model system is built based on DHI MIKE software comprising of a basin rainfall-runoff module, a basin pollution load evaluation module, a river hydrodynamic module and a river water quality module. The DSS provides a friendly graphical user interface that enables the rapid and transparent calculation of various water quality management scenarios, and also enables the convenient access and interpretation of the modeling results to assist the decision-making.

  20. Interagency Collaborative Team Model for Capacity Building to Scale-Up Evidence-Based Practice

    PubMed Central

    Hurlburt, Michael; Aarons, Gregory A; Fettes, Danielle; Willging, Cathleen; Gunderson, Lara; Chaffin, Mark J

    2015-01-01

    Background System-wide scale up of evidence-based practice (EBP) is a complex process. Yet, few strategic approaches exist to support EBP implementation and sustainment across a service system. Building on the Exploration, Preparation, Implementation, and Sustainment (EPIS) implementation framework, we developed and are testing the Interagency Collaborative Team (ICT) process model to implement an evidence-based child neglect intervention (i.e., SafeCare®) within a large children’s service system. The ICT model emphasizes the role of local agency collaborations in creating structural supports for successful implementation. Methods We describe the ICT model and present preliminary qualitative results from use of the implementation model in one large scale EBP implementation. Qualitative interviews were conducted to assess challenges in building system, organization, and home visitor collaboration and capacity to implement the EBP. Data collection and analysis centered on EBP implementation issues, as well as the experiences of home visitors under the ICT model. Results Six notable issues relating to implementation process emerged from participant interviews, including: (a) initial commitment and collaboration among stakeholders, (b) leadership, (c) communication, (d) practice fit with local context, (e) ongoing negotiation and problem solving, and (f) early successes. These issues highlight strengths and areas for development in the ICT model. Conclusions Use of the ICT model led to sustained and widespread use of SafeCare in one large county. Although some aspects of the implementation model may benefit from enhancement, qualitative findings suggest that the ICT process generates strong structural supports for implementation and creates conditions in which tensions between EBP structure and local contextual variations can be resolved in ways that support the expansion and maintenance of an EBP while preserving potential for public health benefit. PMID:27512239

  1. Interagency Collaborative Team Model for Capacity Building to Scale-Up Evidence-Based Practice.

    PubMed

    Hurlburt, Michael; Aarons, Gregory A; Fettes, Danielle; Willging, Cathleen; Gunderson, Lara; Chaffin, Mark J

    2014-04-01

    System-wide scale up of evidence-based practice (EBP) is a complex process. Yet, few strategic approaches exist to support EBP implementation and sustainment across a service system. Building on the Exploration, Preparation, Implementation, and Sustainment (EPIS) implementation framework, we developed and are testing the Interagency Collaborative Team (ICT) process model to implement an evidence-based child neglect intervention (i.e., SafeCare®) within a large children's service system. The ICT model emphasizes the role of local agency collaborations in creating structural supports for successful implementation. We describe the ICT model and present preliminary qualitative results from use of the implementation model in one large scale EBP implementation. Qualitative interviews were conducted to assess challenges in building system, organization, and home visitor collaboration and capacity to implement the EBP. Data collection and analysis centered on EBP implementation issues, as well as the experiences of home visitors under the ICT model. Six notable issues relating to implementation process emerged from participant interviews, including: (a) initial commitment and collaboration among stakeholders, (b) leadership, (c) communication, (d) practice fit with local context, (e) ongoing negotiation and problem solving, and (f) early successes. These issues highlight strengths and areas for development in the ICT model. Use of the ICT model led to sustained and widespread use of SafeCare in one large county. Although some aspects of the implementation model may benefit from enhancement, qualitative findings suggest that the ICT process generates strong structural supports for implementation and creates conditions in which tensions between EBP structure and local contextual variations can be resolved in ways that support the expansion and maintenance of an EBP while preserving potential for public health benefit.

  2. Opening up Architectures of Software-Intensive Systems: A Functional Decomposition to Support System Comprehension

    DTIC Science & Technology

    2007-10-01

    Architecture ................................................................................ 14 Figure 2. Eclipse Java Model...16 Figure 3. Eclipse Java Model at the Source Code Level...24 Figure 9. Java Source Code

  3. Supporting Complex Problems: An Examination of Churchman’s Inquirers as a Knowledge Management Foundation

    DTIC Science & Technology

    2006-06-07

    inquirers based on the underlying philosophies of Leibniz, Locke, Kant , Hegel, and Singer. These inquirers share capabilities and can work together in a...encourages and supports socially oriented knowledge development. The Kantian Inquirer Kantian systems are the archetype of multi-model, synthetic systems...Mason and Mitroff, 1973). The Kantian inquirer is designed to incorporate both multiple perspectives and facts to determine models that are

  4. Examining Proportional Representation of Ethnic Groups within the SWPBIS Model

    ERIC Educational Resources Information Center

    Jewell, Kelly

    2012-01-01

    The quantitative study seeks to analyze if School-wide Positive Behavior Intervention and Support (SWPBIS) model reduces the likelihood that minority students will receive more individualized supports due to behavior problems. In theory, the SWPBIS model should reflect a 3-tier system with tier 1 representing approximately 80%, tier 2 representing…

  5. A modular BLSS simulation model

    NASA Technical Reports Server (NTRS)

    Rummel, John D.; Volk, Tyler

    1987-01-01

    A bioregenerative life support system (BLSS) for extraterrestrial use will be faced with coordination problems more acute than those in any ecosystem found on Earth. A related problem in BLSS design is providing an interface between the various life support processors, one that will allow for their coordination while still allowing for system expansion. A modular model is presented of a BLSS that interfaces system processors only with the material storage reservoirs, allowing those reservoirs to act as the principal buffers in the system and thus minimizing difficulties with processor coordination. The modular nature of the model allows independent development of the detailed submodels that exist within the model framework. Using this model, BLSS dynamics were investigated under normal conditions and under various failure modes. Partial and complete failures of various components, such as the waste processors or the plants themselves, drive transient responses in the model system, allowing the examination of the effectiveness of the system reservoirs as buffers. The results from simulations help to determine control strategies and BLSS design requirements. An evolved version could be used as an interactive control aid in a future BLSS.

  6. Progressively consolidating historical visual explorations for new discoveries

    NASA Astrophysics Data System (ADS)

    Zhao, Kaiyu; Ward, Matthew O.; Rundensteiner, Elke A.; Higgins, Huong N.

    2013-12-01

    A significant task within data mining is to identify data models of interest. While facilitating the exploration tasks, most visualization systems do not make use of all the data models that are generated during the exploration. In this paper, we introduce a system that allows the user to gain insights from the data space progressively by forming data models and consolidating the generated models on the fly. Each model can be a a computationally extracted or user-defined subset that contains a certain degree of interest and might lead to some discoveries. When the user generates more and more data models, the degree of interest of some portion of some models will either grow (indicating higher occurrence) or will fluctuate or decrease (corresponding to lower occurrence). Our system maintains a collection of such models and accumulates the interestingness of each model into a consolidated model. In order to consolidate the models, the system summarizes the associations between the models in the collection and identifies support (models reinforce each other), complementary (models complement each other), and overlap of the models. The accumulated interestingness keeps track of historical exploration and helps the user summarize their findings which can lead to new discoveries. This mechanism for integrating results from multiple models can be applied to a wide range of decision support systems. We demonstrate our system in a case study involving the financial status of US companies.

  7. Repulsive force support system feasibility study

    NASA Technical Reports Server (NTRS)

    Boom, R. W.; Abdelsalam, M. K.; Eyssa, Y. M.; Mcintosh, G. E.

    1987-01-01

    A new concept in magnetic levitation and control is introduced for levitation above a plane. A set of five vertical solenoid magnets mounted flush below the plane supports and controls the model in five degrees of freedom. The compact system of levitation coils is contained in a space 2.4 m (96 in) diameter by 1 m (40 in) deep with the top of the levitation system 0.9 m (36 in) below the center line of the suspended model. The levitated model has a permanent magnet core held in position by the five parallel superconductive solenoids symmetrically located in a circle. The control and positioning system continuously corrects for model position in five dimensions using computer current pulses superimposed on the levitation coil base currents. The conceptual designs include: superconductive and Nd-Fe-B permanent magnet model cores and levitation solenoids of either superconductive, cryoresistive, or room temperature windings.

  8. SBML-PET: a Systems Biology Markup Language-based parameter estimation tool.

    PubMed

    Zi, Zhike; Klipp, Edda

    2006-11-01

    The estimation of model parameters from experimental data remains a bottleneck for a major breakthrough in systems biology. We present a Systems Biology Markup Language (SBML) based Parameter Estimation Tool (SBML-PET). The tool is designed to enable parameter estimation for biological models including signaling pathways, gene regulation networks and metabolic pathways. SBML-PET supports import and export of the models in the SBML format. It can estimate the parameters by fitting a variety of experimental data from different experimental conditions. SBML-PET has a unique feature of supporting event definition in the SMBL model. SBML models can also be simulated in SBML-PET. Stochastic Ranking Evolution Strategy (SRES) is incorporated in SBML-PET for parameter estimation jobs. A classic ODE Solver called ODEPACK is used to solve the Ordinary Differential Equation (ODE) system. http://sysbio.molgen.mpg.de/SBML-PET/. The website also contains detailed documentation for SBML-PET.

  9. Planner-Based Control of Advanced Life Support Systems

    NASA Technical Reports Server (NTRS)

    Muscettola, Nicola; Kortenkamp, David; Fry, Chuck; Bell, Scott

    2005-01-01

    The paper describes an approach to the integration of qualitative and quantitative modeling techniques for advanced life support (ALS) systems. Developing reliable control strategies that scale up to fully integrated life support systems requires augmenting quantitative models and control algorithms with the abstractions provided by qualitative, symbolic models and their associated high-level control strategies. This will allow for effective management of the combinatorics due to the integration of a large number of ALS subsystems. By focusing control actions at different levels of detail and reactivity we can use faster: simpler responses at the lowest level and predictive but complex responses at the higher levels of abstraction. In particular, methods from model-based planning and scheduling can provide effective resource management over long time periods. We describe reference implementation of an advanced control system using the IDEA control architecture developed at NASA Ames Research Center. IDEA uses planning/scheduling as the sole reasoning method for predictive and reactive closed loop control. We describe preliminary experiments in planner-based control of ALS carried out on an integrated ALS simulation developed at NASA Johnson Space Center.

  10. HRST architecture modeling and assessments

    NASA Astrophysics Data System (ADS)

    Comstock, Douglas A.

    1997-01-01

    This paper presents work supporting the assessment of advanced concept options for the Highly Reusable Space Transportation (HRST) study. It describes the development of computer models as the basis for creating an integrated capability to evaluate the economic feasibility and sustainability of a variety of system architectures. It summarizes modeling capabilities for use on the HRST study to perform sensitivity analysis of alternative architectures (consisting of different combinations of highly reusable vehicles, launch assist systems, and alternative operations and support concepts) in terms of cost, schedule, performance, and demand. In addition, the identification and preliminary assessment of alternative market segments for HRST applications, such as space manufacturing, space tourism, etc., is described. Finally, the development of an initial prototype model that can begin to be used for modeling alternative HRST concepts at the system level is presented.

  11. Modeling IoT-Based Solutions Using Human-Centric Wireless Sensor Networks

    PubMed Central

    Monares, Álvaro; Ochoa, Sergio F.; Santos, Rodrigo; Orozco, Javier; Meseguer, Roc

    2014-01-01

    The Internet of Things (IoT) has inspired solutions that are already available for addressing problems in various application scenarios, such as healthcare, security, emergency support and tourism. However, there is no clear approach to modeling these systems and envisioning their capabilities at the design time. Therefore, the process of designing these systems is ad hoc and its real impact is evaluated once the solution is already implemented, which is risky and expensive. This paper proposes a modeling approach that uses human-centric wireless sensor networks to specify and evaluate models of IoT-based systems at the time of design, avoiding the need to spend time and effort on early implementations of immature designs. It allows designers to focus on the system design, leaving the implementation decisions for a next phase. The article illustrates the usefulness of this proposal through a running example, showing the design of an IoT-based solution to support the first responses during medium-sized or large urban incidents. The case study used in the proposal evaluation is based on a real train crash. The proposed modeling approach can be used to design IoT-based systems for other application scenarios, e.g., to support security operatives or monitor chronic patients in their homes. PMID:25157549

  12. Modeling IoT-based solutions using human-centric wireless sensor networks.

    PubMed

    Monares, Álvaro; Ochoa, Sergio F; Santos, Rodrigo; Orozco, Javier; Meseguer, Roc

    2014-08-25

    The Internet of Things (IoT) has inspired solutions that are already available for addressing problems in various application scenarios, such as healthcare, security, emergency support and tourism. However, there is no clear approach to modeling these systems and envisioning their capabilities at the design time. Therefore, the process of designing these systems is ad hoc and its real impact is evaluated once the solution is already implemented, which is risky and expensive. This paper proposes a modeling approach that uses human-centric wireless sensor networks to specify and evaluate models of IoT-based systems at the time of design, avoiding the need to spend time and effort on early implementations of immature designs. It allows designers to focus on the system design, leaving the implementation decisions for a next phase. The article illustrates the usefulness of this proposal through a running example, showing the design of an IoT-based solution to support the first responses during medium-sized or large urban incidents. The case study used in the proposal evaluation is based on a real train crash. The proposed modeling approach can be used to design IoT-based systems for other application scenarios, e.g., to support security operatives or monitor chronic patients in their homes.

  13. Solid waste projection model: Model version 1. 0 technical reference manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilkins, M.L.; Crow, V.L.; Buska, D.E.

    1990-11-01

    The Solid Waste Projection Model (SWPM) system is an analytical tool developed by Pacific Northwest Laboratory (PNL) for Westinghouse Hanford Company (WHC). The SWPM system provides a modeling and analysis environment that supports decisions in the process of evaluating various solid waste management alternatives. This document, one of a series describing the SWPM system, contains detailed information regarding the software utilized in developing Version 1.0 of the modeling unit of SWPM. This document is intended for use by experienced software engineers and supports programming, code maintenance, and model enhancement. Those interested in using SWPM should refer to the SWPM Modelmore » User's Guide. This document is available from either the PNL project manager (D. L. Stiles, 509-376-4154) or the WHC program monitor (B. C. Anderson, 509-373-2796). 8 figs.« less

  14. Is There a Canonical Cortical Circuit for the Cholinergic System? Anatomical Differences Across Common Model Systems

    PubMed Central

    Coppola, Jennifer J.; Disney, Anita A.

    2018-01-01

    Acetylcholine (ACh) is believed to act as a neuromodulator in cortical circuits that support cognition, specifically in processes including learning, memory consolidation, vigilance, arousal and attention. The cholinergic modulation of cortical processes is studied in many model systems including rodents, cats and primates. Further, these studies are performed in cortical areas ranging from the primary visual cortex to the prefrontal cortex and using diverse methodologies. The results of these studies have been combined into singular models of function—a practice based on an implicit assumption that the various model systems are equivalent and interchangeable. However, comparative anatomy both within and across species reveals important differences in the structure of the cholinergic system. Here, we will review anatomical data including innervation patterns, receptor expression, synthesis and release compared across species and cortical area with a focus on rodents and primates. We argue that these data suggest no canonical cortical model system exists for the cholinergic system. Further, we will argue that as a result, care must be taken both in combining data from studies across cortical areas and species, and in choosing the best model systems to improve our understanding and support of human health. PMID:29440996

  15. Is There a Canonical Cortical Circuit for the Cholinergic System? Anatomical Differences Across Common Model Systems.

    PubMed

    Coppola, Jennifer J; Disney, Anita A

    2018-01-01

    Acetylcholine (ACh) is believed to act as a neuromodulator in cortical circuits that support cognition, specifically in processes including learning, memory consolidation, vigilance, arousal and attention. The cholinergic modulation of cortical processes is studied in many model systems including rodents, cats and primates. Further, these studies are performed in cortical areas ranging from the primary visual cortex to the prefrontal cortex and using diverse methodologies. The results of these studies have been combined into singular models of function-a practice based on an implicit assumption that the various model systems are equivalent and interchangeable. However, comparative anatomy both within and across species reveals important differences in the structure of the cholinergic system. Here, we will review anatomical data including innervation patterns, receptor expression, synthesis and release compared across species and cortical area with a focus on rodents and primates. We argue that these data suggest no canonical cortical model system exists for the cholinergic system. Further, we will argue that as a result, care must be taken both in combining data from studies across cortical areas and species, and in choosing the best model systems to improve our understanding and support of human health.

  16. A methodology for system-of-systems design in support of the engineering team

    NASA Astrophysics Data System (ADS)

    Ridolfi, G.; Mooij, E.; Cardile, D.; Corpino, S.; Ferrari, G.

    2012-04-01

    Space missions have experienced a trend of increasing complexity in the last decades, resulting in the design of very complex systems formed by many elements and sub-elements working together to meet the requirements. In a classical approach, especially in a company environment, the two steps of design-space exploration and optimization are usually performed by experts inferring on major phenomena, making assumptions and doing some trial-and-error runs on the available mathematical models. This is done especially in the very early design phases where most of the costs are locked-in. With the objective of supporting the engineering team and the decision-makers during the design of complex systems, the authors developed a modelling framework for a particular category of complex, coupled space systems called System-of-Systems. Once modelled, the System-of-Systems is solved using a computationally cheap parametric methodology, named the mixed-hypercube approach, based on the utilization of a particular type of fractional factorial design-of-experiments, and analysis of the results via global sensitivity analysis and response surfaces. As an applicative example, a system-of-systems of a hypothetical human space exploration scenario for the support of a manned lunar base is presented. The results demonstrate that using the mixed-hypercube to sample the design space, an optimal solution is reached with a limited computational effort, providing support to the engineering team and decision makers thanks to sensitivity and robustness information. The analysis of the system-of-systems model that was implemented shows that the logistic support of a human outpost on the Moon for 15 years is still feasible with currently available launcher classes. The results presented in this paper have been obtained in cooperation with Thales Alenia Space—Italy, in the framework of a regional programme called STEPS. STEPS—Sistemi e Tecnologie per l'EsPlorazione Spaziale is a research project co-financed by Piedmont Region and firms and universities of the Piedmont Aerospace District in the ambit of the P.O.R-F.E.S.R. 2007-2013 program.

  17. Information modeling system for blast furnace control

    NASA Astrophysics Data System (ADS)

    Spirin, N. A.; Gileva, L. Y.; Lavrov, V. V.

    2016-09-01

    Modern Iron & Steel Works as a rule are equipped with powerful distributed control systems (DCS) and databases. Implementation of DSC system solves the problem of storage, control, protection, entry, editing and retrieving of information as well as generation of required reporting data. The most advanced and promising approach is to use decision support information technologies based on a complex of mathematical models. The model decision support system for control of blast furnace smelting is designed and operated. The basis of the model system is a complex of mathematical models created using the principle of natural mathematical modeling. This principle provides for construction of mathematical models of two levels. The first level model is a basic state model which makes it possible to assess the vector of system parameters using field data and blast furnace operation results. It is also used to calculate the adjustment (adaptation) coefficients of the predictive block of the system. The second-level model is a predictive model designed to assess the design parameters of the blast furnace process when there are changes in melting conditions relative to its current state. Tasks for which software is developed are described. Characteristics of the main subsystems of the blast furnace process as an object of modeling and control - thermal state of the furnace, blast, gas dynamic and slag conditions of blast furnace smelting - are presented.

  18. Utility of Emulation and Simulation Computer Modeling of Space Station Environmental Control and Life Support Systems

    NASA Technical Reports Server (NTRS)

    Yanosy, James L.

    1988-01-01

    Over the years, computer modeling has been used extensively in many disciplines to solve engineering problems. A set of computer program tools is proposed to assist the engineer in the various phases of the Space Station program from technology selection through flight operations. The development and application of emulation and simulation transient performance modeling tools for life support systems are examined. The results of the development and the demonstration of the utility of three computer models are presented. The first model is a detailed computer model (emulation) of a solid amine water desorbed (SAWD) CO2 removal subsystem combined with much less detailed models (simulations) of a cabin, crew, and heat exchangers. This model was used in parallel with the hardware design and test of this CO2 removal subsystem. The second model is a simulation of an air revitalization system combined with a wastewater processing system to demonstrate the capabilities to study subsystem integration. The third model is that of a Space Station total air revitalization system. The station configuration consists of a habitat module, a lab module, two crews, and four connecting nodes.

  19. The Earth System (ES-DOC) Project

    NASA Astrophysics Data System (ADS)

    Greenslade, Mark; Murphy, Sylvia; Treshansky, Allyn; DeLuca, Cecilia; Guilyardi, Eric; Denvil, Sebastien

    2014-05-01

    ESSI1.3 New Paradigms, Modelling, and International Collaboration Strategies for Earth System Sciences Earth System Documentation (ES-DOC) is an international project supplying tools & services in support of earth system documentation creation, analysis and dissemination. It is nurturing a sustainable standards based documentation eco-system that aims to become an integral part of the next generation of exa-scale dataset archives. ES-DOC leverages open source software and places end-user narratives at the heart of all it does. ES-DOC has initially focused upon nurturing the Earth System Model (ESM) documentation eco-system. Within this context ES-DOC leverages emerging documentation standards and supports the following projects: Coupled Model Inter-comparison Project Phase 5 (CMIP5); Dynamical Core Model Inter-comparison Project (DCMIP); National Climate Predictions and Projections Platforms Quantitative Evaluation of Downscaling Workshop. This presentation will introduce the project to a wider audience and demonstrate the range of tools and services currently available for use. It will also demonstrate how international collaborative efforts are essential to the success of ES-DOC.

  20. Socio-Environmental Resilience and Complex Urban Systems Modeling

    NASA Astrophysics Data System (ADS)

    Deal, Brian; Petri, Aaron; Pan, Haozhi; Goldenberg, Romain; Kalantari, Zahra; Cvetkovic, Vladimir

    2017-04-01

    The increasing pressure of climate change has inspired two normative agendas; socio-technical transitions and socio-ecological resilience, both sharing a complex-systems epistemology (Gillard et al. 2016). Socio-technical solutions include a continuous, massive data gathering exercise now underway in urban places under the guise of developing a 'smart'(er) city. This has led to the creation of data-rich environments where large data sets have become central to monitoring and forming a response to anomalies. Some have argued that these kinds of data sets can help in planning for resilient cities (Norberg and Cumming 2008; Batty 2013). In this paper, we focus on a more nuanced, ecologically based, socio-environmental perspective of resilience planning that is often given less consideration. Here, we broadly discuss (and model) the tightly linked, mutually influenced, social and biophysical subsystems that are critical for understanding urban resilience. We argue for the need to incorporate these sub system linkages into the resilience planning lexicon through the integration of systems models and planning support systems. We make our case by first providing a context for urban resilience from a socio-ecological and planning perspective. We highlight the data needs for this type of resilient planning and compare it to currently collected data streams in various smart city efforts. This helps to define an approach for operationalizing socio-environmental resilience planning using robust systems models and planning support systems. For this, we draw from our experiences in coupling a spatio-temporal land use model (the Landuse Evolution and impact Assessment Model (LEAM)) with water quality and quantity models in Stockholm Sweden. We describe the coupling of these systems models using a robust Planning Support System (PSS) structural framework. We use the coupled model simulations and PSS to analyze the connection between urban land use transformation (social) and water (environmental) systems within the context of planning for a more resilient Stockholm. This work shows that complex urban systems models can help bridge the divide between socio-technological and socio-environmental systems knowledge and achieving resilient urban areas.

  1. DSN model for use in strategic planning

    NASA Technical Reports Server (NTRS)

    Kelly, K. C.; Lin, C. Y.; Mckenzie, M.

    1981-01-01

    A System Dynamics Model of the DSN to support strategic planning for the Network is addressed. Applications for the model are described, as well as the foundations of system dynamics and the methodology used to develop the model. Activities to date and plans for future work are also discussed.

  2. MODELS-3 INSTALLATION PROCEDURES FOR A PC WITH AN NT OPERATING SYSTEM (MODELS-3 VERSION 4.0)

    EPA Science Inventory

    Models-3 is a flexible software system designed to simplify the development and use of air quality models and other environmental decision support tools. It is designed for applications ranging from regulatory and policy analysis to understanding the complex interactions of at...

  3. MODELS-3 INSTALLATION PROCEDURES FOR A PERSONAL COMPUTER WITH A NT OPERATING SYSTEM (MODELS-3 VERSION 4.1)

    EPA Science Inventory

    Models-3 is a flexible system designed to simplify the development and use of air quality models and other environmental decision support tools. It is designed for applications ranging from regulatory and policy analysis to understanding the complex interactions of atmospheric...

  4. Decision support systems for plant disease and insect management in commercial nurseries in the Midwest: A perspective review

    USDA-ARS?s Scientific Manuscript database

    Decision-support systems (DDSs) are techniques that help decision makers utilize models to solve problems under complex and uncertain conditions. Predicting conditions that warrant intervention is a key tenet of the concept of integrated pest management (IPM) with the use of expert systems and pest ...

  5. Software system architecture for corporate user support

    NASA Astrophysics Data System (ADS)

    Sukhopluyeva, V. S.; Kuznetsov, D. Y.

    2017-01-01

    In this article, several existing ready-to-use solutions for the HelpDesk are reviewed. Advantages and disadvantages of these systems are identified. Architecture of software solution for a corporate user support system is presented in a form of the use case, state, and component diagrams described by using a unified modeling language (UML).

  6. Interactive Model-Centric Systems Engineering (IMCSE) Phase 1

    DTIC Science & Technology

    2014-09-30

    and supporting infrastructure ...testing. 4. Supporting MPTs. During Phase 1, the opportunity to develop several MPTs to support IMCSE arose, including supporting infrastructure ...Analysis will be completed and tested with a case application, along with preliminary supporting infrastructure , which will then be used to inform the

  7. Exploration Medical Capability System Engineering Overview

    NASA Technical Reports Server (NTRS)

    Mindock, J.; McGuire, K.

    2018-01-01

    Deep Space Gateway and Transport missions will change the way NASA currently practices medicine. The missions will require more autonomous capability compared to current low Earth orbit operations. For the medical system, lack of consumable resupply, evacuation opportunities, and real-time ground support are key drivers toward greater autonomy. Recognition of the limited mission and vehicle resources available to carry out exploration missions motivates the Exploration Medical Capability (ExMC) Element's approach to enabling the necessary autonomy. The ExMC Systems Engineering team's mission is to "Define, develop, validate, and manage the technical system design needed to implement exploration medical capabilities for Mars and test the design in a progression of proving grounds." The Element's work must integrate with the overall exploration mission and vehicle design efforts to successfully provide exploration medical capabilities. ExMC is using Model-Based System Engineering (MBSE) to accomplish its integrative goals. The MBSE approach to medical system design offers a paradigm shift toward greater integration between vehicle and the medical system, and directly supports the transition of Earth-reliant ISS operations to the Earth-independent operations envisioned for Mars. This talk will discuss how ExMC is using MBSE to define operational needs, decompose requirements and architecture, and identify medical capabilities needed to support human exploration. How MBSE is being used to integrate across disciplines and NASA Centers will also be described. The medical system being discussed in this talk is one system within larger habitat systems. Data generated within the medical system will be inputs to other systems and vice versa. This talk will also describe the next steps in model development that include: modeling the different systems that comprise the larger system and interact with the medical system, understanding how the various systems work together, and developing tools to support trade studies.

  8. Exploration Medical Cap Ability System Engineering Overview

    NASA Technical Reports Server (NTRS)

    McGuire, K.; Mindock, J.

    2018-01-01

    Deep Space Gateway and Transport missions will change the way NASA currently practices medicine. The missions will require more autonomous capability compared to current low Earth orbit operations. For the medical system, lack of consumable resupply, evacuation opportunities, and real-time ground support are key drivers toward greater autonomy. Recognition of the limited mission and vehicle resources available to carry out exploration missions motivates the Exploration Medical Capability (ExMC) Element's approach to enabling the necessary autonomy. The ExMC Systems Engineering team's mission is to "Define, develop, validate, and manage the technical system design needed to implement exploration medical capabilities for Mars and test the design in a progression of proving grounds." The Element's work must integrate with the overall exploration mission and vehicle design efforts to successfully provide exploration medical capabilities. ExMC is using Model-Based System Engineering (MBSE) to accomplish its integrative goals. The MBSE approach to medical system design offers a paradigm shift toward greater integration between vehicle and the medical system, and directly supports the transition of Earth-reliant ISS operations to the Earth-independent operations envisioned for Mars. This talk will discuss how ExMC is using MBSE to define operational needs, decompose requirements and architecture, and identify medical capabilities needed to support human exploration. How MBSE is being used to integrate across disciplines and NASA Centers will also be described. The medical system being discussed in this talk is one system within larger habitat systems. Data generated within the medical system will be inputs to other systems and vice versa. This talk will also describe the next steps in model development that include: modeling the different systems that comprise the larger system and interact with the medical system, understanding how the various systems work together, and developing tools to support trade studies.

  9. Decision support model for assessing archaeological survey needs for bridge replacement projects in Iowa.

    DOT National Transportation Integrated Search

    2006-01-01

    The Bridges Decision Support Model is a geographic information system (GIS) that assembles existing : data on archaeological sites, surveys, and their geologic contexts to assess the risk of bridge replacement : projects encountering 13,000- to 150-y...

  10. EPA MODELING TOOLS FOR CAPTURE ZONE DELINEATION

    EPA Science Inventory

    The EPA Office of Research and Development supports a step-wise modeling approach for design of wellhead protection areas for water supply wells. A web-based WellHEDSS (wellhead decision support system) is under development for determining when simple capture zones (e.g., centri...

  11. Enhancements to the KATE model-based reasoning system

    NASA Technical Reports Server (NTRS)

    Thomas, Stan J.

    1994-01-01

    KATE (Knowledge-based Autonomous Test Engineer) is a model-based software system developed in the Artificial Intelligence Laboratory at the Kennedy Space Center for monitoring, fault detection, and control of launch vehicles and ground support systems. This report describes two software efforts which enhance the functionality and usability of KATE. The first addition, a flow solver, adds to KATE a tool for modeling the flow of liquid in a pipe system. The second addition adds support for editing KATE knowledge base files to the Emacs editor. The body of this report discusses design and implementation issues having to do with these two tools. It will be useful to anyone maintaining or extending either the flow solver or the editor enhancements.

  12. The Role of Water Chemistry in Marine Aquarium Design: A Model System for a General Chemistry Class

    ERIC Educational Resources Information Center

    Keaffaber, Jeffrey J.; Palma, Ramiro; Williams, Kathryn R.

    2008-01-01

    Water chemistry is central to aquarium design, and it provides many potential applications for discussion in undergraduate chemistry and engineering courses. Marine aquaria and their life support systems feature many chemical processes. A life support system consists of the entire recirculation system, as well as the habitat tank and all ancillary…

  13. Model mount system for testing flutter

    NASA Technical Reports Server (NTRS)

    Farmer, M. G. (Inventor)

    1984-01-01

    A wind tunnel model mount system is disclosed for effectively and accurately determining the effects of attack and airstream velocity on a model airfoil or aircraft. The model mount system includes a rigid model attached to a splitter plate which is supported away from the wind tunnel wall several of flexible rods. Conventional instrumentation is employed to effect model rotation through a turntable and to record model flutter data as a function of the angle of attack versus dynamic pressure.

  14. An overview of the NASA electronic components information management system

    NASA Technical Reports Server (NTRS)

    Kramer, G.; Waterbury, S.

    1991-01-01

    The NASA Parts Project Office (NPPO) comprehensive data system to support all NASA Electric, Electronic, and Electromechanical (EEE) parts management and technical data requirements is described. A phase delivery approach is adopted, comprising four principal phases. Phases 1 and 2 support Space Station Freedom (SSF) and use a centralized architecture with all data and processing kept on a mainframe computer. Phases 3 and 4 support all NASA centers and projects and implement a distributed system architecture, in which data and processing are shared among networked database servers. The Phase 1 system, which became operational in February of 1990, implements a core set of functions. Phase 2, scheduled for release in 1991, adds functions to the Phase 1 system. Phase 3, to be prototyped beginning in 1991 and delivered in 1992, introduces a distributed system, separate from the Phase 1 and 2 system, with a refined semantic data model. Phase 4 extends the data model and functionality of the Phase 3 system to provide support for the NASA design community, including integration with Computer Aided Design (CAD) environments. Phase 4 is scheduled for prototyping in 1992 to 93 and delivery in 1994.

  15. A text-based data mining and toxicity prediction modeling system for a clinical decision support in radiation oncology: A preliminary study

    NASA Astrophysics Data System (ADS)

    Kim, Kwang Hyeon; Lee, Suk; Shim, Jang Bo; Chang, Kyung Hwan; Yang, Dae Sik; Yoon, Won Sup; Park, Young Je; Kim, Chul Yong; Cao, Yuan Jie

    2017-08-01

    The aim of this study is an integrated research for text-based data mining and toxicity prediction modeling system for clinical decision support system based on big data in radiation oncology as a preliminary research. The structured and unstructured data were prepared by treatment plans and the unstructured data were extracted by dose-volume data image pattern recognition of prostate cancer for research articles crawling through the internet. We modeled an artificial neural network to build a predictor model system for toxicity prediction of organs at risk. We used a text-based data mining approach to build the artificial neural network model for bladder and rectum complication predictions. The pattern recognition method was used to mine the unstructured toxicity data for dose-volume at the detection accuracy of 97.9%. The confusion matrix and training model of the neural network were achieved with 50 modeled plans (n = 50) for validation. The toxicity level was analyzed and the risk factors for 25% bladder, 50% bladder, 20% rectum, and 50% rectum were calculated by the artificial neural network algorithm. As a result, 32 plans could cause complication but 18 plans were designed as non-complication among 50 modeled plans. We integrated data mining and a toxicity modeling method for toxicity prediction using prostate cancer cases. It is shown that a preprocessing analysis using text-based data mining and prediction modeling can be expanded to personalized patient treatment decision support based on big data.

  16. Model description document for a computer program for the emulation/simulation of a space station environmental control and life support system (ESCM)

    NASA Technical Reports Server (NTRS)

    Yanosy, James L.

    1988-01-01

    Emulation/Simulation Computer Model (ESCM) computes the transient performance of a Space Station air revitalization subsystem with carbon dioxide removal provided by a solid amine water desorbed subsystem called SAWD. This manual describes the mathematical modeling and equations used in the ESCM. For the system as a whole and for each individual component, the fundamental physical and chemical laws which govern their operations are presented. Assumptions are stated, and when necessary, data is presented to support empirically developed relationships.

  17. Predictive Modeling of the CDRA 4BMS

    NASA Technical Reports Server (NTRS)

    Coker, Robert F.; Knox, James C.

    2016-01-01

    As part of NASA's Advanced Exploration Systems (AES) program and the Life Support Systems Project (LSSP), fully predictive models of the Four Bed Molecular Sieve (4BMS) of the Carbon Dioxide Removal Assembly (CDRA) on the International Space Station (ISS) are being developed. This virtual laboratory will be used to help reduce mass, power, and volume requirements for future missions. In this paper we describe current and planned modeling developments in the area of carbon dioxide removal to support future crewed Mars missions as well as the resolution of anomalies observed in the ISS CDRA.

  18. Modeling and simulation of an aquatic habitat for bioregenerative life support research

    NASA Astrophysics Data System (ADS)

    Drayer, Gregorio E.; Howard, Ayanna M.

    2014-01-01

    Long duration human spaceflight poses challenges for spacecraft autonomy and the regeneration of life support consumables, such as oxygen and water. Bioregenerative life support systems (BLSS), which make use of biological processes to transform biological byproducts back into consumables, have the ability to recycle organic byproducts and are the preferred option for food production. A limitation in BLSS research is in the non-availability of small-scale experimental capacities that may help to better understand the challenges in system closure, integration, and control. Ground-based aquatic habitats are an option for small-scale research relevant to bioregenerative life support systems (BLSS), given that they can operate as self-contained systems enclosing a habitat composed of various species in a single volume of water. The purpose of this paper is to present the modeling and simulation of a reconfigurable aquatic habitat for experiments in regenerative life support automation; it supports the use of aquatic habitats as a small-scale approach to experiments relevant to larger-scale regenerative life support systems. It presents ground-based aquatic habitats as an option for small-scale BLSS research focusing on the process of respiration, and elaborates on the description of biological processes by introducing models of ecophysiological phenomena for consumers and producers: higher plants of the species Bacopa monnieri produce O2 for snails of the genus Pomacea; the snails consume O2 and generate CO2, which is used by the plants in combination with radiant energy to generate O2 through the process of photosynthesis. Feedback controllers are designed to regulate the concentration of dissolved oxygen in the water. This paper expands the description of biological processes by introducing models of ecophysiological phenomena of the organisms involved. The model of the plants includes a description of the rate of CO2 assimilation as a function of irradiance. Simulations and validation runs with hardware show how these phenomena may act as disturbances to the control mechanisms that maintain safe concentration levels of dissolved oxygen in the habitat.

  19. Controlling the charge state of supported nanoparticles in catalysis: lessons from model systems.

    PubMed

    Pacchioni, Gianfranco; Freund, Hans-Joachim

    2018-04-26

    Model systems are very important to identify the working principles of real catalysts, and to develop concepts that can be used in the design of new catalytic materials. In this review we report examples of the use of model systems to better understand and control the occurrence of charge transfer at the interface between supported metal nanoparticles and oxide surfaces. In the first part of this article we concentrate on the nature of the support, and on the basic difference in metal/oxide bonding going from a wide-gap non-reducible oxide material to reducible oxide semiconductors. The roles of oxide nanostructuring, bulk and surface defectiveness, and doping with hetero-atoms are also addressed, as they are all aspects that severely affect the metal/oxide interaction. Particular attention is given to the experimental measures of the occurrence of charge transfer at the metal/oxide interface. In this respect, systems based on oxide ultrathin films are particularly important as they allow the use of scanning probe spectroscopies which, often in combination with other measurements and with first principles theoretical simulations, allow full characterization of small supported nanoparticles and their charge state. In a few selected cases, a precise count of the electrons transferred between the oxide and the supported nanoparticle has been possible. Charge transfer can occur through thin, two-dimensional oxide layers also thanks to their structural flexibility. The flow of charge through the oxide film and the formation of charged adsorbates are accompanied in fact by a substantial polaronic relaxation of the film surface which can be rationalized based on electrostatic arguments. In the final part of this review the relationships between model systems and real catalysts are addressed by discussing some examples of how lessons learned from model systems have helped in rationalizing the behavior of real catalysts under working conditions.

  20. Control/structure interaction conceptual design tool

    NASA Technical Reports Server (NTRS)

    Briggs, Hugh C.

    1990-01-01

    The JPL Control/Structure Interaction Program is developing new analytical methods for designing micro-precision spacecraft with controlled structures. One of these, the Conceptual Design Tool, will illustrate innovative new approaches to the integration of multi-disciplinary analysis and design methods. The tool will be used to demonstrate homogeneity of presentation, uniform data representation across analytical methods, and integrated systems modeling. The tool differs from current 'integrated systems' that support design teams most notably in its support for the new CSI multi-disciplinary engineer. The design tool will utilize a three dimensional solid model of the spacecraft under design as the central data organization metaphor. Various analytical methods, such as finite element structural analysis, control system analysis, and mechanical configuration layout, will store and retrieve data from a hierarchical, object oriented data structure that supports assemblies of components with associated data and algorithms. In addition to managing numerical model data, the tool will assist the designer in organizing, stating, and tracking system requirements.

  1. Atmospheric Models for Aerocapture

    NASA Technical Reports Server (NTRS)

    Justus, C. G.; Duval, Aleta; Keller, Vernon W.

    2003-01-01

    There are eight destinations in the Solar System with sufficient atmosphere for aerocapture to be a viable aeroassist option - Venus, Earth, Mars, Jupiter, Saturn and its moon Titan, Uranus, and Neptune. Engineering-level atmospheric models for four of these targets (Earth, Mars, Titan, and Neptune) have been developed for NASA to support systems analysis studies of potential future aerocapture missions. Development of a similar atmospheric model for Venus has recently commenced. An important capability of all of these models is their ability to simulate quasi-random density perturbations for Monte Carlo analyses in developing guidance, navigation and control algorithms, and for thermal systems design. Similarities and differences among these atmospheric models are presented, with emphasis on the recently developed Neptune model and on planned characteristics of the Venus model. Example applications for aerocapture are also presented and illustrated. Recent updates to the Titan atmospheric model, in anticipation of applications for trajectory and atmospheric reconstruct of Huygens Robe entry at Titan, are discussed. Recent updates to the Mars atmospheric model, in support of ongoing Mars aerocapture systems analysis studies, are also presented.

  2. An architecture model for multiple disease management information systems.

    PubMed

    Chen, Lichin; Yu, Hui-Chu; Li, Hao-Chun; Wang, Yi-Van; Chen, Huang-Jen; Wang, I-Ching; Wang, Chiou-Shiang; Peng, Hui-Yu; Hsu, Yu-Ling; Chen, Chi-Huang; Chuang, Lee-Ming; Lee, Hung-Chang; Chung, Yufang; Lai, Feipei

    2013-04-01

    Disease management is a program which attempts to overcome the fragmentation of healthcare system and improve the quality of care. Many studies have proven the effectiveness of disease management. However, the case managers were spending the majority of time in documentation, coordinating the members of the care team. They need a tool to support them with daily practice and optimizing the inefficient workflow. Several discussions have indicated that information technology plays an important role in the era of disease management. Whereas applications have been developed, it is inefficient to develop information system for each disease management program individually. The aim of this research is to support the work of disease management, reform the inefficient workflow, and propose an architecture model that enhance on the reusability and time saving of information system development. The proposed architecture model had been successfully implemented into two disease management information system, and the result was evaluated through reusability analysis, time consumed analysis, pre- and post-implement workflow analysis, and user questionnaire survey. The reusability of the proposed model was high, less than half of the time was consumed, and the workflow had been improved. The overall user aspect is positive. The supportiveness during daily workflow is high. The system empowers the case managers with better information and leads to better decision making.

  3. Seismic slope-performance analysis: from hazard map to decision support system

    USGS Publications Warehouse

    Miles, Scott B.; Keefer, David K.; Ho, Carlton L.

    1999-01-01

    In response to the growing recognition of engineers and decision-makers of the regional effects of earthquake-induced landslides, this paper presents a general approach to conducting seismic landslide zonation, based on the popular Newmark's sliding block analogy for modeling coherent landslides. Four existing models based on the sliding block analogy are compared. The comparison shows that the models forecast notably different levels of slope performance. Considering this discrepancy along with the limitations of static maps as a decision tool, a spatial decision support system (SDSS) for seismic landslide analysis is proposed, which will support investigations over multiple scales for any number of earthquake scenarios and input conditions. Most importantly, the SDSS will allow use of any seismic landslide analysis model and zonation approach. Developments associated with the SDSS will produce an object-oriented model for encapsulating spatial data, an object-oriented specification to allow construction of models using modular objects, and a direct-manipulation, dynamic user-interface that adapts to the particular seismic landslide model configuration.

  4. Development of assessment tools to measure organizational support for employee health.

    PubMed

    Golaszewski, Thomas; Barr, Donald; Pronk, Nico

    2003-01-01

    To develop systems that measure and effect organizational support for employee health. Multiple studies and developmental projects were reviewed that show the process of instrument development, metric quality testing, utilization within intervention studies, and prediction modeling efforts. Demographic patterns indicate high support levels and relationships of subsections to various employee health risks. Successes with the initial version have given rise to 2 additional evaluation tools. The availability of these systems illustrates how ecological models can be practically applied. Such efforts contribute to the paradigm shift in worksite health promotion that focuses on the organization as the target of intervention.

  5. Research report: User's manual for computer program AT81y003 SHABERTH. Steady state and transient thermal analysis of a shaft bearing system including ball, cylindrical and tapered roller bearings

    NASA Technical Reports Server (NTRS)

    Hadden, G. B.; Kleckner, R. J.; Ragen, M. A.; Sheynin, L.

    1981-01-01

    The SHABERTH program is capable of simulating the thermomechanical performance of a load support system consisting of a flexible shaft supported by up to five rolling element bearings. Any combination of ball, cylindrical, and tapered roller bearings can be used to support the shaft. The user can select models in calculating lubricant film thickness and traction forces. The formulation of the cage pocket/rolling element interaction model was revised to improve solution numerical convergence characteristics.

  6. A work-centered cognitively based architecture for decision support: the work-centered infomediary layer (WIL) model

    NASA Astrophysics Data System (ADS)

    Zachary, Wayne; Eggleston, Robert; Donmoyer, Jason; Schremmer, Serge

    2003-09-01

    Decision-making is strongly shaped and influenced by the work context in which decisions are embedded. This suggests that decision support needs to be anchored by a model (implicit or explicit) of the work process, in contrast to traditional approaches that anchor decision support to either context free decision models (e.g., utility theory) or to detailed models of the external (e.g., battlespace) environment. An architecture for cognitively-based, work centered decision support called the Work-centered Informediary Layer (WIL) is presented. WIL separates decision support into three overall processes that build and dynamically maintain an explicit context model, use the context model to identify opportunities for decision support and tailor generic decision-support strategies to the current context and offer them to the system-user/decision-maker. The generic decision support strategies include such things as activity/attention aiding, decision process structuring, work performance support (selective, contextual automation), explanation/ elaboration, infosphere data retrieval, and what if/action-projection and visualization. A WIL-based application is a work-centered decision support layer that provides active support without intent inferencing, and that is cognitively based without requiring classical cognitive task analyses. Example WIL applications are detailed and discussed.

  7. System Dynamics Modeling for Supply Chain Information Sharing

    NASA Astrophysics Data System (ADS)

    Feng, Yang

    In this paper, we try to use the method of system dynamics to model supply chain information sharing. Firstly, we determine the model boundaries, establish system dynamics model of supply chain before information sharing, analyze the model's simulation results under different changed parameters and suggest improvement proposal. Then, we establish system dynamics model of supply chain information sharing and make comparison and analysis on the two model's simulation results, to show the importance of information sharing in supply chain management. We wish that all these simulations would provide scientific supports for enterprise decision-making.

  8. Knowledge engineering as a support for building an actor profile ontology for integrating Home-Care systems.

    PubMed

    Gibert, Karina; Valls, Aida; Riaño, David

    2008-01-01

    One of the tasks towards the definition of a knowledge model for home care is the definition of the different roles of the users involved in the system. The roles determine the actions and services that can or must be performed by each type of user. In this paper the experience of building an ontology to represent the home-care users and their associated information is presented, in a proposal for a standard model of a Home-Care support system to the European Community.

  9. Mass balances for a biological life support system simulation model

    NASA Technical Reports Server (NTRS)

    Volk, Tyler; Rumel, John D.

    1987-01-01

    Design decisions to aid the development of future space-based biological life support systems (BLSS) can be made with simulation models. Here the biochemical stoichiometry is developed for: (1) protein, carbohydrate, fat, fiber, and lignin production in the edible and inedible parts of plants; (2) food consumption and production of organic solids in urine, feces, and wash water by the humans; and (3) operation of the waste processor. Flux values for all components are derived for a steady-state system with wheat as the sole food source.

  10. A decision-supported outpatient practice system.

    PubMed Central

    Barrows, R. C.; Allen, B. A.; Smith, K. C.; Arni, V. V.; Sherman, E.

    1996-01-01

    We describe a Decision-supported Outpatient Practice (DOP) system developed and now in use at the Columbia-Presbyterian Medical Center. DOP is an automated ambulatory medical record system that integrates in-patient and ambulatory care data, and incorporates active and passive decision support mechanisms with a view towards improving the quality of primary care. Active decision support occurs in the form of event-driven reminders created within a remote clinical information system with its central data repository and decision support system (DSS). Novel features of DOP include patient specific health maintenance task lists calculated by the remote DSS. uses of a semantically structured controlled medical vocabulary to support clinical results review and provider data entry, and exploitation of an underlying ambulatory data model that provides for an explicit record of evolution of insight regarding patient management. Benefits, challenges, and plans are discussed. PMID:8947774

  11. Divergence analysis report for the bodies of revolution model support systems

    NASA Technical Reports Server (NTRS)

    Rash, Larry C.

    1983-01-01

    This report documents the sting divergence analyses of nine different model and model support systems that were performed in preparation for a series of wind tunnel tests at the National Transonic Facility at NASA Langley Research Center in Hampton, Virginia. The models were missile shaped bodies of revolution and the model support systems included a force and moment balance and tapered sting sections. The sting divergence results were obtained from a computer program that solved a two-point boundary value problem which used a second order Runge-Kutta integration technique. The computer solution was based on constant section properties between discrete stations along the sting sections, a procedure was developed and included to evaluate the properties for the minimum number of stations along the tapered sections that would produce no more than one half of one percent error in the divergence results. Also included in the report are development of the aerodynamic input data, listings of all input and output computer data, and summary sheets that highlight the input and the critical sting divergence dynamic pressure for each respective configuration.

  12. Integrated Modeling and Simulation Verification, Validation, and Accreditation Strategy for Exploration Systems Mission Directorate

    NASA Technical Reports Server (NTRS)

    Hale, Joseph P.

    2006-01-01

    Models and simulations (M&S) are critical resources in the exploration of space. They support program management, systems engineering, integration, analysis, test, and operations and provide critical information and data supporting key analyses and decisions (technical, cost and schedule). Consequently, there is a clear need to establish a solid understanding of M&S strengths and weaknesses, and the bounds within which they can credibly support decision-making. Their usage requires the implementation of a rigorous approach to verification, validation and accreditation (W&A) and establishment of formal process and practices associated with their application. To ensure decision-making is suitably supported by information (data, models, test beds) from activities (studies, exercises) from M&S applications that are understood and characterized, ESMD is establishing formal, tailored W&A processes and practices. In addition, to ensure the successful application of M&S within ESMD, a formal process for the certification of analysts that use M&S is being implemented. This presentation will highlight NASA's Exploration Systems Mission Directorate (ESMD) management approach for M&S W&A to ensure decision-makers receive timely information on the model's fidelity, credibility, and quality.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hadgu, Teklu; Appel, Gordon John

    Sandia National Laboratories (SNL) continued evaluation of total system performance assessment (TSPA) computing systems for the previously considered Yucca Mountain Project (YMP). This was done to maintain the operational readiness of the computing infrastructure (computer hardware and software) and knowledge capability for total system performance assessment (TSPA) type analysis, as directed by the National Nuclear Security Administration (NNSA), DOE 2010. This work is a continuation of the ongoing readiness evaluation reported in Lee and Hadgu (2014) and Hadgu et al. (2015). The TSPA computing hardware (CL2014) and storage system described in Hadgu et al. (2015) were used for the currentmore » analysis. One floating license of GoldSim with Versions 9.60.300, 10.5 and 11.1.6 was installed on the cluster head node, and its distributed processing capability was mapped on the cluster processors. Other supporting software were tested and installed to support the TSPA-type analysis on the server cluster. The current tasks included verification of the TSPA-LA uncertainty and sensitivity analyses, and preliminary upgrade of the TSPA-LA from Version 9.60.300 to the latest version 11.1. All the TSPA-LA uncertainty and sensitivity analyses modeling cases were successfully tested and verified for the model reproducibility on the upgraded 2014 server cluster (CL2014). The uncertainty and sensitivity analyses used TSPA-LA modeling cases output generated in FY15 based on GoldSim Version 9.60.300 documented in Hadgu et al. (2015). The model upgrade task successfully converted the Nominal Modeling case to GoldSim Version 11.1. Upgrade of the remaining of the modeling cases and distributed processing tasks will continue. The 2014 server cluster and supporting software systems are fully operational to support TSPA-LA type analysis.« less

  14. Integration for Airborne Dust Prediction Systems and Vegetation Phenology to Track Pollen for Asthma Alerts in Public Health Decision Support Systems

    NASA Technical Reports Server (NTRS)

    Luvall, J. C.; Sprigg, W. A.; Nickovic, S.; Huete, A.; Budge, A.; Flowers, L.

    2008-01-01

    The objective of the program is to assess the feasibility of combining a dust transport model with MODIS derived phenology to study pollen transport for integration with a public health decision support system. The use of pollen information has specifically be identified as a critical need by the New Mexico State Health department for inclusion in the Environmental Public Health Tracking (EPHT) program. Material and methods: Pollen can be transported great distances. Local observations of plan phenology may be consistent with the timing and source of pollen collected by pollen sampling instruments. The Dust REgional Atmospheric Model (DREAM) is an integrated modeling system designed to accurately describe the dust cycle in the atmosphere. The dust modules of the entire system incorporate the state of the art parameterization of all the major phases of the atmospheric dust life such as production, diffusion, advection, and removal. These modules also include effects of the particles size distribution on aerosol dispersion. The model was modified to use pollen sources instead of dust. Pollen release was estimated based on satellite-derived phenology of key plan species and vegetation communities. The MODIS surface reflectance product (MOD09) provided information on the start of the plant growing season, growth stage, and pollen release. The resulting deterministic model is useful for predicting and simulating pollen emission and downwind concentration to study details of phenology and meteorology and their dependencies. The proposed linkage in this project provided critical information on the location timing and modeled transport of pollen directly to the EPHT> This information is useful to support the centers for disease control and prevention (CDC)'s National EPHT and the state of New Mexico environmental public health decision support for asthma and allergies alerts.

  15. FY17 Status Report on the Computing Systems for the Yucca Mountain Project TSPA-LA Models.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Appel, Gordon John; Hadgu, Teklu; Appel, Gordon John

    Sandia National Laboratories (SNL) continued evaluation of total system performance assessment (TSPA) computing systems for the previously considered Yucca Mountain Project (YMP). This was done to maintain the operational readiness of the computing infrastructure (computer hardware and software) and knowledge capability for total system performance assessment (TSPA) type analysis, as directed by the National Nuclear Security Administration (NNSA), DOE 2010. This work is a continuation of the ongoing readiness evaluation reported in Lee and Hadgu (2014), Hadgu et al. (2015) and Hadgu and Appel (2016). The TSPA computing hardware (CL2014) and storage system described in Hadgu et al. (2015) weremore » used for the current analysis. One floating license of GoldSim with Versions 9.60.300, 10.5, 11.1 and 12.0 was installed on the cluster head node, and its distributed processing capability was mapped on the cluster processors. Other supporting software were tested and installed to support the TSPA- type analysis on the server cluster. The current tasks included preliminary upgrade of the TSPA-LA from Version 9.60.300 to the latest version 12.0 and address DLL-related issues observed in the FY16 work. The model upgrade task successfully converted the Nominal Modeling case to GoldSim Versions 11.1/12. Conversions of the rest of the TSPA models were also attempted but program and operational difficulties precluded this. Upgrade of the remaining of the modeling cases and distributed processing tasks is expected to continue. The 2014 server cluster and supporting software systems are fully operational to support TSPA-LA type analysis.« less

  16. Neural network modeling for surgical decisions on traumatic brain injury patients.

    PubMed

    Li, Y C; Liu, L; Chiu, W T; Jian, W S

    2000-01-01

    Computerized medical decision support systems have been a major research topic in recent years. Intelligent computer programs were implemented to aid physicians and other medical professionals in making difficult medical decisions. This report compares three different mathematical models for building a traumatic brain injury (TBI) medical decision support system (MDSS). These models were developed based on a large TBI patient database. This MDSS accepts a set of patient data such as the types of skull fracture, Glasgow Coma Scale (GCS), episode of convulsion and return the chance that a neurosurgeon would recommend an open-skull surgery for this patient. The three mathematical models described in this report including a logistic regression model, a multi-layer perceptron (MLP) neural network and a radial-basis-function (RBF) neural network. From the 12,640 patients selected from the database. A randomly drawn 9480 cases were used as the training group to develop/train our models. The other 3160 cases were in the validation group which we used to evaluate the performance of these models. We used sensitivity, specificity, areas under receiver-operating characteristics (ROC) curve and calibration curves as the indicator of how accurate these models are in predicting a neurosurgeon's decision on open-skull surgery. The results showed that, assuming equal importance of sensitivity and specificity, the logistic regression model had a (sensitivity, specificity) of (73%, 68%), compared to (80%, 80%) from the RBF model and (88%, 80%) from the MLP model. The resultant areas under ROC curve for logistic regression, RBF and MLP neural networks are 0.761, 0.880 and 0.897, respectively (P < 0.05). Among these models, the logistic regression has noticeably poorer calibration. This study demonstrated the feasibility of applying neural networks as the mechanism for TBI decision support systems based on clinical databases. The results also suggest that neural networks may be a better solution for complex, non-linear medical decision support systems than conventional statistical techniques such as logistic regression.

  17. Fostering Third-Grade Students' Use of Scientific Models with the Water Cycle: Elementary Teachers' Conceptions and Practices

    ERIC Educational Resources Information Center

    Vo, Tina; Forbes, Cory T.; Zangori, Laura; Schwarz, Christina V.

    2015-01-01

    Elementary teachers play a crucial role in supporting and scaffolding students' model-based reasoning about natural phenomena, particularly complex systems such as the water cycle. However, little research exists to inform efforts in supporting elementary teachers' learning to foster model-centered, science learning environments. To address this…

  18. Air Force Global Weather Central System Architecture Study. Final System/Subsystem Summary Report. Volume 4. Systems Analysis and Trade Studies

    DTIC Science & Technology

    1976-03-01

    atmosphere,as well as very fine grid cloud models and cloud probability models. Some of the new requirements that will be supported with this system are a...including the Advanced Prediction Model for the global atmosphere, as well as very fine grid cloud models and cloud proba- bility models. Some of the new...with the mapping and gridding function (imput and output)? Should the capability exist to interface raw ungridded data with the SID interface

  19. 76 FR 50898 - Metconazole; Pesticide Tolerances

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-17

    .../oppefed1/models/water/index.htm . Based on the Pesticide Root Zone Model/Exposure Analysis Modeling System... affected. The North American Industrial Classification System (NAICS) codes have been provided to assist... supporting the petition, EPA has modified the levels at which tolerances are being established for the...

  20. OCAM - A CELSS modeling tool: Description and results. [Object-oriented Controlled Ecological Life Support System Analysis and Modeling

    NASA Technical Reports Server (NTRS)

    Drysdale, Alan; Thomas, Mark; Fresa, Mark; Wheeler, Ray

    1992-01-01

    Controlled Ecological Life Support System (CELSS) technology is critical to the Space Exploration Initiative. NASA's Kennedy Space Center has been performing CELSS research for several years, developing data related to CELSS design. We have developed OCAM (Object-oriented CELSS Analysis and Modeling), a CELSS modeling tool, and have used this tool to evaluate CELSS concepts, using this data. In using OCAM, a CELSS is broken down into components, and each component is modeled as a combination of containers, converters, and gates which store, process, and exchange carbon, hydrogen, and oxygen on a daily basis. Multiple crops and plant types can be simulated. Resource recovery options modeled include combustion, leaching, enzyme treatment, aerobic or anaerobic digestion, and mushroom and fish growth. Results include printouts and time-history graphs of total system mass, biomass, carbon dioxide, and oxygen quantities; energy consumption; and manpower requirements. The contributions of mass, energy, and manpower to system cost have been analyzed to compare configurations and determine appropriate research directions.

  1. A development framework for artificial intelligence based distributed operations support systems

    NASA Technical Reports Server (NTRS)

    Adler, Richard M.; Cottman, Bruce H.

    1990-01-01

    Advanced automation is required to reduce costly human operations support requirements for complex space-based and ground control systems. Existing knowledge based technologies have been used successfully to automate individual operations tasks. Considerably less progress has been made in integrating and coordinating multiple operations applications for unified intelligent support systems. To fill this gap, SOCIAL, a tool set for developing Distributed Artificial Intelligence (DAI) systems is being constructed. SOCIAL consists of three primary language based components defining: models of interprocess communication across heterogeneous platforms; models for interprocess coordination, concurrency control, and fault management; and for accessing heterogeneous information resources. DAI applications subsystems, either new or existing, will access these distributed services non-intrusively, via high-level message-based protocols. SOCIAL will reduce the complexity of distributed communications, control, and integration, enabling developers to concentrate on the design and functionality of the target DAI system itself.

  2. Exploration of government policy structure which support and block energy transition process in indonesia using system dynamics model

    NASA Astrophysics Data System (ADS)

    Destyanto, A. R.; Silalahi, T. D.; Hidayatno, A.

    2017-11-01

    System dynamic modeling is widely used to predict and simulate the energy system in several countries. One of the applications of system dynamics is to evaluate national energy policy alternatives, and energy efficiency analysis. Using system dynamic modeling, this research aims to evaluate the energy transition policy that has been implemented in Indonesia on the past conversion program of kerosene to LPG for household cook fuel consumption, which considered as successful energy transition program implemented since 2007. This research is important since Indonesia considered not yet succeeded to execute another energy transition program on conversion program of oil fuel to gas fuel for transportation that has started since 1989. The aim of this research is to explore which policy intervention that has significant contribution to support or even block the conversion program. Findings in this simulation show that policy intervention to withdraw the kerosene supply and government push to increase production capacity of the support equipment industries (gas stove, regulator, and LPG Cylinder) is the main influence on the success of the program conversion program.

  3. A Mathematical Model for Railway Control Systems

    NASA Technical Reports Server (NTRS)

    Hoover, D. N.

    1996-01-01

    We present a general method for modeling safety aspects of railway control systems. Using our modeling method, one can progressively refine an abstract railway safety model, sucessively adding layers of detail about how a real system actually operates, while maintaining a safety property that refines the original abstract safety property. This method supports a top-down approach to specification of railway control systems and to proof of a variety of safety-related properties. We demonstrate our method by proving safety of the classical block control system.

  4. Virtual memory support for distributed computing environments using a shared data object model

    NASA Astrophysics Data System (ADS)

    Huang, F.; Bacon, J.; Mapp, G.

    1995-12-01

    Conventional storage management systems provide one interface for accessing memory segments and another for accessing secondary storage objects. This hinders application programming and affects overall system performance due to mandatory data copying and user/kernel boundary crossings, which in the microkernel case may involve context switches. Memory-mapping techniques may be used to provide programmers with a unified view of the storage system. This paper extends such techniques to support a shared data object model for distributed computing environments in which good support for coherence and synchronization is essential. The approach is based on a microkernel, typed memory objects, and integrated coherence control. A microkernel architecture is used to support multiple coherence protocols and the addition of new protocols. Memory objects are typed and applications can choose the most suitable protocols for different types of object to avoid protocol mismatch. Low-level coherence control is integrated with high-level concurrency control so that the number of messages required to maintain memory coherence is reduced and system-wide synchronization is realized without severely impacting the system performance. These features together contribute a novel approach to the support for flexible coherence under application control.

  5. Decision Support for Renewal of Wastewater Collection and Water Distribution Systems

    EPA Science Inventory

    The objective of this study was to identify the current decision support methodologies, models and approaches being used for determining how to rehabilitate or replace underground utilities; identify the critical gaps of these current models through comparison with case history d...

  6. Object-oriented biomedical system modelling--the language.

    PubMed

    Hakman, M; Groth, T

    1999-11-01

    The paper describes a new object-oriented biomedical continuous system modelling language (OOBSML). It is fully object-oriented and supports model inheritance, encapsulation, and model component instantiation and behaviour polymorphism. Besides the traditional differential and algebraic equation expressions the language includes also formal expressions for documenting models and defining model quantity types and quantity units. It supports explicit definition of model input-, output- and state quantities, model components and component connections. The OOBSML model compiler produces self-contained, independent, executable model components that can be instantiated and used within other OOBSML models and/or stored within model and model component libraries. In this way complex models can be structured as multilevel, multi-component model hierarchies. Technically the model components produced by the OOBSML compiler are executable computer code objects based on distributed object and object request broker technology. This paper includes both the language tutorial and the formal language syntax and semantic description.

  7. Use of the self-organising map network (SOMNet) as a decision support system for regional mental health planning.

    PubMed

    Chung, Younjin; Salvador-Carulla, Luis; Salinas-Pérez, José A; Uriarte-Uriarte, Jose J; Iruin-Sanz, Alvaro; García-Alonso, Carlos R

    2018-04-25

    Decision-making in mental health systems should be supported by the evidence-informed knowledge transfer of data. Since mental health systems are inherently complex, involving interactions between its structures, processes and outcomes, decision support systems (DSS) need to be developed using advanced computational methods and visual tools to allow full system analysis, whilst incorporating domain experts in the analysis process. In this study, we use a DSS model developed for interactive data mining and domain expert collaboration in the analysis of complex mental health systems to improve system knowledge and evidence-informed policy planning. We combine an interactive visual data mining approach, the self-organising map network (SOMNet), with an operational expert knowledge approach, expert-based collaborative analysis (EbCA), to develop a DSS model. The SOMNet was applied to the analysis of healthcare patterns and indicators of three different regional mental health systems in Spain, comprising 106 small catchment areas and providing healthcare for over 9 million inhabitants. Based on the EbCA, the domain experts in the development team guided and evaluated the analytical processes and results. Another group of 13 domain experts in mental health systems planning and research evaluated the model based on the analytical information of the SOMNet approach for processing information and discovering knowledge in a real-world context. Through the evaluation, the domain experts assessed the feasibility and technology readiness level (TRL) of the DSS model. The SOMNet, combined with the EbCA, effectively processed evidence-based information when analysing system outliers, explaining global and local patterns, and refining key performance indicators with their analytical interpretations. The evaluation results showed that the DSS model was feasible by the domain experts and reached level 7 of the TRL (system prototype demonstration in operational environment). This study supports the benefits of combining health systems engineering (SOMNet) and expert knowledge (EbCA) to analyse the complexity of health systems research. The use of the SOMNet approach contributes to the demonstration of DSS for mental health planning in practice.

  8. An online model composition tool for system biology models

    PubMed Central

    2013-01-01

    Background There are multiple representation formats for Systems Biology computational models, and the Systems Biology Markup Language (SBML) is one of the most widely used. SBML is used to capture, store, and distribute computational models by Systems Biology data sources (e.g., the BioModels Database) and researchers. Therefore, there is a need for all-in-one web-based solutions that support advance SBML functionalities such as uploading, editing, composing, visualizing, simulating, querying, and browsing computational models. Results We present the design and implementation of the Model Composition Tool (Interface) within the PathCase-SB (PathCase Systems Biology) web portal. The tool helps users compose systems biology models to facilitate the complex process of merging systems biology models. We also present three tools that support the model composition tool, namely, (1) Model Simulation Interface that generates a visual plot of the simulation according to user’s input, (2) iModel Tool as a platform for users to upload their own models to compose, and (3) SimCom Tool that provides a side by side comparison of models being composed in the same pathway. Finally, we provide a web site that hosts BioModels Database models and a separate web site that hosts SBML Test Suite models. Conclusions Model composition tool (and the other three tools) can be used with little or no knowledge of the SBML document structure. For this reason, students or anyone who wants to learn about systems biology will benefit from the described functionalities. SBML Test Suite models will be a nice starting point for beginners. And, for more advanced purposes, users will able to access and employ models of the BioModels Database as well. PMID:24006914

  9. A Competing Neurobehavioral Decision Systems Model of SES-Related Health and Behavioral Disparities

    PubMed Central

    Bickel, W. K.; Moody, L.; Quisenberry, A. J.; Ramey, C. T.; Sheffer, C. E.

    2014-01-01

    We propose that executive dysfunction is an important component relating the socioeconomic status gradient of select health behaviors. We review and find evidence supporting an SES gradient associated with (1) negative health behaviors (e.g., obesity, excessive use of alcohol, tobacco and other substances), and (2) executive dysfunction. Moreover, the evidence supports that stress and insufficient cognitive resources contribute to executive dysfunction and that executive dysfunction is evident among individuals who smoke cigarettes, are obese, abuse alcohol, and use illicit drugs. Collectively these data supports the dual system model of cognitive control, referred to here as the Competing Neurobehavioral Decision Systems hypothesis. The implications of these relationships for intervention and social justice considerations are discussed. PMID:25008219

  10. Sensitivity of an Integrated Mesoscale Atmosphere and Agriculture Land Modeling System (WRF/CMAQ-EPIC) to MODIS Vegetation and Lightning Assimilation

    EPA Science Inventory

    The combined meteorology and air quality modeling system composed of the Weather Research and Forecast (WRF) model and Community Multiscale Air Quality (CMAQ) model is an important decision support tool that is used in research and regulatory decisions related to emissions, meteo...

  11. MODELS-3 INSTALLATION PROCEDURES FOR A SUN WORKSTATION WITH A UNIX-BASED OPERATING SYSTEM (MODELS-3 VERSION 4.1)

    EPA Science Inventory

    Models-3 is a flexible system designed to simplify the development and use of air quality models and other environmental decision support tools. It is designed for applications ranging from regulatory and policy analysis to understanding the complex interactions of atmospheric...

  12. Multi-Agent-Based Simulation of a Complex Ecosystem of Mental Health Care.

    PubMed

    Kalton, Alan; Falconer, Erin; Docherty, John; Alevras, Dimitris; Brann, David; Johnson, Kyle

    2016-02-01

    This paper discusses the creation of an Agent-Based Simulation that modeled the introduction of care coordination capabilities into a complex system of care for patients with Serious and Persistent Mental Illness. The model describes the engagement between patients and the medical, social and criminal justice services they interact with in a complex ecosystem of care. We outline the challenges involved in developing the model, including process mapping and the collection and synthesis of data to support parametric estimates, and describe the controls built into the model to support analysis of potential changes to the system. We also describe the approach taken to calibrate the model to an observable level of system performance. Preliminary results from application of the simulation are provided to demonstrate how it can provide insights into potential improvements deriving from introduction of care coordination technology.

  13. Multi-Agent Diagnosis and Control of an Air Revitalization System for Life Support in Space

    NASA Technical Reports Server (NTRS)

    Malin, Jane T.; Kowing, Jeffrey; Nieten, Joseph; Graham, Jeffrey s.; Schreckenghost, Debra; Bonasso, Pete; Fleming, Land D.; MacMahon, Matt; Thronesbery, Carroll

    2000-01-01

    An architecture of interoperating agents has been developed to provide control and fault management for advanced life support systems in space. In this adjustable autonomy architecture, software agents coordinate with human agents and provide support in novel fault management situations. This architecture combines the Livingstone model-based mode identification and reconfiguration (MIR) system with the 3T architecture for autonomous flexible command and control. The MIR software agent performs model-based state identification and diagnosis. MIR identifies novel recovery configurations and the set of commands required for the recovery. The AZT procedural executive and the human operator use the diagnoses and recovery recommendations, and provide command sequencing. User interface extensions have been developed to support human monitoring of both AZT and MIR data and activities. This architecture has been demonstrated performing control and fault management for an oxygen production system for air revitalization in space. The software operates in a dynamic simulation testbed.

  14. Configuration Management Process Assessment Strategy

    NASA Technical Reports Server (NTRS)

    Henry, Thad

    2014-01-01

    Purpose: To propose a strategy for assessing the development and effectiveness of configuration management systems within Programs, Projects, and Design Activities performed by technical organizations and their supporting development contractors. Scope: Various entities CM Systems will be assessed dependent on Project Scope (DDT&E), Support Services and Acquisition Agreements. Approach: Model based structured against assessing organizations CM requirements including best practices maturity criteria. The model is tailored to the entity being assessed dependent on their CM system. The assessment approach provides objective feedback to Engineering and Project Management of the observed CM system maturity state versus the ideal state of the configuration management processes and outcomes(system). center dot Identifies strengths and risks versus audit gotcha's (findings/observations). center dot Used "recursively and iteratively" throughout program lifecycle at select points of need. (Typical assessments timing is Post PDR/Post CDR) center dot Ideal state criteria and maturity targets are reviewed with the assessed entity prior to an assessment (Tailoring) and is dependent on the assessed phase of the CM system. center dot Supports exit success criteria for Preliminary and Critical Design Reviews. center dot Gives a comprehensive CM system assessment which ultimately supports configuration verification activities.*

  15. Guiding Principles for Data Architecture to Support the Pathways Community HUB Model

    PubMed Central

    Zeigler, Bernard P.; Redding, Sarah; Leath, Brenda A.; Carter, Ernest L.; Russell, Cynthia

    2016-01-01

    Introduction: The Pathways Community HUB Model provides a unique strategy to effectively supplement health care services with social services needed to overcome barriers for those most at risk of poor health outcomes. Pathways are standardized measurement tools used to define and track health and social issues from identification through to a measurable completion point. The HUB use Pathways to coordinate agencies and service providers in the community to eliminate the inefficiencies and duplication that exist among them. Pathways Community HUB Model and Formalization: Experience with the Model has brought out the need for better information technology solutions to support implementation of the Pathways themselves through decision-support tools for care coordinators and other users to track activities and outcomes, and to facilitate reporting. Here we provide a basis for discussing recommendations for such a data infrastructure by developing a conceptual model that formalizes the Pathway concept underlying current implementations. Requirements for Data Architecture to Support the Pathways Community HUB Model: The main contribution is a set of core recommendations as a framework for developing and implementing a data architecture to support implementation of the Pathways Community HUB Model. The objective is to present a tool for communities interested in adopting the Model to learn from and to adapt in their own development and implementation efforts. Problems with Quality of Data Extracted from the CHAP Database: Experience with the Community Health Access Project (CHAP) data base system (the core implementation of the Model) has identified several issues and remedies that have been developed to address these issues. Based on analysis of issues and remedies, we present several key features for a data architecture meeting the just mentioned recommendations. Implementation of Features: Presentation of features is followed by a practical guide to their implementation allowing an organization to consider either tailoring off-the-shelf generic systems to meet the requirements or offerings that are specialized for community-based care coordination. Discussion: Looking to future extensions, we discuss the utility and prospects for an ontology to include care coordination in the Unified Medical Language System (UMLS) of the National Library of Medicine and other existing medical and nursing taxonomies. Conclusions and Recommendations: Pathways structures are an important principle, not only for organizing the care coordination activities, but also for structuring the data stored in electronic form in the conduct of such care. We showed how the proposed architecture encourages design of effective decision support systems for coordinated care and suggested how interested organizations can set about acquiring such systems. Although the presentation focuses on the Pathways Community HUB Model, the principles for data architecture are stated in generic form and are applicable to any health information system for improving care coordination services and population health. PMID:26870743

  16. Memory mechanisms supporting syntactic comprehension

    PubMed Central

    Waters, Gloria

    2013-01-01

    Efforts to characterize the memory system that supports sentence comprehension have historically drawn extensively on short-term memory as a source of mechanisms that might apply to sentences. The focus of these efforts has changed significantly in the past decade. As a result of changes in models of short-term working memory (ST-WM) and developments in models of sentence comprehension, the effort to relate entire components of an ST-WM system, such as those in the model developed by Baddeley (Nature Reviews Neuroscience 4: 829–839, 2003) to sentence comprehension has largely been replaced by an effort to relate more specific mechanisms found in modern models of ST-WM to memory processes that support one aspect of sentence comprehension—the assignment of syntactic structure (parsing) and its use in determining sentence meaning (interpretation) during sentence comprehension. In this article, we present the historical background to recent studies of the memory mechanisms that support parsing and interpretation and review recent research into this relation. We argue that the results of this research do not converge on a set of mechanisms derived from ST-WM that apply to parsing and interpretation. We argue that the memory mechanisms supporting parsing and interpretation have features that characterize another memory system that has been postulated to account for skilled performance—long-term working memory. We propose a model of the relation of different aspects of parsing and interpretation to ST-WM and long-term working memory. PMID:23319178

  17. Life Support with Failures and Variable Supply

    NASA Technical Reports Server (NTRS)

    Jones, Harry

    2010-01-01

    The life support system for long duration missions will recycle oxygen and water to reduce the material resupply mass from Earth. The impact of life support failures was investigated by dynamic simulation of a lunar outpost habitat life support model. The model was modified to simulate resupply delays, power failures, recycling system failures, and storage failures. Many failures impact the lunar outpost water supply directly or indirectly, depending on the water balance and water storage. Failure effects on the water supply are reduced if Extra Vehicular Activity (EVA) water use is low and the water supply is ample. Additional oxygen can be supplied by scavenging unused propellant or by production from regolith, but the amounts obtained can vary significantly. The requirements for oxygen and water can also vary significantly, especially for EVA. Providing storage buffers can improve efficiency and reliability, and minimize the chance of supply failing to meet demand. Life support failures and supply variations can be survivable if effective solutions are provided by the system design

  18. A multicriteria decision making model for assessment and selection of an ERP in a logistics context

    NASA Astrophysics Data System (ADS)

    Pereira, Teresa; Ferreira, Fernanda A.

    2017-07-01

    The aim of this work is to apply a methodology of decision support based on a multicriteria decision analyses (MCDA) model that allows the assessment and selection of an Enterprise Resource Planning (ERP) in a Portuguese logistics company by Group Decision Maker (GDM). A Decision Support system (DSS) that implements a MCDA - Multicriteria Methodology for the Assessment and Selection of Information Systems / Information Technologies (MMASSI / IT) is used based on its features and facility to change and adapt the model to a given scope. Using this DSS it was obtained the information system that best suited to the decisional context, being this result evaluated through a sensitivity and robustness analysis.

  19. Authentic scientific data collection in support of an integrative model-based class: A framework for student engagement in the classroom

    NASA Astrophysics Data System (ADS)

    Sorensen, A. E.; Dauer, J. M.; Corral, L.; Fontaine, J. J.

    2017-12-01

    A core component of public scientific literacy, and thereby informed decision-making, is the ability of individuals to reason about complex systems. In response to students having difficulty learning about complex systems, educational research suggests that conceptual representations, or mental models, may help orient student thinking. Mental models provide a framework to support students in organizing and developing ideas. The PMC-2E model is a productive tool in teaching ideas of modeling complex systems in the classroom because the conceptual representation framework allows for self-directed learning where students can externalize systems thinking. Beyond mental models, recent work emphasizes the importance of facilitating integration of authentic science into the formal classroom. To align these ideas, a university class was developed around the theme of carnivore ecology, founded on PMC-2E framework and authentic scientific data collection. Students were asked to develop a protocol, collect, and analyze data around a scientific question in partnership with a scientist, and then use data to inform their own learning about the system through the mental model process. We identified two beneficial outcomes (1) scientific data is collected to address real scientific questions at a larger scale and (2) positive outcomes for student learning and views of science. After participating in the class, students report enjoying class structure, increased support for public understanding of science, and shifts in nature of science and interest in pursuing science metrics on post-assessments. Further work is ongoing investigating the linkages between engaging in authentic scientific practices that inform student mental models, and how it might promote students' systems-thinking skills, implications for student views of nature of science, and development of student epistemic practices.

  20. Digital control of wind tunnel magnetic suspension and balance systems

    NASA Technical Reports Server (NTRS)

    Britcher, Colin P.; Goodyer, Michael J.; Eskins, Jonathan; Parker, David; Halford, Robert J.

    1987-01-01

    Digital controllers are being developed for wind tunnel magnetic suspension and balance systems, which in turn permit wind tunnel testing of aircraft models free from support interference. Hardware and software features of two existing digital control systems are reviewed. Some aspects of model position sensing and system calibration are also discussed.

  1. Relational systems change: implementing a model of change in integrating services for women with substance abuse and mental health disorders and histories of trauma.

    PubMed

    Markoff, Laurie S; Finkelstein, Norma; Kammerer, Nina; Kreiner, Peter; Prost, Carol A

    2005-01-01

    This article describes the "relational systems change" model developed by the Institute for Health and Recovery, and the implementation of the model in Massachusetts from 1998-2002 to facilitate systems change to support the delivery of integrated and trauma-informed services for women with co-occurring substance abuse and mental health disorders and histories of violence and empirical evidence of resulting systems changes. The federally funded Women Embracing Life and Living (WELL) Project utilized relational strategies to facilitate systems change within and across 3 systems levels: local treatment providers, community (or region), and state. The WELL Project demonstrates that a highly collaborative, inclusive, and facilitated change process can effect services integration within agencies (intra-agency), strengthen integration within a regional network of agencies (interagency), and foster state support for services integration.

  2. Nurses' experiences of the use of an Internet-based support system for adolescents with depressive disorders.

    PubMed

    Kurki, Marjo; Anttila, Minna; Koivunen, Marita; Marttunen, Mauri; Välimäki, Maritta

    2018-09-01

    Internet-based applications are potentially useful and effective interventions to reach and support adolescents with mental health problems. Adolescents' commitment to the use of a new Internet-based intervention is closely related to the support they receive from healthcare professionals. This study describes nurses' experiences of the use of an Internet-based support system for adolescents with depressive disorders. Qualitative descriptive study design including individual interviews with nine nurses at two psychiatric outpatient clinics. The Technology Acceptance Model (TAM) was used as the theoretical background of the study. Nurses described several benefits of using the Internet-based support system in the care of adolescents with depressive disorders if the nurses integrate it into daily nursing practices. As perceived disadvantages the nurses thought that an adolescent's mental status might be a barrier to working with the support system. Perceived enablers could be organizational support, nurses' attitudes, and technology-related factors. Nurses' attitudes were identified as a barrier to supporting adolescents' use of the Internet-based support system. The findings suggest that the implementation plan and support from the organization, including that from nurse managers, are crucial in the process of implementing a technology-based support system.

  3. Mathematical model for the simulation of Dynamic Docking Test System (DDST) active table motion

    NASA Technical Reports Server (NTRS)

    Gates, R. M.; Graves, D. L.

    1974-01-01

    The mathematical model developed to describe the three-dimensional motion of the dynamic docking test system active table is described. The active table is modeled as a rigid body supported by six flexible hydraulic actuators which produce the commanded table motions.

  4. A Model Framework for Course Materials Construction (Second Edition).

    ERIC Educational Resources Information Center

    Schlenker, Richard M.

    Designed for use by Coast Guard course writers, curriculum developers, course coordinators, and instructors as a decision-support system, this publication presents a model that translates the Intraservices Procedures for Instructional Systems Development curriculum design model into materials usable by classroom teachers and students. Although…

  5. Mental Health Collaborative Care and Its Role in Primary Care Settings

    PubMed Central

    Goodrich, David E.; Kilbourne, Amy M.; Nord, Kristina M.; Bauer, Mark S.

    2013-01-01

    Collaborative care models (CCMs) provide a pragmatic strategy to deliver integrated mental health and medical care for persons with mental health conditions served in primary care settings. CCMs are team-based intervention to enact system-level redesign by improving patient care through organizational leadership support, provider decision support, and clinical information systems as well as engaging patients in their care through self-management support and linkages to community resources. The model is also a cost-efficient strategy for primary care practices to improve outcomes for a range of mental health conditions across populations and settings. CCMs can help achieve integrated care aims under healthcare reform yet organizational and financial issues may affect adoption into routine primary care. Notably, successful implementation of CCMs in routine care will require alignment of financial incentives to support systems redesign investments, reimbursements for mental health providers, and adaptation across different practice settings and infrastructure to offer all CCM components. PMID:23881714

  6. Mental health collaborative care and its role in primary care settings.

    PubMed

    Goodrich, David E; Kilbourne, Amy M; Nord, Kristina M; Bauer, Mark S

    2013-08-01

    Collaborative care models (CCMs) provide a pragmatic strategy to deliver integrated mental health and medical care for persons with mental health conditions served in primary care settings. CCMs are team-based intervention to enact system-level redesign by improving patient care through organizational leadership support, provider decision support, and clinical information systems, as well as engaging patients in their care through self-management support and linkages to community resources. The model is also a cost-efficient strategy for primary care practices to improve outcomes for a range of mental health conditions across populations and settings. CCMs can help achieve integrated care aims underhealth care reform yet organizational and financial issues may affect adoption into routine primary care. Notably, successful implementation of CCMs in routine care will require alignment of financial incentives to support systems redesign investments, reimbursements for mental health providers, and adaptation across different practice settings and infrastructure to offer all CCM components.

  7. Managing Analysis Models in the Design Process

    NASA Technical Reports Server (NTRS)

    Briggs, Clark

    2006-01-01

    Design of large, complex space systems depends on significant model-based support for exploration of the design space. Integrated models predict system performance in mission-relevant terms given design descriptions and multiple physics-based numerical models. Both the design activities and the modeling activities warrant explicit process definitions and active process management to protect the project from excessive risk. Software and systems engineering processes have been formalized and similar formal process activities are under development for design engineering and integrated modeling. JPL is establishing a modeling process to define development and application of such system-level models.

  8. Multidisciplinary Modelling of Symptoms and Signs with Archetypes and SNOMED-CT for Clinical Decision Support.

    PubMed

    Marco-Ruiz, Luis; Maldonado, J Alberto; Karlsen, Randi; Bellika, Johan G

    2015-01-01

    Clinical Decision Support Systems (CDSS) help to improve health care and reduce costs. However, the lack of knowledge management and modelling hampers their maintenance and reuse. Current EHR standards and terminologies can allow the semantic representation of the data and knowledge of CDSS systems boosting their interoperability, reuse and maintenance. This paper presents the modelling process of respiratory conditions' symptoms and signs by a multidisciplinary team of clinicians and information architects with the help of openEHR, SNOMED and clinical information modelling tools for a CDSS. The information model of the CDSS was defined by means of an archetype and the knowledge model was implemented by means of an SNOMED-CT based ontology.

  9. Using GOMS and Bayesian plan recognition to develop recognition models of operator behavior

    NASA Astrophysics Data System (ADS)

    Zaientz, Jack D.; DeKoven, Elyon; Piegdon, Nicholas; Wood, Scott D.; Huber, Marcus J.

    2006-05-01

    Trends in combat technology research point to an increasing role for uninhabited vehicles in modern warfare tactics. To support increased span of control over these vehicles human responsibilities need to be transformed from tedious, error-prone and cognition intensive operations into tasks that are more supervisory and manageable, even under intensely stressful conditions. The goal is to move away from only supporting human command of low-level system functions to intention-level human-system dialogue about the operator's tasks and situation. A critical element of this process is developing the means to identify when human operators need automated assistance and to identify what assistance they need. Toward this goal, we are developing an unmanned vehicle operator task recognition system that combines work in human behavior modeling and Bayesian plan recognition. Traditionally, human behavior models have been considered generative, meaning they describe all possible valid behaviors. Basing behavior recognition on models designed for behavior generation can offers advantages in improved model fidelity and reuse. It is not clear, however, how to reconcile the structural differences between behavior recognition and behavior modeling approaches. Our current work demonstrates that by pairing a cognitive psychology derived human behavior modeling approach, GOMS, with a Bayesian plan recognition engine, ASPRN, we can translate a behavior generation model into a recognition model. We will discuss the implications for using human performance models in this manner as well as suggest how this kind of modeling may be used to support the real-time control of multiple, uninhabited battlefield vehicles and other semi-autonomous systems.

  10. A dashboard-based system for supporting diabetes care.

    PubMed

    Dagliati, Arianna; Sacchi, Lucia; Tibollo, Valentina; Cogni, Giulia; Teliti, Marsida; Martinez-Millana, Antonio; Traver, Vicente; Segagni, Daniele; Posada, Jorge; Ottaviano, Manuel; Fico, Giuseppe; Arredondo, Maria Teresa; De Cata, Pasquale; Chiovato, Luca; Bellazzi, Riccardo

    2018-05-01

    To describe the development, as part of the European Union MOSAIC (Models and Simulation Techniques for Discovering Diabetes Influence Factors) project, of a dashboard-based system for the management of type 2 diabetes and assess its impact on clinical practice. The MOSAIC dashboard system is based on predictive modeling, longitudinal data analytics, and the reuse and integration of data from hospitals and public health repositories. Data are merged into an i2b2 data warehouse, which feeds a set of advanced temporal analytic models, including temporal abstractions, care-flow mining, drug exposure pattern detection, and risk-prediction models for type 2 diabetes complications. The dashboard has 2 components, designed for (1) clinical decision support during follow-up consultations and (2) outcome assessment on populations of interest. To assess the impact of the clinical decision support component, a pre-post study was conducted considering visit duration, number of screening examinations, and lifestyle interventions. A pilot sample of 700 Italian patients was investigated. Judgments on the outcome assessment component were obtained via focus groups with clinicians and health care managers. The use of the decision support component in clinical activities produced a reduction in visit duration (P ≪ .01) and an increase in the number of screening exams for complications (P < .01). We also observed a relevant, although nonstatistically significant, increase in the proportion of patients receiving lifestyle interventions (from 69% to 77%). Regarding the outcome assessment component, focus groups highlighted the system's capability of identifying and understanding the characteristics of patient subgroups treated at the center. Our study demonstrates that decision support tools based on the integration of multiple-source data and visual and predictive analytics do improve the management of a chronic disease such as type 2 diabetes by enacting a successful implementation of the learning health care system cycle.

  11. GEOGRAPHICAL INFORMATION SYSTEM, DECISION SUPPORT SYSTEMS, AND URBAN STORMWATER MANAGEMENT

    EPA Science Inventory

    The full report reviews the application of Geographic Inforamtion System (GIS) technology to the field of urban stormwater modeling. The GIS literature is reviewed in the context of its use as a spatial database for urban stormwater modeling, integration of GIS and hydroloic time...

  12. In-vehicle Information Systems Behavioral Model and Design Support: IVIS Demand Prototype Software User’s Manual

    DOT National Transportation Integrated Search

    2000-03-06

    The purpose of this research was to develop a behavioral model and prototype computer program for evaluation of modern in-vehicle information systems (IVIS). These systems differ from earlier in-vehicle instruments and displays in that they may requi...

  13. In-Vehicle Information Systems Behavioral Model and Design Support: IVIS Demand Prototype Software User's Manual

    DOT National Transportation Integrated Search

    2000-03-06

    The purpose of this research was to develop a behavioral model and prototype computer program for evaluation of modern in-vehicle information systems (IVIS). These systems differ from earlier in-vehicle instruments and displays in that they may requi...

  14. Welding process modelling and control

    NASA Technical Reports Server (NTRS)

    Romine, Peter L.; Adenwala, Jinen A.

    1993-01-01

    The research and analysis performed, and software developed, and hardware/software recommendations made during 1992 in development of the PC-based data acquisition system for support of Welding Process Modeling and Control is reported. A need was identified by the Metals Processing Branch of NASA Marshall Space Flight Center, for a mobile data aquisition and analysis system, customized for welding measurement and calibration. Several hardware configurations were evaluated and a PC-based system was chosen. The Welding Measurement System (WMS) is a dedicated instrument, strictly for the use of data aquisition and analysis. Although the WMS supports many of the functions associated with the process control, it is not the intention for this system to be used for welding process control.

  15. A Clinical Decision Support System for Breast Cancer Patients

    NASA Astrophysics Data System (ADS)

    Fernandes, Ana S.; Alves, Pedro; Jarman, Ian H.; Etchells, Terence A.; Fonseca, José M.; Lisboa, Paulo J. G.

    This paper proposes a Web clinical decision support system for clinical oncologists and for breast cancer patients making prognostic assessments, using the particular characteristics of the individual patient. This system comprises three different prognostic modelling methodologies: the clinically widely used Nottingham prognostic index (NPI); the Cox regression modelling and a partial logistic artificial neural network with automatic relevance determination (PLANN-ARD). All three models yield a different prognostic index that can be analysed together in order to obtain a more accurate prognostic assessment of the patient. Missing data is incorporated in the mentioned models, a common issue in medical data that was overcome using multiple imputation techniques. Risk group assignments are also provided through a methodology based on regression trees, where Boolean rules can be obtained expressed with patient characteristics.

  16. An Infrastructure for UML-Based Code Generation Tools

    NASA Astrophysics Data System (ADS)

    Wehrmeister, Marco A.; Freitas, Edison P.; Pereira, Carlos E.

    The use of Model-Driven Engineering (MDE) techniques in the domain of distributed embedded real-time systems are gain importance in order to cope with the increasing design complexity of such systems. This paper discusses an infrastructure created to build GenERTiCA, a flexible tool that supports a MDE approach, which uses aspect-oriented concepts to handle non-functional requirements from embedded and real-time systems domain. GenERTiCA generates source code from UML models, and also performs weaving of aspects, which have been specified within the UML model. Additionally, this paper discusses the Distributed Embedded Real-Time Compact Specification (DERCS), a PIM created to support UML-based code generation tools. Some heuristics to transform UML models into DERCS, which have been implemented in GenERTiCA, are also discussed.

  17. [Stakeholder representations of the role of the intermediate level of the DRC health system].

    PubMed

    Mbeva, Jean Bosco Kahindo; Karemere, Hermès; Schirvel, Carole; Porignon, Denis

    2014-01-01

    Intermediate health care structures in the DRC were designed during the setting-up of primary health care in a perspective of health district support. This study was designed to describe stakeholder representations of the intermediate level of the DRC health system during the first 30 years of the primary health care system. This case study was based on inductive analysis of data from 27 key informant interviews.. The intermediate level of the health system, lacking sufficient expertise and funding during the 1980s, was confined to inspection and control functions, answering to the central level of the Ministry of health and provincial authorities. Since the 1990s, faced with the pressing demand for support from health district teams, whose self-management had to deal with humanitarian emergencies, the need to integrate vertical programmes, and cope with the logistics of many different actors, the intermediate heath system developed methods and tools to support heath districts. This resulted in a subsidiary model of the intermediate level, the perceived efficacy of which varies according to the province over recent years. The "subsidiary" model of the intermediary health system level seems a good alternative to the "control" model in DRC.

  18. Designing Interactive Learning Systems.

    ERIC Educational Resources Information Center

    Barker, Philip

    1990-01-01

    Describes multimedia, computer-based interactive learning systems that support various forms of individualized study. Highlights include design models; user interfaces; design guidelines; media utilization paradigms, including hypermedia and learner-controlled models; metaphors and myths; authoring tools; optical media; workstations; four case…

  19. Multi-tiered system of support incorporating the R.E.N.E.W. process and its relationship to perception of school safety and office discipline referrals

    NASA Astrophysics Data System (ADS)

    Flood, Molly M.

    This study examined the relationship between the fidelity of multi-tier school-wide positive behavior interventions and supports (SWPBIS) and staff perception of school safety and office discipline referrals. This research provided a case study on multi-tier supports and interventions, and the RENEW person-centered planning process in an alternative special education center following the implementation of a multi-tier SWPBIS model. Pennsylvania is one of several states looking to adopt an effective Tier III behavioral tool. The research described the results of an analysis of implementation fidelity on a multi-tiered school-wide positive behavior support model developed at a special education center operated by a public school system entity. This research explored the fidelity of SWPBIS implementation; analyzed the relationship of SWPBIS to school climate as measured by staff perceptions and reduction of office discipline referrals (ODR); explored tier III supports incorporating a process Rehabilitation and Empowerment, Natural Supports, Education and Work (RENEW); and investigated the potential sustainability of the RENEW process as a multi-tier system of support. This study investigated staff perceptions on integrated supports between schools and communities and identified the degree of relationship to school risk factors, school protective factors, and office discipline referrals following the building of cooperative partnerships between Systems of Care and Local Education Agencies.

  20. A Spatial Analysis and Modeling System (SAMS) for environment management

    NASA Technical Reports Server (NTRS)

    Stetina, Fran; Hill, John; Chan, Paul; Jaske, Robert; Rochon, Gilbert

    1993-01-01

    This is a proposal to develop a uniform global environmental data gathering and distribution system to support the calibration and validation of remotely sensed data. SAMS is based on an enhanced version of FEMA's Integrated Emergency Management Information Systems and the Department of Defense's Air land Battlefield Environment Software Systems. This system consists of state-of-the-art graphics and visualization techniques, simulation models, database management and expert systems for conducting environmental and disaster preparedness studies. This software package will be integrated into various Landsat and UNEP-GRID stations which are planned to become direct readout stations during the EOS (Earth Observing System) timeframe. This system would be implemented as a pilot program to support the Tropical Rainfall Measuring Mission (TRMM). This will be a joint NASA-FEMA-University-Industry project.

  1. Advanced Technology Training System on Motor-Operated Valves

    NASA Technical Reports Server (NTRS)

    Wiederholt, Bradley J.; Widjaja, T. Kiki; Yasutake, Joseph Y.; Isoda, Hachiro

    1993-01-01

    This paper describes how features from the field of Intelligent Tutoring Systems are applied to the Motor-Operated Valve (MOV) Advanced Technology Training System (ATTS). The MOV ATTS is a training system developed at Galaxy Scientific Corporation for the Central Research Institute of Electric Power Industry in Japan and the Electric Power Research Institute in the United States. The MOV ATTS combines traditional computer-based training approaches with system simulation, integrated expert systems, and student and expert modeling. The primary goal of the MOV ATTS is to reduce human errors that occur during MOV overhaul and repair. The MOV ATTS addresses this goal by providing basic operational information of the MOV, simulating MOV operation, providing troubleshooting practice of MOV failures, and tailoring this training to the needs of each individual student. The MOV ATTS integrates multiple expert models (functional and procedural) to provide advice and feedback to students. The integration also provides expert model validation support to developers. Student modeling is supported by two separate student models: one model registers and updates the student's current knowledge of basic MOV information, while another model logs the student's actions and errors during troubleshooting exercises. These two models are used to provide tailored feedback to the student during the MOV course.

  2. Modeling for Integrated Science Management and Resilient Systems Development

    NASA Technical Reports Server (NTRS)

    Shelhamer, M.; Mindock, J.; Lumpkins, S.

    2014-01-01

    Many physiological, environmental, and operational risks exist for crewmembers during spaceflight. An understanding of these risks from an integrated perspective is required to provide effective and efficient mitigations during future exploration missions that typically have stringent limitations on resources available, such as mass, power, and crew time. The Human Research Program (HRP) is in the early stages of developing collaborative modeling approaches for the purposes of managing its science portfolio in an integrated manner to support cross-disciplinary risk mitigation strategies and to enable resilient human and engineered systems in the spaceflight environment. In this talk, we will share ideas being explored from fields such as network science, complexity theory, and system-of-systems modeling. Initial work on tools to support these explorations will be discussed briefly, along with ideas for future efforts.

  3. Multiresolution modeling with a JMASS-JWARS HLA Federation

    NASA Astrophysics Data System (ADS)

    Prince, John D.; Painter, Ron D.; Pendell, Brian; Richert, Walt; Wolcott, Christopher

    2002-07-01

    CACI, Inc.-Federal has built, tested, and demonstrated the use of a JMASS-JWARS HLA Federation that supports multi- resolution modeling of a weapon system and its subsystems in a JMASS engineering and engagement model environment, while providing a realistic JWARS theater campaign-level synthetic battle space and operational context to assess the weapon system's value added and deployment/employment supportability in a multi-day, combined force-on-force scenario. Traditionally, acquisition analyses require a hierarchical suite of simulation models to address engineering, engagement, mission and theater/campaign measures of performance, measures of effectiveness and measures of merit. Configuring and running this suite of simulations and transferring the appropriate data between each model is both time consuming and error prone. The ideal solution would be a single simulation with the requisite resolution and fidelity to perform all four levels of acquisition analysis. However, current computer hardware technologies cannot deliver the runtime performance necessary to support the resulting extremely large simulation. One viable alternative is to integrate the current hierarchical suite of simulation models using the DoD's High Level Architecture in order to support multi- resolution modeling. An HLA integration eliminates the extremely large model problem, provides a well-defined and manageable mixed resolution simulation and minimizes VV&A issues.

  4. GREENER CHEMICAL PROCESS DESIGN ALTERNATIVES ARE REVEALED USING THE WASTE REDUCTION DECISION SUPPORT SYSTEM (WAR DSS)

    EPA Science Inventory

    The Waste Reduction Decision Support System (WAR DSS) is a Java-based software product providing comprehensive modeling of potential adverse environmental impacts (PEI) predicted to result from newly designed or redesigned chemical manufacturing processes. The purpose of this so...

  5. Coupled dynamics of a viscoelastically supported infinite string and a number of discrete mechanical systems moving with uniform speed

    NASA Astrophysics Data System (ADS)

    Roy, Soumyajit; Chakraborty, G.; DasGupta, Anirvan

    2018-02-01

    The mutual interaction between a number of multi degrees of freedom mechanical systems moving with uniform speed along an infinite taut string supported by a viscoelastic layer has been studied using the substructure synthesis method when base excitations of a common frequency are given to the mechanical systems. The mobility or impedance matrices of the string have been calculated analytically by Fourier transform method as well as wave propagation technique. The above matrices are used to calculate the response of the discrete mechanical systems. Special attention is paid to the contact forces between the discrete and the continuous systems which are estimated by numerical simulation. The effects of phase difference, the distance between the systems and different base excitation amplitudes on the collective behaviour of the mechanical systems are also studied. The present study has relevance to the coupled dynamic problem of more than one railway pantographs and an overhead catenary system where the pantographs are modelled as discrete systems and the catenary is modelled as a taut string supported by continuous viscoelastic layer.

  6. Scaling the Pyramid Model across Complex Systems Providing Early Care for Preschoolers: Exploring How Models for Decision Making May Enhance Implementation Science

    ERIC Educational Resources Information Center

    Johnson, LeAnne D.

    2017-01-01

    Bringing effective practices to scale across large systems requires attending to how information and belief systems come together in decisions to adopt, implement, and sustain those practices. Statewide scaling of the Pyramid Model, a framework for positive behavior intervention and support, across different types of early childhood programs…

  7. A Three-Tier Model of Integrated Behavior and Learning Supports: Linking System-Wide Implementation to Student Outcomes

    ERIC Educational Resources Information Center

    Harms, Anna Leigh Shon

    2010-01-01

    This study explored elementary schools' implementation of an integrated three-tier model of reading and behavior supports as they participated with a statewide Response to Intervention (RtI) project. The purpose of the study was to examine the process of implementing an integrated three-tier model and to explore the relation between implementation…

  8. Information visualisation based on graph models

    NASA Astrophysics Data System (ADS)

    Kasyanov, V. N.; Kasyanova, E. V.

    2013-05-01

    Information visualisation is a key component of support tools for many applications in science and engineering. A graph is an abstract structure that is widely used to model information for its visualisation. In this paper, we consider practical and general graph formalism called hierarchical graphs and present the Higres and Visual Graph systems aimed at supporting information visualisation on the base of hierarchical graph models.

  9. Comulang: towards a collaborative e-learning system that supports student group modeling.

    PubMed

    Troussas, Christos; Virvou, Maria; Alepis, Efthimios

    2013-01-01

    This paper describes an e-learning system that is expected to further enhance the educational process in computer-based tutoring systems by incorporating collaboration between students and work in groups. The resulting system is called "Comulang" while as a test bed for its effectiveness a multiple language learning system is used. Collaboration is supported by a user modeling module that is responsible for the initial creation of student clusters, where, as a next step, working groups of students are created. A machine learning clustering algorithm works towards group formatting, so that co-operations between students from different clusters are attained. One of the resulting system's basic aims is to provide efficient student groups whose limitations and capabilities are well balanced.

  10. Applications of Satellite Observations to Aerosol Analyses and Forecasting using the NAAPS Model and the DataFed Distributed Data System

    NASA Astrophysics Data System (ADS)

    Husar, R. B.; Hoijarvi, K.; Westphal, D. L.; Scheffe, R.; Keating, T.; Frank, N.; Poirot, R.; DuBois, D. W.; Bleiweiss, M. P.; Eberhard, W. L.; Menon, R.; Sethi, V.; Deshpande, A.

    2012-12-01

    Near-real-time (NRT) aerosol characterization, forecasting and decision support is now possible through the availability of (1) surface-based monitoring of regional PM concentrations, (2) global-scale columnar aerosol observations through satellites; (3) an aerosol model (NAAPS) that is capable of assimilating NRT satellite observations; and (4) an emerging cyber infrastructure for processing and distribution of data and model results (DataFed) for a wide range of users. This report describes the evolving NRT aerosol analysis and forecasting system and its applications at Federal and State and other AQ Agencies and groups. Through use cases and persistent real-world applications in the US and abroad, the report will show how satellite observations along with surface data and models are combined to aid decision support for AQ management, science and informing the public. NAAPS is the U.S. Navy's global aerosol and visibility forecast model that generates operational six-day global-scale forecasts for sulfate, dust, sea salt, and smoke aerosol. Through NAVDAS-AOD, NAAPS operationally assimilates filtered and corrected MODIS MOD04 aerosol optical depths and uses satellite-derived FLAMBÉ smoke emissions. Washington University's federated data system, DataFed, consist of a (1) data server which mediates the access to AQ datasets from distributed providers (NASA, NOAA, EPA, etc.,); (2) an AQ Data Catalog for finding and accessing data; and (3) a set of application programs/tools for browsing, exploring, comparing, aggregating, fusing data, evaluating models and delivering outputs through interactive visualization. NAAPS and DataFed are components of the Global Earth Observation System of Systems (GEOSS). Satellite data support the detection of long-range transported wind-blown dust and biomass smoke aerosols on hemispheric scales. The AQ management and analyst communities use the satellite/model data through DataFed and other channels as evidence for Exceptional Events (EE) as defined by EPA; i.e., Sahara dust impact on Texas and Florida, local dusts events in the Southwestern U.S. and Canadian smoke events over the Northeastern U.S. Recent applications include the impact analysis of a major Saudi Arabian dust event on Mumbai, India air quality. The NAAPS model and the DataFed tools can visualize the dynamic AQ events as they are manifested through the different sensors. Satellite-derived aerosol observations assimilated into NAAPS provide estimates of daily emission rates for dust and biomass fire sources. Tuning and reconciliation of the observations, emissions and models constitutes a key and novel contribution yielding a convergence toward the true five-dimensional (X, Y, Z, T, Composition) characterization of the atmospheric aerosol data space. This observation-emission-model reconciliation effort is aided by model evaluation tools and supports the international HTAP program. The report will also discuss some of the challenges facing multi-disciplinary, multi-agency, multi-national applications of integrated observation-modeling system of systems that impede the incorporation of satellite observations into AQ management decision support systems.

  11. Preliminary study of the space adaptation of the MELiSSA life support system

    NASA Astrophysics Data System (ADS)

    Mas-Albaigès, Joan L.; Duatis, Jordi; Podhajsky, Sandra; Guirado, Víctor; Poughon, Laurent

    MELiSSA (Micro-Ecological Life Support System Alternative) is an European Space Agency (ESA) project focused on the development of a closed regenerative life support system to aid the development of technologies for future life support systems for long term manned planetary missions, e.g. a lunar base or missions to Mars. In order to understand the potential evolution of the MELiSSA concept towards its future use in the referred manned planetary mission context the MELiSSA Space Adaptation (MSA) activity has been undertaken. MSA's main objective is to model the different MELiSSA compartments using EcosimPro R , a specialized simulation tool for life support applications, in order to define a preliminary MELiSSA implementation for service in a man-tended lunar base scenario, with a four-member crew rotating in six-month increments, and performing the basic LSS functions of air revitalization, food production, and waste and water recycling. The MELiSSA EcosimPro R Model features a dedicated library for the different MELiSSA elements (bioreactors, greenhouse, crew, interconnecting elements, etc.). It is used to dimension the MELiSSA system in terms of major parameters like mass, volume and energy needs, evaluate the accuracy of the results and define the strategy for a progressive loop closure from the initial required performance (approx.100 The MELiSSA configuration(s) obtained through the EcosimPro R simulation are further analysed using the Advanced Life Support System Evaluation (ALISSE) metric, relying on mass, energy, efficiency, human risk, system reliability and crew time, for trade-off and optimization of results. The outcome of the MSA activity is, thus, a potential Life Support System architecture description, based on combined MELiSSA and other physico-chemical technologies, defining its expected performance, associated operational conditions and logistic needs.

  12. USER MANUAL FOR THE EPA THIRD-GENERATION AIR QUALITY MODELING SYSTEM (MODELS-3 VERSION 3.0)

    EPA Science Inventory

    Models-3 is a flexible software system designed to simplify the development and use of environmental assessment and other decision support tools. It is designed for applications ranging from regulatory and policy analysis to understanding the complex interactions of atmospheri...

  13. 77 FR 25904 - Acequinocyl; Pesticide Tolerances

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-02

    .../oppefed1/models/water/index.htm . Based on the Pesticide Root Zone Model/Exposure Analysis Modeling System... Classification System (NAICS) codes have been provided to assist you and others in determining whether this... comments received in response to the notice of filing. Based upon review of the data supporting the...

  14. 75 FR 40741 - Hexythiazox; Pesticide Tolerances

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-14

    .../oppefed1/models/water/index.htm . Based on the Pesticide Root Zone Model /Exposure Analysis Modeling System... affected. The North American Industrial Classification System (NAICS) codes have been provided to assist... review of the data supporting the petition, EPA issued a notice in the Federal Register of March 17, 2010...

  15. Triple Value System Dynamics Modeling to Help Stakeholders Engage with Food-Energy-Water Problems

    EPA Science Inventory

    Triple Value (3V) Community scoping projects and Triple Value Simulation (3VS) models help decision makers and stakeholders apply systems-analysis methodology to complex problems related to food production, water quality, and energy use. 3VS models are decision support tools that...

  16. SMOKE TOOL FOR MODELS-3 VERSION 4.1 STRUCTURE AND OPERATION DOCUMENTATION

    EPA Science Inventory

    The SMOKE Tool is a part of the Models-3 system, a flexible software system designed to simplify the development and use of air quality models and other environmental decision support tools. The SMOKE Tool is an input processor for SMOKE, (Sparse Matrix Operator Kernel Emissio...

  17. Verification of an analytic modeler for capillary pump loop thermal control systems

    NASA Technical Reports Server (NTRS)

    Schweickart, R. B.; Neiswanger, L.; Ku, J.

    1987-01-01

    A number of computer programs have been written to model two-phase heat transfer systems for space use. These programs support the design of thermal control systems and provide a method of predicting their performance in the wide range of thermal environments of space. Predicting the performance of one such system known as the capillary pump loop (CPL) is the intent of the CPL Modeler. By modeling two developed CPL systems and comparing the results with actual test data, the CPL Modeler has proven useful in simulating CPL operation. Results of the modeling effort are discussed, together with plans for refinements to the modeler.

  18. Effort to Accelerate MBSE Adoption and Usage at JSC

    NASA Technical Reports Server (NTRS)

    Wang, Lui; Izygon, Michel; Okron, Shira; Garner, Larry; Wagner, Howard

    2016-01-01

    This paper describes the authors' experience in adopting Model Based System Engineering (MBSE) at the NASA/Johnson Space Center (JSC). Since 2009, NASA/JSC has been applying MBSE using the Systems Modeling Language (SysML) to a number of advanced projects. Models integrate views of the system from multiple perspectives, capturing the system design information for multiple stakeholders. This method has allowed engineers to better control changes, improve traceability from requirements to design and manage the numerous interactions between components. As the project progresses, the models become the official source of information and used by multiple stakeholders. Three major types of challenges that hamper the adoption of the MBSE technology are described. These challenges are addressed by a multipronged approach that includes educating the main stakeholders, implementing an organizational infrastructure that supports the adoption effort, defining a set of modeling guidelines to help engineers in their modeling effort, providing a toolset that support the generation of valuable products, and providing a library of reusable models. JSC project case studies are presented to illustrate how the proposed approach has been successfully applied.

  19. Multi-Agent Architecture with Support to Quality of Service and Quality of Control

    NASA Astrophysics Data System (ADS)

    Poza-Luján, Jose-Luis; Posadas-Yagüe, Juan-Luis; Simó-Ten, Jose-Enrique

    Multi Agent Systems (MAS) are one of the most suitable frameworks for the implementation of intelligent distributed control system. Agents provide suitable flexibility to give support to implied heterogeneity in cyber-physical systems. Quality of Service (QoS) and Quality of Control (QoC) parameters are commonly utilized to evaluate the efficiency of the communications and the control loop. Agents can use the quality measures to take a wide range of decisions, like suitable placement on the control node or to change the workload to save energy. This article describes the architecture of a multi agent system that provides support to QoS and QoC parameters to optimize de system. The architecture uses a Publish-Subscriber model, based on Data Distribution Service (DDS) to send the control messages. Due to the nature of the Publish-Subscribe model, the architecture is suitable to implement event-based control (EBC) systems. The architecture has been called FSACtrl.

  20. SCOSII OL: A dedicated language for mission operations

    NASA Technical Reports Server (NTRS)

    Baldi, Andrea; Elgaard, Dennis; Lynenskjold, Steen; Pecchioli, Mauro

    1994-01-01

    The Spacecraft Control and Operations System 2 (SCOSII) is the new generation of Mission Control Systems (MCS) to be used at ESOC. The system is generic because it offers a collection of standard functions configured through a database upon which a dedicated MCS is established for a given mission. An integral component of SCOSII is the support of a dedicated Operations Language (OL). The spacecraft operation engineers edit, test, validate, and install OL scripts as part of the configuration of the system with, e.g., expressions for computing derived parameters and procedures for performing flight operations, all without involvement of software support engineers. A layered approach has been adopted for the implementation centered around the explicit representation of a data model. The data model is object-oriented defining the structure of the objects in terms of attributes (data) and services (functions) which can be accessed by the OL. SCOSII supports the creation of a mission model. System elements as, e.g., a gyro are explicit, as are the attributes which described them and the services they provide. The data model driven approach makes it possible to take immediate advantage of this higher-level of abstraction, without requiring expansion of the language. This article describes the background and context leading to the OL, concepts, language facilities, implementation, status and conclusions found so far.

  1. Effects of Learning Support in Simulation-Based Physics Learning

    ERIC Educational Resources Information Center

    Chang, Kuo-En; Chen, Yu-Lung; Lin, He-Yan; Sung, Yao-Ting

    2008-01-01

    This paper describes the effects of learning support on simulation-based learning in three learning models: experiment prompting, a hypothesis menu, and step guidance. A simulation learning system was implemented based on these three models, and the differences between simulation-based learning and traditional laboratory learning were explored in…

  2. Screening in School-Wide Positive Behavior Supports: Methodological Comparisons

    ERIC Educational Resources Information Center

    Hall, Morgan

    2012-01-01

    Many schools have adopted programming designed to promote students' behavioral aptitude. A specific type of programming with this focus is School Wide Positive Behavior Supports (SWPBS), which combines positive behavior techniques with a system wide problem solving model. Aspects of this model are still being developed in the research…

  3. Modeling Positive Behavior Interventions and Supports for Preservice Teachers

    ERIC Educational Resources Information Center

    Hill, Doris Adams; Flores, Margaret M.

    2014-01-01

    The authors modeled programwide positive behavior interventions and supports (PBIS) principles to 26 preservice teachers during consolidated yearly extended school year (ESY) services delivered to elementary students from four school districts. While PBIS were in place for preservice teachers to implement with students, a similar system was…

  4. STEPS: efficient simulation of stochastic reaction-diffusion models in realistic morphologies.

    PubMed

    Hepburn, Iain; Chen, Weiliang; Wils, Stefan; De Schutter, Erik

    2012-05-10

    Models of cellular molecular systems are built from components such as biochemical reactions (including interactions between ligands and membrane-bound proteins), conformational changes and active and passive transport. A discrete, stochastic description of the kinetics is often essential to capture the behavior of the system accurately. Where spatial effects play a prominent role the complex morphology of cells may have to be represented, along with aspects such as chemical localization and diffusion. This high level of detail makes efficiency a particularly important consideration for software that is designed to simulate such systems. We describe STEPS, a stochastic reaction-diffusion simulator developed with an emphasis on simulating biochemical signaling pathways accurately and efficiently. STEPS supports all the above-mentioned features, and well-validated support for SBML allows many existing biochemical models to be imported reliably. Complex boundaries can be represented accurately in externally generated 3D tetrahedral meshes imported by STEPS. The powerful Python interface facilitates model construction and simulation control. STEPS implements the composition and rejection method, a variation of the Gillespie SSA, supporting diffusion between tetrahedral elements within an efficient search and update engine. Additional support for well-mixed conditions and for deterministic model solution is implemented. Solver accuracy is confirmed with an original and extensive validation set consisting of isolated reaction, diffusion and reaction-diffusion systems. Accuracy imposes upper and lower limits on tetrahedron sizes, which are described in detail. By comparing to Smoldyn, we show how the voxel-based approach in STEPS is often faster than particle-based methods, with increasing advantage in larger systems, and by comparing to MesoRD we show the efficiency of the STEPS implementation. STEPS simulates models of cellular reaction-diffusion systems with complex boundaries with high accuracy and high performance in C/C++, controlled by a powerful and user-friendly Python interface. STEPS is free for use and is available at http://steps.sourceforge.net/

  5. STEPS: efficient simulation of stochastic reaction–diffusion models in realistic morphologies

    PubMed Central

    2012-01-01

    Background Models of cellular molecular systems are built from components such as biochemical reactions (including interactions between ligands and membrane-bound proteins), conformational changes and active and passive transport. A discrete, stochastic description of the kinetics is often essential to capture the behavior of the system accurately. Where spatial effects play a prominent role the complex morphology of cells may have to be represented, along with aspects such as chemical localization and diffusion. This high level of detail makes efficiency a particularly important consideration for software that is designed to simulate such systems. Results We describe STEPS, a stochastic reaction–diffusion simulator developed with an emphasis on simulating biochemical signaling pathways accurately and efficiently. STEPS supports all the above-mentioned features, and well-validated support for SBML allows many existing biochemical models to be imported reliably. Complex boundaries can be represented accurately in externally generated 3D tetrahedral meshes imported by STEPS. The powerful Python interface facilitates model construction and simulation control. STEPS implements the composition and rejection method, a variation of the Gillespie SSA, supporting diffusion between tetrahedral elements within an efficient search and update engine. Additional support for well-mixed conditions and for deterministic model solution is implemented. Solver accuracy is confirmed with an original and extensive validation set consisting of isolated reaction, diffusion and reaction–diffusion systems. Accuracy imposes upper and lower limits on tetrahedron sizes, which are described in detail. By comparing to Smoldyn, we show how the voxel-based approach in STEPS is often faster than particle-based methods, with increasing advantage in larger systems, and by comparing to MesoRD we show the efficiency of the STEPS implementation. Conclusion STEPS simulates models of cellular reaction–diffusion systems with complex boundaries with high accuracy and high performance in C/C++, controlled by a powerful and user-friendly Python interface. STEPS is free for use and is available at http://steps.sourceforge.net/ PMID:22574658

  6. A Tabletop Tool for Modeling Life Support Systems

    NASA Technical Reports Server (NTRS)

    Ramachandran, N.; Majumdar, A.; McDaniels, D.; Stewart, E.

    2003-01-01

    This paper describes the development plan for a comprehensive research and diagnostic tool for aspects of advanced life support systems in space-based laboratories. Specifically it aims to build a high fidelity tabletop model that can be used for the purpose of risk mitigation, failure mode analysis, contamination tracking, and testing reliability. We envision a comprehensive approach involving experimental work coupled with numerical simulation to develop this diagnostic tool. It envisions a 10% scale transparent model of a space platform such as the International Space Station that operates with water or a specific matched index of refraction liquid as the working fluid. This allows the scaling of a 10 ft x 10 ft x 10 ft room with air flow to 1 ft x 1 ft x 1 ft tabletop model with water/liquid flow. Dynamic similitude for this length scale dictates model velocities to be 67% of full-scale and thereby the time scale of the model to represent 15% of the full- scale system; meaning identical processes in the model are completed in 15% of the full- scale time. The use of an index matching fluid (fluid that matches the refractive index of cast acrylic, the model material) allows making the entire model (with complex internal geometry) transparent and hence conducive to non-intrusive optical diagnostics. So using such a system one can test environment control parameters such as core flows (axial flows), cross flows (from registers and diffusers), potential problem areas such as flow short circuits, inadequate oxygen content, build up of other gases beyond desirable levels, test mixing processes within the system at local nodes or compartments and assess the overall system performance. The system allows quantitative measurements of contaminants introduced in the system and allows testing and optimizing the tracking process and removal of contaminants. The envisaged system will be modular and hence flexible for quick configuration change and subsequent testing. The data and inferences from the tests will allow for improvements in the development and design of next generation life support systems and configurations.

  7. Virtual Libraries: Interactive Support Software and an Application in Chaotic Models.

    ERIC Educational Resources Information Center

    Katsirikou, Anthi; Skiadas, Christos; Apostolou, Apostolos; Rompogiannakis, Giannis

    This paper begins with a discussion of the characteristics and the singularity of chaotic systems, including dynamic systems theory, chaotic orbit, fractals, chaotic attractors, and characteristics of chaotic systems. The second section addresses the digital libraries (DL) concept and the appropriateness of chaotic models, including definition and…

  8. Knowledge Management System Model for Learning Organisations

    ERIC Educational Resources Information Center

    Amin, Yousif; Monamad, Roshayu

    2017-01-01

    Based on the literature of knowledge management (KM), this paper reports on the progress of developing a new knowledge management system (KMS) model with components architecture that are distributed over the widely-recognised socio-technical system (STS) aspects to guide developers for selecting the most applicable components to support their KM…

  9. [Analysis of tension-distraction state in the shin bones fractures in conditions of external fixation with application of apparatuses with different spatially oriented supports].

    PubMed

    Hutsuliak, V I

    2014-09-01

    In Autodesk Inventor 11 program, using method of end-capping elements, a three- dimensional computeric modelling of biomechanical systems of two models was conducted: I - "tibia - Ilizarov's apparatus with concentric location of supports"; II - "tibia - Ilizarov's apparatus with excentric location of supports". The loading, which was applied towards distal fragment in 6 standard degrees of freedom, was modelled for studying of the fixation rigidity of tibial fragments in these systems. Determination of the loading value in various directions, in which the fragment have had shifted by 1 mm, have constituted the main task of the investigation. In a model II a rigidity of the fragments fixation, in comparison with such in a model I, is bigger by 631.43% - while applying a compression loading, by 8.35 - 31.75% - the transversal one and by 19.72% - the rotation loading. While choosing the method of transosteal osteosynthesis of the shin bones the advantage, have the apparatuses with excentric location of supports, what secures the enhanced rigidity of the fragments fixation in comparison with such in apparatuses with concentric location of supports. Although, even in excentric location of supports in the apparatus the fixation rigidity is insufficient for early full loading of the traumatized extremity while walking. It is necessary to elaborate such apparatus, the form of which may be adopted toanatomic configuration of segment.

  10. CCSDS Advanced Orbiting Systems Virtual Channel Access Service for QoS MACHETE Model

    NASA Technical Reports Server (NTRS)

    Jennings, Esther H.; Segui, John S.

    2011-01-01

    To support various communications requirements imposed by different missions, interplanetary communication protocols need to be designed, validated, and evaluated carefully. Multimission Advanced Communications Hybrid Environment for Test and Evaluation (MACHETE), described in "Simulator of Space Communication Networks" (NPO-41373), NASA Tech Briefs, Vol. 29, No. 8 (August 2005), p. 44, combines various tools for simulation and performance analysis of space networks. The MACHETE environment supports orbital analysis, link budget analysis, communications network simulations, and hardware-in-the-loop testing. By building abstract behavioral models of network protocols, one can validate performance after identifying the appropriate metrics of interest. The innovators have extended the MACHETE model library to include a generic link-layer Virtual Channel (VC) model supporting quality-of-service (QoS) controls based on IP streams. The main purpose of this generic Virtual Channel model addition was to interface fine-grain flow-based QoS (quality of service) between the network and MAC layers of the QualNet simulator, a commercial component of MACHETE. This software model adds the capability of mapping IP streams, based on header fields, to virtual channel numbers, allowing extended QoS handling at link layer. This feature further refines the QoS v existing at the network layer. QoS at the network layer (e.g. diffserv) supports few QoS classes, so data from one class will be aggregated together; differentiating between flows internal to a class/priority is not supported. By adding QoS classification capability between network and MAC layers through VC, one maps multiple VCs onto the same physical link. Users then specify different VC weights, and different queuing and scheduling policies at the link layer. This VC model supports system performance analysis of various virtual channel link-layer QoS queuing schemes independent of the network-layer QoS systems.

  11. The Modular Modeling System (MMS): A toolbox for water- and environmental-resources management

    USGS Publications Warehouse

    Leavesley, G.H.; Markstrom, S.L.; Viger, R.J.; Hay, L.E.; ,

    2005-01-01

    The increasing complexity of water- and environmental-resource problems require modeling approaches that incorporate knowledge from a broad range of scientific and software disciplines. To address this need, the U.S. Geological Survey (USGS) has developed the Modular Modeling System (MMS). MMS is an integrated system of computer software for model development, integration, and application. Its modular design allows a high level of flexibility and adaptability to enable modelers to incorporate their own software into a rich array of built-in models and modeling tools. These include individual process models, tightly coupled models, loosely coupled models, and fully- integrated decision support systems. A geographic information system (GIS) interface, the USGS GIS Weasel, has been integrated with MMS to enable spatial delineation and characterization of basin and ecosystem features, and to provide objective parameter-estimation methods for models using available digital data. MMS provides optimization and sensitivity-analysis tools to analyze model parameters and evaluate the extent to which uncertainty in model parameters affects uncertainty in simulation results. MMS has been coupled with the Bureau of Reclamation object-oriented reservoir and river-system modeling framework, RiverWare, to develop models to evaluate and apply optimal resource-allocation and management strategies to complex, operational decisions on multipurpose reservoir systems and watersheds. This decision support system approach has been developed, tested, and implemented in the Gunnison, Yakima, San Joaquin, Rio Grande, and Truckee River basins of the western United States. MMS is currently being coupled with the U.S. Forest Service model SIMulating Patterns and Processes at Landscape Scales (SIMPPLLE) to assess the effects of alternative vegetation-management strategies on a variety of hydrological and ecological responses. Initial development and testing of the MMS-SIMPPLLE integration is being conducted on the Colorado Plateau region of the western United Sates.

  12. Integration of tools for the Design and Assessment of High-Performance, Highly Reliable Computing Systems (DAHPHRS), phase 1

    NASA Technical Reports Server (NTRS)

    Scheper, C.; Baker, R.; Frank, G.; Yalamanchili, S.; Gray, G.

    1992-01-01

    Systems for Space Defense Initiative (SDI) space applications typically require both high performance and very high reliability. These requirements present the systems engineer evaluating such systems with the extremely difficult problem of conducting performance and reliability trade-offs over large design spaces. A controlled development process supported by appropriate automated tools must be used to assure that the system will meet design objectives. This report describes an investigation of methods, tools, and techniques necessary to support performance and reliability modeling for SDI systems development. Models of the JPL Hypercubes, the Encore Multimax, and the C.S. Draper Lab Fault-Tolerant Parallel Processor (FTPP) parallel-computing architectures using candidate SDI weapons-to-target assignment algorithms as workloads were built and analyzed as a means of identifying the necessary system models, how the models interact, and what experiments and analyses should be performed. As a result of this effort, weaknesses in the existing methods and tools were revealed and capabilities that will be required for both individual tools and an integrated toolset were identified.

  13. Catalog of Wargaming and Military Simulation Models

    DTIC Science & Technology

    1989-09-01

    and newly developed software models. This system currently (and will in the near term) supports battle force architecture design and evaluation...aborted air refuelings, or replacement aircraft. PLANNED IMPROVEMENTS AND MODIFICATIONS: Completion of model. INPUT: Input fields are required to...vehicle mobility evaluation model). PROPONENT: Mobility Systems Division, Geotechnical Laboratory, U.S. Army Engineer Waterways Experiment Station

  14. Adding Innovation Diffusion Theory to the Technology Acceptance Model: Supporting Employees' Intentions to Use E-Learning Systems

    ERIC Educational Resources Information Center

    Lee, Yi-Hsuan; Hsieh, Yi-Chuan; Hsu, Chia-Ning

    2011-01-01

    This study intends to investigate factors affecting business employees' behavioral intentions to use the e-learning system. Combining the innovation diffusion theory (IDT) with the technology acceptance model (TAM), the present study proposes an extended technology acceptance model. The proposed model was tested with data collected from 552…

  15. Advanced Collaborative Environments Supporting Systems Integration and Design

    DTIC Science & Technology

    2003-03-01

    concurrently view a virtual system or product model while maintaining natural, human communication . These virtual systems operate within a computer-generated...These environments allow multiple individuals to concurrently view a virtual system or product model while simultaneously maintaining natural, human ... communication . As a result, TARDEC researchers and system developers are using this advanced high-end visualization technology to develop future

  16. Computer-aided-engineering system for modeling and analysis of ECLSS integration testing

    NASA Technical Reports Server (NTRS)

    Sepahban, Sonbol

    1987-01-01

    The accurate modeling and analysis of two-phase fluid networks found in environmental control and life support systems is presently undertaken by computer-aided engineering (CAE) techniques whose generalized fluid dynamics package can solve arbitrary flow networks. The CAE system for integrated test bed modeling and analysis will also furnish interfaces and subsystem/test-article mathematical models. Three-dimensional diagrams of the test bed are generated by the system after performing the requisite simulation and analysis.

  17. System Operations Studies for Automated Gateway Transit Systems - Detailed Station Model Programmer's Manual.

    DOT National Transportation Integrated Search

    1982-01-01

    The Detailed Station Model (DSM) provides operational and performance measures of alternative station configurations and management policies with respect to vehicle and passenger capabilities. It provides an analytic tool to support tradeoff studies ...

  18. Mission Critical Computer Resources Management Guide

    DTIC Science & Technology

    1988-09-01

    Support Analyzers, Management, Generators Environments Word Workbench Processors Showroom System Structure HO Compilers IMath 1OperatingI Functions I...Simulated Automated, On-Line Generators Support Exercises Catalog, Function Environments Formal Spec Libraries Showroom System Structure I ADA Trackers I...shown in Figure 13-2. In this model, showrooms of larger more capable piecesare developed off-line for later integration and use in multiple systems

  19. Ecological Systems Theory: Using Spheres of Influence to Support Small-unit Climate and Training

    DTIC Science & Technology

    2016-03-01

    identifying the model’s elements and influential individuals, define spheres of influence and construct a model that details the ecological systems...Research Report 1997 Ecological Systems Theory: Using Spheres of Influence to Support Small-unit Climate and Training...Technical review by: Sena Garven, U.S. Army Research Institute Michael D. Wood , Walter Reed Army Institute of Research

  20. Achieving control and interoperability through unified model-based systems and software engineering

    NASA Technical Reports Server (NTRS)

    Rasmussen, Robert; Ingham, Michel; Dvorak, Daniel

    2005-01-01

    Control and interoperation of complex systems is one of the most difficult challenges facing NASA's Exploration Systems Mission Directorate. An integrated but diverse array of vehicles, habitats, and supporting facilities, evolving over the long course of the enterprise, must perform ever more complex tasks while moving steadily away from the sphere of ground support and intervention.

  1. On data modeling for neurological application

    NASA Astrophysics Data System (ADS)

    Woźniak, Karol; Mulawka, Jan

    The aim of this paper is to design and implement information system containing large database dedicated to support neurological-psychiatric examinations focused on human brain after stroke. This approach encompasses the following steps: analysis of software requirements, presentation of the problem solving concept, design and implementation of the final information system. Certain experiments were performed in order to verify the correctness of the project ideas. The approach can be considered as an interdisciplinary venture. Elaboration of the system architecture, data model and the tools supporting medical examinations are provided. The achievement of the design goals is demonstrated in the final conclusion.

  2. Life support systems analysis and technical trades for a lunar outpost

    NASA Technical Reports Server (NTRS)

    Ferrall, J. F.; Ganapathi, G. B.; Rohatgi, N. K.; Seshan, P. K.

    1994-01-01

    The NASA/JPL life support systems analysis (LISSA) software tool was used to perform life support system analysis and technology trades for a Lunar Outpost. The life support system was modeled using a chemical process simulation program on a steady-state, one-person, daily basis. Inputs to the LiSSA model include metabolic balance load data, hygiene load data, technology selection, process operational assumptions and mission parameter assumptions. A baseline set of technologies has been used against which comparisons have been made by running twenty-two cases with technology substitutions. System, subsystem, and technology weights and powers are compared for a crew of 4 and missions of 90 and 600 days. By assigning a weight value to power, equivalent system weights are compared. Several less-developed technologies show potential advantages over the baseline. Solid waste treatment technologies show weight and power disadvantages but one could have benefits associated with the reduction of hazardous wastes and very long missions. Technology development towards reducing the weight of resupplies and lighter materials of construction was recommended. It was also recommended that as technologies are funded for development, contractors should be required to generate and report data useful for quantitative technology comparisons.

  3. Policy-Relevant Systematic Reviews to Strengthen Health Systems: Models and Mechanisms to Support Their Production

    ERIC Educational Resources Information Center

    Oliver, Sandra; Dickson, Kelly

    2016-01-01

    Support for producing systematic reviews about health systems is less well developed than for those about clinical practice. From interviewing policy makers and systematic reviewers we identified institutional mechanisms which bring systematic reviews and policy priorities closer by harnessing organisational and individual motivations, emphasising…

  4. Support Systems for Educationally Disadvantaged Students and Assuring Practitioner Competence

    ERIC Educational Resources Information Center

    Griffiths, Kenneth A.

    1977-01-01

    Student support systems developed and utilized in a three-year training effort with more than 104 Native American social work students at the School of Social Work, University of Utah are assessed. Focus is on recruitment, communication, modeling, counseling, follow-up, student involvement, and discrimination education. (Author/LBH)

  5. Analyzing Hypermedia and Internet Communication Models in Educational Applications

    ERIC Educational Resources Information Center

    Saxena, Anshu; Kothari, D. P.; Jain, Sudhir K.; Khurana, Amulya

    2004-01-01

    Hypermedia has long been considered to have great potential to support educational tasks and applications. Many success stories of hypermedia support in education have been reported. Much of this work has been done in the context of traditional closed hypermedia systems rather than more contemporary open hypermedia systems. Developing hypermedia…

  6. A Spatial Analysis and Modeling System (SAMS) for environment management

    NASA Technical Reports Server (NTRS)

    Vermillion, Charles H.; Stetina, Fran; Hill, John; Chan, Paul; Jaske, Robert; Rochon, Gilbert

    1992-01-01

    This is a proposal to develop a uniform global environmental data gathering and distribution system to support the calibration and validation of remotely sensed data. SAMS is based on an enhanced version of FE MA's Integrated Emergency Management Information Systems and the Department of Defense's Air Land Battlefield Environment Software Systems. This system consists of state-of-the-art graphics and visualization techniques, simulation models, database management and expert systems for conducting environmental and disaster preparedness studies. This software package will be integrated into various Landsat and UNEP-GRID stations which are planned to become direct readout stations during the EOS timeframe. This system would be implemented as a pilot program to support the Tropical Rainfall Measuring Mission (TRMM). This will be a joint NASA-FEMA-University-Industry project.

  7. School-related social support and subjective well-being in school among adolescents: The role of self-system factors.

    PubMed

    Tian, Lili; Zhao, Jie; Huebner, E Scott

    2015-12-01

    This 6-week longitudinal study aimed to examine a moderated mediation model that may explain the link between school-related social support (i.e., teacher support and classmate support) and optimal subjective well-being in school among adolescents (n = 1316). Analyses confirmed the hypothesized model that scholastic competence partially mediated the relations between school-related social support and subjective well-being in school, and social acceptance moderated the mediation process in the school-related social support--> subjective well-being in school path and in the scholastic competence--> subjective well-being in school path. The findings suggested that both social contextual factors (e.g., school-related social support) and self-system factors (e.g., scholastic competence and social acceptance) are crucial for adolescents' optimal subjective well-being in school. Limitations and practical applications of the study were discussed. Copyright © 2015 The Foundation for Professionals in Services for Adolescents. Published by Elsevier Ltd. All rights reserved.

  8. Modeling a Nursing Guideline with Standard Terminology and Unified Modeling Language for a Nursing Decision Support System: A Case Study.

    PubMed

    Choi, Jeeyae; Jansen, Kay; Coenen, Amy

    In recent years, Decision Support Systems (DSSs) have been developed and used to achieve "meaningful use". One approach to developing DSSs is to translate clinical guidelines into a computer-interpretable format. However, there is no specific guideline modeling approach to translate nursing guidelines to computer-interpretable guidelines. This results in limited use of DSSs in nursing. Unified modeling language (UML) is a software writing language known to accurately represent the end-users' perspective, due to its expressive characteristics. Furthermore, standard terminology enabled DSSs have been shown to smoothly integrate into existing health information systems. In order to facilitate development of nursing DSSs, the UML was used to represent a guideline for medication management for older adults encode with the International Classification for Nursing Practice (ICNP®). The UML was found to be a useful and sufficient tool to model a nursing guideline for a DSS.

  9. Modeling a Nursing Guideline with Standard Terminology and Unified Modeling Language for a Nursing Decision Support System: A Case Study

    PubMed Central

    Choi, Jeeyae; Jansen, Kay; Coenen, Amy

    2015-01-01

    In recent years, Decision Support Systems (DSSs) have been developed and used to achieve “meaningful use”. One approach to developing DSSs is to translate clinical guidelines into a computer-interpretable format. However, there is no specific guideline modeling approach to translate nursing guidelines to computer-interpretable guidelines. This results in limited use of DSSs in nursing. Unified modeling language (UML) is a software writing language known to accurately represent the end-users’ perspective, due to its expressive characteristics. Furthermore, standard terminology enabled DSSs have been shown to smoothly integrate into existing health information systems. In order to facilitate development of nursing DSSs, the UML was used to represent a guideline for medication management for older adults encode with the International Classification for Nursing Practice (ICNP®). The UML was found to be a useful and sufficient tool to model a nursing guideline for a DSS. PMID:26958174

  10. Use of IDEF modeling to develop an information management system for drug and alcohol outpatient treatment clinics

    NASA Astrophysics Data System (ADS)

    Hoffman, Kenneth J.

    1995-10-01

    Few information systems create a standardized clinical patient record in which there are discrete and concise observations of patient problems and their resolution. Clinical notes usually are narratives which don't support an aggregate and systematic outcome analysis. Many programs collect information on diagnosis and coded procedures but are not focused on patient problems. Integrated definition (IDEF) methodology has been accepted by the Department of Defense as part of the Corporate Information Management Initiative and serves as the foundation that establishes a need for automation. We used IDEF modeling to describe present and idealized patient care activities. A logical IDEF data model was created to support those activities. The modeling process allows for accurate cost estimates based upon performed activities, efficient collection of relevant information, and outputs which allow real- time assessments of process and outcomes. This model forms the foundation for a prototype automated clinical information system (ACIS).

  11. HRST architecture modeling and assessments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Comstock, D.A.

    1997-01-01

    This paper presents work supporting the assessment of advanced concept options for the Highly Reusable Space Transportation (HRST) study. It describes the development of computer models as the basis for creating an integrated capability to evaluate the economic feasibility and sustainability of a variety of system architectures. It summarizes modeling capabilities for use on the HRST study to perform sensitivity analysis of alternative architectures (consisting of different combinations of highly reusable vehicles, launch assist systems, and alternative operations and support concepts) in terms of cost, schedule, performance, and demand. In addition, the identification and preliminary assessment of alternative market segmentsmore » for HRST applications, such as space manufacturing, space tourism, etc., is described. Finally, the development of an initial prototype model that can begin to be used for modeling alternative HRST concepts at the system level is presented. {copyright} {ital 1997 American Institute of Physics.}« less

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horiike, S.; Okazaki, Y.

    This paper describes a performance estimation tool developed for modeling and simulation of open distributed energy management systems to support their design. The approach of discrete event simulation with detailed models is considered for efficient performance estimation. The tool includes basic models constituting a platform, e.g., Ethernet, communication protocol, operating system, etc. Application softwares are modeled by specifying CPU time, disk access size, communication data size, etc. Different types of system configurations for various system activities can be easily studied. Simulation examples show how the tool is utilized for the efficient design of open distributed energy management systems.

  13. A Web-Based Decision Support System for Assessing Regional Water-Quality Conditions and Management Actions

    NASA Astrophysics Data System (ADS)

    Booth, N. L.; Everman, E.; Kuo, I.; Sprague, L.; Murphy, L.

    2011-12-01

    A new web-based decision support system has been developed as part of the U.S. Geological Survey (USGS) National Water Quality Assessment Program's (NAWQA) effort to provide ready access to Spatially Referenced Regressions On Watershed attributes (SPARROW) results of stream water-quality conditions and to offer sophisticated scenario testing capabilities for research and water-quality planning via an intuitive graphical user interface with a map-based display. The SPARROW Decision Support System (DSS) is delivered through a web browser over an Internet connection, making it widely accessible to the public in a format that allows users to easily display water-quality conditions, distribution of nutrient sources, nutrient delivery to downstream waterbodies, and simulations of altered nutrient inputs including atmospheric and agricultural sources. The DSS offers other features for analysis including various background map layers, model output exports, and the ability to save and share prediction scenarios. SPARROW models currently supported by the DSS are based on the modified digital versions of the 1:500,000-scale River Reach File (RF1) and 1:100,000-scale National Hydrography Dataset (medium-resolution, NHDPlus) stream networks. The underlying modeling framework and server infrastructure illustrate innovations in the information technology and geosciences fields for delivering SPARROW model predictions over the web by performing intensive model computations and map visualizations of the predicted conditions within the stream network.

  14. Toward an evidence-based system for innovation support for implementing innovations with quality: tools, training, technical assistance, and quality assurance/quality improvement.

    PubMed

    Wandersman, Abraham; Chien, Victoria H; Katz, Jason

    2012-12-01

    An individual or organization that sets out to implement an innovation (e.g., a new technology, program, or policy) generally requires support. In the Interactive Systems Framework for Dissemination and Implementation, a Support System should work with Delivery Systems (national, state and/or local entities such as health and human service organizations, community-based organizations, schools) to enhance their capacity for quality implementation of innovations. The literature on the Support System [corrected] has been underresearched and under-developedThis article begins to conceptualize theory, research, and action for an evidence-based system for innovation support (EBSIS). EBSIS describes key priorities for strengthening the science and practice of support. The major goal of EBSIS is to enhance the research and practice of support in order to build capacity in the Delivery System for implementing innovations with quality, and thereby, help the Delivery System achieve outcomes. EBSIS is guided by a logic model that includes four key support components: tools, training, technical assistance, and quality assurance/quality improvement. EBSIS uses the Getting To Outcomes approach to accountability to aid the identification and synthesis of concepts, tools, and evidence for support. We conclude with some discussion of the current status of EBSIS and possible next steps, including the development of collaborative researcher-practitioner-funder-consumer partnerships to accelerate accumulation of knowledge on the Support System.

  15. Water quality modeling in the systems impact assessment model for the Klamath River basin - Keno, Oregon to Seiad Valley, California

    USGS Publications Warehouse

    Hanna, R. Blair; Campbell, Sharon G.

    2000-01-01

    This report describes the water quality model developed for the Klamath River System Impact Assessment Model (SIAM). The Klamath River SIAM is a decision support system developed by the authors and other US Geological Survey (USGS), Midcontinent Ecological Science Center staff to study the effects of basin-wide water management decisions on anadromous fish in the Klamath River. The Army Corps of Engineersa?? HEC5Q water quality modeling software was used to simulate water temperature, dissolved oxygen and conductivity in 100 miles of the Klamath River Basin in Oregon and California. The water quality model simulated three reservoirs and the mainstem Klamath River influenced by the Shasta and Scott River tributaries. Model development, calibration and two validation exercises are described as well as the integration of the water quality model into the SIAM decision support system software. Within SIAM, data are exchanged between the water quantity model (MODSIM), the water quality model (HEC5Q), the salmon population model (SALMOD) and methods for evaluating ecosystem health. The overall predictive ability of the water quality model is described in the context of calibration and validation error statistics. Applications of SIAM and the water quality model are described.

  16. Specifications of a Simulation Model for a Local Area Network Design in Support of Stock Point Logistics Integrated Communications Environment (SPLICE).

    DTIC Science & Technology

    1982-10-01

    class queueing system with a preemptive -resume priority service discipline, as depicted in Figure 4.2. Concerning a SPLICLAN configuration a node can...processor can be modeled as a single resource, multi-class queueing system with a preemptive -resume priority structure as the one given in Figure 4.2. An...LOCAL AREA NETWORK DESIGN IN SUPPORT OF STOCK POINT LOGISTICS INTEGRATED COMMUNICATIONS ENVIRONMENT (SPLICE) by Ioannis Th. Mastrocostopoulos October

  17. Artificial intelligence based decision support for trumpeter swan management

    USGS Publications Warehouse

    Sojda, Richard S.

    2002-01-01

    The number of trumpeter swans (Cygnus buccinator) breeding in the Tri-State area where Montana, Idaho, and Wyoming come together has declined to just a few hundred pairs. However, these birds are part of the Rocky Mountain Population which additionally has over 3,500 birds breeding in Alberta, British Columbia, Northwest Territories, and Yukon Territory. To a large degree, these birds seem to have abandoned traditional migratory pathways in the flyway. Waterfowl managers have been interested in decision support tools that would help them explore simulated management scenarios in their quest towards reaching population recovery and the reestablishment of traditional migratory pathways. I have developed a decision support system to assist biologists with such management, especially related to wetland ecology. Decision support systems use a combination of models, analytical techniques, and information retrieval to help develop and evaluate appropriate alternatives. Swan management is a domain that is ecologically complex, and this complexity is compounded by spatial and temporal issues. As such, swan management is an inherently distributed problem. Therefore, the ecological context for modeling swan movements in response to management actions was built as a multiagent system of interacting intelligent agents that implements a queuing model representing swan migration. These agents accessed ecological knowledge about swans, their habitats, and flyway management principles from three independent expert systems. The agents were autonomous, had some sensory capability, and could respond to changing conditions. A key problem when developing ecological decision support systems is empirically determining that the recommendations provided are valid. Because Rocky Mountain trumpeter swans have been surveyed for a long period of time, I was able to compare simulated distributions provided by the system with actual field observations across 20 areas for the period 1988-2000. Applying the Matched Pairs Multivariate Permutation Test as a statistical tool was a new approach for comparing flyway distributions of waterfowl over time that seemed to work well. Based on this approach, the empirical evidence that I gathered led me to conclude that the base queuing model does accurately simulate swan distributions in the flyway. The system was insensitive to almost all model parameters tested. That remains perplexing, but might result from the base queuing model, itself, being particularly effective at representing the actual ecological diversity in the world of Rocky Mountain trumpeter swans, both spatial and temporally.

  18. Exploring a model-driven architecture (MDA) approach to health care information systems development.

    PubMed

    Raghupathi, Wullianallur; Umar, Amjad

    2008-05-01

    To explore the potential of the model-driven architecture (MDA) in health care information systems development. An MDA is conceptualized and developed for a health clinic system to track patient information. A prototype of the MDA is implemented using an advanced MDA tool. The UML provides the underlying modeling support in the form of the class diagram. The PIM to PSM transformation rules are applied to generate the prototype application from the model. The result of the research is a complete MDA methodology to developing health care information systems. Additional insights gained include development of transformation rules and documentation of the challenges in the application of MDA to health care. Design guidelines for future MDA applications are described. The model has the potential for generalizability. The overall approach supports limited interoperability and portability. The research demonstrates the applicability of the MDA approach to health care information systems development. When properly implemented, it has the potential to overcome the challenges of platform (vendor) dependency, lack of open standards, interoperability, portability, scalability, and the high cost of implementation.

  19. A data distribution strategy for the 1990s (files are not enough)

    NASA Technical Reports Server (NTRS)

    Tankenson, Mike; Wright, Steven

    1993-01-01

    Virtually all of the data distribution strategies being contemplated for the EOSDIS era revolve around the use of files. Most, if not all, mass storage technologies are based around the file model. However, files may be the wrong primary abstraction for supporting scientific users in the 1990s and beyond. Other abstractions more closely matching the respective scientific discipline of the end user may be more appropriate. JPL has built a unique multimission data distribution system based on a strategy of telemetry stream emulation to match the responsibilities of spacecraft team and ground data system operators supporting our nations suite of planetary probes. The current system, operational since 1989 and the launch of the Magellan spacecraft, is supporting over 200 users at 15 remote sites. This stream-oriented data distribution model can provide important lessons learned to builders of future data systems.

  20. BIM authoring for an image-based bridge maintenance system of existing cable-supported bridges

    NASA Astrophysics Data System (ADS)

    Dang, N. S.; Shim, C. S.

    2018-04-01

    Infrastructure nowadays is increasingly become the main backbone for the metropolitan development in general. Along with the rise of new facilities, the demand in term of maintenance for the existing bridges is indispensable. Recently, the terminology of “preventive maintenance” is not unfamiliar with the engineer, literally is the use of a bridge maintenance system (BMS) based on a BIM-oriented model. In this paper, the process of generating a BMS based on BIM model is introduced in detail. Data management for this BMS is separated into two modules: site inspection system and information management system. The noteworthy aspect of this model lays on the closed and automatic process of “capture image, generate the technical damage report, and upload/feedback to the BMS” in real-time. A pilot BMS system for a cable-supported bridge is presented which showed a good performance and potential to further development of preventive maintenance.

  1. Toward an integrated software platform for systems pharmacology

    PubMed Central

    Ghosh, Samik; Matsuoka, Yukiko; Asai, Yoshiyuki; Hsin, Kun-Yi; Kitano, Hiroaki

    2013-01-01

    Understanding complex biological systems requires the extensive support of computational tools. This is particularly true for systems pharmacology, which aims to understand the action of drugs and their interactions in a systems context. Computational models play an important role as they can be viewed as an explicit representation of biological hypotheses to be tested. A series of software and data resources are used for model development, verification and exploration of the possible behaviors of biological systems using the model that may not be possible or not cost effective by experiments. Software platforms play a dominant role in creativity and productivity support and have transformed many industries, techniques that can be applied to biology as well. Establishing an integrated software platform will be the next important step in the field. © 2013 The Authors. Biopharmaceutics & Drug Disposition published by John Wiley & Sons, Ltd. PMID:24150748

  2. Simulation of Attitude and Trajectory Dynamics and Control of Multiple Spacecraft

    NASA Technical Reports Server (NTRS)

    Stoneking, Eric T.

    2009-01-01

    Agora software is a simulation of spacecraft attitude and orbit dynamics. It supports spacecraft models composed of multiple rigid bodies or flexible structural models. Agora simulates multiple spacecraft simultaneously, supporting rendezvous, proximity operations, and precision formation flying studies. The Agora environment includes ephemerides for all planets and major moons in the solar system, supporting design studies for deep space as well as geocentric missions. The environment also contains standard models for gravity, atmospheric density, and magnetic fields. Disturbance force and torque models include aerodynamic, gravity-gradient, solar radiation pressure, and third-body gravitation. In addition to the dynamic and environmental models, Agora supports geometrical visualization through an OpenGL interface. Prototype models are provided for common sensors, actuators, and control laws. A clean interface accommodates linking in actual flight code in place of the prototype control laws. The same simulation may be used for rapid feasibility studies, and then used for flight software validation as the design matures. Agora is open-source and portable across computing platforms, making it customizable and extensible. It is written to support the entire GNC (guidance, navigation, and control) design cycle, from rapid prototyping and design analysis, to high-fidelity flight code verification. As a top-down design, Agora is intended to accommodate a large range of missions, anywhere in the solar system. Both two-body and three-body flight regimes are supported, as well as seamless transition between them. Multiple spacecraft may be simultaneously simulated, enabling simulation of rendezvous scenarios, as well as formation flying. Built-in reference frames and orbit perturbation dynamics provide accurate modeling of precision formation control.

  3. Customer-centered careflow modeling based on guidelines.

    PubMed

    Huang, Biqing; Zhu, Peng; Wu, Cheng

    2012-10-01

    In contemporary society, customer-centered health care, which stresses customer participation and long-term tailored care, is inevitably becoming a trend. Compared with the hospital or physician-centered healthcare process, the customer-centered healthcare process requires more knowledge and modeling such a process is extremely complex. Thus, building a care process model for a special customer is cost prohibitive. In addition, during the execution of a care process model, the information system should have flexibility to modify the model so that it adapts to changes in the healthcare process. Therefore, supporting the process in a flexible, cost-effective way is a key challenge for information technology. To meet this challenge, first, we analyze various kinds of knowledge used in process modeling, illustrate their characteristics, and detail their roles and effects in careflow modeling. Secondly, we propose a methodology to manage a lifecycle of the healthcare process modeling, with which models could be built gradually with convenience and efficiency. In this lifecycle, different levels of process models are established based on the kinds of knowledge involved, and the diffusion strategy of these process models is designed. Thirdly, architecture and prototype of the system supporting the process modeling and its lifecycle are given. This careflow system also considers the compatibility of legacy systems and authority problems. Finally, an example is provided to demonstrate implementation of the careflow system.

  4. Space station functional relationships analysis

    NASA Technical Reports Server (NTRS)

    Tullis, Thomas S.; Bied, Barbra R.

    1988-01-01

    A systems engineering process is developed to assist Space Station designers to understand the underlying operational system of the facility so that it can be physically arranged and configured to support crew productivity. The study analyzes the operational system proposed for the Space Station in terms of mission functions, crew activities, and functional relationships in order to develop a quantitative model for evaluation of interior layouts, configuration, and traffic analysis for any Station configuration. Development of the model involved identification of crew functions, required support equipment, criteria of assessing functional relationships, and tools for analyzing functional relationship matrices, as well as analyses of crew transition frequency, sequential dependencies, support equipment requirements, potential for noise interference, need for privacy, and overall compatability of functions. The model can be used for analyzing crew functions for the Initial Operating Capability of the Station and for detecting relationships among these functions. Note: This process (FRA) was used during Phase B design studies to test optional layouts of the Space Station habitat module. The process is now being automated as a computer model for use in layout testing of the Space Station laboratory modules during Phase C.

  5. Developing quality indicators and auditing protocols from formal guideline models: knowledge representation and transformations.

    PubMed

    Advani, Aneel; Goldstein, Mary; Shahar, Yuval; Musen, Mark A

    2003-01-01

    Automated quality assessment of clinician actions and patient outcomes is a central problem in guideline- or standards-based medical care. In this paper we describe a model representation and algorithm for deriving structured quality indicators and auditing protocols from formalized specifications of guidelines used in decision support systems. We apply the model and algorithm to the assessment of physician concordance with a guideline knowledge model for hypertension used in a decision-support system. The properties of our solution include the ability to derive automatically context-specific and case-mix-adjusted quality indicators that can model global or local levels of detail about the guideline parameterized by defining the reliability of each indicator or element of the guideline.

  6. Requirements for psychological models to support design: Towards ecological task analysis

    NASA Technical Reports Server (NTRS)

    Kirlik, Alex

    1991-01-01

    Cognitive engineering is largely concerned with creating environmental designs to support skillful and effective human activity. A set of necessary conditions are proposed for psychological models capable of supporting this enterprise. An analysis of the psychological nature of the design product is used to identify a set of constraints that models must meet if they can usefully guide design. It is concluded that cognitive engineering requires models with resources for describing the integrated human-environment system, and that these models must be capable of describing the activities underlying fluent and effective interaction. These features are required in order to be able to predict the cognitive activity that will be required given various design concepts, and to design systems that promote the acquisition of fluent, skilled behavior. These necessary conditions suggest that an ecological approach can provide valuable resources for psychological modeling to support design. Relying heavily on concepts from Brunswik's and Gibson's ecological theories, ecological task analysis is proposed as a framework in which to predict the types of cognitive activity required to achieve productive behavior, and to suggest how interfaces can be manipulated to alleviate certain types of cognitive demands. The framework is described in terms, and illustrated with an example from the previous research on modeling skilled human-environment interaction.

  7. NASA Langley Atmospheric Science Data Centers Near Real-Time Data Products

    NASA Astrophysics Data System (ADS)

    Davenport, T.; Parker, L.; Rinsland, P. L.

    2014-12-01

    Over the past decade the Atmospheric Science Data Center (ASDC) at NASA Langley Research Center has archived and distributed a variety of satellite mission data sets. NASA's goal in Earth science is to observe, understand, and model the Earth system to discover how it is changing, to better predict change, and to understand the consequences for life on Earth. The ASDC has collaborated with Science Teams to accommodate emerging science users in the climate and modeling communities. The ASDC has expanded its original role to support operational usage by related Earth Science satellites, support land and ocean assimilations, support of field campaigns, outreach programs, and application projects for agriculture and energy industries to bridge the gap between Earth science research results and the adoption of data and prediction capabilities for reliable and sustained use in Decision Support Systems (DSS). For example; these products are being used by the community performing data assimilations to regulate aerosol mass in global transport models to improve model response and forecast accuracy, to assess the performance of components of a global coupled atmospheric-ocean climate model, improve atmospheric motion vector (winds) impact on numerical weather prediction models, and to provide internet-based access to parameters specifically tailored to assist in the design of solar and wind powered renewable energy systems. These more focused applications often require Near Real-Time (NRT) products. Generating NRT products pose their own unique set challenges for the ASDC and the Science Teams. Examples of ASDC NRT products and challenges will be discussed.

  8. MEMOSys: Bioinformatics platform for genome-scale metabolic models

    PubMed Central

    2011-01-01

    Background Recent advances in genomic sequencing have enabled the use of genome sequencing in standard biological and biotechnological research projects. The challenge is how to integrate the large amount of data in order to gain novel biological insights. One way to leverage sequence data is to use genome-scale metabolic models. We have therefore designed and implemented a bioinformatics platform which supports the development of such metabolic models. Results MEMOSys (MEtabolic MOdel research and development System) is a versatile platform for the management, storage, and development of genome-scale metabolic models. It supports the development of new models by providing a built-in version control system which offers access to the complete developmental history. Moreover, the integrated web board, the authorization system, and the definition of user roles allow collaborations across departments and institutions. Research on existing models is facilitated by a search system, references to external databases, and a feature-rich comparison mechanism. MEMOSys provides customizable data exchange mechanisms using the SBML format to enable analysis in external tools. The web application is based on the Java EE framework and offers an intuitive user interface. It currently contains six annotated microbial metabolic models. Conclusions We have developed a web-based system designed to provide researchers a novel application facilitating the management and development of metabolic models. The system is freely available at http://www.icbi.at/MEMOSys. PMID:21276275

  9. Anticoagulation therapy advisor: a decision-support system for heparin therapy during ECMO.

    PubMed Central

    Peverini, R. L.; Sale, M.; Rhine, W. D.; Fagan, L. M.; Lenert, L. A.

    1992-01-01

    We present a case study describing our development of a mathematical model to control a clinical parameter in a patient--in this case, the degree of anticoagulation during extracorporeal membrane oxygenation (ECMO) support. During ECMO therapy, an anticoagulant agent (heparin) is administered to prevent thrombosis. Under- or over-coagulation can have grave consequences. To improve control of anticoagulation, we developed a pharmacokinetic-pharmacodynamic (PK-PD) model that predicts activated clotting times (ACT) using the NONMEM program. We then integrated this model into a decision-support system, and validated it with an independent data set. The population model had a mean absolute error of prediction for ACT values of 33.5 seconds, with a mean bias in estimation of -14.3 seconds. Individualization of model-parameter estimates using nonlinear regression improved the absolute error prediction to 25.5 seconds, and lowered the mean bias to -3.1 seconds. The PK-PD model is coupled with software for heuristic interpretation of model results to provide a complete environment for the management of anticoagulation. PMID:1482937

  10. Dynamic Model of the BIO-Plex Air Revitalization System

    NASA Technical Reports Server (NTRS)

    Finn, Cory; Meyers, Karen; Duffield, Bruce; Luna, Bernadette (Technical Monitor)

    2000-01-01

    The BIO-Plex facility will need to support a variety of life support system designs and operation strategies. These systems will be tested and evaluated in the BIO-Plex facility. An important goal of the life support program is to identify designs that best meet all size and performance constraints for a variety of possible future missions. Integrated human testing is a necessary step in reaching this goal. System modeling and analysis will also play an important role in this endeavor. Currently, simulation studies are being used to estimate air revitalization buffer and storage requirements in order to develop the infrastructure requirements of the BIO-Plex facility. Simulation studies are also being used to verify that the envisioned operation strategy will be able to meet all performance criteria. In this paper, a simulation study is presented for a nominal BIO-Plex scenario with a high-level of crop growth. A general description of the dynamic mass flow model is provided, along with some simulation results. The paper also discusses sizing and operations issues and describes plans for future simulation studies.

  11. Electronic health records (EHRs): supporting ASCO's vision of cancer care.

    PubMed

    Yu, Peter; Artz, David; Warner, Jeremy

    2014-01-01

    ASCO's vision for cancer care in 2030 is built on the expanding importance of panomics and big data, and envisions enabling better health for patients with cancer by the rapid transformation of systems biology knowledge into cancer care advances. This vision will be heavily dependent on the use of health information technology for computational biology and clinical decision support systems (CDSS). Computational biology will allow us to construct models of cancer biology that encompass the complexity of cancer panomics data and provide us with better understanding of the mechanisms governing cancer behavior. The Agency for Healthcare Research and Quality promotes CDSS based on clinical practice guidelines, which are knowledge bases that grow too slowly to match the rate of panomic-derived knowledge. CDSS that are based on systems biology models will be more easily adaptable to rapid advancements and translational medicine. We describe the characteristics of health data representation, a model for representing molecular data that supports data extraction and use for panomic-based clinical research, and argue for CDSS that are based on systems biology and are algorithm-based.

  12. A Planning and Assessment Model for Developing Effective CMS Support

    ERIC Educational Resources Information Center

    Johnson, Douglas F.

    2004-01-01

    At the University of Florida, in Spring 2003, more than 32,000 individuals enrolled in courses using the centrally-supported Course Management System (CMS). Because less than 1 full time equivalent (FTE) was allocated to support the CMS, this created problems for both users and support providers. In the face of rapid growth, support resources for…

  13. Programming model for distributed intelligent systems

    NASA Technical Reports Server (NTRS)

    Sztipanovits, J.; Biegl, C.; Karsai, G.; Bogunovic, N.; Purves, B.; Williams, R.; Christiansen, T.

    1988-01-01

    A programming model and architecture which was developed for the design and implementation of complex, heterogeneous measurement and control systems is described. The Multigraph Architecture integrates artificial intelligence techniques with conventional software technologies, offers a unified framework for distributed and shared memory based parallel computational models and supports multiple programming paradigms. The system can be implemented on different hardware architectures and can be adapted to strongly different applications.

  14. Dynamic testing for shuttle design verification

    NASA Technical Reports Server (NTRS)

    Green, C. E.; Leadbetter, S. A.; Rheinfurth, M. H.

    1972-01-01

    Space shuttle design verification requires dynamic data from full scale structural component and assembly tests. Wind tunnel and other scaled model tests are also required early in the development program to support the analytical models used in design verification. Presented is a design philosophy based on mathematical modeling of the structural system strongly supported by a comprehensive test program; some of the types of required tests are outlined.

  15. OBO to UML: Support for the development of conceptual models in the biomedical domain.

    PubMed

    Waldemarin, Ricardo C; de Farias, Cléver R G

    2018-04-01

    A conceptual model abstractly defines a number of concepts and their relationships for the purposes of understanding and communication. Once a conceptual model is available, it can also be used as a starting point for the development of a software system. The development of conceptual models using the Unified Modeling Language (UML) facilitates the representation of modeled concepts and allows software developers to directly reuse these concepts in the design of a software system. The OBO Foundry represents the most relevant collaborative effort towards the development of ontologies in the biomedical domain. The development of UML conceptual models in the biomedical domain may benefit from the use of domain-specific semantics and notation. Further, the development of these models may also benefit from the reuse of knowledge contained in OBO ontologies. This paper investigates the support for the development of conceptual models in the biomedical domain using UML as a conceptual modeling language and using the support provided by the OBO Foundry for the development of biomedical ontologies, namely entity kind and relationship types definitions provided by the Basic Formal Ontology (BFO) and the OBO Core Relations Ontology (OBO Core), respectively. Further, the paper investigates the support for the reuse of biomedical knowledge currently available in OBOFFF ontologies in the development these conceptual models. The paper describes a UML profile for the OBO Core Relations Ontology, which basically defines a number of stereotypes to represent BFO entity kinds and OBO Core relationship types definitions. The paper also presents a support toolset consisting of a graphical editor named OBO-RO Editor, which directly supports the development of UML models using the extensions defined by our profile, and a command-line tool named OBO2UML, which directly converts an OBOFFF ontology into a UML model. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. A Modelica-based Model Library for Building Energy and Control Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wetter, Michael

    2009-04-07

    This paper describes an open-source library with component models for building energy and control systems that is based on Modelica, an equation-based objectoriented language that is well positioned to become the standard for modeling of dynamic systems in various industrial sectors. The library is currently developed to support computational science and engineering for innovative building energy and control systems. Early applications will include controls design and analysis, rapid prototyping to support innovation of new building systems and the use of models during operation for controls, fault detection and diagnostics. This paper discusses the motivation for selecting an equation-based object-oriented language.more » It presents the architecture of the library and explains how base models can be used to rapidly implement new models. To demonstrate the capability of analyzing novel energy and control systems, the paper closes with an example where we compare the dynamic performance of a conventional hydronic heating system with thermostatic radiator valves to an innovative heating system. In the new system, instead of a centralized circulation pump, each of the 18 radiators has a pump whose speed is controlled using a room temperature feedback loop, and the temperature of the boiler is controlled based on the speed of the radiator pump. All flows are computed by solving for the pressure distribution in the piping network, and the controls include continuous and discrete time controls.« less

  17. NoSQL Based 3D City Model Management System

    NASA Astrophysics Data System (ADS)

    Mao, B.; Harrie, L.; Cao, J.; Wu, Z.; Shen, J.

    2014-04-01

    To manage increasingly complicated 3D city models, a framework based on NoSQL database is proposed in this paper. The framework supports import and export of 3D city model according to international standards such as CityGML, KML/COLLADA and X3D. We also suggest and implement 3D model analysis and visualization in the framework. For city model analysis, 3D geometry data and semantic information (such as name, height, area, price and so on) are stored and processed separately. We use a Map-Reduce method to deal with the 3D geometry data since it is more complex, while the semantic analysis is mainly based on database query operation. For visualization, a multiple 3D city representation structure CityTree is implemented within the framework to support dynamic LODs based on user viewpoint. Also, the proposed framework is easily extensible and supports geoindexes to speed up the querying. Our experimental results show that the proposed 3D city management system can efficiently fulfil the analysis and visualization requirements.

  18. Special Issue on Uncertainty Quantification in Multiscale System Design and Simulation

    DOE PAGES

    Wang, Yan; Swiler, Laura

    2017-09-07

    The importance of uncertainty has been recognized in various modeling, simulation, and analysis applications, where inherent assumptions and simplifications affect the accuracy of model predictions for physical phenomena. As model predictions are now heavily relied upon for simulation-based system design, which includes new materials, vehicles, mechanical and civil structures, and even new drugs, wrong model predictions could potentially cause catastrophic consequences. Therefore, uncertainty and associated risks due to model errors should be quantified to support robust systems engineering.

  19. Special Issue on Uncertainty Quantification in Multiscale System Design and Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yan; Swiler, Laura

    The importance of uncertainty has been recognized in various modeling, simulation, and analysis applications, where inherent assumptions and simplifications affect the accuracy of model predictions for physical phenomena. As model predictions are now heavily relied upon for simulation-based system design, which includes new materials, vehicles, mechanical and civil structures, and even new drugs, wrong model predictions could potentially cause catastrophic consequences. Therefore, uncertainty and associated risks due to model errors should be quantified to support robust systems engineering.

  20. Information Model Translation to Support a Wider Science Community

    NASA Astrophysics Data System (ADS)

    Hughes, John S.; Crichton, Daniel; Ritschel, Bernd; Hardman, Sean; Joyner, Ronald

    2014-05-01

    The Planetary Data System (PDS), NASA's long-term archive for solar system exploration data, has just released PDS4, a modernization of the PDS architecture, data standards, and technical infrastructure. This next generation system positions the PDS to meet the demands of the coming decade, including big data, international cooperation, distributed nodes, and multiple ways of analysing and interpreting data. It also addresses three fundamental project goals: providing more efficient data delivery by data providers to the PDS, enabling a stable, long-term usable planetary science data archive, and enabling services for the data consumer to find, access, and use the data they require in contemporary data formats. The PDS4 information architecture is used to describe all PDS data using a common model. Captured in an ontology modeling tool it supports a hierarchy of data dictionaries built to the ISO/IEC 11179 standard and is designed to increase flexibility, enable complex searches at the product level, and to promote interoperability that facilitates data sharing both nationally and internationally. A PDS4 information architecture design requirement stipulates that the content of the information model must be translatable to external data definition languages such as XML Schema, XMI/XML, and RDF/XML. To support the semantic Web standards we are now in the process of mapping the contents into RDF/XML to support SPARQL capable databases. We are also building a terminological ontology to support virtually unified data retrieval and access. This paper will provide an overview of the PDS4 information architecture focusing on its domain information model and how the translation and mapping are being accomplished.

  1. Intelligent Elements for ISHM

    NASA Technical Reports Server (NTRS)

    Schmalzel, John L.; Morris, Jon; Turowski, Mark; Figueroa, Fernando; Oostdyk, Rebecca

    2008-01-01

    There are a number of architecture models for implementing Integrated Systems Health Management (ISHM) capabilities. For example, approaches based on the OSA-CBM and OSA-EAI models, or specific architectures developed in response to local needs. NASA s John C. Stennis Space Center (SSC) has developed one such version of an extensible architecture in support of rocket engine testing that integrates a palette of functions in order to achieve an ISHM capability. Among the functional capabilities that are supported by the framework are: prognostic models, anomaly detection, a data base of supporting health information, root cause analysis, intelligent elements, and integrated awareness. This paper focuses on the role that intelligent elements can play in ISHM architectures. We define an intelligent element as a smart element with sufficient computing capacity to support anomaly detection or other algorithms in support of ISHM functions. A smart element has the capabilities of supporting networked implementations of IEEE 1451.x smart sensor and actuator protocols. The ISHM group at SSC has been actively developing intelligent elements in conjunction with several partners at other Centers, universities, and companies as part of our ISHM approach for better supporting rocket engine testing. We have developed several implementations. Among the key features for these intelligent sensors is support for IEEE 1451.1 and incorporation of a suite of algorithms for determination of sensor health. Regardless of the potential advantages that can be achieved using intelligent sensors, existing large-scale systems are still based on conventional sensors and data acquisition systems. In order to bring the benefits of intelligent sensors to these environments, we have also developed virtual implementations of intelligent sensors.

  2. Teaching and Learning Activity Sequencing System using Distributed Genetic Algorithms

    NASA Astrophysics Data System (ADS)

    Matsui, Tatsunori; Ishikawa, Tomotake; Okamoto, Toshio

    The purpose of this study is development of a supporting system for teacher's design of lesson plan. Especially design of lesson plan which relates to the new subject "Information Study" is supported. In this study, we developed a system which generates teaching and learning activity sequences by interlinking lesson's activities corresponding to the various conditions according to the user's input. Because user's input is multiple information, there will be caused contradiction which the system should solve. This multiobjective optimization problem is resolved by Distributed Genetic Algorithms, in which some fitness functions are defined with reference models on lesson, thinking and teaching style. From results of various experiments, effectivity and validity of the proposed methods and reference models were verified; on the other hand, some future works on reference models and evaluation functions were also pointed out.

  3. Formal specification and design techniques for wireless sensor and actuator networks.

    PubMed

    Martínez, Diego; González, Apolinar; Blanes, Francisco; Aquino, Raúl; Simo, José; Crespo, Alfons

    2011-01-01

    A current trend in the development and implementation of industrial applications is to use wireless networks to communicate the system nodes, mainly to increase application flexibility, reliability and portability, as well as to reduce the implementation cost. However, the nondeterministic and concurrent behavior of distributed systems makes their analysis and design complex, often resulting in less than satisfactory performance in simulation and test bed scenarios, which is caused by using imprecise models to analyze, validate and design these systems. Moreover, there are some simulation platforms that do not support these models. This paper presents a design and validation method for Wireless Sensor and Actuator Networks (WSAN) which is supported on a minimal set of wireless components represented in Colored Petri Nets (CPN). In summary, the model presented allows users to verify the design properties and structural behavior of the system.

  4. A Prototype Windflow Modeling System for Tactical Weather Support Operations.

    DTIC Science & Technology

    1987-05-07

    a system of numerical models that covers the mesoscale from horizontal scales of 200 km down to 5 km. Veazey and Tabor 2 1 used the windflow model to...821785 West Conference, Long Beach, Calif. 21. Veazey , D.R., and Tabor, P.A. (1985) Meteorological sensor density on the battlefield, Workshop on

  5. Remote Sensing Technologies and Geospatial Modelling Hierarchy for Smart City Support

    NASA Astrophysics Data System (ADS)

    Popov, M.; Fedorovsky, O.; Stankevich, S.; Filipovich, V.; Khyzhniak, A.; Piestova, I.; Lubskyi, M.; Svideniuk, M.

    2017-12-01

    The approach to implementing the remote sensing technologies and geospatial modelling for smart city support is presented. The hierarchical structure and basic components of the smart city information support subsystem are considered. Some of the already available useful practical developments are described. These include city land use planning, urban vegetation analysis, thermal condition forecasting, geohazard detection, flooding risk assessment. Remote sensing data fusion approach for comprehensive geospatial analysis is discussed. Long-term city development forecasting by Forrester - Graham system dynamics model is provided over Kiev urban area.

  6. Systemic inflammatory markers and sources of social support among older adults in the Memory Research Unit cohort.

    PubMed

    McHugh Power, Joanna; Carney, Sile; Hannigan, Caoimhe; Brennan, Sabina; Wolfe, Hannah; Lynch, Marina; Kee, Frank; Lawlor, Brian

    2016-11-01

    Potential associations between systemic inflammation and social support received by a sample of 120 older adults were examined here. Inflammatory markers, cognitive function, social support and psychosocial wellbeing were evaluated. A structural equation modelling approach was used to analyse the data. The model was a good fit [Formula: see text], p < 0.001; comparative fit index = 0.973; Tucker-Lewis Index = 0.962; root mean square error of approximation = 0.021; standardised root mean-square residual = 0.074). Chemokine levels were associated with increased age ( β = 0.276), receipt of less social support from friends ( β = -0.256) and body mass index ( β = -0.256). Results are discussed in relation to social signal transduction theory.

  7. NASA Lewis 9- by 15-foot low-speed wind tunnel user manual

    NASA Technical Reports Server (NTRS)

    Soeder, Ronald H.

    1993-01-01

    This manual describes the 9- by 15-Foot Low-Speed Wind Tunnel at the Lewis Research Center and provides information for users who wish to conduct experiments in this atmospheric facility. Tunnel variables such as pressures, temperatures, available tests section area, and Mach number ranges (0.05 to 0.20) are discussed. In addition, general support systems such as air systems, hydraulic system, hydrogen system, laser system, flow visualization system, and model support systems are described. Instrumentation and data processing and acquisition systems are also discussed.

  8. Practical Findings from Applying the PSD Model for Evaluating Software Design Specifications

    NASA Astrophysics Data System (ADS)

    Räisänen, Teppo; Lehto, Tuomas; Oinas-Kukkonen, Harri

    This paper presents practical findings from applying the PSD model to evaluating the support for persuasive features in software design specifications for a mobile Internet device. On the one hand, our experiences suggest that the PSD model fits relatively well for evaluating design specifications. On the other hand, the model would benefit from more specific heuristics for evaluating each technique to avoid unnecessary subjectivity. Better distinction between the design principles in the social support category would also make the model easier to use. Practitioners who have no theoretical background can apply the PSD model to increase the persuasiveness of the systems they design. The greatest benefit of the PSD model for researchers designing new systems may be achieved when it is applied together with a sound theory, such as the Elaboration Likelihood Model. Using the ELM together with the PSD model, one may increase the chances for attitude change.

  9. Gaps of Decision Support Models for Pipeline Renewal and Recommendations for Improvement

    EPA Science Inventory

    In terms of the development of software for decision support for pipeline renewal, more attention to date has been paid to the development of asset management models that help an owner decide on which portions of a system to prioritize needed actions. There has been much less w...

  10. GAPS OF DECISION SUPPORT MODELS FOR PIPELINE RENEWAL AND RECOMMENDATIONS FOR IMPROVEMENT (SLIDE)

    EPA Science Inventory

    In terms of the development of software for decision support for pipeline renewal, more attention to date has been paid to the development of asset management models that help an owner decide on which portions of a system to prioritize needed actions. There has been much less wor...

  11. Adaptive cyber-attack modeling system

    NASA Astrophysics Data System (ADS)

    Gonsalves, Paul G.; Dougherty, Edward T.

    2006-05-01

    The pervasiveness of software and networked information systems is evident across a broad spectrum of business and government sectors. Such reliance provides an ample opportunity not only for the nefarious exploits of lone wolf computer hackers, but for more systematic software attacks from organized entities. Much effort and focus has been placed on preventing and ameliorating network and OS attacks, a concomitant emphasis is required to address protection of mission critical software. Typical software protection technique and methodology evaluation and verification and validation (V&V) involves the use of a team of subject matter experts (SMEs) to mimic potential attackers or hackers. This manpower intensive, time-consuming, and potentially cost-prohibitive approach is not amenable to performing the necessary multiple non-subjective analyses required to support quantifying software protection levels. To facilitate the evaluation and V&V of software protection solutions, we have designed and developed a prototype adaptive cyber attack modeling system. Our approach integrates an off-line mechanism for rapid construction of Bayesian belief network (BN) attack models with an on-line model instantiation, adaptation and knowledge acquisition scheme. Off-line model construction is supported via a knowledge elicitation approach for identifying key domain requirements and a process for translating these requirements into a library of BN-based cyber-attack models. On-line attack modeling and knowledge acquisition is supported via BN evidence propagation and model parameter learning.

  12. Decision support system based on DPSIR framework for a low flow Mediterranean river basin

    NASA Astrophysics Data System (ADS)

    Bangash, Rubab Fatima; Kumar, Vikas; Schuhmacher, Marta

    2013-04-01

    The application of decision making practices are effectively enhanced by adopting a procedural approach setting out a general methodological framework within which specific methods, models and tools can be integrated. Integrated Catchment Management is a process that recognizes the river catchment as a basic organizing unit for understanding and managing ecosystem process. Decision support system becomes more complex by considering unavoidable human activities within a catchment that are motivated by multiple and often competing criteria and/or constraints. DPSIR is a causal framework for describing the interactions between society and the environment. This framework has been adopted by the European Environment Agency and the components of this model are: Driving forces, Pressures, States, Impacts and Responses. The proposed decision support system is a two step framework based on DPSIR. Considering first three component of DPSIR, Driving forces, Pressures and States, hydrological and ecosystem services models are developed. The last two components, Impact and Responses, helped to develop Bayesian Network to integrate the models. This decision support system also takes account of social, economic and environmental aspects. A small river of Catalonia (Northeastern Spain), Francoli River with a low flow (~2 m3/s) is selected for integration of catchment assessment models and to improve knowledge transfer from research to the stakeholders with a view to improve decision making process. DHI's MIKE BASIN software is used to evaluate the low-flow Francolí River with respect to the water bodies' characteristics and also to assess the impact of human activities aiming to achieve good water status for all waters to comply with the WFD's River Basin Management Plan. Based on ArcGIS, MIKE BASIN is a versatile decision support tool that provides a simple and powerful framework for managers and stakeholders to address multisectoral allocation and environmental issues in river basins. While InVEST is a spatially explicit tool, used to model and map a suite of ecosystem services caused by land cover changes or climate change impacts. Moreover, results obtained from low-flow hydrological simulation and ecosystem services models serves as useful tools to develop decision support system based on DPSIR framework by integrating models. Bayesian Networks is used as a knowledge integration and visualization tool to summarize the outcomes of hydrological and ecosystem services models at the "Response" stage of DPSIR. Bayesian Networks provide a framework for modelling the logical relationship between catchment variables and decision objectives by quantifying the strength of these relationships using conditional probabilities. Participatory nature of this framework can provide better communication of water research, particularly in the context of a perceived lack of future awareness-raising with the public that helps to develop more sustainable water management strategies. Acknowledgements The present study was financially supported by Spanish Ministry of Economy and Competitiveness for its financial support through the project SCARCE (Consolider-Ingenio 2010 CSD2009-00065). R. F. Bangash also received PhD fellowship from AGAUR (Commissioner for Universities and Research of the Department of Innovation, Universities and Enterprise of the "Generalitat de Catalunya" and the European Social Fund).

  13. A Review of the Experimental and Modeling Development of a Water Phase Change Heat Exchanger for Future Exploration Support Vehicles

    NASA Technical Reports Server (NTRS)

    Cognata, Thomas; Leimkuehler, Thomas; Ramaswamy, Balasubramaniam; Nayagam, Vedha; Hasan, Mohammad; Stephan, Ryan

    2011-01-01

    Water affords manifold benefits for human space exploration. Its properties make it useful for the storage of thermal energy as a Phase Change Material (PCM) in thermal control systems, in radiation shielding against Solar Particle Events (SPE) for the protection of crew members, and it is indisputably necessary for human life support. This paper envisions a single application for water which addresses these benefits for future exploration support vehicles and it describes recent experimental and modeling work that has been performed in order to arrive at a description of the thermal behavior of such a system. Experimental units have been developed and tested which permit the evaluation of the many parameters of design for such a system with emphasis on the latent energy content, temperature rise, mass, and interstitial material geometry. The experimental results are used to develop a robust and well correlated model which is intended to guide future design efforts toward the multi-purposed water PCM heat exchanger envisioned.

  14. Empirical evaluation of decision support systems: Needs, definitions, potential methods, and an example pertaining to waterfowl management

    USGS Publications Warehouse

    Sojda, R.S.

    2007-01-01

    Decision support systems are often not empirically evaluated, especially the underlying modelling components. This can be attributed to such systems necessarily being designed to handle complex and poorly structured problems and decision making. Nonetheless, evaluation is critical and should be focused on empirical testing whenever possible. Verification and validation, in combination, comprise such evaluation. Verification is ensuring that the system is internally complete, coherent, and logical from a modelling and programming perspective. Validation is examining whether the system is realistic and useful to the user or decision maker, and should answer the question: “Was the system successful at addressing its intended purpose?” A rich literature exists on verification and validation of expert systems and other artificial intelligence methods; however, no single evaluation methodology has emerged as preeminent. At least five approaches to validation are feasible. First, under some conditions, decision support system performance can be tested against a preselected gold standard. Second, real-time and historic data sets can be used for comparison with simulated output. Third, panels of experts can be judiciously used, but often are not an option in some ecological domains. Fourth, sensitivity analysis of system outputs in relation to inputs can be informative. Fifth, when validation of a complete system is impossible, examining major components can be substituted, recognizing the potential pitfalls. I provide an example of evaluation of a decision support system for trumpeter swan (Cygnus buccinator) management that I developed using interacting intelligent agents, expert systems, and a queuing system. Predicted swan distributions over a 13-year period were assessed against observed numbers. Population survey numbers and banding (ringing) studies may provide long term data useful in empirical evaluation of decision support.

  15. Automatic Generation of Customized, Model Based Information Systems for Operations Management.

    DTIC Science & Technology

    The paper discusses the need for developing a customized, model based system to support management decision making in the field of operations ... management . It provides a critique of the current approaches available, formulates a framework to classify logistics decisions, and suggests an approach for the automatic development of logistics systems. (Author)

  16. Modal resonant dynamics of cables with a flexible support: A modulated diffraction problem

    NASA Astrophysics Data System (ADS)

    Guo, Tieding; Kang, Houjun; Wang, Lianhua; Liu, Qijian; Zhao, Yueyu

    2018-06-01

    Modal resonant dynamics of cables with a flexible support is defined as a modulated (wave) diffraction problem, and investigated by asymptotic expansions of the cable-support coupled system. The support-cable mass ratio, which is usually very large, turns out to be the key parameter for characterizing cable-support dynamic interactions. By treating the mass ratio's inverse as a small perturbation parameter and scaling the cable tension properly, both cable's modal resonant dynamics and the flexible support dynamics are asymptotically reduced by using multiple scale expansions, leading finally to a reduced cable-support coupled model (i.e., on a slow time scale). After numerical validations of the reduced coupled model, cable-support coupled responses and the flexible support induced coupling effects on the cable, are both fully investigated, based upon the reduced model. More explicitly, the dynamic effects on the cable's nonlinear frequency and force responses, caused by the support-cable mass ratio, the resonant detuning parameter and the support damping, are carefully evaluated.

  17. Cargo launch vehicles to low earth orbit

    NASA Technical Reports Server (NTRS)

    Austin, Robert E.

    1990-01-01

    There are two primary space transportation capabilities required to support both base programs and expanded mission requirements: earth-to-orbit (ETO) transportation systems and space transfer vehicle systems. Existing and new ETO vehicles required to support mission requirements, and planned robotic missions, along with currently planned ETO vehicles are provided. Lunar outposts, Mars' outposts, base and expanded model, ETO vehicles, advanced avionics technologies, expert systems, network architecture and operations systems, and technology transfer are discussed.

  18. A survey of university students' perceptions of learning management systems in a low-resource setting using a technology acceptance model.

    PubMed

    Chipps, Jennifer; Kerr, Jane; Brysiewicz, Petra; Walters, Fiona

    2015-02-01

    Learning management systems have been widely advocated for the support of distance learning. In low-resource settings, the uptake of these systems by students has been mixed. This study aimed to identify, through the use of the Technology Acceptance Model, the individual, organizational, and technological factors that could be influencing the use of learning management systems. A simple quantitative descriptive survey was conducted of nursing and health science students at a university in South Africa as part of their first exposure to a learning management system. A total of 274 respondents (56.7%) completed the survey questionnaire, made up of 213 nursing respondents (87.7%) and 61 health sciences respondents (25%). Overall, the respondents found the learning management system easy to use and useful for learning. There were significant differences between the two groups of respondents, with the respondents from health sciences being both younger and more computer literate. The nursing respondents, who received more support and orientations, reported finding the learning management system more useful. Recommendations are made for training and support to ensure uptake.

  19. Single, Integrated, Service-Centric Model of Military Health System Governance

    DTIC Science & Technology

    and effectiveness of operational medical support. According to the Joint Concept for Health Services (JCHS), the need for integrated medical support...that keeps pace with the operational agility and organizational flexibility requirements to support globally integrated operations is clear. This

  20. Decision Support Systems and the Conflict Model of Decision Making: A Stimulus for New Computer-Assisted Careers Guidance Systems.

    ERIC Educational Resources Information Center

    Ballantine, R. Malcolm

    Decision Support Systems (DSSs) are computer-based decision aids to use when making decisions which are partially amenable to rational decision-making procedures but contain elements where intuitive judgment is an essential component. In such situations, DSSs are used to improve the quality of decision-making. The DSS approach is based on Simon's…

  1. HyDE Framework for Stochastic and Hybrid Model-Based Diagnosis

    NASA Technical Reports Server (NTRS)

    Narasimhan, Sriram; Brownston, Lee

    2012-01-01

    Hybrid Diagnosis Engine (HyDE) is a general framework for stochastic and hybrid model-based diagnosis that offers flexibility to the diagnosis application designer. The HyDE architecture supports the use of multiple modeling paradigms at the component and system level. Several alternative algorithms are available for the various steps in diagnostic reasoning. This approach is extensible, with support for the addition of new modeling paradigms as well as diagnostic reasoning algorithms for existing or new modeling paradigms. HyDE is a general framework for stochastic hybrid model-based diagnosis of discrete faults; that is, spontaneous changes in operating modes of components. HyDE combines ideas from consistency-based and stochastic approaches to model- based diagnosis using discrete and continuous models to create a flexible and extensible architecture for stochastic and hybrid diagnosis. HyDE supports the use of multiple paradigms and is extensible to support new paradigms. HyDE generates candidate diagnoses and checks them for consistency with the observations. It uses hybrid models built by the users and sensor data from the system to deduce the state of the system over time, including changes in state indicative of faults. At each time step when observations are available, HyDE checks each existing candidate for continued consistency with the new observations. If the candidate is consistent, it continues to remain in the candidate set. If it is not consistent, then the information about the inconsistency is used to generate successor candidates while discarding the candidate that was inconsistent. The models used by HyDE are similar to simulation models. They describe the expected behavior of the system under nominal and fault conditions. The model can be constructed in modular and hierarchical fashion by building component/subsystem models (which may themselves contain component/ subsystem models) and linking them through shared variables/parameters. The component model is expressed as operating modes of the component and conditions for transitions between these various modes. Faults are modeled as transitions whose conditions for transitions are unknown (and have to be inferred through the reasoning process). Finally, the behavior of the components is expressed as a set of variables/ parameters and relations governing the interaction between the variables. The hybrid nature of the systems being modeled is captured by a combination of the above transitional model and behavioral model. Stochasticity is captured as probabilities associated with transitions (indicating the likelihood of that transition being taken), as well as noise on the sensed variables.

  2. Program Support Communications Network (PSCN) facsimile system directory

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This directory provides a system description, a station listing, and operating procedures for the Program Support Communications Network (PSCN) NASA Facsimile System. The NASA Facsimile System is a convenient and efficient means of spanning the distance, time, and cost of transmitting documents from one person to another. In the spectrum of communication techniques, facsimile bridges the gap between mail and data transmission. Facsimile can transmit in a matter of minutes or seconds what would take a day or more by mail delivery. The NASA Facsimile System is composed of several makes and models of facsimile machines. The system also supports the 3M FaxXchange network controllers located at Marshall Space Flight Center (MSFC).

  3. Implementation of workflow engine technology to deliver basic clinical decision support functionality.

    PubMed

    Huser, Vojtech; Rasmussen, Luke V; Oberg, Ryan; Starren, Justin B

    2011-04-10

    Workflow engine technology represents a new class of software with the ability to graphically model step-based knowledge. We present application of this novel technology to the domain of clinical decision support. Successful implementation of decision support within an electronic health record (EHR) remains an unsolved research challenge. Previous research efforts were mostly based on healthcare-specific representation standards and execution engines and did not reach wide adoption. We focus on two challenges in decision support systems: the ability to test decision logic on retrospective data prior prospective deployment and the challenge of user-friendly representation of clinical logic. We present our implementation of a workflow engine technology that addresses the two above-described challenges in delivering clinical decision support. Our system is based on a cross-industry standard of XML (extensible markup language) process definition language (XPDL). The core components of the system are a workflow editor for modeling clinical scenarios and a workflow engine for execution of those scenarios. We demonstrate, with an open-source and publicly available workflow suite, that clinical decision support logic can be executed on retrospective data. The same flowchart-based representation can also function in a prospective mode where the system can be integrated with an EHR system and respond to real-time clinical events. We limit the scope of our implementation to decision support content generation (which can be EHR system vendor independent). We do not focus on supporting complex decision support content delivery mechanisms due to lack of standardization of EHR systems in this area. We present results of our evaluation of the flowchart-based graphical notation as well as architectural evaluation of our implementation using an established evaluation framework for clinical decision support architecture. We describe an implementation of a free workflow technology software suite (available at http://code.google.com/p/healthflow) and its application in the domain of clinical decision support. Our implementation seamlessly supports clinical logic testing on retrospective data and offers a user-friendly knowledge representation paradigm. With the presented software implementation, we demonstrate that workflow engine technology can provide a decision support platform which evaluates well against an established clinical decision support architecture evaluation framework. Due to cross-industry usage of workflow engine technology, we can expect significant future functionality enhancements that will further improve the technology's capacity to serve as a clinical decision support platform.

  4. Puget Sound Operational Forecast System - A Real-time Predictive Tool for Marine Resource Management and Emergency Responses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Zhaoqing; Khangaonkar, Tarang; Chase, Jared M.

    2009-12-01

    To support marine ecological resource management and emergency response and to enhance scientific understanding of physical and biogeochemical processes in Puget Sound, a real-time Puget Sound Operational Forecast System (PS-OFS) was developed by the Coastal Ocean Dynamics & Ecosystem Modeling group (CODEM) of Pacific Northwest National Laboratory (PNNL). PS-OFS employs the state-of-the-art three-dimensional coastal ocean model and closely follows the standards and procedures established by National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS). PS-OFS consists of four key components supporting the Puget Sound Circulation and Transport Model (PS-CTM): data acquisition, model execution and product archive, model skill assessment,more » and model results dissemination. This paper provides an overview of PS-OFS and its ability to provide vital real-time oceanographic information to the Puget Sound community. PS-OFS supports pacific northwest region’s growing need for a predictive tool to assist water quality management, fish stock recovery efforts, maritime emergency response, nearshore land-use planning, and the challenge of climate change and sea level rise impacts. The structure of PS-OFS and examples of the system inputs and outputs, forecast results are presented in details.« less

  5. Cascades of emotional support in friendship networks and adolescent smoking

    PubMed Central

    Wang, Cheng; Butts, Carter T.; Jose, Rupa; Hipp, John R.

    2017-01-01

    Social support from peers and parents provides a key socialization function during adolescence. We examine adolescent friendship networks using a Stochastic Actor-Based modeling approach to observe the flow of emotional support provision to peers and the effect of support from parents, while simultaneously modeling smoking behavior. We utilized one school (n = 976) from The National Longitudinal Study of Adolescent to Adult Health (AddHealth) Study. Our findings suggest that emotional support is transacted through an interdependent contextual system, comprised of both peer and parental effects, with the latter also having distal indirect effects from youths’ friends’ parents. PMID:28662121

  6. LandCaRe DSS--an interactive decision support system for climate change impact assessment and the analysis of potential agricultural land use adaptation strategies.

    PubMed

    Wenkel, Karl-Otto; Berg, Michael; Mirschel, Wilfried; Wieland, Ralf; Nendel, Claas; Köstner, Barbara

    2013-09-01

    Decision support to develop viable climate change adaptation strategies for agriculture and regional land use management encompasses a wide range of options and issues. Up to now, only a few suitable tools and methods have existed for farmers and regional stakeholders that support the process of decision-making in this field. The interactive model-based spatial information and decision support system LandCaRe DSS attempts to close the existing methodical gap. This system supports interactive spatial scenario simulations, multi-ensemble and multi-model simulations at the regional scale, as well as the complex impact assessment of potential land use adaptation strategies at the local scale. The system is connected to a local geo-database and via the internet to a climate data server. LandCaRe DSS uses a multitude of scale-specific ecological impact models, which are linked in various ways. At the local scale (farm scale), biophysical models are directly coupled with a farm economy calculator. New or alternative simulation models can easily be added, thanks to the innovative architecture and design of the DSS. Scenario simulations can be conducted with a reasonable amount of effort. The interactive LandCaRe DSS prototype also offers a variety of data analysis and visualisation tools, a help system for users and a farmer information system for climate adaptation in agriculture. This paper presents the theoretical background, the conceptual framework, and the structure and methodology behind LandCaRe DSS. Scenario studies at the regional and local scale for the two Eastern German regions of Uckermark (dry lowlands, 2600 km(2)) and Weißeritz (humid mountain area, 400 km(2)) were conducted in close cooperation with stakeholders to test the functionality of the DSS prototype. The system is gradually being transformed into a web version (http://www.landcare-dss.de) to ensure the broadest possible distribution of LandCaRe DSS to the public. The system will be continuously developed, updated and used in different research projects and as a learning and knowledge-sharing tool for students. The main objective of LandCaRe DSS is to provide information on the complex long-term impacts of climate change and on potential management options for adaptation by answering "what-if" type questions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Self-conscious robotic system design process--from analysis to implementation.

    PubMed

    Chella, Antonio; Cossentino, Massimo; Seidita, Valeria

    2011-01-01

    Developing robotic systems endowed with self-conscious capabilities means realizing complex sub-systems needing ad-hoc software engineering techniques for their modelling, analysis and implementation. In this chapter the whole process (from analysis to implementation) to model the development of self-conscious robotic systems is presented and the new created design process, PASSIC, supporting each part of it, is fully illustrated.

  8. Full Life Cycle of Data Analysis with Climate Model Diagnostic Analyzer (CMDA)

    NASA Astrophysics Data System (ADS)

    Lee, S.; Zhai, C.; Pan, L.; Tang, B.; Zhang, J.; Bao, Q.; Malarout, N.

    2017-12-01

    We have developed a system that supports the full life cycle of a data analysis process, from data discovery, to data customization, to analysis, to reanalysis, to publication, and to reproduction. The system called Climate Model Diagnostic Analyzer (CMDA) is designed to demonstrate that the full life cycle of data analysis can be supported within one integrated system for climate model diagnostic evaluation with global observational and reanalysis datasets. CMDA has four subsystems that are highly integrated to support the analysis life cycle. Data System manages datasets used by CMDA analysis tools, Analysis System manages CMDA analysis tools which are all web services, Provenance System manages the meta data of CMDA datasets and the provenance of CMDA analysis history, and Recommendation System extracts knowledge from CMDA usage history and recommends datasets/analysis tools to users. These four subsystems are not only highly integrated but also easily expandable. New datasets can be easily added to Data System and scanned to be visible to the other subsystems. New analysis tools can be easily registered to be available in the Analysis System and Provenance System. With CMDA, a user can start a data analysis process by discovering datasets of relevance to their research topic using the Recommendation System. Next, the user can customize the discovered datasets for their scientific use (e.g. anomaly calculation, regridding, etc) with tools in the Analysis System. Next, the user can do their analysis with the tools (e.g. conditional sampling, time averaging, spatial averaging) in the Analysis System. Next, the user can reanalyze the datasets based on the previously stored analysis provenance in the Provenance System. Further, they can publish their analysis process and result to the Provenance System to share with other users. Finally, any user can reproduce the published analysis process and results. By supporting the full life cycle of climate data analysis, CMDA improves the research productivity and collaboration level of its user.

  9. Designing Empathetic Animated Agents for a B-Learning Training Environment within the Electrical Domain

    ERIC Educational Resources Information Center

    Hernández, Yasmin; Pérez-Ramírez, Miguel; Zatarain-Cabada, Ramon; Barrón-Estrada, Lucia; Alor-Hernández, Giner

    2016-01-01

    Electrical tests involve high risk; therefore utility companies require highly qualified electricians and efficient training. Recently, training for electrical tests has been supported by virtual reality systems; nonetheless, these training systems are not yet adaptive. We propose a b-learning model to support adaptive and distance training. The…

  10. A Customizable Language Learning Support System Using Ontology-Driven Engine

    ERIC Educational Resources Information Center

    Wang, Jingyun; Mendori, Takahiko; Xiong, Juan

    2013-01-01

    This paper proposes a framework for web-based language learning support systems designed to provide customizable pedagogical procedures based on the analysis of characteristics of both learner and course. This framework employs a course-centered ontology and a teaching method ontology as the foundation for the student model, which includes learner…

  11. A Model for System-Wide Collaboration to Support Integrated Social Behavior and Literacy Evidence-Based Practices

    ERIC Educational Resources Information Center

    Chaparro, Erin A.; Smolkowski, Keith; Baker, Scott K.; Hanson, Natalie; Ryan-Jackson, Kathleen

    2012-01-01

    In the face of dwindling financial resources, educational leaders are looking to refine resource allocation while maintaining a focus on improved student outcomes. This article presents initial findings from a professional development state initiative called Effective Behavioral and Instructional Support Systems (EBISS). The EBISS initiative aims…

  12. Establishing an Evidence-Based Adult Education System. NCSALL Occasional Paper.

    ERIC Educational Resources Information Center

    Comings, John P.; Beder, Hal; Bingman, Beth; Reder, Stephen; Smith, Cristine

    To benefit from the support of public and private sector leaders and to ensure that all students receive effective services, the adult education system must identify program models that have empirical evidence to support claims of effectiveness. The U.S. Department of Education's Institute of Education Sciences defines evidence-based education as…

  13. Multi-Level Information Systems. AIR Forum Paper 1978.

    ERIC Educational Resources Information Center

    Jones, Leighton D.; Trautman, DeForest L.

    To support informational needs of day-to-day and long-range decision-making, many universities have developed their own data collection devices and institutional reporting systems. Often these models only represent a single point in time and do not effectively support needs at college and departmental levels. This paper identifies some of the more…

  14. A Multi-criterial Decision Support System for Forest Management

    Treesearch

    Donald Nute; Geneho Kim; Walter D. Potter; Mark J. Twery; H. Michael Rauscher; Scott Thomasma; Deborah Bennett; Peter Kollasch

    1999-01-01

    We describe a research project that has as its goal development of a full-featured decision support system for managing forested land to satisfy multiple criteria represented as timber, wildlife, water, ecological, and wildlife objectives. The decision process proposed for what was originally conceived of as a Northeast Decision Model (NED) includes data acquisition,...

  15. What can formal methods offer to digital flight control systems design

    NASA Technical Reports Server (NTRS)

    Good, Donald I.

    1990-01-01

    Formal methods research begins to produce methods which will enable mathematic modeling of the physical behavior of digital hardware and software systems. The development of these methods directly supports the NASA mission of increasing the scope and effectiveness of flight system modeling capabilities. The conventional, continuous mathematics that is used extensively in modeling flight systems is not adequate for accurate modeling of digital systems. Therefore, the current practice of digital flight control system design has not had the benefits of extensive mathematical modeling which are common in other parts of flight system engineering. Formal methods research shows that by using discrete mathematics, very accurate modeling of digital systems is possible. These discrete modeling methods will bring the traditional benefits of modeling to digital hardware and hardware design. Sound reasoning about accurate mathematical models of flight control systems can be an important part of reducing risk of unsafe flight control.

  16. Predictive Software Cost Model Study. Volume I. Final Technical Report.

    DTIC Science & Technology

    1980-06-01

    development phase to identify computer resources necessary to support computer programs after transfer of program manangement responsibility and system... classical model development with refinements specifically applicable to avionics systems. The refinements are the result of the Phase I literature search

  17. A decision support system for transportation infrastructure and supply chain system planning.

    DOT National Transportation Integrated Search

    2013-07-01

    This project makes the results (models and methodology) of the research and development efforts on freight movement modeling (FMM) and supply chain design carried out by faculty at OSU and OU available to transportation and logistics professionals. A...

  18. A Stochastic Model for the Landing Dispersion of Hazard Detection and Avoidance Capable Flight Systems

    NASA Astrophysics Data System (ADS)

    Witte, L.

    2014-06-01

    To support landing site assessments for HDA-capable flight systems and to facilitate trade studies between the potential HDA architectures versus the yielded probability of safe landing a stochastic landing dispersion model has been developed.

  19. Visualizing Terrestrial and Aquatic Systems in 3-D

    EPA Science Inventory

    The environmental modeling community has a long-standing need for affordable, easy-to-use tools that support 3-D visualization of complex spatial and temporal model output. The Visualization of Terrestrial and Aquatic Systems project (VISTAS) aims to help scientists produce effe...

  20. Representing functions/procedures and processes/structures for analysis of effects of failures on functions and operations

    NASA Technical Reports Server (NTRS)

    Malin, Jane T.; Leifker, Daniel B.

    1991-01-01

    Current qualitative device and process models represent only the structure and behavior of physical systems. However, systems in the real world include goal-oriented activities that generally cannot be easily represented using current modeling techniques. An extension of a qualitative modeling system, known as functional modeling, which captures goal-oriented activities explicitly is proposed and how they may be used to support intelligent automation and fault management is shown.

Top