Proposed Schematics for an Advanced Development Lunar Portable Life Support System
NASA Technical Reports Server (NTRS)
Conger, Bruce; Chullen, Cinda; Barnes, Bruce; Leavitt, Greg
2010-01-01
The latest development of the NASA space suit is an integrated assembly made up of primarily a Pressure Garment System (PGS) and a Portable Life Support System (PLSS). The PLSS is further composed of an oxygen (O2) subsystem, a ventilation subsystem, and a thermal subsystem. This paper baselines a detailed schematic of the PLSS to provide a basis for current and future PLSS development efforts. Both context diagrams and detailed schematics describe the hardware components and overall functions for all three of the PLSS subsystems. The various modes of operations for the PLSS are also presented. A comparison of the proposed PLSS to the Apollo and Shuttle PLSS designs is presented, highlighting several anticipated improvements over the historical PLSS architectures.
Space Suit Portable Life Support System Test Bed (PLSS 1.0) Development and Testing
NASA Technical Reports Server (NTRS)
Watts, Carly; Campbell, Colin; Vogel, Matthew; Conger, Bruce
2012-01-01
A multi-year effort has been carried out at NASA-JSC to develop an advanced extra-vehicular activity Portable Life Support System (PLSS) design intended to further the current state of the art by increasing operational flexibility, reducing consumables, and increasing robustness. Previous efforts have focused on modeling and analyzing the advanced PLSS architecture, as well as developing key enabling technologies. Like the current International Space Station Extra-vehicular Mobility Unit PLSS, the advanced PLSS comprises three subsystems required to sustain the crew during extra-vehicular activity including the Thermal, Ventilation, and Oxygen Subsystems. This multi-year effort has culminated in the construction and operation of PLSS 1.0, a test bed that simulates full functionality of the advanced PLSS design. PLSS 1.0 integrates commercial off the shelf hardware with prototype technology development components, including the primary and secondary oxygen regulators, Ventilation Subsystem fan, Rapid Cycle Amine swingbed carbon dioxide and water vapor removal device, and Spacesuit Water Membrane Evaporator heat rejection device. The overall PLSS 1.0 test objective was to demonstrate the capability of the Advanced PLSS to provide key life support functions including suit pressure regulation, carbon dioxide and water vapor removal, thermal control and contingency purge operations. Supplying oxygen was not one of the specific life support functions because the PLSS 1.0 test was not oxygen rated. Nitrogen was used for the working gas. Additional test objectives were to confirm PLSS technology development components performance within an integrated test bed, identify unexpected system level interactions, and map the PLSS 1.0 performance with respect to key variables such as crewmember metabolic rate and suit pressure. Successful PLSS 1.0 testing completed 168 test points over 44 days of testing and produced a large database of test results that characterize system level and component performance. With the exception of several minor anomalies, the PLSS 1.0 test rig performed as expected; furthermore, many system responses trended in accordance with pre-test predictions.
Introduction to the Portable Life Support Schematic and Technology Development Components
NASA Technical Reports Server (NTRS)
Conger, Bruce
2008-01-01
Conger presented the operations and functions of the baseline Constellation Program (CxP) Portable Life Support System (PLSS) schematic and key development technologies. He explained the functional descriptions of the schematic components in the fluid systems of the PLSS for multiple operational scenarios. PLSS subsystems include the oxygen subsystem, the ventilation subsystem, and the thermal subsystem. He also presented the operational PLSS modes: Nominal EVA mode, Umbilical - no recharge mode, Umbilical - with recharge mode, BENDS mode, BUDDY mode, Secondary oxygen mode, and the PLSS-removed umbilical mode.
PLSS 2.5 Fan Design and Development
NASA Technical Reports Server (NTRS)
Quinn, Gregory; Carra, Michael; Converse, David; Chullen, Cinda
2015-01-01
NASA is building a high fidelity prototype of an advanced portable life support system (PLSS) as part of the Advanced Exploration Systems Program. This new PLSS, designated as PLSS 2.5, will advance component technologies and systems knowledge in order to inform a future flight program. The oxygen ventilation loop of its predecessor, PLSS 2.0, is driven by a centrifugal fan developed using specifications from the Constellation Program. PLSS technology and system parameters have matured to the point where the existing fan will not perform adequately for the new prototype. In addition, areas of potential improvement have been identified with the existing fan that could be addressed in a new design. As a result, a new fan was designed and tested for the PLSS 2.5.
Apollo Portable Life Support System
1968-06-11
S68-34580 (1968) --- With its exterior removed, the Apollo portable life support system (PLSS) can be easily studied. The PLSS is worn as a backpack over the Extravehicular Mobility Unit (EMU), a multi-layered spacesuit used for outside-the-spacecraft activity. JSC photographic frame no. S68-34582 is a close-up view of the working parts of the PLSS.
Apollo Portable Life Support System
1968-06-11
S68-34582 (1968) --- With its exterior removed, the Apollo portable life support system (PLSS) can be easily studied. The PLSS is worn as a backpack over the Extravehicular Mobility Unit (EMU) a multi-layered spacesuit used for outside-the-spacecraft activity. JSC photographic frame no. S68-34582 is a wider view of the exposed interior working parts of the PLSS and its removed cover.
Portable Life Support System 2.5 Fan Design and Development
NASA Technical Reports Server (NTRS)
Quinn, Gregory; Carra, Michael; Converse, David; Chullen, Cinda
2016-01-01
NASA is building a high-fidelity prototype of an advanced Portable Life Support System (PLSS) as part of the Advanced Exploration Systems Program. This new PLSS, designated as PLSS 2.5, will advance component technologies and systems knowledge to inform a future flight program. The oxygen ventilation loop of its predecessor, PLSS 2.0, was driven by a centrifugal fan developed using specifications from the Constellation Program. PLSS technology and system parameters have matured to the point where the existing fan will not perform adequately for the new prototype. In addition, areas of potential improvement were identified with the PLSS 2.0 fan that could be addressed in a new design. As a result, a new fan was designed and tested for the PLSS 2.5. The PLSS 2.5 fan is a derivative of the one used in PLSS 2.0, and it uses the same nonmetallic, canned motor, with a larger volute and impeller to meet the higher pressure drop requirements of the PLSS 2.5 ventilation loop. The larger impeller allows it to operate at rotational speeds that are matched to rolling element bearings, and which create reasonably low impeller tip speeds consistent with prior, oxygen-rated fans. Development of the fan also considered a shrouded impeller design that could allow larger clearances for greater oxygen safety, assembly tolerances and particle ingestion. This paper discusses the design, manufacturing and performance testing of the new fans.
Space Suit Portable Life Support System (PLSS) 2.0 Human-in-the-Loop (HITL) Testing
NASA Technical Reports Server (NTRS)
Watts, Carly; Vogel, Matthew
2016-01-01
The space suit Portable Life Support System (PLSS) 2.0 represents the second integrated prototype developed and tested to mature a design that uses advanced technologies to reduce consumables, improve robustness, and provide additional capabilities over the current state of the art. PLSS 2.0 was developed in 2012, with extensive functional evaluations and system performance testing through mid-2014. In late 2014, PLSS 2.0 was integrated with the Mark III space suit in an ambient laboratory environment to facilitate manned testing, designated PLSS 2.0 Human-in-the-Loop (HITL) testing, in which the PLSS prototype performed the primary life support functions, including suit pressure regulation, ventilation, carbon dioxide control, and cooling of the test subject and PLSS avionics. The intent of this testing was to obtain subjective test subject feedback regarding qualitative aspects of PLSS 2.0 performance such as thermal comfort, sounds, smells, and suit pressure fluctuations due to the cycling carbon dioxide removal system, as well as to collect PLSS performance data over a range of human metabolic rates from 500-3000 Btu/hr. Between October 27 and December 18, 2014, nineteen two-hour simulated EVA test points were conducted in which suited test subjects walked on a treadmill to achieve a target metabolic rate. Six test subjects simulated nominal and emergency EVA conditions with varied test parameters including metabolic rate profile, carbon dioxide removal control mode, cooling water temperature, and Liquid Cooling and Ventilation Garment (state of the art or prototype). The nineteen test points achieved more than 60 hours of test time, with 36 hours accounting for simulated EVA time. The PLSS 2.0 test article performed nominally throughout the test series, confirming design intentions for the advanced PLSS. Test subjects' subjective feedback provided valuable insight into thermal comfort and perceptions of suit pressure fluctuations that will influence future advanced PLSS design and testing strategies.
Space Suit Portable Life Support System (PLSS) 2.0 Unmanned Vacuum Environment Testing
NASA Technical Reports Server (NTRS)
Watts, Carly; Vogel, Matthew
2016-01-01
For the first time in more than 30 years, an advanced space suit Portable Life Support System (PLSS) design was operated inside a vacuum chamber representative of the flight operating environment. The test article, PLSS 2.0, was the second system-level integrated prototype of the advanced PLSS design, following the PLSS 1.0 Breadboard that was developed and tested throughout 2011. Whereas PLSS 1.0 included five technology development components with the balance the system simulated using commercial-off-the-shelf items, PLSS 2.0 featured first generation or later prototypes for all components less instrumentation, tubing and fittings. Developed throughout 2012, PLSS 2.0 was the first attempt to package the system into a flight-like representative volume. PLSS 2.0 testing included an extensive functional evaluation known as Pre-Installation Acceptance (PIA) testing, Human-in-the-Loop testing in which the PLSS 2.0 prototype was integrated via umbilicals to a manned prototype space suit for 19 two-hour simulated EVAs, and unmanned vacuum environment testing. Unmanned vacuum environment testing took place from 1/9/15-7/9/15 with PLSS 2.0 located inside a vacuum chamber. Test sequences included performance mapping of several components, carbon dioxide removal evaluations at simulated intravehicular activity (IVA) conditions, a regulator pressure schedule assessment, and culminated with 25 simulated extravehicular activities (EVAs). During the unmanned vacuum environment test series, PLSS 2.0 accumulated 378 hours of integrated testing including 291 hours of operation in a vacuum environment and 199 hours of simulated EVA time. The PLSS prototype performed nominally throughout the test series, with two notable exceptions including a pump failure and a Spacesuit Water Membrane Evaporator (SWME) leak, for which post-test failure investigations were performed. In addition to generating an extensive database of PLSS 2.0 performance data, achievements included requirements and operational concepts verification, as well as demonstration of vehicular interfaces, consumables sizing and recharge, and water quality control.
Space Suit Portable Life Support System (PLSS) 2.0 Pre-Installation Acceptance (PIA) Testing
NASA Technical Reports Server (NTRS)
Anchondo, Ian; Cox, Marlon; Meginnis, Carly; Westheimer, David; Vogel, Matt R.
2016-01-01
Following successful completion of the space suit Portable Life Support System (PLSS) 1.0 development and testing in 2011, the second system-level prototype, PLSS 2.0, was developed in 2012 to continue the maturation of the advanced PLSS design. This advanced PLSS is intended to reduce consumables, improve reliability and robustness, and incorporate additional sensing and functional capabilities over the current Space Shuttle/International Space Station Extravehicular Mobility Unit (EMU) PLSS. PLSS 2.0 represents the first attempt at a packaged design comprising first generation or later component prototypes and medium fidelity interfaces within a flight-like representative volume. Pre-Installation Acceptance (PIA) is carryover terminology from the Space Shuttle Program referring to the series of test sequences used to verify functionality of the EMU PLSS prior to installation into the Space Shuttle airlock for launch. As applied to the PLSS 2.0 development and testing effort, PIA testing designated the series of 27 independent test sequences devised to verify component and subsystem functionality, perform in situ instrument calibrations, generate mapping data, define set-points, evaluate control algorithms, evaluate hardware performance against advanced PLSS design requirements, and provide quantitative and qualitative feedback on evolving design requirements and performance specifications. PLSS 2.0 PIA testing was carried out in 2013 and 2014 using a variety of test configurations to perform test sequences that ranged from stand-alone component testing to system-level testing, with evaluations becoming increasingly integrated as the test series progressed. Each of the 27 test sequences was vetted independently, with verification of basic functionality required before completion. Because PLSS 2.0 design requirements were evolving concurrently with PLSS 2.0 PIA testing, the requirements were used as guidelines to assess performance during the tests; after the completion of PIA testing, test data served to improve the fidelity and maturity of design requirements as well as plans for future advanced PLSS functional testing.
Development Specification for the FN-323/324, Oxygen Ventilation Loop Fan Assembly
NASA Technical Reports Server (NTRS)
Ralston, Russell; Campbell, Colin
2017-01-01
This specification establishes the requirements for design, performance, safety, and manufacture of the FN-323/324, Oxygen Ventilation Loop Fan Assembly as part of the Advanced EMU (AEMU) Portable Life Support System (PLSS). Fan development for the advanced Portable Life Support System (PLSS) began in 2009 with the development of Fan 1.0. This fan was used in PLSS 2.0 for circulation of the ventilation loop gas. Fan 2.0 was delivered in 2015 and will be used in the PLSS 2.5 Live Loads test series. This fan used the same motor as Fan 1.0, but had a larger volute and impeller in hopes of achieving lower speeds. The next iteration of the advanced PLSS fan is the subject of the requirements contained within this document, and will be used with the PLSS 2.5 -302 configuration.
Space Suit Portable Life Support System (PLSS) 2.0 Pre-Installation Acceptance (PIA) Testing
NASA Technical Reports Server (NTRS)
Watts, Carly; Vogel, Matthew
2016-01-01
Following successful completion of the space suit Portable Life Support System (PLSS) 1.0 development and testing in 2011, the second system-level prototype, PLSS 2.0, was developed in 2012 to continue the maturation of the advanced PLSS design which is intended to reduce consumables, improve reliability and robustness, and incorporate additional sensing and functional capabilities over the current Space Shuttle/International Space Station Extravehicular Mobility Unit (EMU) PLSS. PLSS 2.0 represents the first attempt at a packaged design comprising first generation or later component prototypes and medium fidelity interfaces within a flight-like representative volume. Pre-Installation Acceptance (PIA) is carryover terminology from the Space Shuttle Program referring to the series of test sequences used to verify functionality of the EMU PLSS prior to installation into the Space Shuttle airlock for launch. As applied to the PLSS 2.0 development and testing effort, PIA testing designated the series of 27 independent test sequences devised to verify component and subsystem functionality, perform in situ instrument calibrations, generate mapping data to define set-points for control algorithms, evaluate hardware performance against advanced PLSS design requirements, and provide quantitative and qualitative feedback on evolving design requirements and performance specifications. PLSS 2.0 PIA testing was carried out from 3/20/13 - 3/15/14 using a variety of test configurations to perform test sequences that ranged from stand-alone component testing to system-level testing, with evaluations becoming increasingly integrated as the test series progressed. Each of the 27 test sequences was vetted independently, with verification of basic functionality required before completion. Because PLSS 2.0 design requirements were evolving concurrently with PLSS 2.0 PIA testing, the requirements were used as guidelines to assess performance during the tests; after the completion of PIA testing, test data served to improve the fidelity and maturity of design requirements as well as plans for future advanced PLSS functional testing.
PLSS 2.5 Fan Design and Development
NASA Technical Reports Server (NTRS)
Converse, David; Carra, Michael; Quinn, Gregory; Chullen, Cinda
2015-01-01
NASA is building a high fidelity prototype of an advanced portable life support system (PLSS) as part of the Advanced Exploration Systems Program. This new PLSS, designated as PLSS 2.5, will advance component technologies and systems knowledge in order to inform a future flight program. The oxygen ventilation loop of its predecessor, PLSS 2.0, is driven by a centrifugal fan developed using specifications from over five years ago. PLSS technology and system parameters have matured to the point where the existing fan will not perform adequately for the new prototype. In addition, areas of potential improvement have been identified with the existing fan that could be addressed in a new design. As a result, a new fan was designed and tested for the PLSS 2.5. The PLSS 2.5 fan is a derivative of the one used in PLSS 2.0. It uses the same basic non-metallic can around the motor, but with a larger volute and impeller to meet the higher pressure drop requirements of the PLSS 2.5 loop. This allows it to operate at rotational speeds that are matched to rolling element bearings, and which create reasonably low impeller tip speeds. Development of the fan also considered a shrouded impeller design that allows larger clearances for greater oxygen safety and better performance.
NASA Technical Reports Server (NTRS)
Makinen, Janice V.; Anchondo, Ian; Bue, Grant C.; Campbell, Colin; Colunga, Aaron
2013-01-01
Development of the Advanced Extravehicular Mobility Unit (AEMU) portable life support subsystem (PLSS) is currently under way at NASA Johnson Space Center. The AEMU PLSS features a new evaporative cooling system, the reduced volume prototype (RVP) spacesuit water membrane evaporator (SWME). The RVP SWME is the third generation of hollow fiber SWME hardware. Like its predecessors, RVP SWME provides nominal crew member and electronics cooling by flowing water through porous hollow fibers. Water vapor escapes through the hollow fiber pores, thereby cooling the liquid water that remains inside of the fibers. This cooled water is then recirculated to remove heat from the crew member and PLSS electronics. Major design improvements, including a 36% reduction in volume, reduced weight, and a more flight-like backpressure valve, facilitate the packaging of RVP SWME in the AEMU PLSS envelope. The development of these evaporative cooling systems will contribute to a more robust and comprehensive AEMU PLSS.
Flexible Foam Protection Materials for Portable Life Support System Packaging Study
NASA Technical Reports Server (NTRS)
Tang,Henry H.; Dillon, Paul A.; Thomas, Gretchen A.
2009-01-01
This paper discusses the phase I effort in evaluating and selecting a light weight impact protection material for the Constellation Space Suit Element (CSSE) Portable Life Support System (PLSS) conceptual packaging study. A light weight material capable of holding and protecting the components inside the PLSS is required to demonstrate the viability of the flexible PLSS packaging concept. The material needs to distribute, dissipate, and absorb the impact energy of the PLSS falling on the lunar surface. It must also be robust to consistently perform over several Extravehicular Activity (EVA) missions in the extreme lunar thermal vacuum environment. This paper documents the performance requirements for selecting a foam protection material, and the methodologies for evaluating some commercial off-the-shelf (COTS) foam material candidates. It also presents the mechanical properties and impact drop tests results of the foam material candidates. The results of this study suggest that a foam based flexible protection system is a viable solution for PLSS packaging. However, additional works are needed to optimize COTS foam or to develop a composite foam system that will meet all the performance requirements for the CSSE PLSS flexible packaging.
Advanced Space Suit PLSS 2.0 Cooling Loop Evaluation and PLSS 2.5 Recommendations
NASA Technical Reports Server (NTRS)
Steele, John; Quinn, Greg; Campbell, Colin; Makinen, Janice; Watts, Carly; Westheimer, David
2016-01-01
From 2012 to 2015 The NASA/JSC AdvSS (Advanced Space Suit) PLSS (Portable Life Support Subsystem) team, with support from UTC Aerospace Systems, performed the build-up, packaging and testing of PLSS 2.0. One aspect of that testing was the evaluation of the long-term health of the water cooling circuit and the interfacing components. Periodic and end-of-test water, residue and hardware analyses provided valuable information on the status of the water cooling circuit, and the approaches that would be necessary to enhance water cooling circuit health in the future. The evaluated data has been consolidated, interpreted and woven into an action plan for the maintenance of water cooling circuit health for the planned FY (fiscal year) 2016 through FY 2018 PLSS 2.5 testing. This paper provides an overview of the PLSS 2.0 water cooling circuit findings and the associated steps to be taken in that regard for the PLSS 2.5.
Advanced Space Suit PLSS 2.0 Cooling Loop Evaluation and PLSS 2.5 Recommendations
NASA Technical Reports Server (NTRS)
Steele, John; Quinn, Greg; Campbell, Colin; Makinen, Janice; Watts, Carly; Westheimer, Dave
2016-01-01
From 2012 to 2015 The NASA/JSC AdvSS (Advanced Space Suit) PLSS (Primary Life Support Subsystem) team, with support from UTC Aerospace Systems, performed the build-up, packaging and testing of PLSS 2.0. A key aspect of that testing was the evaluation of the long-term health of the water cooling circuit and the interfacing components. Intermittent and end-of-test water, residue and hardware analyses provided valuable information on the status of the water cooling circuit, and the approaches that would be necessary to enhance water cooling circuit health in the future. The evaluated data has been consolidated, interpreted and woven into an action plan for the maintenance of water cooling circuit health for the planned FY (fiscal year) 2016 through FY 2018 PLSS 2.5 testing. This paper provides an overview of the PLSS 2.0 water cooling circuit findings and the associated steps to be taken in that regard for the PLSS 2.5 testing.
Spacesuit Portable Life Support System Breadboard (PLSS 1.0) Development and Test Results
NASA Technical Reports Server (NTRS)
Vogel, Matt R.; Watts, Carly
2011-01-01
A multi-year effort has been carried out at NASA-JSC to develop an advanced Extravehicular Activity (EVA) PLSS design intended to further the current state of the art by increasing operational flexibility, reducing consumables, and increasing robustness. Previous efforts have focused on modeling and analyzing the advanced PLSS architecture, as well as developing key enabling technologies. Like the current International Space Station (ISS) Extravehicular Mobility Unit (EMU) PLSS, the advanced PLSS comprises of three subsystems required to sustain the crew during EVA including the Thermal, Ventilation, and Oxygen Subsystems. This multi-year effort has culminated in the construction and operation of PLSS 1.0, a test rig that simulates full functionality of the advanced PLSS design. PLSS 1.0 integrates commercial off the shelf hardware with prototype technology development components, including the primary and secondary oxygen regulators, ventilation loop fan, Rapid Cycle Amine (RCA) swingbed, and Spacesuit Water Membrane Evaporator (SWME). Testing accumulated 239 hours over 45 days, while executing 172 test points. Specific PLSS 1.0 test objectives assessed during this testing include: confirming key individual components perform in a system level test as they have performed during component level testing; identifying unexpected system-level interactions; operating PLSS 1.0 in nominal steady-state EVA modes to baseline subsystem performance with respect to metabolic rate, ventilation loop pressure and flow rate, and environmental conditions; simulating nominal transient EVA operational scenarios; simulating contingency EVA operational scenarios; and further evaluating individual technology development components. Successful testing of the PLSS 1.0 provided a large database of test results that characterize system level and component performance. With the exception of several minor anomalies, the PLSS 1.0 test rig performed as expected; furthermore, many system responses trended in accordance with pre-test predictions.
NASA Technical Reports Server (NTRS)
Campbell, Colin
2015-01-01
As the Shuttle/ISS EMU Program exceeds 35 years in duration and is still supporting the needs of the International Space Station (ISS), a critical benefit of such a long running program with thorough documentation of system and component failures is the ability to study and learn from those failures when considering the design of the next generation space suit. Study of the subject failure history leads to changes in the Advanced EMU Portable Life Support System (PLSS) schematic, selected component technologies, as well as the planned manner of ground testing. This paper reviews the Shuttle/ISS EMU failure history and discusses the implications to the AEMU PLSS.
NASA Technical Reports Server (NTRS)
Chullen, Cinda
2017-01-01
Functional Requirements for the Carbon Dioxide and Humidity Control Unit (CDHCU): The CDHCU is a component of the Exploration Portable Life Support System (xPLSS) to provide carbon dioxide (CO2) and humidity control within the spacesuit for a crewmember to perform extravehicular activities (EVA) in vacuum (micro-g), lunar, and Mars environments for up to 8 hours continuous, and during EVA preparation in airlocks or support vehicles for an additional 2 hours (TBR) continuous.
Ventilation Transport Trade Study for Future Space Suit Life Support Systems
NASA Technical Reports Server (NTRS)
Kempf, Robert; Vogel, Matthew; Paul, Heather L.
2008-01-01
A new and advanced portable life support system (PLSS) for space suit surface exploration will require a durable, compact, and energy efficient system to transport the ventilation stream through the space suit. Current space suits used by NASA circulate the ventilation stream via a ball-bearing supported centrifugal fan. As NASA enters the design phase for the next generation PLSS, it is necessary to evaluate available technologies to determine what improvements can be made in mass, volume, power, and reliability for a ventilation transport system. Several air movement devices already designed for commercial, military, and space applications are optimized in these areas and could be adapted for EVA use. This paper summarizes the efforts to identify and compare the latest fan and bearing technologies to determine candidates for the next generation PLSS.
NASA Technical Reports Server (NTRS)
Tang, Henry H.; Orndoff, Evelyne S.; Thomas, Gretchen A.
2009-01-01
This paper discusses the effort in evaluating and selecting a light weight impact protection material for the Constellation Space Suit Element (CSSE) Portable Life Support Subsystem (PLSS) conceptual packaging study. A light weight material capable of holding and protecting the components inside the PLSS is required to demonstrate the viability of the flexible PLSS packaging concept. The material needs to distribute, dissipate, and absorb the impact energy of the PLSS falling on the lunar surface. It must also be very robust and function in the extreme lunar thermal vacuum environment for up to one hundred Extravehicular Activity (EVA) missions. This paper documents the performance requirements for selecting a foam protection material, and the methodologies for evaluating commercial off-the-shelf (COTS) foam protection materials. It also presents the materials properties test results and impact drop test results of the various foam materials evaluated in the study. The findings from this study suggest that a foam based flexible protection system is a viable solution for PLSS packaging. However, additional works are needed to optimize COTS foam properties or to develop a composite foam system that will meet all the performance requirements for the CSSE PLSS flexible packaging.
NASA Technical Reports Server (NTRS)
Papale, William; Chullen, Cinda; Campbell, Colin; Conger, Bruce; McMillin, Summer; Jeng, Frank
2014-01-01
Development activities related to the Rapid Cycle Amine (RCA) Carbon Dioxide (CO2) and Humidity control system have progressed to the point of integrating the RCA into an advanced Primary Life Support System (PLSS 2.0) to evaluate the interaction of the RCA among other PLSS components in a ground test environment. The RCA 2.0 assembly (integrated into PLSS 2.0) consists of a valve assembly with commercial actuator motor, a sorbent canister, and a field-programmable gate array (FPGA)-based process node controller. Continued design and development activities for RCA 3.0 have been aimed at optimizing the canister size and incorporating greater fidelity in the valve actuator motor and valve position feedback design. Further, the RCA process node controller is envisioned to incorporate a higher degree of functionality to support a distributed PLSS control architecture. This paper will describe the progression of technology readiness levels of RCA 1.0, 2.0 and 3.0 along with a review of the design and manufacturing successes and challenges for 2.0 and 3.0 units. The anticipated interfaces and interactions with the PLSS 2.0/2.5/3.0 assemblies will also be discussed.
Astronaut Edwin Aldrin in EMU verifies fit of Portable Life Support System
1969-06-25
Astronaut Edwin E. Aldrin Jr., wearing an Extravehicular Mobility Unit (EMU), verifies fit of the Portable Life Support System (PLSS) strap length during lunar surface training at the Kennedy Space Center. Aldrin is the prime crew lunar module pilot of the Apollo 11 lunar landing mission. Aldrin's PLSS backpack is attached to a lunar weight simulator.
Space Suit Portable Life Support System Rapid Cycle Amine Repackaging and Sub-Scale Test Results
NASA Technical Reports Server (NTRS)
Paul, Heather L.; Rivera, Fatonia L.
2010-01-01
NASA is developing technologies to meet requirements for an extravehicular activity (EVA) Portable Life Support System (PLSS) for exploration. The PLSS Ventilation Subsystem transports clean, conditioned oxygen to the pressure garment for space suit pressurization and human consumption, and recycles the ventilation gas, removing carbon dioxide, humidity, and trace contaminants. This paper provides an overview of the development efforts conducted at the NASA Johnson Space Center to redesign the Rapid Cycle Amine (RCA) canister and valve assembly into a radial flow, cylindrical package for carbon dioxide and humidity control of the PLSS ventilation loop. Future work is also discussed.
Modified ACES Portable Life Support Integration, Design, and Testing for Exploration Missions
NASA Technical Reports Server (NTRS)
Kelly, Cody
2014-01-01
NASA's next generation of exploration missions provide a unique challenge to designers of EVA life support equipment, especially in a fiscally-constrained environment. In order to take the next steps of manned space exploration, NASA is currently evaluating the use of the Modified ACES (MACES) suit in conjunction with the Advanced Portable Life Support System (PLSS) currently under development. This paper will detail the analysis and integration of the PLSS thermal and ventilation subsystems into the MACES pressure garment, design of prototype hardware, and hardware-in-the-loop testing during the spring 2014 timeframe. Prototype hardware was designed with a minimal impact philosophy in order to mitigate design constraints becoming levied on either the advanced PLSS or MACES subsystems. Among challenges faced by engineers were incorporation of life support thermal water systems into the pressure garment cavity, operational concept definition between vehicle/portable life support system hardware, and structural attachment mechanisms while still enabling maximum EVA efficiency from a crew member's perspective. Analysis was completed in late summer 2013 to 'bound' hardware development, with iterative analysis cycles throughout the hardware development process. The design effort will cumulate in the first ever manned integration of NASA's advanced PLSS system with a pressure garment originally intended primarily for use in a contingency survival scenario.
Shuttle/ISS EMU Failure History and the Impact on Advanced EMU PLSS Design
NASA Technical Reports Server (NTRS)
Campbell, Colin
2011-01-01
As the Shuttle/ISS EMU Program exceeds 30 years in duration and is still successfully supporting the needs of the International Space Station (ISS), a critical benefit of such a long running program with thorough documentation of system and component failures is the ability to study and learn from those failures when considering the design of the next generation space suit. Study of the subject failure history leads to changes in the Advanced EMU Portable Life Support System (PLSS) schematic, selected component technologies, as well as the planned manner of ground testing. This paper reviews the Shuttle/ISS EMU failure history and discusses the implications to the AEMU PLSS.
Shuttle/ISS EMU Failure History and the Impact on Advanced EMU PLSS Design
NASA Technical Reports Server (NTRS)
Campbell, Colin
2015-01-01
As the Shuttle/ISS EMU Program exceeds 30 years in duration and is still supporting the needs of the International Space Station (ISS), a critical benefit of such a long running program with thorough documentation of system and component failures is the ability to study and learn from those failures when considering the design of the next generation space suit. Study of the subject failure history leads to changes in the Advanced EMU Portable Life Support System (PLSS) schematic, selected component technologies, as well as the planned manner of ground testing. This paper reviews the Shuttle/ISS EMU failure history and discusses the implications to the AEMU PLSS.
Evolution of Space Station EMU PLSS technology recommendations
NASA Technical Reports Server (NTRS)
Wilde, Richard C.
1990-01-01
Viewgraphs on extravehicular mobility unit (EMU) portable life support system (PLSS) technology recommendations are presented. Topics covered include: oxygen supply storage; oxygen supply regulators; carbon dioxide control; prime movers; crew comfort; heat rejection; power sources; controls; display devices; and sensor technology.
NASA Technical Reports Server (NTRS)
Makinen, Janice V.; Anchondo, Ian; Bue, Grant C.; Campbell, Colin; Colunga, Aaron
2012-01-01
The development of the Advanced Extravehicular Mobility Unit (AEMU) Portable Life Support System (PLSS) is currently underway at NASA Johnson Space Center. The AEMU PLSS features two new evaporative cooling systems, the Reduced Volume Prototype Spacesuit Water Membrane Evaporator (RVP SWME), and the Auxiliary Cooling Loop (ACL). The RVP SWME is the third generation of hollow fiber SWME hardware, and like its predecessors, RVP SWME provides nominal crewmember and electronics cooling by flowing water through porous hollow fibers. Water vapor escapes through the hollow fiber pores, thereby cooling the liquid water that remains inside of the fibers. This cooled water is then recirculated to remove heat from the crewmember and PLSS electronics. Major design improvements, including a 36% reduction in volume, reduced weight, and more flight like back-pressure valve, facilitate the packaging of RVP SWME in the AEMU PLSS envelope. In addition to the RVP SWME, the Auxiliary Cooling Loop (ACL), was developed for contingency crewmember cooling. The ACL is a completely redundant, independent cooling system that consists of a small evaporative cooler--the Mini Membrane Evaporator (Mini-ME), independent pump, independent feed-water assembly and independent Liquid Cooling Garment (LCG). The Mini-ME utilizes the same hollow fiber technology featured in the RVP SWME, but is only 25% of the size of RVP SWME, providing only the necessary crewmember cooling in a contingency situation. The ACL provides a number of benefits when compared with the current EMU PLSS contingency cooling technology; contingency crewmember cooling can be provided for a longer period of time, more contingency situations can be accounted for, no reliance on a Secondary Oxygen Vessel (SOV) for contingency cooling--thereby allowing a SOV reduction in size and pressure, and the ACL can be recharged-allowing the AEMU PLSS to be reused, even after a contingency event. The development of these evaporative cooling systems will contribute to a more robust and comprehensive AEMU PLSS.
Humidifier Development and Applicability to the Next Generation Portable Life Support System
NASA Technical Reports Server (NTRS)
Conger, Bruce C.; Barnes, Bruce G.; Sompayrac, Robert G.; Paul, Heather L.
2011-01-01
A development effort at the NASA Johnson Space Center investigated technologies to determine whether a humidifier would be required in the Portable Life Support System (PLSS) envisioned for future exploration missions. The humidifier has been included in the baseline PLSS schematic since performance testing of the Rapid Cycle Amine (RCA) indicates that the RCA over-dries the ventilation gas stream. Performance tests of a developmental humidifier unit and commercial off-the-shelf (COTS) units were conducted in December 2009. Following these tests, NASA revisited the need for a humidifier via system analysis. Results of this investigation indicate that it is feasible to meet humidity requirements without the humidifier if other changes are made to the PLSS ventilation loop and the Liquid Cooling and Ventilation Garment (LCVG).
Development of Trace Contaminant Control Prototypes for the Primary Life Support System (PLSS)
NASA Technical Reports Server (NTRS)
Wojtowicz, Marek; Cosgrove, Joseph E.; Serio, Michael E.; Nalette, Tim; Guerrero, Sandra V.; Papale, William; Wilburn, Monique S.
2017-01-01
Results are presented on the development of Trace Contaminant Control (TCC) Prototypes for use in Extravehicular Activities (EVAs), and more specifically in the Primary Life Support System (PLSS). The current TC-control technology involves the use of a packed bed of acid-impregnated granular charcoal, which is non-regenerable, and the carbon-based sorbent under development in this project can be regenerated by exposure to vacuum at room temperature. Data on sorption and desorption of ammonia and formaldehyde, which are major TCs of concern, as well as pressure-drop calculations were used to design and test 1/6-scale and full-scale trace contaminant control system (TCCS) prototypes. Carbon sorbents were fabricated in both the granular and foam-supported forms. Sorbent performance was tested for ammonia sorption and vacuum regeneration in 1/6-scale, and pressure-drop characteristics were measured at flow rates relevant to the PLSS application.
Testing, Modeling and System Impact of Metabolic Heat Regenerated Temperature Swing Adsorption
NASA Technical Reports Server (NTRS)
Lacomini, Christine S.; Powers, Aaron; Lewis, Matthew; Linrud, Christopher; Waguespack, Glenn; Conger, Bruce; Paul, Heather L.
2008-01-01
Metabolic heat regenerated temperature swing adsorption (MTSA) technology is being developed for removal and rejection of carbon dioxide (CO2) and heat from a portable life support system (PLSS) to the Martian environment. Previously, hardware was built and tested to demonstrate using heat from simulated, dry ventilation loop gas to affect the temperature swing required to regenerate an adsorbent used for CO2 removal. New testing has been performed using a moist, simulated ventilation loop gas to demonstrate the effects of water condensing and freezing in the heat exchanger during adsorbent regeneration. In addition, thermal models of the adsorbent during regeneration were modified and calibrated with test data to capture the effect of the CO2 heat of desorption. Finally, MTSA impact on PLSS design was evaluated by performing thermal balances assuming a specific PLSS architecture. Results using NASA s Extravehicular Activity System Sizing Analysis Tool (EVAS_SAT), a PLSS system evaluation tool, are presented.
Scott-Pandorf, Melissa M; O'Connor, Daniel P; Layne, Charles S; Josić, Kresimir; Kurz, Max J
2009-09-01
With human exploration of the moon and Mars on the horizon, research considerations for space suit redesign have surfaced. The portable life support system (PLSS) used in conjunction with the space suit during the Apollo missions may have influenced the dynamic balance of the gait pattern. This investigation explored potential issues with the PLSS design that may arise during the Mars exploration. A better understanding of how the location of the PLSS load influences the dynamic stability of the gait pattern may provide insight, such that space missions may have more productive missions with a smaller risk of injury and damaging equipment while falling. We explored the influence the PLSS load position had on the dynamic stability of the walking pattern. While walking, participants wore a device built to simulate possible PLSS load configurations. Floquet and Lyapunov analysis techniques were used to quantify the dynamic stability of the gait pattern. The dynamic stability of the gait pattern was influenced by the position of load. PLSS loads that are placed high and forward on the torso resulted in less dynamically stable walking patterns than loads placed evenly and low on the torso. Furthermore, the kinematic results demonstrated that all joints of the lower extremity may be important for adjusting to different load placements and maintaining dynamic stability. Space scientists and engineers may want to consider PLSS designs that distribute loads evenly and low, and space suit designs that will not limit the sagittal plane range of motion at the lower extremity joints.
NASA Technical Reports Server (NTRS)
Jennings, Mallory
2011-01-01
NASA Engineers design spacesuits for ultimate protection and functionality in the extreme environment of space. The spacesuit is often referred to as a "personal spacecraft" because it provides the astronaut with everything he or she needs to survive and work in space outside of the vehicle or habitat. The systems within the spacesuit include the pressure garment system (PGS), the Portable Life Support System (PLSS), and the power, avionics, and software (PAS) system. These elements are necessary to protect crewmembers and allow them to work effectively in the pressure and temperature extremes of space environments. Development of the spacesuit system is necessary to support future human extravehicular exploration activities to Lunar, Martian, microgravity, and possibly other space destinations. Although all the systems that makeup the space suit are important, the PLSS is one of the most complex. The PLSS provides the life support needed by the astronaut and consists of the oxygen (O2) subsystem, ventilation subsystem, and thermal control subsystem. Within each subsystem, there are many different components, a few of which are explained as follows. The oxygen tanks hold the oxygen that the crewmember uses to breath and pressurizes the suit. The primary oxygen tank is responsible during normal operations and the secondary oxygen tank kicks on in the case of an emergency. The Rapid Cycle Amine (RCA) canister is used to remove the carbon dioxide (CO2) and extra humidity in the crewmember's ventilation/breathing gas. The fan moves the oxygen around the suit. Suit Water Membrane Evaporator (SWME) is used within the thermal control loop to cool the water that is used to maintain a comfortable temperature for both the crew member and the other equipment inside the suit. Another component is the battery, which supplies the power needed to operate all these and the many other pieces. The battery is one of the biggest and heavies components within the PLSS. These are just a few of the components that encompass the PLSS. Each component has a weight and a certain volume that the NASA Engineers must take into account when building the PLSS, because the weight and volumes affect the crewmembers center of gravity (CG). [See the Notes Section for the link to an Apollo video that demonstrates the issues some of the crewmembers had picking up tools and dealing with center of gravity/tools on the surface of the Moon.] In this activity, students will simulate engineering design techniques that NASA Engineers and Designers are currently implementing to configuring the components within the PLSS. Through testing, students will consider the comfort, mobility, and center of gravity for their test subjects and how that changes after adjusting the placement of their simulated PLSS components.
Advanced Space Suit Portable Life Support Subsystem Packaging Design
NASA Technical Reports Server (NTRS)
Howe, Robert; Diep, Chuong; Barnett, Bob; Thomas, Gretchen; Rouen, Michael; Kobus, Jack
2006-01-01
This paper discusses the Portable Life Support Subsystem (PLSS) packaging design work done by the NASA and Hamilton Sundstrand in support of the 3 future space missions; Lunar, Mars and zero-g. The goal is to seek ways to reduce the weight of PLSS packaging, and at the same time, develop a packaging scheme that would make PLSS technology changes less costly than the current packaging methods. This study builds on the results of NASA s in-house 1998 study, which resulted in the "Flex PLSS" concept. For this study the present EMU schematic (low earth orbit) was used so that the work team could concentrate on the packaging. The Flex PLSS packaging is required to: protect, connect, and hold the PLSS and its components together internally and externally while providing access to PLSS components internally for maintenance and for technology change without extensive redesign impact. The goal of this study was two fold: 1. Bring the advanced space suit integrated Flex PLSS concept from its current state of development to a preliminary design level and build a proof of concept mockup of the proposed design, and; 2. "Design" a Design Process, which accommodates both the initial Flex PLSS design and the package modifications, required to accommodate new technology.
Portable Life Support Subsystem Thermal Hydraulic Performance Analysis
NASA Technical Reports Server (NTRS)
Barnes, Bruce; Pinckney, John; Conger, Bruce
2010-01-01
This paper presents the current state of the thermal hydraulic modeling efforts being conducted for the Constellation Space Suit Element (CSSE) Portable Life Support Subsystem (PLSS). The goal of these efforts is to provide realistic simulations of the PLSS under various modes of operation. The PLSS thermal hydraulic model simulates the thermal, pressure, flow characteristics, and human thermal comfort related to the PLSS performance. This paper presents modeling approaches and assumptions as well as component model descriptions. Results from the models are presented that show PLSS operations at steady-state and transient conditions. Finally, conclusions and recommendations are offered that summarize results, identify PLSS design weaknesses uncovered during review of the analysis results, and propose areas for improvement to increase model fidelity and accuracy.
Spacesuit Portable Life Support System Breadboard (PLSS 1.0) Development and Test Results
NASA Technical Reports Server (NTRS)
Watts, Carly A.; Vogel, Matt
2012-01-01
A multi-year effort has been carried out at the Johnson Space Center to develop an advanced EVA PLSS design intended to further the current state of the art by increasing operational flexibility, reducing consumables, and increasing robustness. This multi-year effort has culminated in the construction and operation of PLSS 1.0, a test rig that simulates full functionality of the advanced PLSS design. PLSS 1.0 integrates commercial off-the-shelf hardware with prototype technology development components, including the primary and secondary oxygen regulators, ventilation loop fan, Rapid Cycle Amine (RCA) swingbed, and Spacesuit Water Membrane Evaporator (SWME). PLSS 1.0 was tested from June 17th through September 30th, 2011. Testing accumulated 233 hours over 45 days, while executing 119 test points. An additional 164 hours of operational time were accrued during the test series, bringing the total operational time for PLSS 1.0 testing to 397 hours. Specific PLSS 1.0 test objectives assessed during this testing include: (1) Confirming prototype components perform in a system level test as they have performed during component level testing, (2) Identifying unexpected system-level interactions (3) Operating PLSS 1.0 in nominal steady-state EVA modes to baseline subsystem performance with respect to metabolic rate, ventilation loop pressure and flow rate, and environmental conditions (4) Simulating nominal transient EVA operational scenarios (5) Simulating contingency EVA operational scenarios (6) Further evaluating prototype technology development components Successful testing of the PLSS 1.0 provided a large database of test results that characterize system level and component performance. With the exception of several minor anomalies, the PLSS 1.0 test rig performed as expected. Documented anomalies and observations include: (1) Ventilation loop fan controller issues at high fan speeds (near 70,000 rpm, whereas the fan speed during nominal operations would be closer to 35,000 rpm) (2) RCA performance at boundary conditions, including carbon dioxide and water vapor saturation events, as well as reduced vacuum quality (3) SWME valve anomalies (4 documented cases where the SWME failed to respond to a control signal or physically jammed, preventing SWME control) (4) Reduction of SWME hollow fiber hydrophobicity and significant reduction of the SWME degassing capability after significant accumulated test time.
An innovative exercise method to simulate orbital EVA work - Applications to PLSS automatic controls
NASA Technical Reports Server (NTRS)
Lantz, Renee; Vykukal, H.; Webbon, Bruce
1987-01-01
An exercise method has been proposed which may satisfy the current need for a laboratory simulation representative of muscular, cardiovascular, respiratory, and thermoregulatory responses to work during orbital extravehicular activity (EVA). The simulation incorporates arm crank ergometry with a unique body support mechanism that allows all body position stabilization forces to be reacted at the feet. By instituting this exercise method in laboratory experimentation, an advanced portable life support system (PLSS) thermoregulatory control system can be designed to more accurately reflect the specific work requirements of orbital EVA.
V-SUIT Model Validation Using PLSS 1.0 Test Results
NASA Technical Reports Server (NTRS)
Olthoff, Claas
2015-01-01
The dynamic portable life support system (PLSS) simulation software Virtual Space Suit (V-SUIT) has been under development at the Technische Universitat Munchen since 2011 as a spin-off from the Virtual Habitat (V-HAB) project. The MATLAB(trademark)-based V-SUIT simulates space suit portable life support systems and their interaction with a detailed and also dynamic human model, as well as the dynamic external environment of a space suit moving on a planetary surface. To demonstrate the feasibility of a large, system level simulation like V-SUIT, a model of NASA's PLSS 1.0 prototype was created. This prototype was run through an extensive series of tests in 2011. Since the test setup was heavily instrumented, it produced a wealth of data making it ideal for model validation. The implemented model includes all components of the PLSS in both the ventilation and thermal loops. The major components are modeled in greater detail, while smaller and ancillary components are low fidelity black box models. The major components include the Rapid Cycle Amine (RCA) CO2 removal system, the Primary and Secondary Oxygen Assembly (POS/SOA), the Pressure Garment System Volume Simulator (PGSVS), the Human Metabolic Simulator (HMS), the heat exchanger between the ventilation and thermal loops, the Space Suit Water Membrane Evaporator (SWME) and finally the Liquid Cooling Garment Simulator (LCGS). Using the created model, dynamic simulations were performed using same test points also used during PLSS 1.0 testing. The results of the simulation were then compared to the test data with special focus on absolute values during the steady state phases and dynamic behavior during the transition between test points. Quantified simulation results are presented that demonstrate which areas of the V-SUIT model are in need of further refinement and those that are sufficiently close to the test results. Finally, lessons learned from the modelling and validation process are given in combination with implications for the future development of other PLSS models in V-SUIT.
Advanced Spacesuit Portable Life Support System Packaging Concept Mock-Up Design & Development
NASA Technical Reports Server (NTRS)
O''Connell, Mary K.; Slade, Howard G.; Stinson, Richard G.
1998-01-01
A concentrated development effort was begun at NASA Johnson Space Center to create an advanced Portable Life Support System (PLSS) packaging concept. Ease of maintenance, technological flexibility, low weight, and minimal volume are targeted in the design of future micro-gravity and planetary PLSS configurations. Three main design concepts emerged from conceptual design techniques and were carried forth into detailed design, then full scale mock-up creation. "Foam", "Motherboard", and "LEGOtm" packaging design concepts are described in detail. Results of the evaluation process targeted maintenance, robustness, mass properties, and flexibility as key aspects to a new PLSS packaging configuration. The various design tools used to evolve concepts into high fidelity mock ups revealed that no single tool was all encompassing, several combinations were complimentary, the devil is in the details, and, despite efforts, many lessons were learned only after working with hardware.
NASA Technical Reports Server (NTRS)
Anchondo, Ian; Campbell, Colin
2017-01-01
The FSA with Integrated Aux FSA Specification establishes the requirements for design, performance, and testing of the FSA-431/FSA-531 assembly in compliance with CTSD-ADV-780, Development Specification for the Advanced EMU (AEMU) Portable Life Support System (PLSS). This section contains the technical design and performance requirements for the integrated assembly of the Feedwater Supply Assembly and Auxiliary Feedwater Supply Assembly for the Advanced EVA Development Portable Life Support Subsystem (PLSS).
The embodiment design of the heat rejection system for the portable life support system
NASA Technical Reports Server (NTRS)
Stuckwisch, Sue; Francois, Jason; Laughlin, Julia; Phillips, Lee; Carrion, Carlos A.
1994-01-01
The Portable Life Support System (PLSS) provides a suitable environment for the astronaut in the Extravehicular Mobility Unit (EMU), and the heat rejection system controls the thermal conditions in the space suit. The current PLSS sublimates water to the space environment; therefore, the system loses mass. Since additional supplies of fluid must be available on the Space Shuttle, NASA desires a closed heat rejecting system. This document presents the embodiment design for a radiative plate heat rejection system without mass transfer to the space environment. This project will transform the concept variant into a design complete with material selection, dimensions of the system, layouts of the heat rejection system, suggestions for manufacturing, and financial viability.
Drawing of the Buddy Secondary Life Support System
1970-12-22
S70-56965 (December 1970) --- Drawing of the newly developed Buddy Secondary Life Support System (BSLSS). The life-sustaining system will be provided for the first time on the Apollo 14 lunar landing mission. The two flexible hoses, to be used on the second Apollo 14 extravehicular activity (EVA), will be among the paraphernalia on the Modular Equipment Transporter (MET) or two-wheeled workshop, and readily accessible in an emergency. During EVAs the Portable Life Support System (PLSS) supplies the astronaut with breathing and suit-pressurizing oxygen and water flow for the liquid-cooling garment -- a suit of knitted long underwear with thin tubing woven in the torso and limbs. The tubes carry water from a reservoir in the PLSS, and the circulating water serves to carry the astronaut's metabolic heat to a heat exchanger in the PLSS. Before the BSLSS was devised, the emergency tank was required to furnish not only suit pressure and breathing oxygen, but also cooling through a high oxygen flow rate. The BSLSS, by sharing the water supply between the two crewmen, stretches the time of the emergency oxygen from about 40 minutes to 60 to 75 minutes.
NASA Technical Reports Server (NTRS)
Wickham, David T.; Gleason, Kevin J.; Engel, Jeffrey R.; Cowley, Scott W.; Chullen, Cinda
2015-01-01
The development of a new, robust, portable life support system (PLSS) is a high priority for NASA in order to support longer and safer extravehicular activity (EVA) missions. One of the critical PLSS functions is maintaining the carbon dioxide (CO2) concentration in the suit at acceptable levels. Although the Metal Oxide (MetOx) canister has historically performed very well, it has a finite CO2 adsorption capacity. Therefore, the size and weight of the unit would have to be increased to extend EVA times. Consequently, new CO2 control technologies must be developed in order to meet mission objectives without increasing the size of the PLSS. Recent work has centered on sorbents that can be regenerated during the EVA; however, this strategy increases the system complexity and power consumption. A much simpler approach is to employ a membrane that vents CO2 to space and retains oxygen (O2). A membrane has many advantages over current technology: it is a continuous system with no limit on capacity, it requires no consumables, and it does not need any hardware to switch beds between absorption and regeneration. Unfortunately, conventional gas separation membranes do not have the needed selectivity for use in the PLSS. However, the required performance could be obtained with a supported liquid membrane (SLM), which consists of a microporous material filled with a liquid that selectively reacts with CO2 over O2. In a recently completed Phase II SBIR project, Reaction Systems, Inc. achieved the required CO2 permeance and selectivity with an SLM in a flat sheet configuration. This paper describes work to convert the SLM into a more compact form and to scale it up to handle more representative process flow rates.
Asteroid Redirect Crewed Mission Space Suit and EVA System Architecture Trade Study
NASA Technical Reports Server (NTRS)
Bowie, Jonathan; Buffington, Jesse; Hood, Drew; Kelly, Cody; Naids, Adam; Watson, Richard; Blanco, Raul; Sipila, Stephanie
2014-01-01
The Asteroid Redirect Crewed Mission (ARCM) requires a Launch/Entry/Abort (LEA) suit capability and short duration Extra Vehicular Activity (EVA) capability from the Orion spacecraft. For this mission, the pressure garment selected for both functions is the Modified Advanced Crew Escape Suit (MACES) with EVA enhancements and the life support option that was selected is the Exploration Portable Life Support System (PLSS) currently under development for Advanced Exploration Systems (AES). The proposed architecture meets the ARCM constraints, but much more work is required to determine the details of the suit upgrades, the integration with the PLSS, and the tools and equipment necessary to accomplish the mission. This work has continued over the last year to better define the operations and hardware maturation of these systems. EVA simulations were completed in the Neutral Buoyancy Lab (NBL) and interfacing options were prototyped and analyzed with testing planned for late 2014. This paper discusses the work done over the last year on the MACES enhancements, the use of tools while using the suit, and the integration of the PLSS with the MACES.
Asteroid Redirect Crewed Mission Space Suit and EVA System Maturation
NASA Technical Reports Server (NTRS)
Bowie, Jonathan; Buffington, Jesse; Hood, Drew; Kelly, Cody; Naids, Adam; Watson, Richard
2015-01-01
The Asteroid Redirect Crewed Mission (ARCM) requires a Launch/Entry/Abort (LEA) suit capability and short duration Extra Vehicular Activity (EVA) capability from the Orion spacecraft. For this mission, the pressure garment selected for both functions is the Modified Advanced Crew Escape Suit (MACES) with EVA enhancements and the life support option that was selected is the Exploration Portable Life Support System (PLSS) currently under development for Advanced Exploration Systems (AES). The proposed architecture meets the ARCM constraints, but much more work is required to determine the details of the suit upgrades, the integration with the PLSS, and the tools and equipment necessary to accomplish the mission. This work has continued over the last year to better define the operations and hardware maturation of these systems. EVA simulations were completed in the Neutral Buoyancy Lab (NBL) and interfacing options were prototyped and analyzed with testing planned for late 2014. This paper discusses the work done over the last year on the MACES enhancements, the use of tools while using the suit, and the integration of the PLSS with the MACES.
Collaborative Human Engineering Work in Space Exploration Extravehicular Activities (EVA)
NASA Technical Reports Server (NTRS)
DeSantis, Lena; Whitmore, Mihriban
2007-01-01
A viewgraph presentation on extravehicular activities in space exploration in collaboration with other NASA centers, industries, and universities is shown. The topics include: 1) Concept of Operations for Future EVA activities; 2) Desert Research and Technology Studies (RATS); 3) Advanced EVA Walkback Test; 4) Walkback Subjective Results; 5) Integrated Suit Test 1; 6) Portable Life Support Subsystem (PLSS); 7) Flex PLSS Design Process; and 8) EVA Information System; 9)
A Multi-Purpose Modular Electronics Integration Node for Exploration Extravehicular Activity
NASA Technical Reports Server (NTRS)
Hodgson, Edward; Papale, William; Wichowski, Robert; Rosenbush, David; Hawes, Kevin; Stankiewicz, Tom
2013-01-01
As NASA works to develop an effective integrated portable life support system design for exploration Extravehicular activity (EVA), alternatives to the current system s electrical power and control architecture are needed to support new requirements for flexibility, maintainability, reliability, and reduced mass and volume. Experience with the current Extravehicular Mobility Unit (EMU) has demonstrated that the current architecture, based in a central power supply, monitoring and control unit, with dedicated analog wiring harness connections to active components in the system has a significant impact on system packaging and seriously constrains design flexibility in adapting to component obsolescence and changing system needs over time. An alternative architecture based in the use of a digital data bus offers possible wiring harness and system power savings, but risks significant penalties in component complexity and cost. A hybrid architecture that relies on a set of electronic and power interface nodes serving functional models within the Portable Life Support System (PLSS) is proposed to minimize both packaging and component level penalties. A common interface node hardware design can further reduce penalties by reducing the nonrecurring development costs, making miniaturization more practical, maximizing opportunities for maturation and reliability growth, providing enhanced fault tolerance, and providing stable design interfaces for system components and a central control. Adaptation to varying specific module requirements can be achieved with modest changes in firmware code within the module. A preliminary design effort has developed a common set of hardware interface requirements and functional capabilities for such a node based on anticipated modules comprising an exploration PLSS, and a prototype node has been designed assembled, programmed, and tested. One instance of such a node has been adapted to support testing the swingbed carbon dioxide and humidity control element in NASA s advanced PLSS 2.0 test article. This paper will describe the common interface node design concept, results of the prototype development and test effort, and plans for use in NASA PLSS 2.0 integrated tests.
NASA Technical Reports Server (NTRS)
Paul, Heather L.; Jennings, Mallory A.; Waguespack, Glenn
2010-01-01
The Trace Contaminant Control System (TCCS), located within the ventilation loop of the Constellation Space Suit Portable Life Support System (PLSS), is responsible for removing hazardous trace contaminants from the space suit ventilation flow. This paper summarizes the results of a trade study that evaluated if trace contaminant control could be accomplished without a TCCS, relying on suit leakage, ullage loss from the carbon dioxide and humidity control system, and other factors. Trace contaminant generation rates were revisited to verify that values reflect the latest designs for Constellation Space Suit System (CSSS) pressure garment materials and PLSS hardware. Additionally, TCCS sizing calculations were performed and a literature survey was conducted to review the latest developments in trace contaminant technologies.
Mini-Membrane Evaporator for Contingency Spacesuit Cooling
NASA Technical Reports Server (NTRS)
Makinen, Janice V.; Bue, Grant C.; Campbell, Colin; Petty, Brian; Craft, Jesse; Lynch, William; Wilkes, Robert; Vogel, Matthew
2015-01-01
The next-generation Advanced Extravehicular Mobility Unit (AEMU) Portable Life Support System (PLSS) is integrating a number of new technologies to improve reliability and functionality. One of these improvements is the development of the Auxiliary Cooling Loop (ACL) for contingency crewmember cooling. The ACL is a completely redundant, independent cooling system that consists of a small evaporative cooler--the Mini Membrane Evaporator (Mini-ME), independent pump, independent feedwater assembly and independent Liquid Cooling Garment (LCG). The Mini-ME utilizes the same hollow fiber technology featured in the full-sized AEMU PLSS cooling device, the Spacesuit Water Membrane Evaporator (SWME), but Mini-ME occupies only approximately 25% of the volume of SWME, thereby providing only the necessary crewmember cooling in a contingency situation. The ACL provides a number of benefits when compared with the current EMU PLSS contingency cooling technology, which relies upon a Secondary Oxygen Vessel; contingency crewmember cooling can be provided for a longer period of time, more contingency situations can be accounted for, no reliance on a Secondary Oxygen Vessel (SOV) for contingency cooling--thereby allowing a reduction in SOV size and pressure, and the ACL can be recharged-allowing the AEMU PLSS to be reused, even after a contingency event. The first iteration of Mini-ME was developed and tested in-house. Mini-ME is currently packaged in AEMU PLSS 2.0, where it is being tested in environments and situations that are representative of potential future Extravehicular Activities (EVA's). The second iteration of Mini-ME, known as Mini-ME2, is currently being developed to offer more heat rejection capability. The development of this contingency evaporative cooling system will contribute to a more robust and comprehensive AEMU PLSS.
Mini-Membrane Evaporator for Contingency Spacesuit Cooling
NASA Technical Reports Server (NTRS)
Makinen, Janice V.; Bue, Grant C.; Campbell, Colin; Craft, Jesse; Lynch, William; Wilkes, Robert; Vogel, Matthew
2014-01-01
The next-generation Advanced Extravehicular Mobility Unit (AEMU) Portable Life Support System (PLSS) is integrating a number of new technologies to improve reliability and functionality. One of these improvements is the development of the Auxiliary Cooling Loop (ACL) for contingency crewmember cooling. The ACL is a completely redundant, independent cooling system that consists of a small evaporative cooler--the Mini Membrane Evaporator (Mini-ME), independent pump, independent feedwater assembly and independent Liquid Cooling Garment (LCG). The Mini-ME utilizes the same hollow fiber technology featured in the full-sized AEMU PLSS cooling device, the Spacesuit Water Membrane Evaporator (SWME), but Mini-ME occupies only 25% of the volume of SWME, thereby providing only the necessary crewmember cooling in a contingency situation. The ACL provides a number of benefits when compared with the current EMU PLSS contingency cooling technology, which relies upon a Secondary Oxygen Vessel; contingency crewmember cooling can be provided for a longer period of time, more contingency situations can be accounted for, no reliance on a Secondary Oxygen Vessel (SOV) for contingency cooling--thereby allowing a reduction in SOV size and pressure, and the ACL can be recharged-allowing the AEMU PLSS to be reused, even after a contingency event. The first iteration of Mini-ME was developed and tested in-house. Mini-ME is currently packaged in AEMU PLSS 2.0, where it is being tested in environments and situations that are representative of potential future Extravehicular Activities (EVA's). The second iteration of Mini-ME, known as Mini- ME2, is currently being developed to offer more heat rejection capability. The development of this contingency evaporative cooling system will contribute to a more robust and comprehensive AEMU PLSS.
PLSS Scale Demonstration of MTSA Temperature Swing Adsorption Bed Concept for CO2 Removal/Rejection
NASA Technical Reports Server (NTRS)
Iacomini, Christine S.; Powers, Aaron; Paul, Heather L.
2009-01-01
Metabolic heat regenerated temperature swing adsorption (MTSA) incorporated into a portable life support system (PLSS) is being explored as a viable means of removing and rejecting carbon dioxide (CO2) from an astronaut s ventilation loop. Sorbent pellets used in previous work are inherently difficult to quickly heat and cool. Further, their use in packed beds create large undesirable pressure drop. Thus work has been done to assess the application and performance of aluminum foam wash coated with a layer of sorbent. A to-scale sorbent bed, as envisioned studying use by a Martian PLSS, was designed, built, and tested. Performance of the assembly in regards to CO2 adsorption and pressure drop were assessed and the results are presented.
Asteroid Redirect Crewed Mission Space Suit and EVA System Maturation
NASA Technical Reports Server (NTRS)
Bowie, Jonathan T.; Kelly, Cody; Buffington, Jesse; Watson, Richard D.
2015-01-01
The Asteroid Redirect Crewed Mission (ARCM) requires a Launch/Entry/Abort (LEA) suit capability and short duration Extra Vehicular Activity (EVA) capability from the Orion spacecraft. For this mission, the pressure garment that was selected, for both functions, is the Modified Advanced Crew Escape Suit (MACES) with EVA enhancements and the life support option that was selected is the Exploration Portable Life Support System (PLSS). The proposed architecture was found to meet the mission constraints, but much more work is required to determine the details of the required suit upgrades, the integration with the PLSS, and the rest of the tools and equipment required to accomplish the mission. This work has continued over the last year to better define the operations and hardware maturation of these systems. EVA simulations have been completed in the NBL and interfacing options have been prototyped and analyzed with testing planned for late 2014. For NBL EVA simulations, in 2013, components were procured to allow in-house build up for four new suits with mobility enhancements built into the arms. Boots outfitted with clips that fit into foot restraints have also been added to the suit and analyzed for possible loads. Major suit objectives accomplished this year in testing include: evaluation of mobility enhancements, ingress/egress of foot restraint, use of foot restraint for worksite stability, ingress/egress of Orion hatch with PLSS mockup, and testing with two crew members in the water at one time to evaluate the crew's ability to help one another. Major tool objectives accomplished this year include using various other methods for worksite stability, testing new methods for asteroid geologic sampling and improving the fidelity of the mockups and crew equipment. These tests were completed on a medium fidelity capsule mockup, asteroid vehicle mockup, and asteroid mockups that were more accurate for an asteroid type EVA than previous tests. Another focus was the design and fabrication of the interface between the MACES and the PLSS. The MACES was not designed to interface with a PLSS, hence an interface kit must accommodate the unique design qualities of the MACES and provide the necessary life support function connections to the PLSS. A prototype interface kit for MACES to PLSS has been designed and fabricated. Unmanned and manned testing of the interface will show the usability of the kit while wearing a MACES. The testing shows viability of the kit approach as well as the operations concept. The design will be vetted through suit and PLSS experts and, with the findings from the testing, the best path forward will be determined. As the Asteroid Redirect Mission matures, the suit/life support portion of the mission will mature along with it and EVA Tools & Equipment can be iterated to accommodate the overall mission objectives and compromises inherent in EVA Suit optimization. The goal of the EVA architecture for ARCM is to continue to build on the previously developed technologies and lessons learned, and accomplish the ARCM EVAs while providing a stepping stone to future missions and destinations.
NASA Technical Reports Server (NTRS)
Chullen, Cinda; Conger, Bruce; McMillin, Summer; Vonau, Walt; Kanne, Bryan; Korona, Adam; Swickrath, Mike
2016-01-01
NASA is developing an advanced portable life support system (PLSS) to meet the needs of a new NASA advanced space suit. The PLSS is one of the most critical aspects of the space suit providing the necessary oxygen, ventilation, and thermal protection for an astronaut performing a spacewalk. The ventilation subsystem in the PLSS must provide sufficient carbon dioxide (CO2) removal and ensure that the CO2 is washed away from the oronasal region of the astronaut. CO2 washout is a term used to describe the mechanism by which CO2 levels are controlled within the helmet to limit the concentration of CO2 inhaled by the astronaut. Accumulation of CO2 in the helmet or throughout the ventilation loop could cause the suited astronaut to experience hypercapnia (excessive carbon dioxide in the blood). A suited manikin test apparatus (SMTA) integrated with a space suit ventilation test loop was designed, developed, and assembled at NASA in order to experimentally validate adequate CO2 removal throughout the PLSS ventilation subsystem and to quantify CO2 washout performance under various conditions. The test results from this integrated system will be used to validate analytical models and augment human testing. This paper presents the system integration of the PLSS ventilation test loop with the SMTA including the newly developed regenerative Rapid Cycle Amine component used for CO2 removal and tidal breathing capability to emulate the human. The testing and analytical results of the integrated system are presented along with future work.
NASA Technical Reports Server (NTRS)
Jennings, Mallory A.; Paul, Heather L.; Waguespack, Glenn M.
2010-01-01
This presentation summarized the results of a trade study that evaluated whether trace contaminant control within the Constellation Spacesuit PLSS could be achieved without a Trace Contaminant Control System (TCCS) by relying on suit leakage, ullage loss from the carbon dioxide and humidity control system, and other factors. Mallory Jennings and Dr. Glenn Waguespack studied trace contaminant generation rates to verify that values reflected the latest designs for Constellation spacesuit system pressure garment materials and PLSS hardware. They also calculated TCCS sizing and conducted a literature survey to review the latest developments in trace contaminant technologies.
NASA Technical Reports Server (NTRS)
Chullen, Cinda; Conger, Bruce; Korona, Adam; Kanne, Bryan; McMillin, Summer; Norcross, Jason; Jeng, Frank; Swickrath, Mike
2014-01-01
NASA is pursuing technology development of an Advanced Extravehicular Mobility Unit (AEMU) which is an integrated assembly made up of primarily a pressure garment system and a Portable Life Support System (PLSS). The PLSS is further composed of an oxygen subsystem, a ventilation subsystem, and a thermal subsystem. One of the key functions of the ventilation system is to remove and control the carbon dioxide delivered to the crewmember. Carbon dioxide washout is the mechanism by which CO2 levels are controlled within the spacesuit helmet to limit the concentration of CO2 inhaled by the crew member. CO2 washout performance is a critical parameter needed to ensure proper and robust designs that are insensitive to human variabilities in a spacesuit. A Suited Manikin Test Apparatus (SMTA) is being developed to augment testing of the PLSS ventilation loop in order to provide a lower cost and more controlled alternative to human testing. The CO2 removal function is performed by the regenerative Rapid Cycle Amine (RCA) within the PLSS ventilation loop and its performance is evaluated within the integrated SMTA and Ventilation Loop test system. This paper will provide a detailed description of the schematics, test configurations, and hardware components of this integrated system. Results and analysis of testing performed with this integrated system will be presented within this paper.
Advanced Supported Liquid Membranes for CO2 Control in Extravehicular Activity Applications
NASA Technical Reports Server (NTRS)
Wickham, David T.; Gleason, Kevin J.; Engel, Jeffrey R.; Cowley, Scott W.; Chullen, Cinda
2014-01-01
Developing a new, robust, portable life support system (PLSS) is currently a high priority for NASA in order to support longer and safer extravehicular activity (EVA) missions. One of the critical PLSS functions is maintaining the carbon dioxide (CO2) concentration in the suit at acceptable levels. Although the Metal Oxide (MetOx) canister has worked well, it has a finite CO2 adsorption capacity. Consequently, the unit would have to be larger and heavier to extend EVA times. Therefore, new CO2 control technologies must be developed to meet mission objectives without increasing the size of the PLSS. Although recent work has centered on sorbents that can be regenerated during the EVA, this strategy increases the system complexity and power consumption. A simpler approach is to use a membrane that selectively vents CO2 to space. A membrane has many advantages over current technology: it is a continuous system with no theoretical capacity limit, it requires no consumables, and it requires no hardware for switching beds between absorption and regeneration. Unfortunately, conventional gas separation membranes do not have adequate selectivity for use in the PLSS. However, the required performance could be obtained with a supported liquid membrane (SLM), which consists of a micro porous material filled with a liquid that selectively reacts with CO2 over oxygen (O2). In a current Phase II SBIR project, Reaction Systems has developed a new reactive liquid, which has effectively zero vapor pressure making it an ideal candidate for use in an SLM. The SLM function has been demonstrated with representative pressures of CO2, O2, and water (H2O). In addition to being effective for CO2 control, the SLM also vents moisture to space. Therefore, this project has demonstrated the feasibility of using an SLM to control CO2 in an EVA application.
Advanced Supported Liquid Membranes for CO2 Control in Extravehicular Activity Applications
NASA Technical Reports Server (NTRS)
Wickham, David T.; Gleason, Kevin J.; Engel, Jeffrey R.; Cowley, Scott W.; Chullen, Cinda
2014-01-01
Developing a new, robust, portable life support system (PLSS) is currently a high priority for NASA in order to support longer and safer extravehicular activity (EVA) missions. One of the critical PLSS functions is maintaining the carbon dioxide (CO2) concentration in the suit at acceptable levels. Although the Metal Oxide (MetOx) canister has worked well, it has a finite CO2 adsorption capacity. Consequently, the unit would have to be larger and heavier to extend EVA times. Therefore, new CO2 control technologies must be developed to meet mission objectives without increasing the size of the PLSS. Although recent work has centered on sorbents that can be regenerated during the EVA, this strategy increases the system complexity and power consumption. A simpler approach is to use a membrane that selectively vents CO2 to space. A membrane has many advantages over current technology: it is a continuous system with no theoretical capacity limit, it requires no consumables, and it requires no hardware for switching beds between absorption and regeneration. Unfortunately, conventional gas separation membranes do not have adequate selectivity for use in the PLSS. However, the required performance could be obtained with a supported liquid membrane (SLM), which consists of a micro porous material filled with a liquid that selectively reacts with CO2 over oxygen (O2). In a current Phase II SBIR project, Reaction Systems has developed a new reactive liquid, which has effectively zero vapor pressure making it an ideal candidate for use in an SLM. The SLM function has been demonstrated with representative pressures of CO2, O2, and water (H2O). In addition to being effective for CO2 control, the SLM also vents moisture to space. Therefore, this project has demonstrated the feasibility of using an SLM to control CO2 in an EVA application. 1 President
NASA Technical Reports Server (NTRS)
Chullen, Cinda; Conger, Bruce; Korona, Adam; Kanne, Bryan; McMillin, Summer; Paul, Thomas; Norcross, Jason; Alonso, Jesus Delgado; Swickrath, Mike
2015-01-01
NASA is pursuing technology development of an Advanced Extravehicular Mobility Unit (AEMU) which is an integrated assembly made up of primarily a pressure garment system and a portable life support subsystem (PLSS). The PLSS is further composed of an oxygen subsystem, a ventilation subsystem, and a thermal subsystem. One of the key functions of the ventilation system is to remove and control the carbon dioxide (CO2) delivered to the crewmember. Carbon dioxide washout is the mechanism by which CO2 levels are controlled within the space suit helmet to limit the concentration of CO2 inhaled by the crew member. CO2 washout performance is a critical parameter needed to ensure proper and robust designs that are insensitive to human variabilities in a space suit. A suited manikin test apparatus (SMTA) was developed to augment testing of the PLSS ventilation loop in order to provide a lower cost and more controlled alternative to human testing. The CO2 removal function is performed by the regenerative Rapid Cycle Amine (RCA) within the PLSS ventilation loop and its performance is evaluated within the integrated SMTA and Ventilation Loop test system. This paper will provide a detailed description of the schematics, test configurations, and hardware components of this integrated system. Results and analysis of testing performed with this integrated system will be presented within this paper.
NASA Technical Reports Server (NTRS)
Paul, Heather L.; Jennings, Mallory A.
2009-01-01
The Trace Contaminant Control System (TCCS), located within the ventilation loop of the Portable Life Support System (PLSS) of the Constellation Space Suit Element (CSSE), is responsible for removing hazardous trace contaminants from the space suit ventilation flow. This paper summarizes the results of a trade study that evaluated if trace contaminant control could be accomplished without a TCCS, relying on suit leakage, ullage loss from the carbon dioxide and humidity control system, and other factors. Trace contaminant generation rates were revisited to verify that values reflect the latest designs for CSSE pressure garment materials and PLSS hardware. Additionally, TCCS sizing calculations were performed and a literature survey was conducted to review the latest developments in trace contaminant technologies.
NASA Technical Reports Server (NTRS)
Quinn, Gregory J.; Strange, Jeremy; Jennings, Mallory
2013-01-01
NASA is developing new portable life support system (PLSS) technologies, which it is demonstrating in an unmanned ground based prototype unit called PLSS 2.0. One set of technologies within the PLSS provides suitable ventilation to an astronaut while on an EVA. A new component within the ventilation gas loop is a liquid-to-gas heat exchanger to transfer excess heat from the gas to the thermal control system s liquid coolant loop. A unique bench top prototype heat exchanger was built and tested for use in PLSS 2.0. The heat exchanger was designed as a counter-flow, compact plate fin type using stainless steel. Its design was based on previous compact heat exchangers manufactured by United Technologies Aerospace Systems (UTAS), but was half the size of any previous heat exchanger model and one third the size of previous liquid-to-gas heat exchangers. The prototype heat exchanger was less than 40 cubic inches and weighed 2.57 lb. Performance of the heat exchanger met the requirements and the model predictions. The water side and gas side pressure drops were less 0.8 psid and 0.5 inches of water, respectively, and an effectiveness of 94% was measured at the nominal air side pressure of 4.1 psia.
SSTAC/ARTS review of the draft Integrated Technology Plan (ITP). Volume 5: Human Support
NASA Technical Reports Server (NTRS)
1991-01-01
Viewgraphs of briefings from the Space Systems and Technology Advisory Committee (SSTAC)/ARTS review of the draft integrated technology plan (ITP) on human support are included. Topics covered include: human support program; human factors; life support technology; fire safety; medical support technology; advanced refrigeration technology; EVA suit system; advanced PLSS technology; and ARC-EVA systems research program.
NASA Astrophysics Data System (ADS)
Arai, Tatsuya; Fricker, John
2018-06-01
A resin bead Mitsubishi DIAION™ CR20 was identified and characterized as a first commercial off-the shelf regenerable carbon dioxide (CO2) sorbent candidate for space life support system applications at room temperature. The CO2 adsorption rates and capacities of CR20 at varying CO2 partial pressures were obtained. The data were used to numerically simulate CO2 adsorption by a swingbed, a pair of two sorbent beds that alternately adsorb and desorb CO2 in a space suit portable life support system (PLSS). The result demonstrated that a reasonable volume of CR20 would be able to continuously adsorb CO2 with bed-swing interval of 4 min at 300-W metabolic rate, and that commercial off-the shelf CR20 would have similar performance of CO2 adsorption to the proprietary swingbed sorbent SA9T for PLSS applications.
Results of the Trace Contaminant Control Trade Study for Space Suit Life Support Development
NASA Technical Reports Server (NTRS)
Jennings, Mallory A.; Paul, Heather L.
2008-01-01
As the United States plans to return astronauts to the moon, designing the most effective and efficient life support systems is of extreme importance. The trace contaminant control system (TCCS) will be located within the Portable Life Support System (PLSS) of the Constellation Space Suit Element (CSSE), and is responsible for removing contaminants, which at increased levels can be hazardous to a crewmember s health. These contaminants come from several sources including metabolic production of the crewmember (breathing, sweating, etc.) and offgassing of the space suit material layers. This paper summarizes the results of a trade study that investigated TCC technologies used in NASA space suits and vehicles as well as commercial and academic applications, to identify the best technology options for the CSSE PLSS. The trade study also looked at the feasibility of regeneration of TCC technologies, specifically to determine the viability of vacuum regeneration for on-back, realtime EVA.
Results of the Trace Contaminant Control Trade Study for Space Suit Life Support Development
NASA Technical Reports Server (NTRS)
Paul, Heather L.; Jennings, Mallory A.
2009-01-01
As the United States plans to return astronauts to the moon, designing the most effective and efficient life support systems is of extreme importance. The trace contaminant control system (TCCS) will be located within the Portable Life Support System (PLSS) of the Constellation Space Suit Element (CSSE), and is responsible for removing contaminants, which at increased levels can be hazardous to a crewmember's health. These contaminants come from several sources including metabolic production of the crewmember (breathing, sweating, etc.) and offgassing of the space suit material layers. This paper summarizes the results of a trade study that investigated TCC technologies used in NASA space suits and vehicles as well as commercial and academic applications, to identify the best technology options for the CSSE PLSS. The trade study also looked at the feasibility of regeneration of TCC technologies, specifically to determine the viability of vacuum regeneration for on-back, real-time EVA.
Maintaining Adequate CO2 Washout for an Advanced EMU via a New Rapid Cycle Amine Technology
NASA Technical Reports Server (NTRS)
Chullen, Cinda
2011-01-01
Over the past several years, NASA has realized tremendous progress in Extravehicular Activity (EVA) technology development. This has been evidenced by the progressive development of a new Rapic Cycle Amine (RCA) system for the Advanced Extravehicular Mobility Unit (AEMU) Portable Life Support Subsystem (PLSS). The PLSS is responsible for the life support of the crew member in the spacesuit. The RCA technology is responsible for carbon dioxide (CO2) and humidity control. Another aspect of the RCA is that it is on-back vacuum-regenerable, efficient, and reliable. The RCA also simplifies the PLSS schematic by eliminating the need for a condensing heat exchanger for humidity control in the current EMU. As development progresses on the RCA, it is important that the sizing be optimized so that the demand on the PLSS battery is minimized. As well, maintaining the CO2 washout at adequate levels during an EVA is an absolute requirement of the RCA and associated ventilation system. Testing has been underway in-house at NASA Johnson Space Center and analysis has been initiated to evaluate whether the technology provides exemplary performance in ensuring that the CO2 is removed sufficiently enough and the ventilation flow is adequate enough to maintain CO2 1 Project Engineer, Space Suit and Crew Survival Systems Branch, Crew and Thermal Systems Division, 2101 NASA Parkway, Houston, TX 77058/EC5. washout in the AEMU spacesuit helmet of the crew member during an EVA. This paper will review the recent developments of the RCA unit, the testing results performed in-house with a spacesuit simulator, and the associated analytical work along with insights from the medical aspect on the testing.
Advanced EMU Portable Life Support System (PLSS) and Shuttle/ISS EMU Schematics, a Comparison
NASA Technical Reports Server (NTRS)
Campbell, Colin
2012-01-01
In order to be able to adapt to differing vehicle interfaces such as suitport and airlock, adjust to varying vehicle pressure schedules, tolerate lower quality working fluids, and adapt to differing suit architectures as dictated by a range of mission architectures, the next generation space suit requires more adaptability and robustness over that of the current Shuttle/ISS Extra-vehicular Mobility Unit (EMU). While some features have been added to facilitate interfaces to differing vehicle and suit architectures, the key performance gains have been made via incorporation of new technologies such as the variable pressure regulators, Rapid Cycle Amine swing-bed, and Suit Water Membrane Evaporator. This paper performs a comparison between the Shuttle/ISS EMU PLSS schematic and the Advanced EMU PLSS schematic complete with a discussion for each difference.
Reversible Ammonia Sorption for the Primary Life Support System (PLSS)
NASA Technical Reports Server (NTRS)
Wojtowicz, Marek A.; Cosgrove, Joseph E.; Serio, Michael A.; Jennings, Mallory A.
2012-01-01
Results are presented on the development of regenerable trace-contaminant (TC) sorbent for use in Extravehicular Activities (EVAs), and more specifically in the Primary Life Support System (PLSS). Since ammonia is the most important TC to be captured, data presented in this paper are limited to ammonia sorption, with results relevant to other TCs to be reported at a later time. The currently available TC-control technology involves the use of a packed bed of acid-impregnated granular charcoal. The sorbent is non-regenerable, and its use is associated with appreciable pressure drop, i.e. power consumption. The objective of this work is to demonstrate the feasibility of using vacuum-regenerable sorbents for PLSS application. In this study, several carbon sorbent monoliths were fabricated and tested. Multiple adsorption/vacuum-regeneration cycles were demonstrated at room temperature, as well as carbon surface conditioning that enhances ammonia sorption without impairing sorbent regeneration. Depending on sorbent monolith geometry, the reduction in pressure drop with respect to granular sorbent was found to be between 50% and two orders of magnitude. Resistive heating of the carbon sorbent monolith was demonstrated by applying voltage to the opposite ends of the monolith.
Experimentally Determined Overall Heat Transfer Coefficients for Spacesuit Liquid Cooled Garments
NASA Technical Reports Server (NTRS)
Bue, Grant; Rhodes, Richard; Anchondo, Ian; Westheimer, David; Campbell, Colin; Vogel, Matt; Vonaue, Walt; Conger, Bruce; Stein, James
2015-01-01
A Human-In-The-Loop (HITL) Portable Life Support System 2.0 (PLSS 2.0) test has been conducted at NASA Johnson Space Center in the PLSS Development Laboratory from October 27, 2014 to December 19, 2014. These closed-loop tests of the PLSS 2.0 system integrated with human subjects in the Mark III Suit at 3.7 psi to 4.3 psi above ambient pressure performing treadmill exercise at various metabolic rates from standing rest to 3000 BTU/hr (880 W). The bulk of the PLSS 2.0 was at ambient pressure but effluent water vapor from the Spacesuit Water Membrane Evaporator (SWME) and the Auxiliary Membrane Evaporator (Mini-ME), and effluent carbon dioxide from the Rapid Cycle Amine (RCA) were ported to vacuum to test performance of these components in flight-like conditions. One of the objectives of this test was to determine the overall heat transfer coefficient (UA) of the Liquid Cooling Garment (LCG). The UA, an important factor for modeling the heat rejection of an LCG, was determined in a variety of conditions by varying inlet water temperature, flow rate, and metabolic rate. Three LCG configurations were tested: the Extravehicular Mobility Unit (EMU) LCG, the Oceaneering Space Systems (OSS) LCG, and the OSS auxiliary LCG. Other factors influencing accurate UA determination, such as overall heat balance, LCG fit, and the skin temperature measurement, will also be discussed.
Experimentally Determined Heat Transfer Coefficients for Spacesuit Liquid Cooled Garments
NASA Technical Reports Server (NTRS)
Bue, Grant; Watts, Carly; Rhodes, Richard; Anchondo, Ian; Westheimer, David; Campbell, Colin; Vonau, Walt; Vogel, Matt; Conger, Bruce
2015-01-01
A Human-In-The-Loop (HITL) Portable Life Support System 2.0 (PLSS 2.0) test has been conducted at NASA Johnson Space Center in the PLSS Development Laboratory from October 27, 2014 to December 19, 2014. These closed-loop tests of the PLSS 2.0 system integrated with human subjects in the Mark III Suit at 3.7 psi to 4.3 psi above ambient pressure performing treadmill exercise at various metabolic rates from standing rest to 3000 BTU/hr (880 W). The bulk of the PLSS 2.0 was at ambient pressure but effluent water vapor from the Spacesuit Water Membrane Evaporator (SWME) and the Auxiliary Membrane Evaporator (Mini-ME), and effluent carbon dioxide from the Rapid Cycle Amine (RCA) were ported to vacuum to test performance of these components in flight-like conditions. One of the objectives of this test was to determine the heat transfer coefficient (UA) of the Liquid Cooling Garment (LCG). The UA, an important factor for modeling the heat rejection of an LCG, was determined in a variety of conditions by varying inlet water temperature, flowrate, and metabolic rate. Three LCG configurations were tested: the Extravehicular Mobility Unit (EMU) LCG, the Oceaneering Space Systems (OSS) LCG, and the OSS auxiliary LCG. Other factors influencing accurate UA determination, such as overall heat balance, LCG fit, and the skin temperature measurement, will also be discussed.
Maintaining Adequate CO2 Washout for an Advanced EMU via a New Rapid Cycle Amine Technology
NASA Technical Reports Server (NTRS)
Chullen, Cinda; Conger, Bruce
2012-01-01
Over the past several years, NASA has realized tremendous progress in Extravehicular Activity (EVA) technology development. This has been evidenced by the progressive development of a new Rapid Cycle Amine (RCA) system for the Advanced Extravehicular Mobility Unit (AEMU) Portable Life Support Subsystem (PLSS). The PLSS is responsible for the life support of the crew member in the spacesuit. The RCA technology is responsible for carbon dioxide (CO2) and humidity control. Another aspect of the RCA is that it is on-back vacuum-regenerable, efficient, and reliable. The RCA also simplifies the PLSS schematic by eliminating the need for a condensing heat exchanger for humidity control in the current EMU. As development progresses on the RCA, it is important that the sizing be optimized so that the demand on the PLSS battery is minimized. As well, maintaining the CO2 washout at adequate levels during an EVA is an absolute requirement of the RCA and associated ventilation system. Testing has been underway in-house at NASA Johnson Space Center and analysis has been initiated to evaluate whether the technology provides exemplary performance in ensuring that the CO2 is removed sufficiently and the ventilation flow is adequate for maintaining CO2 washout in the AEMU spacesuit helmet of the crew member during an EVA. This paper will review the recent developments of the RCA unit, testing planned in-house with a spacesuit simulator, and the associated analytical work along with insights from the medical aspect on the testing. 1
NASA Technical Reports Server (NTRS)
Ross, Amy
2011-01-01
A NASA spacesuit under the EVA Technology Domain consists of a suit system; a PLSS; and a Power, Avionics, and Software (PAS) system. Ross described the basic functions, components, and interfaces of the PLSS, which consists of oxygen, ventilation, and thermal control subsystems; electronics; and interfaces. Design challenges were reviewed from a packaging perspective. Ross also discussed the development of the PLSS over the last two decades.
NASA Technical Reports Server (NTRS)
Woods, R. R.; Heppner, D. B.; Marshall, R. D.; Quattrone, P. D.
1979-01-01
As the length of manned space missions increase, more ambitious extravehicular activities (EVAs) are required. For the projected longer mission the use of expendables in the portable life support system (PLSS) will become prohibited due to high launch weight and volume requirements. Therefore, the development of a regenerable CO2 absorber for the PLSS application is highly desirable. The paper discusses the concept, regeneration mechanism, performance, system design, and absorption/regeneration cycle testing of a most promising concept known as ERCA (Electrochemically Regenerable CO2 Absorber). This concept is based on absorbing CO2 into an alkaline absorbent similar to LiOH. The absorbent is an aqueous solution supported in a porous matrix which can be electrochemically regenerated on board the primary space vehicle. With the metabolic CO2 recovery the ERCA concept results in a totally regenerable CO2 scrubber. The ERCA test hardware has passed 200 absorption/regeneration cycles without performance degradation.
Continued Development of Compact Multi-gas Monitor for Life Support Systems Control in Space
NASA Technical Reports Server (NTRS)
Delgado-Alonso, Jesús; Phillips, Straun; Chullen, Cinda; Quinn, Gregory
2016-01-01
Miniature optic gas sensors (MOGS) based on luminescent materials have shown great potential as alternatives to Near-Infrared-based gas sensor systems for the advanced space suit portable life support system (PLSS). The unique capability of MOGS for carbon dioxide and oxygen monitoring under wet conditions has been reported, as has the fast recovery of MOGS humidity sensors after long periods of being wet. Lower volume and power requirements are also potential advantages of MOGS over both traditional and advanced Non-Dispersive Infrared (NDIR) gas sensors, which have shown so far longer life than luminescent sensors. This paper presents the most recent results in the development and analytical validation of a compact multi-gas sensor unit based on luminescent sensors for the PLSS. Results of extensive testing are presented, including studies conducted at Intelligent Optical Systems laboratories, a United Technology Corporation Aerospace Systems (UTAS) laboratory, and a Johnson Space Center laboratory. The potential of this sensor technology for gas monitoring in PLSSs and other life support systems and the advantages and limitations found through detailed sensor validation are discussed.
Continued Development of Compact Multi-Gas Monitor for Life Support Systems Control in Space
NASA Technical Reports Server (NTRS)
Delgado, Jesus; Phillips, Straun; Chullen, Cinda
2015-01-01
Miniature optic gas sensors (MOGS) based on luminescent materials have shown great potential as alternatives to NIR-based gas sensor systems for the Portable Life Support System (PLSS). The unique capability of MOGS for carbon dioxide and oxygen monitoring under wet conditions has been reported, as has the fast recovery of MOGS humidity sensors after long periods of being wet. Lower volume and power requirements are also potential advantages of MOGS over both traditional and advanced Non-Dispersive Infrared (NDIR) gas sensors, which have shown so far longer life than luminescent sensors. In this paper we present the most recent results in the development and analytical validation of a compact multi-gas sensor unit based on luminescent sensors for the PLSS. Results of extensive testing are presented, including studies conducted at Intelligent Optical Systems laboratories, a United Technology Corporation Aerospace Systems (UTAS) laboratory, and a Johnson Space Center laboratory. The potential of this sensor technology for gas monitoring in PLSSs and other life support systems and the advantages and limitations found through detailed sensor validation are discussed.
Continued Development of Compact Multi-Gas Monitor for Life Support Systems Control in Space
NASA Technical Reports Server (NTRS)
Delgado-Alonso, Jesus; Phillips, Straun; Berry, David; DiCarmine, Paul; Chullen, Cinda; Quinn, Gregory
2016-01-01
Miniature optical gas sensors based on luminescent materials have shown great potential as alternatives to NIR-based gas sensor systems for the Portable Life Support System (PLSS). The unique capability of luminescent sensors for carbon dioxide and oxygen monitoring under wet conditions has been reported, as has the fast recovery of humidity sensors after long periods of being wet. Lower volume and power requirements are also potential advantages over both traditional and advanced non-dispersive infrared (NDIR) gas sensors, which have so far shown longer life than luminescent sensors. In this paper we present the most recent results in the development and analytical validation of a compact multi-gas sensor unit based on luminescent sensors for the PLSS. Results of extensive testing are presented, including studies conducted in Intelligent Optical Systems laboratories, a United Technologies Corporation Aerospace Systems (UTC) laboratory, and a Johnson Space Center laboratory. The potential of this sensor technology for gas monitoring in PLSSs and other life support systems, and the advantages and limitations found through detailed sensor validation are discussed.
NASA Technical Reports Server (NTRS)
Bue, Grant C.; Makinen, Janice V.; Miller, Sean; Campbell, Colin; Lynch, Bill; Vogel, Matt; Craft, Jesse; Wilkes, Robert; Kuehnel, Eric
2014-01-01
Development of the Advanced Extravehicular Mobility Unit (AEMU) portable life support subsystem (PLSS) is currently under way at NASA Johnson Space Center. The AEMU PLSS features a new evaporative cooling system, the Generation 4 Spacesuit Water Membrane Evaporator (Gen4 SWME). The SWME offers several advantages when compared with prior crewmember cooling technologies, including the ability to reject heat at increased atmospheric pressures, reduced loop infrastructure, and higher tolerance to fouling. Like its predecessors, Gen4 SWME provides nominal crew member and electronics cooling by flowing water through porous hollow fibers. Water vapor escapes through the hollow fiber pores, thereby cooling the liquid water that remains inside of the fibers. This cooled water is then recirculated to remove heat from the crew member and PLSS electronics. Test results from the backup cooling system which is based on a similar design and the subject of a companion paper, suggested that further volume reductions could be achieved through fiber density optimization. Testing was performed with four fiber bundle configurations ranging from 35,850 fibers to 41,180 fibers. The optimal configuration reduced the Gen4 SWME envelope volume by 15% from that of Gen3 while dramatically increasing the performance margin of the system. A rectangular block design was chosen over the Gen3 cylindrical design, for packaging configurations within the AEMU PLSS envelope. Several important innovations were made in the redesign of the backpressure valve which is used to control evaporation. A twin-port pivot concept was selected from among three low profile valve designs for superior robustness, control and packaging. The backpressure valve motor, the thermal control valve, delta pressure sensors and temperature sensors were incorporated into the manifold endcaps, also for packaging considerations. Flight-like materials including a titanium housing were used for all components. Performance testing of the Gen4 SWME is underway.
Continuously Regenerable Freeze-Out CO2 Control Technology
NASA Technical Reports Server (NTRS)
Fricker, John; Dyer, Chris; Myers, Jeff; Patten, Rich; Paul, Heather
2007-01-01
Carbon dioxide (CO2) removal technology development for portable life support systems (PLSS) has traditionally concentrated in the areas of solid and liquid chemical sorbents and semi-permeable membranes. Most of these systems are too heavy in gravity environments, require prohibitive amounts of consumables for operation on long term planetary missions, or are inoperable on the surface of Mars due to the presence of a CO2 atmosphere. This paper describes the effort performed to mature an innovative CO2 removal technology that meets NASA s planetary mission needs while adhering to the important guiding principles of simplicity, reliability, and operability. A breadboard cryogenic carbon dioxide scrubber (Cryo Scrubber) for a closed loop cryogenic PLSS was developed, designed, and tested, and a conceptual design suitable for a PLSS was developed based on the results of the breadboard testing. The Cryo Scrubber freezes CO2 and other trace contaminants out of expired vent loop gas using cooling available from a liquid oxygen (LOX) based PLSS. The device is continuously regenerable, with solid CO2 being removed from the cold freeze-out surfaces, sublimated, and vented overboard. Duration is limited only by the supply of LOX stored in the PLSS. Simplicity, reliability, and operability are universally important criteria for critical hardware on long duration Lunar or Mars missions. The Cryo Scrubber has no moving parts, requires no additional consumables, and uses no electrical power, contributing to its simplicity and reliability. It is easy to use; no operator action is required to prepare, use, or shut down the Cryo Scrubber, and it does not require charging or regeneration. The versatility of the concept allows for operation on earth, the moon, and Mars, and in microgravity.
Development of a Rapid Cycling CO(sub 2) and H(sub 2)O Removal Sorbent
NASA Technical Reports Server (NTRS)
Paul, Heather; Alptekin, Goekhan; Cates, Matthew; Bernal, Casey; Dubovik, Margarita; Gershanovich, Yevgenia
2007-01-01
The National Aeronautics and Space Administration (NASA) planned future missions set stringent demands on the design of the Portable Life Support System (PLSS), requiring dramatic reductions in weight, decreased reliance on supplies and greater flexibility on the types of missions. Use of regenerable systems that reduce weight and volume of the Extravehicular Mobility Unit (EMU) is of critical importance to NASA, both for low orbit operations and for long duration manned missions. The carbon dioxide and humidity control unit in the existing PLSS design is relatively large, since it has to remove and store 8 hours worth of CO2. If the sorbent regeneration can be carried out during the extravehicular activity (EVA) with a relatively high regeneration frequency, the size of the sorbent canister and weight can be significantly reduced. The progress of regenerable CO2 and humidity control is leading us towards the use of a rapid cycling amine system. TDA Research, Inc. is developing compact, regenerable sorbent materials to control CO2 and humidity in the space suit ventilation loop. The sorbent can be regenerated using space vacuum during the EVA, eliminating all carbon dioxide and humidity duration-limiting elements in the life support system. The material also has applications in other areas of space exploration such as the Orion spacecraft and other longer duration exploration missions requiring regenerable technologies. This paper summarizes the results of the sorbent development, testing, and evaluation efforts to date. The results of a preliminary system analysis are also included, showing the size and volume reductions for PLSS provided by the new system.
NASA Technical Reports Server (NTRS)
Jennings, Mallory; Quinn, Gregory; Strange, Jeremy
2012-01-01
NASA is developing new portable life support system (PLSS) technologies, which it is demonstrating in an unmanned ground based prototype unit called PLSS 2.0. One set of technologies within the PLSS provides suitable ventilation to an astronaut while on an EVA. A new component within the ventilation gas loop is a liquid-to-gas heat exchanger to transfer excess heat from the gas to the thermal control system's liquid coolant loop. A unique bench top prototype heat exchanger was built and tested for use in PLSS 2.0. The heat exchanger was designed as a counter-flow, compact plate fin type using stainless steel. Its design was based on previous compact heat exchangers manufactured by United Technologies Aerospace Systems, but was half the size of any previous heat exchanger model and one third the size of previous liquid-to-gas heat exchangers. The prototype heat exchanger was less than 40 cubic inches and weighed 2.6 lb. The water side and gas side pressure drops were 0.8 psid and 0.5 inches of water, respectively. Performance of the heat exchanger at the nominal pressure of 4.1 psia was measured at 94%, while a gas inlet pressure of 25 psia resulted in an effectiveness of 84%. These results compared well with the model, which was scaled for the small size. Modeling of certain phenomena that affect performance, such as flow distribution in the headers was particularly difficult due to the small size of the heat exchanger. Data from the tests has confirmed the correction factors that were used in these parts of the model.
Miniature Sensor Probe for O2, CO2, and H2O Monitoring in Portable Life Support Systems
NASA Technical Reports Server (NTRS)
Delgado, Jesus; Chambers, Antja
2013-01-01
A miniature sensor probe, composed of four sensors which monitor the partial pressure of O2, CO2, H2O, and temperature, designed to operate in the portable life support system (PLSS), has been demonstrated. The probe provides an important advantage over existing technology in that it is able to operate reliably while wet. These luminescence-based fiber optic sensors consist of an indicator chemistry immobilized in a polymeric film, whose emission lifetime undergoes a strong change upon a reversible interaction with the target gas. Each sensor includes chemistry specifically sensitive to one target parameter. All four sensors are based on indicator chemistries that include luminescent dyes from the same chemical family, and therefore exhibit similar photochemical properties, which allow performing measurements of all the sensors by a single, compact, low-power optoelectronic unit remotely connected to the sensors by an electromagnetic interference-proof optical fiber cable. For space systems, using these miniature sensor elements with remote optoelectronics provides unmatched design flexibility for measurements in highly constrained volume systems such as the PLSS. A 10 mm diameter and 15 mm length prototype multiparameter probe was designed, fabricated, tested, and demonstrated over a wide operational range of gas concentration, humidity, and temperature relevant to operation in the PLSS. The sensors were evaluated for measurement range, precision, accuracy, and response time in temperatures ranging from 50 aF-150 aF and relative humidity from dry to 100% RH. Operation of the sensors in water condensation conditions was demonstrated wherein the sensors not only tolerated liquid water but actually operated while wet.
Labeled cutaway line drawing of Shuttle Extravehicular Mobility Unit (EMU)
1991-05-21
Labeled cutaway line drawing of the Shuttle extravehicular mobility unit (EMU) identifies its various components and equipment. The portable life support system (PLSS) and protective layers of fabric (thermal micrometeoroid garment (TMG)) incorporated in this extravehicular activity (EVA) space suit are shown.
Labeled cutaway line drawing of Shuttle Extravehicular Mobility Unit (EMU)
NASA Technical Reports Server (NTRS)
1991-01-01
Labeled cutaway line drawing of the Shuttle extravehicular mobility unit (EMU) identifies its various components and equipment. The portable life support system (PLSS) and protective layers of fabric (thermal micrometeoroid garment (TMG)) incorporated in this extravehicular activity (EVA) space suit are shown.
NASA Technical Reports Server (NTRS)
Kast, Timothy P.; Nacheff-Benedict, Maurena S.; Chang, Craig H.; Cusick, Robert J.
1990-01-01
Characterization of the performance of a silver-oxide-based absorbent in terms of its ability to remove both gaseous CO2 and water vapor in an astronaut portable life support systems (PLSS) is discussed. Attention is focused on regeneration of the absorbent from the carbonite state of the oxide state, preconditioning of the absorbent using a humidified gas stream, and absorption breakthrough testing. Based on the results of bench-scale experiments, a test plan is carried out to further characterize the silver-oxide-based absorbent on a larger scale; it calls for examination of the absorbent in both an adiabatic packed bed and a near-isothermal cooled bed configuration. It is demonstrated that the tested absorbent can be utilized in a way that removes substantial amounts of CO2 and water vapor during an 8-hour extravehicular activity mission, and that applying the absorbent to PLSS applications can simplify the ventilation loop.
Metal hydride heat pump engineering demonstration and evaluation model
NASA Technical Reports Server (NTRS)
Lynch, Franklin E.
1993-01-01
Future generations of portable life support systems (PLSS's) for space suites (extravehicular mobility units or EMU's) may require regenerable nonventing thermal sinks (RNTS's). For purposes of mobility, a PLSS must be as light and compact as possible. Previous venting PLSS's have employed water sublimators to reject metabolic and equipment heat from EMU's. It is desirable for long-duration future space missions to minimize the use of water and other consumables that need to be periodically resupplied. The emission of water vapor also interferes with some types of instrumentation that might be used in future space exploration. The test article is a type of RNTS based on a metal hydride heat pump (MHHP). The task of reservicing EMU's after use must be made less demanding in terms of time, procedures, and equipment. The capability for quick turnaround post-EVA servicing (30 minutes) is a challenging requirement for many of the RNTS options. The MHHP is a very simple option that can be regenerated in the airlock within the 30 minute limit by the application of a heating source and a cooling sink. In addition, advanced PLSS's must provide a greater degree of automatic control, relieving astronauts of the need to manually adjust temperatures in their liquid cooled ventilation garments (LCVG's). The MHHP includes automatic coolant controls with the ability to follow thermal load swings from minimum to maximum in seconds. The MHHP includes a coolant loop subsystem with pump and controls, regeneration equipment for post-EVA servicing, and a PC-based data acquisition and control system (DACS).
Rapid Cycling CO2 and H2O Removal System for EMU
NASA Technical Reports Server (NTRS)
Alptekin, Gokhan; Cates, Matthew; Dubovik, Margarita; Gershanovich, Yevgenia; Paul, Heather; Thomas, Gretchen
2006-01-01
NASA's planned future missions set stringent demands on the design of the Portable Life Support Systems (PLSS), requiring dramatic reductions in weight, decreased reliance on supplies and greater flexibility on the types of missions. Use of regenerable systems that reduce weight and volume of the EMU is of critical importance to NASA, both for low orbit operations and for long duration manned missions. The CO2 and humidity control unit in the existing PLSS design is relatively large, since it has to remove 8 hours worth of CO2. If the sorbent regeneration can be carried out during the extravehicular activity (EVA) with a relatively high regeneration frequency, the size of the sorbent canister and weight can be significantly reduced. TDA Research, Inc. (TDA) is developing a compact, regenerable sorbent-based system to control CO2 and humidity in the space suit ventilation loop. The sorbent can be regenerated using space vacuum during the EVA, eliminating all duration-limiting elements in the life support system. This paper summarizes the results of the sorbent development and testing, and evaluation efforts. The results of a preliminary system analysis are also included, showing the size and volume reductions provided by the new system.
Development of the Self-Powered Extravehicular Mobility Unit Extravehicular Activity Data Recorder
NASA Technical Reports Server (NTRS)
Bernard, Craig; Hill, Terry R.; Murray, Sean; Wichowski, Robert; Rosenbush, David
2012-01-01
The Self-Powered Extravehicular Mobility Unit (EMU) Extravehicular Activity (EVA) Data Recorder (SPEEDR) is a field-programmable gate array (FPGA)-based device designed to collect high-rate EMU Primary Life Support Subsystem (PLSS) data for download at a later time. During EVA, the existing EMU PLSS data downlink capability is one data packet every 2 minutes and is subject to bad packets or loss of signal. Higher-rate PLSS data is generated by the Enhanced Caution and Warning System but is not normally captured or distributed. Access to higher-rate data will increase the capability of EMU anomaly resolution team to pinpoint issues remotely, saving crew time by reducing required call-down Q&A and on-orbit diagnostic activities. With no Space Shuttle flights post Fiscal Year 2011 (FY11), and potentially limited down-mass capability, the ISS crew and ground support personnel will have to be capable of on-orbit operations to maintain, diagnose, repair, and return to service EMU hardware, possibly through 2028. Collecting high-rate EMU PLSS data during both intravehicular activity (IVA) and EVA operations will provide trending analysis for life extension and/or predictive performance. The SPEEDR concept has generated interest as a tool/technology that could be used for other International Space Station subsystems or future exploration-class space suits where hardware reliability/availability is critical and low/variable bandwidth may require store then forward methodology. Preliminary work in FY11 produced a functional prototype consisting of an FPGA evaluation board, custom memory/interface circuit board, and custom software. The SPEEDR concept includes a stand-alone battery that is recharged by a computer Universal Serial Bus (USB) port while data are being downloaded.
Development of the ISS EMU SPEEDR
NASA Technical Reports Server (NTRS)
Bernard. Craig; Hill, Terry R.
2011-01-01
The Self Powered EVA EMU Data Recorder (SPEEDR) is an FPGA (Field-programmable gate array) based device designed to collect high-rate EMU (Extravehicular Mobility Unit) PLSS (Primary Life Support Subsystem) data for download at a later time. The existing EMU PLSS data down-link capability during EVA is one data packet every 2 minutes and is subject to bad packets or loss of signal. High-rate PLSS data is generated by the ECWS (Enhanced Caution and Warning System) but is not normally captured or distributed. Access to high-rate data will increase the capability of EMU anomaly resolution team to pinpoint issues remotely, saving crew time by reducing required call-down Q&A and on-orbit diagnostic activities. With no Shuttle flights post FY11, and potentially limited down-mass capability, the ISS crew and ground support personnel will have to be capable of on-orbit operations to maintain, diagnose, repair, and return to service EMU hardware, possibly through 2028. Collecting high-rate EMU PLSS data during both IVA (Intravehicular Activity) and EVA (Extravehicular Activity) operations will provide trending analysis for life extension and/or predictive performance. The SPEEDR concept has generated interest as a tool/technology that could be used for other ISS subsystems or future exploration-class space suits where hardware reliability/availability is critical and low/variable bandwidth may require "store then forward" methodology. Preliminary work in FY11 produced a functional prototype consisting of an FPGA evaluation board, custom memory/interface circuit board, and custom software. The SPEEDR concept includes a stand-alone battery that is recharged by a computer USB (Universal Serial Bus) port while data is being downloaded.
NASA Technical Reports Server (NTRS)
Iacomini, Christie; Powers, Aaron; Speight, Garland; Padilla, Sebastian; Paul, Heather L.
2009-01-01
A Metabolic heat-regenerated Temperature Swing Adsorption (MTSA) system is being developed for carbon dioxide, water and thermal control in a lunar and martian portable life support system (PLSS). A previous system analysis was performed to evaluate the impact of MTSA on PLSS design. That effort was Mars specific and assumed liquid carbon dioxide (LCO2) coolant made from martian resources. Transient effects were not considered but rather average conditions were used throughout the analysis. This effort takes into further consideration the transient effects inherent in the cycling MTSA system as well as assesses the use of water as coolant. Standard heat transfer, thermodynamic, and heat exchanger methods are presented to conduct the analysis. Assumptions and model verification are discussed. The tool was used to perform various system studies. Coolant selection was explored and takes into account different operational scenarios as the minimum bed temperature is driven by the sublimation temperature of the coolant (water being significantly higher than LCO2). From this, coolant mass is sized coupled with sorbent bed mass because MTSA adsorption performance decreases with increasing sublimation temperature. Reduction in heat exchanger performance and even removal of certain heat exchangers, like a recuperative one between the two sorbent beds, is also investigated. Finally, the coolant flow rate is varied over the cycle to determine if there is a more optimal means of cooling the bed from a mass perspective. Results of these studies and subsequent recommendations for system design are presented.
NASA Technical Reports Server (NTRS)
Wickham, David T.; Gleason, Kevin J.; Engel, Jeffrey R.; Cowley, Scott W.; Chullen, Cinda
2015-01-01
The Development of a new, robust, portable life support system (PLSS) is currently a high NASA priority in order to support longer and safer extravehicular activity (EVA) missions that will be necessary as space travel extends to near-Earth asteroids and eventually Mars. One of the critical PLSS functions is maintaining the carbon dioxide (CO2) concentration in the suit at acceptable levels. The Metal Oxide (MetOx) canister has a finite CO2 adsorption capacity and therefore in order to extend mission times, the unit would have to be larger and heavier, which is undesirable; therefore new CO2 control technologies must be developed. While recent work has centered on the use of alternating sorbent beds that can be regenerated during the EVA, this strategy increases the system complexity and power consumption. A simpler approach is to use a membrane that vents CO2 to space but retains oxygen(O2). A membrane has many advantages over current technology: it is a continuous system with no theoretical capacity limit, it requires no consumables, and it requires no hardware for switching beds between absorption and regeneration. Conventional gas separation membranes do not have adequate selectivity for use in the PLSS, but the required performance could be obtained with a supported liquid membrane (SLM), which consists of a microporous film filled with a liquid that selectively reacts with CO2 over oxygen (O2). In a recently completed Phase II Small Business Innovative Research project, Reaction Systems developed a new reactive liquid that has effectively zero vapor pressure, making it an ideal candidate for use in an SLM. Results obtained with the SLM in a flat sheet configuration with representative pressures of CO2, O2, and water (H2O) have shown that the CO2 permeation rate and CO2/O2 selectivity requirements have been met. In addition, the SLM vents moisture to space very effectively. The SLM has also been prepared and tested in a hollow fiber form, which will be necessary to meet size requirements in the PLSS. In initial tests, the required CO2 permeance values have been obtained, while the current CO2/O2 selectivity values are somewhat lower than needed. However, the performance of the SLM is a strong function of the method used to impregnate the sorbent in the hollow fiber walls and rapid progress is being made in that area.
NASA Technical Reports Server (NTRS)
Paul, Heather L.; Waguespack, Glenn M.; Paul, Thomas H.; Conger, Bruce C.
2008-01-01
As part of NASA s initiative to develop an advanced portable life support system (PLSS), a baseline schematic has been chosen that includes gaseous oxygen in a closed circuit ventilation configuration. Supply oxygen enters the suit at the back of the helmet and return gases pass over the astronaut s body to be extracted at the astronaut s wrists and ankles through the liquid cooling and ventilation garment (LCVG). The extracted gases are then treated using a rapid cycling amine (RCA) system for carbon dioxide and water removal and activated carbon for trace gas removal before being mixed with makeup oxygen and reintroduced into the helmet. Thermal control is provided by a suit water membrane evaporator (SWME). As an extension of the original schematic development, NASA evaluated several Helmet Exhalation Capture System (HECS) configurations as alternatives to the baseline. The HECS configurations incorporate the use of full contact masks or non-contact masks to reduce flow requirements within the PLSS ventilation subsystem. The primary scope of this study was to compare the alternatives based on mass and volume considerations; however other design issues were also briefly investigated. This paper summarizes the results of this sizing analysis task.
Flexible Packaging Concept for a Space Suit Portable Life Support Subsystem
NASA Technical Reports Server (NTRS)
Thomas, Gretchen; Dillon, Paul; Oliver, Joe; Zapata, Felipe
2009-01-01
Neither the Shuttle Extravehicular Mobility Unit (EMU), the space suit currently used for space shuttle and International Space Station (ISS) missions, nor the Apollo EMU, the space suit successfully used on previous lunar missions, will satisfy the requirements for the next generation Constellation Program (CxP) lunar suit. The CxP system or Constellation Space Suit Element (CSSE) must be able to tolerate more severe environmental and use conditions than any previous system. These conditions include missions to the severely cold lunar poles and up to 100 Extravehicular Activity (EVA) excursions without ground maintenance. Much effort is focused on decreasing the mass and volume of the Portable Life Support Subsystem (PLSS) over previous suit designs in order to accommodate the required increase in functionality. This paper documents the progress of a conceptual packaging effort of a flexible backpack for the CSSE PLSS. The flexible backpack concept relies on a foam protection system to absorb, distribute, and dissipate the energy from falls on the lunar surface. Testing and analysis of the foam protection system concept that was conducted during this effort indicates that this method of system packaging is a viable solution.
NASA Technical Reports Server (NTRS)
Padilla, Sebastian A.; Powers, Aaron; Iacomini, Christie S.; Paul, Heather L.
2011-01-01
Metabolic heat regenerated Temperature Swing Adsorption (MTSA) technology is being developed for thermal and carbon dioxide (CO2) control for a Portable Life Support System (PLSS), as well as water recycling. The core of the MTSA technology is a sorbent bed that removes CO2 from the PLSS ventilation loop gas via a temperature swing. A Condensing Ice Heat eXchanger (CIHX) is used to warm the sorbent while also removing water from the ventilation loop gas. A Sublimation Heat eXchanger (SHX) is used to cool the sorbent. Research was performed to explore an MTSA designed for both lunar and Martian operations. Previously each the sorbent bed, CIHX, and SHX had been built and tested individually on a scale relevant to PLSS operations, but they had not been done so as an integrated subassembly. Design and analysis of an integrated subassembly was performed based on this prior experience and an updated transient system model. Focus was on optimizing the design for Martian operations, but the design can also be used in lunar operations. An Engineering Development Unit (EDU) of an integrated MTSA subassembly was assembled based on the design. Its fabrication is discussed. Some details on the differences between the as-assembled EDU to the future flight unit are considered.
NASA Technical Reports Server (NTRS)
Padilla, Sebastian A.; Powers, Aaron; Iacomini, Christie S.; Bower, Chad E.; Paul, Heather L.
2012-01-01
Metabolic heat regenerated Temperature Swing Adsorption (MTSA) technology is being developed for thermal and carbon dioxide (CO2) control for a Portable Life Support System (PLSS), as well as water recycling. The core of the MTSA technology is a sorbent bed that removes CO2 from the PLSS ventilation loop gas via a temperature swing. A Condensing Icing Heat eXchanger (CIHX) is used to warm the sorbent while also removing water from the ventilation loop gas. A Sublimation Heat eXchanger (SHX) is used to cool the sorbent. Research was performed to explore an MTSA designed for both lunar and Martian operations. Previously the sorbent bed, CIHX, and SHX had been built and tested individually on a scale relevant to PLSS operations, but they had not been done so as an integrated subassembly. Design and analysis of an integrated subassembly was performed based on this prior experience and an updated transient system model. Focus was on optimizing the design for Martian operations, but the design can also be used in lunar operations. An Engineering Development Unit (EDU) of an integrated MTSA subassembly was assembled based on the design. Its fabrication is discussed. Some details on the differences between the as-assembled EDU and the future flight unit are considered.
Lunar Portable Life Support System Heat Rejection Study
NASA Technical Reports Server (NTRS)
Conger, Bruce; Sompayrac,Robert G.; Trevino, Luis A.; Bue, Grant C.
2009-01-01
Performing extravehicular activity (EVA) at various locations of the lunar surface presents thermal challenges that exceed those experienced in space flight to date. The lunar Portable Life Support System (PLSS) cooling unit must maintain thermal conditions within the space suit and reject heat loads generated by the crewmember and the PLSS equipment. The amount of cooling required varies based on the lunar location and terrain due to the heat transferred between the suit and its surroundings. A study has been completed which investigated the resources required to provide cooling under various lunar conditions, assuming three different thermal technology categories: 1. Spacesuit Water Membrane Evaporator (SWME) 2. Subcooled Phase Change Material (SPCM) 3. Radiators with and without heat pumps Results from the study are presented that show mass and power impacts on the cooling system as a function of the location and terrain on the lunar surface. Resources (cooling equipment mass and consumables) are greater at the equator and inside sunlit craters due to the additional heat loads on the cooling system. While radiator and SPCM technologies require minimal consumables, they come with carry-weight penalties and have limitations. A wider investigation is recommended to determine if these penalties and limitations are offset by the savings in consumables.
Development Specification for the Portable Life Support System (PLSS) Thermal Loop Pump
NASA Technical Reports Server (NTRS)
Anchondo, Ian; Campbell, Colin
2017-01-01
The AEMU Thermal Loop Pump Development Specification establishes the requirements for design, performance, and testing of the Water Pump as part of the Thermal System of the Advanced Portable Life Support System (PLSS). It is envisioned that the Thermal Loop Pump is a positive displacement pump that provides a repeatable volume of flow against a given range of back-pressures provided by the various applications. The intention is to operate the pump at a fixed speed for the given application. The primary system is made up of two identical and redundant pumps of which only one is in operation at given time. The Auxiliary Loop Pump is an identical pump design to the primary pumps but is operated at half the flow rate. Inlet positive pressure to the pumps is provided by the upstream Flexible Supply Assembly (FSA-431 and FSA-531) which are physically located inside the suit volume and pressurized by suit pressure. An integrated relief valve, placed in parallel to the pump's inlet and outlet protects the pump and loop from over-pressurization. An integrated course filter is placed upstream of the pump's inlet to provide filtration and prevent potential debris from damaging the pump.
Multifunctional Space Evaporator-Absorber-Radiator (SEAR)
NASA Technical Reports Server (NTRS)
Bue, Grant C.; Hodgson, Ed; Izenson, Mike; Chen, Weibo
2013-01-01
A system for non-venting thermal control for spacesuits was built by integrating two previously developed technologies, namely NASA's Spacesuit Water Membrane Evaporator (SWME), and Creare's flexible version of the Lithium Chloride Absorber Radiator (LCAR). This SEAR system was tested in relevant thermal vacuum conditions. These tests show that a 1 sq m radiator having about three times as much absorption media as in the test article would be required to support a 7 hour spacewalk. The serial flow arrangement of the LCAR of the flexible version proved to be inefficient for venting non-condensable gas (NCG). A different LCAR packaging arrangement was conceived wherein the Portable Life Support System (PLSS) housing would be made with a high-strength carbon fiber composite honeycomb, the cells of which would be filled with the chemical absorption media. This new packaging reduce the mass and volume impact of the SEAR on the Portable Life Support System (PLSS) compared to the flexible design. A 0.2 sq m panel with flight-like honeycomb geometry is being constructed and will be tested in thermal and thermal vacuum conditions. Design analyses forecast improved system performance and improved NCG control. A flight-like regeneration system also is also being built and tested. Design analyses for the structurally integrated prototype as well as the earlier test data show that SEAR is not only practical for spacesuits but also has useful applications in spacecraft thermal control.
Space Evaporator-Absorber-Radiator (SEAR)
NASA Technical Reports Server (NTRS)
Bue, Grant C.; Stephan, Ryan; Hodgson, Ed; Izenson, Mike; Chen, Weibo
2012-01-01
A system for non-venting thermal control for spacesuits was built by integrating two previously developed technologies, namely NASA s Spacesuit Water Membrane Evaporator (SWME), and Creare s flexible version of the Lithium Chloride Absorber Radiator (LCAR). This SEAR system was tested in relevant thermal vacuum conditions. These tests show that a 1 m2 radiator having about three times as much absorption media as in the test article would be required to support a 7 hour spacewalk. The serial flow arrangement of the LCAR of the flexible version proved to be inefficient for venting non-condensable gas (NCG). A different LCAR packaging arrangement was conceived wherein the Portable Life Support System (PLSS) housing would be made with a high-strength carbon fiber composite honeycomb, the cells of which would be filled with the chemical absorption media. This new packaging reduces the mass and volume impact of the SEAR on the Portable Life Support System (PLSS) compared to the flexible design. A 0.2 sq m panel with flight-like honeycomb geometry is being constructed and will be tested in thermal and thermal vacuum conditions. Design analyses forecast improved system performance and improved NCG control. A flight-like regeneration system also is also being built and tested. Design analyses for the structurally integrated prototype as well as the earlier test data show that SEAR is not only practical for spacesuits but also has useful applications in spacecraft thermal control.
Portable Life Support System: PLSS 101
NASA Technical Reports Server (NTRS)
Thomas, Gretchen A.
2011-01-01
This presentation reviewed basic interfaces and considerations necessary for prototype suit hardware integration from an advanced spacesuit engineer perspective during the early design and test phases. The discussion included such topics such as the human interface, suit pass-throughs, keep-out zones, hardware form factors, subjective feedback from suit tests, and electricity in the suit.
Performance of a Multifunctional Space Evaporator- Absorber-Radiator (SEAR)
NASA Technical Reports Server (NTRS)
Izenson, Michael G.; Chen, Weibo; Bue, Grant; Quinn, Gregory
2013-01-01
The Space Evaporator-Absorber-Radiator (SEAR) is a nonventing thermal control subsystem that combines a Space Water Membrane Evaporator (SWME) with a Lithium Chloride Absorber Radiator (LCAR). The LCAR is a heat pump radiator that absorbs water vapor produced in the SWME. Because of the very low water vapor pressure at equilibrium with lithium chloride solution, the LCAR can absorb water vapor at a temperature considerably higher than the SWME, enabling heat rejection by thermal radiation from a relatively small area radiator. Prior SEAR prototypes used a flexible LCAR that was designed to be installed on the outer surface of a portable life support system (PLSS) backpack. This paper describes a SEAR subsystem that incorporates a very compact LCAR. The compact, multifunctional LCAR is built in the form of thin panels that can also serve as the PLSS structural shell. We designed and assembled a 2 sq ft prototype LCAR based on this design and measured its performance in thermal vacuum tests when supplied with water vapor by a SWME. These tests validated our models for SEAR performance and showed that there is enough area available on the PLSS backpack shell to enable heat rejection from the LCAR.
Asteroid Redirect Crewed Mission Space Suit and EVA System Architecture Trade Study
NASA Technical Reports Server (NTRS)
Blanco, Raul A.; Bowie, Jonathan T.; Watson, Richard D.; Sipila, Stephanie A.
2014-01-01
The Asteroid Redirect Crewed Mission (ARCM) requires a Launch/Entry/Abort (LEA) suit capability and short duration Extra Vehicular Activity (EVA) capability for Orion. The EVAs will involve a two-person crew for approximately four hours. Currently, two EVAs are planned with one contingency EVA in reserve. Providing this EVA capability is very challenging due to system level constraints and a new and unknown environment. The goal of the EVA architecture for ARCM is one that builds upon previously developed technologies and lessons learned, and that accomplishes the ARCM mission while providing a stepping stone to future missions and destinations. The primary system level constraints are to 1) minimize system mass and volume and 2) minimize the interfacing impacts to the baseline Orion design. In order to minimize the interfacing impacts and to not perturb the baseline Orion schedule, the concept of adding "kits" to the baseline system is proposed. These kits consist of: an EVA kit (converts LEA suit to EVA suit), EVA Servicing and Recharge Kit (provides suit consumables), the EVA Tools, Translation Aids & Sample Container Kit (the tools and mobility aids to complete the tasks), the EVA Communications Kit (interface between the EVA radio and the MPCV), and the Cabin Repress Kit (represses the MPCV between EVAs). This paper will focus on the trade space, analysis, and testing regarding the space suit (pressure garment and life support system). Historical approaches and lessons learned from all past EVA operations were researched. Previous and current, successfully operated EVA hardware and high technology readiness level (TRL) hardware were evaluated, and a trade study was conducted for all possible pressure garment and life support options. Testing and analysis was conducted and a recommended EVA system architecture was proposed. Pressure garment options that were considered for this mission include the currently in-use ISS EVA Mobility Unit (EMU), all variations of the Advanced Crew Escape Suit (ACES), and the Exploration Z-suit. For this mission, the pressure garment that was selected is the Modified ACES (MACES) with EVA enhancements. Life support options that were considered included short closed-loop umbilicals, long open-loop umbilicals, the currently in-use ISS EMU Portable Life Support System (PLSS), and the currently in development Exploration PLSS. For this mission, the life support option that was selected is the Exploration PLSS. The greatest risk in the proposed architecture is viewed to be the comfort and mobility of the baseline MACES and the delicate balance between adding more mobility features while not compromising landing safety. Feasibility testing was accomplished in low fidelity analogs and in the JSC Neutral Buoyancy Laboratory (NBL) to validate the concept before a final recommendation on the architecture was made. The proposed architecture was found to meet the mission constraints, but much more work is required to determine the details of the required suit upgrades, the integration with the PLSS, and the rest of the tools and equipment required to accomplish the mission. This work and further definition of the remaining kits will be conducted in government fiscal year 14.
Performance of a Multifunctional Space Evaporator-Absorber-Radiator (SEAR)
NASA Technical Reports Server (NTRS)
Izenson, Michael G.; Chen, Weibo; Phillips, Scott; Chepko, Ariane; Bue, Grant; Quinn, Gregory
2014-01-01
The Space Evaporator-Absorber-Radiator (SEAR) is a nonventing thermal control subsystem that combines a Space Water Membrane Evaporator (SWME) with a Lithium Chloride Absorber Radiator (LCAR). The LCAR is a heat pump radiator that absorbs water vapor produced in the SWME. Because of the very low water vapor pressure at equilibrium with lithium chloride solution, the LCAR can absorb water vapor at a temperature considerably higher than the SWME, enabling heat rejection sufficient for most EVA activities by thermal radiation from a relatively small area radiator. Prior SEAR prototypes used a flexible LCAR that was designed to be installed on the outer surface of a portable life support system (PLSS) backpack. This paper describes a SEAR subsystem that incorporates a very compact LCAR. The compact, multifunctional LCAR is built in the form of thin panels that can also serve as the PLSS structural shell. We designed and assembled a 2 ft² prototype LCAR based on this design and measured its performance in thermal vacuum tests when supplied with water vapor by a SWME. These tests validated our models for SEAR performance and showed that there is enough area available on the PLSS backpack shell to enable rejection of metabolic heat from the LCAR. We used results of these tests to assess future performance potential and suggest approaches for integrating the SEAR system with future space suits.
Humanoid Flight Metabolic Simulator Project
NASA Technical Reports Server (NTRS)
Ross, Stuart
2015-01-01
NASA's Evolvable Mars Campaign (EMC) has identified several areas of technology that will require significant improvements in terms of performance, capacity, and efficiency, in order to make a manned mission to Mars possible. These include crew vehicle Environmental Control and Life Support System (ECLSS), EVA suit Portable Life Support System (PLSS) and Information Systems, autonomous environmental monitoring, radiation exposure monitoring and protection, and vehicle thermal control systems (TCS). (MADMACS) in a Suit can be configured to simulate human metabolism, consuming crew resources (oxygen) in the process. In addition to providing support for testing Life Support on unmanned flights, MADMACS will also support testing of suit thermal controls, and monitor radiation exposure, body zone temperatures, moisture, and loads.
Next Generation Life Support Project Status
NASA Technical Reports Server (NTRS)
Barta, Daniel J.; Chullen, Cinda; Pickering, Karen D.; Cox, Marlon; Towsend, Neil; Campbell, Colin; Flynn, Michael; Wheeler, Raymond
2012-01-01
Next Generation Life Support (NGLS) is one of several technology development projects sponsored by NASA s Game Changing Development Program. The NGLS Project is developing life support technologies (including water recovery and space suit life support technologies) needed for humans to live and work productively in space. NGLS has three project tasks: Variable Oxygen Regulator (VOR), Rapid Cycle Amine (RCA) swing bed, and Alternative Water Processor (AWP). The RCA swing bed and VOR tasks are directed at key technology needs for the Portable Life Support System (PLSS) for an Advanced Extravehicular Mobility Unit, with focus on test article development and integrated testing in an Advanced PLSS in cooperation with the Advanced Extra Vehicular Activity (EVA) Project. An RCA swing-bed provides integrated carbon dioxide removal and humidity control that can be regenerated in real time during an EVA. The VOR technology will significantly increase the number of pressure settings available to the space suit. Current space suit pressure regulators are limited to only two settings whereas the adjustability of the advanced regulator will be nearly continuous. The AWP effort, based on natural biological processes and membrane-based secondary treatment, will result in the development of a system capable of recycling wastewater from sources expected in future exploration missions, including hygiene and laundry water. This paper will provide a status of technology development activities and future plans.
NASA Technical Reports Server (NTRS)
Paul, Heather L.; Jennings, Mallory A.; Rivera, Fatonia L.; Martin, Devin
2011-01-01
NASA is designing a next generation Extravehicular Activity (EVA) Portable Life Support System (PLSS) for use in future surface exploration endeavors. To meet the new requirements for ventilation flow at nominal and buddy modes, a fan has been developed and tested. This paper summarizes the results of the performance and life cycle testing efforts conducted at the NASA Johnson Space Center. Additionally, oxygen compatibility assessment results from an evaluation conducted at White Sands Test Facility (WSTF) are provided, and lessons learned and future recommendations are outlined.
Development Specification for RV-346/348 Positive Pressure Relief Valves (PPRV)
NASA Technical Reports Server (NTRS)
Ralston, Russell L.
2017-01-01
This specification establishes the requirements for design, performance, safety, testing, and manufacture of the RV-346 and RV-348, Positive Pressure Relief Valve (PPRV) as part of the Advanced Extravehicular Mobility Unit (EMU)(AEMU) Portable Life Support System (PLSS). The RV-346 serves as the Positive Pressure Relief Valve (PPRV), and the RV-348 serves as the Secondary Positive Pressure Relief Valve (SPPRV).
2013-09-11
S70-56415 (December 1970) --- At Kapoho, Hawaii, astronauts David R. Scott (left), commander of the Apollo 15 lunar landing mission, and James B. Irwin, lunar module pilot, train at a designated lunar surface simulation area for their upcoming lunar landing mission. Wearing street clothes, but equipped with a Portable Life Support System (PLSS), the two rehearse for a selenological traverse. Here, they are inspecting a grapefruit-sized rock. Photo credit: NASA
Spinal Anesthesia with Isobaric Tetracaine in Patients with Previous Lumbar Spinal Surgery
Kim, Soo Hwan; Jeon, Dong-Hyuk; Chang, Chul Ho; Lee, Sung-Jin
2009-01-01
Purpose Previous lumbar spinal surgery (PLSS) is not currently considered as a contraindication for regional anesthesia. However, there are still problems that make spinal anesthesia more difficult with a possibility of worsening the patient's back pain. Spinal anesthesia using combined spinal-epidural anesthesia (CSEA) in elderly patients with or without PLSS was investigated and the anesthetic characteristics, success rates, and possible complications were evaluated. Materials and Methods Fifty patients without PLSS (Control group) and 45 patients with PLSS (PLSS group) who were scheduled for total knee arthroplasty were studied prospectively. A CSEA was performed with patients in the left lateral position, and 10 mg of 0.5% isobaric tetracaine was injected through a 27 G spinal needle. An epidural catheter was then inserted for patient controlled analgesia. Successful spinal anesthesia was defined as adequate sensory block level more than T12. The number of skin punctures and the onset time were recorded, and maximal sensory block level (MSBL), time to 2-segment regression, success rate and complications were observed. Results The success rate of CSEA in Control group and PLSS group was 98.0%, and 93.3%, respectively. The median MSBL in PLSS group was higher than Control group [T4 (T2-L1) vs. T6 (T3-T12)] (p < 0.001). There was a significant difference in the number of patients who required ephedrine for the treatment of hypotension in PLSS group (p = 0.028). Conclusion The success rate of CSEA in patients with PLSS was 93.3%, and patients experienced no significant neurological complications. The MSBL can be higher in PLSS group than Control group. PMID:19430559
Spacesuit Water Membrane Evaporator Development for Lunar Missions
NASA Technical Reports Server (NTRS)
Vogel, Matt R.; Peterson, Keith; Zapata, Felipe, III; Dillon, Paul; Trevino, Luis A.
2008-01-01
For future lunar extra-vehicular activities (EVA), one method under consideration for rejecting crew and electronics heat involves evaporating water through a hydrophobic, porous Teflon membrane. A Spacesuit Water Membrane Evaporator (SWME) prototype using the Teflon membrane was tested successfully by Ungar and Thomas (2001) with predicted performance matching test data well. The above referenced work laid the foundation for the design of the SWME development unit, which is being considered for service in the Constellation System Spacesuit Element (CSSE) Portable Life Support System (PLSS). Multiple PLSS SWME configurations were considered on the basis of thermal performance, mass, volume, and performance and manufacturing risk. All configurations were a variation of an alternating concentric water and vapor channel configuration or a stack of alternating rectangular water and vapor channels. Supporting thermal performance trades mapped maximum SWME heat rejection as a function of water channel thickness, vapor channel thickness, channel length, number of water channels, porosity of the membrane structural support, and backpressure valve throat area. Preliminary designs of each configuration were developed to determine total mass and volume as well as to understand manufacturing issues. Review of configurations led to the selection of a concentric annulus configuration that meets the requirements of 800 watts (W) of heat rejection. Detailed design of the SWME development unit will be followed by fabrication of a prototype test unit, with thermal testing expected to start in 2008.
EVA Roadmap: New Space Suit for the 21st Century
NASA Technical Reports Server (NTRS)
Yowell, Robert
1998-01-01
New spacesuit design considerations for the extra vehicular activity (EVA) of a manned Martian exploration mission are discussed. Considerations of the design includes:(1) regenerable CO2 removal, (2) a portable life support system (PLSS) which would include cryogenic oxygen produced from in-situ manufacture, (3) a power supply for the EVA, (4) the thermal control systems, (5) systems engineering, (5) space suit systems (materials, and mobility), (6) human considerations, such as improved biomedical sensors and astronaut comfort, (7) displays and controls, and robotic interfaces, such as rovers, and telerobotic commands.
Astronaut Russell Schweickart photographed during EVA
NASA Technical Reports Server (NTRS)
1969-01-01
Astronaut Russell L. Schweickart, lunar module pilot, operates a 70mm Hasselblad camera during his extravehicular activity on the fourth day of the Apollo 9 earth-orbital mission. The Command/Service Module and the Lunar Module 3 'Spider' are docked. This view was taken form the Command Module 'Gumdrop'. Schweickart, wearing an Extravehicular Mobility Unit (EMU), is standing in 'golden slippers' on the Lunar Module porch. On his back, partially visible, are a Portable Life Support System (PLSS) and an Oxygen Purge System (OPS).
Raja, Zahid; André, Sonia; Piesse, Christophe; Sereno, Denis; Nicolas, Pierre; Foulon, Thierry
2013-01-01
Transcriptomic and peptidomic analysis of skin secretions from the Painted-belly leaf frog Phyllomedusa sauvagii led to the identification of 5 novel phylloseptins (PLS-S2 to -S6) and also of phylloseptin-1 (PSN-1, here renamed PLS-S1), the only member of this family previously isolated in this frog. Synthesis and characterization of these phylloseptins revealed differences in their antimicrobial activities. PLS-S1, -S2, and -S4 (79–95% amino acid sequence identity; net charge = +2) were highly potent and cidal against Gram-positive bacteria, including multidrug resistant S. aureus strains, and killed the promastigote stage of Leishmania infantum, L. braziliensis and L. major. By contrast, PLS-S3 (95% amino acid identity with PLS-S2; net charge = +1) and -S5 (net charge = +2) were found to be almost inactive against bacteria and protozoa. PLS-S6 was not studied as this peptide was closely related to PLS-S1. Differential scanning calorimetry on anionic and zwitterionic multilamellar vesicles combined with circular dichroism spectroscopy and membrane permeabilization assays on bacterial cells indicated that PLS-S1, -S2, and -S4 are structured in an amphipathic α-helix that disrupts the acyl chain packing of anionic lipid bilayers. As a result, regions of two coexisting phases could be formed, one phase rich in peptide and the other lipid-rich. After reaching a threshold peptide concentration, the disruption of lipid packing within the bilayer may lead to local cracks and disintegration of the microbial membrane. Differences in the net charge, α-helical folding propensity, and/or degree of amphipathicity between PLS-S1, -S2 and -S4, and between PLS-S3 and -S5 appear to be responsible for their marked differences in their antimicrobial activities. In addition to the detailed characterization of novel phylloseptins from P. sauvagii, our study provides additional data on the previously isolated PLS-S1 and on the mechanism of action of phylloseptins. PMID:23967105
Development of a Rapid Cycling CO2 and H2O Removal Sorbent
NASA Technical Reports Server (NTRS)
Alptekin, Gokhan; Cates, Matthew; Bernal, Casey; Dubovik, Margarita; Paul, Heather L.
2007-01-01
The National Aeronautics and Space Administration (NASA) planned future missions set stringent demands on the design of the Portable Life Support System (PLSS), requiring dramatic reductions in weight, decreased reliance on supplies and greater flexibility on the types of missions. Use of regenerable systems that reduce weight and volume of the Extravehicular Mobility Unit (EMU) is of critical importance to NASA, both for low orbit operations and for long duration manned missions. The carbon dioxide and humidity control unit in the existing PLSS design is relatively large, since it has to remove and store eight hours worth of carbon dioxide (CO2). If the sorbent regeneration can be carried out during the Extravehicular Activity (EVA) with a relatively high regeneration frequency, the size of the sorbent canister and weight can be significantly reduced. TDA Research, Inc. is developing compact, regenerable sorbent materials to control CO2 and humidity in the space suit ventilation loop. The sorbent can be regenerated using space vacuum during the EVA, eliminating all CO2 and humidity duration-limiting elements in the life support system. The material also has applications in other areas of space exploration including long duration exploration missions requiring regenerable technologies and possibly the Crew Exploration Vehicle (CEV) spacecraft. This paper summarizes the results of the sorbent development, testing, and evaluation efforts to date.
NASA Technical Reports Server (NTRS)
Iacomini, Christine; Powers, Aaron; Bowers, Chad; Straub-Lopez, Katie; Anderson, Grant; MacCallum, Taber; Paul, Heather
2007-01-01
Two of the fundamental problems facing the development of a Portable Life Support System (PLSS) for use on Mars, are (i) heat rejection (because traditional technologies use sublimation of water, which wastes a scarce resource and contaminates the premises), and (ii) rejection of CO2 in an environment with a ppCO2 of 0.4-0.9 kPa. Patent-pending Metabolic heat regenerated Temperature Swing Adsorption (MTSA) technology is being developed to address both these challenges. The technology utilizes an adsorbent that when cooled with liquid CO2 to near sublimation temperatures (195K) removes metabolically-produced CO2 in the vent loop. Once fully loaded, the adsorbent is then warmed externally by the vent loop (approx. 300K), rejecting the captured CO2 to Mars ambient. Two beds are used to effect a continuous cycle of CO2 removal/rejection as well as facilitate heat exchange out of the vent loop. Any cryogenic fluid can be used in the application; however, since CO2 is readily available at Mars and can be easily produced and stored on the Martian surface, the solution is rather elegant and less complicated when employing liquid CO2. As some metabolic heat will need to be rejected anyway, finding a practical use for metabolic heat is also an overall benefit to the PLSS. To investigate the feasibility of the technology, a series of experiments was conducted which lead to the selection and partial characterization of an appropriate adsorbent. The adsorbent NaX successfully removed CO2 from a simulated vent loop at the prescribed temperature swing anticipated during PLSS operating conditions on Mars using a cryogenic fluid. Thermal conductivity of the adsorbent was also measured to eventually aid in a demonstrator design of the technology. These results provide no show stoppers to the development of MTSA technology and allow its development to focus on other design challenges as listed in the conclusions.
Regenerative Blower for EVA Suit Ventilation Fan
NASA Technical Reports Server (NTRS)
Izenson, Michael G.; Chen, Weibo; Paul, Heather L.
2010-01-01
Portable life support systems in future space suits will include a ventilation subsystem driven by a dedicated fan. This ventilation fan must meet challenging requirements for pressure rise, flow rate, efficiency, size, safety, and reliability. This paper describes research and development that showed the feasibility of a regenerative blower that is uniquely suited to meet these requirements. We proved feasibility through component tests, blower tests, and design analysis. Based on the requirements for the Constellation Space Suit Element (CSSE) Portable Life Support System (PLSS) ventilation fan, we designed the critical elements of the blower. We measured the effects of key design parameters on blower performance using separate effects tests, and used the results of these tests to design a regenerative blower that will meet the ventilation fan requirements. We assembled a proof-of-concept blower and measured its performance at sub-atmospheric pressures that simulate a PLSS ventilation loop environment. Head/flow performance and maximum efficiency point data were used to specify the design and operating conditions for the ventilation fan. We identified materials for the blower that will enhance safety for operation in a lunar environment, and produced a solid model that illustrates the final design. The proof-of-concept blower produced the flow rate and pressure rise needed for the CSSE ventilation subsystem while running at 5400 rpm, consuming only 9 W of electric power using a non-optimized, commercial motor and controller and inefficient bearings. Scaling the test results to a complete design shows that a lightweight, compact, reliable, and low power regenerative blower can meet the performance requirements for future space suit life support systems.
Plasmonic lattice solitons in metallic nanowire materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swami, O. P., E-mail: omg1789@gmail.com; Kumar, Vijendra, E-mail: vsmedphysics@gmail.com; Nagar, A. K., E-mail: ajaya.nagar@gmail.com
2016-05-06
In this paper, we demonstrate theoretically that the plasmonic lattice solitons (PLSs) are formed in array of metallic nanowires embedded in Kerr-type material. The strong nonlinearity at metal surface, combined with the tight confinement of the guiding modes of the metallic nanowires, provide the main physical mechanism for balancing the creation of plasmonic lattice solitons and wave diffraction. We show that the PLSs are satisfied in a verity of plasmonic systems, which have important applications in nanophotonics and subwavelength optics.
NASA Technical Reports Server (NTRS)
Hodgson, Edward; Oehler, William; Dionne, Steve; Converse, David; Jennings, Mallory A.
2012-01-01
NASA s plans for Extravehicular Activity (EVA) portable life support systems for future exploration missions result in different design requirements than those which led to the combined fan / pump / separator in the current ISS Extravehicular Mobility Unit (EMU). To meet these new requirements, NASA contracted with Hamilton Sundstrand to provide two new prototype fans designed to meet anticipated future system requirements. Based on design trade studies, a high speed fan with mechanical bearing support of the rotating elements and a novel non-metallic barrier canned motor design was developed and implemented in the deliverable prototypes. The prototypes, which used two different bearing lubricants, have been extensively tested in both stand-alone and integrated system tests in NASA laboratories and proven to meet the anticipated performance requirements. Subsequently, they have been subjected to post test inspection and analysis in Hamilton Sundstrand laboratories to assess the effects of integrated operation and resultant exposure to vent loop contaminants. Results have confirmed expectations that one of the lubricants would be superior in this application and the prototype fans have been reassembled with new bearings with the superior lubricant. They have now been returned to the Johnson Space Center for further testing and maturation as part of NASA s PLSS 2.0 integrated test effort. This paper will discuss the test history of these units, resulting test data, the results of post test evaluation, and plans for further testing in the near future.
New Lithium-ion Polymer Battery for the Extravehicular Mobility Unit Suit
NASA Technical Reports Server (NTRS)
Jeevarajan, J. A.; Darcy, E. C.
2004-01-01
The Extravehicular Mobility Unit (EMU) suit currently has a silver-zinc battery that is 20.5 V and 45 Ah capacity. The EMU's portable life support system (PLSS) will draw power from the battery during the entire period of an EVA. Due to the disadvantages of using the silver-zinc battery in terms of cost and performance, a new high energy density battery is being developed for future use, The new battery (Lithium-ion battery or LIB) will consist of Li-ion polymer cells that will provide power to the EMU suit. The battery design consists of five 8 Ah cells in parallel to form a single module of 40 Ah and five such modules will be placed in series to give a 20.5 V, 40 Ah battery. Charging will be accomplished on the Shuttle or Station using the new LIB charger or the existing ALPS (Air Lock Power Supply) charger. The LIB delivers a maximum of 3.8 A on the average, for seven continuous hours, at voltages ranging from 20.5 V to 16.0 V and it should be capable of supporting transient pulses during start up and once every hour to support PLSS fan and pump operation. Figure 1 shows the placement of the battery in the backpack area of the EMU suit. The battery and cells will undergo testing under different conditions to understand its performance and safety characteristics.
Water Pump Development for the EVA PLSS
NASA Technical Reports Server (NTRS)
Schuller, Michael; Kurwitz, Cable; Goldman, Jeff; Morris, Kim; Trevino, Luis
2009-01-01
This paper describes the effort by the Texas Engineering Experiment Station (TEES) and Honeywell for NASA to design, fabricate, and test a preflight prototype pump for use in the Extravehicular activity (EVA) portable life support subsystem (PLSS). Major design decisions were driven by the need to reduce the pump s mass, power, and volume compared to the existing PLSS pump. In addition, the pump will accommodate a much wider range of abnormal conditions than the existing pump, including vapor/gas bubbles and increased pressure drop when employed to cool two suits simultaneously. A positive displacement, external gear type pump was selected because it offers the most compact and highest efficiency solution over the required range of flow rates and pressure drops. An additional benefit of selecting a gear pump design is that it is self priming and capable of ingesting noncondensable gas without becoming "air locked." The chosen pump design consists of a 28 V DC, brushless, sealless, permanent magnet motor driven, external gear pump that utilizes a Honeywell development that eliminates the need for magnetic coupling. Although the planned flight unit will use a sensorless motor with custom designed controller, the preflight prototype to be provided for this project incorporates Hall effect sensors, allowing an interface with a readily available commercial motor controller. This design approach reduced the cost of this project and gives NASA more flexibility in future PLSS laboratory testing. The pump design was based on existing Honeywell designs, but incorporated features specifically for the PLSS application, including all of the key features of the flight pump. Testing at TEES will simulate the vacuum environment in which the flight pump will operate. Testing will verify that the pump meets design requirements for range of flow rates, pressure rise, power consumption, working fluid temperature, operating time, and restart capability. Pump testing is currently scheduled for March, 2009, after which the pump will be delivered to NASA for further testing.
NASA Technical Reports Server (NTRS)
Wojtowicz, Marek A.; Cosgrove, Joseph E.; Serio, Michael A.; Wilburn, Monique S.
2016-01-01
Results are presented on the development of a reversible carbon sorbent for trace-contaminant (TC) removal for use in Extravehicular Activities (EVAs), and more specifically in the Primary Life Support System (PLSS). The current TC-control technology involves the use of a packed bed of acid-impregnated granular charcoal, which is deemed non-regenerable, while the carbon-based sorbent under development in this project can be regenerated by exposure to vacuum at room temperature. Data on concurrent sorption and desorption of ammonia and formaldehyde, which are major TCs of concern, are presented in this paper. A carbon sorbent was fabricated by dry impregnation of a reticulated carbon-foam support with polyvinylidene chloride, followed by carbonization and thermal oxidation in air. Sorbent performance was tested for ammonia and formaldehyde sorption and vacuum regeneration, with and without water present in the gas stream. It was found that humidity in the gas phase enhanced ammonia-sorption capacity by a factor larger than two. Co-adsorption of ammonia and formaldehyde in the presence of water resulted in strong formaldehyde sorption (to the point that it was difficult to saturate the sorbent on the time scales used in this study). In the absence of humidity, adsorption of formaldehyde on the carbon surface was found to impair ammonia sorption in subsequent runs; in the presence of water, however, both ammonia and formaldehyde could be efficiently removed from the gas phase by the sorbent. The efficiency of vacuum regeneration could be enhanced by gentle heating to temperatures below 60 deg.
Freeze Tolerant Radiator for an Advanced EMU
NASA Technical Reports Server (NTRS)
Copeland, Robert J.; Elliott, Jeannine; Weislogel, Mark
2004-01-01
During an Extravehicular Activity (EVA), the astronaut s metabolic heat and the heat produced by the Portable Life Support Unit (PLSS) must be rejected. This heat load is currently rejected by a sublimator, which vents up to eight pounds of water each EVA. However, for advanced space missions of the future, water venting to space needs to be minimized because resupply impacts from earth will be prohibitive. If this heat load could be radiated to space from the PLSS, which has enough surface area to radiate most of the heat, the amount of water now vented could be greatly reduced. Unfortunately, a radiator rejects heat at a relatively constant rate, but the astronauts generate a variable heat load depending on how hard they are working. Without a way to vary the heat removal rate, the astronaut would experience cold discomfort or even frostbite. A proven method allowing a radiator to be turned-down is to sequentially allow tubes that carry the heat transfer fluid to the radiator to freeze. A drawback of current freezable radiators using this method is that they are far to heavy for use on a PLSS, because they use heavy construction to prevent the tubes from bursting as they freeze and thaw. This creates the need for a large radiator to reject most of the heat but with a lightweight tube that doesn t burst as it freezes and thaws. The new freezable radiator for the Extravehicular Mobility Unit (EMU) has features to accommodate the expansion of the radiator fluid when it freezes, and still have the high tube to fin conductance needed to minimize the number and weight of the tubes. Radiator fluid candidates are water and a propylene glycol-water mixture. This design maintains all materials within their elastic limits so that large volume changes can be achieved without breaking the tube. This concept couples this elastic expansion with an extremely lightweight, extremely high conductivity carbon fiber fin that can carry the heat needed to thaw a frozen tube. By using most of the exposed surface area of the PLSS as a radiator, the system can reject about 75% of the highest heat load, and reduce the loss of water through sublimation by a factor of four. The proposed radiator and a small water tank can be no heavier than the current system.
Results of the Particulate Contamination Control Trade Study for Space Suit Life Support Development
NASA Technical Reports Server (NTRS)
Cognata, Thomas J.; Conger, Bruce; Paul, Heather L.
2009-01-01
As the United States plans to return astronauts to the moon and eventually to Mars, designing the most effective, efficient, and robust space suit life support system that will operate successfully in these dusty environments is vital. There is some knowledge of the contaminants and level of infiltration expected from the Lunar and Mars dust, however risk mitigation strategies and filtration designs to prevent contamination within the space suit life support system are still undefined. A trade study was initiated to identify and address these concerns, and to develop new requirements for the Constellation Space Suit Element (CSSE) Portable Life Support System (PLSS). This trade study investigates historical methods of particulate contamination control in space suits and vehicles, and evaluated the possibility of using commercial technologies for this application. In addition, the trade study examined potential filtration designs. This paper summarizes the results of this trade study.
NASA Technical Reports Server (NTRS)
Iacomini, Christine; Powers, Aaron; Bower, Chad; Straub-Lopez, Kathrine; Anderson, Grant; MacCallum, Taber; Paul, Heather L.
2007-01-01
Two of the fundamental problems facing the development of a Portable Life Support System (PLSS) for use on Mars, are (i) heat rejection (because traditional technologies use sublimation of water, which wastes a scarce resource and contaminates the premises), and (ii) rejection of carbon dioxide (CO2) in an environment with a CO2 partial pressure (ppCO2) of 0.4-0.9 kPa. Patent-pending Metabolic heat regenerated Temperature Swing Adsorption (MTSA) technology is being developed to address both these challenges. The technology utilizes an adsorbent that when cooled with liquid CO2 to near sublimation temperatures (195K) removes metabolically-produced CO2 in the ventilation loop. Once fully loaded, the adsorbent is then warmed externally by the ventilation loop (300K), rejecting the captured CO2 to Mars ambient. Two beds are used to provide a continuous cycle of CO2 removal/rejection as well as facilitate heat exchange out of the ventilation loop. Any cryogenic fluid can be used in the application; however, since CO2 is readily available on Mars and can be easily produced and stored on the Martian surface, the solution is rather elegant and less complicated when employing liquid CO2. As some metabolic heat will need to be rejected anyway, finding a practical use for metabolic heat is also an overall benefit to the PLSS. To investigate the feasibility of the technology, a series of experiments were conducted which lead to the selection and partial characterization of an appropriate adsorbent. The Molsiv Adsorbents 13X 8x12 (also known as NaX zeolite) successfully removed CO2 from a simulated ventilation loop at the prescribed temperature swing anticipated during PLSS operating conditions on Mars using a cryogenic fluid. Thermal conductivity of the adsorbent was also measured to eventually aid in a demonstrator design of the technology. These results provide no show stoppers to the development of MTSA technology and allow its development to focus on other design challenges as listed in the conclusions section of this paper.
NASA Technical Reports Server (NTRS)
Campbell, Colin; Cox, Marlon; Meginnis, Carly; Falconi, Eric
2017-01-01
The Variable Oxygen Regulator (VOR), a stepper actuated two-stage mechanical regulator, is being developed for the purpose of serving as the Primary Oxygen Regulator (POR) and Secondary Oxygen Regulator (SOR) within the Advanced EMU PLSS, now referred to as the xEMU and xPLSS. Three prototype designs have been fabricated and tested as part of this development. Building upon the lessons learned from the 35 years of Shuttle/ISS EMU Program operation including the fleet-wide EMU Secondary Oxygen Pack (SOP) contamination failure that occurred in 2000, the VOR is being analyzed, designed, and tested for oxygen compatibility with controlled Non-Volatile Residue (NVR) and a representative worst-case hydro-carbon system contamination event (>100mg/sq ft dodecane). This paper discusses the steps taken in testing of VOR 2.0 with for oxygen compatibility and then discusses follow-on design changes implemented in the VOR 3.0 (3rd prototype) as a result.
NASA Technical Reports Server (NTRS)
Bennett, William; Baldwin, Richard
2007-01-01
The NASA Glenn Research Center (GRC) Electrochemistry Branch designed and produced five lithium-ion battery packs for demonstration in a portable life support system (PLSS) on spacesuit simulators. The experimental batteries incorporated advanced, NASA-developed electrolytes and included internal protection against over-current, over-discharge and over-temperature. The 500-gram batteries were designed to deliver a constant power of 38 watts over 103 minutes of discharge time (130 Wh/kg). Battery design details are described and field and laboratory test results are summarized.
NASA Technical Reports Server (NTRS)
Paul, Heather L.; Sompayrac, Robert; Conger, Bruce; Chamberlain, Mateo
2009-01-01
As development of the Constellation Space Suit Element progresses, designing the most effective and efficient life support systems is critical. The baseline schematic analysis for the Portable Life Support System (PLSS) indicates that the ventilation loop will need some method of heat exchange and humidification prior to entering the helmet. A trade study was initiated to identify the challenges associated with conditioning the spacesuit breathing gas stream for temperature and water vapor control, to survey technological literature and resources on heat exchanger and humidifiers to provide solutions to the problems of conditioning the spacesuit breathing gas stream, and to propose potential candidate technologies to perform the heat exchanger and humidifier functions. This paper summarizes the results of this trade study and also describes the conceptual designs that NASA developed to address these issues.
NASA Technical Reports Server (NTRS)
Paul, Heather L.; Conger, Bruce; Sompyrac, Robert; Chamberlain, Mateo
2008-01-01
As development of the Constellation Space Suit Element progresses, designing the most effective and efficient life support systems is critical. The baseline schematic analysis for the Portable Life Support System (PLSS) indicates that the ventilation loop will need some method of heat exchange and humidification prior to entering the helmet. A trade study was initiated to identify the challenges associated with conditioning the spacesuit breathing gas stream for temperature and water vapor control, to survey technological literature and resources on heat exchanger and humidifiers to provide solutions to the problems of conditioning the spacesuit breathing gas stream, and to propose potential candidate technologies to perform the heat exchanger and humidifier functions. This paper summarizes the results of this trade study and also describes the conceptual designs that NASA developed to address these issues.
Extravehicular Activity (EVA) 101: Constellation EVA Systems
NASA Technical Reports Server (NTRS)
Jordan, Nicole C.
2007-01-01
A viewgraph presentation on Extravehicular Activity (EVA) Systems is shown. The topics include: 1) Why do we need space suits? 2) Protection From the Environment; 3) Primary Life Support System (PLSS); 4) Thermal Control; 5) Communications; 6) Helmet and Extravehicular Visor Assy; 7) Hard Upper Torso (HUT) and Arm Assy; 8) Display and Controls Module (DCM); 9) Gloves; 10) Lower Torso Assembly (LTA); 11) What Size Do You Need?; 12) Boot and Sizing Insert; 13) Boot Heel Clip and Foot Restraint; 14) Advanced and Crew Escape Suit; 15) Nominal & Off-Nominal Landing; 16) Gemini Program (mid-1960s); 17) Apollo EVA on Service Module; 18) A Bold Vision for Space Exploration, Authorized by Congress; 19) EVA System Missions; 20) Configurations; 21) Reduced Gravity Program; and 22) Other Opportunities.
Simulated Lunar Testing of Metabolic Heat Regenerated Temperature Swing Adsorption
NASA Technical Reports Server (NTRS)
Padilla, Sebastian A.; Bower, Chad E.; Iacomini, Christie S.; Paul, Heather L.
2012-01-01
Metabolic heat regenerated Temperature Swing Adsorption (MTSA) technology is being developed for thermal and carbon dioxide (CO2) control for a Portable Life Support System (PLSS), as well as water recycling. An Engineering Development Unit (EDU) of the MTSA Subassembly (MTSAS) was designed and assembled for optimized Martian operations, but also meets system requirements for lunar operations. For lunar operations the MTSA sorption cycle is driven via a vacuum swing between suit ventilation loop pressure and lunar vacuum. The focus of this effort was testing in a simulated lunar environment. This environment was simulated in Paragon's EHF vacuum chamber. The objective of the testing was to evaluate the full cycle performance of the MTSA Subassembly EDU, and to assess CO2 loading and pressure drop of the wash coated aluminum reticulated foam sorbent bed. Lunar environment testing proved out the feasibility of pure vacuum swing operation, making MTSA a technology that can be tested and used on the Moon prior to going to Mars. Testing demonstrated better than expected CO2 Nomenclature loading on the sorbent and nearly replicates the equilibrium data from the sorbent manufacturer. This exceeded any of the previous sorbent loading tests performed by Paragon. Subsequently, the increased performance of the sorbent bed design indicates future designs will require less mass and volume than the current EDU rendering MTSA as very competitive for Martian PLSS applications.
Simulated Lunar Testing of Metabolic Heat Regenerated Temperature Swing Adsorption Technology
NASA Technical Reports Server (NTRS)
Padilla, Sebastian A.; Bower, Chad; Iacomini, Christie S.; Paul, H.
2011-01-01
Metabolic heat regenerated Temperature Swing Adsorption (MTSA) technology is being developed for thermal and carbon dioxide (CO2) control for a Portable Life Support System (PLSS), as well as water recycling. An Engineering Development Unit (EDU) of the MTSA subassembly was designed and assembled for optimized Martian operations, but also meets system requirements for lunar operations. For lunar operations the MTSA sorption cycle is driven via a vacuum swing between suit ventilation loop pressure and lunar vacuum. The focus of this effort is operations and testing in a simulated lunar environment. This environment was simulated in Paragon s EHF vacuum chamber. The objective of this testing was to evaluate the full cycle performance of the MTSA Subassembly EDU, and to assess CO2 loading and pressure drop of the wash coated aluminum reticulated foam sorbent bed. The lunar testing proved out the feasibility of pure vacuum swing operation, making MTSA a technology that can be tested and used on the Moon prior to going to Mars. Testing demonstrated better than expected CO2 loading on the sorbent and nearly replicates the equilibrium data from the sorbent manufacturer. This had not been achieved in any of the previous sorbent loading tests performed by Paragon. Subsequently, the increased performance of the sorbent bed design indicates future designs will require less mass and volume than the current EDU rendering MTSA as very competitive for Martian PLSS applications.
Astronaut Russell Schweickart photographed during EVA
1969-03-06
AS09-19-2983 (6 March 1969) --- Astronaut Russell L. Schweickart, lunar module pilot, operates a 70mm Hasselblad camera during his extravehicular activity (EVA) on the fourth day of the Apollo 9 Earth-orbital mission. The Command and Service Modules (CSM) and Lunar Module (LM) "Spider" are docked. This view was taken from the Command Module (CM) "Gumdrop". Schweickart, wearing an Extravehicular Mobility Unit (EMU), is standing in "golden slippers" on the LM porch. On his back, partially visible, are a Portable Life Support System (PLSS) and an Oxygen Purge System (OPS). Astronaut James A. McDivitt, Apollo 9 commander, was inside the "Spider". Astronaut David R. Scott, command module pilot, remained at the controls in the CM.
Apollo 9 Mission image - Astronaut Russell L. Schweickart, lunar module pilot, during EVA
1969-03-03
Astronaut Russell L. Schweickart, lunar module pilot, operates a 70mm Hasselblad camera during his extravehicular activity on the fourth day of the Apollo 9 earth-orbital mission. The Command/Service Module and the Lunar Module 3 "Spider" are docked. This view was taken form the Command Module "Gumdrop". Schweickart, wearing an Extravehicular Mobility Unit (EMU), is standing in "golden slippers" on the Lunar Module porch. On his back, partially visible, are a Portable Life Support System (PLSS) and an Oxygen Purge System (OPS). Film magazine was A,film type was SO-368 Ektachrome with 0.460 - 0.710 micrometers film / filter transmittance response and haze filter,80mm lens.
Custom Unit Pump Development for the EVA PLSS
NASA Technical Reports Server (NTRS)
Schuller, Michael; Kurwitz, Cable; Little, Frank; Oinuma, Ryoji; Larsen, Ben; Goldman, Jeff; Reinis, Filip; Trevino, Luis
2010-01-01
This paper describes the effort by the Texas Engineering Experiment Station (TEES) and Honeywell for NASA to design and test a pre-flight prototype pump for use in the Extra-vehicular activity (EVA) portable life support subsystem (PLSS). Major design decisions were driven by the need to reduce the pump s mass, power, and volume compared to the existing PLSS pump. In addition, the pump must accommodate a much wider range of abnormal conditions than the existing pump, including vapor/gas bubbles and increased pressure drop when employed to cool two suits simultaneously. A positive displacement, external gear type pump was selected because it offers the most compact and highest efficiency solution over the required range of flow rates and pressure drops. An additional benefit of selecting a gear pump design is that it is self priming and capable of ingesting non-condensable gas without becoming air locked. The chosen pump design consists of a 28 V DC, brushless, seal-less, permanent magnet motor driven, external gear pump that utilizes a Honeywell development that eliminates the need for magnetic coupling. The pump design was based on existing Honeywell designs, but incorporated features specifically for the PLSS application, including all of the key features of the flight pump. Testing at TEES verified that the pump meets the design requirements for range of flow rates, pressure drop, power consumption, working fluid temperature, operating time, gas ingestion, and restart capability under both ambient and vacuum conditions. The pump operated at 40 to 240 lbm/hr flow rate, 35 to 100 oF pump temperature, and 5 to 10 psid pressure rise. Power consumption of the pump controller at the nominal operating point in both ambient and vacuum conditions was 9.5 W, which was less than the 12 W predicted. Gas ingestion capabilities were tested by injecting 100 cc of air into the fluid line; the pump operated normally throughout this test.
The Personal Living Space Cue Inventory: An Analysis and Evaluation
ERIC Educational Resources Information Center
Gosling, Samuel D.; Craik, Kenneth H.; Martin, Nicholas R.; Pryor, Michelle R.
2005-01-01
The authors introduce the Personal Living Space Cue Inventory (PLSCI), designed to document comprehensively features of personal living spaces (PLSs); common examples of PLSs include rooms in family households, dormitories, or residential centers. The article describes the PLSCI's development and provides evidence for its reliability and…
Extravehicular Activity System Sizing Analysis Tool (EVAS_SAT)
NASA Technical Reports Server (NTRS)
Brown, Cheryl B.; Conger, Bruce C.; Miranda, Bruno M.; Bue, Grant C.; Rouen, Michael N.
2007-01-01
An effort was initiated by NASA/JSC in 2001 to develop an Extravehicular Activity System Sizing Analysis Tool (EVAS_SAT) for the sizing of Extravehicular Activity System (EVAS) architecture and studies. Its intent was to support space suit development efforts and to aid in conceptual designs for future human exploration missions. Its basis was the Life Support Options Performance Program (LSOPP), a spacesuit and portable life support system (PLSS) sizing program developed for NASA/JSC circa 1990. EVAS_SAT estimates the mass, power, and volume characteristics for user-defined EVAS architectures, including Suit Systems, Airlock Systems, Tools and Translation Aids, and Vehicle Support equipment. The tool has undergone annual changes and has been updated as new data have become available. Certain sizing algorithms have been developed based on industry standards, while others are based on the LSOPP sizing routines. The sizing algorithms used by EVAS_SAT are preliminary. Because EVAS_SAT was designed for use by members of the EVA community, subsystem familiarity on the part of the intended user group and in the analysis of results is assumed. The current EVAS_SAT is operated within Microsoft Excel 2003 using a Visual Basic interface system.
Advancement of Miniature Optic Gas Sensor (MOGS) Probe Technology
NASA Technical Reports Server (NTRS)
Chullen, Cinda
2015-01-01
Advancement of Miniature Optic Gas Sensor (MOGS) Probe Technology" project will investigate newly developed optic gas sensors delivered from a Small Business Innovative Research (SBIR) Phase II effort. A ventilation test rig will be designed and fabricated to test the sensors while integrated with a Suited Manikin Test Apparatus (SMTA). Once the sensors are integrated, a series of test points will be completed to verify that the sensors can withstand Advanced Suit Portable Life Support System (PLSS) environments and associated human metabolic profiles for changes in pressure and levels of Oxygen (ppO2), carbon dioxide (ppCO2), and humidity (ppH2O).
Astronaut Russell Schweickart photographed during EVA
1969-03-06
AS09-19-2994 (6 March 1969) --- Astronaut Russell L. Schweickart, lunar module pilot, is photographed from the Command Module (CM) "Gumdrop" during his extravehicular activity (EVA) on the fourth day of the Apollo 9 Earth-orbital mission. He holds, in his right hand, a thermal sample which he is retrieving from the Lunar Module (LM) exterior. The Command and Service Modules (CSM) and LM "Spider" are docked. Schweickart, wearing an Extravehicular Mobility Unit (EMU), is standing in "golden slippers" on the LM porch. Visible on his back are the Portable Life Support System (PLSS) and Oxygen Purge System (OPS). Astronaut James A. McDivitt, Apollo 9 commander, was inside the "Spider". Astronaut David R. Scott, command module pilot, remained at the controls in the CM "Gumdrop".
Post-Shuttle EVA Operations on ISS
NASA Technical Reports Server (NTRS)
West, William; Witt, Vincent; Chullen, Cinda
2010-01-01
The expected retirement of the NASA Space Transportation System (also known as the Space Shuttle ) by 2011 will pose a significant challenge to Extra-Vehicular Activities (EVA) on-board the International Space Station (ISS). The EVA hardware currently used to assemble and maintain the ISS was designed assuming that it would be returned to Earth on the Space Shuttle for refurbishment, or if necessary for failure investigation. With the retirement of the Space Shuttle, a new concept of operations was developed to enable EVA hardware (Extra-vehicular Mobility Unit (EMU), Airlock Systems, EVA tools, and associated support hardware and consumables) to perform ISS EVAs until 2015, and possibly beyond to 2020. Shortly after the decision to retire the Space Shuttle was announced, the EVA 2010 Project was jointly initiated by NASA and the One EVA contractor team. The challenges addressed were to extend the operating life and certification of EVA hardware, to secure the capability to launch EVA hardware safely on alternate launch vehicles, to protect for EMU hardware operability on-orbit, and to determine the source of high water purity to support recharge of PLSSs (no longer available via Shuttle). EVA 2010 Project includes the following tasks: the development of a launch fixture that would allow the EMU Portable Life Support System (PLSS) to be launched on-board alternate vehicles; extension of the EMU hardware maintenance interval from 3 years (current certification) to a minimum of 6 years (to extend to 2015); testing of recycled ISS Water Processor Assembly (WPA) water for use in the EMU cooling system in lieu of water resupplied by International Partner (IP) vehicles; development of techniques to remove & replace critical components in the PLSS on-orbit (not routine); extension of on-orbit certification of EVA tools; and development of an EVA hardware logistical plan to support the ISS without the Space Shuttle. Assumptions for the EVA 2010 Project included no more than 8 EVAs per year for ISS EVA operations in the Post-Shuttle environment and limited availability of cargo upmass on IP launch vehicles. From 2010 forward, EVA operations on-board the ISS without the Space Shuttle will be a paradigm shift in safely operating EVA hardware on orbit and the EVA 2010 effort was initiated to accommodate this significant change in EVA evolutionary history. 1
Development of a Compact Efficient Cooling Pump for Space Suit Life Support Systems
NASA Technical Reports Server (NTRS)
vanBoeyen, Roger W.; Reeh, Jonathan A.; Trevino, Luis
2008-01-01
With the increasing demands placed on extravehicular activity (EVA) for the International Space Station (ISS) assembly and maintenance, along with planned lunar and Martian missions, the need for increased human productivity and capability becomes ever more critical. This is most readily achieved by reduction in space suit weight and volume, and increased hardware reliability, durability, and operating lifetime. Considerable progress has been made with each successive generation of space suit design; from the Apollo A7L suit, to the current Shuttle Extravehicular Mobile Unit (EMU) suit, and the next generation Constellation Space Suit Element (CSSE). However, one area of space suit design which has continued to lag is the fluid pump used to drive the water cooling loop of the Primary Life Support System (PLSS). The two main types of fluid pumps typically used in space applications are rotodynamic pumps (pumping is achieved through a rotary vaned impeller) and displacement pumps (which includes rotary and diaphragm pumps). The rotating and moving parts found in the pumps and electric motor add significantly to the susceptibility to wear and friction, thermal mismatch, and complexity of the pumps. Electric motor-driven pumps capable of achieving high operational reliability are necessarily large, heavy, and energy inefficient. This report describes a development effort conducted for NASA by Lynntech, Inc., who recently demonstrated the feasibility of an electrochemically-driven fluid cooling pump. With no electric motor and minimal lightweight components, an electrochemically-driven pump is expected to be significantly smaller, lighter and achieve a longer life time than conventional rotodynamic and displacement pumps. By employing sulfonated polystyrene-based proton exchange membranes, rather than conventional Nafion membranes, a significant reduction in the actuator power consumption was demonstrated. It was also demonstrated that these membranes possess the necessary mechanical strength, durability, and temperature range for long life space operation. The preliminary design for a Phase II prototype pump compares very favorably to the fluid cooling pumps currently used in space suit portable life support systems (PLSS). Characteristics of the electrochemically-driven pump are described and the benefits of the technology as a replacement for electric motor pumps in mechanically pumped single-phase fluid loops (MPFLs) is discussed.
Optical Breath Gas Sensor for Extravehicular Activity Application
NASA Technical Reports Server (NTRS)
Wood, William R.; Casias, Miguel E.; Vakhtin, Andrei B.; Pilgrim, Jeffrey S.; Chullen, Cinda; Falconi, Eric A.; McMillin, Summer
2013-01-01
The function of the infrared gas transducer used during extravehicular activity in the current space suit is to measure and report the concentration of carbon dioxide (CO2) in the ventilation loop. The next generation portable life support system (PLSS) requires next generation CO2 sensing technology with performance beyond that presently in use on the Space Shuttle/International Space Station extravehicular mobility unit (EMU). Accommodation within space suits demands that optical sensors meet stringent size, weight, and power requirements. A laser diode spectrometer based on wavelength modulation spectroscopy is being developed for this purpose by Vista Photonics, Inc. Two prototype devices were delivered to NASA Johnson Space Center (JSC) in September 2011. The sensors incorporate a laser diode-based CO2 channel that also includes an incidental water vapor (humidity) measurement and a separate oxygen channel using a vertical cavity surface emitting laser. Both prototypes are controlled digitally with a field-programmable gate array/microcontroller architecture. The present development extends and upgrades the earlier hardware to the Advanced PLSS 2.0 test article being constructed and tested at JSC. Various improvements to the electronics and gas sampling are being advanced by this project. The combination of low power electronics with the performance of a long wavelength laser spectrometer enables multi-gas sensors with significantly increased performance over that presently offered in the EMU.
Lithium Iron Phosphate Cell Performance Evaluations for Lunar Extravehicular Activities
NASA Technical Reports Server (NTRS)
Reid, Concha
2007-01-01
Lithium-ion battery cells are being evaluated for their ability to provide primary power and energy storage for NASA s future Exploration missions. These missions include the Orion Crew Exploration Vehicle, the Ares Crew Launch Vehicle Upper Stage, Extravehicular Activities (EVA, the advanced space suit), the Lunar Surface Ascent Module (LSAM), and the Lunar Precursor and Robotic Program (LPRP), among others. Each of these missions will have different battery requirements. Some missions may require high specific energy and high energy density, while others may require high specific power, wide operating temperature ranges, or a combination of several of these attributes. EVA is one type of mission that presents particular challenges for today s existing power sources. The Portable Life Support System (PLSS) for the advanced Lunar surface suit will be carried on an astronaut s back during eight hour long sorties, requiring a lightweight power source. Lunar sorties are also expected to occur during varying environmental conditions, requiring a power source that can operate over a wide range of temperatures. Concepts for Lunar EVAs include a primary power source for the PLSS that can recharge rapidly. A power source that can charge quickly could enable a lighter weight system that can be recharged while an astronaut is taking a short break. Preliminary results of Al23 Ml 26650 lithium iron phosphate cell performance evaluations for an advanced Lunar surface space suit application are discussed in this paper. These cells exhibit excellent recharge rate capability, however, their specific energy and energy density is lower than typical lithium-ion cell chemistries. The cells were evaluated for their ability to provide primary power in a lightweight battery system while operating at multiple temperatures.
NASA Technical Reports Server (NTRS)
Swickrath, Michael J.; Watts, Carly; Anderson, Molly; McMillin, Summer; Broerman, Craig; Colunga, Aaron; Vogel, Matthew
2012-01-01
Controlling carbon dioxide (CO2) and water (H2O) vapor concentrations in a space suit is critical to ensuring an astronauts safety, comfort, and capability to perform extra-vehicular activity (EVA) tasks. Historically, this has been accomplished using lithium hydroxide (LiOH) and metal oxide (MetOx) canisters. Lithium hydroxide is a consumable material that requires priming with water before it becomes effective at removing carbon dioxide. MetOx is regenerable through a power-intensive thermal cycle but is significantly heavier on a volume basis than LiOH. As an alternative, amine-based vacuum swing beds are under aggressive development for EVA applications. The vacuum swing units control atmospheric concentrations of both CO2 and H2O through fully-regenerative process. The current concept, referred to as the rapid cycle amine (RCA), has resulted in numerous laboratory prototypes. Performance of these prototypes have been assessed experimentally and documented in previous reports. To support developmental e orts, a first principles model has also been established for the vacuum swing sorption technology. For the first time in several decades, a major re-design of Portable Life Support System (PLSS) for the extra-vehicular mobility unit (EMU) is underway. NASA at Johnson Space Center built and tested an integrated PLSS test bed of all subsystems under a variety of simulated EVA conditions of which the RCA prototype played a significant role. The efforts documented herein summarize RCA test performance and simulation results for single and variable metabolic rate experiments in an integrated context. In addition, a variety of off-nominal tests were performed to assess the capability of the RCA to function under challenging circumstances. Tests included high water production experiments, degraded vacuum regeneration, and deliberate valve/power failure and recovery.
Optical Breath Gas Extravehicular Activity Sensor for the Advanced Portable Life Support System
NASA Technical Reports Server (NTRS)
Wood, William R.; Casias, Miguel E.; Pilgrim, Jeffrey S.; Chullen, Cinda; Campbell, Colin
2016-01-01
The function of the infrared gas transducer used during extravehicular activity (EVA) in the current space suit is to measure and report the concentration of carbon dioxide (CO2) in the ventilation loop. The next generation portable life support system (PLSS) requires highly accurate CO2 sensing technology with performance beyond that presently in use on the International Space Station extravehicular mobility unit (EMU). Further, that accuracy needs to be provided over the full operating pressure range of the suit (3 to 25 psia). Accommodation within space suits demands that optical sensors meet stringent size, weight, and power requirements. A laser diode (LD) sensor based on infrared absorption spectroscopy is being developed for this purpose by Vista Photonics, Inc. Version 1.0 prototype devices were delivered to NASA Johnson Space Center (JSC) in September 2011. The prototypes were upgraded with more sophisticated communications and faster response times to version 2.0 and delivered to JSC in July 2012. The sensors incorporate a laser diode based CO2 channel that also includes an incidental water vapor (humidity) measurement. The prototypes are controlled digitally with an field-programmable gate array microcontroller architecture. Based on the results of the iterative instrument development, further prototype development and testing of instruments were performed leveraging the lessons learned where feasible. The present development extends and upgrades the earlier hardware for the advanced PLSS 2.5 prototypes for testing at JSC. The prototypes provide significantly enhanced accuracy for water vapor measurement and eliminate wavelength drift affecting the earlier versions. Various improvements to the electronics and gas sampling are currently being advanced including the companion development of engineering development units that will ultimately be capable of radiation tolerance. The combination of low power electronics with the performance of a long wavelength laser spectrometer enables multi-gas sensors with significantly increased performance over that presently offered in the EMU.
Custom Unit Pump Design and Testing for the EVA PLSS
NASA Technical Reports Server (NTRS)
Schuller, Michael; Kurwitz, Cable; Goldman, Jeff; Morris, Kim; Trevino, Luis
2009-01-01
This paper describes the effort by the Texas Engineering Experiment Station (TEES) and Honeywell for NASA to design and test a pre-flight prototype pump for use in the Extra-vehicular activity (EVA) portable life support subsystem (PLSS). Major design decisions were driven by the need to reduce the pump s mass, power, and volume compared to the existing PLSS pump. In addition, the pump must accommodate a much wider range of abnormal conditions than the existing pump, including vapor/gas bubbles and increased pressure drop when employed to cool two suits simultaneously. A positive displacement, external gear type pump was selected because it offers the most compact and highest efficiency solution over the required range of flow rates and pressure drops. An additional benefit of selecting a gear pump design is that it is self priming and capable of ingesting non-condensable gas without becoming air locked. The chosen pump design consists of a 28 V DC, brushless, sealless, permanent magnet motor driven, external gear pump that utilizes a Honeywell development that eliminates the need for magnetic coupling. Although the planned flight unit will use a sensorless motor with custom designed controller, the pre-flight prototype to be provided for this project incorporates Hall effect sensors, allowing an interface with a readily available commercial motor controller. This design approach reduced the cost of this project and gives NASA more flexibility in future PLSS laboratory testing. The pump design was based on existing Honeywell designs, but incorporated features specifically for the PLSS application, including all of the key features of the flight pump. Testing at TEES verified that the pump meets the design requirements for range of flow rates, pressure drop, power consumption, working fluid temperature, operating time, gas ingestion , and restart capability under both ambient and vacuum conditions. The pump operated between 40 and 240 lbm/hr flowrate, 35 to 100 F pump temperature range, and 5 to 10 psid pressure rise. Power consumption of the pump controller at the nominal operating point in both ambient and vacuum conditions was 9.5 W, which was less than the 12 W predicted. Gas ingestion capabilities were tested by injecting 100 cc of air into the fluid line; the pump operated normally throughout this test. The test results contained a number of anomalies, specifically power increases and a few flow stoppages, that prompted TEES and Honeywell to disassemble and inspect the pump. Inspection indicated contamination in the pump and fit issues may have played roles in the observed anomalies. Testing following reassembly indicated that the performance of the pump 1) matched both the predicted performance values, 2) the performance values measured prior to disassembly, and 3) was free of the anomalies noted in the pre-disassembly testing.
Adsorption of Ammonia on Regenerable Carbon Sorbents
NASA Technical Reports Server (NTRS)
Wójtowicz, Marek A.; Cosgrove, Jesph E.; Serio, Michael A..; Wilburn, Monique
2015-01-01
Results are presented on the development of reversible sorbents for the combined carbon dioxide, moisture, and trace-contaminant (TC) removal for use in Extravehicular Activities (EVAs), and more specifically in the Primary Life Support System (PLSS). The currently available life support systems use separate units for carbon dioxide, trace contaminants, and moisture control, and the long-term objective is to replace the above three modules with a single one. Data on sorption and desorption of ammonia, which is a major TC of concern, are presented in this paper. The current TC-control technology involves the use of a packed bed of acid-impregnated granular charcoal, which is non-regenerable, and the carbon-based sorbent under development in this project can be regenerated by exposure to vacuum at room temperature. In this study, several carbon sorbents were fabricated and tested for ammonia sorption. Ammonia-sorption capacity was related to carbon pore structure characteristics, and the temperature of oxidative carbon-surface treatment was optimized for enhanced ammonia-sorption performance.
Adsorption of Carbon Dioxide, Ammonia, Formaldehyde, and Water Vapor on Regenerable Carbon Sorbents
NASA Technical Reports Server (NTRS)
Wojtowicz, Marek A.; Cosgrove, Joseph E.; Serio, Michael A.; Wilburn, Monique
2015-01-01
Results are presented on the development of reversible sorbents for the combined carbon dioxide, moisture, and trace-contaminant (TC) removal for use in Extravehicular Activities (EVAs), and more specifically in the Primary Life Support System (PLSS). The currently available life support systems use separate units for carbon dioxide, trace contaminants, and moisture control, and the long-term objective is to replace the above three modules with a single one. Furthermore, the current TC-control technology involves the use of a packed bed of acid-impregnated granular charcoal, which is nonregenerable, and the carbon-based sorbent under development in this project can be regenerated by exposure to vacuum at room temperature. In this study, several carbon sorbents were fabricated and tested for simultaneous carbon dioxide, ammonia, formaldehyde, and water sorption. Multiple adsorption/vacuum-regeneration cycles were demonstrated at room temperature, and also the enhancement of formaldehyde sorption by the presence of ammonia in the gas mixture.
Optical Breath Gas Sensor for Extravehicular Activity Application
NASA Technical Reports Server (NTRS)
Wood, William R.; Casias, Miguel E.; Vakhtin, Andrei B.; Pilgrim, Jeffrey S>
2012-01-01
The function of the infrared gas transducer used during extravehicular activity (EVA) in the current space suit is to measure and report the concentration of carbon dioxide (CO2) in the ventilation loop. The next generation Portable Life Support System (PLSS) requires next generation CO2 sensing technology with performance beyond that presently in use on the Shuttle/International Space Station extravehicular mobility unit (EMU). Accommodation within space suits demands that optical sensors meet stringent size, weight, and power requirements. A laser diode (LD) spectrometer based on wavelength modulation spectroscopy (WMS) is being developed for this purpose by Vista Photonics, Inc. Two prototype devices were delivered to NASA Johnson Space Center (JSC) in September 2011. The sensors incorporate a laser diode based CO2 channel that also includes an incidental water vapor (humidity) measurement and a separate oxygen (O2) channel using a vertical cavity surface emitting laser (VCSEL). Both prototypes are controlled digitally with a field-programmable gate array (FPGA)/microcontroller architecture. Based on the results of the initial instrument development, further prototype development and testing of instruments leveraging the lessons learned were desired. The present development extends and upgrades the earlier hardware to the Advanced PLSS 2.0 test article being constructed and tested at JSC. Various improvements to the electronics and gas sampling are being advanced by this project. The combination of low power electronics with the performance of a long wavelength laser spectrometer enables multi-gas sensors with significantly increased performance over that presently offered in the EMU. .
Systems Maturity Assessment of the Lithium Ion Battery for Extravehicular Mobility Unit Project
NASA Technical Reports Server (NTRS)
Russell, Samuel P.
2011-01-01
The Long Life (Lithium Ion) Battery (LLB/LIB) is designed to replace the current Extravehicular Mobility Unit (EMU) Silver/Zinc (Ag/Zn) Increased Capacity Battery (ICB), which is used to provide power to the Primary Life Support Subsystem (PLSS) during Extravehicular Activities (EVAs). The LLB (a battery based on commercial lithium ion cell technology) is designed to have the same electrical and mechanical interfaces as the current ICB. The EMU LIB Charger is designed to charge, discharge, and condition the LLB either in a charger-strapped configuration or in an EMU-mounted configuration. This paper will retroactively apply the principles of Systems Maturity Assessment to the LLB project through use of the Integration Readiness Level and Earned Readiness Management. The viability of this methodology will be considered for application to new and existing technology development projects.
Feasibility of Suited 10-km Ambulation "Walkback" on the Moon
NASA Technical Reports Server (NTRS)
Norcross, Jason; Lee, Lesley; DeWitt, John K.; Klein, Jill; Wessell, James; Gernhardt, Michael L.
2008-01-01
This viewgraph presentation reviews a study that examined the feasibility of having astronauts walk about 10 kilometers to the base in the event of a breakdown of the lunar rover. This was done in part to examine the possibility of having a single rover on the lunar exploration missions. Other objectives of the study are to: (1) Understand specific biomedical and human performance limitations of the suit compared to matched shirt-sleeve controls; (2) Collect metabolic and ground-reaction force data to develop an EVA simulator for use on future prebr eathe protocol verification tests (3) Provide data to estimate consum ables usage for input to suit and portable life support system (PLSS) design (4) Assess the cardiovascular and resistance exercise associa ted with partialgravity EVA for planning appropriate exploration exer cise countermeasures
Wilde, R C; McBarron, J W; Faszcza, J J
1997-06-01
To meet the significant increase in EVA demand to support assembly and operations of the International Space Station (ISS), NASA and industry have improved the current Shuttle Extravehicular Mobility Unit (EMU), or "space suit", configuration to meet the unique and specific requirements of an orbital-based system. The current Shuttle EMU was designed to be maintained and serviced on the ground between frequent Shuttle flights. ISS will require the EMUs to meet increased EVAs out of the Shuttle Orbiter and to remain on orbit for up to 180 days without need for regular return to Earth for scheduled maintenance or refurbishment. Ongoing Shuttle EMU improvements have increased reliability, operational life and performance while minimizing ground and on-orbit maintenance cost and expendable inventory. Modifications to both the anthropomorphic mobility elements of the Space Suit Assembly (SSA) as well as to the Primary Life Support System (PLSS) are identified and discussed. This paper also addresses the status of on-going Shuttle EMU improvements and summarizes the approach for increasing interoperability of the U.S. and Russian space suits to be utilized aboard the ISS.
JPRS Report, Soviet Union, Foreign Military Review, No. 2, February 1988
1988-08-05
polyurethane foam . The engine and transmission compartment is located in the front part of the hull. The eight-cylinder engine is connected with a...more effective land- based systems including MLRS and in the future the ATACMS missiles (it is planned to launch them from existing and future MLRS... ATACMS missiles, Skeet & TGSM precision-guidance munitions SADARM and TGSM precis ion-guidance munitions PLSS recon- attack system, MLRS, F-4G
ERIC Educational Resources Information Center
Mitra, Sugata; Dangwal, Ritu
2017-01-01
This article describes a study under the Reaching the Unreached component of the Chiphen Rigpel project between the governments of Bhutan and India. This initiative is an attempt to provide computer literacy to children of Bhutan through setting up "hole in the wall" (HiWEL) Playground Learning Station(s) (PLSs). The study described here…
NASA Technical Reports Server (NTRS)
Cohen, Marc M.; Bussolari, Steven
1987-01-01
Four concepts for on-orbit spacesuit donning, doffing, servicing, check-out, egress and ingress are presented. These are: the Space Transportation System (STS) Type (shuttle system enlarged), the Transit Airlock (Shuttle Airlock with suit servicing removed from the pump-down chamber), the Suitport (a rear-entry suit mates to a port in the airlock wall), and the Crewlock (a small, individual, conformal airlock). Each of these four concepts is compared through a series of seven steps representing a typical Extra Vehicular Activity (EVA) mission: (1) Predonning suit preparation; (2) Portable Life Support System (PLSS) preparation; (3) Suit Donning and Final Check; (4) Egress/Ingress; (5) Mid-EVA rest period; (6) Post-EVA Securing; (7) Non-Routine Maintenance. The different characteristics of each concept are articulated through this step-by-step approach. Recommendations concerning an approach for further evaluations of airlock geometry, anthropometrics, ergonomics, and functional efficiency are made. The key recommendation is that before any particular airlock can be designed, the full range of spacesuit servicing functions must be considered, including timelines that are most supportive of EVA human productivity.
Extravehicular Activity (EVA) Power, Avionics, and Software (PAS) 101
NASA Technical Reports Server (NTRS)
Irimies, David
2011-01-01
EVA systems consist of a spacesuit or garment, a PLSS, a PAS system, and spacesuit interface hardware. The PAS system is responsible for providing power for the suit, communication of several types of data between the suit and other mission assets, avionics hardware to perform numerous data display and processing functions, and information systems that provide crewmembers data to perform their tasks with more autonomy and efficiency. Irimies discussed how technology development efforts have advanced the state-of-the-art in these areas and shared technology development challenges.
Investigating Liquid CO2 as a Coolant for a MTSA Heat Exchanger Design
NASA Technical Reports Server (NTRS)
Paul, Heather L.; Padilla, Sebastian; Powers, Aaron; Iacomini, Christie
2009-01-01
Metabolic heat regenerated Temperature Swing Adsorption (MTSA) technology is being developed for thermal and carbon dioxide (CO 2) control for a future Portable Life Support System (PLSS), as well as water recycling. CO 2 removal and rejection is accomplished by driving a sorbent through a temperature swing of approximately 210 K to 280 K . The sorbent is cooled to these sub-freezing temperatures by a Sublimating Heat Exchanger (SHX) with liquid coolant expanded to sublimation temperatures. Water is the baseline coolant available on the moon, and if used, provides a competitive solution to the current baseline PLSS schematic. Liquid CO2 (LCO2) is another non-cryogenic coolant readily available from Martian resources which can be produced and stored using relatively low power and minimal infrastructure. LCO 2 expands from high pressure liquid (5800 kPa) to Mars ambient (0.8 kPa) to produce a gas / solid mixture at temperatures as low as 156 K. Analysis and experimental work are presented to investigate factors that drive the design of a heat exchanger to effectively use this sink. Emphasis is given to enabling efficient use of the CO 2 cooling potential and mitigation of heat exchanger clogging due to solid formation. Minimizing mass and size as well as coolant delivery are also considered. The analysis and experimental work is specifically performed in an MTSA-like application to enable higher fidelity modeling for future optimization of a SHX design. In doing so, the work also demonstrates principles and concepts so that the design can be further optimized later in integrated applications (including Lunar application where water might be a choice of coolant).
Speckle tracking evaluation of right ventricular functions in children with sickle cell disease.
Tolba, Osama Abd Rab Elrasol; El-Shanshory, Mohamed Ramadan; El-Gamasy, Mohamed Abd Elaziz; El-Shehaby, Walid Ahmed
2017-01-01
Cardiac dysfunction is a risk factor for death in patients with sickle cell disease (SCD). Aim of the work is to evaluate the right ventricular systolic and diastolic functions by tissue Doppler and speckling tracking imaging in children with SCD. Thirty children with SCD and thirty controls were subjected to clinical, laboratory evaluations, and echocardiographic study using GE Vivid 7 (GE Medical System, Horten, Norway with a 3.5-MHz multifrequency transducer) including; Two-dimensional and tissue Doppler echocardiographic study (lateral tricuspid valve annulus peak E' velocity, lateral tricuspid valve annulus peak A' velocity, E'/A' ratio, isovolumetric relaxation time, lateral tricuspid valve annulus S' and septal S' waves and peak longitudinal systolic strain [PLSS] and time to PLSS) were done in six right ventricular segments. There was a significant decrease in right ventricular systolic and diastolic function in patients group when compared to controls. Children with SCD have impaired right ventricular systolic and diastolic functions when compared to healthy children with early evaluation of the systolic dysfunction by speckle tracking imaging technique.
NASA Technical Reports Server (NTRS)
Abercromby, Andrew F. J.; Thaxton, Sherry S.; Onady, Elizabeth A.; Rajulu, Sudhakar L.
2006-01-01
The Science Crew Operations and Utility Testbed (SCOUT) project is focused on the development of a rover vehicle that can be utilized by two crewmembers during extra vehicular activities (EVAs) on the moon and Mars. The current SCOUT vehicle can transport two suited astronauts riding in open cockpit seats. Among the aspects currently being developed is the cockpit design and layout. This process includes the identification of possible locations for a socket to which a crewmember could connect a portable life support system (PLSS) for recharging power, air, and cooling while seated in the vehicle. The spaces in which controls and connectors may be situated within the vehicle are constrained by the reach and vision capabilities of the suited crewmembers. Accordingly, quantification of the volumes within which suited crewmembers can both see and reach relative to the vehicle represents important information during the design process.
Performance and Life Tests of a Regenerative Blower for EVA Suit Ventilation
NASA Technical Reports Server (NTRS)
Izenson, Mike; Chen, Weibo; Paul, Heather L.; Jennings, Mallory A.
2011-01-01
Ventilation fans for future space suits must meet demanding performance specifications, satisfy stringent safety requirements for operation in an oxygen atmosphere, and be able to increase output to operate in buddy mode. A regenerative blower is an attractive choice due to its ability to meet these requirements at low operating speed. This paper describes progress in the development and testing of a regenerative blower designed to meet requirements for ventilation subsystems in a future space suit Portable Life Support Systems (PLSS). The blower assembly includes a custom-designed motor that has significantly improved in efficiency during this development effort. The blower was tested at both nominal and buddy mode operating points and head/flow performance and power consumption were measured. The blower was operated for over 1000 hours to demonstrate safe operation in an oxygen test loop at prototypical pressures. In addition, the blower demonstrated operation with the introduction of simulated lunar dust.
Next Generation Life Support Project Status
NASA Technical Reports Server (NTRS)
Barta, Daniel J.; Chullen, Cinda; Vega, Leticia; Cox, Marlon R.; Aitchison, Lindsay T.; Lange, Kevin E.; Pensinger, Stuart J.; Meyer, Caitlin E.; Flynn, Michael; Jackson, W. Andrew;
2014-01-01
Next Generation Life Support (NGLS) is one of over twenty technology development projects sponsored by NASA's Game Changing Development Program. The NGLS Project develops selected life support technologies needed for humans to live and work productively in space, with focus on technologies for future use in spacecraft cabin and space suit applications. Over the last three years, NGLS had five main project elements: Variable Oxygen Regulator (VOR), Rapid Cycle Amine (RCA) swing bed, High Performance (HP) Extravehicular Activity (EVA) Glove, Alternative Water Processor (AWP) and Series-Bosch Carbon Dioxide Reduction. The RCA swing bed, VOR and HP EVA Glove tasks are directed at key technology needs for the Portable Life Support System (PLSS) and pressure garment for an Advanced Extravehicular Mobility Unit (EMU). Focus is on prototyping and integrated testing in cooperation with the Advanced Exploration Systems (AES) Advanced EVA Project. The HP EVA Glove Element, new this fiscal year, includes the generation of requirements and standards to guide development and evaluation of new glove designs. The AWP and Bosch efforts focus on regenerative technologies to further close spacecraft cabin atmosphere revitalization and water recovery loops and to meet technology maturation milestones defined in NASA's Space Technology Roadmaps. These activities are aimed at increasing affordability, reliability, and vehicle self-sufficiency while decreasing mass and mission cost, supporting a capability-driven architecture for extending human presence beyond low-Earth orbit, along a human path toward Mars. This paper provides a status of current technology development activities with a brief overview of future plans.
Arizona Geology Trip - February 25-28, 2008
NASA Technical Reports Server (NTRS)
Thomas, Gretchen A.; Ross, Amy J.
2008-01-01
A variety of hardware developers, crew, mission planners, and headquarters personnel traveled to Gila Bend, Arizona, in February 2008 for a CxP Lunar Surface Systems Team geology experience. Participating in this field trip were the CxP Space Suit System (EC5) leads: Thomas (PLSS) and Ross (PGS), who presented the activities and findings learned from being in the field during this KC. As for the design of a new spacesuit system, this allowed the engineers to understand the demands this type of activity will have on NASA's hardware, systems, and planning efforts. The engineers also experienced the methods and tools required for lunar surface activity.
NASA Technical Reports Server (NTRS)
Barta, Daniel J.
2012-01-01
Next Generation Life Support (NGLS) is one of several technology development projects sponsored by the National Aeronautics and Space Administration s Game Changing Development Program. NGLS is developing life support technologies (including water recovery, and space suit life support technologies) needed for humans to live and work productively in space. NGLS has three project tasks: Variable Oxygen Regulator (VOR), Rapid Cycle Amine (RCA) swing bed, and Alternative Water Processing. The selected technologies within each of these areas are focused on increasing affordability, reliability, and vehicle self sufficiency while decreasing mass and enabling long duration exploration. The RCA and VOR tasks are directed at key technology needs for the Portable Life Support System (PLSS) for an Exploration Extravehicular Mobility Unit (EMU), with focus on prototyping and integrated testing. The focus of the Rapid Cycle Amine (RCA) swing-bed ventilation task is to provide integrated carbon dioxide removal and humidity control that can be regenerated in real time during an EVA. The Variable Oxygen Regulator technology will significantly increase the number of pressure settings available to the space suit. Current spacesuit pressure regulators are limited to only two settings while the adjustability of the advanced regulator will be nearly continuous. The Alternative Water Processor efforts will result in the development of a system capable of recycling wastewater from sources expected in future exploration missions, including hygiene and laundry water, based on natural biological processes and membrane-based post treatment. The technologies will support a capability-driven architecture for extending human presence beyond low Earth orbit to potential destinations such as the Moon, near Earth asteroids and Mars.
NASA Technical Reports Server (NTRS)
Alonso, Jesus Delgado; Phillips, Straun; Chullen, Cinda; Mendoza, Edgar
2014-01-01
Advanced space life support systems require lightweight, low-power, durable sensors for monitoring critical gas components. A luminescence-based optical flow-through cell to monitor carbon dioxide, oxygen, and humidity has been developed and was demonstrated using bench-top instrumentation under environmental conditions relevant to portable life support systems, including initially pure oxygen atmosphere, temperature range from 50 F to 150 F, and humidity from dry to 100% RH and under conditions of water condensation. This paper presents the most recent progress in the development of this sensor technology. Trace gas contaminants in a space suit, originating from hardware and material off-gassing and crew member metabolism, are from many chemical families. The result is a gas mix much more complex than the pure oxygen fed into the space suit, and this complexity may interfere with gas sensor readings. This paper presents an evaluation of optical sensor performance when exposed to the most significant trace gases reported to be found in space suits. A study of the calibration stability of the sensors is also presented. For that purpose, a profile of temperature, pressure, humidity, and gas composition for the duration of an EVA has been defined, and the performance of sensors operated repeatedly under those conditions has been studied. Finally, this paper presents the first compact readout unit for these optical sensors, designed for the volume, power, and weight restrictions of a PLSS.
NASA Technical Reports Server (NTRS)
Wojtowicz, Marek A.; Cosgrove, Joseph E.; Serio, Michael A.; Manthina, Venkata; Singh, Prabhakar; Chullen, Cinda
2014-01-01
Results are presented on the development of reversible sorbents for the combined carbon dioxide and trace-contaminant (TC) removal for use in Extravehicular Activities (EVAs). Since ammonia is the most important TC to be captured, data on TC sorption presented in this paper are limited to ammonia, with results relevant to other TCs to be reported at a later time. The currently available life support systems use separate units for carbon dioxide, trace contaminants, and moisture control, and the long-term objective is to replace the above three modules with a single one. Furthermore, the current TC-control technology involves the use of a packed bed of acid-impregnated granular charcoal, which is non-regenerable, and the carbon-based sorbent under development in this project can be regenerated by exposure to vacuum at room temperature. The objective of this study was to demonstrate the feasibility of using carbon sorbents for the reversible, concurrent sorption of carbon dioxide and ammonia. Several carbon sorbents were fabricated and tested, and multiple adsorption/vacuum-regeneration cycles were demonstrated at room temperature, and also a carbon surface conditioning technique that enhances the combined carbon dioxide and ammonia sorption without impairing sorbent regeneration.
Optical Breath Gas Extravehicular Activity Sensor for the Advanced Portable Life Support System
NASA Technical Reports Server (NTRS)
Wood, William R.; Casias, Miguel E.; Pilgrim, Jeffrey S.; Chullen, Cinda; Campbell, Colin
2016-01-01
The infrared gas transducer used during extravehicular activity (EVA) in the extravehicular mobility unit (EMU) measures and reports the concentration of carbon dioxide (CO2) in the ventilation loop. It is nearing its end of life and there are a limited number remaining. Meanwhile, the next generation advanced portable life support system (PLSS) now being developed requires CO2 sensing technology with performance beyond that presently in use. A laser diode (LD) spectrometer based on wavelength modulation spectroscopy (WMS) is being developed to address both applications by Vista Photonics, Inc. Accommodation within space suits demands that optical sensors meet stringent size, weight, and power requirements. Version 1.0 devices were delivered to NASA Johnson Space Center (JSC) in 2011. The sensors incorporate a laser diode based CO2 channel that also includes an incidental water vapor (humidity) measurement. The prototypes are controlled digitally with a field-programmable gate array (FPGA)/microcontroller architecture. Version 2.0 devices with improved electronics and significantly reduced wetted volumes were delivered to JSC in 2012. A version 2.5 upgrade recently implemented wavelength stabilized operation, better humidity measurement, and much faster data analysis/reporting. A wholly reconfigured version 3.0 will maintain the demonstrated performance of earlier versions while being backwards compatible with the EMU and offering a radiation tolerant architecture.
Composite materials for the extravehicular mobility unit
NASA Technical Reports Server (NTRS)
Barrera, Enrique V.; Tello, Hector M.
1992-01-01
The extravehicular mobility unit (EMU), commonly known as the astronaut space suit assembly (SSA) and primary life support system (PLSS), has evolved through the years to incorporate new and innovative materials in order to meet the demands of the space environment. The space shuttle program which is seeing an increasing level of extravehicular activity (EVA), also called space walks, along with interest in an EMU for Lunar-Mars missions means even more demanding conditions are being placed on the suit and PLSS. The project for this NASA-ASEE Summer Program was to investigate new materials for these applications. The focus was to emphasize the use of composite materials for every component of the EMU to enhance the properties while reducing the total weight of the EMU. To accomplish this, development of new materials called fullerene reinforced materials (FRM's) was initiated. Fullerenes are carbon molecules which when added to a material significantly reduce the weight of that material. The Faculty Fellow worked directly on the development of the fullerene reinforced materials. A chamber for fullerene production was designed and assembled and first generation samples were processed. He also supervised with the JSC Colleague, a study of composite materials for the EMU conducted by the student participant in the NASA-ASEE Program, Hector Tello a Rice University graduate student, and by a NASA Aerospace Technologist (Materials Engineer) Evelyne Orndoff, in the Systems Engineering Analysis Office (EC7), also a Rice University graduate student. Hector Tello conducted a study on beryllium and Be alloys and initiated a study of carbon and glass reinforced composites for space applications. Evelyne Orndoff compiled an inventory of the materials on the SSA. Ms. Orndoff also reviewed SSA material requirements and cited aspects of the SSA design where composite materials might be further considered. Hector Tello spent part of his time investigating the solar radiation sensitivity of anodic coatings. This project was directed toward the effects of ultra-violet radiation on high emissivity anodic coatings. The work of both Evelyne Orndoff and Hector Tello is of interest to the Engineering Directorate at NASA/JSC and is also directed toward their research as Rice University graduate students.
Demonstration of Metabolic Heat Regenerated Temperature Swing Adsorption Technology
NASA Technical Reports Server (NTRS)
Paul, Heather; Iacomini, Christine; Powers, Aaron; Dunham, Jonah; Straub-Lopez, Katie; Anerson, Grant; MacCallum, Taber
2007-01-01
Patent-pending Metabolic heat regenerated Temperature Swing Adsorption (MTSA) technology is currently being investigated for removal and rejection of CO2 and heat from a Portable Life Support System (PLSS) to a Martian environment. The metabolically-produced CO2 present in the vent loop gas is collected using a CO2 selective adsorbent that has been cooled via a heat exchanger to near CO2 sublimation temperatures (approx.195K) with liquid CO2 obtained from Martian resources. Once the adsorbent is fully loaded, fresh warm, moist vent loop (approx.300K) is used to heat the adsorbent via another heat exchanger. The adsorbent will then reject the collected CO2 to the Martian ambient. Two beds are used to achieve continuous CO2 removal by cycling between the cold and warm conditions for adsorbent loading and regeneration, respectively. Small experiments have already been completed to show that an adsorbent can be cycled between these PLSS operating conditions to provide adequate conditions for CO2 removal from a simulated vent loop. One of the remaining technical challenges is extracting enough heat from the vent loop to warm the adsorbent in an appreciable time frame to meet the required adsorb/desorb cycle. The other key technical aspect of the technology is employing liquid CO2 to achieve the appropriate cooling. A technology demonstrator has been designed, built and tested to investigate the feasibility of 1) warming the adsorbent using the moist vent loop, 2) cooling the adsorbent using liquid CO2, and 3) using these two methods in conjunction to successfully remove CO2 from a vent loop and reject it to Mars ambient. Both analytical and numerical methods were used to perform design calculations and trades. The demonstrator was built and tested. The design analysis and testing results are presented along with recommendations for future development required to increase the maturity of the technology.
The properties of and analytical methods for detection of LiOH and Li2CO3
NASA Technical Reports Server (NTRS)
Selvaduray, Guna
1991-01-01
Lithium hydroxide (LiOH) is used as a CO2 absorbent in the Shuttle Extravehicular Mobility Unit (EMU) Portable Life Support System (PLSS). The first objective was to survey parameters that may be used to indicate conversion of LiOH to Li2CO3, and compile a list of all possible properties, including physical, chemical, structural, and electrical, that may serve to indicate the occurrence of reaction. These properties were compiled for the reactant (LiOH), the intermediate monohydrate compound (LiOH.H2O), and the final product (Li2CO3). The second objective was to survey measurement and analytical techniques which may be used in conjunction with each of the properties identified above, to determine the extent of conversion of LiOH to Li2CO3. Both real-time and post-run techniques were of interest. The techniques were also evaluated in terms of complexity, technology readiness, materials/equipment availability, and cost, where possible.
Investigation of Condensing Ice Heat Exchangers for MTSA Technology Development
NASA Technical Reports Server (NTRS)
Padilla, Sebastian; Powers, Aaron; Ball, Tyler; Lacomini, Christie; Paul, Heather L.
2009-01-01
Metabolic heat regenerated Temperature Swing Adsorption (MTSA) technology is being developed for thermal, carbon dioxide (CO2) and humidity control for a Portable Life Support Subsystem (PLSS). Metabolically-produced CO2 present in the ventilation gas of a PLSS is collected using a CO2-selective adsorbent via temperature swing adsorption. The temperature swing is initiated through cooling to well below metabolic temperatures. Cooling is achieved with a sublimation heat exchanger using water or liquid carbon dioxide (L CO2) expanded below sublimation temperature when exposed to low pressure or vacuum. Subsequent super heated vapor, as well as additional coolant, is used to further cool the astronaut. The temperature swing on the adsorbent is then completed by warming the adsorbent with a separate condensing ice heat exchanger (CIHX) using metabolic heat from moist ventilation gas. The condensed humidity in the ventilation gas is recycled at the habitat. The water condensation from the ventilation gas represents a significant source of potential energy for the warming of the adsorbent bed as it represents as much as half of the energy potential in the moist ventilation gas. Designing a heat exchanger to efficiently transfer this energy to the adsorbent bed and allow the collection of the water is a challenge since the CIHX will operate in a temperature range from 210K to 280K. The ventilation gas moisture will first freeze and then thaw, sometimes existing in three phases simultaneously.
Creytens, David; Mentzel, Thomas; Ferdinande, Liesbeth; Lecoutere, Evelyne; van Gorp, Joost; Atanesyan, Lilit; de Groot, Karel; Savola, Suvi; Van Roy, Nadine; Van Dorpe, Jo; Flucke, Uta
2017-11-01
The classification of the until recently poorly explored group of atypical adipocytic neoplasms with spindle cell features, for which recently the term atypical spindle cell lipomatous tumor (ASLT) has been proposed, remains challenging. Recent studies have proposed ASLT as a unique entity with (in at least a significant subset of cases) a specific genetic background, namely deletions/losses of 13q14, including RB1 and its flanking genes RCBTB2, DLEU1, and ITM2B. Similar genetic aberrations have been reported in pleomorphic liposarcomas (PLSs). This prompted us to investigate a series of 21 low-grade adipocytic neoplasms with a pleomorphic lipoma-like appearance, but with atypical morphologic features (including atypical spindle cells, pleomorphic [multinucleated] cells, pleomorphic lipoblasts and poor circumscription), for which we propose the term "atypical" pleomorphic lipomatous tumor (APLT). Five cases of PLS were also included in this study. We used multiplex ligation-dependent probe amplification to evaluate genetic changes of 13q14. In addition, array-based comparative genomic hybridization was performed on 4 APLTs and all PLSs. Multiplex ligation-dependent probe amplification showed consistent loss of RB1 and its flanking gene RCBTB2 in all cases of APLT. This genetic alteration was also present in all PLSs, suggesting genetic overlap, in addition to morphologic overlap, with APLTs. However, array-based comparative genomic hybridization demonstrated more complex genetic alterations with more losses and gains in PLSs compared with APLTs. APLTs arose in the subcutis (67%) more frequently than in the deep (subfascial) soft tissues (33%). With a median follow-up of 42 months, recurrences were documented in 2 of 12 APLTs for which a long follow-up was available. Herein, we also demonstrate that APLTs share obvious overlapping morphologic, immunohistochemical, genetic and clinical characteristics with the recently defined ASLT, suggesting that they are related lesions that form a spectrum (atypical spindle cell/pleomorphic lipomatous tumor).
Leal, G N; Silva, K F; França, C M P; Lianza, A C; Andrade, J L; Campos, L M A; Bonfá, E; Silva, C A
2015-05-01
The objective of this article is to evaluate right ventricle strain imaging by two-dimensional speckle-tracking (2DST) in childhood-onset systemic lupus erythematosus (c-SLE). Thirty-five c-SLE patients with no signs or symptoms of heart failure and 33 healthy volunteers were evaluated by standard echocardiogram and 2DST. Conventional parameters included tricuspid annular plane systolic excursion (TAPSE), RV tissue-Doppler-derived Tei index and systolic pulmonary artery pressure. Global peak longitudinal systolic strain (PLSS) and strain rate (PLSSR) of RV were obtained by 2DST. Demographic/clinical features, SLEDAI-2K/SLICC/ACR-DI and treatment were also assessed. The median current age was similar in patients and controls (14.75 vs. 14.88 years, p = 0.62). RV PLSS was significantly reduced in c-SLE (-24.5 ± 5.09 vs. -27.62 ± 3.02%, p = 0.003). Similar findings were observed after excluding patients with pulmonary hypertension (-24.62 ± 4.87% vs. -27.62 ± 3.02%, p = 0.0041). RV PLSS was positively correlated with TAPSE (r = +0.49, p = 0.0027) and negatively correlated with Tei index (r = -0.34, p = 0.04) in c-SLE. RV PLSSR was not different comparing patients and controls (-0.65 s(-1 )± 0.47 vs. -1.87 ± 0.49 s(-1), p = 0.07). Further analysis of c-SLE patients revealed higher frequencies of neuropsychiatric manifestations (39% vs. 0%, p = 0.007) and antiphospholipid antibodies (55% vs. 18%, p = 0.035) in those with RV PLSS ≤ -23.7% vs >-23.7%. No differences were evidenced in demographic data, disease activity/damage or treatments (p > 0.05). The present study, using a new and more sensitive technique, revealed subclinical RV systolic dysfunction in c-SLE patients that may have future prognostic implications. The novel association of asymptomatic RV dysfunction with neuropsychiatric manifestations and antiphospholipid antibodies may suggest common physiopathological pathways. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
Cascade Storage and Delivery System for a Multi Mission Space Exploration Vehicle (MMSEV)
NASA Technical Reports Server (NTRS)
Yagoda, Evan; Swickrath, Michael; Stambaugh, Imelda
2012-01-01
NASA is developing a Multi Mission Space Exploration Vehicle (MMSEV) for missions beyond Low Earth Orbit (LEO). The MMSEV is a pressurized vehicle used to extend the human exploration envelope for Lunar, Near Earth Object (NEO), and Deep Space missions. The Johnson Space Center is developing the Environmental Control and Life Support System (ECLSS) for the MMSEV. The MMSEV s intended use is to support longer sortie lengths with multiple Extra Vehicular Activities (EVAs) on a higher magnitude than any previous vehicle. This paper presents an analysis of a high pressure oxygen cascade storage and delivery system that will accommodate the crew during long duration Intra Vehicular Activity (IVA) and capable of multiple high pressure oxygen fills to the Portable Life Support System (PLSS) worn by the crew during EVAs. A cascade is a high pressure gas cylinder system used for the refilling of smaller compressed gas cylinders. Each of the large cylinders are filled by a compressor, but the cascade system allows small cylinders to be filled without the need of a compressor. In addition, the cascade system is useful as a "reservoir" to accommodate low pressure needs. A regression model was developed to provide the mechanism to size the cascade systems subject to constraints such as number of crew, extravehicular activity duration and frequency, and ullage gas requirements under contingency scenarios. The sizing routine employed a numerical integration scheme to determine gas compressibility changes during depressurization and compressibility effects were captured using the Soave-Redlich-Kwong (SRK) equation of state. A multi-dimensional nonlinear optimization routine was used to find the minimum cascade tank system mass that meets the mission requirements. The sizing algorithms developed in this analysis provide a powerful framework to assess cascade filling, compressor, and hybrid systems to design long duration vehicle ECLSS architecture. 1
Advanced Supported Liquid Membranes for Carbon Dioxide Control in Cabin Applications
NASA Technical Reports Server (NTRS)
Wickham, David T.; Gleason, Kevin J.; Engel, Jeffrey R.; Chullen, Cinda
2016-01-01
The development of new, robust, life support systems is critical to NASA's continued progress in space exploration. One vital function is maintaining the carbon dioxide (CO2) concentration in the cabin at levels that do not impair the health or performance of the crew. The carbon dioxide removal assembly (CDRA) is the current CO2 control technology on-board the International Space Station (ISS). Although the CDRA has met the needs of the ISS to date, the repeated cycling of the molecular sieve sorbent causes it to break down into small particles that clog filters or generate dust in the cabin. This reduces reliability and increases maintenance requirements. Another approach that has potential advantages over the current system is a membrane that separates CO2 from air. In this approach, cabin air contacts one side of the membrane while other side of the membrane is maintained at low pressure to create a driving force for CO2 transport across the membrane. In this application, the primary power requirement is for the pump that creates the low pressure and then pumps the CO2 to the oxygen recovery system. For such a membrane to be practical, it must have high CO2 permeation rate and excellent selectivity for CO2 over air. Unfortunately, conventional gas separation membranes do not have adequate CO2 permeability and selectivity to meet the needs of this application. However, the required performance could be obtained with a supported liquid membrane (SLM), which consists of a microporous material filled with a liquid that selectively reacts with CO2 over air. In a recently completed Phase II SBIR project, Reaction Systems, Inc. fabricated an SLM that is very close to meeting permeability and selectivity objectives for use in the Portable Life Support System (PLSS). This paper describes work carried out to evaluate its potential for use in the cabin.
NASA Technical Reports Server (NTRS)
Counts, B.
1984-01-01
The following are test results from the performance sections of the 51-A V1103.03 conducted on October 31,1984. During this checkout, an astronaut commented that the O2 actuator on SEMU 1052 (PLSS 1007) seemed stiffer to operate than the other two units.
Investigation of Condensing Ice Heat Exchangers for MTSA Technology Development
NASA Technical Reports Server (NTRS)
Padilla, Sebastian; Powers, Aaron; Ball, Tyler; Iacomini, Christie; Paul, Heather, L.
2008-01-01
Metabolic heat regenerated Temperature Swing Adsorption (MTSA) technology is being developed for thermal, carbon dioxide (CO2) and humidity control for a Portable Life Support Subsystem (PLSS). Metabolically-produced CO2 present in the ventilation gas of a PLSS is collected using a CO2selective adsorbent via temperature swing adsorption. The temperature swing is initiated through cooling to well below metabolic temperatures. Cooling is achieved with a sublimation heat exchanger using water or liquid carbon dioxide (LCO2) expanded below sublimation temperature when exposed to low pressure or vacuum. Subsequent super heated vapor, as well as additional coolant, is used to further cool the astronaut. The temperature swing on the adsorbent is then completed by warming the adsorbent with a separate condensing ice heat exchanger (CIHX) using metabolic heat from moist ventilation gas. The condensed humidity in the ventilation gas is recycled at the habitat. The water condensation from the ventilation gas is a significant heat transfer mechanism for the warming of the adsorbent bed because it represents as much as half of the energy potential in the moist ventilation gas. Designing a heat exchanger to efficiently transfer this energy to the adsorbent bed and allow the collection of the water is a challenge since the CIHX will operate in a temperature range from 210K to 280K. The ventilation gas moisture will first freeze and then thaw, sometimes existing in three phases simultaneously. A NASA Small Business Innovative Research (SBIR) Phase 1 contract was performed to investigate condensing and icing as applied to MTSA to enable higher fidelity modeling and assess the impact of geometry variables on CIHX performance for future CIHX design optimization. Specifically, a design tool was created using analytical relations to explore the complex, interdependent design space of a condensing ice heat exchanger. Numerous variables were identified as having nontrivial contributions to performance such as hydraulic diameter, heat exchanger effectiveness, ventilation gas mass flow rate and surface roughness. Using this tool, four test articles were designed and manufactured to map to a full MTSA subassembly (the adsorbent bed, the sublimation heat exchanger for cooling and the condensing ice heat exchanger for warming). The design mapping considered impacts due to CIHX geometry as well as subassembly impacts such as thermal mass and thermal resistance through the adsorbent bed. The test articles were tested at simulated PLSS ventilation loop temperature, moisture content and subambient pressure. Ice accumulation and melting were observed. Data and test observations were analyzed to identify drivers of the condensing ice heat exchanger performance. This paper will discuss the analytical models, the test article designs, and testing procedures. Testing issues will be discussed to better describe data and share lessons learned. Data analysis and subsequent conclusions will be presented.
Simeonov, V; Massart, D L; Andreev, G; Tsakovski, S
2000-11-01
The paper deals with application of different statistical methods like cluster and principal components analysis (PCA), partial least squares (PLSs) modeling. These approaches are an efficient tool in achieving better understanding about the contamination of two gulf regions in Black Sea. As objects of the study, a collection of marine sediment samples from Varna and Bourgas "hot spots" gulf areas are used. In the present case the use of cluster and PCA make it possible to separate three zones of the marine environment with different levels of pollution by interpretation of the sediment analysis (Bourgas gulf, Varna gulf and lake buffer zone). Further, the extraction of four latent factors offers a specific interpretation of the possible pollution sources and separates natural from anthropogenic factors, the latter originating from contamination by chemical, oil refinery and steel-work enterprises. Finally, the PLSs modeling gives a better opportunity in predicting contaminant concentration on tracer (or tracers) element as compared to the one-dimensional approach of the baseline models. The results of the study are important not only in local aspect as they allow quick response in finding solutions and decision making but also in broader sense as a useful environmetrical methodology.
NASA Technical Reports Server (NTRS)
Mulugeta, Lealem; Chappell, Steven P.
2009-01-01
Drawing from the experiences of the Apollo missions, it is evident that the off nominal center of gravity (CG) induced by the portable life support system (PLSS) had significant impact on the locomotion stability of the crew. This in turn is believed to have been a major contributor to the high numbers of falls and high metabolic rates experienced by the crew, and thus significantly hampered the crew s performance. With this in mind, the EVA Physiology, Systems and Performance (EPSP) group at the NASA Johnson Space Center (JSC) has been conducting tests to assess how spacesuit CG location impacts human performance in simulated lunar and Mars gravity. The results acquired to date show correlations between CG location and performance. However, noticeable variations in the performance data have been observed across subjects for fixed CG configurations. Consequently, it was hypothesized that this variability may be attributed to the anthropometrics of the different test subjects. It was further hypothesized that trunk-to-height ratio (THR) may be directly correlated to performance in reduced gravity; i.e. subjects with increased THR may have increased performance. To test this hypothesis, lunar and Mars gravity test data acquired over three years during NASA Neural Buoyancy Lab (NBL) tests and NASA Extreme Environment Missions Operation (NEEMO) missions were analyzed against THR, height, trunk length, and subject body mass/weight. The results of the study supported the hypothesis relating THR and performance, while the other three anthropometric parameters did not provide consistent correlations with performance. This in turn suggests that human performance in reduced gravity may be more dependent on anthropometric proportions than on body segment lengths and mass/weight.
NASA Astrophysics Data System (ADS)
Qiu, Le
Light scattering spectroscopy (LSS), an optical technique that relates the spectroscopic properties of light elastically scattered by small particles to their size, refractive index and shape, has been recently successfully employed for sensing morphological and biochemical properties of epithelial tissues and cells in vivo. LSS does not require exogenous markers, is non-invasive, and, due to its multispectral nature, can sense biological structures well beyond the diffraction limit. All that makes LSS be a very good candidate to be used both in clinical medicine for in vivo detection of disease and in cell biology to monitor cell function on the organelle scale. Recently we developed two LSS-based imaging modalities: clinical Polarized LSS (PLSS) Endoscopic Technique for locating early pre-cancerous changes in GI tract and Confocal Light Absorption and Scattering Spectroscopic (CLASS) Microscopy for studying cells in vivo without exogenous markers. One important application of the clinical PLSS endoscopic instrument, a noncontact scanning imaging device compatible with the standard clinical endoscopes and capable of detecting dysplastic changes, is to serve as a guide for biopsy in Barrett's esophagus (BE). The instrument detects parallel and perpendicular components of the polarized light, backscattered from epithelial tissues, and determines characteristics of epithelial nuclei from the residual spectra. It also can find tissue oxygenation, hemoglobin content and other properties from the diffuse light component. By rapidly scanning esophagus the PLSS endoscopic instrument makes sure the entire BE portion is scanned and examined for the presence of dysplasia. CLASS microscopy, on the other hand, combines principles of light scattering spectroscopy (LSS) with confocal microscopy. Its main purpose is to image cells on organelle scale in vivo without the use of exogenous labels which may affect the cell function. The confocal geometry selects specific region and images are obtained by scanning the confocal volume across the sample. The new beam scanning CLASS microscope is a significant improvement over the previous proof-of-principle device. With this new device we have already performed experiments to monitor morphological changes in cells during apoptosis, differentiated fetal from maternal nucleated red blood cells, and detected plasmon scattering spectra of single gold nanorod.
NASA Technical Reports Server (NTRS)
Dietrich, Daniel L.; Paul, Heather L.; Conger, Bruce C.
2009-01-01
This paper presents the findings of the trade study to evaluate carbon dioxide (CO2) sensing technologies for the Constellation (Cx) space suit life support system for surface exploration. The trade study found that nondispersive infrared absorption (NDIR) is the most appropriate high Technology Readiness Level (TRL) technology for the CO2 sensor for the Cx space suit. The maturity of the technology is high, as it is the basis for the CO2 sensor in the Extravehicular Mobility Unit (EMU). The study further determined that while there is a range of commercial sensors available, the Cx CO2 sensor should be a new design. Specifically, there are light sources (e.g., infrared light emitting diodes) and detectors (e.g., cooled detectors) that are not in typical commercial sensors due to cost. These advanced technology components offer significant advantages in performance (weight, volume, power, accuracy) to be implemented in the new sensor. The exact sensor design (light source, transmitting optics, path length, receiving optics and detector) will be specific for the Cx space suit and will be determined by the performance requirements of the Cx space suit. The paper further identifies specifications for some of the critical performance parameters as well as discussing the engineering aspects of implementing the sensor into the Portable Life Support System (PLSS). The paper then presents testing results from three CO2 sensors with respect to issues important to Extravehicular Activity (EVA) applications; stability, humidity dependence and low pressure compatibility. The three sensors include two NDIR sensors, one commercial and one custom-developed by NASA (for a different purpose), and one commercial electrochemical sensor. The results show that both NDIR sensors have excellent stability, no dependence on ambient humidity (when the ambient temperature is above the dew point) and operate in low pressure conditions and after being exposed to a full vacuum. The commercial electrochemical sensor was not suitable for the Cx space suit for surface exploration. Finally, the paper identifies a number of techniques currently under development that offer significant advantages for EVA applications. These include miniaturized, room temperature, solid electrolyte systems and advanced optical detectors.
Goring, Simon; Mladenoff, David J.; Cogbill, Charles; Record, Sydne; Paciorek, Christopher J.; Dietze, Michael C.; Dawson, Andria; Matthes, Jaclyn; McLachlan, Jason S.; Williams, John W.
2016-01-01
EuroAmerican land-use and its legacies have transformed forest structure and composition across the United States (US). More accurate reconstructions of historical states are critical to understanding the processes governing past, current, and future forest dynamics. Here we present new gridded (8x8km) reconstructions of pre-settlement (1800s) forest composition and structure from the upper Midwestern US (Minnesota, Wisconsin, and most of Michigan), using 19th Century Public Land Survey System (PLSS), with estimates of relative composition, above-ground biomass, stem density, and basal area for 28 tree types. This mapping is more robust than past efforts, using spatially varying correction factors to accommodate sampling design, azimuthal censoring, and biases in tree selection.
Interior view of "mail box" for purging carbon dioxide from Lunar Module
1970-04-14
AS13-62-9004 (April 1970) --- An interior view of the Apollo 13 Lunar Module (LM) during the trouble-plagued journey back to Earth. This photograph shows some of the temporary hose connections and apparatus which were necessary when the three Apollo astronauts moved from the Command Module (CM) to use the LM as a "lifeboat". Astronaut John L. Swigert Jr., command module pilot, is on the right. An unidentified astronaut on the left holds in his right hand the feed water bag from the Portable Life Support System (PLSS). It is connected to a hose (center) from the Lunar Topographic (Hycon) Camera. In the background is the "mail box," a jury-rigged arrangement which the crew men built to use the CM lithium hydroxide canisters to scrub CO2 from the spacecraft's atmosphere. Since there was a limited amount of lithium hydroxide in the LM, this arrangement was rigged up to utilize the canisters from the CM. The "mail box" was designed and tested on the ground at the Manned Spacecraft Center (MSC) before it was suggested to the Apollo 13 astronauts. An explosion of an oxygen tank in the Service Module (SM) caused the cancellation of the scheduled moon landing, and made the return home a hazardous journey for astronauts Swigert, James A. Lovell Jr., commander, and Fred W. Haise Jr., lunar module pilot.
Space Suit Radiator Performance in Lunar and Mars Environments
NASA Technical Reports Server (NTRS)
Nabity, James; Mason, Georgia; Copeland, Robert; Libberton, Kerry; Stephan, Ryan; Trevino, Luis; Paul, Heather
2005-01-01
During an ExtraVehicular Activity (EVA), both the heat generated by the astronaut's metabolism and that produced by the Portable Life Support System (PLSS) must be rejected to space. The heat sources include the heat of adsorption of metabolic CO2, the heat of condensation of water, the heat removed from the body by the liquid cooling garment and the load from the electrical components. Although the sublimator hardware to reject this load weighs only 1.58 kg (3.48 lbm), an additional 3.6 kg (8 lbm) of water are loaded into the unit, most of which is sublimated and lost to thus become the single largest expendable during an eight hour EVA. We can significantly reduce the amount of expendable water consumed in the sublimator by using a radiator to reject heat from the Astronaut during an EVA. Last year we reported on the design and initial operational assessment tests of our novel radiator designated the Radiator And Freeze Tolerant heat eXchanger (RAFT-X). Herein, we report on tests conducted in the NASA Johnson Space Center Chamber E Thermal Vacuum Test Facility. Up to 260 W (900 Btu/h) of heat were rejected in Lunar and Mars environments with temperatures as cold as -170 C (- 275 F). Further, the RAFT-X endured several freeze / thaw cycles and in fact, the heat exchanger was completely frozen three times without any apparent damage to the unit.
Lunar Dust-Tolerant Electrical Connector
NASA Technical Reports Server (NTRS)
Herman, Jason; Sadick, Shazad; Roberts, Dustyn
2010-01-01
An electrical connector was developed that is tolerant of the presence of lunar dust. Novel features of the connector include the use of a permeable membrane to act both as a dust barrier and as a wiper to limit the amount of dust that makes its way into the internal chamber of the connector. The development focused on the Constellation lunar extravehicular activity (EVA) spacesuit s portable life support system (PLSS) battery recharge connector; however, continued research is applying this technology to other lunar surface systems such as lunar rover subsystems and cryogenic fluid transfer connections for in-situ resource utilization (ISRU) applications. Lunar dust has been identified as a significant and present challenge in future exploration missions. In addition to posing contamination and health risks for human explorers, the interlocking, angular nature of lunar dust and its broad grain size distribution make it particularly harmful to mechanisms with which it may come into contact. All Apollo lunar missions experienced some degree of equipment failure because of dust, and it appears that dust accumulation on exposed material is unavoidable and difficult to reverse. Both human EVA and ISRU activities are on the mission horizon and are paramount to the establishment of a permanent human base on the Moon. Reusable and dust-tolerant connection mechanisms are a critical component for mission success. The need for dust-tolerant solutions is also seen in utility work and repair, mass transit applications, construction, mining, arctic and marine environments, diving (search and rescue), and various operations in deserts, where dust or sand clogging and coating different mechanisms and connections may render them difficult to operate or entirely inoperable.
A Freezable Heat Exchanger for Space Suit Radiator Systems
NASA Technical Reports Server (NTRS)
Nabity, James A.; Mason, Georgia R.; Copeland, Robert J.; Trevino, Luis a.
2008-01-01
During an ExtraVehicular Activity (EVA), both the heat generated by the astronaut s metabolism and that produced by the Portable Life Support System (PLSS) must be rejected to space. The heat sources include the heat of adsorption of metabolic CO2, the heat of condensation of water, the heat removed from the body by the liquid cooling garment and the load from the electrical components. Although the sublimator hardware to reject this load weighs only 1.58 kg (3.48 lbm), an additional 3.6 kg (8 lbm) of water are loaded into the unit, most of which is sublimated and lost to space, thus becoming the single largest expendable during an eight-hour EVA. Using a radiator to reject heat from the astronaut during an EVA can reduce the amount of expendable water consumed in the sublimator. Radiators have no moving parts and are thus highly reliable. Past freezable radiators have been too heavy, but the weight can be greatly reduced by placing a small and freeze tolerant heat exchanger between the astronaut and radiator, instead of making the very large radiator freeze tolerant. Therefore, the key technological innovation to improve space suit radiator performance was the development of a lightweight and freezable heat exchanger that accommodates the variable heat load generated by the astronaut. Herein, we present the heat transfer performance of a newly designed heat exchanger that endured several freeze / thaw cycles without any apparent damage. The heat exchanger was also able to continuously turn down or turn up the heat rejection to follow the variable load.
Fusible heat sink materials - Evaluation of alternate candidates. [for PLSS cooling systems
NASA Technical Reports Server (NTRS)
Selvaduray, Guna S.; Lomax, W. C.
1992-01-01
Fusible heat sinks are a possible source for thermal regulation of space suited astronauts. Materials with greater thermal storage capability than water could enable both an extension of time between recharging and/or a reduction in size and/or mass. An extensive literature search identified 1,215 candidates with a solid-liquid transformation within the temperature range of -13 C to 5 C. Based on data available in the literature, several candidates with a cooling capacity significantly greater than water were identified. Measurements of the transformation temperature and enthalpy of transformation were then undertaken with a differential scanning calorimeter in order to confirm the accuracy of the literature. Laboratory measurements have thus far not been able to corroborate the extremely high values found from the literature. This paper presents the approach for materials selection utilized in this study, the experimental procedure, and the results of the measurements thus far undertaken.
[Redesign of the Spacesuit Long Life Battery and the Personal Life Support System Battery
NASA Technical Reports Server (NTRS)
Scharf, Stephanie
2015-01-01
This fall I was working on two different projects that culminated into a redesign of the spacesuit LLB (long life battery). I also did some work on the PLSS (personal life support system) battery with EC. My first project was redlining the work instruction for completing DPAs (destructive physical analysis) on battery cells in the department. The purpose of this document is to create a standard process and ensure that the data in the same way no matter who carries out the analysis. I observed three DPAs, conducted one with help, and conducted two on my own all while taking notes on the procedure. These notes were used to write the final work instruction that will become is the department standard. My second project continued the work of the summer co-op before me. I was testing aluminum heat sinks for their ability to provide good thermal conduction and structural support during a thermal runaway event. The heat sinks were designed by the summer intern but there was not much time for testing before he left. We ran tests with a heater on the bottom of a trigger cell to try to drive thermal runaway and ensure that it will not propagate to adjacent cells. We also ran heat-to-vent tests in an oven to see if the assembly provided structural support and prevented sidewall rupture during thermal runaway. These tests were carried out at ESTA (energy systems test area) and are providing very promising results that safe, high performing (greater than 180 Wh/kg) designs are possible. My main project was a redesign of the LLB battery. Another summer intern did some testing and concluded that there was no simple fix to mitigate thermal runaway propagation hazards in the current design. The only option was a clean sheet redesign of the battery. I was given a volume and ideal energy density and the rest of the design was up to me. First, I created new heat sink banks in Creo using the information gathered in the metal heat sink tests from the summer intern. After this, I made capture plates to hold the cells in place and I worked on nickel bussings for the electrical connections between the cells. Finally, I designed the test box enclosure that included sections for flame arresting materials. The battery brick design, which is the heart of the battery, promises to become the first for a manned spacecraft application to achieve greater than 180 Wh/kg. My work in redlining the DPA work instructions will also be used in selecting the cells for the battery. We had a few options of cells that would provide the necessary power output and needed to make a choice. We repeatedly charged and discharged cells for around a month until they went through 100 lifecycles. The plan is to compare the DPA results on fresh and cycled cells from each manufacturer to see if cycling introduces any differences. After the complete LLB design was approved, the parts were ordered and testing should begin the first week of December. Some of my side projects included working on the CAD data for the PLSS with EC and attending the NASA Aerospace Battery Workshop in Huntsville. I was also a member of the Tours and Lectures Committee for the USRA and Pathways interns. I coordinated Apollo Evening and was on the committee for touring KSC and seeing an Atlas 5 launch. I really enjoyed my time at JSC and I would like to continue working for NASA or another aerospace company in the future. I have worked other internships prior to this, but I think the heavy research and development focus is the best fit for me. I originally thought I would need to go to grad school to work in an environment like this, but I now see it is possible with a bachelor’s degree and hard work. I would like to go into the workforce and maybe continue my education with night classes.
Systematic reviews on child welfare services: identifying and disseminating the evidence.
Kornør, Hege; Bergman, Hanna; Maayan, Nicola; Soares-Weiser, Karla; Bjørndal, Arild
2015-10-01
Evidence-based practice is at an early stage of uptake within child welfare services. To facilitate well-informed decisions, we disseminated evidence from systematic reviews (SR) to local child welfare stakeholders in Norway through plain language summaries on a website (http://www.r-bup.no). We developed and implemented our dissemination strategy through seven steps: (1) systematic literature search; (2) selection of relevant SRs; (3) assembly of an advisory board; (4) selection of child welfare SRs relevant to Norway; (5) prioritization of the included SRs; (6) development of a plain language summary (PLS) after feedback from the advisory board; and (7) implementation of website. A total of 9266 potentially relevant records were screened and 120 SRs were included. The advisory board was assembled from local policymakers, practitioners, researchers, carers and consumers. The advisory board members independently ranked the 120 SRs according to relevance and prioritized 20 SRs that were written up into the PLS. The format of the PLS was tested and agreed with the board members. A website was developed and the PLSs were published starting September 2014. We think that the PLSs will be valuable resources to practitioners and it will be easily accessible to caregivers and consumers. This knowledge will inform research priorities and practice in Norway, leading the way to the use of evidence-based decisions in local child welfare services. © 2015 The Authors. Journal of Evaluation in Clinical Practice published by John Wiley & Sons, Ltd.
NASA Technical Reports Server (NTRS)
McMillin, Summer D.; Broerman, Craig D.; Swickrath, Michael; Anderson, Molly
2011-01-01
A principal concern for extravehicular activity (EVA) spacesuits is the capability to control carbon dioxide (CO2) and humidity (H2O) for the crewmember. The release of CO2 in a confined or unventilated area is dangerous for human health and leads to asphyxiation; therefore, CO2 and H2O control become leading factors in the design and development of the spacesuit. An amine-based CO2 and H2O vapor sorbent for use in pressure-swing regenerable beds has been developed by Hamilton Sundstrand. The application of solidamine materials with vacuum swing adsorption technology has shown the capacity to concurrently manage CO2 and H2O levels through a fully regenerative cycle eliminating mission constraints imposed with nonregenerative technologies. Two prototype solid amine-based systems, known as rapid cycle amine (RCA), were designed to continuously remove CO2 and H2O vapor from a flowing ventilation stream through the use of a two-bed amine based, vacuum-swing adsorption system. The Engineering and Science Contract Group (ESCG) RCA implements radial flow paths, whereas the Hamilton Sundstrand RCA was designed with linear flow paths. Testing was performed in a sea-level pressure environment and a reduced-pressure environment with simulated human metabolic loads in a closed-loop configuration. This paper presents the experimental results of laboratory testing for a full-size and a sub-scale test article. The testing described here characterized and evaluated the performance of each RCA unit at the required Portable Life Support Subsystem (PLSS) operating conditions. The test points simulated a range of crewmember metabolic rates. The experimental results demonstrated the ability of each RCA unit to sufficiently remove CO2 and H2O from a closed loop ambient or sub-ambient atmosphere.
EPA Tribal Areas (4 of 4): Alaska Native Allotments
This dataset is a spatial representation of the Public Land Survey System (PLSS) in Alaska, generated from land survey records. The data represents a seamless spatial portrayal of native allotment land parcels, their legal descriptions, corner positioning and markings, and survey measurements. This data is intended for mapping purposes only and is not a substitute or replacement for the legal land survey records or other legal documents.Measurement and attribute data are collected from survey records using data entry screens into a relational database. The database design is based upon the FGDC Cadastral Content Data Standard. Corner positions are derived by geodetic calculations using measurement records. Closure and edgematching are applied to produce a seamless dataset. The resultant features do not preserve the original geometry of survey measurements, but the record measurements are reported as attributes. Additional boundary data are derived by spatial capture, protraction and GIS processing. The spatial features are stored and managed within the relational database, with active links to the represented measurement and attribute data.
NASA Technical Reports Server (NTRS)
Jones, Jeff; Hoffman, Ron; Harvey, Craig; Bowen, C. K.; Hudy, C. E.; Tuxhorn, Jennifer; Gernhardt, Mike; Scheuring, Richard A.
2007-01-01
The goal of this study is to determine the role that moisture plays in the injury to the fingers and fingernails during EVA training operations in the Neutral Buoyancy Laboratory. Current Extravehicular Mobility Unit (EMU, with a PLSS) as configured in the NBL was used for all testing and a vent tube was extended down a single arm of the crewmember during the test; vent tube was moved between left and right arm to serve as experimental condition being investigated and the other arm served as control condition.
Techniques for Improving the Performance of Future EVA Maneuvering Systems
NASA Technical Reports Server (NTRS)
Williams, Trevor W.
1995-01-01
The Simplified Aid for EVA Rescue (SAFER) is a small propulsive backpack that was developed as an in-house effort at Johnson Space Center; it is a lightweight system which attaches to the underside of the Primary Life Support Subsystem (PLSS) backpack of the Extravehicular Mobility Unit (EMU). SAFER provides full six-axis control, as well as Automatic Attitude Hold (AAH), by means of a set of cold-gas nitrogen thrusters and a rate sensor-based control system. For compactness, a single hand controller is used, together with mode switching, to command all six axes. SAFER was successfully test-flown on the STS-64 mission in September 1994 as a Development Test Objective (DTO); development of an operational version is now proceeding. This version will be available for EVA self-rescue on the International Space Station and Mir, starting with the STS-86/Mir-7 mission in September 1997. The DTO SAFER was heavily instrumented, and produced in-flight data that was stored in a 12 MB computer memory on-board. This has allowed post-flight analysis to yield good estimates for the actual mass properties (moments and products of inertia and center of mass location) encountered on-orbit. By contrast, Manned Maneuvering Unit (MMU) post-flight results were generated mainly from analysis of video images, and so were not very accurate. The main goal of the research reported here was to use the detailed SAFER on-orbit mass properties data to optimize the design of future EVA maneuvering systems, with the aim being to improve flying qualities and/or reduce propellant consumption. The Automation, Robotics and Simulation Division Virtual Reality (VR) Laboratory proved to be a valuable research tool for such studies. A second objective of the grant was to generate an accurate dynamics model in support of the reflight of the DTO SAFER on STS-76/Mir-3. One complicating factor was the fact that a hand controller stowage box was added to the underside of SAFER on this flight; the position of this box was such that two of the SAFER jets plume it. A second complication was that the EVA astronaut will sometimes be transporting a massive experiment package. This will not only alter the overall mass properties significantly, but can itself also be plumed.
Biomedical Support of U.S. Extravehicular Activity
NASA Technical Reports Server (NTRS)
Gernhardt, Michael L.; Dervay, J. P.; Gillis, D.; McMann, H. J.; Thomas, K. S.
2007-01-01
The world's first extravehicular activity (EVA) was performed by A. A. Leonov on March 18, 1965 during the Russian Voskhod-2 mission. The first US EVA was executed by Gemini IV astronaut Ed White on June 3, 1965, with an umbilical tether that included communications and an oxygen supply. A hand-held maneuvering unit (HHMU) also was used to test maneuverability during the brief EVA; however the somewhat stiff umbilical limited controlled movement. That constraint, plus difficulty returning through the vehicle hatch, highlighted the need for increased thermal control and improved EVA ergonomics. Clearly, requirements for a useful EVA were interrelated with the vehicle design. The early Gemini EVAs generated requirements for suits providing micro-meteor protection, adequate visual field and eye protection from solar visual and infrared radiation, gloves optimized for dexterity while pressurized, and thermal systems capable of protecting the astronaut while rejecting metabolic heat during high workloads. Subsequent Gemini EVAs built upon this early experience and included development of a portable environmental control and life support systems (ECLSS) and an astronaut maneuvering unit. The ECLSS provided a pressure vessel and controller with functional control over suit pressure, oxygen flow, carbon dioxide removal, humidity, and temperature control. Gemini EVA experience also identified the usefulness of underwater neutral buoyancy and altitude chamber task training, and the importance of developing reliable task timelines. Improved thermal management and carbon dioxide control also were required for high workload tasks. With the Apollo project, EVA activity was primarily on the lunar surface; and suit durability, integrated liquid cooling garments, and low suit operating pressures (3.75 pounds per square inch absolute [psia] or 25.8 kilopascal [kPa],) were required to facilitate longer EVAs with ambulation and significant physical workloads with average metabolic rates of 1000 BTU/hr and peaks of up to 2200 BTU/hr. Mobility was further augmented with the Lunar Roving Vehicle. The Apollo extravehicular mobility unit (EMU) was made up of over 15 components, ranging from a biomedical belt for capturing and transmitting biomedical data, urine and fecal containment systems, a liquid cooling garment, communications cap, a modular portable life support system (PLSS), a boot system, thermal overgloves, and a bubble helmet with eye protection. Apollo lunar astronauts performed successful EVAs on the lunar surface from a 5 psia (34.4 kPa) 100% oxygen environment in the Lunar Lander. A maximum of three EVAs were performed on any mission. For Skylab a modified A7LB suit, used for Apollo 15, was selected. The Skylab astronaut life support assembly (ALSA) provided umbilical support through the life support umbilical (LSU) and used open loop oxygen flow, rather than closed-loop as in Apollo missions. Thermal control was provided by liquid water circulated by spacecraft pumps and electrical power also was provided from the spacecraft via the umbilical. The cabin atmosphere of 5 psia (34.4 kPa), 70% oxygen, provided a normoxic atmosphere and because of the very low nitrogen partial pressures, no special protocols were required to protect against decompression sickness (DCS) as was the case with the Apollo spacecraft with a 5 psi, 100% oxygen environment.
Potential of a New Lunar Surface Radiator Concept for Hot Lunar Thermal Environments
NASA Technical Reports Server (NTRS)
Ochoa, Dustin A.; Vogel, Matthew R.; Trevino, Luis A.; Stephan, Ryan A.
2008-01-01
The optimum radiator configuration in hot lunar thermal environments is one in which the radiator is parallel to the ground and has no view to the hot lunar surface. However, typical spacecraft configurations have limited real estate available for top-mounted radiators, resulting in a desire to use the spacecraft s vertically oriented sides. Vertically oriented, flat panel radiators will have a large view factor to the lunar surface, and thus will be subjected to significant incident lunar infrared heat. Consequently, radiator fluid temperatures will need to exceed approx.325 K (assuming standard spacecraft radiator optical properties) in order to provide positive heat rejection at lunar noon. Such temperatures are too high for crewed spacecraft applications in which a heat pump is to be avoided. A recent study of vertically oriented radiator configurations subjected to lunar noon thermal environments led to the discovery of a novel radiator concept that yielded positive heat rejection at lower fluid temperatures. This radiator configuration, called the Upright Lunar Terrain Radiator Assembly (ULTRA), has exhibited superior performance to all previously analyzed concepts in terms of heat rejection in the lunar noon thermal environment. A key benefit of the ULTRA is the absence of louvers or other moving parts and its simple geometry. Analysis of the ULTRA for a lunar extravehicular activity (EVA) portable life support system (PLSS) is shown to provide moderate heat rejection, on average, at all solar incident angles assuming an average radiator temperature of 294 K, whereas prior concepts exhibited insignificant heat rejection or heat absorption at higher incident angles. The performance of the ULTRA for a lunar lander is also discussed and compared to the performance of a vertically oriented, flat panel radiator at various lunar latitudes.
NASA Technical Reports Server (NTRS)
Bower, Chad; Padilla, Sebastian; Iacomini, Christie; Paul, Heather L.
2010-01-01
This paper details the validation of modeling methods for the three core components of a Metabolic heat regenerated Temperature Swing Adsorption (MTSA) subassembly, developed for use in a Portable Life Support System (PLSS). The first core component in the subassembly is a sorbent bed, used to capture and reject metabolically produced carbon dioxide (CO2). The sorbent bed performance can be augmented with a temperature swing driven by a liquid CO2 (LCO2) sublimation heat exchanger (SHX) for cooling the sorbent bed, and a condensing, icing heat exchanger (CIHX) for warming the sorbent bed. As part of the overall MTSA effort, scaled design validation test articles for each of these three components have been independently tested in laboratory conditions. Previously described modeling methodologies developed for implementation in Thermal Desktop and SINDA/FLUINT are reviewed and updated, their application in test article models outlined, and the results of those model correlations relayed. Assessment of the applicability of each modeling methodology to the challenge of simulating the response of the test articles and their extensibility to a full scale integrated subassembly model is given. The independent verified and validated modeling methods are applied to the development of a MTSA subassembly prototype model and predictions of the subassembly performance are given. These models and modeling methodologies capture simulation of several challenging and novel physical phenomena in the Thermal Desktop and SINDA/FLUINT software suite. Novel methodologies include CO2 adsorption front tracking and associated thermal response in the sorbent bed, heat transfer associated with sublimation of entrained solid CO2 in the SHX, and water mass transfer in the form of ice as low as 210 K in the CIHX.
Space Suit Radiator Performance in Lunar and Mars Environments
NASA Technical Reports Server (NTRS)
Paul, Heather; Trevino, Luis; Nabity, James; Mason, Georgia; Copeland, Robert; Libberton, Kerry; Stephan, Ryan
2007-01-01
During an ExtraVehicular Activity (EVA), both the heat generated by the astronaut's metabolism and that produced by the Portable Life Support System (PLSS) must be rejected to space. The heat sources include the heat of adsorption of metabolic CO2, the heat of condensation of water, the heat removed from the body by the liquid cooling garment and the load from the electrical components. Although the sublimator hardware to reject this load weighs only 3.48 lbs, an additional eight pounds of water are loaded into the unit of which about six to eight are sublimated and lost; this is the single largest expendable during an eight-hour EVA. Using a radiator to reject heat from the Astronaut during an EVA, we can significantly reduce the amount of expendable water consumed by the sublimator. Last year we reported on the design and initial operational assessment tests of our novel radiator designated the Radiator And Freeze Tolerant heat eXchanger (RAFT-X). Herein, we report on tests conducted in the NASA Johnson Space Center Chamber E Thermal Vacuum Test Facility. Up to 800 Btu/h of heat were rejected in lunar and Mars environments with temperatures as cold as 150 F. Tilting the radiator did not cause an observable loss in performance. The RAFT-X endured freeze/thaw cycles and in fact, the heat exchanger was completely frozen three times without any apparent damage to the unit. We were also able to operate the heat exchanger in a partially frozen configuration to throttle the heat rejection rate from 530 Btu/h at low water flow rate down to 300 Btu/h. Finally, the deliberate loss of a single loop heat pipe only degraded the heat rejection performance by about 2 to 5%.
Space Suit Radiator Performance in Lunar and Mars Environments
NASA Technical Reports Server (NTRS)
Nabity, James; Mason, Georgia; Copeland, Robert; Libberton, Kerry; Trevino, Luis; Stephan, Ryan; Paul, Heather
2007-01-01
During an ExtraVehicular Activity (EVA), both the heat generated by the astronaut's metabolism and that produced by the Portable Life Support System (PLSS) must be rejected to space. The heat sources include the heat of adsorption of metabolic CO2, the heat of condensation of water, the heat removed from the body by the liquid cooling garment and the load from the electrical components. Although the sublimator hardware to reject this load weighs only 3.48 lbs, an additional eight pounds of water are loaded into the unit of which about six to eight are sublimated and lost; this is the single largest expendable during an eight-hour EVA. Using a radiator to reject heat from the Astronaut during an EVA, we can significantly reduce the amount of expendable water consumed by the sublimator. Last year we reported on the design and initial operational assessment tests of our novel radiator designated the Radiator And Freeze Tolerant heat eXchanger (RAFT-X). Herein, we report on tests conducted in the NASA Johnson Space Center Chamber E Thermal Vacuum Test Facility. Up to 800 Btu/h of heat were rejected in lunar and Mars environments with temperatures as cold as -150 F. Tilting the radiator did not cause an observable loss in performance. The RAFT-X endured freeze / thaw cycles and in fact, the heat exchanger was completely frozen three times without any apparent damage to the unit. We were also able to operate the heat exchanger in a partially frozen configuration to throttle the heat rejection rate from 530 Btu/h at low water flow rate down to 300 Btu/h. Finally, the deliberate loss of a single loop heat pipe only degraded the heat rejection performance by about 2 to 5%.
Design and Development Comparison of Rapid Cycle Amine 1.0, 2.0, and 3.0
NASA Technical Reports Server (NTRS)
Chullen, Cinda; Campbell, Colin; Papale, William; Murray, Sean; Wichowski, Robert; Conger, Bruce; McMillin, Summer
2016-01-01
The development of the Rapid Cycle Amine (RCA) swing-bed technology for carbon dioxide (CO2) removal has been in progress since favorable results were published in 1996. Shortly thereafter, a prototype was designed, developed, and tested successfully and delivered to Johnson Space Center in 1999. An improved prototype (RCA 1.0) was delivered to NASA in 2006 and sized for the extravehicular activity (EVA). The RCA swing-bed technology is a regenerative system which employs two alternating solid-amine sorbent beds to remove CO2 and water. The two-bed design employs a chemisorption process whereby the beds alternate between adsorption and desorption. This process provides for an efficient RCA operation that enables one bed to be in adsorb (uptake) mode, while the other is in the desorb (regeneration) mode. The RCA has progressed through several iterations of technology readiness levels. Test articles have now been designed, developed, and tested for the advanced space suit portable life support system (PLSS) including RCA 1.0, RCA 2.0, and RCA 3.0. The RCA 3.0 was the most recent RCA fabrication and was delivered to NASA-JSC in June 2015. The RCA 1.0 test article was designed with a pneumatically actuated linear motion spool valve. The RCA 2.0 and 3.0 test articles were designed with a valve assembly which allows for switching between uptake and regeneration modes while minimizing gas volume losses to the vacuum source. RCA 2.0 and 3.0 also include an embedded controller design to control RCA operation and provide the capability of interfacing with various sensors and other ventilation loop components. The RCA technology is low power, small, and has fulfilled all test requirements levied upon the technology during development testing thus far. This paper will provide an overview of the design and development of RCA 1.0, 2.0 and 3.0 including detail differences between the design specifications of each. Nomenclature.
NASA Technical Reports Server (NTRS)
Karimi, Amir
1990-01-01
METMAN is a 41-node transient metabolic computer code developed in 1970 and revised in 1989 by Lockheed Engineering and Sciences, Inc. This program relies on a mathematical model to predict the transient temperature distribution in a body influenced by metabolic heat generation and thermal interaction with the environment. A more complex 315-node model is also available that not only simulates the thermal response of a body exposed to a warm environment, but is also capable of describing the thermal response resulting from exposure to a cold environment. It is important to compare the two models for the prediction of the body's thermal response to metabolic heat generation and exposure to various environmental conditions. Discrepancies between the twi models may warrant an investigation of METMAN to ensure its validity for describing the body's thermal response in space environment. The Liquid Cooling and Ventilation Garment is a subsystem of the Extravehicular Mobility Unit (EMU). This garment, worn under the pressure suit, contains the liquid cooling tubing and gas ventilation manifolds; its purpose is to alleviate or reduce thermal stress resulting from metabolic heat generation. There is renewed interest in modifying this garment through identification of the locus of maximum heat transfer at body-liquid cooled tubing interface. The sublimator is a vital component of the Primary Life Support System (PLSS) in the EMU. It acts as a heat sink to remove heat and humidity from the gas ventilating circuit and the liquid cooling loop of the LCVG. The deficiency of the sublimator is that the ice, used as the heat sink, sublimates into space. There is an effort to minimize water losses in the feedwater circuit of the EMU. This requires developing new concepts to design an alternative heat sink system. Efforts are directed to review and verify the heat transfer formulation of the analytical model employed by METMAN. A conceptual investigation of regenerative non-venting heat-sink subsystem for the EMU is recommended.
NASA Technical Reports Server (NTRS)
McMillin, Summer; Broerman, Craig; Swickrath, Mike; Anderson, Molly
2010-01-01
A principal concern for extravehicular activity (EVA) space suits is the capability to control carbon dioxide (CO2) and humidity (H2O) for the crewmember. The release of CO2 in a confined or unventilated area is dangerous for human health and leads to asphyxiation; therefore, CO2 and H2O become leading factors in the design and development of the spacesuit. An amine-based CO2 and H2O vapor sorbent for use in pressure-swing re-generable beds has been developed by Hamilton Sundstrand. The application of solid-amine materials with vacuum swing adsorption technology has shown the capacity to concurrently manage CO2 and H2O levels through a fully regenerative cycle eliminating mission constraints imposed with non-regenerative technologies. Two prototype solid amine-based systems, known as rapid cycle amine (RCA), were designed to continuously remove CO2 and H2O vapor from a flowing ventilation stream through the use of a two-bed amine based, vacuum-swing adsorption system. The Engineering and Science Contract Group (ESCG) RCA is the first RCA unit implementing radial flow paths, whereas the Hamilton Sundstrand RCA was designed with linear flow paths. Testing was performed in a sea-level pressure environment and a reduced-pressure environment with simulated human metabolic loads in a closed-loop configuration. This paper presents the experimental results of laboratory testing for a full-size and a sub-scale test article. The testing described here characterized and evaluated the performance of each RCA unit at the required Portable Life Support Subsystem (PLSS) operating conditions. The test points simulated a range of crewmember metabolic rates. The experimental results demonstrate the ability of each RCA unit to sufficiently remove CO2 and H2O from a closed loop ambient or subambient atmosphere.
Design and Development Comparison of Rapid Cycle Amine 1.0, 2.0, and 3.0
NASA Technical Reports Server (NTRS)
Chullen, Cinda; Campbell, Colin; Papale, William; Murray, Sean; Wichowski, Robert; Conger, Bruce; McMillin, Summer
2016-01-01
The development of the Rapid Cycle Amine (RCA) swing-bed technology for carbon dioxide (CO2) removal has been in progress since favorable results were published in 1996. Shortly thereafter, a prototype was designed, developed, and tested successfully and delivered to Johnson Space Center in 1999. An improved prototype was delivered to NASA in 2006 and was notated as RCA 1.0 and sized for the extravehicular activity (EVA). The new RCA swing-bed technology is a regenerative system which employs two alternating solid-amine sorbent beds to remove CO2 and water. The two- bed design employs a chemisorption process whereby the beds alternate between adsorbtion and desorbsion. This process provides for an efficient operation of the RCA so that while one bed is in adsorb (uptake) mode, the other is in the desorb (regeneration) mode. The RCA has now progressed through several iterations of technology readiness levels. Test articles have now been designed, developed, and tested for the advanced space suit portable life support system (PLSS) including RCA 1.0, RCA 2.0, and RCA 3.0. The RCA 3.0 was the most recent RCA fabrication and was delivered to NASA-JSC in June 2015. The RCA 1.0 test article was designed with a pneumatically actuated linear motion spool valve. The RCA 2.0 and 3.0 test articles were designed with a valve assembly which allows for switching between uptake and regeneration modes while minimizing gas volume losses to the vacuum source. RCA 2.0 and 3.0 also include an embedded controller design to control RCA operation and provide the capability of interfacing with various sensors and other ventilation loop components. The RCA technology is low power, small, and has fulfilled all test requirements levied upon the technology during development testing thus far. This paper will provide an overreview of the design and development of RCA 1.0, 2.0 and 3.0 including detail differences between the design specifications of each.
Hollow Fiber Space Suit Water Membrane Evaporator Development for Lunar Missions
NASA Technical Reports Server (NTRS)
Bue, Grant C.; Trevino, Luis A.; Hanford, Anthony J.; Mitchell, Keith
2009-01-01
The Space Suit Water Membrane Evaporator (SWME) is the baseline heat rejection technology selected for development for the Constellation lunar suit. The Hollow Fiber (HoFi) SWME is being considered for service in the Constellation Space Suit Element (CSSE) Portable Life Support Subsystem (PLSS) to provide cooling to the thermal loop through water evaporation to the vacuum of space. Previous work described the test methodology and planning to compare the test performance of three commercially available hollow fiber materials as alternatives to the sheet membrane prototype for SWME: 1) porous hydrophobic polypropylene, 2) porous hydrophobic polysulfone, and 3) ion exchange through nonporous hydrophilic modified Nafion. Contamination tests were performed to probe for sensitivities of the candidate SWME elements to organics and non-volative inorganics expected to be found in the target feedwater source, i.e., potable water provided by the vehicle. The resulting presence of precipitate in the coolant water could plug pores and tube channels and affect the SWME performance. From this prior work, a commercial porous hydrophobic hollow fiber was selected to satisfy both the sensitivity question and the need to provide 800 W of heat rejection. This paper describes the trade studies, the design methodology, and the hollow fiber test data used to design a full
Space to Space Advanced EMU Radio
NASA Technical Reports Server (NTRS)
Maicke, Andrew
2016-01-01
The main task for this project was the development of a prototype for the Space to Space Advanced EMU Radio (SSAER). The SSAER is an updated version of the Space to Space EMU Radio (SSER), which is the current radio used by EMUs (Extravehicular Mobility Unit) for communication between suits and with the ISS. The SSER was developed in 1999, and it was desired to update the design used in the system. Importantly, besides replacing out-of-production parts it was necessary to decrease the size of the radio due to increased volume constraints with the updated Portable Life Support System (PLSS) 2.5, which will be attached on future space suits. In particular, it was desired to fabricate a PCB for the front-end of the prototype SSAER system. Once this board was manufactured and all parts assembled, it could then be tested for quality of operation as well as compliancy with the SSER required specifications. Upon arrival, a small outline of the target system was provided, and it was my responsibility to take that outline to a finished, testable board. This board would include several stages, including frequency mixing, amplification, modulation, demodulation, and handled both the transmit and receive lines of the radio. I developed a new design based on the old SSER system and the outline provided to me, and found parts to fit the tasks in my design. It was also important to consider the specifications of the SSER, which included the system noise figure, gain, and power consumption. Further, all parts needed to be impedance matched, and spurious signals needed to be avoided. In order to fulfill these two requirements, it was necessary to perform some calculations using a Smith Chart and excel analysis. Once all parts were selected, I drew the schematics for the system in Altium Designer. This included developing schematic symbols, as well as layout. Once the schematic was finished, it was then necessary to lay the parts out onto a PCB using Altium. Similar to the schematic design, in order to accomplish this it was necessary to develop component land patterns and add component 3D models. All of this was achieved, and the PCB is currently in review. After it is finished being reviewed, this board will be sent out for manufacture. All electronic components used in the PCB have been acquired, and once the board arrives they will be soldered onto the board using a machine in building 44. Finally, the board will be tested for performance on-site. This will likely be accomplished by the end of the internship.
NASA Technical Reports Server (NTRS)
Jones, Jeffrey A.; Hoffman, Ronald B.; Harvey, C. M.; Bowen, C. K.; Hudy, C. E.; Gernhardt, M. L.
2007-01-01
During Neutral Buoyancy Lab (NBL) training sessions, a large amount of moisture accumulates in the EVA gloves. The glove design restricts the extension of the EVA suit s ventilation/cooling system to the hand. Subungual redness and fingernail pain develops for many astronauts following their NBL training sessions with subsequent oncholysis occurring over succeeding weeks. Various attempts have been made to reduce or avoid this problem. The causal role of moisture has yet to be defined. Methods: To determine the contribution that moisture plays in the injury to the fingers and fingernails during EVA training operations in NBL, the current Extravehicular Mobility Unit (EMU), with a Portable Life Support System (PLSS) was configured with a ventilation tube that extended down a single arm of the crewmember during the test and compared with the unventilated contralateral arm; with the ventilated hand serving as the experimental condition (E) and the opposite arm as the control (C). A cross-over design was used with opposite handedness for the vent tube on a subsequent NBL training run. Moisture content measures were conducted at six points on each hand with three types of moisture meters. A questionnaire was administered to determine subjective thermal hand discomfort, skin moisture perception, and hand and nail discomfort. Photographs and video were recorded. Measures were applied to six astronauts pre- and post-run in the NBL. Results: The consistent trends in relative hydration ratios at the dorsum, from 3.34 for C to 2.11 for E, and first ring finger joint locations, from 2.46 for C to 1.96 for E, indicated the extended vent tube promoted skin drying. The experimental treatment appeared to be more effective on the left hand versus the right hand, implying an interaction with hand anthropometry and glove fit. Video analyses differentiated fine and gross motor training tasks during runs and will be discussed. Conclusions: This potential countermeasure was effective in reducing the risks of hand and nail discomfort symptoms from moderate to low in two of six subjects. Improved design in the ventilation pattern of such a countermeasure is expected to improve the countermeasure s efficiency.
NASA Technical Reports Server (NTRS)
Bower, Chad E.; Padilla, Sebastian A.; Iacomini, Christie S.; Paul, Heather L.
2010-01-01
This paper describes modeling methods for the three core components of a Metabolic heat regenerated Temperature Swing Adsorption (MTSA) subassembly: a sorbent bed, a sublimation (cooling) heat exchanger (SHX), and a condensing icing (warming) heat exchanger (CIHX). The primary function of the MTSA, removing carbon dioxide from a space suit Portable Life Support System (PLSS) ventilation loop, is performed via the sorbent bed. The CIHX is used to heat the sorbent bed for desorption and to remove moisture from the ventilation loop while the SHX is alternately employed to cool the sorbent bed via sublimation of a spray of water at low pressure to prepare the reconditioned bed for the next cycle. This paper describes subsystem heat a mass transfer modeling methodologies relevant to the description of the MTSA subassembly in Thermal Desktop and SINDA/FLUINT. Several areas of particular modeling interest are discussed. In the sorbent bed, capture of the translating carbon dioxide (CO2) front and associated local energy and mass balance in both adsorbing and desorbing modes is covered. The CIHX poses particular challenges for modeling in SINDA/FLUINT as accounting for solids states in fluid submodels are not a native capability. Methods for capturing phase change and latent heat of ice as well as the transport properties across a layer of low density accreted frost are developed. This extended modeling capacity is applicable to temperatures greater than 258 K. To extend applicability to the minimum device temperature of 235 K, a method for a mapped transformation of temperatures from below the limit temperatures to some value above is given along with descriptions for associated material property transformations and the resulting impacts to total heat and mass transfer. Similar considerations are given for the SHX along with functional relationships for areal sublimation rates as limited by flow mechanics in t1he outlet duct.
NASA Astrophysics Data System (ADS)
Darwish, Hany W.; Hassan, Said A.; Salem, Maissa Y.; El-Zeany, Badr A.
2013-09-01
Four simple, accurate and specific methods were developed and validated for the simultaneous estimation of Amlodipine (AML), Valsartan (VAL) and Hydrochlorothiazide (HCT) in commercial tablets. The derivative spectrophotometric methods include Derivative Ratio Zero Crossing (DRZC) and Double Divisor Ratio Spectra-Derivative Spectrophotometry (DDRS-DS) methods, while the multivariate calibrations used are Principal Component Regression (PCR) and Partial Least Squares (PLSs). The proposed methods were applied successfully in the determination of the drugs in laboratory-prepared mixtures and in commercial pharmaceutical preparations. The validity of the proposed methods was assessed using the standard addition technique. The linearity of the proposed methods is investigated in the range of 2-32, 4-44 and 2-20 μg/mL for AML, VAL and HCT, respectively.
Darwish, Hany W; Hassan, Said A; Salem, Maissa Y; El-Zeany, Badr A
2013-09-01
Four simple, accurate and specific methods were developed and validated for the simultaneous estimation of Amlodipine (AML), Valsartan (VAL) and Hydrochlorothiazide (HCT) in commercial tablets. The derivative spectrophotometric methods include Derivative Ratio Zero Crossing (DRZC) and Double Divisor Ratio Spectra-Derivative Spectrophotometry (DDRS-DS) methods, while the multivariate calibrations used are Principal Component Regression (PCR) and Partial Least Squares (PLSs). The proposed methods were applied successfully in the determination of the drugs in laboratory-prepared mixtures and in commercial pharmaceutical preparations. The validity of the proposed methods was assessed using the standard addition technique. The linearity of the proposed methods is investigated in the range of 2-32, 4-44 and 2-20 μg/mL for AML, VAL and HCT, respectively. Copyright © 2013 Elsevier B.V. All rights reserved.
[Fall 2015 Abstract by Stephanie Scharf
NASA Technical Reports Server (NTRS)
Scharf, Stephanie
2015-01-01
This Fall I worked on two different projects that culminated into a redesign of the spacesuit LLB (long life battery). I also did some work on the PLSS (personal life support system) battery with EC. My first project was redlining the work instruction for completing DPAs (destructive physical analysis) on battery cells in the Branch. The purpose of this document is to create a standard process and ensure that the data is collected in the same way, no matter who carries out the analysis. I observed three DPAs, conducted one with help, and conducted two on my own, all while taking notes on the procedure. These notes were used to write the final work instruction, which will become the Branch standard. My second project continued the work of the Summer co-op before me. I tested aluminum heat sinks for their ability to provide good thermal conduction and structural support during a thermal runaway event. The heat sinks had been designed by the previous Summer co-op, but there was not much time for testing before he left. We thus ran tests with a heater on the bottom of a trigger cell to try to drive thermal runaway and ensure that it will not propagate to adjacent cells. We also ran heat-to-vent tests in an oven to see if the assembly provided structural support and prevented sidewall rupture during thermal runaway. These tests were carried out at ESTA (Energy Systems Test Area) and are providing very promising results, indicating that safe, high performing (>180 Wh/kg) designs are possible. My main project was a redesign of the LLB (Lightweight Lithium Battery). Another summer intern had done some testing and concluded that there was no simple fix to mitigate thermal runaway propagation hazards in the existing design. The only option was a clean sheet redesign of the battery. I was given a volume and ideal energy density, and the rest of the design was up to me. First, I created new heat sink banks in CREO, using the information gathered in the metal heat sink tests from the summer intern. After this, I made capture plates to hold the cells in place, and I worked on nickel bussings for the electrical connections between the cells. Finally, I designed the test box enclosure that included sections for flame arresting materials. The battery brick design, which is the heart of the battery, promises to become the first for a manned spacecraft application to achieve > 180 Wh/kg. My work in redlining the DPA work instructions will also be used in selecting the cells for the battery. We had a few options for cells that would provide the necessary power output and needed to make a choice. We repeatedly charged and discharged cells for around a month until they went through 100 lifecycles. The plan was to compare the DPA results on fresh and cycled cells from each manufacturer to see if cycling introduces any differences. After the complete LLB design was approved, the parts were ordered and testing should begin the first week of December. Cutting open a cell for DPA After photo from oven heat-to-vent test
Rapid Prototyping of High Performance Signal Processing Applications
NASA Astrophysics Data System (ADS)
Sane, Nimish
Advances in embedded systems for digital signal processing (DSP) are enabling many scientific projects and commercial applications. At the same time, these applications are key to driving advances in many important kinds of computing platforms. In this region of high performance DSP, rapid prototyping is critical for faster time-to-market (e.g., in the wireless communications industry) or time-to-science (e.g., in radio astronomy). DSP system architectures have evolved from being based on application specific integrated circuits (ASICs) to incorporate reconfigurable off-the-shelf field programmable gate arrays (FPGAs), the latest multiprocessors such as graphics processing units (GPUs), or heterogeneous combinations of such devices. We, thus, have a vast design space to explore based on performance trade-offs, and expanded by the multitude of possibilities for target platforms. In order to allow systematic design space exploration, and develop scalable and portable prototypes, model based design tools are increasingly used in design and implementation of embedded systems. These tools allow scalable high-level representations, model based semantics for analysis and optimization, and portable implementations that can be verified at higher levels of abstractions and targeted toward multiple platforms for implementation. The designer can experiment using such tools at an early stage in the design cycle, and employ the latest hardware at later stages. In this thesis, we have focused on dataflow-based approaches for rapid DSP system prototyping. This thesis contributes to various aspects of dataflow-based design flows and tools as follows: 1. We have introduced the concept of topological patterns, which exploits commonly found repetitive patterns in DSP algorithms to allow scalable, concise, and parameterizable representations of large scale dataflow graphs in high-level languages. We have shown how an underlying design tool can systematically exploit a high-level application specification consisting of topological patterns in various aspects of the design flow. 2. We have formulated the core functional dataflow (CFDF) model of computation, which can be used to model a wide variety of deterministic dynamic dataflow behaviors. We have also presented key features of the CFDF model and tools based on these features. These tools provide support for heterogeneous dataflow behaviors, an intuitive and common framework for functional specification, support for functional simulation, portability from several existing dataflow models to CFDF, integrated emphasis on minimally-restricted specification of actor functionality, and support for efficient static, quasi-static, and dynamic scheduling techniques. 3. We have developed a generalized scheduling technique for CFDF graphs based on decomposition of a CFDF graph into static graphs that interact at run-time. Furthermore, we have refined this generalized scheduling technique using a new notion of "mode grouping," which better exposes the underlying static behavior. We have also developed a scheduling technique for a class of dynamic applications that generates parameterized looped schedules (PLSs), which can handle dynamic dataflow behavior without major limitations on compile-time predictability. 4. We have demonstrated the use of dataflow-based approaches for design and implementation of radio astronomy DSP systems using an application example of a tunable digital downconverter (TDD) for spectrometers. Design and implementation of this module has been an integral part of this thesis work. This thesis demonstrates a design flow that consists of a high-level software prototype, analysis, and simulation using the dataflow interchange format (DIF) tool, and integration of this design with the existing tool flow for the target implementation on an FPGA platform, called interconnect break-out board (IBOB). We have also explored the trade-off between low hardware cost for fixed configurations of digital downconverters and flexibility offered by TDD designs. 5. This thesis has contributed significantly to the development and release of the latest version of a graph package oriented toward models of computation (MoCGraph). Our enhancements to this package include support for tree data structures, and generalized schedule trees (GSTs), which provide a useful data structure for a wide variety of schedule representations. Our extensions to the MoCGraph package provided key support for the CFDF model, and functional simulation capabilities in the DIF package.
NASA Astrophysics Data System (ADS)
Moustafa, Azza Aziz; Salem, Hesham; Hegazy, Maha; Ali, Omnia
2015-02-01
Simple, accurate, and selective methods have been developed and validated for simultaneous determination of a ternary mixture of Chlorpheniramine maleate (CPM), Pseudoephedrine HCl (PSE) and Ibuprofen (IBF), in tablet dosage form. Four univariate methods manipulating ratio spectra were applied, method A is the double divisor-ratio difference spectrophotometric method (DD-RD). Method B is double divisor-derivative ratio spectrophotometric method (DD-RD). Method C is derivative ratio spectrum-zero crossing method (DRZC), while method D is mean centering of ratio spectra (MCR). Two multivariate methods were also developed and validated, methods E and F are Principal Component Regression (PCR) and Partial Least Squares (PLSs). The proposed methods have the advantage of simultaneous determination of the mentioned drugs without prior separation steps. They were successfully applied to laboratory-prepared mixtures and to commercial pharmaceutical preparation without any interference from additives. The proposed methods were validated according to the ICH guidelines. The obtained results were statistically compared with the official methods where no significant difference was observed regarding both accuracy and precision.
Bagchi, Torit Baran; Sharma, Srigopal; Chattopadhyay, Krishnendu
2016-01-15
With the escalating persuasion of economic and nutritional importance of rice grain protein and nutritional components of rice bran (RB), NIRS can be an effective tool for high throughput screening in rice breeding programme. Optimization of NIRS is prerequisite for accurate prediction of grain quality parameters. In the present study, 173 brown rice (BR) and 86 RB samples with a wide range of values were used to compare the calibration models generated by different chemometrics for grain protein (GPC) and amylose content (AC) of BR and proximate compositions (protein, crude oil, moisture, ash and fiber content) of RB. Various modified partial least square (mPLSs) models corresponding with the best mathematical treatments were identified for all components. Another set of 29 genotypes derived from the breeding programme were employed for the external validation of these calibration models. High accuracy of all these calibration and prediction models was ensured through pair t-test and correlation regression analysis between reference and predicted values. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Chappell, Steven P.; Abercromby, Andrew F.; Gernhardt, Michael L.
2011-01-01
The ultimate success of future human space exploration missions is dependent on the ability to perform extravehicular activity (EVA) tasks effectively, efficiently, and safely, whether those tasks represent a nominal mode of operation or a contingency capability. To optimize EVA systems for the best human performance, it is critical to study the effects of varying key factors such as suit center of gravity (CG), suit mass, and gravity level. During the 2-week NASA Extreme Environment Mission Operations (NEEMO) 14 mission, four crewmembers performed a series of EVA tasks under different simulated EVA suit configurations and used full-scale mockups of a Space Exploration Vehicle (SEV) rover and lander. NEEMO is an underwater spaceflight analog that allows a true mission-like operational environment and uses buoyancy effects and added weight to simulate different gravity levels. Quantitative and qualitative data collected during NEEMO 14, as well as from spacesuit tests in parabolic flight and with overhead suspension, are being used to directly inform ongoing hardware and operations concept development of the SEV, exploration EVA systems, and future EVA suits. OBJECTIVE: To compare human performance across different weight and CG configurations. METHODS: Four subjects were weighed out to simulate reduced gravity and wore either a specially designed rig to allow adjustment of CG or a PLSS mockup. Subjects completed tasks including level ambulation, incline/decline ambulation, standing from the kneeling and prone position, picking up objects, shoveling, ladder climbing, incapacitated crewmember handling, and small and large payload transfer. Subjective compensation, exertion, task acceptability, and duration data as well as photo and video were collected. RESULTS: There appear to be interactions between CG, weight, and task. CGs nearest the subject s natural CG are the most predictable in terms of acceptable performance across tasks. Future research should focus on understanding the interactions between CG, mass, and subject differences.
Avelino, Jacques; Cabut, Sandrine; Barboza, Bernardo; Barquero, Miguel; Alfaro, Ronny; Esquivel, César; Durand, Jean-François; Cilas, Christian
2007-12-01
ABSTRACT We monitored the development of American leaf spot of coffee, a disease caused by the gemmiferous fungus Mycena citricolor, in 57 plots in Costa Rica for 1 or 2 years in order to gain a clearer understanding of conditions conducive to the disease and improve its control. During the investigation, characteristics of the coffee trees, crop management, and the environment were recorded. For the analyses, we used partial least-squares regression via the spline functions (PLSS), which is a nonlinear extension to partial least-squares regression (PLS). The fungus developed well in areas located between approximately 1,100 and 1,550 m above sea level. Slopes were conducive to its development, but eastern-facing slopes were less affected than the others, probably because they were more exposed to sunlight, especially in the rainy season. The distance between planting rows, the shade percentage, coffee tree height, the type of shade, and the pruning system explained disease intensity due to their effects on coffee tree shading and, possibly, on the humidity conditions in the plot. Forest trees and fruit trees intercropped with coffee provided particularly propitious conditions. Apparently, fertilization was unfavorable for the disease, probably due to dilution phenomena associated with faster coffee tree growth. Finally, series of wet spells interspersed with dry spells, which were frequent in the middle of the rainy season, were critical for the disease, probably because they affected the production and release of gemmae and their viability. These results could be used to draw up a map of epidemic risks taking topographical factors into account. To reduce those risks and improve chemical control, our results suggested that farmers should space planting rows further apart, maintain light shading in the plantation, and prune their coffee trees.
Effect of STS space suit on astronaut dominant upper limb EVA work performance
NASA Technical Reports Server (NTRS)
Greenisen, Michael C.
1987-01-01
The STS Space Suited and unsuited dominant upper limb performance was evaluated in order to quantify future EVA astronaut skeletal muscle upper limb performance expectations. Testing was performed with subjects standing in EVA STS foot restraints. Data was collected with a CYBEX Dynamometer enclosed in a waterproof container. Control data was taken in one g. During one g testing, weight of the Space Suit was relieved from the subject via an overhead crane with a special connection to the PLSS of the suit. Experimental data was acquired during simulated zero g, accomplished by neutral buoyancy in the Weightless Environment Training Facility. Unsuited subjects became neutrally buoyant via SCUBA BC vests. Actual zero g experimental data was collected during parabolic arc flights on board NASA's modified KC-135 aircraft. During all test conditions, subjects performed five EVA work tasks requiring dominant upper limb performance and ten individual joint articulation movements. Dynamometer velocities for each tested movement were 0 deg/sec, 30 or 60 deg/sec and 120 or 180 deg/sec, depending on the test, with three repetitions per test. Performance was measured in foot pounds of torque.
NASA Astrophysics Data System (ADS)
Tan, Chao; Chen, Hui; Wang, Chao; Zhu, Wanping; Wu, Tong; Diao, Yuanbo
2013-03-01
Near and mid-infrared (NIR/MIR) spectroscopy techniques have gained great acceptance in the industry due to their multiple applications and versatility. However, a success of application often depends heavily on the construction of accurate and stable calibration models. For this purpose, a simple multi-model fusion strategy is proposed. It is actually the combination of Kohonen self-organizing map (KSOM), mutual information (MI) and partial least squares (PLSs) and therefore named as KMICPLS. It works as follows: First, the original training set is fed into a KSOM for unsupervised clustering of samples, on which a series of training subsets are constructed. Thereafter, on each of the training subsets, a MI spectrum is calculated and only the variables with higher MI values than the mean value are retained, based on which a candidate PLS model is constructed. Finally, a fixed number of PLS models are selected to produce a consensus model. Two NIR/MIR spectral datasets from brewing industry are used for experiments. The results confirms its superior performance to two reference algorithms, i.e., the conventional PLS and genetic algorithm-PLS (GAPLS). It can build more accurate and stable calibration models without increasing the complexity, and can be generalized to other NIR/MIR applications.
Farouk, M; Elaziz, Omar Abd; Tawakkol, Shereen M; Hemdan, A; Shehata, Mostafa A
2014-04-05
Four simple, accurate, reproducible, and selective methods have been developed and subsequently validated for the determination of Benazepril (BENZ) alone and in combination with Amlodipine (AML) in pharmaceutical dosage form. The first method is pH induced difference spectrophotometry, where BENZ can be measured in presence of AML as it showed maximum absorption at 237nm and 241nm in 0.1N HCl and 0.1N NaOH, respectively, while AML has no wavelength shift in both solvents. The second method is the new Extended Ratio Subtraction Method (EXRSM) coupled to Ratio Subtraction Method (RSM) for determination of both drugs in commercial dosage form. The third and fourth methods are multivariate calibration which include Principal Component Regression (PCR) and Partial Least Squares (PLSs). A detailed validation of the methods was performed following the ICH guidelines and the standard curves were found to be linear in the range of 2-30μg/mL for BENZ in difference and extended ratio subtraction spectrophotometric method, and 5-30 for AML in EXRSM method, with well accepted mean correlation coefficient for each analyte. The intra-day and inter-day precision and accuracy results were well within the acceptable limits. Copyright © 2013 Elsevier B.V. All rights reserved.
Cheng, Dengmiao; Feng, Yao; Liu, Yuanwang; Li, Jinpeng; Xue, Jianming; Li, Zhaojun
2018-09-01
Understanding antibiotic adsorption in livestock manures is crucial to assess the fate and risk of antibiotics in the environment. In this study, three quantitative models developed with swine manure-water distribution coefficients (LgK d ) for oxytetracycline (OTC), ciprofloxacin (CIP) and sulfamerazine (SM1) in swine manures. Physicochemical parameters (n=12) of the swine manure were used as independent variables using partial least-squares (PLSs) analysis. The cumulative cross-validated regression coefficients (Q 2 cum ) values, standard deviations (SDs) and external validation coefficient (Q 2 ext ) ranged from 0.761 to 0.868, 0.027 to 0.064, and 0.743 to 0.827 for the three models; as such, internal and external predictability of the models were strong. The pH, soluble organic carbon (SOC) and nitrogen (SON), and Ca were important explanatory variables for the OTC-Model, pH, SOC, and SON for the CIP-model, and pH, total organic nitrogen (TON), and SOC for the SM1-model. The high VIPs (variable importance in the projections) of pH (1.178-1.396), SOC (0.968-1.034), and SON (0.822 and 0.865) established these physicochemical parameters as likely being dominant (associatively) in affecting transport of antibiotics in swine manures. Copyright © 2018 Elsevier B.V. All rights reserved.
Tan, Chao; Chen, Hui; Wang, Chao; Zhu, Wanping; Wu, Tong; Diao, Yuanbo
2013-03-15
Near and mid-infrared (NIR/MIR) spectroscopy techniques have gained great acceptance in the industry due to their multiple applications and versatility. However, a success of application often depends heavily on the construction of accurate and stable calibration models. For this purpose, a simple multi-model fusion strategy is proposed. It is actually the combination of Kohonen self-organizing map (KSOM), mutual information (MI) and partial least squares (PLSs) and therefore named as KMICPLS. It works as follows: First, the original training set is fed into a KSOM for unsupervised clustering of samples, on which a series of training subsets are constructed. Thereafter, on each of the training subsets, a MI spectrum is calculated and only the variables with higher MI values than the mean value are retained, based on which a candidate PLS model is constructed. Finally, a fixed number of PLS models are selected to produce a consensus model. Two NIR/MIR spectral datasets from brewing industry are used for experiments. The results confirms its superior performance to two reference algorithms, i.e., the conventional PLS and genetic algorithm-PLS (GAPLS). It can build more accurate and stable calibration models without increasing the complexity, and can be generalized to other NIR/MIR applications. Copyright © 2012 Elsevier B.V. All rights reserved.
Influence of scientific-technical literacy on consumers' behavioural intentions regarding new food.
Rodríguez-Entrena, Macario; Salazar-Ordóñez, Melania
2013-01-01
The application of genetic engineering to agriculture has led to an important and controversial innovation in the food sector, so-called Genetically Modified (GM) food. A great deal of literature has studied cognitive and attitudinal factors conditioning consumers' acceptance of GM food, knowledge being one of the most inconsistent variables. Notwithstanding, some authors suggest closer attention should be paid to "science literacy", even more so than knowledge. This paper studies the potential role of consumer literacy fields - i.e. consumer scientific-technical or social-humanistic literacy - in determining consumer choice behaviour towards GM foods. We analyse the strength of the moderating effects produced by consumer university training in some of the most important factors which influence consumers' innovative product acceptance, such as perceived benefits and risks, attitudes to GM technology, trust in institutions or knowledge. The research is performed in southern Spain, using a variance-based technique called Structural Equation Modelling by Partial Least Squares (PLSs). The results show that perceived benefits and risks play a significant role in shaping behavioural intentions towards GM food, the attitude to GM technology being the main driver of consumers' beliefs about risks and benefits. Additionally, behavioural intentions display some differences between the scientific-technical and social-humanistic literacy fields, the variables of trust in institutions and knowledge registering the most striking differences. Copyright © 2012 Elsevier Ltd. All rights reserved.
Silva, Renan O.; Santana, Ana Paula M.; Carvalho, Nathalia S.; Bezerra, Talita S.; Oliveira, Camila B.; Damasceno, Samara R. B.; Chaves, Luciano S.; Freitas, Ana Lúcia P.; Soares, Pedro M. G.; Souza, Marcellus H. L. P.; Barbosa, André Luiz R.; Medeiros, Jand-Venes R.
2012-01-01
Red seaweeds synthesize a great variety of sulfated galactans. Sulfated polysaccharides (PLSs) from seaweed are comprised of substances with pharmaceutical and biomedical potential. The aim of the present study was to evaluate the protective effect of the PLS fraction extracted from the seaweed Gracilaria birdiae in rats with naproxen-induced gastrointestinal damage. Male Wistar rats were pretreated with 0.5% carboxymethylcellulose (control group—vehicle) or PLS (10, 30, and 90 mg/kg, p.o.) twice daily (at 09:00 and 21:00) for 2 days. After 1 h, naproxen (80 mg/kg, p.o.) was administered. The rats were killed on day two, 4 h after naproxen treatment. The stomachs were promptly excised, opened along the greater curvature, and measured using digital calipers. Furthermore, the guts of the animals were removed, and a 5-cm portion of the small intestine (jejunum and ileum) was used for the evaluation of macroscopic scores. Samples of the stomach and the small intestine were used for histological evaluation, morphometric analysis and in assays for glutathione (GSH) levels, malonyldialdehyde (MDA) concentration, and myeloperoxidase (MPO) activity. PLS treatment reduced the macroscopic and microscopic naproxen-induced gastrointestinal damage in a dose-dependent manner. Our results suggest that the PLS fraction has a protective effect against gastrointestinal damage through mechanisms that involve the inhibition of inflammatory cell infiltration and lipid peroxidation. PMID:23342384
Silva, Renan O; Santana, Ana Paula M; Carvalho, Nathalia S; Bezerra, Talita S; Oliveira, Camila B; Damasceno, Samara R B; Chaves, Luciano S; Freitas, Ana Lúcia P; Soares, Pedro M G; Souza, Marcellus H L P; Barbosa, André Luiz R; Medeiros, Jand-Venes R
2012-12-01
Red seaweeds synthesize a great variety of sulfated galactans. Sulfated polysaccharides (PLSs) from seaweed are comprised of substances with pharmaceutical and biomedical potential. The aim of the present study was to evaluate the protective effect of the PLS fraction extracted from the seaweed Gracilaria birdiae in rats with naproxen-induced gastrointestinal damage. Male Wistar rats were pretreated with 0.5% carboxymethylcellulose (control group-vehicle) or PLS (10, 30, and 90 mg/kg, p.o.) twice daily (at 09:00 and 21:00) for 2 days. After 1 h, naproxen (80 mg/kg, p.o.) was administered. The rats were killed on day two, 4 h after naproxen treatment. The stomachs were promptly excised, opened along the greater curvature, and measured using digital calipers. Furthermore, the guts of the animals were removed, and a 5-cm portion of the small intestine (jejunum and ileum) was used for the evaluation of macroscopic scores. Samples of the stomach and the small intestine were used for histological evaluation, morphometric analysis and in assays for glutathione (GSH) levels, malonyldialdehyde (MDA) concentration, and myeloperoxidase (MPO) activity. PLS treatment reduced the macroscopic and microscopic naproxen-induced gastrointestinal damage in a dose-dependent manner. Our results suggest that the PLS fraction has a protective effect against gastrointestinal damage through mechanisms that involve the inhibition of inflammatory cell infiltration and lipid peroxidation.
Biosensors for EVA: Improved Instrumentation for Ground-based Studies
NASA Technical Reports Server (NTRS)
Soller, B.; Ellerby, G.; Zou, F.; Scott, P.; Jin, C.; Lee, S. M. C.; Coates, J.
2010-01-01
During lunar excursions in the EVA suit, real-time measurement of metabolic rate is required to manage consumables and guide activities to ensure safe return to the base. Metabolic rate, or oxygen consumption (VO2), is normally measured from pulmonary parameters but cannot be determined with standard techniques in the oxygen-rich environment of a spacesuit. Our group has developed novel near infrared spectroscopic (NIRS) methods to calculate muscle oxygen saturation (SmO 2), hematocrit, and pH, and we recently demonstrated that we can use our NIRS sensor to measure VO 2 on the leg during cycling. Our NSBRI project has 4 objectives: (1) increase the accuracy of the metabolic rate calculation through improved prediction of stroke volume; (2) investigate the relative contributions of calf and thigh oxygen consumption to metabolic rate calculation for walking and running; (3) demonstrate that the NIRS-based noninvasive metabolic rate methodology is sensitive enough to detect decrement in VO 2 in a space analog; and (4) improve instrumentation to allow testing within a spacesuit. Over the past year we have made progress on all four objectives, but the most significant progress was made in improving the instrumentation. The NIRS system currently in use at JSC is based on fiber optics technology. Optical fiber bundles are used to deliver light from a light source in the monitor to the patient, and light reflected back from the patient s muscle to the monitor for spectroscopic analysis. The fiber optic cables are large and fragile, and there is no way to get them in and out of the test spacesuit used for ground-based studies. With complimentary funding from the US Army, we undertook a complete redesign of the sensor and control electronics to build a novel system small enough to be used within the spacesuit and portable enough to be used by a combat medic. In the new system the filament lamp used in the fiber optic system was replaced with a novel broadband near infrared LED light source. The compact grating spectrometer was replaced with a chip-scale spectrometer. With this new design, the sensor is 4 in 2 in 0.5 in, weighs 60 g, and no fiber optic cables are needed. The sensor, which contains the light source and the spectrometer, is adhered directly to the skin with medical grade adhesive. The sensor can be powered via the USB port of the laptop computer that controls the sensor operation. Alternatively, for studies in the spacesuit, the sensor can be powered by a small battery pack and operated by an ultra-portable hand-held computer. Both the handheld computer and battery pack will easily fit within the PLSS of the test spacesuit. System automation was significantly improved, to add features suggested by our colleagues in the Cardiovascular Laboratory and the NASA JSC Exercise Physiology and Countermeasures Project. The functionality and portability of this system were demonstrated in our UMass laboratory.
Yuan, Cheng; Lazarowitz, Sondra G; Citovsky, Vitaly
2016-01-19
Our fundamental knowledge of the protein-sorting pathways required for plant cell-to-cell trafficking and communication via the intercellular connections termed plasmodesmata has been severely limited by the paucity of plasmodesmal targeting sequences that have been identified to date. To address this limitation, we have identified the plasmodesmal localization signal (PLS) in the Tobacco mosaic virus (TMV) cell-to-cell-movement protein (MP), which has emerged as the paradigm for dissecting the molecular details of cell-to-cell transport through plasmodesmata. We report here the identification of a bona fide functional TMV MP PLS, which encompasses amino acid residues between positions 1 and 50, with residues Val-4 and Phe-14 potentially representing critical sites for PLS function that most likely affect protein conformation or protein interactions. We then demonstrated that this PLS is both necessary and sufficient for protein targeting to plasmodesmata. Importantly, as TMV MP traffics to plasmodesmata by a mechanism that is distinct from those of the three plant cell proteins in which PLSs have been reported, our findings provide important new insights to expand our understanding of protein-sorting pathways to plasmodesmata. The science of virology began with the discovery of Tobacco mosaic virus (TMV). Since then, TMV has served as an experimental and conceptual model for studies of viruses and dissection of virus-host interactions. Indeed, the TMV cell-to-cell-movement protein (MP) has emerged as the paradigm for dissecting the molecular details of cell-to-cell transport through the plant intercellular connections termed plasmodesmata. However, one of the most fundamental and key functional features of TMV MP, its putative plasmodesmal localization signal (PLS), has not been identified. Here, we fill this gap in our knowledge and identify the TMV MP PLS. Copyright © 2016 Yuan et al.
Use MACES IVA Suit for EVA Mobility Evaluations
NASA Technical Reports Server (NTRS)
Watson, Richard D.
2014-01-01
The use of an Intra-Vehicular Activity (IVA) suit for a spacewalk or Extra-Vehicular Activity (EVA) was evaluated for mobility and usability in the Neutral Buoyancy Lab (NBL) environment. The Space Shuttle Advanced Crew Escape Suit (ACES) has been modified (MACES) to integrate with the Orion spacecraft. The first several missions of the Orion MPCV spacecraft will not have mass available to carry an EVA specific suit so any EVA required will have to be performed by the MACES. Since the MACES was not designed with EVA in mind, it was unknown what mobility the suit would be able to provide for an EVA or if a person could perform useful tasks for an extended time inside the pressurized suit. The suit was evaluated in multiple NBL runs by a variety of subjects including crewmembers with significant EVA experience. Various functional mobility tasks performed included: translation, body positioning, carrying tools, body stabilization, equipment handling, and use of tools. Hardware configurations included with and without TMG, suit with IVA gloves and suit with EVA gloves. Most tasks were completed on ISS mockups with existing EVA tools. Some limited tasks were completed with prototype tools on a simulated rocky surface. Major findings include: demonstration of the ability to weigh-out the suit, understanding the need to have subjects perform multiple runs prior to getting feedback, determination of critical sizing factors, and need for adjustment of suit work envelop. The early testing has demonstrated the feasibility of EVA's limited duration and limited scope. Further testing is required with more flight like tasking and constraints to validate these early results. If the suit is used for EVA, it will require mission specific modifications for umbilical management or PLSS integration, safety tether attachment, and tool interfaces. These evaluations are continuing through calendar year 2014.
Controlled Ecological Life Support System. Life Support Systems in Space Travel
NASA Technical Reports Server (NTRS)
Macelroy, R. D. (Editor); Smernoff, D. T. (Editor); Klein, H. P. (Editor)
1985-01-01
Life support systems in space travel, in closed ecological systems were studied. Topics discussed include: (1) problems of life support and the fundamental concepts of bioregeneration; (2) technology associated with physical/chemical regenerative life support; (3) projection of the break even points for various life support techniques; (4) problems of controlling a bioregenerative life support system; (5) data on the operation of an experimental algal/mouse life support system; (6) industrial concepts of bioregenerative life support; and (7) Japanese concepts of bioregenerative life support and associated biological experiments to be conducted in the space station.
Support system, excavation arrangement, and process of supporting an object
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arnold, Bill W.
2017-08-01
A support system, an excavation arrangement, and a process of supporting an object are disclosed. The support system includes a weight-bearing device and a camming mechanism positioned below the weight-bearing device. A downward force on the weight-bearing device at least partially secures the camming mechanism to opposing surfaces. The excavation arrangement includes a borehole, a support system positioned within and secured to the borehole, and an object positioned on and supported by the support system. The process includes positioning and securing the support system and positioning the object on the weight-bearing device.
Facility Systems, Ground Support Systems, and Ground Support Equipment General Design Requirements
NASA Technical Reports Server (NTRS)
Thaxton, Eric A.; Mathews, Roger E.
2014-01-01
This standard establishes requirements and guidance for design and fabrication of ground systems (GS) that includes: ground support equipment (GSE), ground support systems (GSS), and facility ground support systems (F GSS) to provide uniform methods and processes for design and development of robust, safe, reliable, maintainable, supportable, and cost-effective GS in support of space flight and institutional programs and projects.
Lobach, David F; Kawamoto, Kensaku; Anstrom, Kevin J; Russell, Michael L; Woods, Peter; Smith, Dwight
2007-01-01
Clinical decision support is recognized as one potential remedy for the growing crisis in healthcare quality in the United States and other industrialized nations. While decision support systems have been shown to improve care quality and reduce errors, these systems are not widely available. This lack of availability arises in part because most decision support systems are not portable or scalable. The Health Level 7 international standard development organization recently adopted a draft standard known as the Decision Support Service standard to facilitate the implementation of clinical decision support systems using software services. In this paper, we report the first implementation of a clinical decision support system using this new standard. This system provides point-of-care chronic disease management for diabetes and other conditions and is deployed throughout a large regional health system. We also report process measures and usability data concerning the system. Use of the Decision Support Service standard provides a portable and scalable approach to clinical decision support that could facilitate the more extensive use of decision support systems.
How Decision Support Systems Can Benefit from a Theory of Change Approach.
Allen, Will; Cruz, Jennyffer; Warburton, Bruce
2017-06-01
Decision support systems are now mostly computer and internet-based information systems designed to support land managers with complex decision-making. However, there is concern that many environmental and agricultural decision support systems remain underutilized and ineffective. Recent efforts to improve decision support systems use have focused on enhancing stakeholder participation in their development, but a mismatch between stakeholders' expectations and the reality of decision support systems outputs continues to limit uptake. Additional challenges remain in problem-framing and evaluation. We propose using an outcomes-based approach called theory of change in conjunction with decision support systems development to support both wider problem-framing and outcomes-based monitoring and evaluation. The theory of change helps framing by placing the decision support systems within a wider context. It highlights how decision support systems use can "contribute" to long-term outcomes, and helps align decision support systems outputs with these larger goals. We illustrate the benefits of linking decision support systems development and application with a theory of change approach using an example of pest rabbit management in Australia. We develop a theory of change that outlines the activities required to achieve the outcomes desired from an effective rabbit management program, and two decision support systems that contribute to specific aspects of decision making in this wider problem context. Using a theory of change in this way should increase acceptance of the role of decision support systems by end-users, clarify their limitations and, importantly, increase effectiveness of rabbit management. The use of a theory of change should benefit those seeking to improve decision support systems design, use and, evaluation.
How Decision Support Systems Can Benefit from a Theory of Change Approach
NASA Astrophysics Data System (ADS)
Allen, Will; Cruz, Jennyffer; Warburton, Bruce
2017-06-01
Decision support systems are now mostly computer and internet-based information systems designed to support land managers with complex decision-making. However, there is concern that many environmental and agricultural decision support systems remain underutilized and ineffective. Recent efforts to improve decision support systems use have focused on enhancing stakeholder participation in their development, but a mismatch between stakeholders' expectations and the reality of decision support systems outputs continues to limit uptake. Additional challenges remain in problem-framing and evaluation. We propose using an outcomes-based approach called theory of change in conjunction with decision support systems development to support both wider problem-framing and outcomes-based monitoring and evaluation. The theory of change helps framing by placing the decision support systems within a wider context. It highlights how decision support systems use can "contribute" to long-term outcomes, and helps align decision support systems outputs with these larger goals. We illustrate the benefits of linking decision support systems development and application with a theory of change approach using an example of pest rabbit management in Australia. We develop a theory of change that outlines the activities required to achieve the outcomes desired from an effective rabbit management program, and two decision support systems that contribute to specific aspects of decision making in this wider problem context. Using a theory of change in this way should increase acceptance of the role of decision support systems by end-users, clarify their limitations and, importantly, increase effectiveness of rabbit management. The use of a theory of change should benefit those seeking to improve decision support systems design, use and, evaluation.
Department of the Air Force Information Technology Program FY 95 President’s Budget
1994-03-01
2095 2200 552 900 1032 Description: Contractor hardware maintenan support, systems analyst support software development and maintenance, and off -the...hardware maintenance support, systems analyst support, operations support, configuration management, test support, and off -the-shelf software license...2419 2505 2594 Description: Contractor hardware maintenance support, systems analyst support, operations support, and off -the-shelf software license
Lee, Seonah
2013-10-01
This study aimed to organize the system features of decision support technologies targeted at nursing practice into assessment, problem identification, care plans, implementation, and outcome evaluation. It also aimed to identify the range of the five stage-related sequential decision supports that computerized clinical decision support systems provided. MEDLINE, CINAHL, and EMBASE were searched. A total of 27 studies were reviewed. The system features collected represented the characteristics of each category from patient assessment to outcome evaluation. Several features were common across the reviewed systems. For the sequential decision support, all of the reviewed systems provided decision support in sequence for patient assessment and care plans. Fewer than half of the systems included problem identification. There were only three systems operating in an implementation stage and four systems in outcome evaluation. Consequently, the key steps for sequential decision support functions were initial patient assessment, problem identification, care plan, and outcome evaluation. Providing decision support in such a full scope will effectively help nurses' clinical decision making. By organizing the system features, a comprehensive picture of nursing practice-oriented computerized decision support systems was obtained; however, the development of a guideline for better systems should go beyond the scope of a literature review.
Pressure vessel sliding support unit and system using the sliding support unit
Breach, Michael R.; Keck, David J.; Deaver, Gerald A.
2013-01-15
Provided is a sliding support and a system using the sliding support unit. The sliding support unit may include a fulcrum capture configured to attach to a support flange, a fulcrum support configured to attach to the fulcrum capture, and a baseplate block configured to support the fulcrum support. The system using the sliding support unit may include a pressure vessel, a pedestal bracket, and a plurality of sliding support units.
Bal, Mert; Amasyali, M Fatih; Sever, Hayri; Kose, Guven; Demirhan, Ayse
2014-01-01
The importance of the decision support systems is increasingly supporting the decision making process in cases of uncertainty and the lack of information and they are widely used in various fields like engineering, finance, medicine, and so forth, Medical decision support systems help the healthcare personnel to select optimal method during the treatment of the patients. Decision support systems are intelligent software systems that support decision makers on their decisions. The design of decision support systems consists of four main subjects called inference mechanism, knowledge-base, explanation module, and active memory. Inference mechanism constitutes the basis of decision support systems. There are various methods that can be used in these mechanisms approaches. Some of these methods are decision trees, artificial neural networks, statistical methods, rule-based methods, and so forth. In decision support systems, those methods can be used separately or a hybrid system, and also combination of those methods. In this study, synthetic data with 10, 100, 1000, and 2000 records have been produced to reflect the probabilities on the ALARM network. The accuracy of 11 machine learning methods for the inference mechanism of medical decision support system is compared on various data sets.
NASA Technical Reports Server (NTRS)
Simon, William E.; Li, Ku-Yen; Yaws, Carl L.; Mei, Harry T.; Nguyen, Vinh D.; Chu, Hsing-Wei
1994-01-01
A methyl acetate reactor was developed to perform a subscale kinetic investigation in the design and optimization of a full-scale metabolic simulator for long term testing of life support systems. Other tasks in support of the closed ecological life support system test program included: (1) heating, ventilation and air conditioning analysis of a variable pressure growth chamber, (2) experimental design for statistical analysis of plant crops, (3) resource recovery for closed life support systems, and (4) development of data acquisition software for automating an environmental growth chamber.
Space Station Freedom ECLSS: A step toward autonomous regenerative life support systems
NASA Technical Reports Server (NTRS)
Dewberry, Brandon S.
1990-01-01
The Environmental Control and Life Support System (ECLSS) is a Freedom Station distributed system with inherent applicability to extensive automation primarily due to its comparatively long control system latencies. These allow longer contemplation times in which to form a more intelligent control strategy and to prevent and diagnose faults. The regenerative nature of the Space Station Freedom ECLSS will contribute closed loop complexities never before encountered in life support systems. A study to determine ECLSS automation approaches has been completed. The ECLSS baseline software and system processes could be augmented with more advanced fault management and regenerative control systems for a more autonomous evolutionary system, as well as serving as a firm foundation for future regenerative life support systems. Emerging advanced software technology and tools can be successfully applied to fault management, but a fully automated life support system will require research and development of regenerative control systems and models. The baseline Environmental Control and Life Support System utilizes ground tests in development of batch chemical and microbial control processes. Long duration regenerative life support systems will require more active chemical and microbial feedback control systems which, in turn, will require advancements in regenerative life support models and tools. These models can be verified using ground and on orbit life support test and operational data, and used in the engineering analysis of proposed intelligent instrumentation feedback and flexible process control technologies for future autonomous regenerative life support systems, including the evolutionary Space Station Freedom ECLSS.
Extended mission life support systems
NASA Technical Reports Server (NTRS)
Quattrone, P. D.
1985-01-01
Extended manned space missions which include interplanetary missions require regenerative life support systems. Manned mission life support considerations are placed in perspective and previous manned space life support system technology, activities and accomplishments in current supporting research and technology (SR&T) programs are reviewed. The life support subsystem/system technologies required for an enhanced duration orbiter (EDO) and a space operations center (SOC), regenerative life support functions and technology required for manned interplanetary flight vehicles, and future development requirements are outlined. The Space Shuttle Orbiters (space transportation system) is space cabin atmosphere is maintained at Earth ambient pressure of 14.7 psia (20% O2 and 80% N2). The early Shuttle flights will be seven-day flights, and the life support system flight hardware will still utilize expendables.
Decision support systems for ecosystem management: An evaluation of existing systems
H. Todd Mowrer; Klaus Barber; Joe Campbell; Nick Crookston; Cathy Dahms; John Day; Jim Laacke; Jim Merzenich; Steve Mighton; Mike Rauscher; Rick Sojda; Joyce Thompson; Peter Trenchi; Mark Twery
1997-01-01
This report evaluated 24 computer-aided decision support systems (DSS) that can support management decision-making in forest ecosystems. It compares the scope of each system, spatial capabilities, computational methods, development status, input and output requirements, user support availability, and system performance. Questionnaire responses from the DSS developers (...
A Decision Support System for Evaluating Systems of Undersea Sensors and Weapons
2015-12-01
distribution is unlimited A DECISION SUPPORT SYSTEM FOR EVALUATING SYSTEMS OF UNDERSEA SENSORS AND WEAPONS by Team Mental Focus Cohort 142O...A DECISION SUPPORT SYSTEM FOR EVALUATING SYSTEMS OF UNDERSEA SENSORS AND WEAPONS 5. FUNDING NUMBERS 6. AUTHOR(S) Systems Engineering Cohort...undersea weapons, it requires the supporting tools to evaluate and predict the effectiveness of these system concepts. While current naval minefield
NASA Technical Reports Server (NTRS)
Prokhorov, Kimberlee; Shkedi, Brienne
2006-01-01
The current International Space Station (ISS) Environmental Control and Life Support (ECLS) system is designed to support an ISS crew size of three people. The capability to expand that system to support nine crew members during a Contingency Shuttle Crew Support (CSCS) scenario has been evaluated. This paper describes how the ISS ECLS systems may be operated for supporting CSCS, and the durations expected for the oxygen supply and carbon dioxide control subsystems.
Control and modeling of a CELSS (Controlled Ecological Life Support System)
NASA Technical Reports Server (NTRS)
Auslander, D. M.; Spear, R. C.; Babcock, P. S.; Nadel, M.
1983-01-01
Research topics that arise from the conceptualization of control for closed life support systems which are life support systems in which all or most of the mass is recycled are discussed. Modeling and control of uncertain and poorly defined systems, resource allocation in closed life support systems, and control structures or systems with delay and closure are emphasized.
49 CFR 193.2609 - Support systems.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 3 2013-10-01 2013-10-01 false Support systems. 193.2609 Section 193.2609 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY...: FEDERAL SAFETY STANDARDS Maintenance § 193.2609 Support systems. Each support system or foundation of each...
49 CFR 193.2609 - Support systems.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 3 2012-10-01 2012-10-01 false Support systems. 193.2609 Section 193.2609 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY...: FEDERAL SAFETY STANDARDS Maintenance § 193.2609 Support systems. Each support system or foundation of each...
49 CFR 193.2609 - Support systems.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 3 2011-10-01 2011-10-01 false Support systems. 193.2609 Section 193.2609 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY...: FEDERAL SAFETY STANDARDS Maintenance § 193.2609 Support systems. Each support system or foundation of each...
NASA Advanced Exploration Systems: Advancements in Life Support Systems
NASA Technical Reports Server (NTRS)
Shull, Sarah A.; Schneider, Walter F.
2016-01-01
The NASA Advanced Exploration Systems (AES) Life Support Systems (LSS) project strives to develop reliable, energy-efficient, and low-mass spacecraft systems to provide environmental control and life support systems (ECLSS) critical to enabling long duration human missions beyond low Earth orbit (LEO). Highly reliable, closed-loop life support systems are among the capabilities required for the longer duration human space exploration missions assessed by NASA’s Habitability Architecture Team.
Feasibility Analysis and Prototyping of a Fast Autonomous Recon system
2017-06-01
Test and Evaluation Interim Contractor Support System Assessment OPERATIONAL USE AND SYSTEM SUPPORT System Operation in the User Environment...Sustaining Maintenance and Logistics Support Operational Testing System Modifications for Improvement Contractor Support System Assessment...helicopter but has the added benefit of high -speed flight similar to a fixed-wing aircraft. Figure 1 shows the two different flight modes of the V-22
Halim, Isa; Arep, Hambali; Kamat, Seri Rahayu; Abdullah, Rohana; Omar, Abdul Rahman; Ismail, Ahmad Rasdan
2014-06-01
Prolonged standing has been hypothesized as a vital contributor to discomfort and muscle fatigue in the workplace. The objective of this study was to develop a decision support system that could provide systematic analysis and solutions to minimize the discomfort and muscle fatigue associated with prolonged standing. The integration of object-oriented programming and a Model Oriented Simultaneous Engineering System were used to design the architecture of the decision support system. Validation of the decision support system was carried out in two manufacturing companies. The validation process showed that the decision support system produced reliable results. The decision support system is a reliable advisory tool for providing analysis and solutions to problems related to the discomfort and muscle fatigue associated with prolonged standing. Further testing of the decision support system is suggested before it is used commercially.
Halim, Isa; Arep, Hambali; Kamat, Seri Rahayu; Abdullah, Rohana; Omar, Abdul Rahman; Ismail, Ahmad Rasdan
2014-01-01
Background Prolonged standing has been hypothesized as a vital contributor to discomfort and muscle fatigue in the workplace. The objective of this study was to develop a decision support system that could provide systematic analysis and solutions to minimize the discomfort and muscle fatigue associated with prolonged standing. Methods The integration of object-oriented programming and a Model Oriented Simultaneous Engineering System were used to design the architecture of the decision support system. Results Validation of the decision support system was carried out in two manufacturing companies. The validation process showed that the decision support system produced reliable results. Conclusion The decision support system is a reliable advisory tool for providing analysis and solutions to problems related to the discomfort and muscle fatigue associated with prolonged standing. Further testing of the decision support system is suggested before it is used commercially. PMID:25180141
The Controlled Ecological Life Support Systems (CELSS) research program
NASA Technical Reports Server (NTRS)
Macelroy, Robert D.
1990-01-01
The goal of the Controlled Ecological Life Support Systems (CELSS) program is to develop systems composed of biological, chemical and physical components for purposes of human life support in space. The research activities supported by the program are diverse, but are focused on the growth of higher plants, food and waste processing, and systems control. Current concepts associated with the development and operation of a bioregenerative life support system will be discussed in this paper.
Design and realization of tourism spatial decision support system based on GIS
NASA Astrophysics Data System (ADS)
Ma, Zhangbao; Qi, Qingwen; Xu, Li
2008-10-01
In this paper, the existing problems of current tourism management information system are analyzed. GIS, tourism as well as spatial decision support system are introduced, and the application of geographic information system technology and spatial decision support system to tourism management and the establishment of tourism spatial decision support system based on GIS are proposed. System total structure, system hardware and software environment, database design and structure module design of this system are introduced. Finally, realization methods of this systemic core functions are elaborated.
Afghanistan: U.S. Rule of Law and Justice Sector Assistance
2010-11-09
Sector Support Program ( JSSP ) and Corrections System Support Program (CSSP); • U.S. Agency for International Development’s (USAID’s) formal and informal...Sector Support Program ( JSSP )........................................................................ 28 Corrections System Support Program (CSSP...programs are the Judicial Sector Support Program ( JSSP ), the Corrections System Support Program (CSSP), the ROL Stabilization (RLS) Program, and the
45 CFR 307.15 - Approval of advance planning documents for computerized support enforcement systems.
Code of Federal Regulations, 2010 CFR
2010-10-01
... computerized support enforcement systems. 307.15 Section 307.15 Public Welfare Regulations Relating to Public... CHILDREN AND FAMILIES, DEPARTMENT OF HEALTH AND HUMAN SERVICES COMPUTERIZED SUPPORT ENFORCEMENT SYSTEMS § 307.15 Approval of advance planning documents for computerized support enforcement systems. (a...
Goring, Simon J; Mladenoff, David J; Cogbill, Charles V; Record, Sydne; Paciorek, Christopher J; Jackson, Stephen T; Dietze, Michael C; Dawson, Andria; Matthes, Jaclyn Hatala; McLachlan, Jason S; Williams, John W
2016-01-01
EuroAmerican land-use and its legacies have transformed forest structure and composition across the United States (US). More accurate reconstructions of historical states are critical to understanding the processes governing past, current, and future forest dynamics. Here we present new gridded (8x8km) reconstructions of pre-settlement (1800s) forest composition and structure from the upper Midwestern US (Minnesota, Wisconsin, and most of Michigan), using 19th Century Public Land Survey System (PLSS), with estimates of relative composition, above-ground biomass, stem density, and basal area for 28 tree types. This mapping is more robust than past efforts, using spatially varying correction factors to accommodate sampling design, azimuthal censoring, and biases in tree selection. We compare pre-settlement to modern forests using US Forest Service Forest Inventory and Analysis (FIA) data to show the prevalence of lost forests (pre-settlement forests with no current analog), and novel forests (modern forests with no past analogs). Differences between pre-settlement and modern forests are spatially structured owing to differences in land-use impacts and accompanying ecological responses. Modern forests are more homogeneous, and ecotonal gradients are more diffuse today than in the past. Novel forest assemblages represent 28% of all FIA cells, and 28% of pre-settlement forests no longer exist in a modern context. Lost forests include tamarack forests in northeastern Minnesota, hemlock and cedar dominated forests in north-central Wisconsin and along the Upper Peninsula of Michigan, and elm, oak, basswood and ironwood forests along the forest-prairie boundary in south central Minnesota and eastern Wisconsin. Novel FIA forest assemblages are distributed evenly across the region, but novelty shows a strong relationship to spatial distance from remnant forests in the upper Midwest, with novelty predicted at between 20 to 60km from remnants, depending on historical forest type. The spatial relationships between remnant and novel forests, shifts in ecotone structure and the loss of historic forest types point to significant challenges for land managers if landscape restoration is a priority. The spatial signals of novelty and ecological change also point to potential challenges in using modern spatial distributions of species and communities and their relationship to underlying geophysical and climatic attributes in understanding potential responses to changing climate. The signal of human settlement on modern forests is broad, spatially varying and acts to homogenize modern forests relative to their historic counterparts, with significant implications for future management.
Mladenoff, David J.; Cogbill, Charles V.; Record, Sydne; Paciorek, Christopher J.; Jackson, Stephen T.; Dietze, Michael C.; Dawson, Andria; Matthes, Jaclyn Hatala; McLachlan, Jason S.; Williams, John W.
2016-01-01
Background EuroAmerican land-use and its legacies have transformed forest structure and composition across the United States (US). More accurate reconstructions of historical states are critical to understanding the processes governing past, current, and future forest dynamics. Here we present new gridded (8x8km) reconstructions of pre-settlement (1800s) forest composition and structure from the upper Midwestern US (Minnesota, Wisconsin, and most of Michigan), using 19th Century Public Land Survey System (PLSS), with estimates of relative composition, above-ground biomass, stem density, and basal area for 28 tree types. This mapping is more robust than past efforts, using spatially varying correction factors to accommodate sampling design, azimuthal censoring, and biases in tree selection. Changes in Forest Structure We compare pre-settlement to modern forests using US Forest Service Forest Inventory and Analysis (FIA) data to show the prevalence of lost forests (pre-settlement forests with no current analog), and novel forests (modern forests with no past analogs). Differences between pre-settlement and modern forests are spatially structured owing to differences in land-use impacts and accompanying ecological responses. Modern forests are more homogeneous, and ecotonal gradients are more diffuse today than in the past. Novel forest assemblages represent 28% of all FIA cells, and 28% of pre-settlement forests no longer exist in a modern context. Lost forests include tamarack forests in northeastern Minnesota, hemlock and cedar dominated forests in north-central Wisconsin and along the Upper Peninsula of Michigan, and elm, oak, basswood and ironwood forests along the forest-prairie boundary in south central Minnesota and eastern Wisconsin. Novel FIA forest assemblages are distributed evenly across the region, but novelty shows a strong relationship to spatial distance from remnant forests in the upper Midwest, with novelty predicted at between 20 to 60km from remnants, depending on historical forest type. The spatial relationships between remnant and novel forests, shifts in ecotone structure and the loss of historic forest types point to significant challenges for land managers if landscape restoration is a priority. The spatial signals of novelty and ecological change also point to potential challenges in using modern spatial distributions of species and communities and their relationship to underlying geophysical and climatic attributes in understanding potential responses to changing climate. The signal of human settlement on modern forests is broad, spatially varying and acts to homogenize modern forests relative to their historic counterparts, with significant implications for future management. PMID:27935944
Piping support system for liquid-metal fast-breeder reactor
Brussalis, Jr., William G.
1984-01-01
A pipe support consisting of a rigid link pivotally attached to a pipe and an anchor, adapted to generate stress or strain in the link and pipe due to pipe thermal movement, which stress or strain can oppose further pipe movement and generally provides pipe support. The pipe support can be used in multiple combinations with other pipe supports to form a support system. This support system is most useful in applications in which the pipe is normally operated at a constant elevated or depressed temperature such that desired stress or strain can be planned in advance of pipe and support installation. The support system is therefore especially useful in steam stations and in refrigeration equipment.
GPM Solar Array Gravity Negated Deployment Testing
NASA Technical Reports Server (NTRS)
Penn, Jonathan; Johnson, Chris; Lewis, Jesse; Dear, Trevin; Stewart, Alphonso
2014-01-01
NASA Goddard Space Flight Center (GSFC) successfully developed a g-negation support system for use on the solar arrays of the Global Precipitation Measurement (GPM) Satellite. This system provides full deployment capability at the subsystem and observatory levels. In addition, the system provides capability for deployed configuration first mode frequency verification testing. The system consists of air pads, a support structure, an air supply, and support tables. The g-negation support system was used to support all deployment activities for flight solar array deployment testing.
A survey of life support system automation and control
NASA Technical Reports Server (NTRS)
Finn, Cory K.
1993-01-01
The level of automation and control necessary to support advanced life support systems for use in the manned space program is steadily increasing. As the length and complexity of manned missions increase, life support systems must be able to meet new space challenges. Longer, more complex missions create new demands for increased automation, improved sensors, and improved control systems. It is imperative that research in these key areas keep pace with current and future developments in regenerative life support technology. This paper provides an overview of past and present research in the areas of sensor development, automation, and control of life support systems for the manned space program, and it discusses the impact continued research in several key areas will have on the feasibility, operation, and design of future life support systems.
Metric half-span model support system
NASA Technical Reports Server (NTRS)
Jackson, C. M., Jr.; Dollyhigh, S. M.; Shaw, D. S. (Inventor)
1982-01-01
A model support system used to support a model in a wind tunnel test section is described. The model comprises a metric, or measured, half-span supported by a nonmetric, or nonmeasured half-span which is connected to a sting support. Moments and forces acting on the metric half-span are measured without interference from the support system during a wind tunnel test.
How to guide - transit operations decision support systems (TODSS).
DOT National Transportation Integrated Search
2014-12-01
Transit Operations Decision Support Systems (TODSS) are decision support systems designed to support dispatchers in real-time bus operations management in response to incidents, special events, and other changing conditions in order to restore servic...
Aronsky, D.; Haug, P. J.
1999-01-01
Decision support systems that integrate guidelines have become popular applications to reduce variation and deliver cost-effective care. However, adverse characteristics of decision support systems, such as additional and time-consuming data entry or manually identifying eligible patients, result in a "behavioral bottleneck" that prevents decision support systems to become part of the clinical routine. This paper describes the design and the implementation of an integrated decision support system that explores a novel approach for bypassing the behavioral bottleneck. The real-time decision support system does not require health care providers to enter additional data and consists of a diagnostic and a management component. Images Fig. 1 Fig. 2 Fig. 3 PMID:10566348
Wandersman, Abraham; Chien, Victoria H; Katz, Jason
2012-12-01
An individual or organization that sets out to implement an innovation (e.g., a new technology, program, or policy) generally requires support. In the Interactive Systems Framework for Dissemination and Implementation, a Support System should work with Delivery Systems (national, state and/or local entities such as health and human service organizations, community-based organizations, schools) to enhance their capacity for quality implementation of innovations. The literature on the Support System [corrected] has been underresearched and under-developedThis article begins to conceptualize theory, research, and action for an evidence-based system for innovation support (EBSIS). EBSIS describes key priorities for strengthening the science and practice of support. The major goal of EBSIS is to enhance the research and practice of support in order to build capacity in the Delivery System for implementing innovations with quality, and thereby, help the Delivery System achieve outcomes. EBSIS is guided by a logic model that includes four key support components: tools, training, technical assistance, and quality assurance/quality improvement. EBSIS uses the Getting To Outcomes approach to accountability to aid the identification and synthesis of concepts, tools, and evidence for support. We conclude with some discussion of the current status of EBSIS and possible next steps, including the development of collaborative researcher-practitioner-funder-consumer partnerships to accelerate accumulation of knowledge on the Support System.
A knowledge-based decision support system for payload scheduling
NASA Technical Reports Server (NTRS)
Floyd, Stephen; Ford, Donnie
1988-01-01
The role that artificial intelligence/expert systems technologies play in the development and implementation of effective decision support systems is illustrated. A recently developed prototype system for supporting the scheduling of subsystems and payloads/experiments for NASA's Space Station program is presented and serves to highlight various concepts. The potential integration of knowledge based systems and decision support systems which has been proposed in several recent articles and presentations is illustrated.
ERIC Educational Resources Information Center
Guidubaldi, John; Cleminshaw, Helen
To determine whether support systems ameliorated the impact of divorce on family stress and child adjustment, the present study examined the availability to divorced families of various support systems, including the extended family, church, work, and community groups. Specifically, the study addressed the impact of parental support systems on…
NASA Technical Reports Server (NTRS)
1974-01-01
System design and performance of the Skylab Airlock Module and Payload Shroud are presented for the communication and caution and warning systems. Crew station and storage, crew trainers, experiments, ground support equipment, and system support activities are also reviewed. Other areas documented include the reliability and safety programs, test philosophy, engineering project management, and mission operations support.
MIT-Skywalker: considerations on the Design of a Body Weight Support System.
Gonçalves, Rogério Sales; Krebs, Hermano Igo
2017-09-06
To provide body weight support during walking and balance training, one can employ two distinct embodiments: support through a harness hanging from an overhead system or support through a saddle/seat type. This paper presents a comparison of these two approaches. Ultimately, this comparison determined our selection of the body weight support system employed in the MIT-Skywalker, a robotic device developed for the rehabilitation/habilitation of gait and balance after a neurological injury. Here we will summarize our results with eight healthy subjects walking on the treadmill without any support, with 30% unloading supported by a harness hanging from an overhead system, and with a saddle/seat-like support system. We compared the center of mass as well as vertical and mediolateral trunk displacements across different walking speeds and support. The bicycle/saddle system had the highest values for the mediolateral inclination, while the overhead harness body weight support showed the lowest values at all speeds. The differences were statistically significant. We selected the bicycle/saddle system for the MIT-Skywalker. It allows faster don-and-doff, better centers the patient to the split treadmill, and allows all forms of training. The overhead harness body weight support might be adequate for rhythmic walking training but limits any potential for balance training.
Generic Modeling of a Life Support System for Process Technology Comparison
NASA Technical Reports Server (NTRS)
Ferrall, J. F.; Seshan, P. K.; Rohatgi, N. K.; Ganapathi, G. B.
1993-01-01
This paper describes a simulation model called the Life Support Systems Analysis Simulation Tool (LiSSA-ST), the spreadsheet program called the Life Support Systems Analysis Trade Tool (LiSSA-TT), and the Generic Modular Flow Schematic (GMFS) modeling technique. Results of using the LiSSA-ST and the LiSSA-TT will be presented for comparing life support system and process technology options for a Lunar Base with a crew size of 4 and mission lengths of 90 and 600 days. System configurations to minimize the life support system weight and power are explored.
NASA Technical Reports Server (NTRS)
Tri, Terry O.
1999-01-01
As a key component in its ground test bed capability, NASA's Advanced Life Support Program has been developing a large-scale advanced life support test facility capable of supporting long-duration evaluations of integrated bioregenerative life support systems with human test crews. This facility-targeted for evaluation of hypogravity compatible life support systems to be developed for use on planetary surfaces such as Mars or the Moon-is called the Bioregenerative Planetary Life Support Systems Test Complex (BIO-Plex) and is currently under development at the Johnson Space Center. This test bed is comprised of a set of interconnected chambers with a sealed internal environment which are outfitted with systems capable of supporting test crews of four individuals for periods exceeding one year. The advanced technology systems to be tested will consist of both biological and physicochemical components and will perform all required crew life support functions. This presentation provides a description of the proposed test "missions" to be supported by the BIO-Plex and the planned development strategy for the facility.
NASA Astrophysics Data System (ADS)
Kimura, Toshiaki; Kasai, Fumio; Kamio, Yoichi; Kanda, Yuichi
This research paper discusses a manufacturing support system which supports not only maintenance services but also consulting services for manufacturing systems consisting of multi-vendor machine tools. In order to do this system enables inter-enterprise collaboration between engineering companies and machine tool vendors. The system is called "After-Sales Support Inter-enterprise collaboration System using information Technologies" (ASSIST). This paper describes the concept behind the planned ASSIST, the development of a prototype of the system, and discusses test operation results of the system.
Computer-aided operations engineering with integrated models of systems and operations
NASA Technical Reports Server (NTRS)
Malin, Jane T.; Ryan, Dan; Fleming, Land
1994-01-01
CONFIG 3 is a prototype software tool that supports integrated conceptual design evaluation from early in the product life cycle, by supporting isolated or integrated modeling, simulation, and analysis of the function, structure, behavior, failures and operation of system designs. Integration and reuse of models is supported in an object-oriented environment providing capabilities for graph analysis and discrete event simulation. Integration is supported among diverse modeling approaches (component view, configuration or flow path view, and procedure view) and diverse simulation and analysis approaches. Support is provided for integrated engineering in diverse design domains, including mechanical and electro-mechanical systems, distributed computer systems, and chemical processing and transport systems. CONFIG supports abstracted qualitative and symbolic modeling, for early conceptual design. System models are component structure models with operating modes, with embedded time-related behavior models. CONFIG supports failure modeling and modeling of state or configuration changes that result in dynamic changes in dependencies among components. Operations and procedure models are activity structure models that interact with system models. CONFIG is designed to support evaluation of system operability, diagnosability and fault tolerance, and analysis of the development of system effects of problems over time, including faults, failures, and procedural or environmental difficulties.
NASA Advanced Life Support Technology Testing and Development
NASA Technical Reports Server (NTRS)
Wheeler, Raymond M.
2012-01-01
Prior to 2010, NASA's advanced life support research and development was carried out primarily under the Exploration Life Support Project of NASA's Exploration Systems Mission Directorate. In 2011, the Exploration Life Support Project was merged with other projects covering Fire Prevention/Suppression, Radiation Protection, Advanced Environmental Monitoring and Control, and Thermal Control Systems. This consolidated project was called Life Support and Habitation Systems, which was managed under the Exploration Systems Mission Directorate. In 2012, NASA re-organized major directorates within the agency, which eliminated the Exploration Systems Mission Directorate and created the Office of the Chief Technologist (OCT). Life support research and development is currently conducted within the Office of the Chief Technologist, under the Next Generation Life Support Project, and within the Human Exploration Operation Missions Directorate under several Advanced Exploration System projects. These Advanced Exploration Systems projects include various themes of life support technology testing, including atmospheric management, water management, logistics and waste management, and habitation systems. Food crop testing is currently conducted as part of the Deep Space Habitation (DSH) project within the Advanced Exploration Systems Program. This testing is focused on growing salad crops that could supplement the crew's diet during near term missions.
Operational modes, health, and status monitoring
NASA Astrophysics Data System (ADS)
Taljaard, Corrie
2016-08-01
System Engineers must fully understand the system, its support system and operational environment to optimise the design. Operations and Support Managers must also identify the correct metrics to measure the performance and to manage the operations and support organisation. Reliability Engineering and Support Analysis provide methods to design a Support System and to optimise the Availability of a complex system. Availability modelling and Failure Analysis during the design is intended to influence the design and to develop an optimum maintenance plan for a system. The remote site locations of the SKA Telescopes place emphasis on availability, failure identification and fault isolation. This paper discusses the use of Failure Analysis and a Support Database to design a Support and Maintenance plan for the SKA Telescopes. It also describes the use of modelling to develop an availability dashboard and performance metrics.
Professional Growth & Support System Self-Assessment
ERIC Educational Resources Information Center
Education Resource Strategies, 2013
2013-01-01
The "Professional Growth & Support System Self-Assessment" is designed to help school systems evaluate their current Professional Growth & Support strategy. The self-assessment is organized around the "Eight Principles of Strategic Professional Growth & Support." Each section allows school leaders to identify the…
Kurki, Marjo; Anttila, Minna; Koivunen, Marita; Marttunen, Mauri; Välimäki, Maritta
2018-09-01
Internet-based applications are potentially useful and effective interventions to reach and support adolescents with mental health problems. Adolescents' commitment to the use of a new Internet-based intervention is closely related to the support they receive from healthcare professionals. This study describes nurses' experiences of the use of an Internet-based support system for adolescents with depressive disorders. Qualitative descriptive study design including individual interviews with nine nurses at two psychiatric outpatient clinics. The Technology Acceptance Model (TAM) was used as the theoretical background of the study. Nurses described several benefits of using the Internet-based support system in the care of adolescents with depressive disorders if the nurses integrate it into daily nursing practices. As perceived disadvantages the nurses thought that an adolescent's mental status might be a barrier to working with the support system. Perceived enablers could be organizational support, nurses' attitudes, and technology-related factors. Nurses' attitudes were identified as a barrier to supporting adolescents' use of the Internet-based support system. The findings suggest that the implementation plan and support from the organization, including that from nurse managers, are crucial in the process of implementing a technology-based support system.
Diagnostics in the Extendable Integrated Support Environment (EISE)
NASA Technical Reports Server (NTRS)
Brink, James R.; Storey, Paul
1988-01-01
Extendable Integrated Support Environment (EISE) is a real-time computer network consisting of commercially available hardware and software components to support systems level integration, modifications, and enhancement to weapons systems. The EISE approach offers substantial potential savings by eliminating unique support environments in favor of sharing common modules for the support of operational weapon systems. An expert system is being developed that will help support diagnosing faults in this network. This is a multi-level, multi-expert diagnostic system that uses experiential knowledge relating symptoms to faults and also reasons from structural and functional models of the underlying physical model when experiential reasoning is inadequate. The individual expert systems are orchestrated by a supervisory reasoning controller, a meta-level reasoner which plans the sequence of reasoning steps to solve the given specific problem. The overall system, termed the Diagnostic Executive, accesses systems level performance checks and error reports, and issues remote test procedures to formulate and confirm fault hypotheses.
Vessel structural support system
Jenko, James X.; Ott, Howard L.; Wilson, Robert M.; Wepfer, Robert M.
1992-01-01
Vessel structural support system for laterally and vertically supporting a vessel, such as a nuclear steam generator having an exterior bottom surface and a side surface thereon. The system includes a bracket connected to the bottom surface. A support column is pivotally connected to the bracket for vertically supporting the steam generator. The system also includes a base pad assembly connected pivotally to the support column for supporting the support column and the steam generator. The base pad assembly, which is capable of being brought to a level position by turning leveling nuts, is anchored to a floor. The system further includes a male key member attached to the side surface of the steam generator and a female stop member attached to an adjacent wall. The male key member and the female stop member coact to laterally support the steam generator. Moreover, the system includes a snubber assembly connected to the side surface of the steam generator and also attached to the adjacent wall for dampening lateral movement of the steam generator. In addition, the system includes a restraining member of "flat" attached to the side surface of the steam generator and a bumper attached to the adjacent wall. The flat and the bumper coact to further laterally support the steam generator.
Support Systems after Divorce: Incidence and Impact.
ERIC Educational Resources Information Center
Colletta, Nancy Donahue
1979-01-01
Examined the impact of support systems on post-divorce family functioning. Results suggest that families under extreme stress need to be provided with relatively high levels of support or their dissatisfaction with support systems will appear in harsher and more restrictive relationships with children. (Author)
NASA Technical Reports Server (NTRS)
Pendley, R. D.; Scheidker, E. J.; Levitt, D. S.; Myers, C. R.; Werking, R. D.
1994-01-01
This analysis defines a complete set of ground support functions based on those practiced in real space flight operations during the on-orbit phase of a mission. These functions are mapped against ground support functions currently in use by NASA and DOD. Software components to provide these functions can be hosted on RISC-based work stations and integrated to provide a modular, integrated ground support system. Such modular systems can be configured to provide as much ground support functionality as desired. This approach to ground systems has been widely proposed and prototyped both by government institutions and commercial vendors. The combined set of ground support functions we describe can be used as a standard to evaluate candidate ground systems. This approach has also been used to develop a prototype of a modular, loosely-integrated ground support system, which is discussed briefly. A crucial benefit to a potential user is that all the components are flight-qualified, thus giving high confidence in their accuracy and reliability.
NASA Astrophysics Data System (ADS)
Pendley, R. D.; Scheidker, E. J.; Levitt, D. S.; Myers, C. R.; Werking, R. D.
1994-11-01
This analysis defines a complete set of ground support functions based on those practiced in real space flight operations during the on-orbit phase of a mission. These functions are mapped against ground support functions currently in use by NASA and DOD. Software components to provide these functions can be hosted on RISC-based work stations and integrated to provide a modular, integrated ground support system. Such modular systems can be configured to provide as much ground support functionality as desired. This approach to ground systems has been widely proposed and prototyped both by government institutions and commercial vendors. The combined set of ground support functions we describe can be used as a standard to evaluate candidate ground systems. This approach has also been used to develop a prototype of a modular, loosely-integrated ground support system, which is discussed briefly. A crucial benefit to a potential user is that all the components are flight-qualified, thus giving high confidence in their accuracy and reliability.
Müller-Staub, Maria; de Graaf-Waar, Helen; Paans, Wolter
2016-11-01
Nurses are accountable to apply the nursing process, which is key for patient care: It is a problem-solving process providing the structure for care plans and documentation. The state-of-the art nursing process is based on classifications that contain standardized concepts, and therefore, it is named Advanced Nursing Process. It contains valid assessments, nursing diagnoses, interventions, and nursing-sensitive patient outcomes. Electronic decision support systems can assist nurses to apply the Advanced Nursing Process. However, nursing decision support systems are missing, and no "gold standard" is available. The study aim is to develop a valid Nursing Process-Clinical Decision Support System Standard to guide future developments of clinical decision support systems. In a multistep approach, a Nursing Process-Clinical Decision Support System Standard with 28 criteria was developed. After pilot testing (N = 29 nurses), the criteria were reduced to 25. The Nursing Process-Clinical Decision Support System Standard was then presented to eight internationally known experts, who performed qualitative interviews according to Mayring. Fourteen categories demonstrate expert consensus on the Nursing Process-Clinical Decision Support System Standard and its content validity. All experts agreed the Advanced Nursing Process should be the centerpiece for the Nursing Process-Clinical Decision Support System and should suggest research-based, predefined nursing diagnoses and correct linkages between diagnoses, evidence-based interventions, and patient outcomes.
DesAutels, Spencer J; Fox, Zachary E; Giuse, Dario A; Williams, Annette M; Kou, Qing-Hua; Weitkamp, Asli; Neal R, Patel; Bettinsoli Giuse, Nunzia
2016-01-01
Clinical decision support (CDS) knowledge, embedded over time in mature medical systems, presents an interesting and complex opportunity for information organization, maintenance, and reuse. To have a holistic view of all decision support requires an in-depth understanding of each clinical system as well as expert knowledge of the latest evidence. This approach to clinical decision support presents an opportunity to unify and externalize the knowledge within rules-based decision support. Driven by an institutional need to prioritize decision support content for migration to new clinical systems, the Center for Knowledge Management and Health Information Technology teams applied their unique expertise to extract content from individual systems, organize it through a single extensible schema, and present it for discovery and reuse through a newly created Clinical Support Knowledge Acquisition and Archival Tool (CS-KAAT). CS-KAAT can build and maintain the underlying knowledge infrastructure needed by clinical systems.
A multimission three-axis stabilized spacecraft flight dynamics ground support system
NASA Technical Reports Server (NTRS)
Langston, J.; Krack, K.; Reupke, W.
1993-01-01
The Multimission Three-Axis Stabilized Spacecraft (MTASS) Flight Dynamics Support System (FDSS) has been developed in an effort to minimize the costs of ground support systems. Unlike single-purpose ground support systems, which attempt to reduce costs by reusing software specifically developed for previous missions, the multimission support system is an intermediate step in the progression to a fully generalized mission support system in which numerous missions may be served by one general system. The benefits of multimission attitude ground support systems extend not only to the software design and coding process, but to the entire system environment, from specification through testing, simulation, operations, and maintenance. This paper reports the application of an MTASS FDSS to multiple scientific satellite missions. The satellites are the Upper Atmosphere Research Satellite (UARS), the Extreme Ultraviolet Explorer (EUVE), and the Solar Anomalous Magnetospheric Particle Explorer (SAMPEX). Both UARS and EUVE use the multimission modular spacecraft (MMS) concept. SAMPEX is part of the Small Explorer (SMEX) series and uses a much simpler set of attitude sensors. This paper centers on algorithm and design concepts for a multimission system and discusses flight experience from UARS.
In-situ materials processing systems and bioregenerative life support systems interrelationships
NASA Technical Reports Server (NTRS)
Mignon, George V.; Frye, Robert J.
1992-01-01
The synergy and linkages between bioregenerative life support systems and the materials produced by in-situ materials processing systems was investigated. Such systems produce a broad spectrum of byproducts such as oxygen, hydrogen, processed soil material, ceramics, refractory, and other materials. Some of these materials may be utilized by bioregenerative systems either directly or with minor modifications. The main focus of this project was to investigate how these materials can be utilized to assist a bioregenerative life support system. Clearly the need to provide a sustainable bioregenerative life support system for long term human habitation of space is significant.
Space Shuttle interactive meteorological data system study
NASA Technical Reports Server (NTRS)
Young, J. T.; Fox, R. J.; Benson, J. M.; Rueden, J. P.; Oehlkers, R. A.
1985-01-01
Although focused toward the operational meteorological support review and definition of an operational meteorological interactive data display systems (MIDDS) requirements for the Space Meteorology Support Group at NASA/Johnson Space Center, the total operational meteorological support requirements and a systems concept for the MIDDS network integration of NASA and Air Force elements to support the National Space Transportation System are also addressed.
Analysis of alternatives for using cable bolts as primary support at two low-seam coal mines
Esterhuizen, Gabriel S.; Tulu, Ihsan B.
2016-01-01
Cable bolts are sometimes used in low-seam coal mines to provide support in difficult ground conditions. This paper describes cable bolting solutions at two low-seam coal mines in similar ground conditions. Both mines used support systems incorporating cable bolts as part of the primary support system. Two original cable bolt based support systems as well as two modified systems are evaluated to estimate their ability to prevent large roof falls. One of the support systems incorporated passive cable bolts, while the other used pre-tensioned cable bolts. The results and experience at the mines showed that the modified systems provided improved stability over the original support systems. The presence of the cable bolts is the most important contribution to stability against large roof falls, rather than the details of the support pattern. It was also found that a heavy steel channel can improve the safety of the system because of the ‘sling’ action it provides. Additionally, the analysis showed that fully-grouted rebar bolts load much earlier than the cable bolts, and pre-tensioning of the cable bolts can result in a more uniform distribution of loading in the roof. PMID:27722019
Facility Systems, Ground Support Systems, and Ground Support Equipment General Design Requirements
NASA Technical Reports Server (NTRS)
Thaxton, Eric A.
2014-01-01
KSC-DE-512-SM establishes overall requirements and best design practices to be used at the John F. Kennedy Space Center (KSC) for the development of ground systems (GS) in support of operations at launch, landing, and retrieval sites. These requirements apply to the design and development of hardware and software for ground support equipment (GSE), ground support systems (GSS), and facility ground support systems (F-GSS) used to support the KSC mission for transportation, receiving, handling, assembly, test, checkout, servicing, and launch of space vehicles and payloads and selected flight hardware items for retrieval. This standards manual supplements NASA-STD-5005 by including KSC-site-specific and local environment requirements. These requirements and practices are optional for equipment used at manufacturing, development, and test sites.
Balloon Support Systems Performance for the Cosmic Rays Energetics and Mass Mission
NASA Technical Reports Server (NTRS)
Tompson, Linda D.; Stuchlik, David W.
2006-01-01
The Ballooncraft Support Systems were developed by NASA Wallops Flight Facility for use on ULDB class balloon missions. The support systems have now flown two missions supporting the Cosmic Rays Energetics and Mass (CREAM) experiment. The first, CREAM I, flown in December 2004, was for a record breaking 41 days, 21 hours, and the second, flown in December 2005, was for 28 days, 9 hours. These support systems provide CREAM with power, telecommunications, command and data handling ioc!uding Plight computers, mechanical structures, thermal management and attitude control to help ensure a successful scientific mission. This paper will address the performance and success of these support systems over the two missions.
Research on web-based decision support system for sports competitions
NASA Astrophysics Data System (ADS)
Huo, Hanqiang
2010-07-01
This paper describes the system architecture and implementation technology of the decision support system for sports competitions, discusses the design of decision-making modules, management modules and security of the system, and proposes the development idea of building a web-based decision support system for sports competitions.
Decision support systems in water and wastewater treatment process selection and design: a review.
Hamouda, M A; Anderson, W B; Huck, P M
2009-01-01
The continuously changing drivers of the water treatment industry, embodied by rigorous environmental and health regulations and the challenge of emerging contaminants, necessitates the development of decision support systems for the selection of appropriate treatment trains. This paper explores a systematic approach to developing decision support systems, which includes the analysis of the treatment problem(s), knowledge acquisition and representation, and the identification and evaluation of criteria controlling the selection of optimal treatment systems. The objective of this article is to review approaches and methods used in decision support systems developed to aid in the selection, sequencing of unit processes and design of drinking water, domestic wastewater, and industrial wastewater treatment systems. Not surprisingly, technical considerations were found to dominate the logic of the developed systems. Most of the existing decision-support tools employ heuristic knowledge. It has been determined that there is a need to develop integrated decision support systems that are generic, usable and consider a system analysis approach.
NASA Astrophysics Data System (ADS)
Aydogan, Selen
This dissertation considers the problem of process synthesis and design of life-support systems for manned space missions. A life-support system is a set of technologies to support human life for short and long-term spaceflights, via providing the basic life-support elements, such as oxygen, potable water, and food. The design of the system needs to meet the crewmember demand for the basic life-support elements (products of the system) and it must process the loads generated by the crewmembers. The system is subject to a myriad of uncertainties because most of the technologies involved are still under development. The result is high levels of uncertainties in the estimates of the model parameters, such as recovery rates or process efficiencies. Moreover, due to the high recycle rates within the system, the uncertainties are amplified and propagated within the system, resulting in a complex problem. In this dissertation, two algorithms have been successfully developed to help making design decisions for life-support systems. The algorithms utilize a simulation-based optimization approach that combines a stochastic discrete-event simulation and a deterministic mathematical programming approach to generate multiple, unique realizations of the controlled evolution of the system. The timelines are analyzed using time series data mining techniques and statistical tools to determine the necessary technologies, their deployment schedules and capacities, and the necessary basic life-support element amounts to support crew life and activities for the mission duration.
ERIC Educational Resources Information Center
Hung, Wei-Chen; Kalota, Faisal
2013-01-01
The importance of adopting technology-supported performance systems for on-the-job learning and training is well-recognized in a networked economy. In this study, we present a performance support system (PSS) designed to support technology integration for lesson design. The goal is to support educators in the development of appropriate and…
Flight software requirements and design support system
NASA Technical Reports Server (NTRS)
Riddle, W. E.; Edwards, B.
1980-01-01
The desirability and feasibility of computer-augmented support for the pre-implementation activities occurring during the development of flight control software was investigated. The specific topics to be investigated were the capabilities to be included in a pre-implementation support system for flight control software system development, and the specification of a preliminary design for such a system. Further, the pre-implementation support system was to be characterized and specified under the constraints that it: (1) support both description and assessment of flight control software requirements definitions and design specification; (2) account for known software description and assessment techniques; (3) be compatible with existing and planned NASA flight control software development support system; and (4) does not impose, but may encourage, specific development technologies. An overview of the results is given.
Code of Federal Regulations, 2012 CFR
2012-07-01
... routinely are put in place to provide support to many newly fielded weapons systems, including aircraft, land combat vehicles, and automated command and control systems. Systems support contracting authority... generally has less control over systems support contracts than other types of contracts. Theater business...
Code of Federal Regulations, 2014 CFR
2014-07-01
... routinely are put in place to provide support to many newly fielded weapons systems, including aircraft, land combat vehicles, and automated command and control systems. Systems support contracting authority... generally has less control over systems support contracts than other types of contracts. Theater business...
Code of Federal Regulations, 2013 CFR
2013-07-01
... routinely are put in place to provide support to many newly fielded weapons systems, including aircraft, land combat vehicles, and automated command and control systems. Systems support contracting authority... generally has less control over systems support contracts than other types of contracts. Theater business...
Use of Martian resources in a Controlled Ecological Life Support System (CELSS)
NASA Technical Reports Server (NTRS)
Smernoff, David T.; Macelroy, Robert D.
1989-01-01
Possibile crew life support systems for Mars are reviewed, focusing on ways to use Martian resources as life support materials. A system for bioregenerative life support using photosynthetic organisms, known as the Controlled Ecological Life Support System (CELSS), is examined. The possible use of higher plants or algae to produce oxygen on Mars is investigated. The specific requirements for a CELSS on Mars are considered. The exploitation of water, respiratory gases, and mineral nutrients on Mars is discussed.
Human life support during interplanetary travel and domicile. I - System approach
NASA Technical Reports Server (NTRS)
Seshan, P. K.; Ferrall, Joseph; Rohatgi, Naresh
1989-01-01
The importance of mission-driven system definition and assessment for extraterrestrial human life support is examined. The tricotyledon theory for system engineering is applied to the physiochemical life support system of the Pathfinder project. The rationale and methodology for adopting the systems approach is discussed. The assessment of the system during technology development is considered.
Methods and Costs to Achieve Ultra Reliable Life Support
NASA Technical Reports Server (NTRS)
Jones, Harry W.
2012-01-01
A published Mars mission is used to explore the methods and costs to achieve ultra reliable life support. The Mars mission and its recycling life support design are described. The life support systems were made triply redundant, implying that each individual system will have fairly good reliability. Ultra reliable life support is needed for Mars and other long, distant missions. Current systems apparently have insufficient reliability. The life cycle cost of the Mars life support system is estimated. Reliability can be increased by improving the intrinsic system reliability, adding spare parts, or by providing technically diverse redundant systems. The costs of these approaches are estimated. Adding spares is least costly but may be defeated by common cause failures. Using two technically diverse systems is effective but doubles the life cycle cost. Achieving ultra reliability is worth its high cost because the penalty for failure is very high.
Biological life-support systems
NASA Technical Reports Server (NTRS)
Shepelev, Y. Y.
1975-01-01
The establishment of human living environments by biologic methods, utilizing the appropriate functions of autotrophic and heterotrophic organisms is examined. Natural biologic systems discussed in terms of modeling biologic life support systems (BLSS), the structure of biologic life support systems, and the development of individual functional links in biologic life support systems are among the factors considered. Experimental modeling of BLSS in order to determine functional characteristics, mechanisms by which stability is maintained, and principles underlying control and regulation is also discussed.
[Habitability and life support systems].
Nefedov, Iu G; Adamovich, B A
1988-01-01
This paper discusses various aspects of space vehicle habitability and life support systems. It describes variations in the chemical and microbial composition of an enclosed atmosphere during prolonged real and simulated flights. The paper gives a detailed description of life support systems and environmental investigations onboard the Mir station. It also outlines the development of space vehicle habitability and life support systems as related to future flights.
Mathematical Modeling Of Life-Support Systems
NASA Technical Reports Server (NTRS)
Seshan, Panchalam K.; Ganapathi, Balasubramanian; Jan, Darrell L.; Ferrall, Joseph F.; Rohatgi, Naresh K.
1994-01-01
Generic hierarchical model of life-support system developed to facilitate comparisons of options in design of system. Model represents combinations of interdependent subsystems supporting microbes, plants, fish, and land animals (including humans). Generic model enables rapid configuration of variety of specific life support component models for tradeoff studies culminating in single system design. Enables rapid evaluation of effects of substituting alternate technologies and even entire groups of technologies and subsystems. Used to synthesize and analyze life-support systems ranging from relatively simple, nonregenerative units like aquariums to complex closed-loop systems aboard submarines or spacecraft. Model, called Generic Modular Flow Schematic (GMFS), coded in such chemical-process-simulation languages as Aspen Plus and expressed as three-dimensional spreadsheet.
Design Rules for Life Support Systems
NASA Technical Reports Server (NTRS)
Jones, Harry
2002-01-01
This paper considers some of the common assumptions and engineering rules of thumb used in life support system design. One general design rule is that the longer the mission, the more the life support system should use recycling and regenerable technologies. A more specific rule is that, if the system grows more than half the food, the food plants will supply all the oxygen needed for the crew life support. There are many such design rules that help in planning the analysis of life support systems and in checking results. These rules are typically if-then statements describing the results of steady-state, "back of the envelope," mass flow calculations. They are useful in identifying plausible candidate life support system designs and in rough allocations between resupply and resource recovery. Life support system designers should always review the design rules and make quick steady state calculations before doing detailed design and dynamic simulation. This paper develops the basis for the different assumptions and design rules and discusses how they should be used. We start top-down, with the highest level requirement to sustain human beings in a closed environment off Earth. We consider the crew needs for air, water, and food. We then discuss atmosphere leakage and recycling losses. The needs to support the crew and to make up losses define the fundamental life support system requirements. We consider the trade-offs between resupplying and recycling oxygen, water, and food. The specific choices between resupply and recycling are determined by mission duration, presence of in-situ resources, etc., and are defining parameters of life support system design.
A Web-Based Learning Support System for Inquiry-Based Learning
NASA Astrophysics Data System (ADS)
Kim, Dong Won; Yao, Jingtao
The emergence of the Internet and Web technology makes it possible to implement the ideals of inquiry-based learning, in which students seek truth, information, or knowledge by questioning. Web-based learning support systems can provide a good framework for inquiry-based learning. This article presents a study on a Web-based learning support system called Online Treasure Hunt. The Web-based learning support system mainly consists of a teaching support subsystem, a learning support subsystem, and a treasure hunt game. The teaching support subsystem allows instructors to design their own inquiry-based learning environments. The learning support subsystem supports students' inquiry activities. The treasure hunt game enables students to investigate new knowledge, develop ideas, and review their findings. Online Treasure Hunt complies with a treasure hunt model. The treasure hunt model formalizes a general treasure hunt game to contain the learning strategies of inquiry-based learning. This Web-based learning support system empowered with the online-learning game and founded on the sound learning strategies furnishes students with the interactive and collaborative student-centered learning environment.
Systematic Review of Medical Informatics-Supported Medication Decision Making.
Melton, Brittany L
2017-01-01
This systematic review sought to assess the applications and implications of current medical informatics-based decision support systems related to medication prescribing and use. Studies published between January 2006 and July 2016 which were indexed in PubMed and written in English were reviewed, and 39 studies were ultimately included. Most of the studies looked at computerized provider order entry or clinical decision support systems. Most studies examined decision support systems as a means of reducing errors or risk, particularly associated with medication prescribing, whereas a few studies evaluated the impact medical informatics-based decision support systems have on workflow or operations efficiency. Most studies identified benefits associated with decision support systems, but some indicate there is room for improvement.
NASA Astrophysics Data System (ADS)
Bogdanov, A. V.; Iuzhanin, N. V.; Zolotarev, V. I.; Ezhakova, T. R.
2017-12-01
In this article the problem of scientific projects support throughout their lifecycle in the computer center is considered in every aspect of support. Configuration Management system plays a connecting role in processes related to the provision and support of services of a computer center. In view of strong integration of IT infrastructure components with the use of virtualization, control of infrastructure becomes even more critical to the support of research projects, which means higher requirements for the Configuration Management system. For every aspect of research projects support, the influence of the Configuration Management system is being reviewed and development of the corresponding elements of the system is being described in the present paper.
Dynamism in Electronic Performance Support Systems.
ERIC Educational Resources Information Center
Laffey, James
1995-01-01
Describes a model for dynamic electronic performance support systems based on NNAble, a system developed by the training group at Apple Computer. Principles for designing dynamic performance support are discussed, including a systems approach, performer-centered design, awareness of situated cognition, organizational memory, and technology use.…
Space shuttle environmental and thermal control/life support system study
NASA Technical Reports Server (NTRS)
Rousseau, J.
1973-01-01
The study of the space shuttle environmental and thermal control/life support system is summarized. Design approaches, system descriptions, maintenance requirements, testing requirements, instrumentation, and ground support equipment requirements are discussed.
NASA Astrophysics Data System (ADS)
Kanik, Mustafa; Gurocak, Zulfu
2018-07-01
In this study, we determined the consistency of support elements from empirical rock mass classification systems, to obtain optimum support elements via comparative numerical analyses. For this purpose, the Macka tunnel, on the Trabzon-Gumushane highway and still under construction, was selected as the study area. Along the tunnel route, Late Cretaceous-aged Catak, Macka and Esiroglu Formations crop out. All the formations are cut by a Late Cretaceous Kackar Rhyodacite. Laboratory and field studies were done to determine the properties of the rock material and discontinuities. The results were used to define rock mass properties. Preliminary support systems were defined by using Rock Mass Rating (RMR), Rock Mass Quality (Q) and Rock Mass Index (RMi) systems, respectively. The suggested support elements of all classification systems were in turn evaluated using the Finite Elements Method (FEM), allowing the thickness of the plastic zone and total displacement values to be determined. Results of the analyses showed that it is possible to remove the instabilities around the tunnel section by applying lower numbers of support elements. When using the support systems from the numerical analyses it was found that the optimum support systems were compatible with the support systems suggested by the RMi system. Besides, when the shotcrete strength was increased to 40 MPa, the displacements and thickness of the plastic zone around the tunnel could be reduced to minimal values.
Geneho Kim; Donald Nute; H. Michael Rauscher; David L. Loftis
2000-01-01
A programming environment for developing complex decision support systems (DSSs) should support rapid prototyping and modular design, feature a flexible knowledge representation scheme and sound inference mechanisms, provide project management, and be domain independent. We have previously developed DSSTools (Decision Support System Tools), a reusable, domain-...
Nakanishi, Miharu; Nakashima, Taeko; Yamaoka, Yukako; Hada, Keiko; Tanaka, Hideaki
2014-01-01
The present study examines differences in systems development and difficulties in implementing procedures for elder abuse prevention in 1,119 private and 606 public community general support centers under the public long-term care insurance program in Japan. The private community general support centers showed more difficulty implementing procedures than the public community general support centers. Controlling for the type of municipality, progress in systems development did not differ between the private and public community general support centers. Further research should examine how the characteristics of municipal governments are related to systems development in community general support centers.
Shibata, Yoshiyuki; Imai, Shingo; Nobutomo, Tatsuya; Miyoshi, Tasuku; Yamamoto, Shin-Ichiroh
2010-01-01
The purpose of this study is to develop a body weight support gait training system for stroke and spinal cord injury. This system consists of a powered orthosis, treadmill and equipment of body weight support. Attachment of the powered orthosis is able to fit subject who has difference of body size. This powered orthosis is driven by pneumatic McKibben actuator. Actuators are arranged as pair of antagonistic bi-articular muscle model and two pairs of antagonistic mono-articular muscle model like human musculoskeletal system. Part of the equipment of body weight support suspend subject by wire harness, and body weight of subject is supported continuously by counter weight. The powered orthosis is attached equipment of body weight support by parallel linkage, and movement of the powered orthosis is limited at sagittal plane. Weight of the powered orthosis is compensated by parallel linkage with gas-spring. In this study, we developed system that has orthosis powered by pneumatic McKibben actuators and equipment of body weight support. We report detail of our developed body weight support gait training system.
Life Support Goals Including High Closure and Low Mass Should Be Reconsidered Using Systems Analysis
NASA Technical Reports Server (NTRS)
Jones, Harry W.
2017-01-01
Recycling space life support systems have been built and tested since the 1960s and have operated on the International Space Station (ISS) since the mid 2000s. The development of space life support has been guided by a general consensus focused on two important related goals, increasing system closure and reducing launch mass. High closure is achieved by recycling crew waste products such as carbon dioxide and condensed humidity. Recycling directly reduces the mass of oxygen and water for the crew that must be launched from Earth. The launch mass of life support can be further reduced by developing recycling systems with lower hardware mass and reduced power. The life support consensus has also favored using biological systems. The goal of increasing closure using biological systems suggests that food should be grown in space and that biological processors be used for air, water, and waste recycling. The goal of reducing launch mass led to use of Equivalent System Mass (ESM) in life support advocacy and technology selection. The recent consensus assumes that the recycling systems architecture developed in the 1960s and implemented on ISS will be used on all future long missions. NASA and other project organizations use the standard systems engineering process to guide hardware development. The systems process was used to develop ISS life support, but it has been less emphasized in planning future systems for the moon and Mars. Since such missions are far in the future, there has been less immediate need for systems engineering analysis to consider trade-offs, reliability, and Life Cycle Cost (LCC). Preliminary systems analysis suggests that the life support consensus concepts should be revised to reflect systems engineering requirements.
Life Support System Technologies for NASA Exploration Missions
NASA Technical Reports Server (NTRS)
Ewert, Michael K.
2007-01-01
The Lunar Mars Life Support Test series successfully demonstrated integration and operation of advanced technologies for closed-loop life support systems, including physicochemical and biological subsystems. Increased closure was obtained when targeted technologies, such as brine dewatering subsystems, were added to further process life support system byproducts to recover resources. Physicochemical and biological systems can be integrated satisfactorily to achieve desired levels of closure. Imbalances between system components, such as differences in metabolic quotients between human crews and plants, must be addressed. Each subsystem or component that is added to increase closure will likely have added costs, ranging from initial launch mass, power, thermal, crew time, byproducts, etc., that must be factored into break even analysis. Achieving life support system closure while maintaining control of total mass and system complexity will be a challenge.
School District Evaluation: Database Warehouse Support.
ERIC Educational Resources Information Center
Adcock, Eugene P.; Haseltine, Reginald
The Prince George's County (Maryland) school system has developed a database warehouse system as an evaluation data support tool for fulfilling the system's information demands. This paper described the Research and Evaluation Assimilation Database (READ) warehouse support system and considers the requirements for data used in evaluation and how…
Development of a support software system for real-time HAL/S applications
NASA Technical Reports Server (NTRS)
Smith, R. S.
1984-01-01
Methodologies employed in defining and implementing a software support system for the HAL/S computer language for real-time operations on the Shuttle are detailed. Attention is also given to the management and validation techniques used during software development and software maintenance. Utilities developed to support the real-time operating conditions are described. With the support system being produced on Cyber computers and executable code then processed through Cyber or PDP machines, the support system has a production level status and can serve as a model for other software development projects.
Life support for aquatic species - past; present; future
NASA Astrophysics Data System (ADS)
Slenzka, K.
Life Support is a basic issue since manned space flight began. Not only to support astronauts and cosmonauts with the essential things to live, however, also animals which were carried for research to space etc together with men need support systems to survive under space conditions. Most of the animals transported to space participate at the life support system of the spacecraft. However, aquatic species live in water as environment and thus need special developments. Research with aquatic animals has a long tradition in manned space flight resulting in numerous life support systems for them starting with simple plastic bags up to complex support hardware. Most of the recent developments have to be identified as part of a technological oriented system and can be described as small technospheres. As the importance arose to study our Earth as the extraordinary Biosphere we live in, the modeling of small ecosystems began as part of ecophysiological research. In parallel the investigations of Bioregenerative Life Support Systems were launched and identified as necessity for long-term space missions or traveling to Moon and Mars and beyond. This paper focus on previous developments of Life Support Systems for aquatic animals and will show future potential developments towards Bioregenerative Life Support which additionally strongly benefits to our Earth's basic understanding.
DesAutels, Spencer J.; Fox, Zachary E.; Giuse, Dario A.; Williams, Annette M.; Kou, Qing-hua; Weitkamp, Asli; Neal R, Patel; Bettinsoli Giuse, Nunzia
2016-01-01
Clinical decision support (CDS) knowledge, embedded over time in mature medical systems, presents an interesting and complex opportunity for information organization, maintenance, and reuse. To have a holistic view of all decision support requires an in-depth understanding of each clinical system as well as expert knowledge of the latest evidence. This approach to clinical decision support presents an opportunity to unify and externalize the knowledge within rules-based decision support. Driven by an institutional need to prioritize decision support content for migration to new clinical systems, the Center for Knowledge Management and Health Information Technology teams applied their unique expertise to extract content from individual systems, organize it through a single extensible schema, and present it for discovery and reuse through a newly created Clinical Support Knowledge Acquisition and Archival Tool (CS-KAAT). CS-KAAT can build and maintain the underlying knowledge infrastructure needed by clinical systems. PMID:28269846
Implementation of Consolidated HIS: Improving Quality and Efficiency of Healthcare
Choi, Jinwook; Seo, Jeong-Wook; Chung, Chun Kee; Kim, Kyung-Hwan; Kim, Ju Han; Kim, Jong Hyo; Chie, Eui Kyu; Cho, Hyun-Jai; Goo, Jin Mo; Lee, Hyuk-Joon; Wee, Won Ryang; Nam, Sang Mo; Lim, Mi-Sun; Kim, Young-Ah; Yang, Seung Hoon; Jo, Eun Mi; Hwang, Min-A; Kim, Wan Suk; Lee, Eun Hye; Choi, Su Hi
2010-01-01
Objectives Adoption of hospital information systems offers distinctive advantages in healthcare delivery. First, implementation of consolidated hospital information system in Seoul National University Hospital led to significant improvements in quality of healthcare and efficiency of hospital management. Methods The hospital information system in Seoul National University Hospital consists of component applications: clinical information systems, clinical research support systems, administrative information systems, management information systems, education support systems, and referral systems that operate to generate utmost performance when delivering healthcare services. Results Clinical information systems, which consist of such applications as electronic medical records, picture archiving and communication systems, primarily support clinical activities. Clinical research support system provides valuable resources supporting various aspects of clinical activities, ranging from management of clinical laboratory tests to establishing care-giving procedures. Conclusions Seoul National University Hospital strives to move its hospital information system to a whole new level, which enables customized healthcare service and fulfills individual requirements. The current information strategy is being formulated as an initial step of development, promoting the establishment of next-generation hospital information system. PMID:21818449
NASA Technical Reports Server (NTRS)
Chamberland, Dennis
1992-01-01
The paper describes a higher-plant-based engineering paradigm for advanced life support in a Controlled Ecological Life Support System (CELSS) on the surface of the moon or Mars, called the CELSS Breadboard Project, designed at John F. Kennedy Space Center. Such a higher-plant-based system would use the plants for a direct food source, gas exchange, water reclamation, and plant residuals in a complex biological resource recovery scheme. The CELSS Breadboard Project utilizes a 'breadboard' approach of developing independent systems that are evaluated autonomously and are later interconnected. Such a scheme will enable evaluation of life support system methodologies tested for their efficiency in a life support system for habitats on the moon or Mars.
Implementing the President's Vision: JPL and NASA's Exploration Systems Mission Directorate
NASA Technical Reports Server (NTRS)
Sander, Michael J.
2006-01-01
As part of the NASA team the Jet Propulsion Laboratory is involved in the Exploration Systems Mission Directorate (ESMD) work to implement the President's Vision for Space exploration. In this slide presentation the roles that are assigned to the various NASA centers to implement the vision are reviewed. The plan for JPL is to use the Constellation program to advance the combination of science an Constellation program objectives. JPL's current participation is to contribute systems engineering support, Command, Control, Computing and Information (C3I) architecture, Crew Exploration Vehicle, (CEV) Thermal Protection System (TPS) project support/CEV landing assist support, Ground support systems support at JSC and KSC, Exploration Communication and Navigation System (ECANS), Flight prototypes for cabin atmosphere instruments
Zhang, Mingyuan; Velasco, Ferdinand T.; Musser, R. Clayton; Kawamoto, Kensaku
2013-01-01
Enabling clinical decision support (CDS) across multiple electronic health record (EHR) systems has been a desired but largely unattained aim of clinical informatics, especially in commercial EHR systems. A potential opportunity for enabling such scalable CDS is to leverage vendor-supported, Web-based CDS development platforms along with vendor-supported application programming interfaces (APIs). Here, we propose a potential staged approach for enabling such scalable CDS, starting with the use of custom EHR APIs and moving towards standardized EHR APIs to facilitate interoperability. We analyzed three commercial EHR systems for their capabilities to support the proposed approach, and we implemented prototypes in all three systems. Based on these analyses and prototype implementations, we conclude that the approach proposed is feasible, already supported by several major commercial EHR vendors, and potentially capable of enabling cross-platform CDS at scale. PMID:24551426
Exploration Life Support Critical Questions for Future Human Space Missions
NASA Technical Reports Server (NTRS)
Kwert, Michael K.; Barta, Daniel J.; McQuillan, Jeff
2010-01-01
Exploration Life Support (ELS) is a current project under NASA's Exploration Systems Mission Directorate. The ELS Project plans, coordinates and implements the development of advanced life support technologies for human exploration missions in space. Recent work has focused on closed loop atmosphere and water systems for long duration missions, including habitats and pressurized rovers. But, what are the critical questions facing life support system developers for these and other future human missions? This paper explores those questions and how progress in the development of ELS technologies can help answer them. The ELS Project includes the following Elements: Atmosphere Revitalization Systems, Water Recovery Systems, Waste Management Systems, Habitation Engineering, Systems Integration, Modeling and Analysis, and Validation and Testing, which includes the Sub-Elements Flight Experiments and Integrated Testing. Systems engineering analysis by ELS seeks to optimize overall mission architectures by considering all the internal and external interfaces of the life support system and the potential for reduction or reuse of commodities. In particular, various sources and sinks of water and oxygen are considered along with the implications on loop closure and the resulting launch mass requirements. Systems analysis will be validated through the data gathered from integrated testing, which will demonstrate the interfaces of a closed loop life support system. By applying a systematic process for defining, sorting and answering critical life support questions, the ELS project is preparing for a variety of future human space missions
Controlled ecological life-support system - Use of plants for human life-support in space
NASA Technical Reports Server (NTRS)
Chamberland, D.; Knott, W. M.; Sager, J. C.; Wheeler, R.
1992-01-01
Scientists and engineers within NASA are conducting research which will lead to development of advanced life-support systems that utilize higher plants in a unique approach to solving long-term life-support problems in space. This biological solution to life-support, Controlled Ecological Life-Support System (CELSS), is a complex, extensively controlled, bioengineered system that relies on plants to provide the principal elements from gas exchange and food production to potable water reclamation. Research at John F. Kennedy Space Center (KSC) is proceeding with a comprehensive investigation of the individual parts of the CELSS system at a one-person scale in an approach called the Breadboard Project. Concurrently a relatively new NASA sponsored research effort is investigating plant growth and metabolism in microgravity, innovative hydroponic nutrient delivery systems, and use of highly efficient light emitting diodes for artificial plant illumination.
DAWN (Design Assistant Workstation) for advanced physical-chemical life support systems
NASA Technical Reports Server (NTRS)
Rudokas, Mary R.; Cantwell, Elizabeth R.; Robinson, Peter I.; Shenk, Timothy W.
1989-01-01
This paper reports the results of a project supported by the National Aeronautics and Space Administration, Office of Aeronautics and Space Technology (NASA-OAST) under the Advanced Life Support Development Program. It is an initial attempt to integrate artificial intelligence techniques (via expert systems) with conventional quantitative modeling tools for advanced physical-chemical life support systems. The addition of artificial intelligence techniques will assist the designer in the definition and simulation of loosely/well-defined life support processes/problems as well as assist in the capture of design knowledge, both quantitative and qualitative. Expert system and conventional modeling tools are integrated to provide a design workstation that assists the engineer/scientist in creating, evaluating, documenting and optimizing physical-chemical life support systems for short-term and extended duration missions.
Support Systems for Poor Readers: Empirical Data from Six EU Member States
ERIC Educational Resources Information Center
Ise, Elena; Blomert, Leo; Bertrand, Daisy; Faisca, Luis; Puolakanaho, Anne; Saine, Nina L.; Suranyi, Zsuzsanna; Vaessen, Anniek; Csepe, Valeria; Lyytinen, Heikki; Reis, Alexandra; Ziegler, Johannes C.; Schulte-Korne, Gerd
2011-01-01
This study surveyed and compared support systems for poor readers in six member states of the European Union (EU). The goal was to identify features of effective support systems. A large-scale questionnaire survey was conducted among mainstream teachers (n = 4,210) and remedial teachers (n = 2,395). Results indicate that the six support systems…
The Puerto Rican Community and Natural Support Systems: Implications for the Education of Children.
ERIC Educational Resources Information Center
Delgado, Melvin
This report explores how service providers and educators can better understand, support, and work with Puerto Rican natural support systems through a variety of collaborative strategies. A first section presents a definition of Puerto Rican natural support systems and a discussion of how they are operationalized, and describes the following four…
ERIC Educational Resources Information Center
Bohanon, Hank; Gilman, Carrie; Parker, Ben; Amell, Chris
2016-01-01
The purpose of this paper is to describe the integration of tiered interventions and supports in secondary schools, sometimes referred to as multi-tiered systems of support (MTSS). The interventions include academic, behavioural, social, and emotional supports for all students. A description of the connections across specifc MTSS systems,…
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-15
... Toxicological Review of n-Butanol: In Support of Summary Information on the Integrated Risk Information System..., ``Toxicological Review of n-Butanol: In Support of Summary Information on the Integrated Risk Information System...-Butanol: In Support of Summary Information on the Integrated Risk Information System (IRIS)'' is available...
Tools to Support Human Factors and Systems Engineering Interactions During Early Analysis
NASA Technical Reports Server (NTRS)
Thronesbery, Carroll; Malin, Jane T.; Holden, Kritina; Smith, Danielle Paige
2005-01-01
We describe an approach and existing software tool support for effective interactions between human factors engineers and systems engineers in early analysis activities during system acquisition. We examine the tasks performed during this stage, emphasizing those tasks where system engineers and human engineers interact. The Concept of Operations (ConOps) document is an important product during this phase, and particular attention is paid to its influences on subsequent acquisition activities. Understanding this influence helps ConOps authors describe a complete system concept that guides subsequent acquisition activities. We identify commonly used system engineering and human engineering tools and examine how they can support the specific tasks associated with system definition. We identify possible gaps in the support of these tasks, the largest of which appears to be creating the ConOps document itself. Finally, we outline the goals of our future empirical investigations of tools to support system concept definition.
Tools to Support Human Factors and Systems Engineering Interactions During Early Analysis
NASA Technical Reports Server (NTRS)
Thronesbery, Carroll; Malin, Jane T.; Holden, Kritina; Smith, Danielle Paige
2006-01-01
We describe an approach and existing software tool support for effective interactions between human factors engineers and systems engineers in early analysis activities during system acquisition. We examine the tasks performed during this stage, emphasizing those tasks where system engineers and human engineers interact. The Concept of Operations (ConOps) document is an important product during this phase, and particular attention is paid to its influences on subsequent acquisition activities. Understanding this influence helps ConOps authors describe a complete system concept that guides subsequent acquisition activities. We identify commonly used system engineering and human engineering tools and examine how they can support the specific tasks associated with system definition. We identify possible gaps in the support of these tasks, the largest of which appears to be creating the ConOps document itself. Finally, we outline the goals of our future empirical investigations of tools to support system concept definition.
Aircraft interrogation and display system: A ground support equipment for digital flight systems
NASA Technical Reports Server (NTRS)
Glover, R. D.
1982-01-01
A microprocessor-based general purpose ground support equipment for electronic systems was developed. The hardware and software are designed to permit diverse applications in support of aircraft flight systems and simulation facilities. The implementation of the hardware, the structure of the software, describes the application of the system to an ongoing research aircraft project are described.
Advanced Extremely High Frequency Satellite (AEHF)
2013-12-01
terminals Milstar Backward Compatible Operate with the Milstar system, at all LDR and MDR terminal supported data rates, throughout the Milstar...transition to the AEHF system Operate with the Milstar system, at all LDR and MDR terminal supported data rates, throughout the Milstar...transition to the AEHF system Operate with the Milstar system, at all LDR and MDR terminal supported data rates, throughout the Milstar
Operating and Support Costing Guide: Army Weapon Systems
1974-12-23
First US Army 1 Commandant, US Army Logistics Management Center (Director Administration and Services) 2 Commander, US Army Management Systems Support...Army Logistics Management Center (Director, Administration and Services) Commander, US Army Management Systems Support Agency (DACS-AME) Commander
DOT National Transportation Integrated Search
2009-10-01
Transit Operations Decision Support Systems (TODSS) are systems designed to support dispatchers and others in real-time operations : management in response to incidents, special events, and other changing conditions in order to improve operating spee...
Don't Trust a Management Metric, Especially in Life Support
NASA Technical Reports Server (NTRS)
Jones, Harry W.
2014-01-01
Goodhart's law states that metrics do not work. Metrics become distorted when used and they deflect effort away from more important goals. These well-known and unavoidable problems occurred when the closure and system mass metrics were used to manage life support research. The intent of life support research should be to develop flyable, operable, reliable systems, not merely to increase life support system closure or to reduce its total mass. It would be better to design life support systems to meet the anticipated mission requirements and user needs. Substituting the metrics of closure and total mass for these goals seems to have led life support research to solve the wrong problems.
Case for Deploying Complex Systems Utilizing Commodity Components
NASA Technical Reports Server (NTRS)
Bryant, Barry S.; Pitts, R. Lee; Ritter, George
2003-01-01
This viewgraph representation presents a study of the transition of computer networks and software engineering at the Huntsville Operations Support Center (HOSC) from a client/server UNIX based system to a client/server system based on commodity priced and open system components. Topics covered include: an overview of HOSC ground support systems, an analysis for changes to the existing ground support system, an analysis of options considered for the transition to a new system, and a consideration of goals for a new system.
Model Based Mission Assurance: Emerging Opportunities for Robotic Systems
NASA Technical Reports Server (NTRS)
Evans, John W.; DiVenti, Tony
2016-01-01
The emergence of Model Based Systems Engineering (MBSE) in a Model Based Engineering framework has created new opportunities to improve effectiveness and efficiencies across the assurance functions. The MBSE environment supports not only system architecture development, but provides for support of Systems Safety, Reliability and Risk Analysis concurrently in the same framework. Linking to detailed design will further improve assurance capabilities to support failures avoidance and mitigation in flight systems. This also is leading new assurance functions including model assurance and management of uncertainty in the modeling environment. Further, the assurance cases, a structured hierarchal argument or model, are emerging as a basis for supporting a comprehensive viewpoint in which to support Model Based Mission Assurance (MBMA).
CONFIG: Integrated engineering of systems and their operation
NASA Technical Reports Server (NTRS)
Malin, Jane T.; Ryan, Dan; Fleming, Land
1994-01-01
This article discusses CONFIG 3, a prototype software tool that supports integrated conceptual design evaluation from early in the product life cycle, by supporting isolated or integrated modeling, simulation, and analysis of the function, structure, behavior, failures and operations of system designs. Integration and reuse of models is supported in an object-oriented environment providing capabilities for graph analysis and discrete event simulation. CONFIG supports integration among diverse modeling approaches (component view, configuration or flow path view, and procedure view) and diverse simulation and analysis approaches. CONFIG is designed to support integrated engineering in diverse design domains, including mechanical and electro-mechanical systems, distributed computer systems, and chemical processing and transport systems.
[Development of a medical equipment support information system based on PDF portable document].
Cheng, Jiangbo; Wang, Weidong
2010-07-01
According to the organizational structure and management system of the hospital medical engineering support, integrate medical engineering support workflow to ensure the medical engineering data effectively, accurately and comprehensively collected and kept in electronic archives. Analyse workflow of the medical, equipment support work and record all work processes by the portable electronic document. Using XML middleware technology and SQL Server database, complete process management, data calculation, submission, storage and other functions. The practical application shows that the medical equipment support information system optimizes the existing work process, standardized and digital, automatic and efficient orderly and controllable. The medical equipment support information system based on portable electronic document can effectively optimize and improve hospital medical engineering support work, improve performance, reduce costs, and provide full and accurate digital data
ERIC Educational Resources Information Center
Ngai, E. W. T.; Lam, S. S.; Poon, J. K. L.
2013-01-01
This paper describes the successful application of a computer-supported collaborative learning system in teaching e-commerce. The authors created a teaching and learning environment for 39 local secondary schools to introduce e-commerce using a computer-supported collaborative learning system. This system is designed to equip students with…
Okandan, Murat; Nielson, Gregory N.
2016-07-12
Solar tracking systems, as well as methods of using such solar tracking systems, are disclosed. More particularly, embodiments of the solar tracking systems include lateral supports horizontally positioned between uprights to support photovoltaic modules. The lateral supports may be raised and lowered along the uprights or translated to cause the photovoltaic modules to track the moving sun.
Apparatus for supporting a cryogenic fluid containment system within an enclosure
Zhang, Burt X.; Ganni, Venkatarao; Stifle, Kirk E.
1995-01-01
An apparatus for supporting at least one inner cryogenic fluid containment system within an outer isolating enclosure to retard heat transfer into the inner containment system comprising a plurality of supports serially interconnected and laterally spaced by lateral connections to extend the heat conduction path into the inner containment system.
(abstract) Generic Modeling of a Life Support System for Process Technology Comparisons
NASA Technical Reports Server (NTRS)
Ferrall, J. F.; Seshan, P. K.; Rohatgi, N. K.; Ganapathi, G. B.
1993-01-01
This paper describes a simulation model called the Life Support Systems Analysis Simulation Tool (LiSSA-ST), the spreadsheet program called the Life Support Systems Analysis Trade Tool (LiSSA-TT), and the Generic Modular Flow Schematic (GMFS) modeling technique. Results of using the LiSSA-ST and the LiSSA-TT will be presented for comparing life support systems and process technology options for a Lunar Base and a Mars Exploration Mission.
Use of LOGIC to support lidar operations
NASA Astrophysics Data System (ADS)
Davis-Lunde, Kimberley; Jugan, Laurie A.; Shoemaker, J. Todd
1999-10-01
The Naval Oceanographic Office (NAVOCEANO) and Planning Systems INcorporated are developing the Littoral Optics Geospatial Integrated Capability (LOGIC). LOGIC supports NAVOCEANO's directive to assess the impact of the environment on Fleet systems in areas of operational interest. LOGIC is based in the Geographic Information System (GIS) ARC/INFO and offers a method to view and manipulate optics and ancillary data to support emerging Fleet lidar systems. LOGIC serves as a processing (as required) and quality-checking mechanism for data entering NAVOCEANO's Data Warehouse and handles both remotely sensed and in-water data. LOGIC provides a link between these data and the GIS-based Graphical User Interface, allowing the user to select data manipulation routines and/or system support products. The results of individual modules are displayed via the GIS to provide such products as lidar system performance, laser penetration depth, and asset vulnerability from a lidar threat. LOGIC is being developed for integration into other NAVOCEANO programs, most notably for Comprehensive Environmental Assessment System, an established tool supporting sonar-based systems. The prototype for LOGIC was developed for the Yellow Sea, focusing on a diver visibility support product.
System for automatically aligning a support roller system under a rotating body
Singletary, B. Huston
1983-01-01
Two support rings on a rotatable drum respectively engage conically tapered nd surfaces of support rollers mounted on pivot universally relative to its axis of rotation and translate therealong. Rotation of the drum on differential conical support roller diameters causes pivotal steering and axial translation of support roller until roller is centered on support rings.
System for automatically aligning a support roller system under a rotating body
Singletary, B.H.
1982-07-21
Two support rings on a rotatable drum respectively engage conically tapered end surfaces of support rollers mounted on pivot universally relative to its axis of rotation and translate therealong. Rotation of the drum on differential conical support roller diameters causes pivotal steering and axial translation of support roller until roller is centered on support rings.
Environmental Control and Life Support Systems and Power Systems ...
Environmental Control and Life Support Systems and Power Systems - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX
NASA Technical Reports Server (NTRS)
Straight, Christian L.; Bubenheim, David L.; Bates, Maynard E.; Flynn, Michael T.
1994-01-01
CELSS Antarctic Analog Project (CAAP) represents a logical solution to the multiple objectives of both the NASA and the National Science Foundation (NSF). CAAP will result in direct transfer of proven technologies and systems, proven under the most rigorous of conditions, to the NSF and to society at large. This project goes beyond, as it must, the generally accepted scope of CELSS and life support systems including the issues of power generation, human dynamics, community systems, and training. CAAP provides a vivid and starkly realistic testbed of Controlled Ecological Life Support System (CELSS) and life support systems and methods. CAAP will also be critical in the development and validation of performance parameters for future advanced life support systems.
A Modular Artificial Intelligence Inference Engine System (MAIS) for support of on orbit experiments
NASA Technical Reports Server (NTRS)
Hancock, Thomas M., III
1994-01-01
This paper describes a Modular Artificial Intelligence Inference Engine System (MAIS) support tool that would provide health and status monitoring, cognitive replanning, analysis and support of on-orbit Space Station, Spacelab experiments and systems.
An Exploratory Study of the Educational Support Systems of Female G.E.D. Students.
ERIC Educational Resources Information Center
Champagne, Delight E.
Structured interviews and case analyses were used to assess the support systems of 20 women enrolled in General Educational Development (GED) preparation classes in Connecticut. None was found to have a complete system of support--that is, one lacking in neither sources nor types of support as defined by the researchers--for their educational…
Office of Spaceflight Standard Spaceborne Global Positioning System (GPS) user equipment project
NASA Technical Reports Server (NTRS)
Saunders, Penny E.
1991-01-01
The Global Positioning System (GPS) provides the following: (1) position and velocity determination to support vehicle GN&C, precise orbit determination, and payload pointing; (2) time reference to support onboard timing systems and data time tagging; (3) relative position and velocity determination to support cooperative vehicle tracking; and (4) attitude determination to support vehicle attitude control and payload pointing.
A decision-supported outpatient practice system.
Barrows, R. C.; Allen, B. A.; Smith, K. C.; Arni, V. V.; Sherman, E.
1996-01-01
We describe a Decision-supported Outpatient Practice (DOP) system developed and now in use at the Columbia-Presbyterian Medical Center. DOP is an automated ambulatory medical record system that integrates in-patient and ambulatory care data, and incorporates active and passive decision support mechanisms with a view towards improving the quality of primary care. Active decision support occurs in the form of event-driven reminders created within a remote clinical information system with its central data repository and decision support system (DSS). Novel features of DOP include patient specific health maintenance task lists calculated by the remote DSS. uses of a semantically structured controlled medical vocabulary to support clinical results review and provider data entry, and exploitation of an underlying ambulatory data model that provides for an explicit record of evolution of insight regarding patient management. Benefits, challenges, and plans are discussed. PMID:8947774
1991 NASA Life Support Systems Analysis workshop
NASA Technical Reports Server (NTRS)
Evanich, Peggy L.; Crabb, Thomas M.; Gartrell, Charles F.
1992-01-01
The 1991 Life Support Systems Analysis Workshop was sponsored by NASA Headquarters' Office of Aeronautics and Space Technology (OAST) to foster communication among NASA, industrial, and academic specialists, and to integrate their inputs and disseminate information to them. The overall objective of systems analysis within the Life Support Technology Program of OAST is to identify, guide the development of, and verify designs which will increase the performance of the life support systems on component, subsystem, and system levels for future human space missions. The specific goals of this workshop were to report on the status of systems analysis capabilities, to integrate the chemical processing industry technologies, and to integrate recommendations for future technology developments related to systems analysis for life support systems. The workshop included technical presentations, discussions, and interactive planning, with time allocated for discussion of both technology status and time-phased technology development recommendations. Key personnel from NASA, industry, and academia delivered inputs and presentations on the status and priorities of current and future systems analysis methods and requirements.
Use of a wiki as a radiology departmental knowledge management system.
Meenan, Christopher; King, Antoinette; Toland, Christopher; Daly, Mark; Nagy, Paul
2010-04-01
Information technology teams in health care are tasked with maintaining a variety of information systems with complex support requirements. In radiology, this includes picture archive and communication systems, radiology information systems, speech recognition systems, and other ancillary systems. Hospital information technology (IT) departments are required to provide 24 x 7 support for these mission-critical systems that directly support patient care in emergency and other critical care departments. The practical know-how to keep these systems operational and diagnose problems promptly is difficult to maintain around the clock. Specific details on infrequent failure modes or advanced troubleshooting strategies may reside with only a few senior staff members. Our goal was to reduce diagnosis and recovery times for issues with our mission-critical systems. We created a knowledge base for building and quickly disseminating technical expertise to our entire support staff. We used an open source, wiki-based, collaborative authoring system internally within our IT department to improve our ability to deliver a high level of service to our customers. In this paper, we describe our evaluation of the wiki and the ways in which we used it to organize our support knowledge. We found the wiki to be an effective tool for knowledge management and for improving our ability to provide mission-critical support for health care IT systems.
Operator Support System Design forthe Operation of RSG-GAS Research Reactor
NASA Astrophysics Data System (ADS)
Santoso, S.; Situmorang, J.; Bakhri, S.; Subekti, M.; Sunaryo, G. R.
2018-02-01
The components of RSG-GAS main control room are facing the problem of material ageing and technology obsolescence as well, and therefore the need for modernization and refurbishment are essential. The modernization in control room can be applied on the operator support system which bears the function in providing information for assisting the operator in conducting diagnosis and actions. The research purpose is to design an operator support system for RSG-GAS control room. The design was developed based on the operator requirement in conducting task operation scenarios and the reactor operation characteristics. These scenarios include power operation, low power operation and shutdown/scram reactor. The operator support system design is presented in a single computer display which contains structure and support system elements e.g. operation procedure, status of safety related components and operational requirements, operation limit condition of parameters, alarm information, and prognosis function. The prototype was developed using LabView software and consisted of components structure and features of the operator support system. Information of each component in the operator support system need to be completed before it can be applied and integrated in the RSG-GAS main control room.
Pirnejad, Habibollah; Niazkhani, Zahra; van der Sijs, Heleen; Berg, Marc; Bal, Roland
2008-11-01
Due to their efficiency and safety potential, computerized physician order entry (CPOE) systems are gaining considerable attention in in-patient settings. However, recent studies have shown that these systems may undermine the efficiency and safety of the medication process by impeding nurse-physician collaboration. To evaluate the effects of a CPOE system on the mechanisms whereby nurses and physicians maintain their collaboration in the medication process. SETTING AND METHODOLOGY: Six internal medicine wards at the Erasmus Medical Centre were included in this study. A questionnaire was used to record nurses' attitudes towards the effectiveness of the former paper-based system. A similar questionnaire was used to evaluate nurses' attitudes with respect to a CPOE system that replaced the paper-based system. The data were complemented and triangulated through interviews with physicians and nurses. Response rates for the analyzed questions in the pre- and post-implementation questionnaires were 54.3% (76/140) and 52.14% (73/140). The CPOE system had a mixed impact on medication work: while it improved the main non-supportive features of the paper-based system, it lacked its main supportive features. The interviews revealed more detailed supportive and non-supportive features of the two systems. A comparison of supportive features of the paper-based system with non-supportive features of the CPOE system showed that synchronisation and feedback mechanisms in nurse-physician collaborations have been impaired after the CPOE system was introduced. This study contributes to an understanding of the affected mechanisms in nurse-physician collaboration using a CPOE system. It provides recommendations for repairing the impaired mechanisms and for redesigning the CPOE system and thus for better supporting these structures.
DOT National Transportation Integrated Search
2010-02-01
Transit Operations Decision Support Systems (TODSS) are systems designed to support dispatchers and others in real-time operations : management in response to incidents, special events, and other changing conditions. As part of a joint Federal Transi...
MISSION: Mission and Safety Critical Support Environment. Executive overview
NASA Technical Reports Server (NTRS)
Mckay, Charles; Atkinson, Colin
1992-01-01
For mission and safety critical systems it is necessary to: improve definition, evolution and sustenance techniques; lower development and maintenance costs; support safe, timely and affordable system modifications; and support fault tolerance and survivability. The goal of the MISSION project is to lay the foundation for a new generation of integrated systems software providing a unified infrastructure for mission and safety critical applications and systems. This will involve the definition of a common, modular target architecture and a supporting infrastructure.
1984-09-01
is not only difficult and time consuming , but also crucial to the success of the project, the question is whether a decision support system designed...KtI I - uAujvhIMtf IENE In THE FEASIBILITY OF A DECISION SUPPORT SYSTEM FOR THE DETERMINATION OF SOURCE SELECTION EVALUATION ’CRITERIA THESIS .2...INSTITUTE OF TECHNOLOGY Wright-Patterson Air Force Base, Ohio DZM=0N STATEMENT A ,’r !’ILMILSHIM S /8 4 THE FEASIBILITY OF A DECISION SUPPORT SYSTEM FOR
Vehicle management and mission planning systems with shuttle applications
NASA Technical Reports Server (NTRS)
1972-01-01
A preliminary definition of a concept for an automated system is presented that will support the effective management and planning of space shuttle operations. It is called the Vehicle Management and Mission Planning System (VMMPS). In addition to defining the system and its functions, some of the software requirements of the system are identified and a phased and evolutionary method is recommended for software design, development, and implementation. The concept is composed of eight software subsystems supervised by an executive system. These subsystems are mission design and analysis, flight scheduler, launch operations, vehicle operations, payload support operations, crew support, information management, and flight operations support. In addition to presenting the proposed system, a discussion of the evolutionary software development philosophy that the Mission Planning and Analysis Division (MPAD) would propose to use in developing the required supporting software is included. A preliminary software development schedule is also included.
Hoffman, P; Kline, E; George, L; Price, K; Clark, M; Walasin, R
1995-01-01
The Military Health Service System (MHSS) provides health care for the Department of Defense (DOD). This system operates on an annual budget of $15 Billion, supports 127 medical treatment facilities (MTFs) and 500 clinics, and provides support to 8.7 million beneficiaries worldwide. To support these facilities and their patients, the MHSS uses more than 125 different networked automated medical systems. These systems rely on a heterogeneous telecommunications infrastructure for data communications. With the support of the Defense Medical Information Management (DMIM) Program Office, our goal was to identify the network requirements for DMIM migration and target systems and design a communications infrastructure to support all systems with an integrated network. This work used tools from Business Process Reengineering (BPR) and applied it to communications infrastructure design for the first time. The methodology and results are applicable to any health care enterprise, military or civilian.
Hoffman, P.; Kline, E.; George, L.; Price, K.; Clark, M.; Walasin, R.
1995-01-01
The Military Health Service System (MHSS) provides health care for the Department of Defense (DOD). This system operates on an annual budget of $15 Billion, supports 127 medical treatment facilities (MTFs) and 500 clinics, and provides support to 8.7 million beneficiaries worldwide. To support these facilities and their patients, the MHSS uses more than 125 different networked automated medical systems. These systems rely on a heterogeneous telecommunications infrastructure for data communications. With the support of the Defense Medical Information Management (DMIM) Program Office, our goal was to identify the network requirements for DMIM migration and target systems and design a communications infrastructure to support all systems with an integrated network. This work used tools from Business Process Reengineering (BPR) and applied it to communications infrastructure design for the first time. The methodology and results are applicable to any health care enterprise, military or civilian. PMID:8563346
Chih, Ming-Yuan; DuBenske, Lori L; Hawkins, Robert P; Brown, Roger L; Dinauer, Susan K; Cleary, James F; Gustafson, David H
2013-06-01
Using available communication technologies, clinicians may offer timely support to family caregivers in managing symptoms in patients with advanced cancer at home. To assess the effects of an online symptom reporting system on caregiver preparedness, physical burden, and negative mood. A pooled analysis of two randomized trials (NCT00214162 and NCT00365963) was conducted to compare caregiver outcomes at 6 and 12 months after intervention between two randomized, unblinded groups using General Linear Mixed Modeling. Caregivers in one group (Comprehensive Health Enhancement Support System-Only) were given access to an interactive cancer communication system, the Comprehensive Health Enhancement Support System. Those in the other group (Comprehensive Health Enhancement Support System + Clinician Report) received access to Comprehensive Health Enhancement Support System plus an online symptom reporting system called the Clinician Report. Clinicians of patients in the Comprehensive Health Enhancement Support System + Clinician Report group received e-mail alerts notifying them when a symptom distress was reported over a predetermined threshold. Dyads (n = 235) of advanced-stage lung, breast, and prostate cancer patients and their adult caregivers were recruited at five outpatient oncology clinics in the United States. Caregivers in the Comprehensive Health Enhancement Support System + Clinician Report group reported less negative mood than those in the Comprehensive Health Enhancement Support System-Only group at both 6 months (p = 0.009) and 12 months (p = 0.004). Groups were not significantly different on caregiver preparedness or physical burden at either time point. This study provides new evidence that by using an online symptom reporting system, caregivers may experience less emotional distress due to the Clinician Report's timely communication of caregiving needs in symptom management to clinicians.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-30
... a level of > 22 inches water column in support of SGIG system operation. Exelon is submitting this... site, but should note that the NRC's E-Filing system does not support unlisted software, and the NRC... EDGs and the associated support systems, such as the fuel oil storage and transfer systems, are...
A Computer Support System for the Entry and Analysis of Questionnaire Data.
ERIC Educational Resources Information Center
Shale, Douglas G.; Milinusic, Tomislav O.
This paper describes a computer support system that eliminated many of the problems associated with the usual methods of transcribing and analyzing questionnaire data. The system was created to support the course evaluation system at Athabasca University, a distance education university in Canada. The courses evaluated were all home study courses,…
Apparatus for supporting a cryogenic fluid containment system within an enclosure
Zhang, B.X.; Ganni, V.; Stifle, K.E.
1995-01-31
An apparatus is disclosed for supporting at least one inner cryogenic fluid containment system within an outer isolating enclosure to retard heat transfer into the inner containment system comprising a plurality of supports serially interconnected and laterally spaced by lateral connections to extend the heat conduction path into the inner containment system. 8 figs.
BLSS: a contribution to future life support.
Skoog, A I
1984-01-01
For extended duration missions in space the supply of basic life-supporting ingredients represents a formidable logistics problem. Storage volume and launch weight of water, oxygen and food in a conventional non-regenerable life support system are directly proportional to the crew size and the length of the mission. In view of spacecraft payload limitations this will require that the carbon, or food, recycling loop, the third and final part in the life support system, be closed to further reduce logistics cost. This will be practical only if advanced life support systems can be developed in which metabolic waste products are regenerated and food is produced. Biological Life Support Systems (BLSS) satisfy the space station environmental control functions and close the food cycle. A Biological Life Support System has to be a balanced ecological system, biotechnical in nature and consisting of some combination of human beings, animals, plants and microorganisms integrated with mechanical and physico-chemical hardware. Numerous scientific space experiments have been delineated in recent years, the results of which are applicable to the support of BLSS concepts. Furthermore ecological life support systems have become subject to intensified studies and experiments both in the U.S. and the U.S.S.R. The Japanese have also conducted detailed preliminary studies. Dornier System has in recent years undertaken an effort to define requirements and concepts and to analyse the feasibility of BLSS for space applications. Analyses of the BLSS energy-mass relation have been performed, and the possibilities to influence it to achieve advantages for the BLSS (compared with physico-chemical systems) have been determined. The major problem areas which need immediate attention have been defined, and a programme for the development of BLSS has been proposed.
NASA Technical Reports Server (NTRS)
Flowers, George T.
1995-01-01
Progress made in the current year is listed, and the following papers are included in the appendix: Steady-State Dynamic Behavior of an Auxiliary Bearing Supported Rotor System; Dynamic Behavior of a Magnetic Bearing Supported Jet Engine Rotor with Auxiliary Bearings; Dynamic Modelling and Response Characteristics of a Magnetic Bearing Rotor System with Auxiliary Bearings; and Synchronous Dynamics of a Coupled Shaft/Bearing/Housing System with Auxiliary Support from a Clearance Bearing: Analysis and Experiment.
Ergonomically neutral arm support system
Siminovitch, Michael J; Chung, Jeffrey Y; Dellinges, Steven; Lafever, Robin E
2005-08-02
An ergonomic arm support system maintains a neutral position for the forearm. A mechanical support structure attached to a chair or other mounting structure supports the arms of a sitting or standing person. The system includes moving elements and tensioning elements to provide a dynamic balancing force against the forearms. The support structure is not fixed or locked in a rigid position, but is an active dynamic system that is maintained in equipoise by the continuous operation of the opposing forces. The support structure includes an armrest connected to a flexible linkage or articulated or pivoting assembly, which includes a tensioning element such as a spring. The pivoting assembly moves up and down, with the tensioning element providing the upward force that balances the downward force of the arm.
A prototype knowledge-based simulation support system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hill, T.R.; Roberts, S.D.
1987-04-01
As a preliminary step toward the goal of an intelligent automated system for simulation modeling support, we explore the feasibility of the overall concept by generating and testing a prototypical framework. A prototype knowledge-based computer system was developed to support a senior level course in industrial engineering so that the overall feasibility of an expert simulation support system could be studied in a controlled and observable setting. The system behavior mimics the diagnostic (intelligent) process performed by the course instructor and teaching assistants, finding logical errors in INSIGHT simulation models and recommending appropriate corrective measures. The system was programmed inmore » a non-procedural language (PROLOG) and designed to run interactively with students working on course homework and projects. The knowledge-based structure supports intelligent behavior, providing its users with access to an evolving accumulation of expert diagnostic knowledge. The non-procedural approach facilitates the maintenance of the system and helps merge the roles of expert and knowledge engineer by allowing new knowledge to be easily incorporated without regard to the existing flow of control. The background, features and design of the system are describe and preliminary results are reported. Initial success is judged to demonstrate the utility of the reported approach and support the ultimate goal of an intelligent modeling system which can support simulation modelers outside the classroom environment. Finally, future extensions are suggested.« less
Goldblatt, Peter
2015-12-25
Ooms et al sets out some good general principles for a global social support system to improve fairer global competitiveness as a result of redistribution. This commentary sets out to summarize some of the conditions that would need to be satisfied for it to level up gradients in inequality through such a social support system, using the National Basketball Association (NBA) example as a point of reference. From this, the minimal conditions are described that would be required for the support system, proposed in the article by Ooms et al, to succeed. © 2016 by Kerman University of Medical Sciences.
Gimbaled multispectral imaging system and method
Brown, Kevin H.; Crollett, Seferino; Henson, Tammy D.; Napier, Matthew; Stromberg, Peter G.
2016-01-26
A gimbaled multispectral imaging system and method is described herein. In an general embodiment, the gimbaled multispectral imaging system has a cross support that defines a first gimbal axis and a second gimbal axis, wherein the cross support is rotatable about the first gimbal axis. The gimbaled multispectral imaging system comprises a telescope that fixed to an upper end of the cross support, such that rotation of the cross support about the first gimbal axis causes the tilt of the telescope to alter. The gimbaled multispectral imaging system includes optics that facilitate on-gimbal detection of visible light and off-gimbal detection of infrared light.
Advanced Group Support Systems and Facilities
NASA Technical Reports Server (NTRS)
Noor, Ahmed K. (Compiler); Malone, John B. (Compiler)
1999-01-01
The document contains the proceedings of the Workshop on Advanced Group Support Systems and Facilities held at NASA Langley Research Center, Hampton, Virginia, July 19-20, 1999. The workshop was jointly sponsored by the University of Virginia Center for Advanced Computational Technology and NASA. Workshop attendees came from NASA, other government agencies, industry, and universities. The objectives of the workshop were to assess the status of advanced group support systems and to identify the potential of these systems for use in future collaborative distributed design and synthesis environments. The presentations covered the current status and effectiveness of different group support systems.
Creating a Team Archive During Fast-Paced Anomaly Response Activities in Space Missions
NASA Technical Reports Server (NTRS)
Malin, Jane T.; Hicks, LaDessa; Overland, David; Thronesbery, Carroll; Christofferesen, Klaus; Chow, Renee
2002-01-01
This paper describes a Web-based system to support the temporary Anomaly Response Team formed from distributed subteams in Space Shuttle and International Space Station missions. The system was designed for easy and flexible creation of small collections of files and links associated with work on a particular anomaly. The system supports privacy and levels of formality for the subteams. First we describe the supported groups and an anomaly response scenario. Then we describe the support system prototype, the Anomaly Response Tracking and Integration System (ARTIS). Finally, we describe our evaluation approach and the results of the evaluation.
A portable life support system for use in mines
NASA Technical Reports Server (NTRS)
Zeller, S. S.
1972-01-01
The portable life support system described in this paper represents a potential increase in the probability of survival for miners who are trapped underground by a fire or explosion. The habitability and life support capability of the prototype shelter have proved excellent. Development of survival chamber life support systems for wide use in coal mines is definitely within the capabilities of current technology.
NASA Technical Reports Server (NTRS)
Mckay, C. W.; Bown, R. L.
1985-01-01
The paper discusses the importance of linking Ada Run Time Support Environments to the Common Ada Programming Support Environment (APSE) Interface Set (CAIS). A non-stop network operating systems scenario is presented to serve as a forum for identifying the important issues. The network operating system exemplifies the issues involved in the NASA Space Station data management system.
Introduction to Decision Support Systems for Risk Based Management of Contaminated Sites
A book on Decision Support Systems for Risk-based Management of contaminated sites is appealing for two reasons. First, it addresses the problem of contaminated sites, which has worldwide importance. Second, it presents Decision Support Systems (DSSs), which are powerful comput...
BLISS: The Bradley Library Information Support System.
ERIC Educational Resources Information Center
Hartman, Joel L.; And Others
1993-01-01
Describes the Bradley Library Information Support System (BLISS), a comprehensive local area network designed to provide library users with electronic information access and management services to support Bradley University (Illinois). System architecture is explained; and six sidebars provide more detailed information on various services, the…
COMPUTER SUPPORT SYSTEMS FOR ESTIMATING CHEMICAL TOXICITY: PRESENT CAPABILITIES AND FUTURE TRENDS
Computer Support Systems for Estimating Chemical Toxicity: Present Capabilities and Future Trends
A wide variety of computer-based artificial intelligence (AI) and decision support systems exist currently to aid in the assessment of toxicity for environmental chemicals. T...
NASA Technical Reports Server (NTRS)
Tri, Terry O.; Thompson, Clifford D.
1992-01-01
Future NASA manned missions to the moon and Mars will require development of robust regenerative life support system technologies which offer high reliability and minimal resupply. To support the development of such systems, early ground-based test facilities will be required to demonstrate integrated, long-duration performance of candidate regenerative air revitalization, water recovery, and thermal management systems. The advanced life support Systems Integration Research Facility (SIRF) is one such test facility currently being developed at NASA's Johnson Space Center. The SIRF, when completed, will accommodate unmanned and subsequently manned integrated testing of advanced regenerative life support technologies at ambient and reduced atmospheric pressures. This paper provides an overview of the SIRF project, a top-level description of test facilities to support the project, conceptual illustrations of integrated test article configurations for each of the three SIRF systems, and a phased project schedule denoting projected activities and milestones through the next several years.
Space shuttle food system study. Volume 1: System design report
NASA Technical Reports Server (NTRS)
1974-01-01
Data were assembled which define the optimum food system to support the space shuttle program, and which provide sufficient engineering data to support necessary requests for proposals towards final development and installment of the system. The study approach used is outlined, along with technical data and sketches for each functional area. Logistic support analysis, system assurance, and recommendations and conclusions based on the study results are also presented.
ERIC Educational Resources Information Center
Ho, Tzu-Hua
2013-01-01
This study investigated the influences of children's adaptive skills, problem behaviors, and parent support systems (informal support and formal professional support) on maternal well-being (health and stress) in Taiwanese mothers of young children with developmental disabilities. The study examined the moderating effects of formal support and…
NASA Technical Reports Server (NTRS)
Chamberland, Dennis; Wheeler, Raymond M.; Corey, Kenneth A.
1993-01-01
Engineering stategies for advanced life support systems to be used on Lunar and Mars bases involve a wide spectrum of approaches. These range from purely physical-chemical life support strategies to purely biological approaches. Within the context of biological based systems, a bioengineered system can be devised that would utilize the metabolic mechanisms of plants to control the rates of CO2 uptake and O2 evolution (photosynthesis) and water production (transpiration). Such a mechanism of external engineering control has become known as throttling. Research conducted at the John F. Kennedy Space Center's Controlled Ecological Life Support System Breadboard Project has demonstrated the potential of throttling these fluxes by changing environmental parameters affecting the plant processes. Among the more effective environmental throttles are: light and CO2 concentration for controllingthe rate of photsynthesis and humidity and CO2 concentration for controlling transpiration. Such a bioengineered strategy implies control mechanisms that in the past have not been widely attributed to life support systems involving biological components and suggests a broad range of applications in advanced life support system design.
NASA Technical Reports Server (NTRS)
Olson, R. L.; Gustan, E. A.; Vinopal, T. J.
1985-01-01
Regenerative life support systems based on the use of biological material was considered for inclusion in manned spacecraft. Biological life support systems are developed in the controlled ecological life support system (CELSS) program. Because of the progress achieved in the CELSS program, it is determined which space missions may profit from use of the developing technology. Potential transportation cost savings by using CELSS technology for selected future manned space missions was evaluated. Six representative missions were selected which ranged from a low Earth orbit mission to those associated with asteroids and a Mars sortie. The crew sizes considered varied from four persons to five thousand. Other study parameters included mission duration and life support closure percentages, with the latter ranging from complete resupply of consumable life support materials to 97% closure of the life support system. The analytical study approach and the missions and systems considered, together with the benefits derived from CELSS when applicable are described.
Advanced Life Support Research and Technology Development Metric: Fiscal Year 2003
NASA Technical Reports Server (NTRS)
Hanford, A. J.
2004-01-01
This document provides the official calculation of the Advanced Life Support (ALS) Research and Technology Development Metric (the Metric) for Fiscal Year 2003. As such, the values herein are primarily based on Systems Integration, Modeling, and Analysis (SIMA) Element approved software tools or reviewed and approved reference documents. The Metric is one of several measures employed by the National Aeronautics and Space Administration (NASA) to assess the Agency s progress as mandated by the United States Congress and the Office of Management and Budget. Because any measure must have a reference point, whether explicitly defined or implied, the Metric is a comparison between a selected ALS Project life support system and an equivalently detailed life support system using technology from the Environmental Control and Life Support System (ECLSS) for the International Space Station (ISS). More specifically, the Metric is the ratio defined by the equivalent system mass (ESM) of a life support system for a specific mission using the ISS ECLSS technologies divided by the ESM for an equivalent life support system using the best ALS technologies. As defined, the Metric should increase in value as the ALS technologies become lighter, less power intensive, and require less volume. For Fiscal Year 2003, the Advanced Life Support Research and Technology Development Metric value is 1.47 for an Orbiting Research Facility and 1.36 for an Independent Exploration Mission.
An enhanced Ada run-time system for real-time embedded processors
NASA Technical Reports Server (NTRS)
Sims, J. T.
1991-01-01
An enhanced Ada run-time system has been developed to support real-time embedded processor applications. The primary focus of this development effort has been on the tasking system and the memory management facilities of the run-time system. The tasking system has been extended to support efficient and precise periodic task execution as required for control applications. Event-driven task execution providing a means of task-asynchronous control and communication among Ada tasks is supported in this system. Inter-task control is even provided among tasks distributed on separate physical processors. The memory management system has been enhanced to provide object allocation and protected access support for memory shared between disjoint processors, each of which is executing a distinct Ada program.
A secure communication using cascade chaotic computing systems on clinical decision support.
Koksal, Ahmet Sertol; Er, Orhan; Evirgen, Hayrettin; Yumusak, Nejat
2016-06-01
Clinical decision support systems (C-DSS) provide supportive tools to the expert for the determination of the disease. Today, many of the support systems, which have been developed for a better and more accurate diagnosis, have reached a dynamic structure due to artificial intelligence techniques. However, in cases when important diagnosis studies should be performed in secret, a secure communication system is required. In this study, secure communication of a DSS is examined through a developed double layer chaotic communication system. The developed communication system consists of four main parts: random number generator, cascade chaotic calculation layer, PCM, and logical mixer layers. Thanks to this system, important patient data created by DSS will be conveyed to the center through a secure communication line.
NASA Technical Reports Server (NTRS)
Kearney, Lara
2004-01-01
In January 2004, the President announced a new Vision for Space Exploration. NASA's Office of Exploration Systems has identified Extravehicular Activity (EVA) as a critical capability for supporting the Vision for Space Exploration. EVA is required for all phases of the Vision, both in-space and planetary. Supporting the human outside the protective environment of the vehicle or habitat and allow ing him/her to perform efficient and effective work requires an integrated EVA "System of systems." The EVA System includes EVA suits, airlocks, tools and mobility aids, and human rovers. At the core of the EVA System is the highly technical EVA suit, which is comprised mainly of a life support system and a pressure/environmental protection garment. The EVA suit, in essence, is a miniature spacecraft, which combines together many different sub-systems such as life support, power, communications, avionics, robotics, pressure systems and thermal systems, into a single autonomous unit. Development of a new EVA suit requires technology advancements similar to those required in the development of a new space vehicle. A majority of the technologies necessary to develop advanced EVA systems are currently at a low Technology Readiness Level of 1-3. This is particularly true for the long-pole technologies of the life support system.
Wright, Adam; Sittig, Dean F
2008-12-01
In this paper, we describe and evaluate a new distributed architecture for clinical decision support called SANDS (Service-oriented Architecture for NHIN Decision Support), which leverages current health information exchange efforts and is based on the principles of a service-oriented architecture. The architecture allows disparate clinical information systems and clinical decision support systems to be seamlessly integrated over a network according to a set of interfaces and protocols described in this paper. The architecture described is fully defined and developed, and six use cases have been developed and tested using a prototype electronic health record which links to one of the existing prototype National Health Information Networks (NHIN): drug interaction checking, syndromic surveillance, diagnostic decision support, inappropriate prescribing in older adults, information at the point of care and a simple personal health record. Some of these use cases utilize existing decision support systems, which are either commercially or freely available at present, and developed outside of the SANDS project, while other use cases are based on decision support systems developed specifically for the project. Open source code for many of these components is available, and an open source reference parser is also available for comparison and testing of other clinical information systems and clinical decision support systems that wish to implement the SANDS architecture. The SANDS architecture for decision support has several significant advantages over other architectures for clinical decision support. The most salient of these are:
75 FR 49482 - Privacy Act of 1974; System of Records
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-13
... replace with ``Incident Report Records.'' System location: Delete entry and replace with ``Command Support... may be accessed only by the Commander, Deputy Commander, Chief, Command Support Division, or other... and replace with ``Command Support Division, EU1, Defense Information Systems Agency-Europe, APO AE...
Nicol, Thomas H.; Niemann, Ralph C.; Gonczy, John D.
1988-01-01
A support system is disclosed for restraining large masses at very low or cryogenic temperatures. The support system employs a tie bar that is pivotally connected at opposite ends to an anchoring support member and a sliding support member. The tie bar extends substantially parallel to the longitudinal axis of the cold mass assembly, and comprises a rod that lengthens when cooled and a pair of end attachments that contract when cooled. The rod and end attachments are sized so that when the tie bar is cooled to cryogenic temperature, the net change in tie bar length is approximately zero. Longitudinal force directed against the cold mass assembly is distributed by the tie bar between the anchoring support member and the sliding support member.
Selection criteria and facilitation training for the study of groupware
NASA Technical Reports Server (NTRS)
Robichaux, Barry P.
1993-01-01
Computer support for planning and decision making groups is a growing trend in the 90s. Groupware is a name often applied to group software and has been defined as 'computer-based systems that support groups engaged in a common task (or goal) and that provide an interface to a shared environment'. Unlike most single-user software, groupware assists user groups in their collaboration, coordination, and communication efforts. This paper focuses on groupware to support the meeting process. These systems are often called group decision support systems (GDSS), electronic meeting systems (EMS), or group support systems (GSS). The term 'meeting support groupware' is used here to include any computer-based system to support meetings. In order to understand this technology, one must first understand groups, what they do and the problems they face, and groupware, a wide range of technology to support group work. Guidelines for selecting groups for study as part of an overall research plan are provided in this document. These were taken from the literature and from persons for whom the information in this paper was targeted. Also, guidelines for facilitation training are discussed. Familiarity with known and accepted techniques are the principle duties of the facilitator and any form of training must include practice in using these techniques.
Integrated Logistics Support approach: concept for the new big projects: E-ELT, SKA, CTA
NASA Astrophysics Data System (ADS)
Marchiori, G.; Rampini, F.; Formentin, F.
2014-08-01
The Integrated Logistic Support is a process supporting strategies and optimizing activities for a correct project management and system engineering development. From the design & engineering of complex technical systems, to the erection on site, acceptance and after-sales service, EIE GROUP covers all aspects of the Integrated Logistics Support (ILS) process that includes: costing process centered around the life cycle cost and Level of Repair Analyses; engineering process which influences the design via means of reliability, modularization, etc.; technical publishing process based on international specifications; ordering administration process for supply support. Through the ILS, EIE GROUP plans and directs the identification and development of logistics support and system requirements for its products, with the goal of creating systems that last longer and require less support, thereby reducing costs and increasing return on investments. ILS therefore, addresses these aspects of supportability not only during acquisition, but also throughout the operational life cycle of the system. The impact of the ILS is often measured in terms of metrics such as reliability, availability, maintainability and testability (RAMT), and System Safety (RAMS). Example of the criteria and approach adopted by EIE GROUP during the design, manufacturing and test of the ALMA European Antennas and during the design phase of the E-ELT telescope and Dome are presented.
Controlled Ecological Life Support System: Regenerative Life Support Systems in Space
NASA Technical Reports Server (NTRS)
Macelroy, Robert D.; Smernoff, David T.
1987-01-01
A wide range of topics related to the extended support of humans in space are covered. Overviews of research conducted in Japan, Europe, and the U.S. are presented. The methods and technologies required to recycle materials, especially respiratory gases, within a closed system are examined. Also presented are issues related to plant and algal productivity, efficiency, and processing methods. Computer simulation of closed systems, discussions of radiation effects on systems stability, and modeling of a computer bioregenerative system are also covered.
Integration of the Execution Support System for the Computer-Aided Prototyping System (CAPS)
1990-09-01
SUPPORT SYSTEM FOR THE COMPUTER -AIDED PROTOTYPING SYSTEM (CAPS) by Frank V. Palazzo September 1990 Thesis Advisor: Luq± Approved for public release...ZATON REPOR ,,.VBE (, 6a NAME OF PERPORMING ORGAN ZAT7ON 6b OFF:CE SYVBOL 7a NAME OF MONITORINC O0-CA’Za- ON Computer Science Department (if applicable...Include Security Classification) Integration of the Execution Support System for the Computer -Aided Prototyping System (C S) 12 PERSONAL AUTHOR(S) Frank V
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balducelli, C.; Bologna, S.; Di Costanzo, G.
1995-12-31
The paper describes part of the results achieved in the framework of the MUSTER project (Multi-Users System for Training and Evaluating Environmental Emergency Response). The aim of this project is to define the detailed specifications of a computer based system supporting collaborative training for emergency management. A system prototype has been implemented to support the refinement and improvement of the system specifications.
Automated CPX support system preliminary design phase
NASA Technical Reports Server (NTRS)
Bordeaux, T. A.; Carson, E. T.; Hepburn, C. D.; Shinnick, F. M.
1984-01-01
The development of the Distributed Command and Control System (DCCS) is discussed. The development of an automated C2 system stimulated the development of an automated command post exercise (CPX) support system to provide a more realistic stimulus to DCCS than could be achieved with the existing manual system. An automated CPX system to support corps-level exercise was designed. The effort comprised four tasks: (1) collecting and documenting user requirements; (2) developing a preliminary system design; (3) defining a program plan; and (4) evaluating the suitability of the TRASANA FOURCE computer model.
Removable Window System for Space Vehicles
NASA Technical Reports Server (NTRS)
Grady, James P. (Inventor)
2015-01-01
A window system for a platform comprising a window pane, a retention frame, and a biasing system. The window pane may be configured to contact a sealing system. The retention frame may be configured to contact the sealing system and hold the window pane against the support frame. The biasing system may be configured to bias the retention frame toward the support frame while the support frame and the retention frame are in a configuration that holds the window pane. Removal of the biasing system may cause the retention frame and the window pane to be removable.
DEVELOPMENT OF AN URBAN FOOD LEADERSHIP COOP IN SUPPORT OF A LOCAL FOOD SYSTEM
A need shared by all communities is a clean environment that supports a sustainable food system and promotes human health. The current food system does not model environmental, social, or economic sustainability. Therefore, the challenge is to develop and support a new food ...
A Framework for a Computer System to Support Distributed Cooperative Learning
ERIC Educational Resources Information Center
Chiu, Chiung-Hui
2004-01-01
To develop a computer system to support cooperative learning among distributed students; developers should consider the foundations of cooperative learning. This article examines the basic elements that make cooperation work and proposes a framework for such computer supported cooperative learning (CSCL) systems. This framework is constituted of…
Nonregenerative life-support systems for flights of short and moderate duration
NASA Technical Reports Server (NTRS)
Adamovich, B. A.
1975-01-01
The basic requirements for crew life support systems of flights of up to 30 days are described. Food products, drinking water, oxygen for breathing, and sanitary-technical facilities are among the factors considered. Life support systems utilized on Vostok, Voskhod, Soyuz, Gemini, Mercury, and Apollo are discussed.
USDA-ARS?s Scientific Manuscript database
Decision support systems/models for agriculture are varied in target application and complexity, ranging from simple worksheets to near real-time forecast systems requiring significant computational and manpower resources. Until recently, most such decision support systems have been constructed with...
Instructional Support Software System. Final Report.
ERIC Educational Resources Information Center
McDonnell Douglas Astronautics Co. - East, St. Louis, MO.
This report describes the development of the Instructional Support System (ISS), a large-scale, computer-based training system that supports both computer-assisted instruction and computer-managed instruction. Written in the Ada programming language, the ISS software package is designed to be machine independent. It is also grouped into functional…
Rhode Island Model Evaluation & Support System: Building Administrator. Edition III
ERIC Educational Resources Information Center
Rhode Island Department of Education, 2015
2015-01-01
Rhode Island educators believe that implementing a fair, accurate, and meaningful educator evaluation and support system will help improve teaching, learning, and school leadership. The primary purpose of the Rhode Island Model Building Administrator Evaluation and Support System (Rhode Island Model) is to help all building administrators improve.…
Activity Theory Framework and Cognitive Perspectives in Designing Technology-Based Support Systems.
ERIC Educational Resources Information Center
Sheu, Feng-Ru
With the increased demand and interest in electronic performance support systems (EPSS), particularly for supporting knowledge-based problems solving expertise in the information age (Gustafson, 2000; Dickelman, 2000; Kasvi & Vartiainen, 2000), instructional designers are facing a new challenge designing a system that could deliver (or…
45 CFR 307.15 - Approval of advance planning documents for computerized support enforcement systems.
Code of Federal Regulations, 2014 CFR
2014-10-01
... CHILDREN AND FAMILIES, DEPARTMENT OF HEALTH AND HUMAN SERVICES COMPUTERIZED SUPPORT ENFORCEMENT SYSTEMS..., organization, services and constraints related to the computerized support enforcement system; (4) The APD must... design, development, installation or enhancement; (5) The APD must contain a description of each...
45 CFR 307.15 - Approval of advance planning documents for computerized support enforcement systems.
Code of Federal Regulations, 2013 CFR
2013-10-01
... CHILDREN AND FAMILIES, DEPARTMENT OF HEALTH AND HUMAN SERVICES COMPUTERIZED SUPPORT ENFORCEMENT SYSTEMS..., organization, services and constraints related to the computerized support enforcement system; (4) The APD must... design, development, installation or enhancement; (5) The APD must contain a description of each...
45 CFR 307.15 - Approval of advance planning documents for computerized support enforcement systems.
Code of Federal Regulations, 2012 CFR
2012-10-01
... CHILDREN AND FAMILIES, DEPARTMENT OF HEALTH AND HUMAN SERVICES COMPUTERIZED SUPPORT ENFORCEMENT SYSTEMS..., organization, services and constraints related to the computerized support enforcement system; (4) The APD must... design, development, installation or enhancement; (5) The APD must contain a description of each...
Large Space Systems Technology, 1979. [antenna and space platform systems conference
NASA Technical Reports Server (NTRS)
Ward, J. C., Jr. (Compiler)
1980-01-01
Items of technology and developmental efforts in support of the large space systems technology programs are described. The major areas of interest are large antennas systems, large space platform systems, and activities that support both antennas and platform systems.
Management of Operational Support Requirements for Manned Flight Missions
NASA Technical Reports Server (NTRS)
1991-01-01
This Instruction establishes responsibilities for managing the system whereby operational support requirements are levied for support of manned flight missions including associated payloads. This management system will ensure that support requirements are properly requested and responses are properly obtained to meet operational objectives.
Technical assessment of Mir-1 life support hardware for the international space station
NASA Technical Reports Server (NTRS)
Mitchell, K. L.; Bagdigian, R. M.; Carrasquillo, R. L.; Carter, D. L.; Franks, G. D.; Holder, D. W., Jr.; Hutchens, C. F.; Ogle, K. Y.; Perry, J. L.; Ray, C. D.
1994-01-01
NASA has been progressively learning the design and performance of the Russian life support systems utilized in their Mir space station. In 1992, a plan was implemented to assess the benefits of the Mir-1 life support systems to the Freedom program. Three primary tasks focused on: evaluating the operational Mir-1 support technologies and understanding if specific Russian systems could be directly utilized on the American space station and if Russian technology design information could prove useful in improving the current design of the planned American life support equipment; evaluating the ongoing Russian life support technology development activities to determine areas of potential long-term application to the U.S. space station; and utilizing the expertise of their space station life support systems to evaluate the benefits to the current U.S. space station program which included the integration of the Russian Mir-1 designs with the U.S. designs to support a crew of six.
NASA Astrophysics Data System (ADS)
Koon, Phillip L.; Greene, Scott
2002-07-01
Our aerospace customers are demanding that we drastically reduce the cost of operating and supporting our products. Our space customer in particular is looking for the next generation of reusable launch vehicle systems to support more aircraft like operation. To achieve this goal requires more than an evolution in materials, processes and systems, what is required is a paradigm shift in the design of the launch vehicles and the processing systems that support the launch vehicles. This paper describes the Automated Informed Maintenance System (AIM) we are developing for NASA's Space Launch Initiative (SLI) Second Generation Reusable Launch Vehicle (RLV). Our system includes an Integrated Health Management (IHM) system for the launch vehicles and ground support systems, which features model based diagnostics and prognostics. Health Management data is used by our AIM decision support and process aids to automatically plan maintenance, generate work orders and schedule maintenance activities along with the resources required to execute these processes. Our system will automate the ground processing for a spaceport handling multiple RLVs executing multiple missions. To accomplish this task we are applying the latest web based distributed computing technologies and application development techniques.
Wolf, Matthew; Miller, Suzanne; DeJong, Doug; House, John A; Dirks, Carl; Beasley, Brent
2016-09-01
To establish a process for the development of a prioritization tool for a clinical decision support build within a computerized provider order entry system and concurrently to prioritize alerts for Saint Luke's Health System. The process of prioritizing clinical decision support alerts included (a) consensus sessions to establish a prioritization process and identify clinical decision support alerts through a modified Delphi process and (b) a clinical decision support survey to validate the results. All members of our health system's physician quality organization, Saint Luke's Care as well as clinicians, administrators, and pharmacy staff throughout Saint Luke's Health System, were invited to participate in this confidential survey. The consensus sessions yielded a prioritization process through alert contextualization and associated Likert-type scales. Utilizing this process, the clinical decision support survey polled the opinions of 850 clinicians with a 64.7 percent response rate. Three of the top rated alerts were approved for the pre-implementation build at Saint Luke's Health System: Acute Myocardial Infarction Core Measure Sets, Deep Vein Thrombosis Prophylaxis within 4 h, and Criteria for Sepsis. This study establishes a process for developing a prioritization tool for a clinical decision support build within a computerized provider order entry system that may be applicable to similar institutions. © The Author(s) 2015.
Gent, David H; De Wolf, Erick; Pethybridge, Sarah J
2011-06-01
Rational management of plant diseases, both economically and environmentally, involves assessing risks and the costs associated with both correct and incorrect tactical management decisions to determine when control measures are warranted. Decision support systems can help to inform users of plant disease risk and thus assist in accurately targeting events critical for management. However, in many instances adoption of these systems for use in routine disease management has been perceived as slow. The under-utilization of some decision support systems is likely due to both technical and perception constraints that have not been addressed adequately during development and implementation phases. Growers' perceptions of risk and their aversion to these perceived risks can be reasons for the "slow" uptake of decision support systems and, more broadly, integrated pest management (IPM). Decision theory provides some tools that may assist in quantifying and incorporating subjective and/or measured probabilities of disease occurrence or crop loss into decision support systems. Incorporation of subjective probabilities into IPM recommendations may be one means to reduce grower uncertainty and improve trust of these systems because management recommendations could be explicitly informed by growers' perceptions of risk and economic utility. Ultimately though, we suggest that an appropriate measure of the value and impact of decision support systems is grower education that enables more skillful and informed management decisions independent of consultation of the support tool outputs.
Water Recovery System Architecture and Operational Concepts to Accommodate Dormancy
NASA Technical Reports Server (NTRS)
Carter, Layne; Tabb, David; Anderson, Molly
2017-01-01
Future manned missions beyond low Earth orbit will include intermittent periods of extended dormancy. The mission requirement includes the capability for life support systems to support crew activity, followed by a dormant period of up to one year, and subsequently for the life support systems to come back online for additional crewed missions. NASA personnel are evaluating the architecture and operational concepts that will allow the Water Recovery System (WRS) to support such a mission. Dormancy could be a critical issue due to concerns with microbial growth or chemical degradation that might prevent water systems from operating properly when the crewed mission began. As such, it is critical that the water systems be designed to accommodate this dormant period. This paper identifies dormancy issues, concepts for updating the WRS architecture and operational concepts that will enable the WRS to support the dormancy requirement.
Graduating to Postdoc: Information-Sharing in Support of Organizational Structures and Needs
NASA Technical Reports Server (NTRS)
Keller, Richard M.; Lucas, Paul J.; Compton, Michael M.; Stewart, Helen J.; Baya, Vinod; DelAlto, Martha
1999-01-01
The deployment of information-sharing systems in large organizations can significantly impact existing policies and procedures with regard to authority and control over information. Unless information-sharing systems explicitly support organizational structures and needs, these systems will be rejected summarily. The Postdoc system is a deployed Web-based information-sharing system created specifically to address organizational needs. Postdoc contains various organizational support features including a shared, globally navigable document space, as well as specialized access control, distributed administration, and mailing list features built around the key notion of hierarchical group structures. We review successes and difficulties in supporting organizational needs with Postdoc
Data Mining for Web-Based Support Systems: A Case Study in e-Custom Systems
NASA Astrophysics Data System (ADS)
Razmerita, Liana; Kirchner, Kathrin
This chapter provides an example of a Web-based support system (WSS) used to streamline trade procedures, prevent potential security threats, and reduce tax-related fraud in cross-border trade. The architecture is based on a service-oriented architecture that includes smart seals and Web services. We discuss the implications and suggest further enhancements to demonstrate how such systems can move toward a Web-based decision support system with the support of data mining methods. We provide a concrete example of how data mining can help to analyze the vast amount of data collected while monitoring the container movements along its supply chain.
Risk Interfaces to Support Integrated Systems Analysis and Development
NASA Technical Reports Server (NTRS)
Mindock, Jennifer; Lumpkins, Sarah; Shelhamer, Mark; Anton, Wilma; Havenhill, Maria
2016-01-01
Objectives for systems analysis capability: Develop integrated understanding of how a complex human physiological-socio-technical mission system behaves in spaceflight. Why? Support development of integrated solutions that prevent unwanted outcomes (Implementable approaches to minimize mission resources(mass, power, crew time, etc.)); Support development of tools for autonomy (need for exploration) (Assess and maintain resilience -individuals, teams, integrated system). Output of this exercise: -Representation of interfaces based on Human System Risk Board (HSRB) Risk Summary information and simple status based on Human Research Roadmap; Consolidated HSRB information applied to support communication; Point-of-Departure for HRP Element planning; Ability to track and communicate status of collaborations. 4
Airport Information Retrieval System (AIRS) System Support Manual
DOT National Transportation Integrated Search
1973-01-01
This handbook is a support manual for prototype air traffic flow control automation system developed for the FAA's Systems Command Center. The system is implemented on a time-sharing computer and is designed to provide airport traffic load prediction...
Global Combat Support System - Army Increment 2 (GCSS-A Inc 2)
2016-03-01
2016 Major Automated Information System Annual Report Global Combat Support System - Army Increment 2 (GCSS-A Inc 2) Defense Acquisition...Secretary of Defense PB - President’s Budget RDT&E - Research, Development, Test, and Evaluation SAE - Service Acquisition Executive TBD - To Be...Date Assigned: Program Information Program Name Global Combat Support System - Army Increment 2 (GCSS-A Inc 2) DoD Component Army Responsible
ERIC Educational Resources Information Center
Francis-Thompson, Nyshawana
2017-01-01
This qualitative study examined how Multi-tier System of Supports (MTSS), a systematic approach to providing academic and behavioral supports to students, was implemented and experienced by macro and micro levels of educators in the Bermuda Public School system. I asked three research questions regarding: (a) how MTSS was being implemented in the…
AFSOC Training Systems (Briefing Slides)
2010-05-25
ATARS II contract Aircrew Courseware Loadmaster PTT Integrated Cockpit Maintenance Trainer Weapon Systems Trainer Visual Awareness Recognition System...Training Systems Support CLS Aircrew Training and Rehearsal Support ( ATARS ) II contract, 2007 Prime: Lockheed Martin Simulation, Training & Support...Larry Allen, AFSOC/A5RT, (850) 884-5568 ATARS II: 677 AESG/SYCC, Capt Shane Smoot, (937) 255-3391 AFSOC/A3TS, Scott Murphy, (850) 884-5773 MC/AC-130J
NASA Technical Reports Server (NTRS)
Jones, Harry W.
2009-01-01
The design and mass cost of a starship and its life support system are investigated. The mission plan for a multi generational interstellar voyage to colonize a new planet is used to describe the starship design, including the crew habitat, accommodations, and life support. Only current technology is assumed. Highly reliable life support systems can be provided with reasonably small additional mass, suggesting that they can support long duration missions. Bioregenerative life support, growing crop plants that provide food, water, and oxygen, has been thought to need less mass than providing stored food for long duration missions. The large initial mass of hydroponics systems is paid for over time by saving the mass of stored food. However, the yearly logistics mass required to support a bioregenerative system exceeds the mass of food solids it produces, so that supplying stored dehydrated food always requires less mass than bioregenerative food production. A mixed system that grows about half the food and supplies the other half dehydrated has advantages that allow it to breakeven with stored dehydrated food in about 66 years. However, moderate increases in the hydroponics system mass to achieve high reliability, such as adding spares that double the system mass and replacing the initial system every 100 years, increase the mass cost of bioregenerative life support. In this case, the high reliability half food growing, half food supplying system does not breakeven for 389 years. An even higher reliability half and half system, with three times original system mass and replacing the system every 50 years, never breaks even. Growing food for starship life support requires more mass than providing dehydrated food, even for multigeneration voyages of hundreds of years. The benefits of growing some food may justify the added mass cost. Much more efficient recycling food production is wanted but may not be possible. A single multigenerational interstellar voyage to colonize a new planet would have cost similar to that of the Apollo program. Cost is reduced if a small crew travels slowly and lands with minimal equipment. We can go to the stars!
An Intergenerational Support System for Child Welfare Families.
ERIC Educational Resources Information Center
Harnett, Joan
1989-01-01
Describes a program developed by the Children's Aid Society of Montgomery County, Pennsylvania, called Intergenerational Support System (ISS), in which senior volunteers serve as support persons for problem families. (SAK)
Test Telemetry And Command System (TTACS)
NASA Technical Reports Server (NTRS)
Fogel, Alvin J.
1994-01-01
The Jet Propulsion Laboratory has developed a multimission Test Telemetry and Command System (TTACS) which provides a multimission telemetry and command data system in a spacecraft test environment. TTACS reuses, in the spacecraft test environment, components of the same data system used for flight operations; no new software is developed for the spacecraft test environment. Additionally, the TTACS is transportable to any spacecraft test site, including the launch site. The TTACS is currently operational in the Galileo spacecraft testbed; it is also being provided to support the Cassini and Mars Surveyor Program projects. Minimal personnel data system training is required in the transition from pre-launch spacecraft test to post-launch flight operations since test personnel are already familiar with the data system's operation. Additionally, data system components, e.g. data display, can be reused to support spacecraft software development; and the same data system components will again be reused during the spacecraft integration and system test phases. TTACS usage also results in early availability of spacecraft data to data system development and, as a result, early data system development feedback to spacecraft system developers. The TTACS consists of a multimission spacecraft support equipment interface and components of the multimission telemetry and command software adapted for a specific project. The TTACS interfaces to the spacecraft, e.g., Command Data System (CDS), support equipment. The TTACS telemetry interface to the CDS support equipment performs serial (RS-422)-to-ethernet conversion at rates between 1 bps and 1 mbps, telemetry data blocking and header generation, guaranteed data transmission to the telemetry data system, and graphical downlink routing summary and control. The TTACS command interface to the CDS support equipment is nominally a command file transferred in non-real-time via ethernet. The CDS support equipment is responsible for metering the commands to the CDS; additionally for Galileo, TTACS includes a real-time-interface to the CDS support equipment. The TTACS provides the basic functionality of the multimission telemetry and command data system used during flight operations. TTACS telemetry capabilities include frame synchronization, Reed-Solomon decoding, packet extraction and channelization, and data storage/query. Multimission data display capabilities are also available. TTACS command capabilities include command generation verification, and storage.
NASA Advanced Explorations Systems: 2017 Advancements in Life Support Systems
NASA Technical Reports Server (NTRS)
Schneider, Walter F.; Shull, Sarah A.
2017-01-01
The NASA Advanced Exploration Systems (AES) Life Support Systems (LSS) project strives to develop reliable, energy-efficient, and low-mass spacecraft systems to provide environmental control and life support systems (ECLSS) critical to enabling long duration human missions beyond low Earth orbit (LEO). Highly reliable, closed-loop life support systems are among the capabilities required for the longer duration human space exploration missions planned in the mid-2020s and beyond. The LSS Project is focused on four are-as-architecture and systems engineering for life support systems, environmental monitoring, air revitalization, and wastewater processing and water management. Starting with the International Space Station (ISS) LSS systems as a point of departure where applicable, the three-fold mission of the LSS Project is to address discrete LSS technology gaps, to improve the reliability of LSS systems, and to advance LSS systems toward integrated testing aboard the ISS. This paper is a follow on to the AES LSS development status reported in 2016 and provides additional details on the progress made since that paper was published with specific attention to the status of the Aerosol Sampler ISS Flight Experiment, the Spacecraft Atmosphere Monitor (SAM) Flight Experiment, the Brine Processor Assembly (BPA) Flight Experiment, the CO2 removal technology development tasks, and the work investigating the impacts of dormancy on LSS systems.
NASA Technical Reports Server (NTRS)
Williams, David E.; Lewis, John F.; Gentry, Gregory
2003-01-01
The International Space Station (ISS) Environmental Control and Life Support (ECLS) system includes regenerative and non-regenerative technologies that provide the basic life support functions to support the crew, while maintaining a safe and habitable shirtsleeve environment. This paper provides a summary of the ECLS System On-Orbit Station Development Test Objective (SDTO) status from the start of assembly until the end of February 2003.
Supported liquid membrane electrochemical separators
Pemsler, J. Paul; Dempsey, Michael D.
1986-01-01
Supported liquid membrane separators improve the flexibility, efficiency and service life of electrochemical cells for a variety of applications. In the field of electrochemical storage, an alkaline secondary battery with improved service life is described in which a supported liquid membrane is interposed between the positive and negative electrodes. The supported liquid membranes of this invention can be used in energy production and storage systems, electrosynthesis systems, and in systems for the electrowinning and electrorefining of metals.
Barken, Tina Lien; Thygesen, Elin; Söderhamn, Ulrika
2017-12-28
Telemedicine is changing traditional nursing care, and entails nurses performing advanced and complex care within a new clinical environment, and monitoring patients at a distance. Telemedicine practice requires complex disease management, advocating that the nurses' reasoning and decision-making processes are supported. Computerised decision support systems are being used increasingly to assist reasoning and decision-making in different situations. However, little research has focused on the clinical reasoning of nurses using a computerised decision support system in a telemedicine setting. Therefore, the objective of the study is to explore the process of telemedicine nurses' clinical reasoning when using a computerised decision support system for the management of patients with chronic obstructive pulmonary disease. The factors influencing the reasoning and decision-making processes were investigated. In this ethnographic study, a combination of data collection methods, including participatory observations, the think-aloud technique, and a focus group interview was employed. Collected data were analysed using qualitative content analysis. When telemedicine nurses used a computerised decision support system for the management of patients with complex, unstable chronic obstructive pulmonary disease, two categories emerged: "the process of telemedicine nurses' reasoning to assess health change" and "the influence of the telemedicine setting on nurses' reasoning and decision-making processes". An overall theme, termed "advancing beyond the system", represented the connection between the reasoning processes and the telemedicine work and setting, where being familiar with the patient functioned as a foundation for the nurses' clinical reasoning process. In the telemedicine setting, when supported by a computerised decision support system, nurses' reasoning was enabled by the continuous flow of digital clinical data, regular video-mediated contact and shared decision-making with the patient. These factors fostered an in-depth knowledge of the patients and acted as a foundation for the nurses' reasoning process. Nurses' reasoning frequently advanced beyond the computerised decision support system recommendations. Future studies are warranted to develop more accurate algorithms, increase system maturity, and improve the integration of the digital clinical information with clinical experiences, to support telemedicine nurses' reasoning process.
RTEMS CENTRE- Support and Maintenance CENTRE to RTEMS Operating System
NASA Astrophysics Data System (ADS)
Silva, H.; Constantino, A.; Coutunho, M.; Freitas, D.; Faustino, S.; Mota, M.; Colaço, P.; Zulianello, M.
2008-08-01
RTEMS stands for Real-Time Operating System for Multiprocessor Systems. It is a full featured Real Time Operating System that supports a variety of open APIs and interface standards. It provides a high performance environment for embedded applications, including a fixed-priority preemptive/non-preemptive scheduler, a comprehensive set of multitasking operations and a large range of supported architectures. Support and maintenance CENTRE to RTEMS operating system (RTEMS CENTRE) is a joint initiative of ESA-Portugal Task force, aiming to build a strong technical competence in the space flight (on- board) software, to offer support, maintenance and improvements to RTEMS. This paper provides a high level description of the current and future activities of the RTEMS CENTRE. It presents a brief description of the RTEMS operating system, a description of the tools developed and distributed to the community [1] and the improvements to be made to the operating system, including facilitation for the qualification of RTEMS (4.8.0) [2] for the space missions.
NASA Technical Reports Server (NTRS)
Glover, R. D.
1983-01-01
The NASA Dryden Flight Research Facility has developed a microprocessor-based, user-programmable, general-purpose aircraft interrogation and display system (AIDS). The hardware and software of this ground-support equipment have been designed to permit diverse applications in support of aircraft digital flight-control systems and simulation facilities. AIDS is often employed to provide engineering-units display of internal digital system parameters during development and qualification testing. Such visibility into the system under test has proved to be a key element in the final qualification testing of aircraft digital flight-control systems. Three first-generation 8-bit units are now in service in support of several research aircraft projects, and user acceptance has been high. A second-generation design, extended AIDS (XAIDS), incorporating multiple 16-bit processors, is now being developed to support the forward swept wing aircraft project (X-29A). This paper outlines the AIDS concept, summarizes AIDS operational experience, and describes the planned XAIDS design and mechanization.
Water Recovery System Design to Accommodate Dormant Periods for Manned Missions
NASA Technical Reports Server (NTRS)
Tabb, David; Carter, Layne
2015-01-01
Future manned missions beyond lower Earth orbit may include intermittent periods of extended dormancy. Under the NASA Advanced Exploration System (AES) project, NASA personnel evaluated the viability of the ISS Water Recovery System (WRS) to support such a mission. The mission requirement includes the capability for life support systems to support crew activity, followed by a dormant period of up to one year, and subsequently for the life support systems to come back online for additional crewed missions. Dormancy could be a critical issue due to concerns with microbial growth or chemical degradation that might prevent water systems from operating properly when the crewed mission began. As such, it is critical that the water systems be designed to accommodate this dormant period. This paper details the results of this evaluation, which include identification of dormancy issues, results of testing performed to assess microbial stability of pretreated urine during dormancy periods, and concepts for updating to the WRS architecture and operational concepts that will enable the ISS WRS to support the dormancy requirement.
A computerized clinical decision support system as a means of implementing depression guidelines.
Trivedi, Madhukar H; Kern, Janet K; Grannemann, Bruce D; Altshuler, Kenneth Z; Sunderajan, Prabha
2004-08-01
The authors describe the history and current use of computerized systems for implementing treatment guidelines in general medicine as well as the development, testing, and early use of a computerized decision support system for depression treatment among "real-world" clinical settings in Texas. In 1999 health care experts from Europe and the United States met to confront the well-documented challenges of implementing treatment guidelines and to identify strategies for improvement. They suggested the integration of guidelines into computer systems that is incorporated into clinical workflow. Several studies have demonstrated improvements in physicians' adherence to guidelines when such guidelines are provided in a computerized format. Although computerized decision support systems are being used in many areas of medicine and have demonstrated improved patient outcomes, their use in psychiatric illness is limited. The authors designed and developed a computerized decision support system for the treatment of major depressive disorder by using evidence-based guidelines, transferring the knowledge gained from the Texas Medication Algorithm Project (TMAP). This computerized decision support system (CompTMAP) provides support in diagnosis, treatment, follow-up, and preventive care and can be incorporated into the clinical setting. CompTMAP has gone through extensive testing to ensure accuracy and reliability. Physician surveys have indicated a positive response to CompTMAP, although the sample was insufficient for statistical testing. CompTMAP is part of a new era of comprehensive computerized decision support systems that take advantage of advances in automation and provide more complete clinical support to physicians in clinical practice.
Matthew Thompson; David Calkin; Joe H. Scott; Michael Hand
2017-01-01
Wildfire risk assessment is increasingly being adopted to support federal wildfire management decisions in the United States. Existing decision support systems, specifically the Wildland Fire Decision Support System (WFDSS), provide a rich set of probabilistic and riskâbased information to support the management of active wildfire incidents. WFDSS offers a wide range...
NASA Astrophysics Data System (ADS)
Ogoshi, Yasuhiro; Nakai, Akio; Mitsuhashi, Yoshinori; Araki, Chikahiro
At the present, educational support is required to the school children who confronts problems on study, life style, mental and health. For the school children who hold these problems, inference and understanding of those around adults are mandatory, for that intimate cooperation between the school, home and specialized agencies should be important. With above reason, the school children support system using ICF to communicate the school, the specialist and the guardian is developed in this works. Realization of this system, immediate support to the school children and their guardians will be possible. It is also considered to be a preventive support instead of an allopathic support.
Nicol, T.H.; Niemann, R.C.; Gonczy, J.D.
1988-11-01
A support system is disclosed for restraining large masses at very low or cryogenic temperatures. The support system employs a tie bar that is pivotally connected at opposite ends to an anchoring support member and a sliding support member. The tie bar extends substantially parallel to the longitudinal axis of the cold mass assembly, and comprises a rod that lengthens when cooled and a pair of end attachments that contract when cooled. The rod and end attachments are sized so that when the tie bar is cooled to cryogenic temperature, the net change in tie bar length is approximately zero. Longitudinal force directed against the cold mass assembly is distributed by the tie bar between the anchoring support member and the sliding support member. 7 figs.
Development of the Supported Decision Making Inventory System.
Shogren, Karrie A; Wehmeyer, Michael L; Uyanik, Hatice; Heidrich, Megan
2017-12-01
Supported decision making has received increased attention as an alternative to guardianship and a means to enable people with intellectual and developmental disabilities to exercise their right to legal capacity. Assessments are needed that can used by people with disabilities and their systems of supports to identify and plan for needed supports to enable decision making. This article describes the steps taken to develop such an assessment tool, the Supported Decision Making Inventory System (SDMIS), and initial feedback received from self-advocates with intellectual disability. The three sections of the SDMIS (Supported Decision Making Personal Factors Inventory, Supported Decision Making Environmental Demands Inventory, and Decision Making Autonomy Inventory) are described and implications for future research, policy, and practice are discussed.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-02
... support unlisted software, and the NRC Meta System Help Desk will not be able to offer assistance in using... supported Technical Specification (TS) systems inoperable when the associated snubber(s) cannot perform its... allowed before declaring a TS supported system inoperable and taking its Conditions and Required Actions...
ERIC Educational Resources Information Center
Bayram, Servet
2005-01-01
The concept of Electronic Performance Support Systems (EPSS) is containing multimedia or computer based instruction components that improves human performance by providing process simplification, performance information and decision support system. EPSS has become a hot topic for organizational development, human resources, performance technology,…
Rhode Island Model Evaluation & Support System: Teacher. Edition III
ERIC Educational Resources Information Center
Rhode Island Department of Education, 2015
2015-01-01
Rhode Island educators believe that implementing a fair, accurate, and meaningful educator evaluation and support system will help improve teaching and learning. The primary purpose of the Rhode Island Model Teacher Evaluation and Support System (Rhode Island Model) is to help all teachers improve. Through the Model, the goal is to help create a…
Support Systems of Mothers of Mentally Retarded Children.
ERIC Educational Resources Information Center
Chinkanda, E. N.
A study was conducted with a sample of 80 black mothers of mildly to profoundly mentally retarded children in the Pretoria, South Africa, townships of Atteridgeville and Mamelodi. The study sought to identify support systems utilized by the mothers, identify latent systems that could be supportive to the mothers, ascertain the extent to which…
EMDS users guide (version 2.0): knowledge-based decision support for ecological assessment.
Keith M. Reynolds
1999-01-01
The USDA Forest Service Pacific Northwest Research Station in Corvallis, Oregon, has developed the ecosystem management decision support (EMDS) system. The system integrates the logical formalism of knowledge-based reasoning into a geographic information system (GIS) environment to provide decision support for ecological landscape assessment and evaluation. The...
Design and Analysis of a Flexible, Reliable Deep Space Life Support System
NASA Technical Reports Server (NTRS)
Jones, Harry W.
2012-01-01
This report describes a flexible, reliable, deep space life support system design approach that uses either storage or recycling or both together. The design goal is to provide the needed life support performance with the required ultra reliability for the minimum Equivalent System Mass (ESM). Recycling life support systems used with multiple redundancy can have sufficient reliability for deep space missions but they usually do not save mass compared to mixed storage and recycling systems. The best deep space life support system design uses water recycling with sufficient water storage to prevent loss of crew if recycling fails. Since the amount of water needed for crew survival is a small part of the total water requirement, the required amount of stored water is significantly less than the total to be consumed. Water recycling with water, oxygen, and carbon dioxide removal material storage can achieve the high reliability of full storage systems with only half the mass of full storage and with less mass than the highly redundant recycling systems needed to achieve acceptable reliability. Improved recycling systems with lower mass and higher reliability could perform better than systems using storage.
Fu, Yuming; Li, Leyuan; Xie, Beizhen; Dong, Chen; Wang, Mingjuan; Jia, Boyang; Shao, Lingzhi; Dong, Yingying; Deng, Shengda; Liu, Hui; Liu, Guanghui; Liu, Bojie; Hu, Dawei; Liu, Hong
2016-12-01
To conduct crewed simulation experiments of bioregenerative life support systems on the ground is a critical step for human life support in deep-space exploration. An artificial closed ecosystem named Lunar Palace 1 was built through integrating efficient higher plant cultivation, animal protein production, urine nitrogen recycling, and bioconversion of solid waste. Subsequently, a 105-day, multicrew, closed integrative bioregenerative life support systems experiment in Lunar Palace 1 was carried out from February through May 2014. The results show that environmental conditions as well as the gas balance between O 2 and CO 2 in the system were well maintained during the 105-day experiment. A total of 21 plant species in this system kept a harmonious coexistent relationship, and 20.5% nitrogen recovery from urine, 41% solid waste degradation, and a small amount of insect in situ production were achieved. During the 105-day experiment, oxygen and water were recycled, and 55% of the food was regenerated. Key Words: Bioregenerative life support systems (BLSS)-Space agriculture-Space life support-Waste recycle-Water recycle. Astrobiology 16, 925-936.
NASA Astrophysics Data System (ADS)
Kumenko, A. I.; Kostyukov, V. N.; Kuz'minykh, N. Yu.; Boichenko, S. N.; Timin, A. V.
2017-08-01
The rationale is given for the improvement of the regulatory framework for the use of shaft sensors for the in-service condition monitoring of turbo generators and the development of control systems of shaft surfacing and misalignments of supports. A modern concept and a set of methods are proposed for the condition monitoring of the "shaft line-thrust bearing oil film-turbo generator supports" system elements based on the domestic COMPACS® technology. The system raw data are design, technology, installation, and operating parameters of the turbo generator as well as measured parameters of the absolute vibration of supports and mechanical quantities, relative displacements and relative vibration of the rotor teeth in accordance with GOST R 55263-2012. The precalculated shaft line assembly line in the cold state, the nominal parameters of rotor teeth positions on the dynamic equilibrium curve, the static and dynamic characteristics of the oil film of thrust bearings, and the shaft line stiffness matrix of unit support displacements have been introduced into the system. Using the COMPACS-T system, it is planned to measure positions and oscillations of rotor teeth, to count corresponding static and dynamic characteristics of the oil film, and the static and dynamic loads in the supports in real time. Using the obtained data, the system must determine the misalignments of supports and corrective alignments of rotors of coupling halves, voltages in rotor teeth, welds, and bolts of the coupling halves, and provide automatic conclusion if condition monitoring parameters correspond to standard values. A part of the methodological support for the proposed system is presented, including methods for determining static reactions of supports under load, the method for determining shaft line stiffness matrices, and the method for solving the inverse problem, i.e., the determination of the misalignments of the supports by measurements of rotor teeth relative positions in bearing housings. The procedure for calculating misalignments of turbo generator shaft line supports is set out.
An overview: recycling nutrients from crop residues for space applications.
Strayer, R F; Atkinson, C F
1997-01-01
Without some form of regenerative life support system, long duration space habitation or travel will be limited severely by the prohibitive costs of resupplying air, water, and food from Earth. Components under consideration for inclusion in a regenerative life support system are based on either physicochemical or biological processes. Physicochemical systems would use filtration and elemental phase changes to convert waste materials into usable products, while biological systems would use higher plants and bioreactors to supply crew needs. Neither a purely biological nor strictly a physicochemical approach can supply all crew needs, thus, the best each approach can offer will be combined into a hybrid regenerative life support system. Researchers at Kennedy Space Center (KSC) Advanced Life Support Breadboard Project have taken the lead on bioregenerative aspects of space life support. The major focus has been on utilization of higher plants for production of food, oxygen, and clean water. However, a key to any regenerative life support system is recycling and recovery of resources (wastes). In keeping with the emphasis at KSC on bioregenerative systems and with the focus on plants, this paper focuses on research with biologically-based options for resource recovery from inedible crop residues.
Siskind, Dan; Harris, Meredith; Pirkis, Jane; Whiteford, Harvey
2013-06-01
A lack of definitional clarity in supported accommodation and the absence of a widely accepted system for classifying supported accommodation models creates barriers to service planning and evaluation. We undertook a systematic review of existing supported accommodation classification systems. Using a structured system for qualitative data analysis, we reviewed the stratification features in these classification systems, identified the key elements of supported accommodation and arranged them into domains and dimensions to create a new taxonomy. The existing classification systems were mapped onto the new taxonomy to verify the domains and dimensions. Existing classification systems used either a service-level characteristic or programmatic approach. We proposed a taxonomy based around four domains: duration of tenure; patient characteristics; housing characteristics; and service characteristics. All of the domains in the taxonomy were drawn from the existing classification structures; however, none of the existing classification structures covered all of the domains in the taxonomy. Existing classification systems are regionally based, limited in scope and lack flexibility. A domains-based taxonomy can allow more accurate description of supported accommodation services, aid in identifying the service elements likely to improve outcomes for specific patient populations, and assist in service planning.
An overview: recycling nutrients from crop residues for space applications
NASA Technical Reports Server (NTRS)
Strayer, R. F.; Atkinson, C. F.
1997-01-01
Without some form of regenerative life support system, long duration space habitation or travel will be limited severely by the prohibitive costs of resupplying air, water, and food from Earth. Components under consideration for inclusion in a regenerative life support system are based on either physicochemical or biological processes. Physicochemical systems would use filtration and elemental phase changes to convert waste materials into usable products, while biological systems would use higher plants and bioreactors to supply crew needs. Neither a purely biological nor strictly a physicochemical approach can supply all crew needs, thus, the best each approach can offer will be combined into a hybrid regenerative life support system. Researchers at Kennedy Space Center (KSC) Advanced Life Support Breadboard Project have taken the lead on bioregenerative aspects of space life support. The major focus has been on utilization of higher plants for production of food, oxygen, and clean water. However, a key to any regenerative life support system is recycling and recovery of resources (wastes). In keeping with the emphasis at KSC on bioregenerative systems and with the focus on plants, this paper focuses on research with biologically-based options for resource recovery from inedible crop residues.
Development of gait training system powered by pneumatic actuator like human musculoskeletal system.
Yamamoto, Shin-ichiroh; Shibata, Yoshiyuki; Imai, Shingo; Nobutomo, Tatsuya; Miyoshi, Tasuku
2011-01-01
The purpose of this study was to develop a body weight support gait training system for stroke and spinal cord injury (SCI) patient. This system consists of an orthosis powered by pneumatic McKibben actuators and a piece of equipment of body weight support. The attachment of powered orthosis can be fit to individual subjects with different body size. This powered orthosis is driven by pneumatic McKibben actuators arranged as a pair of agonistic and antagonistic bi-articular muscle models and two pairs of agonistic and antagonistic mono-articular muscle models like the human musculoskeletal system. The body weight support equipment suspends the subject's body in a wire harness, with the body weight is supported continuously by a counterweight. The powered orthosis is attached to the body weight support equipment by a parallel linkage, and its movement of powered orthosis is limited at the sagittal plane. The weight of the powered orthosis is compensated by a parallel linkage with a gas-spring. In this paper, we report the detailed mechanics of this body weight support gait training system and the results of several experiments for evaluating the system. © 2011 IEEE
76 FR 560 - Office of Child Support Enforcement Privacy Act of 1974; System of Records
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-05
... child support agencies), sex, date of birth, mother's maiden name, father's name, participant type... DEPARTMENT OF HEALTH AND HUMAN SERVICES Administration for Children and Families Office of Child Support Enforcement Privacy Act of 1974; System of Records AGENCY: Office of Child Support Enforcement...
Support for Quality Assurance in End-User Systems.
ERIC Educational Resources Information Center
Klepper, Robert; McKenna, Edward G.
1989-01-01
Suggests an approach that organizations can take to provide centralized support services for quality assurance in end-user information systems, based on the experiences of a support group at Citicorp Mortgage, Inc. The functions of the support group include user education, software selection, and assistance in testing, implementation, and support…
48 CFR 2815.404-2 - Information to support proposal analysis.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Information to support proposal analysis. All requests for field pricing support shall be made by the... 48 Federal Acquisition Regulations System 6 2010-10-01 2010-10-01 true Information to support proposal analysis. 2815.404-2 Section 2815.404-2 Federal Acquisition Regulations System DEPARTMENT OF...
48 CFR 2815.404-2 - Information to support proposal analysis.
Code of Federal Regulations, 2013 CFR
2013-10-01
... Information to support proposal analysis. All requests for field pricing support shall be made by the... 48 Federal Acquisition Regulations System 6 2013-10-01 2013-10-01 false Information to support proposal analysis. 2815.404-2 Section 2815.404-2 Federal Acquisition Regulations System DEPARTMENT OF...
48 CFR 2815.404-2 - Information to support proposal analysis.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Information to support proposal analysis. All requests for field pricing support shall be made by the... 48 Federal Acquisition Regulations System 6 2014-10-01 2014-10-01 false Information to support proposal analysis. 2815.404-2 Section 2815.404-2 Federal Acquisition Regulations System DEPARTMENT OF...
48 CFR 2815.404-2 - Information to support proposal analysis.
Code of Federal Regulations, 2012 CFR
2012-10-01
... Information to support proposal analysis. All requests for field pricing support shall be made by the... 48 Federal Acquisition Regulations System 6 2012-10-01 2012-10-01 false Information to support proposal analysis. 2815.404-2 Section 2815.404-2 Federal Acquisition Regulations System DEPARTMENT OF...
48 CFR 2815.404-2 - Information to support proposal analysis.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Information to support proposal analysis. All requests for field pricing support shall be made by the... 48 Federal Acquisition Regulations System 6 2011-10-01 2011-10-01 false Information to support proposal analysis. 2815.404-2 Section 2815.404-2 Federal Acquisition Regulations System DEPARTMENT OF...
Recycling and source reduction for long duration space habitation
NASA Technical Reports Server (NTRS)
Hightower, T. M.
1992-01-01
A direct mathematical approach has been established for characterizing the performance of closed-loop life support systems. The understanding that this approach gives clearly illustrates the options available for increasing the performance of a life support system by changing various parameters. New terms are defined and utilized, such as Segregation Factor, Resource Recovery Efficiency, Overall Reclamation Efficiency, Resupply Reduction Factor, and Life Support Extension Factor. The effects of increases in expendable system supplies required due to increases in life support system complexity are shown. Minimizing resupply through increased recycling and source reduction is illustrated. The effects of recycling upon resupply launch cost is also shown. Finally, material balance analyses have been performed based on quantity and composition data for both supplies and wastes, to illustrate the use of this approach by comparing ten different closed-loop life support system cases.
Woods, Cindy; Carlisle, Karen; Larkins, Sarah; Thompson, Sandra Claire; Tsey, Komla; Matthews, Veronica; Bailie, Ross
2017-01-01
Continuous Quality Improvement is a process for raising the quality of primary health care (PHC) across Indigenous PHC services. In addition to clinical auditing using plan, do, study, and act cycles, engaging staff in a process of reflecting on systems to support quality care is vital. The One21seventy Systems Assessment Tool (SAT) supports staff to assess systems performance in terms of five key components. This study examines quantitative and qualitative SAT data from five high-improving Indigenous PHC services in northern Australia to understand the systems used to support quality care. High-improving services selected for the study were determined by calculating quality of care indices for Indigenous health services participating in the Audit and Best Practice in Chronic Disease National Research Partnership. Services that reported continuing high improvement in quality of care delivered across two or more audit tools in three or more audits were selected for the study. Precollected SAT data (from annual team SAT meetings) are presented longitudinally using radar plots for quantitative scores for each component, and content analysis is used to describe strengths and weaknesses of performance in each systems' component. High-improving services were able to demonstrate strong processes for assessing system performance and consistent improvement in systems to support quality care across components. Key strengths in the quality support systems included adequate and orientated workforce, appropriate health system supports, and engagement with other organizations and community, while the weaknesses included lack of service infrastructure, recruitment, retention, and support for staff and additional costs. Qualitative data revealed clear voices from health service staff expressing concerns with performance, and subsequent SAT data provided evidence of changes made to address concerns. Learning from the processes and strengths of high-improving services may be useful as we work with services striving to improve the quality of care provided in other areas.
Axiomatic Design of Space Life Support Systems
NASA Technical Reports Server (NTRS)
Jones, Harry W.
2017-01-01
Systems engineering is an organized way to design and develop systems, but the initial system design concepts are usually seen as the products of unexplained but highly creative intuition. Axiomatic design is a mathematical approach to produce and compare system architectures. The two axioms are:- Maintain the independence of the functional requirements.- Minimize the information content (or complexity) of the design. The first axiom generates good system design structures and the second axiom ranks them. The closed system human life support architecture now implemented in the International Space Station has been essentially unchanged for fifty years. In contrast, brief missions such as Apollo and Shuttle have used open loop life support. As mission length increases, greater system closure and increased recycling become more cost-effective.Closure can be gradually increased, first recycling humidity condensate, then hygiene wastewater, urine, carbon dioxide, and water recovery brine. A long term space station or planetary base could implement nearly full closure, including food production. Dynamic systems theory supports the axioms by showing that fewer requirements, fewer subsystems, and fewer interconnections all increase system stability. If systems are too complex and interconnected, reliability is reduced and operations and maintenance become more difficult. Using axiomatic design shows how the mission duration and other requirements determine the best life support system design including the degree of closure.
Exploration Life Support Critical Questions for Future Human Space Missions
NASA Technical Reports Server (NTRS)
Ewert, Michael K.; Barta, Daniel J.; McQuillan, Jeff
2009-01-01
Exploration Life Support (ELS) is a project under NASA s Exploration Technology Development Program. The ELS Project plans, coordinates and implements the development of advanced life support technologies for human exploration missions in space. Recent work has focused on closed loop atmosphere and water systems for a lunar outpost, including habitats and pressurized rovers. But, what are the critical questions facing life support system developers for these and other future human missions? This paper explores those questions and discusses how progress in the development of ELS technologies can help answer them. The ELS Project includes Atmosphere Revitalization Systems (ARS), Water Recovery Systems (WRS), Waste Management Systems (WMS), Habitation Engineering, Systems Integration, Modeling and Analysis (SIMA), and Validation and Testing, which includes the sub-elements Flight Experiments and Integrated Testing. Systems engineering analysis by ELS seeks to optimize the overall mission architecture by considering all the internal and external interfaces of the life support system and the potential for reduction or reuse of commodities. In particular, various sources and sinks of water and oxygen are considered along with the implications on loop closure and the resulting launch mass requirements.
NASA's Advanced Life Support Systems Human-Rated Test Facility
NASA Technical Reports Server (NTRS)
Henninger, D. L.; Tri, T. O.; Packham, N. J.
1996-01-01
Future NASA missions to explore the solar system will be long-duration missions, requiring human life support systems which must operate with very high reliability over long periods of time. Such systems must be highly regenerative, requiring minimum resupply, to enable the crews to be largely self-sufficient. These regenerative life support systems will use a combination of higher plants, microorganisms, and physicochemical processes to recycle air and water, produce food, and process wastes. A key step in the development of these systems is establishment of a human-rated test facility specifically tailored to evaluation of closed, regenerative life supports systems--one in which long-duration, large-scale testing involving human test crews can be performed. Construction of such a facility, the Advanced Life Support Program's (ALS) Human-Rated Test Facility (HRTF), has begun at NASA's Johnson Space Center, and definition of systems and development of initial outfitting concepts for the facility are underway. This paper will provide an overview of the HRTF project plan, an explanation of baseline configurations, and descriptive illustrations of facility outfitting concepts.
Design of biomass management systems and components for closed loop life support systems
NASA Technical Reports Server (NTRS)
1991-01-01
The goal of the EGM 4000/1 Design class was to investigate a Biomass Management System (BMS) and design, fabricate, and test components for biomass management in a closed-loop life support system (CLLSS). The designs explored were to contribute to the development of NASA's Controlled Ecological Life Support System (CELSS) at Kennedy Space Center. Designs included a sectored plant growth unit, a container and transfer mechanism, and an air curtain system for fugitive particle control. The work performed by the class members is summarized.
Human Support Technology Research to Enable Exploration
NASA Technical Reports Server (NTRS)
Joshi, Jitendra
2003-01-01
Contents include the following: Advanced life support. System integration, modeling, and analysis. Progressive capabilities. Water processing. Air revitalization systems. Why advanced CO2 removal technology? Solid waste resource recovery systems: lyophilization. ISRU technologies for Mars life support. Atmospheric resources of Mars. N2 consumable/make-up for Mars life. Integrated test beds. Monitoring and controlling the environment. Ground-based commercial technology. Optimizing size vs capability. Water recovery systems. Flight verification topics.
NASA Technical Reports Server (NTRS)
Mitchell, Sherry L.
2018-01-01
The Customer Avionics Interface Development and Analysis (CAIDA) supports the testing of the Launch Control System (LCS), NASA's command and control system for the Space Launch System (SLS), Orion Multi-Purpose Crew Vehicle (MPCV), and ground support equipment. The objective of the semester-long internship was to support day-to-day operations of CAIDA and help prepare for verification and validation of CAIDA software.
Life Support Systems Microbial Challenges
NASA Technical Reports Server (NTRS)
Roman, Monserrate C.
2009-01-01
This viewgraph presentation reviews the current microbial challenges of environmental control and life support systems. The contents include: 1) Environmental Control and Life Support Systems (ECLSS) What is it?; 2) A Look Inside the International Space Station (ISS); 3) The Complexity of a Water Recycling System; 4) ISS Microbiology Acceptability Limits; 5) Overview of Current Microbial Challenges; 6) In a Perfect World What we Would like to Have; and 7) The Future.
An Advanced Commanding and Telemetry System
NASA Astrophysics Data System (ADS)
Hill, Maxwell G. G.
The Loral Instrumentation System 500 configured as an Advanced Commanding and Telemetry System (ACTS) supports the acquisition of multiple telemetry downlink streams, and simultaneously supports multiple uplink command streams for today's satellite vehicles. By using industry and federal standards, the system is able to support, without relying on a host computer, a true distributed dataflow architecture that is complemented by state-of-the-art RISC-based workstations and file servers.
Pope, Catherine; Halford, Susan; Turnbull, Joanne; Prichard, Jane
2014-06-01
This article draws on data collected during a 2-year project examining the deployment of a computerised decision support system. This computerised decision support system was designed to be used by non-clinical staff for dealing with calls to emergency (999) and urgent care (out-of-hours) services. One of the promises of computerised decisions support technologies is that they can 'hold' vast amounts of sophisticated clinical knowledge and combine it with decision algorithms to enable standardised decision-making by non-clinical (clerical) staff. This article draws on our ethnographic study of this computerised decision support system in use, and we use our analysis to question the 'automated' vision of decision-making in healthcare call-handling. We show that embodied and experiential (human) expertise remains central and highly salient in this work, and we propose that the deployment of the computerised decision support system creates something new, that this conjunction of computer and human creates a cyborg practice.
Inner Space and Outer Space: Pressure Suits & Life Support Systems for Space Workers
NASA Technical Reports Server (NTRS)
Webbon, Bruce
2004-01-01
This slide presentation presents an overview of work system requirements, extravehicular activity system evolution, key issues, future needs, and a summary. Key issues include pressure suits, life support systems, system integration, biomedical requirements, and work and mobility aids.
Developing Sustainable Life Support System Concepts
NASA Technical Reports Server (NTRS)
Thomas, Evan A.
2010-01-01
Sustainable spacecraft life support concepts may allow the development of more reliable technologies for long duration space missions. Currently, life support technologies at different levels of development are not well evaluated against each other, and evaluation methods do not account for long term reliability and sustainability of the hardware. This paper presents point-of-departure sustainability evaluation criteria for life support systems, that may allow more robust technology development, testing and comparison. An example sustainable water recovery system concept is presented.
Wright, Adam; Sittig, Dean F.
2008-01-01
In this paper we describe and evaluate a new distributed architecture for clinical decision support called SANDS (Service-oriented Architecture for NHIN Decision Support), which leverages current health information exchange efforts and is based on the principles of a service-oriented architecture. The architecture allows disparate clinical information systems and clinical decision support systems to be seamlessly integrated over a network according to a set of interfaces and protocols described in this paper. The architecture described is fully defined and developed, and six use cases have been developed and tested using a prototype electronic health record which links to one of the existing prototype National Health Information Networks (NHIN): drug interaction checking, syndromic surveillance, diagnostic decision support, inappropriate prescribing in older adults, information at the point of care and a simple personal health record. Some of these use cases utilize existing decision support systems, which are either commercially or freely available at present, and developed outside of the SANDS project, while other use cases are based on decision support systems developed specifically for the project. Open source code for many of these components is available, and an open source reference parser is also available for comparison and testing of other clinical information systems and clinical decision support systems that wish to implement the SANDS architecture. PMID:18434256
NASA Supportability Engineering Implementation Utilizing DoD Practices and Processes
NASA Technical Reports Server (NTRS)
Smith, David A.; Smith, John V.
2010-01-01
The Ares I design and development program made the determination early in the System Design Review Phase to utilize DoD ILS and LSA approach for supportability engineering as an integral part of the system engineering process. This paper is to provide a review of the overall approach to design Ares-I with an emphasis on a more affordable, supportable, and sustainable launch vehicle. Discussions will include the requirements development, design influence, support concept alternatives, ILS and LSA planning, Logistics support analyses/trades performed, LSA tailoring for NASA Ares Program, support system infrastructure identification, ILS Design Review documentation, Working Group coordination, and overall ILS implementation. At the outset, the Ares I Project initiated the development of the Integrated Logistics Support Plan (ILSP) and a Logistics Support Analysis process to provide a path forward for the management of the Ares-I ILS program and supportability analysis activities. The ILSP provide the initial planning and coordination between the Ares-I Project Elements and Ground Operation Project. The LSA process provided a system engineering approach in the development of the Ares-I supportability requirements; influence the design for supportability and development of alternative support concepts that satisfies the program operability requirements. The LSA planning and analysis results are documented in the Logistics Support Analysis Report. This document was required during the Ares-I System Design Review (SDR) and Preliminary Design Review (PDR) review cycles. To help coordinate the LSA process across the Ares-I project and between programs, the LSA Report is updated and released quarterly. A System Requirement Analysis was performed to determine the supportability requirements and technical performance measurements (TPMs). Two working groups were established to provide support in the management and implement the Ares-I ILS program, the Integrated Logistics Support Working Group (ILSWG) and the Logistics Support Analysis Record Working Group (LSARWG). The Ares I ILSWG is established to assess the requirements and conduct, evaluate analyses and trade studies associated with acquisition logistic and supportability processes and to resolve Ares I integrated logistics and supportability issues. It established a strategic collaborative alliance for coordination of Logistics Support Analysis activates in support of the integrated Ares I vehicle design and development of logistics support infrastructure. A Joint Ares I - Orion LSAR Working Group was established to: 1) Guide the development of Ares-I and Orion LSAR data and serve as a model for future Constellation programs, 2) Develop rules and assumptions that will apply across the Constellation program with regards to the program's LSAR development, and 3) Maintain the Constellation LSAR Style Guide.
MSFC Skylab Orbital Workshop, volume 4. [design and development of life support systems
NASA Technical Reports Server (NTRS)
1974-01-01
The design and development of specific systems on the Skylab Orbital Laboratory are discussed. The subjects considered are: (1) pressure garment conditioning system, (2) stowage system, (3) ground support equipment systems, and (4) marking systems illustrations of the system components are provided. Results of performance tests are discussed.
NASA Technical Reports Server (NTRS)
1994-01-01
A software management system, originally developed for Goddard Space Flight Center (GSFC) by Century Computing, Inc. has evolved from a menu and command oriented system to a state-of-the art user interface development system supporting high resolution graphics workstations. Transportable Applications Environment (TAE) was initially distributed through COSMIC and backed by a TAE support office at GSFC. In 1993, Century Computing assumed the support and distribution functions and began marketing TAE Plus, the system's latest version. The software is easy to use and does not require programming experience.
Polymeric membrane systems of potential use for battery separators
NASA Technical Reports Server (NTRS)
Philipp, W. H.
1977-01-01
Two membrane systems were investigated that may have potential use as alkaline battery separators. One system comprises two miscible polymers: a support polymer (e.g., polyvinyl formal) and an ion conductor such as polyacrylic acid. The other system involves a film composed of two immiscible polymers: a conducting polymer (e.g., calcium polyacrylate) suspended in an inert polymer support matrix, polyphenylene oxide. Resistivities in 45-percent potassium hydroxide and qualitative mechanical properties are presented for films comprising various proportions of conducting and support polymers. In terms of these parameters, the results are encouraging for optimum ratios of conducting to support polymers.
Decision Support Systems for Research and Management in Advanced Life Support
NASA Technical Reports Server (NTRS)
Rodriquez, Luis F.
2004-01-01
Decision support systems have been implemented in many applications including strategic planning for battlefield scenarios, corporate decision making for business planning, production planning and control systems, and recommendation generators like those on Amazon.com(Registered TradeMark). Such tools are reviewed for developing a similar tool for NASA's ALS Program. DSS are considered concurrently with the development of the OPIS system, a database designed for chronicling of research and development in ALS. By utilizing the OPIS database, it is anticipated that decision support can be provided to increase the quality of decisions by ALS managers and researchers.
Environmental control and life support system selection for the first Lunar outpost habitat
NASA Technical Reports Server (NTRS)
Adams, Alan
1993-01-01
The planning for and feasibility study of an early human return mission to the lunar surface has been undertaken. The First Lunar Outpost (FLO) Mission philosophy is to use existing or near-term technology to achieve a human landing on the lunar surface in the year 2000. To support the crew the lunar habitat for the FLO mission incorporates an environmental control/life support system (ECLSS) design which meets the mission requirements and balances fixed mass and consumable mass. This tradeoff becomes one of regenerable life support systems versus open-loop systems.
How Can a Global Social Support System Hope to Achieve Fairer Competiveness?
Goldblatt, Peter
2016-01-01
Ooms et al sets out some good general principles for a global social support system to improve fairer global competitiveness as a result of redistribution. This commentary sets out to summarize some of the conditions that would need to be satisfied for it to level up gradients in inequality through such a social support system, using the National Basketball Association (NBA) example as a point of reference. From this, the minimal conditions are described that would be required for the support system, proposed in the article by Ooms et al, to succeed. PMID:26927594
An efficient temporal logic for robotic task planning
NASA Technical Reports Server (NTRS)
Becker, Jeffrey M.
1989-01-01
Computations required for temporal reasoning can be prohibitively expensive if fully general representations are used. Overly simple representations, such as totally ordered sequence of time points, are inadequate for use in a nonlinear task planning system. A middle ground is identified which is general enough to support a capable nonlinear task planner, but specialized enough that the system can support online task planning in real time. A Temporal Logic System (TLS) was developed during the Intelligent Task Automation (ITA) project to support robotic task planning. TLS is also used within the ITA system to support plan execution, monitoring, and exception handling.
NASA Technical Reports Server (NTRS)
Morgan, P. W.
1979-01-01
The use of higher plants in a closed ecological life support system for long duration space missions involving large numbers of people is considered. The approach to planning and developing both the habitat for a long term space mission and closed ecological life support systems are discussed with emphasis on environmental compatibility and integrated systems design. The requirements of photosynthetic processes are summarized and evaluated in terms of their availability within a closed ecological life support environment. Specific references are recommended as a data base for future research on this topic.
Space Operations Center System Analysis: Requirements for a Space Operations Center, revision A
NASA Technical Reports Server (NTRS)
Woodcock, G. R.
1982-01-01
The system and program requirements for a space operations center as defined by systems analysis studies are presented as a guide for future study and systems definition. Topics covered include general requirements for safety, maintainability, and reliability, service and habitat modules, the health maintenance facility; logistics modules; the docking tunnel; and subsystem requirements (structures, electrical power, environmental control/life support; extravehicular activity; data management; communications and tracking; docking/berthing; flight control/propulsion; and crew support). Facilities for flight support, construction, satellite and mission servicing, and fluid storage are included as well as general purpose support equipment.
Huser, Vojtech; Rasmussen, Luke V; Oberg, Ryan; Starren, Justin B
2011-04-10
Workflow engine technology represents a new class of software with the ability to graphically model step-based knowledge. We present application of this novel technology to the domain of clinical decision support. Successful implementation of decision support within an electronic health record (EHR) remains an unsolved research challenge. Previous research efforts were mostly based on healthcare-specific representation standards and execution engines and did not reach wide adoption. We focus on two challenges in decision support systems: the ability to test decision logic on retrospective data prior prospective deployment and the challenge of user-friendly representation of clinical logic. We present our implementation of a workflow engine technology that addresses the two above-described challenges in delivering clinical decision support. Our system is based on a cross-industry standard of XML (extensible markup language) process definition language (XPDL). The core components of the system are a workflow editor for modeling clinical scenarios and a workflow engine for execution of those scenarios. We demonstrate, with an open-source and publicly available workflow suite, that clinical decision support logic can be executed on retrospective data. The same flowchart-based representation can also function in a prospective mode where the system can be integrated with an EHR system and respond to real-time clinical events. We limit the scope of our implementation to decision support content generation (which can be EHR system vendor independent). We do not focus on supporting complex decision support content delivery mechanisms due to lack of standardization of EHR systems in this area. We present results of our evaluation of the flowchart-based graphical notation as well as architectural evaluation of our implementation using an established evaluation framework for clinical decision support architecture. We describe an implementation of a free workflow technology software suite (available at http://code.google.com/p/healthflow) and its application in the domain of clinical decision support. Our implementation seamlessly supports clinical logic testing on retrospective data and offers a user-friendly knowledge representation paradigm. With the presented software implementation, we demonstrate that workflow engine technology can provide a decision support platform which evaluates well against an established clinical decision support architecture evaluation framework. Due to cross-industry usage of workflow engine technology, we can expect significant future functionality enhancements that will further improve the technology's capacity to serve as a clinical decision support platform.
Preparing for a decision support system.
Callan, K
2000-08-01
The increasing pressure to reduce costs and improve outcomes is driving the health care industry to view information as a competitive advantage. Timely information is required to help reduce inefficiencies and improve patient care. Numerous disparate operational or transactional information systems with inconsistent and often conflicting data are no longer adequate to meet the information needs of integrated care delivery systems and networks in competitive managed care environments. This article reviews decision support system characteristics and describes a process to assess the preparedness of an organization to implement and use decision support systems to achieve a more effective, information-based decision process. Decision support tools included in this article range from reports to data mining.
NASA Technical Reports Server (NTRS)
Siegmeth, A. J.; Purdue, R. E.; Ryan, R. E.
1973-01-01
The tracking and data system support of the launch, near-earth, and deep space phases of the Pioneer 10 mission, which sent a Pioneer spacecraft into a flyby of Jupiter that would eventually allow the spacecraft to escape the solar system is discussed. The support through the spacecraft's second trajectory correction is reported. During this period, scientific instruments aboard the spacecraft registered information relative to interplanetary particles and fields, and radiometric data generated by the network continued to improve knowledge of the celestial mechanics of the solar system. In addition to network support activity detail, network performance and special support activities are covered.
NASA Astrophysics Data System (ADS)
Takeuchi, Susumu; Teranishi, Yuuichi; Harumoto, Kaname; Shimojo, Shinji
Almost all companies are now utilizing computer networks to support speedier and more effective in-house information-sharing and communication. However, existing systems are designed to support communications only within the same department. Therefore, in our research, we propose an in-house communication support system which is based on the “Information Propagation Model (IPM).” The IPM is proposed to realize word-of-mouth communication in a social network, and to support information-sharing on the network. By applying the system in a real company, we found that information could be exchanged between different and unrelated departments, and such exchanges of information could help to build new relationships between the users who are apart on the social network.
Introduction to Life Support Systems
NASA Technical Reports Server (NTRS)
Perry, Jay
2017-01-01
This course provides an introduction to the design and development of life support systems to sustain humankind in the harsh environment of space. The life support technologies necessary to provide a respirable atmosphere and clean drinking water are emphasized in the course. A historical perspective, beginning with open loop systems employed aboard the earliest crewed spacecraft through the state-of-the-art life support technology utilized aboard the International Space Station today, will provide a framework for students to consider applications to possible future exploration missions and destinations which may vary greatly in duration and scope. Development of future technologies as well as guiding requirements for designing life support systems for crewed exploration missions beyond low-Earth orbit are also considered in the course.
Product Definition Data (PDD) Current Environment Report
DOT National Transportation Integrated Search
1989-05-01
The objective of the Air Force Computer-aided Acquisition and Logistics Support (CALS) Program is to improve weapon system reliability, supportability and maintainability, and to reduce the cost of weapon system acquisition and logistics support. As ...
Tower-supported solar-energy collector
NASA Technical Reports Server (NTRS)
Selcuk, M. K.
1977-01-01
Multiple-collector tower system supports three receiver/concentrators that absorb solar energy reflected from surrounding field of heliostats. System overcomes disadvantages of tower-supported collectors. Booms can be lowered during heavy winds to protect arms and collectors.
Maintenance and operations decision support tool : Clarus regional demonstrations.
DOT National Transportation Integrated Search
2011-01-01
Weather affects almost all maintenance activity decisions. The Federal Highway Administration (FHWA) tested a new decision support system for maintenance in Iowa, Indiana, and Illinois called the Maintenance and Operations Decision Support System (MO...
NASA Astrophysics Data System (ADS)
Wang, Kang; Gao, Guiqing; Qin, Yuanli; He, Xiangyong
2018-05-01
The nuclear accident emergency disposal must be supported by an efficient, real-time modularization and standardization communication system. Based on the analysis of communication system for nuclear accident emergency disposal which included many functions such as the internal and external communication, multiply access supporting and command center. Some difficult problems of the communication system were discussed such as variety access device type, complex composition, high mobility, set up quickly, multiply business support, and so on. Taking full advantages of the IP Multimedia Subsystem (IMS), a nuclear accident emergency communication system was build based on the IMS. It was studied and implemented that some key unit and module functions of communication system were included the system framework implementation, satellite access, short-wave access, load/vehicle-mounted communication units. The application tests showed that the system could provide effective communication support for the nuclear accident emergency disposal, which was of great practical value.
The 12-foot pressure wind tunnel restoration project model support systems
NASA Technical Reports Server (NTRS)
Sasaki, Glen E.
1992-01-01
The 12 Foot Pressure Wind Tunnel is a variable density, low turbulence wind tunnel that operates at subsonic speeds, and up to six atmospheres total pressure. The restoration of this facility is of critical importance to the future of the U.S. aerospace industry. As part of this project, several state of the art model support systems are furnished to provide an optimal balance between aerodynamic and operational efficiency parameters. Two model support systems, the Rear Strut Model Support, and the High Angle of Attack Model Support are discussed. This paper covers design parameters, constraints, development, description, and component selection.
Human support issues and systems for the space exploration initiative: Results from Project Outreach
NASA Technical Reports Server (NTRS)
Aroesty, J.; Zimmerman, R.; Logan, J.
1991-01-01
The analyses and evaluations of the Human Support panel are discussed. The Human Support panel is one of eight panels created by RAND to screen and analyze submissions to the Space Exploration Initiative (SEI) Outreach Program. Submissions to the Human Support panel were in the following areas: radiation protection; microgravity; life support systems; medical care; and human factors (behavior and performance).
Thermal support for scale support
NASA Technical Reports Server (NTRS)
Dean, W. G.
1976-01-01
The thermal design work completed for the Thermal Protection System (TPS) of the Space Shuttle System (TPS) of the space shuttle vehicle was documented. This work was divided into three phases, the first two of which reported in previous documents. About 22 separate tasks were completed in phase III, such as: hot gas facility (HGF) support, guarded tank support, shuttle external tank (ET) thermal design handbook support, etc.
Need for Cost Optimization of Space Life Support Systems
NASA Technical Reports Server (NTRS)
Jones, Harry W.; Anderson, Grant
2017-01-01
As the nation plans manned missions that go far beyond Earth orbit to Mars, there is an urgent need for a robust, disciplined systems engineering methodology that can identify an optimized Environmental Control and Life Support (ECLSS) architecture for long duration deep space missions. But unlike the previously used Equivalent System Mass (ESM), the method must be inclusive of all driving parameters and emphasize the economic analysis of life support system design. The key parameter for this analysis is Life Cycle Cost (LCC). LCC takes into account the cost for development and qualification of the system, launch costs, operational costs, maintenance costs and all other relevant and associated costs. Additionally, an effective methodology must consider system technical performance, safety, reliability, maintainability, crew time, and other factors that could affect the overall merit of the life support system.
[Virtual clinical diagnosis support system of degenerative stenosis of the lumbar spinal canal].
Shevelev, I N; Konovalov, N A; Cherkashov, A M; Molodchenkov, A A; Sharamko, T G; Asiutin, D S; Nazarenko, A G
2013-01-01
The aim of the study was to develop a virtual clinical diagnostic support system of degenerative lumbar spinal stenosis on database of spine registry. Choice of criteria's for diagnostic system was made on symptom analysis of 298 patients with lumbar spinal stenosis. Also was analysed a group of patient with disc herniation's for sensitivity and specify assessment of developed diagnostic support system. Represented clinical diagnostic support system allows identifying patients with degenerative lumbar spinal stenosis on stage of patient's primary visit. System sensitivity and specify are 90 and 71% respectively. "Online" mode of diagnostic system in structure of spine registry provides maximal availability for specialists, regardless of their locations. Development of tools "medicine 2.0" is the actual direction for carrying out further researches with which carrying out the centralized baea collection by means of specialized registers helps.
Critical interactions between the Global Fund-supported HIV programs and the health system in Ghana.
Atun, Rifat; Pothapregada, Sai Kumar; Kwansah, Janet; Degbotse, D; Lazarus, Jeffrey V
2011-08-01
The support of global health initiatives in recipient countries has been vigorously debated. Critics are concerned that disease-specific programs may be creating vertical and parallel service delivery structures that to some extent undermine health systems. This case study of Ghana aimed to explore how the Global Fund-supported HIV program interacts with the health system there and to map the extent and nature of integration of the national disease program across 6 key health systems functions. Qualitative interviews of national stakeholders were conducted to understand the perceptions of the strengths and weaknesses of the relationship between Global Fund-supported activities and the health system and to identify positive synergies and unintended consequences of integration. Ghana has a well-functioning sector-wide approach to financing its health system, with a strong emphasis on integrated care delivery. Ghana has benefited from US $175 million of approved Global Fund support to address the HIV epidemic, accounting for almost 85% of the National AIDS Control Program budget. Investments in infrastructure, human resources, and commodities have enabled HIV interventions to increase exponentially. Global Fund-supported activities have been well integrated into key health system functions to strengthen them, especially financing, planning, service delivery, and demand generation. Yet, with governance and monitoring and evaluation functions, parallel structures to national systems have emerged, leading to inefficiencies. This case study demonstrates that interactions and integration are highly varied across different health system functions, and strong government leadership has facilitated the integration of Global Fund-supported activities within national programs.
NASA Technical Reports Server (NTRS)
Clinton, R. G., Jr.; Szofran, Frank; Bassler, Julie A.; Schlagheck, Ronald A.; Cook, Mary Beth
2005-01-01
The Microgravity Materials Science Program established a strong research capability through partnerships between NASA and the scientific research community. With the announcement of the vision for space exploration, additional emphasis in strategic materials science areas was necessary. The President's Commission recognized that achieving its exploration objectives would require significant technical innovation, research, and development in focal areas defined as "enabling technologies." Among the 17 enabling technologies identified for initial focus were: advanced structures, advanced power and propulsion; closed-loop life support and habitability; extravehicular activity systems; autonomous systems and robotics; scientific data collection and analysis, biomedical risk mitigation; and planetary in situ resource utilization. Mission success may depend upon use of local resources to fabricate a replacement part to repair a critical system. Future propulsion systems will require materials with a wide range of mechanical, thermophysical, and thermochemical properties, many of them well beyond capabilities of today's materials systems. Materials challenges have also been identified by experts working to develop advanced life support systems. In responding to the vision for space exploration, the Microgravity Materials Science Program aggressively transformed its research portfolio and focused materials science areas of emphasis to include space radiation shielding; in situ fabrication and repair for life support systems; in situ resource utilization for life support consumables; and advanced materials for exploration, including materials science for space propulsion systems and for life support systems. The purpose of this paper is to inform the scientific community of these new research directions and opportunities to utilize their materials science expertise and capabilities to support the vision for space exploration.
Large space systems technology, 1980, volume 1
NASA Technical Reports Server (NTRS)
Kopriver, F., III (Compiler)
1981-01-01
The technological and developmental efforts in support of the large space systems technology are described. Three major areas of interests are emphasized: (1) technology pertient to large antenna systems; (2) technology related to large space systems; and (3) activities that support both antenna and platform systems.
Spunt, Robert P; Lieberman, Matthew D
2013-01-01
Much social-cognitive processing is believed to occur automatically; however, the relative automaticity of the brain systems underlying social cognition remains largely undetermined. We used functional MRI to test for automaticity in the functioning of two brain systems that research has indicated are important for understanding other people's behavior: the mirror neuron system and the mentalizing system. Participants remembered either easy phone numbers (low cognitive load) or difficult phone numbers (high cognitive load) while observing actions after adopting one of four comprehension goals. For all four goals, mirror neuron system activation showed relatively little evidence of modulation by load; in contrast, the association of mentalizing system activation with the goal of inferring the actor's mental state was extinguished by increased cognitive load. These results support a dual-process model of the brain systems underlying action understanding and social cognition; the mirror neuron system supports automatic behavior identification, and the mentalizing system supports controlled social causal attribution.
A Nice Way To Make a Living: Reflections on the Career of an Experienced Theatre Teacher.
ERIC Educational Resources Information Center
Brown, Cynthia L.
1999-01-01
Presents a case study examining the personal characteristics and external support systems which may have led to longevity in the career of a specific high school theatre arts teacher. Discusses internal support systems (including organizational skills, being adaptable to change, and respecting students) and external support systems (including the…
ERIC Educational Resources Information Center
Tetlow, William L.
Findings of a conference that reviewed and evaluated design decisions concerning the Decision Support System (DSS) Demonstrator are summarized. The DSS Demonstrator was designed by the National Center for Higher Education Management Systems as an example of the way in which microcomputer technology can support and make more effective planning and…
NASA Technical Reports Server (NTRS)
Woughter, W. R., Jr.
1975-01-01
The Data Collection Operational Support system has been shown to be a usable means of transmitting numerical data over a 2-way VHF satellite link. It is also capable of supporting educational applications. The design, operation, use, results, and recommendations of the system are discussed.
Developing a Software for Fuzzy Group Decision Support System: A Case Study
ERIC Educational Resources Information Center
Baba, A. Fevzi; Kuscu, Dincer; Han, Kerem
2009-01-01
The complex nature and uncertain information in social problems required the emergence of fuzzy decision support systems in social areas. In this paper, we developed user-friendly Fuzzy Group Decision Support Systems (FGDSS) software. The software can be used for multi-purpose decision making processes. It helps the users determine the main and…