Sample records for support system project

  1. NASA Advanced Life Support Technology Testing and Development

    NASA Technical Reports Server (NTRS)

    Wheeler, Raymond M.

    2012-01-01

    Prior to 2010, NASA's advanced life support research and development was carried out primarily under the Exploration Life Support Project of NASA's Exploration Systems Mission Directorate. In 2011, the Exploration Life Support Project was merged with other projects covering Fire Prevention/Suppression, Radiation Protection, Advanced Environmental Monitoring and Control, and Thermal Control Systems. This consolidated project was called Life Support and Habitation Systems, which was managed under the Exploration Systems Mission Directorate. In 2012, NASA re-organized major directorates within the agency, which eliminated the Exploration Systems Mission Directorate and created the Office of the Chief Technologist (OCT). Life support research and development is currently conducted within the Office of the Chief Technologist, under the Next Generation Life Support Project, and within the Human Exploration Operation Missions Directorate under several Advanced Exploration System projects. These Advanced Exploration Systems projects include various themes of life support technology testing, including atmospheric management, water management, logistics and waste management, and habitation systems. Food crop testing is currently conducted as part of the Deep Space Habitation (DSH) project within the Advanced Exploration Systems Program. This testing is focused on growing salad crops that could supplement the crew's diet during near term missions.

  2. Impact of configuration management system of computer center on support of scientific projects throughout their lifecycle

    NASA Astrophysics Data System (ADS)

    Bogdanov, A. V.; Iuzhanin, N. V.; Zolotarev, V. I.; Ezhakova, T. R.

    2017-12-01

    In this article the problem of scientific projects support throughout their lifecycle in the computer center is considered in every aspect of support. Configuration Management system plays a connecting role in processes related to the provision and support of services of a computer center. In view of strong integration of IT infrastructure components with the use of virtualization, control of infrastructure becomes even more critical to the support of research projects, which means higher requirements for the Configuration Management system. For every aspect of research projects support, the influence of the Configuration Management system is being reviewed and development of the corresponding elements of the system is being described in the present paper.

  3. Modular space station Phase B extension preliminary performance specification. Volume 2: Project

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The four systems of the modular space station project are described, and the interfaces between this project and the shuttle project, the tracking and data relay satellite project, and an arbitrarily defined experiment project are defined. The experiment project was synthesized from internal experiments, detached research and application modules, and attached research and application modules to derive a set of interface requirements which will support multiple combinations of these elements expected during the modular space station mission. The modular space station project element defines a 6-man orbital program capable of growth to a 12-man orbital program capability. The modular space station project element specification defines the modular space station system, the premission operations support system, the mission operations support system, and the cargo module system and their interfaces.

  4. Controlled Ecological Life Support System Breadboard Project - 1988

    NASA Technical Reports Server (NTRS)

    Knott, W. M.

    1989-01-01

    The Controlled Ecological Life Support System (CELSS) Breadboard Project, NASA's effort to develop the technology required to produce a functioning bioregenerative system, is discussed. The different phases of the project and its current status are described. The relationship between the project components are shown, and major project activities for fiscal years 1989-1993 are listed. The biomass production chamber to be used by the project is described.

  5. Support of an Active Science Project by a Large Information System: Lessons for the EOS Era

    NASA Technical Reports Server (NTRS)

    Angelici, Gary L.; Skiles, J. W.; Popovici, Lidia Z.

    1993-01-01

    The ability of large information systems to support the changing data requirements of active science projects is being tested in a NASA collaborative study. This paper briefly profiles both the active science project and the large information system involved in this effort and offers some observations about the effectiveness of the project support. This is followed by lessons that are important for those participating in large information systems that need to support active science projects or that make available the valuable data produced by these projects. We learned in this work that it is difficult for a large information system focused on long term data management to satisfy the requirements of an on-going science project. For example, in order to provide the best service, it is important for all information system staff to keep focused on the needs and constraints of the scientists in the development of appropriate services. If the lessons learned in this and other science support experiences are not applied by those involved with large information systems of the EOS (Earth Observing System) era, then the final data products produced by future science projects may not be robust or of high quality, thereby making the conduct of the project science less efficacious and reducing the value of these unique suites of data for future research.

  6. A decision support system for map projections of small scale data

    USGS Publications Warehouse

    Finn, Michael P.; Usery, E. Lynn; Posch, Stephan T.; Seong, Jeong Chang

    2004-01-01

    The use of commercial geographic information system software to process large raster datasets of terrain elevation, population, land cover, vegetation, soils, temperature, and rainfall requires both projection from spherical coordinates to plane coordinate systems and transformation from one plane system to another. Decision support systems deliver information resulting in knowledge that assists in policies, priorities, or processes. This paper presents an approach to handling the problems of raster dataset projection and transformation through the development of a Web-enabled decision support system to aid users of transformation processes with the selection of appropriate map projections based on data type, areal extent, location, and preservation properties.

  7. Development of the advanced life support Systems Integration Research Facility at NASA's Johnson Space Center

    NASA Technical Reports Server (NTRS)

    Tri, Terry O.; Thompson, Clifford D.

    1992-01-01

    Future NASA manned missions to the moon and Mars will require development of robust regenerative life support system technologies which offer high reliability and minimal resupply. To support the development of such systems, early ground-based test facilities will be required to demonstrate integrated, long-duration performance of candidate regenerative air revitalization, water recovery, and thermal management systems. The advanced life support Systems Integration Research Facility (SIRF) is one such test facility currently being developed at NASA's Johnson Space Center. The SIRF, when completed, will accommodate unmanned and subsequently manned integrated testing of advanced regenerative life support technologies at ambient and reduced atmospheric pressures. This paper provides an overview of the SIRF project, a top-level description of test facilities to support the project, conceptual illustrations of integrated test article configurations for each of the three SIRF systems, and a phased project schedule denoting projected activities and milestones through the next several years.

  8. Controlled ecological life support system breadboard project, 1988

    NASA Technical Reports Server (NTRS)

    Knott, W. M.

    1990-01-01

    The Closed Ecological Life Support System (CELSS) Breadboard Project, NASA's effort to develop the technology required to produce a functioning bioregenerative system, is discussed. The different phases of the project and its current status are described. The relationship between the project components are shown, and major project activities for fiscal years 1989 to 1993 are listed. The Biomass Production Chamber (BPC) became operational and tests of wheat as a single crop are nearing completion.

  9. The CELSS Antarctic Analog Project: An Advanced Life Support Testbed at the Amundsen-Scott South Pole Station, Antarctica

    NASA Technical Reports Server (NTRS)

    Straight, Christian L.; Bubenheim, David L.; Bates, Maynard E.; Flynn, Michael T.

    1994-01-01

    CELSS Antarctic Analog Project (CAAP) represents a logical solution to the multiple objectives of both the NASA and the National Science Foundation (NSF). CAAP will result in direct transfer of proven technologies and systems, proven under the most rigorous of conditions, to the NSF and to society at large. This project goes beyond, as it must, the generally accepted scope of CELSS and life support systems including the issues of power generation, human dynamics, community systems, and training. CAAP provides a vivid and starkly realistic testbed of Controlled Ecological Life Support System (CELSS) and life support systems and methods. CAAP will also be critical in the development and validation of performance parameters for future advanced life support systems.

  10. Texas Urban Triangle : pilot study to implement a spatial decision support system (SDSS) for sustainable mobility.

    DOT National Transportation Integrated Search

    2011-03-01

    This project addressed sustainable transportation in the Texas Urban Triangle (TUT) by conducting a pilot : project at the county scale. The project tested and developed the multi-attribute Spatial Decision Support : System (SDSS) developed in 2009 u...

  11. Development of Life Support System Technologies for Human Lunar Missions

    NASA Technical Reports Server (NTRS)

    Barta, Daniel J.; Ewert, Michael K.

    2009-01-01

    With the Preliminary Design Review (PDR) for the Orion Crew Exploration Vehicle planned to be completed in 2009, Exploration Life Support (ELS), a technology development project under the National Aeronautics and Space Administration s (NASA) Exploration Technology Development Program, is focusing its efforts on needs for human lunar missions. The ELS Project s goal is to develop and mature a suite of Environmental Control and Life Support System (ECLSS) technologies for potential use on human spacecraft under development in support of U.S. Space Exploration Policy. ELS technology development is directed at three major vehicle projects within NASA s Constellation Program (CxP): the Orion Crew Exploration Vehicle (CEV), the Altair Lunar Lander and Lunar Surface Systems, including habitats and pressurized rovers. The ELS Project includes four technical elements: Atmosphere Revitalization Systems, Water Recovery Systems, Waste Management Systems and Habitation Engineering, and two cross cutting elements, Systems Integration, Modeling and Analysis, and Validation and Testing. This paper will provide an overview of the ELS Project, connectivity with its customers and an update to content within its technology development portfolio with focus on human lunar missions.

  12. Exploration Life Support Critical Questions for Future Human Space Missions

    NASA Technical Reports Server (NTRS)

    Kwert, Michael K.; Barta, Daniel J.; McQuillan, Jeff

    2010-01-01

    Exploration Life Support (ELS) is a current project under NASA's Exploration Systems Mission Directorate. The ELS Project plans, coordinates and implements the development of advanced life support technologies for human exploration missions in space. Recent work has focused on closed loop atmosphere and water systems for long duration missions, including habitats and pressurized rovers. But, what are the critical questions facing life support system developers for these and other future human missions? This paper explores those questions and how progress in the development of ELS technologies can help answer them. The ELS Project includes the following Elements: Atmosphere Revitalization Systems, Water Recovery Systems, Waste Management Systems, Habitation Engineering, Systems Integration, Modeling and Analysis, and Validation and Testing, which includes the Sub-Elements Flight Experiments and Integrated Testing. Systems engineering analysis by ELS seeks to optimize overall mission architectures by considering all the internal and external interfaces of the life support system and the potential for reduction or reuse of commodities. In particular, various sources and sinks of water and oxygen are considered along with the implications on loop closure and the resulting launch mass requirements. Systems analysis will be validated through the data gathered from integrated testing, which will demonstrate the interfaces of a closed loop life support system. By applying a systematic process for defining, sorting and answering critical life support questions, the ELS project is preparing for a variety of future human space missions

  13. Supporting Indigenous Students' Understanding of the Numeration System of Their First Language

    ERIC Educational Resources Information Center

    Cortina, Jose Luis

    2013-01-01

    Results from a project conducted in Mexico are discussed, in which a group of 17 indigenous teachers analyzed the numeration systems of their first language. The main goal of the project is to develop resources that help teachers in supporting students' understanding of the systems. In the first phase of the project, the central organizing ideas…

  14. Water Systems Project 1: Current Systems and Regulatory Support

    EPA Science Inventory

    Water Systems Project 1 objectives: 1) Supply research results to support federal regulations and guidance; 2) provide strategies to regions, states, and communities for improved regulatory compliance, and 3) provide rapid and effective emergency response where appropriate (e.g. ...

  15. Advanced Life Support Project Plan

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Life support systems are an enabling technology and have become integral to the success of living and working in space. As NASA embarks on human exploration and development of space to open the space frontier by exploring, using and enabling the development of space and to expand the human experience into the far reaches of space, it becomes imperative, for considerations of safety, cost, and crew health, to minimize consumables and increase the autonomy of the life support system. Utilizing advanced life support technologies increases this autonomy by reducing mass, power, and volume necessary for human support, thus permitting larger payload allocations for science and exploration. Two basic classes of life support systems must be developed, those directed toward applications on transportation/habitation vehicles (e.g., Space Shuttle, International Space Station (ISS), next generation launch vehicles, crew-tended stations/observatories, planetary transit spacecraft, etc.) and those directed toward applications on the planetary surfaces (e.g., lunar or Martian landing spacecraft, planetary habitats and facilities, etc.). In general, it can be viewed as those systems compatible with microgravity and those compatible with hypogravity environments. Part B of the Appendix defines the technology development 'Roadmap' to be followed in providing the necessary systems for these missions. The purpose of this Project Plan is to define the Project objectives, Project-level requirements, the management organizations responsible for the Project throughout its life cycle, and Project-level resources, schedules and controls.

  16. A computerized support system to cooperative training in emergency scenarios management and its application to an oil port domain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balducelli, C.; Bologna, S.; Di Costanzo, G.

    1995-12-31

    The paper describes part of the results achieved in the framework of the MUSTER project (Multi-Users System for Training and Evaluating Environmental Emergency Response). The aim of this project is to define the detailed specifications of a computer based system supporting collaborative training for emergency management. A system prototype has been implemented to support the refinement and improvement of the system specifications.

  17. Flight Projects Office Information Systems Testbed (FIST)

    NASA Technical Reports Server (NTRS)

    Liggett, Patricia

    1991-01-01

    Viewgraphs on the Flight Projects Office Information Systems Testbed (FIST) are presented. The goal is to perform technology evaluation and prototyping of information systems to support SFOC and JPL flight projects in order to reduce risk in the development of operational data systems for such projects.

  18. Ames Engineering Directorate

    NASA Technical Reports Server (NTRS)

    Phillips, Veronica J.

    2017-01-01

    The Ames Engineering Directorate is the principal engineering organization supporting aerospace systems and spaceflight projects at NASA's Ames Research Center in California's Silicon Valley. The Directorate supports all phases of engineering and project management for flight and mission projects-from R&D to Close-out-by leveraging the capabilities of multiple divisions and facilities.The Mission Design Center (MDC) has full end-to-end mission design capability with sophisticated analysis and simulation tools in a collaborative concurrent design environment. Services include concept maturity level (CML) maturation, spacecraft design and trades, scientific instruments selection, feasibility assessments, and proposal support and partnerships. The Engineering Systems Division provides robust project management support as well as systems engineering, mechanical and electrical analysis and design, technical authority and project integration support to a variety of programs and projects across NASA centers. The Applied Manufacturing Division turns abstract ideas into tangible hardware for aeronautics, spaceflight and science applications, specializing in fabrication methods and management of complex fabrication projects. The Engineering Evaluation Lab (EEL) provides full satellite or payload environmental testing services including vibration, temperature, humidity, immersion, pressure/altitude, vacuum, high G centrifuge, shock impact testing and the Flight Processing Center (FPC), which includes cleanrooms, bonded stores and flight preparation resources. The Multi-Mission Operations Center (MMOC) is composed of the facilities, networks, IT equipment, software and support services needed by flight projects to effectively and efficiently perform all mission functions, including planning, scheduling, command, telemetry processing and science analysis.

  19. Freight planning support system : final summary report

    DOT National Transportation Integrated Search

    2003-07-01

    This report summarizes the activities and the findings of the Freight Planning Support System (FPSS) project conducted for the North Jersey Transportation Planning Authority (NJTPA). The underlying purpose of the project is to allow for better projec...

  20. Systems Analysis and Design for Decision Support Systems on Economic Feasibility of Projects

    NASA Astrophysics Data System (ADS)

    Balaji, S. Arun

    2010-11-01

    This paper discuss about need for development of the Decision Support System (DSS) software for economic feasibility of projects in Rwanda, Africa. The various economic theories needed and the corresponding formulae to compute payback period, internal rate of return and benefit cost ratio of projects are clearly given in this paper. This paper is also deals with the systems flow chart to fabricate the system in any higher level computing language. The various input requirements from the projects and the output needed for the decision makers are also included in this paper. The data dictionary used for input and output data structure is also explained.

  1. Decision support tools to support the operations of traffic management centers (TMC)

    DOT National Transportation Integrated Search

    2011-01-31

    The goal of this project is to develop decision support tools to support traffic management operations based on collected intelligent transportation system (ITS) data. The project developments are in accordance with the needs of traffic management ce...

  2. The Family Support System: Comparative Analysis of Research Projects Funded by the Administration on Aging.

    ERIC Educational Resources Information Center

    Hofer, Andrew

    This paper presents a comparative analysis of eight research projects funded by the Administration on Aging during the 1970s which focused on the family as caregivers and support systems for elderly relatives. A brief description is provided for each project analyzed in this report as well as highlights of major findings, including that the family…

  3. The Earth System (ES-DOC) Project

    NASA Astrophysics Data System (ADS)

    Greenslade, Mark; Murphy, Sylvia; Treshansky, Allyn; DeLuca, Cecilia; Guilyardi, Eric; Denvil, Sebastien

    2014-05-01

    ESSI1.3 New Paradigms, Modelling, and International Collaboration Strategies for Earth System Sciences Earth System Documentation (ES-DOC) is an international project supplying tools & services in support of earth system documentation creation, analysis and dissemination. It is nurturing a sustainable standards based documentation eco-system that aims to become an integral part of the next generation of exa-scale dataset archives. ES-DOC leverages open source software and places end-user narratives at the heart of all it does. ES-DOC has initially focused upon nurturing the Earth System Model (ESM) documentation eco-system. Within this context ES-DOC leverages emerging documentation standards and supports the following projects: Coupled Model Inter-comparison Project Phase 5 (CMIP5); Dynamical Core Model Inter-comparison Project (DCMIP); National Climate Predictions and Projections Platforms Quantitative Evaluation of Downscaling Workshop. This presentation will introduce the project to a wider audience and demonstrate the range of tools and services currently available for use. It will also demonstrate how international collaborative efforts are essential to the success of ES-DOC.

  4. Funder Report on Decision Support Systems Project Dissemination Activities, Fiscal Year 1985.

    ERIC Educational Resources Information Center

    Tetlow, William L.

    Dissemination activities for the Decision Support Systems (DSS) for fiscal year (FY) 1985 are reported by the National Center for Higher Education Management Systems (NCHEMS). The main means for disseminating results of the DSS research and development project has been through computer-generated video presentations at meetings of higher education…

  5. ENCOMPASS: A SAGA based environment for the compositon of programs and specifications, appendix A

    NASA Technical Reports Server (NTRS)

    Terwilliger, Robert B.; Campbell, Roy H.

    1985-01-01

    ENCOMPASS is an example integrated software engineering environment being constructed by the SAGA project. ENCOMPASS supports the specification, design, construction and maintenance of efficient, validated, and verified programs in a modular programming language. The life cycle paradigm, schema of software configurations, and hierarchical library structure used by ENCOMPASS is presented. In ENCOMPASS, the software life cycle is viewed as a sequence of developments, each of which reuses components from the previous ones. Each development proceeds through the phases planning, requirements definition, validation, design, implementation, and system integration. The components in a software system are modeled as entities which have relationships between them. An entity may have different versions and different views of the same project are allowed. The simple entities supported by ENCOMPASS may be combined into modules which may be collected into projects. ENCOMPASS supports multiple programmers and projects using a hierarchical library system containing a workspace for each programmer; a project library for each project, and a global library common to all projects.

  6. Exploration Life Support Critical Questions for Future Human Space Missions

    NASA Technical Reports Server (NTRS)

    Ewert, Michael K.; Barta, Daniel J.; McQuillan, Jeff

    2009-01-01

    Exploration Life Support (ELS) is a project under NASA s Exploration Technology Development Program. The ELS Project plans, coordinates and implements the development of advanced life support technologies for human exploration missions in space. Recent work has focused on closed loop atmosphere and water systems for a lunar outpost, including habitats and pressurized rovers. But, what are the critical questions facing life support system developers for these and other future human missions? This paper explores those questions and discusses how progress in the development of ELS technologies can help answer them. The ELS Project includes Atmosphere Revitalization Systems (ARS), Water Recovery Systems (WRS), Waste Management Systems (WMS), Habitation Engineering, Systems Integration, Modeling and Analysis (SIMA), and Validation and Testing, which includes the sub-elements Flight Experiments and Integrated Testing. Systems engineering analysis by ELS seeks to optimize the overall mission architecture by considering all the internal and external interfaces of the life support system and the potential for reduction or reuse of commodities. In particular, various sources and sinks of water and oxygen are considered along with the implications on loop closure and the resulting launch mass requirements.

  7. NASA's Plans for Developing Life Support and Environmental Monitoring and Control Systems

    NASA Technical Reports Server (NTRS)

    Lawson, B. Michael; Jan, Darrell

    2006-01-01

    Life Support and Monitoring have recently been reworked in response to the Vision for Space Exploration. The Exploration Life Support (ELS) Project has replaced the former Advanced Life Support Element of the Human Systems Research and Technology Office. Major differences between the two efforts include: the separation of thermal systems into a new stand alone thermal project, deferral of all work in the plant biological systems, relocation of food systems to another organization, an addition of a new project called habitation systems, and overall reduction in the number of technology options due to lower funding. The Advanced Environmental Monitoring and Control (AEMC) Element is retaining its name but changing its focus. The work planned in the ELS and AEMC projects is organized around the three major phases of the Exploration Program. The first phase is the Crew Exploration Vehicle (CEV). The ELS and AEMC projects will develop hardware for this short duration orbital and trans-lunar vehicle. The second phase is sortie landings on the moon. Life support hardware for lunar surface access vehicles including upgrades of the CEV equipment and technologies which could not be pursued in the first phase due to limited time and budget will be developed. Monitoring needs will address lunar dust issues, not applicable to orbital needs. The ELS and AEMC equipment is of short duration, but has different environmental considerations. The third phase will be a longer duration lunar outpost. This will consist of a new set of hardware developments better suited for long duration life support and associated monitoring needs on the lunar surface. The presentation will show the planned activities and technologies that are expected to be developed by the ELS and AEMC projects for these program phases.

  8. Using Technology Readiness Level (TRL), Life Cycle Cost (LCC), and Other Metrics to Supplement Equivalent System Mass (ESM) in Advanced Life Support (ALS)

    NASA Technical Reports Server (NTRS)

    Jones, Harry

    2003-01-01

    The ALS project plan goals are reducing cost, improving performance, and achieving flight readiness. ALS selects projects to advance the mission readiness of low cost, high performance technologies. The role of metrics is to help select good projects and report progress. The Equivalent Mass (EM) of a system is the sum of the estimated mass of the hardware, of its required materials and spares, and of the pressurized volume, power supply, and cooling system needed to support the hardware in space. EM is the total payload launch mass needed to provide and support a system. EM is directly proportional to the launch cost.

  9. The evaluator as technical assistant: A model for systemic reform support

    NASA Astrophysics Data System (ADS)

    Century, Jeanne Rose

    This study explored evaluation of systemic reform. Specifically, it focused on the evaluation of a systemic effort to improve K-8 science, mathematics and technology education. The evaluation was of particular interest because it used both technical assistance and evaluation strategies. Through studying the combination of these roles, this investigation set out to increase understanding of potentially new evaluator roles, distinguish important characteristics of the evaluator/project participant relationship, and identify how these roles and characteristics contribute to effective evaluation of systemic science education reform. This qualitative study used interview, document analysis, and participant observation as methods of data collection. Interviews were conducted with project leaders, project participants, and evaluators and focused on the evaluation strategies and process, the use of the evaluation, and technical assistance. Documents analyzed included transcripts of evaluation team meetings and reports, memoranda and other print materials generated by the project leaders and the evaluators. Data analysis consisted of analytic and interpretive procedures consistent with the qualitative data collected and entailed a combined process of coding transcripts of interviews and meetings, field notes, and other documents; analyzing and organizing findings; writing of reflective and analytic memos; and designing and diagramming conceptual relationships. The data analysis resulted in the development of the Multi-Function Model for Systemic Reform Support. This model organizes systemic reform support into three functions: evaluation, technical assistance, and a third, named here as "systemic perspective." These functions work together to support the project's educational goals as well as a larger goal--building capacity in project participants. This model can now serve as an informed starting point or "blueprint" for strategically supporting systemic reform.

  10. Advanced life support systems in lunar and Martian environments utilizing a higher plant based engineering paradigm

    NASA Technical Reports Server (NTRS)

    Chamberland, Dennis

    1992-01-01

    The paper describes a higher-plant-based engineering paradigm for advanced life support in a Controlled Ecological Life Support System (CELSS) on the surface of the moon or Mars, called the CELSS Breadboard Project, designed at John F. Kennedy Space Center. Such a higher-plant-based system would use the plants for a direct food source, gas exchange, water reclamation, and plant residuals in a complex biological resource recovery scheme. The CELSS Breadboard Project utilizes a 'breadboard' approach of developing independent systems that are evaluated autonomously and are later interconnected. Such a scheme will enable evaluation of life support system methodologies tested for their efficiency in a life support system for habitats on the moon or Mars.

  11. The 12-foot pressure wind tunnel restoration project model support systems

    NASA Technical Reports Server (NTRS)

    Sasaki, Glen E.

    1992-01-01

    The 12 Foot Pressure Wind Tunnel is a variable density, low turbulence wind tunnel that operates at subsonic speeds, and up to six atmospheres total pressure. The restoration of this facility is of critical importance to the future of the U.S. aerospace industry. As part of this project, several state of the art model support systems are furnished to provide an optimal balance between aerodynamic and operational efficiency parameters. Two model support systems, the Rear Strut Model Support, and the High Angle of Attack Model Support are discussed. This paper covers design parameters, constraints, development, description, and component selection.

  12. Lunar lander ground support system

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This year's project, like the previous Aerospace Group's project, involves a lunar transportation system. The basic time line will be the years 2010-2030 and will be referred to as a second generation system, as lunar bases would be present. The project design completed this year is referred to as the Lunar Lander Ground Support System (LLGSS). The area chosen for analysis encompasses a great number of vehicles and personnel. The design of certain elements of the overall lunar mission are complete projects in themselves. For this reason the project chosen for the Senior Aerospace Design is the design of specific servicing vehicles and additions or modifications to existing vehicles for the area of concern involving servicing and maintenance of the lunar lander while on the surface.

  13. MSFC Propulsion Systems Department Knowledge Management Project

    NASA Technical Reports Server (NTRS)

    Caraccioli, Paul A.

    2007-01-01

    This slide presentation reviews the Knowledge Management (KM) project of the Propulsion Systems Department at Marshall Space Flight Center. KM is needed to support knowledge capture, preservation and to support an information sharing culture. The presentation includes the strategic plan for the KM initiative, the system requirements, the technology description, the User Interface and custom features, and a search demonstration.

  14. A Project-Based Laboratory for Learning Embedded System Design with Industry Support

    ERIC Educational Resources Information Center

    Lee, Chyi-Shyong; Su, Juing-Huei; Lin, Kuo-En; Chang, Jia-Hao; Lin, Gu-Hong

    2010-01-01

    A project-based laboratory for learning embedded system design with support from industry is presented in this paper. The aim of this laboratory is to motivate students to learn the building blocks of embedded systems and practical control algorithms by constructing a line-following robot using the quadratic interpolation technique to predict the…

  15. PMIS Project. Planning & Management Information System. A Project To Develop a Data Processing System for Support of the Planning and Management Needs of Local School Districts. Final Report, Year 2.

    ERIC Educational Resources Information Center

    Council of the Great City Schools, Washington, DC.

    This document examines the design and structure of PMIS (Planning and Management Information System), an information system that supports the decisionmaking process of executive management in local school districts. The system is designed around a comprehensive, longitudinal, and interrelated data base. It utilizes a powerful real-time,…

  16. Integrating Engineering Data Systems for NASA Spaceflight Projects

    NASA Technical Reports Server (NTRS)

    Carvalho, Robert E.; Tollinger, Irene; Bell, David G.; Berrios, Daniel C.

    2012-01-01

    NASA has a large range of custom-built and commercial data systems to support spaceflight programs. Some of the systems are re-used by many programs and projects over time. Management and systems engineering processes require integration of data across many of these systems, a difficult problem given the widely diverse nature of system interfaces and data models. This paper describes an ongoing project to use a central data model with a web services architecture to support the integration and access of linked data across engineering functions for multiple NASA programs. The work involves the implementation of a web service-based middleware system called Data Aggregator to bring together data from a variety of systems to support space exploration. Data Aggregator includes a central data model registry for storing and managing links between the data in disparate systems. Initially developed for NASA's Constellation Program needs, Data Aggregator is currently being repurposed to support the International Space Station Program and new NASA projects with processes that involve significant aggregating and linking of data. This change in user needs led to development of a more streamlined data model registry for Data Aggregator in order to simplify adding new project application data as well as standardization of the Data Aggregator query syntax to facilitate cross-application querying by client applications. This paper documents the approach from a set of stand-alone engineering systems from which data are manually retrieved and integrated, to a web of engineering data systems from which the latest data are automatically retrieved and more quickly and accurately integrated. This paper includes the lessons learned through these efforts, including the design and development of a service-oriented architecture and the evolution of the data model registry approaches as the effort continues to evolve and adapt to support multiple NASA programs and priorities.

  17. Exploration Life Support Technology Development for Lunar Missions

    NASA Technical Reports Server (NTRS)

    Ewert, Michael K.; Barta, Daniel J.; McQuillan, Jeffrey

    2009-01-01

    Exploration Life Support (ELS) is one of NASA's Exploration Technology Development Projects. ELS plans, coordinates and implements the development of new life support technologies for human exploration missions as outlined in NASA's Vision for Space Exploration. ELS technology development currently supports three major projects of the Constellation Program - the Orion Crew Exploration Vehicle (CEV), the Altair Lunar Lander and Lunar Surface Systems. ELS content includes Air Revitalization Systems (ARS), Water Recovery Systems (WRS), Waste Management Systems (WMS), Habitation Engineering, Systems Integration, Modeling and Analysis (SIMA), and Validation and Testing. The primary goal of the ELS project is to provide different technology options to Constellation which fill gaps or provide substantial improvements over the state-of-the-art in life support systems. Since the Constellation missions are so challenging, mass, power, and volume must be reduced from Space Shuttle and Space Station technologies. Systems engineering analysis also optimizes the overall architecture by considering all interfaces with the life support system and potential for reduction or reuse of resources. For long duration missions, technologies which aid in closure of air and water loops with increased reliability are essential as well as techniques to minimize or deal with waste. The ELS project utilizes in-house efforts at five NASA centers, aerospace industry contracts, Small Business Innovative Research contracts and other means to develop advanced life support technologies. Testing, analysis and reduced gravity flight experiments are also conducted at the NASA field centers. This paper gives a current status of technologies under development by ELS and relates them to the Constellation customers who will eventually use them.

  18. The Systems Engineering Process for Human Support Technology Development

    NASA Technical Reports Server (NTRS)

    Jones, Harry

    2005-01-01

    Systems engineering is designing and optimizing systems. This paper reviews the systems engineering process and indicates how it can be applied in the development of advanced human support systems. Systems engineering develops the performance requirements, subsystem specifications, and detailed designs needed to construct a desired system. Systems design is difficult, requiring both art and science and balancing human and technical considerations. The essential systems engineering activity is trading off and compromising between competing objectives such as performance and cost, schedule and risk. Systems engineering is not a complete independent process. It usually supports a system development project. This review emphasizes the NASA project management process as described in NASA Procedural Requirement (NPR) 7120.5B. The process is a top down phased approach that includes the most fundamental activities of systems engineering - requirements definition, systems analysis, and design. NPR 7120.5B also requires projects to perform the engineering analyses needed to ensure that the system will operate correctly with regard to reliability, safety, risk, cost, and human factors. We review the system development project process, the standard systems engineering design methodology, and some of the specialized systems analysis techniques. We will discuss how they could apply to advanced human support systems development. The purpose of advanced systems development is not directly to supply human space flight hardware, but rather to provide superior candidate systems that will be selected for implementation by future missions. The most direct application of systems engineering is in guiding the development of prototype and flight experiment hardware. However, anticipatory systems engineering of possible future flight systems would be useful in identifying the most promising development projects.

  19. Crawler Acquisition and Testing Demonstration Project Management Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DEFIGH-PRICE, C.

    2000-10-23

    If the crawler based retrieval system is selected, this project management plan identifies the path forward for acquiring a crawler/track pump waste retrieval system, and completing sufficient testing to support deploying the crawler for as part of a retrieval technology demonstration for Tank 241-C-104. In the balance of the document, these activities will be referred to as the Crawler Acquisition and Testing Demonstration. During recent Tri-Party Agreement negotiations, TPA milestones were proposed for a sludge/hard heel waste retrieval demonstration in tank C-104. Specifically one of the proposed milestones requires completion of a cold demonstration of sufficient scale to support finalmore » design and testing of the equipment (M-45-03G) by 6/30/2004. A crawler-based retrieval system was one of the two options evaluated during the pre-conceptual engineering for C-104 retrieval (RPP-6843 Rev. 0). The alternative technology procurement initiated by the Hanford Tanks Initiative (HTI) project, combined with the pre-conceptual engineering for C-104 retrieval provide an opportunity to achieve compliance with the proposed TPA milestone M-45-03H. This Crawler Acquisition and Testing Demonstration project management plan identifies the plans, organizational interfaces and responsibilities, management control systems, reporting systems, timeline and requirements for the acquisition and testing of the crawler based retrieval system. This project management plan is complimentary to and supportive of the Project Management Plan for Retrieval of C-104 (RPP-6557). This project management plan focuses on utilizing and completing the efforts initiated under the Hanford Tanks Initiative (HTI) to acquire and cold test a commercial crawler based retrieval system. The crawler-based retrieval system will be purchased on a schedule to support design of the waste retrieval from tank C-104 (project W-523) and to meet the requirement of proposed TPA milestone M-45-03H. This Crawler Acquisition and Testing Demonstration project management plan includes the following: (1) Identification of acquisition strategy and plan to obtain a crawler based retrieval system; (2) Plan for sufficient cold testing to make a decision for W-523 and to comply with TPA Milestone M-45-03H; (3) Cost and schedule for path forward; (4) Responsibilities of the participants; and (5) The plan is supported by updated Level 1 logics, a Relative Order of Magnitude cost estimate and preliminary project schedule.« less

  20. Co-Worker Mentoring: Facilitating Natural Supports [in Supported Employment].

    ERIC Educational Resources Information Center

    Rudrud, Eric; Markve, Robert; Buehner, Doug; Morris, Randall

    This report discusses the outcomes of a South Dakota project designed to develop and validate a natural support system involving typical co-workers providing on the job training and support to individuals with disabilities. The Co-Worker Mentoring in Supported Employment (CMSE) project had the following outcomes: (1) job development activities…

  1. The Design and Development of a Computerized Tool Support for Conducting Senior Projects in Software Engineering Education

    ERIC Educational Resources Information Center

    Chen, Chung-Yang; Teng, Kao-Chiuan

    2011-01-01

    This paper presents a computerized tool support, the Meetings-Flow Project Collaboration System (MFS), for designing, directing and sustaining the collaborative teamwork required in senior projects in software engineering (SE) education. Among many schools' SE curricula, senior projects serve as a capstone course that provides comprehensive…

  2. Facility Systems, Ground Support Systems, and Ground Support Equipment General Design Requirements

    NASA Technical Reports Server (NTRS)

    Thaxton, Eric A.; Mathews, Roger E.

    2014-01-01

    This standard establishes requirements and guidance for design and fabrication of ground systems (GS) that includes: ground support equipment (GSE), ground support systems (GSS), and facility ground support systems (F GSS) to provide uniform methods and processes for design and development of robust, safe, reliable, maintainable, supportable, and cost-effective GS in support of space flight and institutional programs and projects.

  3. The Earth System CoG Collaboration Environment

    NASA Astrophysics Data System (ADS)

    DeLuca, C.; Murphy, S.; Cinquini, L.; Treshansky, A.; Wallis, J. C.; Rood, R. B.; Overeem, I.

    2013-12-01

    The Earth System CoG supports collaborative Earth science research and product development in virtual organizations that span multiple projects and communities. It provides access to data, metadata, and visualization services along with tools that support open project governance, and it can be used to host individual projects or to profile projects hosted elsewhere. All projects on CoG are described using a project ontology - an organized common vocabulary - that exposes information needed for collaboration and decision-making. Projects can be linked into a network, and the underlying ontology enables consolidated views of information across the network. This access to information promotes the creation of active and knowledgeable project governance, at both individual and aggregate project levels. CoG is being used to support software development projects, model intercomparison projects, training classes, and scientific programs. Its services and ontology are customizable by project. This presentation will provide an overview of CoG, review examples of current use, and discuss how CoG can be used as knowledge and coordination hub for networks of projects in the Earth Sciences.

  4. LP DAAC MEaSUREs Project Artifact Tracking Via the NASA Earthdata Collaboration Environment

    NASA Astrophysics Data System (ADS)

    Bennett, S. D.

    2015-12-01

    The Land Processes Distributed Active Archive Center (LP DAAC) is a NASA Earth Observing System (EOS) Data and Information System (EOSDIS) DAAC that supports selected EOS Community non-standard data products such as the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Emissivity Database (GED), and also supports NASA Earth Science programs such as Making Earth System Data Records for Use in Research Environments (MEaSUREs) to contribute in providing long-term, consistent, and mature data products. As described in The LP DAAC Project Lifecycle Plan (Daucsavage, J.; Bennett, S., 2014), key elements within the Project Inception Phase fuse knowledge between NASA stakeholders, data producers, and NASA data providers. To support and deliver excellence for NASA data stewardship, and to accommodate long-tail data preservation with Community and MEaSUREs products, the LP DAAC is utilizing NASA's own Earthdata Collaboration Environment to bridge stakeholder communication divides. By leveraging a NASA supported platform, this poster describes how the Atlassian Confluence software combined with a NASA URS/Earthdata support can maintain each project's members, status, documentation, and artifact checklist. Furthermore, this solution provides a gateway for project communities to become familiar with NASA clients, as well as educating the project's NASA DAAC Scientists for NASA client distribution.

  5. Completion of Launch Director Console Project and Other Support Work

    NASA Technical Reports Server (NTRS)

    Steinrock, Joshua G.

    2018-01-01

    There were four projects that I was a part of working on during the spring semester of 2018. This included the completion of the Launch Director Console (LDC) project and the completion and submission of a Concept of Operations (ConOps) document for the Record and Playback System (RPS) at the Launch Control Center (LCC), as well as supporting the implementation of a unit in RPS known as the CDP (Communication Data Processor). Also included was my support and mentorship of a High School robotics team that is sponsored by Kennedy Space Center. The LDC project is an innovative workstation to be used by the launch director for the future Space Launch System program. I worked on the fabrication and assembly of the final console. The ConOps on RPS is a technical document for which I produced supporting information and notes. All of this was done in the support of the IT Project Management Office (IT-F). The CDP is a subsystem that will eventually be installed in and operated by RPS.

  6. NASA Advanced Explorations Systems: 2017 Advancements in Life Support Systems

    NASA Technical Reports Server (NTRS)

    Schneider, Walter F.; Shull, Sarah A.

    2017-01-01

    The NASA Advanced Exploration Systems (AES) Life Support Systems (LSS) project strives to develop reliable, energy-efficient, and low-mass spacecraft systems to provide environmental control and life support systems (ECLSS) critical to enabling long duration human missions beyond low Earth orbit (LEO). Highly reliable, closed-loop life support systems are among the capabilities required for the longer duration human space exploration missions planned in the mid-2020s and beyond. The LSS Project is focused on four are-as-architecture and systems engineering for life support systems, environmental monitoring, air revitalization, and wastewater processing and water management. Starting with the International Space Station (ISS) LSS systems as a point of departure where applicable, the three-fold mission of the LSS Project is to address discrete LSS technology gaps, to improve the reliability of LSS systems, and to advance LSS systems toward integrated testing aboard the ISS. This paper is a follow on to the AES LSS development status reported in 2016 and provides additional details on the progress made since that paper was published with specific attention to the status of the Aerosol Sampler ISS Flight Experiment, the Spacecraft Atmosphere Monitor (SAM) Flight Experiment, the Brine Processor Assembly (BPA) Flight Experiment, the CO2 removal technology development tasks, and the work investigating the impacts of dormancy on LSS systems.

  7. Bioregenerative system

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The design course is an eight semester credit multi-disciplinary engineering design course taught primarily to Engineering Science, Aerospace, Electrical and Mechanical Engineering seniors. This year the course project involved the design of the three interrelated loops: atmospheric, liquid nutrient and solid waste management, associated with growing higher plants to support man during long-term space missions. The project is complementary to the NASA Kennedy Space Center Controlled Environmental Life Support System (CELSS) project. The first semester the class worked on a preliminary design for a complete system. This effort included means for monitoring and control of composition, temperature, flow rate, etc., for the atmosphere and liquid nutrient solution; disease and contaminant monitoring and control; plant mechanical support, propagation and harvesting; solid and liquid waste recycling; and system maintenance and refurbishing. The project has significant biological, mechanical, electrical and Al/Robotics aspects. The second semester a small number of subsystems or components, identified as important and interesting during the first semester, were selected for detail design, fabrication, and testing. The class was supported by close cooperation with The Kennedy Space Center and by two teaching assistants. The availability of a dedicated, well equipped project room greatly enhanced the communication and team spirit of the class.

  8. Advanced Space Surface Systems Operations

    NASA Technical Reports Server (NTRS)

    Huffaker, Zachary Lynn; Mueller, Robert P.

    2014-01-01

    The importance of advanced surface systems is becoming increasingly relevant in the modern age of space technology. Specifically, projects pursued by the Granular Mechanics and Regolith Operations (GMRO) Lab are unparalleled in the field of planetary resourcefulness. This internship opportunity involved projects that support properly utilizing natural resources from other celestial bodies. Beginning with the tele-robotic workstation, mechanical upgrades were necessary to consider for specific portions of the workstation consoles and successfully designed in concept. This would provide more means for innovation and creativity concerning advanced robotic operations. Project RASSOR is a regolith excavator robot whose primary objective is to mine, store, and dump regolith efficiently on other planetary surfaces. Mechanical adjustments were made to improve this robot's functionality, although there were some minor system changes left to perform before the opportunity ended. On the topic of excavator robots, the notes taken by the GMRO staff during the 2013 and 2014 Robotic Mining Competitions were effectively organized and analyzed for logistical purposes. Lessons learned from these annual competitions at Kennedy Space Center are greatly influential to the GMRO engineers and roboticists. Another project that GMRO staff support is Project Morpheus. Support for this project included successfully producing mathematical models of the eroded landing pad surface for the vertical testbed vehicle to predict a timeline for pad reparation. And finally, the last project this opportunity made contribution to was Project Neo, a project exterior to GMRO Lab projects, which focuses on rocket propulsion systems. Additions were successfully installed to the support structure of an original vertical testbed rocket engine, thus making progress towards futuristic test firings in which data will be analyzed by students affiliated with Rocket University. Each project will be explained in further detail, as well as the full scope of the contributions made during this opportunity.

  9. Case management information systems: how to put the pieces together now and beyond year 2000.

    PubMed

    Matthews, P

    1999-01-01

    Healthcare organizations must establish the goals and objectives of their case management processes before functional and system requirements can be defined. A gap analysis will identify existing systems that can be used to support case management as well as areas in need of systems support. The gap analysis will also identify short-term tactical projects and long-term strategic initiatives supporting the automation of case management. The projects resulting from the gap analysis must be incorporated into the organization's business and information systems plan and budget to ensure appropriate funding and prioritization.

  10. Power Extension Package (PEP) system definition extension, orbital service module systems analysis study. Volume 10: PEP project plan

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Contents: project plan summary; project and mission objectives; related studies and technology support activities; technical summary; management; procurement approach; project definition items and schedule; resources; management review; controlled items; and safety, reliability, and quality assurance.

  11. HANFORD DOUBLE SHELL TANK (DST) THERMAL & SEISMIC PROJECT SEISMIC ANALYSIS IN SUPPORT OF INCREASED LIQUID LEVEL IN 241-AP TANK FARMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MACKEY TC; ABBOTT FG; CARPENTER BG

    2007-02-16

    The overall scope of the project is to complete an up-to-date comprehensive analysis of record of the DST System at Hanford. The "Double-Shell Tank (DST) Integrity Project - DST Thermal and Seismic Project" is in support of Tri-Party Agreement Milestone M-48-14.

  12. The Earth System Documentation (ES-DOC) project

    NASA Astrophysics Data System (ADS)

    Murphy, S.; Greenslade, M. A.; Treshansky, A.; DeLuca, C.; Guilyardi, E.; Denvil, S.

    2013-12-01

    Earth System Documentation (ES-DOC) is an international project supplying high quality tools and services in support of Earth system documentation creation, analysis and dissemination. It is nurturing a sustainable standards based documentation ecosystem that aims to become an integral part of the next generation of exa-scale dataset archives. ES-DOC leverages open source software, and applies a software development methodology that places end-user narratives at the heart of all it does. ES-DOC has initially focused upon nurturing the Earth System Model (ESM) documentation eco-system. Within this context ES-DOC leverages the emerging Common Information Model (CIM) metadata standard, which has supported the following projects: ** Coupled Model Inter-comparison Project Phase 5 (CMIP5); ** Dynamical Core Model Inter-comparison Project (DCMIP-2012); ** National Climate Predictions and Projections Platforms (NCPP) Quantitative Evaluation of Downscaling Workshop (QED-2013). This presentation will introduce the project to a wider audience and will demonstrate the current production level capabilities of the eco-system: ** An ESM documentation Viewer embeddable into any website; ** An ESM Questionnaire configurable on a project by project basis; ** An ESM comparison tool reusable across projects; ** An ESM visualization tool reusable across projects; ** A search engine for speedily accessing published documentation; ** Libraries for streamlining document creation, validation and publishing pipelines.

  13. Cascade Distillation System Development

    NASA Technical Reports Server (NTRS)

    Callahan, Michael R.; Sargushingh, Miriam; Shull, Sarah

    2014-01-01

    NASA's Advanced Exploration Systems (AES) Life Support System (LSS) Project is chartered with de-veloping advanced life support systems that will ena-ble NASA human exploration beyond low Earth orbit (LEO). The goal of AES is to increase the affordabil-ity of long-duration life support missions, and to re-duce the risk associated with integrating and infusing new enabling technologies required to ensure mission success. Because of the robust nature of distillation systems, the AES LSS Project is pursuing develop-ment of the Cascade Distillation Subsystem (CDS) as part of its technology portfolio. Currently, the system is being developed into a flight forward Generation 2.0 design.

  14. A Design of Electronic Performance Support Systems.

    ERIC Educational Resources Information Center

    Sheu, Feng-Ru

    The project described in this paper, representing the initial phases of a one-year on-going project, was organized to build a supportive environment for Instructional Systems Technology (IST) doctoral students at Indiana University-Bloomington to help them prepare for the Qualifying exams. An overview is provided of steps taken to create an…

  15. Language Development Support Systems: Project L.D.S.S. 1988-89. OREA Report.

    ERIC Educational Resources Information Center

    Berney, Tomi D.; Velasquez, Clara

    Language Development Support Systems (Project LDSS) offered 215 limited English proficient (LEP) students at two New York City elementary schools the opportunity to improve their English skills through special language learning centers. These language learning centers were established at both schools and provided students with instruction in…

  16. Surface Habitat Systems

    NASA Technical Reports Server (NTRS)

    Kennedy, Kriss J.

    2009-01-01

    The Surface Habitat Systems (SHS) Focused Investment Group (FIG) is part of the National Aeronautics and Space Administration (NASA) Johnson Space Center (JSC) effort to provide a focused direction and funding to the various projects that are working on human surface habitat designs and technologies for the planetary exploration missions. The overall SHS-FIG effort focuses on directing and guiding those projects that: 1) develop and demonstrate new surface habitat system concepts, innovations, and technologies to support human exploration missions, 2) improve environmental systems that interact with human habitats, 3) handle and emplace human surface habitats, and 4) focus on supporting humans living and working in habitats on planetary surfaces. The activity areas of the SHS FIG described herein are focused on the surface habitat project near-term objectives as described in this document. The SHS-FIG effort focuses on mitigating surface habitat risks (as identified by the Lunar Surface Systems Project Office (LSSPO) Surface Habitat Element Team; and concentrates on developing surface habitat technologies as identified in the FY08 gap analysis. The surface habitat gap assessment will be updated annually as the surface architecture and surface habitat definition continues to mature. These technologies are mapped to the SHS-FIG Strategic Development Roadmap. The Roadmap will bring to light the areas where additional innovative efforts are needed to support the development of habitat concepts and designs and the development of new technologies to support of the LSSPO Habitation Element development plan. Three specific areas of development that address Lunar Architecture Team (LAT)-2 and Constellation Architecture Team (CxAT) Lunar habitat design issues or risks will be focused on by the SHS-FIG. The SHS-FIG will establish four areas of development that will help the projects prepare in their planning for surface habitat systems development. Those development areas are the 1) surface habitat concept definition, 2) inflatable surface habitat development, and 3) autonomous habitat operations, and 4) cross-cutting / systems engineering. In subsequent years, the SHS-FIG will solicit a call for innovations and technologies that will support the development of these four development areas. The other development areas will be assessed yearly and identified on the SHS-FIG s Strategic Development Roadmap. Initial investment projects that are funded by the Constellation Program Office (CxPO), LSSPO, or the Exploration Technology Development Projects (ETDP) will also be included on the Roadmap. For example, in one or two years from now, the autonomous habitat operations and testbed would collaborations with the Integrated Systems Health Management (ISHM) and Automation for Operations ETDP projects, which will give the surface habitat projects an integrated habitat autonomy testbed to test software and systems. The SHS-FIG scope is to provide focused direction for multiple innovations, technologies and subsystems that are needed to support humans at a remote planetary surface habitat during the concept development, design definition, and integration phases of that project. Subsystems include: habitability, lightweight structures, power management, communications, autonomy, deployment, outfitting, life support, wireless connectivity, lighting, thermal and more.

  17. The advanced software development workstation project

    NASA Technical Reports Server (NTRS)

    Fridge, Ernest M., III; Pitman, Charles L.

    1991-01-01

    The Advanced Software Development Workstation (ASDW) task is researching and developing the technologies required to support Computer Aided Software Engineering (CASE) with the emphasis on those advanced methods, tools, and processes that will be of benefit to support all NASA programs. Immediate goals are to provide research and prototype tools that will increase productivity, in the near term, in projects such as the Software Support Environment (SSE), the Space Station Control Center (SSCC), and the Flight Analysis and Design System (FADS) which will be used to support the Space Shuttle and Space Station Freedom. Goals also include providing technology for development, evolution, maintenance, and operations. The technologies under research and development in the ASDW project are targeted to provide productivity enhancements during the software life cycle phase of enterprise and information system modeling, requirements generation and analysis, system design and coding, and system use and maintenance. On-line user's guides will assist users in operating the developed information system with knowledge base expert assistance.

  18. United States Army Medical Materiel Development Activity: 1997 Annual Report.

    DTIC Science & Technology

    1997-01-01

    business planning and execution information management system (Project Management Division Database ( PMDD ) and Product Management Database System (PMDS...MANAGEMENT • Project Management Division Database ( PMDD ), Product Management Database System (PMDS), and Special Users Database System:The existing...System (FMS), were investigated. New Product Managers and Project Managers were added into PMDS and PMDD . A separate division, Support, was

  19. SAGA: A project to automate the management of software production systems

    NASA Technical Reports Server (NTRS)

    Campbell, R. H.; Badger, W.; Beckman, C. S.; Beshers, G.; Hammerslag, D.; Kimball, J.; Kirslis, P. A.; Render, H.; Richards, P.; Terwilliger, R.

    1984-01-01

    The project to automate the management of software production systems is described. The SAGA system is a software environment that is designed to support most of the software development activities that occur in a software lifecycle. The system can be configured to support specific software development applications using given programming languages, tools, and methodologies. Meta-tools are provided to ease configuration. Several major components of the SAGA system are completed to prototype form. The construction methods are described.

  20. Support of EarthScope GPS Campaigns at the UNAVCO Facility

    NASA Astrophysics Data System (ADS)

    Boyce, E.; Blume, F.; Normandeau, J.

    2008-12-01

    In order to support portable GPS deployments funded by the NSF's EarthScope Science panel, PBO has purchased 100 campaign GPS systems. Based Topcon GB-1000 equipment, the systems have been designed for stand-alone temporary or semi-permanent deployment that will be used for densifying areas not sufficiently covered by continuous GPS, and responding to volcanic and tectonic crises. UNAVCO provides support for all aspects of these projects, including proposal and budget development, project planning, equipment design, field support, and data archiving. Ten of the 100 systems have been equipped with real-time kinematic (RTK) capability requiring additional radio and data logging equipment. RTK systems can be used to rapidly map fault traces and profile fault escarpments and collect precise position information for GIS based geologic mapping. Each portable self-contained campaign systems include 18 Ah batteries, a regulated 32 watt solar charging system, and a low-power dual frequency GPS receiver and antenna in a waterproof case with security enhancements. The receivers have redundant memory sufficient for storing over a year's worth of data as well as IP and serial communications capabilities for longer-term deployments. Monumentation options are determined on a project-by-project basis, with options including Tech2000 masts, low-profile spike mounts, and traditional tripods and optical tribrachs. Drilled-braced monuments or masts can be installed for "semi- permanent" style occupations. The systems have been used to support several projects to date, including the University of Washington's 30-unit deployment to monitor the Episodic Tremor and Slip event in November, 2005 and the ongoing Rio Grande Rift experiment, run by the Universities of Colorado, Utah State, and New Mexico, which has seen the construction of 25 permanent monuments in 2006 and 2007 and a 26-site campaign reoccupation in 2008.

  1. Support of EarthScope GPS Campaigns at the UNAVCO Facility

    NASA Astrophysics Data System (ADS)

    Boyce, E.; Blume, F.; Normandeau, J.

    2007-12-01

    In order to support portable GPS deployments funded by the NSF's EarthScope Science panel, PBO has purchased 100 campaign GPS systems. Based Topcon GB-1000 equipment, the systems have been designed for stand-alone temporary or semi-permanent deployment that will be used for densifying areas not sufficiently covered by continuous GPS, and responding to volcanic and tectonic crises. UNAVCO provides support for all aspects of these projects, including proposal and budget development, project planning, equipment design, field support, and data archiving. Ten of the 100 systems will be purchased with real-time kinematic (RTK) capability requiring additional radio and data logging equipment. RTK systems can be used to rapidly map fault traces and profile fault escarpments and collect precise position information for GIS based geologic mapping. Each portable self-contained campaign systems include 18 Ah batteries, a regulated 32 watt solar charging system, and a low-power dual frequency GPS receiver and antenna in a waterproof case with security enhancements. The receivers have redundant memory sufficient for storing over a year's worth of data as well as IP and serial communications capabilities for longer-term deployments. Monumentation options are determined on a project-by-project basis, with options including Tech2000 masts, low-profile spike mounts, and traditional tripods and optical tribrachs. Drilled-braced monuments or masts can be installed for "semi-permanent" style occupations. The systems have been used to support several projects to date, including the University of Washington's 30- unit deployment to monitor the Episodic Tremor and Slip event in November, 2005 and the ongoing Rio Grande Rift experiment, run by the Universities of Colorado, Utah State, and New Mexico, which has seen the construction of 25 permanent monuments in 2006 and 2007.

  2. Design and initial application of the extended aircraft interrogation and display system: Multiprocessing ground support equipment for digital flight systems

    NASA Technical Reports Server (NTRS)

    Glover, Richard D.

    1987-01-01

    A pipelined, multiprocessor, general-purpose ground support equipment for digital flight systems has been developed and placed in service at the NASA Ames Research Center's Dryden Flight Research Facility. The design is an outgrowth of the earlier aircraft interrogation and display system (AIDS) used in support of several research projects to provide engineering-units display of internal control system parameters during development and qualification testing activities. The new system, incorporating multiple 16-bit processors, is called extended AIDS (XAIDS) and is now supporting the X-29A forward-swept-wing aircraft project. This report describes the design and mechanization of XAIDS and shows the steps whereby a typical user may take advantage of its high throughput and flexible features.

  3. Software Configuration Management Across Project Boundaries and In Distributed Development Environments.

    DTIC Science & Technology

    1984-01-01

    between projects and between host development systems, and between projects, using an integrated Programming Support Environment. The discussion assumes...the availability of some of the facilities that were proposed for inclusion in the UK CHAPSE (CHILL Ada Programming Support Environment). C’ Accession...life cycle of a product. In a programming support envirorment (PSE) with an underlying database, the software can be stored in the databave and

  4. Modeling support for Alabama MPOs

    DOT National Transportation Integrated Search

    2010-07-29

    The Fort Collins Advance Traffic Management System (ATMS) was a FY01 earmarked project. The objective of the overall project was to rebuild the City's entire traffic management system to utilize and provide Intelligent Transportation System (ITS) cap...

  5. PGIS (Project Grant Information System) Taxonomy [Rough Draft].

    ERIC Educational Resources Information Center

    North American Rockwell Information Systems Co., Arlington, VA.

    The Project Grant Information System (PGIS) is a computerized information indexing and retrieval system which supports the U.S. Office of Education. Its purpose is to provide OE officials with up-to-date information about the Office's discretionary grant programs and projects. The purpose of the Taxonomy is to provide: (1) those individuals who…

  6. A Decision Support System for Evaluating and Selecting Information Systems Projects

    NASA Astrophysics Data System (ADS)

    Deng, Hepu; Wibowo, Santoso

    2009-01-01

    This chapter presents a decision support system (DSS) for effectively solving the information systems (IS) project selection problem. The proposed DSS recognizes the multidimensional nature of the IS project selection problem, the availability of multicriteria analysis (MA) methods, and the preferences of the decision-maker (DM) on the use of specific MA methods in a given situation. A knowledge base consisting of IF-THEN production rules is developed for assisting the DM with a systematic adoption of the most appropriate method with the efficient use of the powerful reasoning and explanation capabilities of intelligent DSS. The idea of letting the problem to be solved determines the method to be used is incorporated into the proposed DSS. As a result, effective decisions can be made for solving the IS project selection problem. An example is presented to demonstrate the applicability of the proposed DSS for solving the problem of selecting IS projects in real world situations.

  7. NASA Advanced Exploration Systems: Advancements in Life Support Systems

    NASA Technical Reports Server (NTRS)

    Shull, Sarah A.; Schneider, Walter F.

    2016-01-01

    The NASA Advanced Exploration Systems (AES) Life Support Systems (LSS) project strives to develop reliable, energy-efficient, and low-mass spacecraft systems to provide environmental control and life support systems (ECLSS) critical to enabling long duration human missions beyond low Earth orbit (LEO). Highly reliable, closed-loop life support systems are among the capabilities required for the longer duration human space exploration missions assessed by NASA’s Habitability Architecture Team.

  8. The Many Dimensions of Program Management

    NASA Technical Reports Server (NTRS)

    Dean, Edwin B.

    1992-01-01

    For the purposes of this paper, program refers to a collection of activities or projects which must be performed according to a plan or schedule. The Space Exploration Initiative within the National Aeronautics and Space Administration (NASA) is an example. Dimensionality refers to both the various perspectives of a program and to the components within that perspective. It is, thus, appropriate to think of dimensions of dimensionality. For example, one dimension or perspective of a program is the projects which perform the program. Within the project dimension, the individual projects are the components of that dimensionality. The number of projects defines the spatial dimensionality of the project dimension. Thus, each perspective or dimension has a dimensionality of its own. The structure and associated values of all the various perspectives of a program define the program. A project refers to the collection of activities required to conceive, sell, design, develop, evaluate, produce, operate, support, evolve, and retire a given system. A project thus effects the life cycle of given system. A project is, thus, the system to conceive, sell, design, develop, evaluate, produce, operate, support, evolve, and retire a system. A program, thus, effects the life cycle of the collection of projects required to effect the collection of systems required to implement the program.

  9. Human life support during interplanetary travel and domicile. I - System approach

    NASA Technical Reports Server (NTRS)

    Seshan, P. K.; Ferrall, Joseph; Rohatgi, Naresh

    1989-01-01

    The importance of mission-driven system definition and assessment for extraterrestrial human life support is examined. The tricotyledon theory for system engineering is applied to the physiochemical life support system of the Pathfinder project. The rationale and methodology for adopting the systems approach is discussed. The assessment of the system during technology development is considered.

  10. AppBuilder for DSSTools; an application development environment for developing decision support systems in Prolog

    Treesearch

    Geneho Kim; Donald Nute; H. Michael Rauscher; David L. Loftis

    2000-01-01

    A programming environment for developing complex decision support systems (DSSs) should support rapid prototyping and modular design, feature a flexible knowledge representation scheme and sound inference mechanisms, provide project management, and be domain independent. We have previously developed DSSTools (Decision Support System Tools), a reusable, domain-...

  11. Climate Literacy: Supporting Teacher Professional Development

    NASA Astrophysics Data System (ADS)

    Haddad, N.; Ledley, T. S.; Dunlap, C.; Bardar, E.; Youngman, B.; Ellins, K. K.; McNeal, K. S.; Libarkin, J.

    2012-12-01

    Confronting the Challenges of Climate Literacy (CCCL) is an NSF-funded (DRK-12) project that includes curriculum development, teacher professional development, teacher leadership development, and research on student learning, all directed at high school teachers and students. The project's evaluation efforts inform and guide all major components of the project. The research effort addresses the question of what interventions are most effective in helping high school students grasp the complexities of the Earth system and climate processes, which occur over a range of spatial and temporal scales. The curriculum unit includes three distinct but related modules: Climate and the Cryosphere; Climate, Weather, and the Biosphere; and Climate and the Carbon Cycle. Climate-related themes that cut across all three modules include the Earth system, with the complexities of its positive and negative feedback loops; the range of temporal and spatial scales at which climate, weather, and other Earth system processes occur; and the recurring question, "How do we know what we know about Earth's past and present climate?" which addresses proxy data and scientific instrumentation. The professional development component of the project includes online science resources to support the teaching of the curriculum modules, summer workshops for high school teachers, and a support system for developing the teacher leaders who plan and implement those summer workshops. When completed, the project will provide a model high school curriculum with online support for implementing teachers and a cadre of leaders who can continue to introduce new teachers to the resource. This presentation will introduce the curriculum and the university partnerships that are key to the project's success, and describe how the project addresses the challenge of helping teachers develop their understanding of climate science and their ability to convey climate-related concepts articulated in the Next Generation Science Standards to their students. We will also describe the professional development and support system to develop teacher leaders and explain some of the challenges that accompany this approach of developing teacher leaders in the area of climate literacy.

  12. Maintenance Decision Support System, Phase III

    DOT National Transportation Integrated Search

    2017-09-01

    The main goal of the project was to address barriers that limit NDOTs ability to implement MDSS and MMS systems. The four project tasks included: Task 1: Develop system for tracking sand and/or deicing material usage: A system that tracks where and w...

  13. Landlord project multi-year program plan, fiscal year 1999, WBS 1.5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dallas, M.D.

    The MYWP technical baseline describes the work to be accomplished by the Project and the technical standards which govern that work. The mission of Landlord Project is to provide more maintenance replacement of general infrastructure facilities and systems to facilitate the Hanford Site cleanup mission. Also, once an infrastructure facility or system is no longer needed the Landlord Project transitions the facility to final closure/removal through excess, salvage or demolition. Landlord Project activities will be performed in an environmentally sound, safe, economical, prudent, and reliable manner. The Landlord Project consists of the following facilities systems: steam, water, liquid sanitary waste,more » electrical distribution, telecommunication, sanitary landfill, emergency services, general purpose offices, general purpose shops, general purpose warehouses, environmental supports facilities, roads, railroad, and the site land. The objectives for general infrastructure support are reflected in two specific areas, (1) Core Infrastructure Maintenance, and (2) Infrastructure Risk Mitigation.« less

  14. CROSS: A GDSS for the Evaluation and Prioritization of Engineering Support Requests and Advanced Technology Projects at NASA

    NASA Technical Reports Server (NTRS)

    Tavana, Madjid; Lee, Seunghee

    1996-01-01

    Objective evaluation and prioritization of engineering support requests (ESRs) is a difficult task at the Kennedy Space Center (KSC) Shuttle Project Engineering Office. The difficulty arises from the complexities inherent in the evaluation process and the lack of structured information. The purpose of this project is to implement the consensus ranking organizational support system (CROSS), a multiple criteria decision support system (DSS) developed at KSC that captures the decision maker's beliefs through a series of sequential, rational, and analytical processes. CROSS utilizes the analytic hierarchy process (AHP), subjective probabilities, entropy concept, and maximize agreement heuristic (MAH) to enhance the decision maker's intuition in evaluation ESRs. Some of the preliminary goals of the project are to: (1) revisit the structure of the ground systems working team (GWST) steering committee, (2) develop a template for ESR originators to provide more comple and consistent information to the GSWT steering committee members to eliminate the need for a facilitator, (3) develop an objective and structured process for the initial screening of ESRs, (4) extensive training of the stakeholders and the GWST steering committee to eliminate the need for a facilitator, (5) automate the process as much as possible, (6) create an environment to compile project success factor data on ESRs and move towards a disciplined system that could be used to address supportability threshold issues at the KSC, and (7) investigate the possibility of an organization-wide implementation of CROSS.

  15. Controlled Ecological Life Support System. Life Support Systems in Space Travel

    NASA Technical Reports Server (NTRS)

    Macelroy, R. D. (Editor); Smernoff, D. T. (Editor); Klein, H. P. (Editor)

    1985-01-01

    Life support systems in space travel, in closed ecological systems were studied. Topics discussed include: (1) problems of life support and the fundamental concepts of bioregeneration; (2) technology associated with physical/chemical regenerative life support; (3) projection of the break even points for various life support techniques; (4) problems of controlling a bioregenerative life support system; (5) data on the operation of an experimental algal/mouse life support system; (6) industrial concepts of bioregenerative life support; and (7) Japanese concepts of bioregenerative life support and associated biological experiments to be conducted in the space station.

  16. MSFC Skylab airlock module, volume 2. [systems design and performance, systems support activity, and reliability and safety programs

    NASA Technical Reports Server (NTRS)

    1974-01-01

    System design and performance of the Skylab Airlock Module and Payload Shroud are presented for the communication and caution and warning systems. Crew station and storage, crew trainers, experiments, ground support equipment, and system support activities are also reviewed. Other areas documented include the reliability and safety programs, test philosophy, engineering project management, and mission operations support.

  17. Connecticut Biodiesel Power Generation Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grannis, Lee; York, Carla R.

    Sabre will continue support of the emissions equipment and VARS issues to ensure all are resolved and the system is functioning as expected. The remote data collection to become more automated. Final project reports for data collection and system performance to be generated. Sabre continued to support the emissions equipment and VARS issues to ensure all are resolved and the system is functioning as expected. The remote data collection became more automated. Final project reports for data collection and system performance were generated and are part of this final report. Some Systems Sensors were replaced due to a lightning strike.more » Sample data charts are shown at the end of the report. During the project, Sabre Engineering provided support to the project team with regarding to troubleshooting technical issues and system integration with the local power utility company. The resulting lessons learned through Sabre’s participation in the project have been valuable to the integrity of the data collected as well as in providing BioPur Light & Power valuable insights into future operations and planning for possible expansion. The system monitoring and data collection system has been operating as designed and continues to provide relevant information to the system operators. The information routinely gathered automatically by the system also contributes to the REN and REC validations which are required to secure credit for these items. During the quarter, the remaining work on the operations and safety manual were completed and released for publication after screen shots were verified. The goal of this effort to provide an accurate set of precautions and procedures for the technology system that can be replicated to other similar system.« less

  18. Sources of project financing in health care systems.

    PubMed

    Smith, D G; Wheeler, J R; Rivenson, H L; Reiter, K L

    2000-01-01

    Through discussions with chief financial officers of leading health care systems, insights are offered on preferences for project financing and development efforts. Data from these same systems provide at least anecdotal evidence in support of pecking-order theory.

  19. A Review of Decision Support Systems for Smart Homes in the Health Care System.

    PubMed

    Baumgärtel, Diana; Mielke, Corinna; Haux, Reinhold

    2018-01-01

    The use of decision support systems for smart homes can provide attractive solutions for challenges that have arisen in the Health Care System due to ageing of society. In order to provide an overview of current research projects in this field, a systematic literature review was performed according to the PRISMA approach. The aims of this work are to provide an overview of current research projects and to update a similar study from 2012. The literature search engines IEEE Xplore and PubMed were used. 23 papers were included. Most of the systems presented are developed for monitoring the patient regardless of their illness. For decision support, mainly rule-based approaches are used.

  20. Solid waste information and tracking system server conversion project management plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MAY, D.L.

    1999-04-12

    The Project Management Plan governing the conversion of Solid Waste Information and Tracking System (SWITS) to a client-server architecture. The Solid Waste Information and Tracking System Project Management Plan (PMP) describes the background, planning and management of the SWITS conversion. Requirements and specification documentation needed for the SWITS conversion will be released as supporting documents.

  1. Advancing the practice of systems engineering at JPL

    NASA Technical Reports Server (NTRS)

    Jansma, Patti A.; Jones, Ross M.

    2006-01-01

    In FY 2004, JPL launched an initiative to improve the way it practices systems engineering. The Lab's senior management formed the Systems Engineering Advancement (SEA) Project in order to "significantly advance the practice and organizational capabilities of systems engineering at JPL on flight projects and ground support tasks." The scope of the SEA Project includes the systems engineering work performed in all three dimensions of a program, project, or task: 1. the full life-cycle, i.e., concept through end of operations 2. the full depth, i.e., Program, Project, System, Subsystem, Element (SE Levels 1 to 5) 3. the full technical scope, e.g., the flight, ground and launch systems, avionics, power, propulsion, telecommunications, thermal, etc. The initial focus of their efforts defined the following basic systems engineering functions at JPL: systems architecture, requirements management, interface definition, technical resource management, system design and analysis, system verification and validation, risk management, technical peer reviews, design process management and systems engineering task management, They also developed a list of highly valued personal behaviors of systems engineers, and are working to inculcate those behaviors into members of their systems engineering community. The SEA Project is developing products, services, and training to support managers and practitioners throughout the entire system lifecycle. As these are developed, each one needs to be systematically deployed. Hence, the SEA Project developed a deployment process that includes four aspects: infrastructure and operations, communication and outreach, education and training, and consulting support. In addition, the SEA Project has taken a proactive approach to organizational change management and customer relationship management - both concepts and approaches not usually invoked in an engineering environment. This paper'3 describes JPL's approach to advancing the practice of systems engineering at the Lab. It describes the general approach used and how they addressed the three key aspects of change: people, process and technology. It highlights a list of highly valued personal behaviors of systems engineers, discusses the various products, services and training that were developed, describes the deployment approach used, and concludes with several lessons learned.

  2. Configuration Management Process Assessment Strategy

    NASA Technical Reports Server (NTRS)

    Henry, Thad

    2014-01-01

    Purpose: To propose a strategy for assessing the development and effectiveness of configuration management systems within Programs, Projects, and Design Activities performed by technical organizations and their supporting development contractors. Scope: Various entities CM Systems will be assessed dependent on Project Scope (DDT&E), Support Services and Acquisition Agreements. Approach: Model based structured against assessing organizations CM requirements including best practices maturity criteria. The model is tailored to the entity being assessed dependent on their CM system. The assessment approach provides objective feedback to Engineering and Project Management of the observed CM system maturity state versus the ideal state of the configuration management processes and outcomes(system). center dot Identifies strengths and risks versus audit gotcha's (findings/observations). center dot Used "recursively and iteratively" throughout program lifecycle at select points of need. (Typical assessments timing is Post PDR/Post CDR) center dot Ideal state criteria and maturity targets are reviewed with the assessed entity prior to an assessment (Tailoring) and is dependent on the assessed phase of the CM system. center dot Supports exit success criteria for Preliminary and Critical Design Reviews. center dot Gives a comprehensive CM system assessment which ultimately supports configuration verification activities.*

  3. Useful Life Prediction for Payload Carrier Hardware

    NASA Technical Reports Server (NTRS)

    Ben-Arieh, David

    2002-01-01

    The Space Shuttle has been identified for use through 2020. Payload carrier systems will be needed to support missions through the same time frame. To support the future decision making process with reliable systems, it is necessary to analyze design integrity, identify possible sources of undesirable risk and recognize required upgrades for carrier systems. This project analyzed the information available regarding the carriers and developed the probability of becoming obsolete under different scenarios. In addition, this project resulted in a plan for an improved information system that will improve monitoring and control of the various carriers. The information collected throughout this project is presented in this report as process flow, historical records, and statistical analysis.

  4. Building CHAOS: An Operating System for Livermore Linux Clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garlick, J E; Dunlap, C M

    2003-02-21

    The Livermore Computing (LC) Linux Integration and Development Project (the Linux Project) produces and supports the Clustered High Availability Operating System (CHAOS), a cluster operating environment based on Red Hat Linux. Each CHAOS release begins with a set of requirements and ends with a formally tested, packaged, and documented release suitable for use on LC's production Linux clusters. One characteristic of CHAOS is that component software packages come from different sources under varying degrees of project control. Some are developed by the Linux Project, some are developed by other LC projects, some are external open source projects, and some aremore » commercial software packages. A challenge to the Linux Project is to adhere to release schedules and testing disciplines in a diverse, highly decentralized development environment. Communication channels are maintained for externally developed packages in order to obtain support, influence development decisions, and coordinate/understand release schedules. The Linux Project embraces open source by releasing locally developed packages under open source license, by collaborating with open source projects where mutually beneficial, and by preferring open source over proprietary software. Project members generally use open source development tools. The Linux Project requires system administrators and developers to work together to resolve problems that arise in production. This tight coupling of production and development is a key strategy for making a product that directly addresses LC's production requirements. It is another challenge to balance support and development activities in such a way that one does not overwhelm the other.« less

  5. Application experience with the NASA aircraft interrogation and display system - A ground-support equipment for digital flight systems

    NASA Technical Reports Server (NTRS)

    Glover, R. D.

    1983-01-01

    The NASA Dryden Flight Research Facility has developed a microprocessor-based, user-programmable, general-purpose aircraft interrogation and display system (AIDS). The hardware and software of this ground-support equipment have been designed to permit diverse applications in support of aircraft digital flight-control systems and simulation facilities. AIDS is often employed to provide engineering-units display of internal digital system parameters during development and qualification testing. Such visibility into the system under test has proved to be a key element in the final qualification testing of aircraft digital flight-control systems. Three first-generation 8-bit units are now in service in support of several research aircraft projects, and user acceptance has been high. A second-generation design, extended AIDS (XAIDS), incorporating multiple 16-bit processors, is now being developed to support the forward swept wing aircraft project (X-29A). This paper outlines the AIDS concept, summarizes AIDS operational experience, and describes the planned XAIDS design and mechanization.

  6. Systems Engineering in NASA's R&TD Programs

    NASA Technical Reports Server (NTRS)

    Jones, Harry

    2005-01-01

    Systems engineering is largely the analysis and planning that support the design, development, and operation of systems. The most common application of systems engineering is in guiding systems development projects that use a phased process of requirements, specifications, design, and development. This paper investigates how systems engineering techniques should be applied in research and technology development programs for advanced space systems. These programs should include anticipatory engineering of future space flight systems and a project portfolio selection process, as well as systems engineering for multiple development projects.

  7. Defense AR Journal, Volume 15, Number 1, April 2008

    DTIC Science & Technology

    2008-04-01

    Beavers William Ruta DAUAA Research Paper Competition: 3rd Place Employing Organizational Modeling & Simulation of the KC-135 Depot’s Flight Controls Maj...AttAck munition SYStemS (jAmS) Project office imProvinG SuPPort to the wArfiGhter Barry Beavers and William Ruta The Joint Attack Munition Systems...William Ruta . This paper examines how the JAMS Project Office improved support to the warfighter with its implementation of the Life Cycle

  8. Fourth Year Status Report. Computerized Training Systems Project. Project ABACUS.

    DTIC Science & Technology

    1976-08-01

    in 7 9. PERFORMING ORGANIZATION NAME AND ADOMEN ,,, 10. PROGRAM ELEMENT. PROJECT , TASK US Army Tra ining Support Center A R E A S WORK UNIT NUMBERS...transp ired during the fourth year of Project ABACUS, the A rmy ’s program for the development of a Computerized Training System. It inc l udes a...have transpired durlnq the fourth year of Project ABACUS, the Army ’s program for the developmen t o~ aprototype Computer i zed Training System. It

  9. Marshall Space Flight Center Ground Systems Development and Integration

    NASA Technical Reports Server (NTRS)

    Wade, Gina

    2016-01-01

    Ground Systems Development and Integration performs a variety of tasks in support of the Mission Operations Laboratory (MOL) and other Center and Agency projects. These tasks include various systems engineering processes such as performing system requirements development, system architecture design, integration, verification and validation, software development, and sustaining engineering of mission operations systems that has evolved the Huntsville Operations Support Center (HOSC) into a leader in remote operations for current and future NASA space projects. The group is also responsible for developing and managing telemetry and command configuration and calibration databases. Personnel are responsible for maintaining and enhancing their disciplinary skills in the areas of project management, software engineering, software development, software process improvement, telecommunications, networking, and systems management. Domain expertise in the ground systems area is also maintained and includes detailed proficiency in the areas of real-time telemetry systems, command systems, voice, video, data networks, and mission planning systems.

  10. Designing clinically useful systems: examples from medicine and dentistry.

    PubMed

    Koch, S

    2003-12-01

    Despite promising results in medical informatics research and the development of a large number of different systems, few systems get beyond a prototype state and are really used in practice. Among other factors, the lack of explicit user focus is one main reason. The research projects presented in this paper follow a user-centered system development approach based on extensive work analyses in interdisciplinary working groups, taking into account human cognitive performance. Different medical and health-care specialists, together with researchers in human-computer interaction and medical informatics, specify future clinical work scenarios. Special focus is put on analysis and design of the information and communication flow and on exploration of intuitive visualization and interaction techniques for clinical information. Adequate choice of the technical access device is made depending on the user's work situation. It is the purpose of this paper to apply this method in two different research projects and thereby to show its potential for designing clinically useful systems that do support and not hamper clinical work. These research projects cover IT support for chairside work in dentistry (http://www.dis.uu.se/mdi/research/projects/orquest) and ICT support for home health care of elderly citizens (http://www.medsci.uu.se/mie/project/closecare).

  11. Operations system administration plan for HANDI 2000 business management system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, D.E.

    The Hanford Data Integration 2000 (HANDI 2000) Project will result in an integrated and comprehensive set of functional applications containing core information necessary to support the Project Hanford Management Contract (PHMC). It is based on the Commercial-Off-The-Shelf (COTS) product solution with commercially proven business processes. This includes systems that support finance, supply, chemical management, human resources and payroll activities on the Hanford Site. The Passport (PP) software is an integrated application for Accounts Payable, Contract Management, Inventory Management, Purchasing, and Material Safety Data Sheets (MSDS). The PeopleSoft (PS) software is an integrated application for General Ledger, Project Costing, Human Resources,more » Payroll, Benefits, and Training. The implementation of this set of products, as the first deliverable of the HANDI 2000 Project, is referred to as Business Management System (BMS) and MSDS.« less

  12. Towards Greater Learner Control: Web Supported Project-Based Learning

    ERIC Educational Resources Information Center

    Guthrie, Cameron

    2010-01-01

    Project-based learning has been suggested as an appropriate pedagogy to prepare students in information systems for the realities of the business world. Web-based resources have been used to support such pedagogy with mixed results. The paper argues that the design of web-based learning support to cater to different learning styles may give…

  13. Integrated Test Approach

    NASA Technical Reports Server (NTRS)

    Cotton, Will; Liechty, John

    2015-01-01

    This paper describes a testing methodology undertaken on the Facilities Development and Operations Contract (FDOC) by Lockheed Martin. The methodology was defined with the intent of reducing project schedule time to enable NASA's Johnson Space Center (JSC) to be able to deliver the Mission Control Center (MCC) 21 project as quickly as possible. 21 represents the 21st century where NASA JSC is updating its control center with new technology and operational concepts in order to support NASA customers wanting to use control center assets to support space vehicle operations. In collaboration with the NASA customer, a new test concept was conceived early during MCC21 project planning with the goal of reducing project delivery time. One enabler that could help reduce delivery time was testing. Within the project, testing was performed by two entities, software development responsible for subsystem testing and system test responsible for system integration testing. The MCC21 project took a deliberate review of testing to determine how it could be performed differently to realize an overall reduction in test time to support the goal of a more rapid project delivery.

  14. Decision support model for assessing archaeological survey needs for bridge replacement projects in Iowa.

    DOT National Transportation Integrated Search

    2006-01-01

    The Bridges Decision Support Model is a geographic information system (GIS) that assembles existing : data on archaeological sites, surveys, and their geologic contexts to assess the risk of bridge replacement : projects encountering 13,000- to 150-y...

  15. An Evaluation of a Computer-Based Videotext Information Delivery System for Farmers: The Green Thumb Project.

    ERIC Educational Resources Information Center

    Warner, Paul D.; Clearfield, Frank

    The Green Thumb Project was designed to test the feasibility of operating a computerized system for disseminating weather, market, and other agricultural production and management information on a day-to-day basis; to develop a prototype software support system for the test; and to provide essential project information on conduct of the test to…

  16. The deep space network, volume 10

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Progress on the Deep Space Network (DSN) supporting research and technology is reported. The objectives, functions and facilities of the DSN are described along with the mission support for the following: interplanetary flight projects, planetary flight projects, and manned space flight projects. Work in advanced engineering and communications systems is reported along with changes in hardware and software configurations in the DSN/MSFN tracking stations.

  17. A Multi-mission Event-Driven Component-Based System for Support of Flight Software Development, ATLO, and Operations first used by the Mars Science Laboratory (MSL) Project

    NASA Technical Reports Server (NTRS)

    Dehghani, Navid; Tankenson, Michael

    2006-01-01

    This paper details an architectural description of the Mission Data Processing and Control System (MPCS), an event-driven, multi-mission ground data processing components providing uplink, downlink, and data management capabilities which will support the Mars Science Laboratory (MSL) project as its first target mission. MPCS is developed based on a set of small reusable components, implemented in Java, each designed with a specific function and well-defined interfaces. An industry standard messaging bus is used to transfer information among system components. Components generate standard messages which are used to capture system information, as well as triggers to support the event-driven architecture of the system. Event-driven systems are highly desirable for processing high-rate telemetry (science and engineering) data, and for supporting automation for many mission operations processes.

  18. NASA Supportability Engineering Implementation Utilizing DoD Practices and Processes

    NASA Technical Reports Server (NTRS)

    Smith, David A.; Smith, John V.

    2010-01-01

    The Ares I design and development program made the determination early in the System Design Review Phase to utilize DoD ILS and LSA approach for supportability engineering as an integral part of the system engineering process. This paper is to provide a review of the overall approach to design Ares-I with an emphasis on a more affordable, supportable, and sustainable launch vehicle. Discussions will include the requirements development, design influence, support concept alternatives, ILS and LSA planning, Logistics support analyses/trades performed, LSA tailoring for NASA Ares Program, support system infrastructure identification, ILS Design Review documentation, Working Group coordination, and overall ILS implementation. At the outset, the Ares I Project initiated the development of the Integrated Logistics Support Plan (ILSP) and a Logistics Support Analysis process to provide a path forward for the management of the Ares-I ILS program and supportability analysis activities. The ILSP provide the initial planning and coordination between the Ares-I Project Elements and Ground Operation Project. The LSA process provided a system engineering approach in the development of the Ares-I supportability requirements; influence the design for supportability and development of alternative support concepts that satisfies the program operability requirements. The LSA planning and analysis results are documented in the Logistics Support Analysis Report. This document was required during the Ares-I System Design Review (SDR) and Preliminary Design Review (PDR) review cycles. To help coordinate the LSA process across the Ares-I project and between programs, the LSA Report is updated and released quarterly. A System Requirement Analysis was performed to determine the supportability requirements and technical performance measurements (TPMs). Two working groups were established to provide support in the management and implement the Ares-I ILS program, the Integrated Logistics Support Working Group (ILSWG) and the Logistics Support Analysis Record Working Group (LSARWG). The Ares I ILSWG is established to assess the requirements and conduct, evaluate analyses and trade studies associated with acquisition logistic and supportability processes and to resolve Ares I integrated logistics and supportability issues. It established a strategic collaborative alliance for coordination of Logistics Support Analysis activates in support of the integrated Ares I vehicle design and development of logistics support infrastructure. A Joint Ares I - Orion LSAR Working Group was established to: 1) Guide the development of Ares-I and Orion LSAR data and serve as a model for future Constellation programs, 2) Develop rules and assumptions that will apply across the Constellation program with regards to the program's LSAR development, and 3) Maintain the Constellation LSAR Style Guide.

  19. Project Mapping to Build Capacity and Demonstrate Impact in the Earth Sciences

    NASA Astrophysics Data System (ADS)

    Hemmings, S. N.; Searby, N. D.; Murphy, K. J.; Mataya, C. J.; Crepps, G.; Clayton, A.; Stevens, C. L.

    2017-12-01

    Diverse organizations are increasingly using project mapping to communicate location-based information about their activities. NASA's Earth Science Division (ESD), through the Earth Science Data Systems and Applied Sciences' Capacity Building Program (CBP), has created a geographic information system of all ESD projects to support internal program management for the agency. The CBP's NASA DEVELOP program has built an interactive mapping tool to support capacity building for the program's varied constituents. This presentation will explore the types of programmatic opportunities provided by a geographic approach to management, communication, and strategic planning. We will also discuss the various external benefits that mapping supports and that build capacity in the Earth sciences. These include activities such as project matching (location-focused synergies), portfolio planning, inter- and intra-organizational collaboration, science diplomacy, and basic impact analysis.

  20. Aircraft interrogation and display system: A ground support equipment for digital flight systems

    NASA Technical Reports Server (NTRS)

    Glover, R. D.

    1982-01-01

    A microprocessor-based general purpose ground support equipment for electronic systems was developed. The hardware and software are designed to permit diverse applications in support of aircraft flight systems and simulation facilities. The implementation of the hardware, the structure of the software, describes the application of the system to an ongoing research aircraft project are described.

  1. A CMMI-based approach for medical software project life cycle study.

    PubMed

    Chen, Jui-Jen; Su, Wu-Chen; Wang, Pei-Wen; Yen, Hung-Chi

    2013-01-01

    In terms of medical techniques, Taiwan has gained international recognition in recent years. However, the medical information system industry in Taiwan is still at a developing stage compared with the software industries in other nations. In addition, systematic development processes are indispensable elements of software development. They can help developers increase their productivity and efficiency and also avoid unnecessary risks arising during the development process. Thus, this paper presents an application of Light-Weight Capability Maturity Model Integration (LW-CMMI) to Chang Gung Medical Research Project (CMRP) in the Nuclear medicine field. This application was intended to integrate user requirements, system design and testing of software development processes into three layers (Domain, Concept and Instance) model. Then, expressing in structural System Modeling Language (SysML) diagrams and converts part of the manual effort necessary for project management maintenance into computational effort, for example: (semi-) automatic delivery of traceability management. In this application, it supports establishing artifacts of "requirement specification document", "project execution plan document", "system design document" and "system test document", and can deliver a prototype of lightweight project management tool on the Nuclear Medicine software project. The results of this application can be a reference for other medical institutions in developing medical information systems and support of project management to achieve the aim of patient safety.

  2. The Physical/Chemical Closed-Loop Life Support Research Project

    NASA Technical Reports Server (NTRS)

    Bilardo, Vincent J., Jr.

    1990-01-01

    The various elements of the Physical/Chemical Closed-Loop Life Support Research Project (P/C CLLS) are described including both those currently funded and those planned for implementation at ARC and other participating NASA field centers. The plan addresses the entire range of regenerative life support for Space Exploration Initiative mission needs, and focuses initially on achieving technology readiness for the Initial Lunar Outpost by 1995-97. Project elements include water reclamation, air revitalization, solid waste management, thermal and systems control, and systems integration. Current analysis estimates that each occupant of a space habitat will require a total of 32 kg/day of supplies to live and operate comfortably, while an ideal P/C CLLS system capable of 100 percent reclamation of air and water, but excluding recycling of solid wastes or foods, will reduce this requirement to 3.4 kg/day.

  3. Unmanned Aircraft Systems (UAS) Integration in the National Airspace System (NAS) Project: Detect and Avoid Display Evaluations in Support of SC-228 Minimum Operational Performance Standards Development

    NASA Technical Reports Server (NTRS)

    Fern, Lisa Carolynn

    2017-01-01

    The primary activity for the UAS-NAS Human Systems Integration (HSI) sub-project in Phase 1 was support of RTCA Special Committee 228 Minimum Operational Performance Standards (MOPS). We provide data on the effect of various Detect and Avoid (DAA) display features with respect to pilot performance of the remain well clear function in order to determine the minimum requirements for DAA displays.

  4. IUS/TUG orbital operations and mission support study. Volume 4: Project planning data

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Planning data are presented for the development phases of interim upper stage (IUS) and tug systems. Major project planning requirements, major event schedules, milestones, system development and operations process networks, and relevant support research and technology requirements are included. Topics discussed include: IUS flight software; tug flight software; IUS/tug ground control center facilities, personnel, data systems, software, and equipment; IUS mission events; tug mission events; tug/spacecraft rendezvous and docking; tug/orbiter operations interface, and IUS/orbiter operations interface.

  5. Project consistency with transportation plans and air quality conformity workshops : technical report.

    DOT National Transportation Integrated Search

    2015-04-01

    This implementation project supports streamlined project delivery, one of the goals outlined by the Texas : Department of Transportation (TxDOT) leadership to achieve an efficient and effective transportation system : in Texas. The project benefits T...

  6. Sino-American cooperation for rural electrification in China

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wallace, W.L.; Tsuo, Y.S.; Taylor, R.

    1997-12-01

    This paper discusses primarily two different renewable energy programs which are in progress in China. One is in Gansu province, based on a solar home system project. This project is stressing a sustainable market development, provision of small lighting systems for residential and small schools, and water pumping and telecommunications support. It seeks involvement of 600 households as a minimum over 18 months. The second project is a very aggressive renewable energy project in Inner Mongolia, where there are excellent wind and solar resources, and where there are already 110,000 small wind turbines installed, in addition to more than 9more » hybrid power systems for villages. These programs have major involvement from the Chinese government and industry, with some guidance and support from the USA.« less

  7. Building Geographic Information System Capacity in Local Health Departments: Lessons From a North Carolina Project

    PubMed Central

    Miranda, Marie Lynn; Silva, Jennifer M.; Overstreet Galeano, M. Alicia; Brown, Jeffrey P.; Campbell, Douglas S.; Coley, Evelyn; Cowan, Christopher S.; Harvell, Dianne; Lassiter, Jenny; Parks, Jerry L.; Sandelé, Wanda

    2005-01-01

    State government, university, and local health department (LHD) partners collaborated to build the geographic information system (GIS) capacity of 5 LHDs in North Carolina. Project elements included procuring hardware and software, conducting individualized and group training, developing data layers, guiding the project development process, coordinating participation in technical conferences, providing ongoing project consultation, and evaluating project milestones. The project provided health department personnel with the skills and resources required to use sophisticated information management systems, particularly those that address spatial dimensions of public health practice. This capacity-building project helped LHDs incorporate GIS technology into daily operations, resulting in improved time and cost efficiency. Keys to success included (1) methods training rooted in problems specific to the LHD, (2) required project identification by LHD staff with associated timelines for development, (3) ongoing technical support as staff returned to home offices after training, (4) subgrants to LHDs to ease hardware and software resource constraints, (5) networks of relationships among LHDs and other professional GIS users, and (6) senior LHD leadership who supported the professional development activities being undertaken by staff. PMID:16257950

  8. Office of Spaceflight Standard Spaceborne Global Positioning System (GPS) user equipment project

    NASA Technical Reports Server (NTRS)

    Saunders, Penny E.

    1991-01-01

    The Global Positioning System (GPS) provides the following: (1) position and velocity determination to support vehicle GN&C, precise orbit determination, and payload pointing; (2) time reference to support onboard timing systems and data time tagging; (3) relative position and velocity determination to support cooperative vehicle tracking; and (4) attitude determination to support vehicle attitude control and payload pointing.

  9. 46 CFR 393.4 - Marine Highway Projects.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... transportation system research, data, and analysis used to develop or support the business model. (vii) Proposed.... Designated Marine Highway Projects may receive support from the Department as described in this section. (b... congestion-related impacts. (2) Identify proposed water transportation services that represent the greatest...

  10. 46 CFR 393.4 - Marine Highway Projects.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... transportation system research, data, and analysis used to develop or support the business model. (vii) Proposed.... Designated Marine Highway Projects may receive support from the Department as described in this section. (b... congestion-related impacts. (2) Identify proposed water transportation services that represent the greatest...

  11. Support to 2nd Generation RLV Propulsion Project Office

    NASA Technical Reports Server (NTRS)

    Lee, Thomas J.

    2002-01-01

    In this final report regarding support to the second generation RLV (Reusable Launch Vehicle) propulsion project office, a list of tasks accomplished is presented. During this period, Lee & Associates, LLC participated in numerous Systems Requirements Reviews (SRR) related to the Cobra development program.

  12. Bioregenerative life support systems for microgravity

    NASA Technical Reports Server (NTRS)

    Nevill, Gail E., Jr.; Hessel, Michael I., Jr.; Rodriguez, Jose; Morgan, Steve (Editor)

    1993-01-01

    NASA's Controlled Ecological Life Support System (CELSS) project centers on growing plants and recycling wastes in space. The current version of the biomass production chamber (BPC) uses a hydroponic system for nutrient delivery. To optimize plant growth and conserve system resources, the content of the nutrient solution which feeds the plants must be constantly monitored. The macro-nutrients (greater than ten ppm) in the solution include nitrogen, phosphorous, potassium, calcium, magnesium, and sulphur; the micro-nutrients (less than ten ppm) include iron, copper, manganese, zinc, and boron. The goal of this project is to construct a computer-controlled system of ion detectors that will accurately measure the concentrations of several necessary ions in solution. The project focuses on the use of a sensor array to eliminate problems of interference and temperature dependence.

  13. Tracking and Data System Support for the Mariner Venus/Mercury 1973 Project

    NASA Technical Reports Server (NTRS)

    Davis, E. K.; Traxler, M. R.

    1977-01-01

    The Tracking and Data System, which provided outstanding support to the Mariner Venus/Mercury 1973 project during the period from January 1970 through March 1975 are chronologically described. In the Tracking and Data System organizations, plans, processes, and technical configurations, which were developed and employed to facilitate achievement of mission objectives, are described. In the Deep Space Network position of the tracking and data system, a number of special actions were taken to greatly increase the scientific data return and to assist the project in coping with in-flight problems. The benefits of such actions were high; however, there was also a significant increase in risk as a function of the experimental equipment and procedures required.

  14. Radiation Hardened Telerobotic Dismantling System Development Final Report CRADA No. TC-1340-96

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, C.; Lightman, A.

    This project was a collaborative effort between the University of California, LLNL and RedZone Robotics, Inc. for the development of radiation-hardened telerobotic dismantling systems for use in applications such as nuclear facility remediation, nuclear accident response, and Chemobyltype remediation. The project supported the design, development, fabrication and testing of a Ukrainian robotic systems. The project was completed on time and within budget. All deliverables were completed. The final project deliverables were consistent with the plans developed in the original project with the exception that the fabricated systems remained in Ukraine.

  15. Overview of NASA Technology Development for In-Situ Resource Utilization (ISRU)

    NASA Technical Reports Server (NTRS)

    Linne, Diane L.; Sanders, Gerald B.; Starr, Stanley O.; Eisenman, David J.; Suzuki, Nantel H.; Anderson, Molly S.; O'Malley, Terrence F.; Araghi, Koorosh R.

    2017-01-01

    In-Situ Resource Utilization (ISRU) encompasses a broad range of systems that enable the production and use of extraterrestrial resources in support of future exploration missions. It has the potential to greatly reduce the dependency on resources transported from Earth (e.g., propellants, life support consumables), thereby significantly improving the ability to conduct future missions. Recognizing the critical importance of ISRU for the future, NASA is currently conducting technology development projects in two of its four mission directorates. The Advanced Exploration Systems Division in the Agency's Human Exploration and Operations Mission Directorate has initiated a new project for ISRU Technology focused on component, subsystem, and system maturation in the areas of water volatiles resource acquisition, and water volatiles and atmospheric processing into propellants and other consumable products. The Space Technology Mission Directorate is supporting development of ISRU component technologies in the areas of Mars atmosphere acquisition, including dust management, and oxygen production from Mars atmosphere for propellant and life support consumables. Together, these two coordinated projects are working towards a common goal of demonstrating ISRU technology and systems in preparation for future flight applications.

  16. Altair Lander Life Support: Design Analysis Cycles 4 and 5

    NASA Technical Reports Server (NTRS)

    Anderson, Molly; Curley, Su; Rotter, Henry; Stambaugh, Imelda; Yagoda, Evan

    2011-01-01

    Life support systems are a critical part of human exploration beyond low earth orbit. NASA s Altair Lunar Lander team is pursuing efficient solutions to the technical challenges of human spaceflight. Life support design efforts up through Design Analysis Cycle (DAC) 4 focused on finding lightweight and reliable solutions for the Sortie and Outpost missions within the Constellation Program. In DAC-4 and later follow on work, changes were made to add functionality for new requirements accepted by the Altair project, and to update the design as knowledge about certain issues or hardware matured. In DAC-5, the Altair project began to consider mission architectures outside the Constellation baseline. Selecting the optimal life support system design is very sensitive to mission duration. When the mission goals and architecture change several trade studies must be conducted to determine the appropriate design. Finally, several areas of work developed through the Altair project may be applicable to other vehicle concepts for microgravity missions. Maturing the Altair life support system related analysis, design, and requirements can provide important information for developers of a wide range of other human vehicles.

  17. Altair Lander Life Support: Design Analysis Cycles 4 and 5

    NASA Technical Reports Server (NTRS)

    Anderson, Molly; Curley, Su; Rotter, Henry; Yagoda, Evan

    2010-01-01

    Life support systems are a critical part of human exploration beyond low earth orbit. NASA s Altair Lunar Lander team is pursuing efficient solutions to the technical challenges of human spaceflight. Life support design efforts up through Design Analysis Cycle (DAC) 4 focused on finding lightweight and reliable solutions for the Sortie and Outpost missions within the Constellation Program. In DAC-4 and later follow on work, changes were made to add functionality for new requirements accepted by the Altair project, and to update the design as knowledge about certain issues or hardware matured. In DAC-5, the Altair project began to consider mission architectures outside the Constellation baseline. Selecting the optimal life support system design is very sensitive to mission duration. When the mission goals and architecture change several trade studies must be conducted to determine the appropriate design. Finally, several areas of work developed through the Altair project may be applicable to other vehicle concepts for microgravity missions. Maturing the Altair life support system related analysis, design, and requirements can provide important information for developers of a wide range of other human vehicles.

  18. Advanced Ground Systems Maintenance Intelligent Devices/Smart Sensors Project

    NASA Technical Reports Server (NTRS)

    Perotti, Jose M. (Compiler)

    2015-01-01

    This project provides development and qualification of Smart Sensors capable of self-diagnosis and assessment of their capability/readiness to support operations. These sensors will provide pressure and temperature measurements for use in ground systems.

  19. Leaf LIMS: A Flexible Laboratory Information Management System with a Synthetic Biology Focus.

    PubMed

    Craig, Thomas; Holland, Richard; D'Amore, Rosalinda; Johnson, James R; McCue, Hannah V; West, Anthony; Zulkower, Valentin; Tekotte, Hille; Cai, Yizhi; Swan, Daniel; Davey, Robert P; Hertz-Fowler, Christiane; Hall, Anthony; Caddick, Mark

    2017-12-15

    This paper presents Leaf LIMS, a flexible laboratory information management system (LIMS) designed to address the complexity of synthetic biology workflows. At the project's inception there was a lack of a LIMS designed specifically to address synthetic biology processes, with most systems focused on either next generation sequencing or biobanks and clinical sample handling. Leaf LIMS implements integrated project, item, and laboratory stock tracking, offering complete sample and construct genealogy, materials and lot tracking, and modular assay data capture. Hence, it enables highly configurable task-based workflows and supports data capture from project inception to completion. As such, in addition to it supporting synthetic biology it is ideal for many laboratory environments with multiple projects and users. The system is deployed as a web application through Docker and is provided under a permissive MIT license. It is freely available for download at https://leaflims.github.io .

  20. Annual DOE active solar heating and cooling contractors' review meeting. Premeeting proceedings and project summaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None,

    1981-09-01

    Ninety-three project summaries are presented which discuss the following aspects of active solar heating and cooling: Rankine solar cooling systems; absorption solar cooling systems; desiccant solar cooling systems; solar heat pump systems; solar hot water systems; special projects (such as the National Solar Data Network, hybrid solar thermal/photovoltaic applications, and heat transfer and water migration in soils); administrative/management support; and solar collector, storage, controls, analysis, and materials technology. (LEW)

  1. Tracking and data systems support for the Helios project. Volume 2: DSN support of Project Helios April 1975 - May 1976

    NASA Technical Reports Server (NTRS)

    Goodwin, P. S.; Traxler, M. R.; Meeks, W. G.; Flanagan, F. M.

    1977-01-01

    Deep Space Network activities in the development of the Helios B mission from planning through entry of Helios 2 into first superior conjunction (end of Mission Phase II) are summarized. Network operational support activities for Helios 1 from first superior conjunction through entry into third superior conjunction are included.

  2. Advanced Engineering Environment FY09/10 pilot project.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lamph, Jane Ann; Kiba, Grant W.; Pomplun, Alan R.

    2010-06-01

    The Advanced Engineering Environment (AEE) project identifies emerging engineering environment tools and assesses their value to Sandia National Laboratories and our partners in the Nuclear Security Enterprise (NSE) by testing them in our design environment. This project accomplished several pilot activities, including: the preliminary definition of an engineering bill of materials (BOM) based product structure in the Windchill PDMLink 9.0 application; an evaluation of Mentor Graphics Data Management System (DMS) application for electrical computer-aided design (ECAD) library administration; and implementation and documentation of a Windchill 9.1 application upgrade. The project also supported the migration of legacy data from existing corporatemore » product lifecycle management systems into new classified and unclassified Windchill PDMLink 9.0 systems. The project included two infrastructure modernization efforts: the replacement of two aging AEE development servers for reliable platforms for ongoing AEE project work; and the replacement of four critical application and license servers that support design and engineering work at the Sandia National Laboratories/California site.« less

  3. Emergency EDAPTS retainer support.

    DOT National Transportation Integrated Search

    2007-06-01

    The Efficient Deployment of Advanced Transportation Systems (EDAPTS) Smart Transit System Project : required various quick-response deployment support activities over the 26-month period from April 18, 2005 : to June 30, 2007. These activities requir...

  4. Ground Rules in Team Projects: Findings from a Prototype System to Support Students

    ERIC Educational Resources Information Center

    Whatley, Janice

    2009-01-01

    Student team project work in higher education is one of the best ways to develop team working skills at the same time as learning about the subject matter. As today's students require the freedom to learn at times and places that better match their lifestyles, there is a need for any support for team project work to be also available online. Team…

  5. Solar System Visualization (SSV) Project

    NASA Technical Reports Server (NTRS)

    Todd, Jessida L.

    2005-01-01

    The Solar System Visualization (SSV) project aims at enhancing scientific and public understanding through visual representations and modeling procedures. The SSV project's objectives are to (1) create new visualization technologies, (2) organize science observations and models, and (3) visualize science results and mission Plans. The SSV project currently supports the Mars Exploration Rovers (MER) mission, the Mars Reconnaissance Orbiter (MRO), and Cassini. In support of the these missions, the SSV team has produced pan and zoom animations of large mosaics to reveal details of surface features and topography, created 3D animations of science instruments and procedures, formed 3-D anaglyphs from left and right stereo pairs, and animated registered multi-resolution mosaics to provide context for microscopic images.

  6. Technical support plan for HANDI 2000 business management system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, D.E.

    The Hanford Data Integration 2000 (HANDI 2000) Project will result in an integrated and comprehensive set of functional applications containing core information necessary to support the Project Hanford Management Contract. It is based on the Commercial-Off-The-Shelf (COTS) product solution with commercially proven business processes. The PassPort (PP) software is an integrated application for Accounts Payable, Contract Management, Inventory Management, and Purchasing. The PeopleSoft (PS) software is an integrated application for General Ledger, Project Costing, Human Resources, Payroll, Benefits, and Training. The implementation of this set of products, as the first deliverable of the HAND1 2000 Project, is referred to asmore » Business Management System (BMS) and Chemical Management.« less

  7. Highlights of X-Stack ExM Deliverable: MosaStore

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ripeanu, Matei

    2016-07-20

    This brief report highlights the experience gained with MosaStore, an exploratory part of the X-Stack project “ExM: System support for extreme-scale, many-task applications”. The ExM project proposed to use concurrent workflows supported by the Swift language and runtime as an innovative programming model to exploit parallelism in exascale computers. MosaStore aims to support this endeavor by improving storage support for workflow-based applications, more precisely by exploring the gains that can be obtained from co-designing the storage system and the workflow runtime engine. MosaStore has been developed primarily at the University of British Columbia.

  8. PIPER: Performance Insight for Programmers and Exascale Runtimes: Guiding the Development of the Exascale Software Stack

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mellor-Crummey, John

    The PIPER project set out to develop methodologies and software for measurement, analysis, attribution, and presentation of performance data for extreme-scale systems. Goals of the project were to support analysis of massive multi-scale parallelism, heterogeneous architectures, multi-faceted performance concerns, and to support both post-mortem performance analysis to identify program features that contribute to problematic performance and on-line performance analysis to drive adaptation. This final report summarizes the research and development activity at Rice University as part of the PIPER project. Producing a complete suite of performance tools for exascale platforms during the course of this project was impossible since bothmore » hardware and software for exascale systems is still a moving target. For that reason, the project focused broadly on the development of new techniques for measurement and analysis of performance on modern parallel architectures, enhancements to HPCToolkit’s software infrastructure to support our research goals or use on sophisticated applications, engaging developers of multithreaded runtimes to explore how support for tools should be integrated into their designs, engaging operating system developers with feature requests for enhanced monitoring support, engaging vendors with requests that they add hardware measure- ment capabilities and software interfaces needed by tools as they design new components of HPC platforms including processors, accelerators and networks, and finally collaborations with partners interested in using HPCToolkit to analyze and tune scalable parallel applications.« less

  9. Weather responsive traffic signal timing in Utah Department of Transportation.

    DOT National Transportation Integrated Search

    1993-06-01

    The Design of Support Systems for Advanced Traffic Management Systems Project is a five-year program to define, design, and field test prototype systems to support the multitude of functions within Traffic Management Centers (TMC). Mature TMCs of the...

  10. A case study of the Maintenance Decision Support System (MDSS) in Maine.

    DOT National Transportation Integrated Search

    2007-09-10

    This report presents the results of a case study evaluation of a Maintenance Decision Support System (MDSS) project under a program funded by the U.S. Department of Transportations (USDOT) Intelligent Transportation Systems (ITS) Joint Program Off...

  11. Automated Procurement System (APS): Project management plan (DS-03), version 1.2

    NASA Technical Reports Server (NTRS)

    Murphy, Diane R.

    1994-01-01

    The National Aeronautics and Space Administration (NASA) Marshall Space Flight Center (MSFC) is implementing an Automated Procurement System (APS) to streamline its business activities that are used to procure goods and services. This Project Management Plan (PMP) is the governing document throughout the implementation process and is identified as the APS Project Management Plan (DS-03). At this point in time, the project plan includes the schedules and tasks necessary to proceed through implementation. Since the basis of APS is an existing COTS system, the implementation process is revised from the standard SDLC. The purpose of the PMP is to provide the framework for the implementation process. It discusses the roles and responsibilities of the NASA project staff, the functions to be performed by the APS Development Contractor (PAI), and the support required of the NASA computer support contractor (CSC). To be successful, these three organizations must work together as a team, working towards the goals established in this Project Plan. The Project Plan includes a description of the proposed system, describes the work to be done, establishes a schedule of deliverables, and discusses the major standards and procedures to be followed.

  12. NASA System Engineering Design Process

    NASA Technical Reports Server (NTRS)

    Roman, Jose

    2011-01-01

    This slide presentation reviews NASA's use of systems engineering for the complete life cycle of a project. Systems engineering is a methodical, disciplined approach for the design, realization, technical management, operations, and retirement of a system. Each phase of a NASA project is terminated with a Key decision point (KDP), which is supported by major reviews.

  13. Energy Systems Integration Newsletter | Energy Systems Integration Facility

    Science.gov Websites

    simulated sequences based on a model network. The competitive procurement process provided comparative , procurement help, design reviews, and now construction support. Miramar project support is part of integrated

  14. Research to Real Life, 2006: Innovations in Deaf-Blindness

    ERIC Educational Resources Information Center

    Leslie, Gail, Ed.

    2006-01-01

    This publication presents several projects that support children who are deaf-blind. These projects are: (1) Learning To Learn; (2) Project SALUTE; (3) Project SPARKLE; (4) Bringing It All Back Home; (5) Project PRIIDE; and (6) Including Students With Deafblindness In Large Scale Assessment Systems. Each project lists components, key practices,…

  15. Configuration management issues and objectives for a real-time research flight test support facility

    NASA Technical Reports Server (NTRS)

    Yergensen, Stephen; Rhea, Donald C.

    1988-01-01

    Presented are some of the critical issues and objectives pertaining to configuration management for the NASA Western Aeronautical Test Range (WATR) of Ames Research Center. The primary mission of the WATR is to provide a capability for the conduct of aeronautical research flight test through real-time processing and display, tracking, and communications systems. In providing this capability, the WATR must maintain and enforce a configuration management plan which is independent of, but complimentary to, various research flight test project configuration management systems. A primary WATR objective is the continued development of generic research flight test project support capability, wherein the reliability of WATR support provided to all project users is a constant priority. Therefore, the processing of configuration change requests for specific research flight test project requirements must be evaluated within a perspective that maintains this primary objective.

  16. A support architecture for reliable distributed computing systems

    NASA Technical Reports Server (NTRS)

    Dasgupta, Partha; Leblanc, Richard J., Jr.

    1988-01-01

    The Clouds project is well underway to its goal of building a unified distributed operating system supporting the object model. The operating system design uses the object concept of structuring software at all levels of the system. The basic operating system was developed and work is under progress to build a usable system.

  17. The Contribution of Project Environmental Assessment to Assessing and Managing Cumulative Effects: Individually and Collectively Insignificant?

    PubMed

    Noble, Bram; Liu, Jialang; Hackett, Paul

    2017-04-01

    This paper explores the opportunities and constraints to project-based environmental assessment as a means to support the assessment and management of cumulative environmental effects. A case study of the hydroelectric sector is used to determine whether sufficient information is available over time through project-by-project assessments to support an adequate understanding of cumulative change. Results show inconsistency from one project to the next in terms of the components and indicators assessed, limited transfer of baseline information between project assessments over time, and the same issues and concerns being raised by review panels-even though the projects reviewed are operating in the same watershed and operated by the same proponent. Project environmental assessments must be managed, and coordinated, as part of a larger system of impact assessment, if project-by-project assessments are to provide a meaningful forum for learning and understanding cumulative change. The paper concludes with recommendations for improved project-based assessment practice in support of cumulative effects assessment and management.

  18. Decision Support Systems Project. Design Review Conference, October 14-15, 1984. Summary Report of Findings.

    ERIC Educational Resources Information Center

    Tetlow, William L.

    Findings of a conference that reviewed and evaluated design decisions concerning the Decision Support System (DSS) Demonstrator are summarized. The DSS Demonstrator was designed by the National Center for Higher Education Management Systems as an example of the way in which microcomputer technology can support and make more effective planning and…

  19. Data collection operational support system, part 1. [collected from satellite terminals operating as part of the ATS 6 project

    NASA Technical Reports Server (NTRS)

    Woughter, W. R., Jr.

    1975-01-01

    The Data Collection Operational Support system has been shown to be a usable means of transmitting numerical data over a 2-way VHF satellite link. It is also capable of supporting educational applications. The design, operation, use, results, and recommendations of the system are discussed.

  20. NREL and Sandia National Laboratories (SNL) Support of Ocean Renewable Power Company's TidGen™ Power System Technology Readiness Advancement Initiative Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LiVecchi, Al

    2015-05-07

    This document summarizes the tasks identified for National Laboratory technical support of Ocean Renewable Power Corporation (ORPC) DOE grant awarded under the FY10 Industry Solicitation DE-FOA-0000293: Technology Readiness Advancement Initiative. The system ORPC will deploy in Cobscook Bay, ME is known as the TidGen™ Power System. The Turbine Generator Unit (TGU) each have a rated capacity of 150 to 175 kW, and they are mounted on bottom support frames and connected to an onshore substation using an underwater power and control cable. This system is designed for tidal energy applications in water depths from 60 to 150 feet. In fundingmore » provided separately by DOE, National Laboratory partners NREL and SNL will provide in-kind resources and technical expertise to help ensure that industry projects meet DOE WWPP (Wind and Water Power Program) objectives by reducing risk to these high value projects.« less

  1. Metrics, The Measure of Your Future: Evaluation Report, 1977.

    ERIC Educational Resources Information Center

    North Carolina State Dept. of Public Instruction, Raleigh. Div. of Development.

    The primary goal of the Metric Education Project was the systematic development of a replicable educational model to facilitate the system-wide conversion to the metric system during the next five to ten years. This document is an evaluation of that project. Three sets of statistical evidence exist to support the fact that the project has been…

  2. The ECLSS Advanced Automation Project Evolution and Technology Assessment

    NASA Technical Reports Server (NTRS)

    Dewberry, Brandon S.; Carnes, James R.; Lukefahr, Brenda D.; Rogers, John S.; Rochowiak, Daniel M.; Mckee, James W.; Benson, Brian L.

    1990-01-01

    Viewgraphs on Environmental Control and Life Support System (ECLSS) advanced automation project evolution and technology assessment are presented. Topics covered include: the ECLSS advanced automation project; automatic fault diagnosis of ECLSS subsystems descriptions; in-line, real-time chemical and microbial fluid analysis; and object-oriented, distributed chemical and microbial modeling of regenerative environmental control systems description.

  3. Software conversion history of the Flight Dynamics System (FDS)

    NASA Technical Reports Server (NTRS)

    Liu, K.

    1984-01-01

    This report summarizes the overall history of the Flight Dynamics System (FDS) applications software conversion project. It describes the background and nature of the project; traces the actual course of conversion; assesses the process, product, and personnel involved; and offers suggestions for future projects. It also contains lists of pertinent reference material and examples of supporting data.

  4. Decision support systems for transportation system management and operations (TSM&O).

    DOT National Transportation Integrated Search

    2015-12-01

    There is a need for the development of tools and methods to support off-line and real-time : planning and operation decisions associated with the Transportation System Management and : Operations (TSM&O) program. The goal of this proposed project is ...

  5. Proposed Scientific Support to the Land Vehicle Crew Training System (LVCTS) Project Requirements Definition

    DTIC Science & Technology

    2013-01-01

    proposed acquisition of a variety of armoured vehicle simulators for training within the Canadian Forces. The Directorate of Land Requirements (DLR... armoured vehicle operations under the Land Vehicle Crew Training System (LVCTS) project. DLR has published a Letter of Interest (LOI) to solicit input...LVCTS project staff to discuss the intent of the project. Qualification Standards and Training Plans for several military armoured vehicle

  6. Life systems for a lunar base

    NASA Technical Reports Server (NTRS)

    Nelson, Mark; Hawes, Philip B.; Augustine, Margret

    1992-01-01

    The Biosphere 2 project is pioneering work on life systems that can serve as a prototype for long-term habitation on the Moon. This project will also facilitate the understanding of the smaller systems that will be needed for initial lunar base life-support functions. In its recommendation for a policy for the next 50 years in space, the National Commission on Space urged, 'To explore and settle the inner Solar System, we must develop biospheres of smaller size, and learn how to build and maintain them' (National Commission on Space, 1986). The Biosphere 2 project, along with its Biospheric Research and Development Center, is a materially closed and informationally and energetically open system capable of supporting a human crew of eight, undertaking work to meet this need. This paper gives an overview of the Space Biospheres Ventures' endeavor and its lunar applications.

  7. Valuing real estate externality-based option in development of transit system projects.

    DOT National Transportation Integrated Search

    2010-03-01

    Capital-intensive transit projects rely on strong public support and availability of funds. While the general : public has become a strong advocate for transit systems, budget shortfalls and financial constraints are still : resulting in delays in pr...

  8. Imaging informatics-based multimedia ePR system for data management and decision support in rehabilitation research

    NASA Astrophysics Data System (ADS)

    Wang, Ximing; Verma, Sneha; Qin, Yi; Sterling, Josh; Zhou, Alyssa; Zhang, Jeffrey; Martinez, Clarisa; Casebeer, Narissa; Koh, Hyunwook; Winstein, Carolee; Liu, Brent

    2013-03-01

    With the rapid development of science and technology, large-scale rehabilitation centers and clinical rehabilitation trials usually involve significant volumes of multimedia data. Due to the global aging crisis, millions of new patients with age-related chronic diseases will produce huge amounts of data and contribute to soaring costs of medical care. Hence, a solution for effective data management and decision support will significantly reduce the expenditure and finally improve the patient life quality. Inspired from the concept of the electronic patient record (ePR), we developed a prototype system for the field of rehabilitation engineering. The system is subject or patient-oriented and customized for specific projects. The system components include data entry modules, multimedia data presentation and data retrieval. To process the multimedia data, the system includes a DICOM viewer with annotation tools and video/audio player. The system also serves as a platform for integrating decision-support tools and data mining tools. Based on the prototype system design, we developed two specific applications: 1) DOSE (a phase 1 randomized clinical trial to determine the optimal dose of therapy for rehabilitation of the arm and hand after stroke.); and 2) NEXUS project from the Rehabilitation Engineering Research Center(RERC, a NIDRR funded Rehabilitation Engineering Research Center). Currently, the system is being evaluated in the context of the DOSE trial with a projected enrollment of 60 participants over 5 years, and will be evaluated by the NEXUS project with 30 subjects. By applying the ePR concept, we developed a system in order to improve the current research workflow, reduce the cost of managing data, and provide a platform for the rapid development of future decision-support tools.

  9. NASA Advanced Explorations Systems: Advancements in Life Support Systems

    NASA Technical Reports Server (NTRS)

    Shull, Sarah A.; Schneider, Walter F.

    2016-01-01

    The NASA Advanced Exploration Systems (AES) Life Support Systems (LSS) project strives to develop reliable, energy-efficient, and low-mass spacecraft systems to provide environmental control and life support systems (ECLSS) critical to enabling long duration human missions beyond low Earth orbit (LEO). Highly reliable, closed-loop life support systems are among the capabilities required for the longer duration human space exploration missions assessed by NASA's Habitability Architecture Team (HAT). The LSS project is focused on four areas: architecture and systems engineering for life support systems, environmental monitoring, air revitalization, and wastewater processing and water management. Starting with the international space station (ISS) LSS systems as a point of departure (where applicable), the mission of the LSS project is three-fold: 1. Address discrete LSS technology gaps 2. Improve the reliability of LSS systems 3. Advance LSS systems towards integrated testing on the ISS. This paper summarized the work being done in the four areas listed above to meet these objectives. Details will be given on the following focus areas: Systems Engineering and Architecture- With so many complex systems comprising life support in space, it is important to understand the overall system requirements to define life support system architectures for different space mission classes, ensure that all the components integrate well together and verify that testing is as representative of destination environments as possible. Environmental Monitoring- In an enclosed spacecraft that is constantly operating complex machinery for its own basic functionality as well as science experiments and technology demonstrations, it's possible for the environment to become compromised. While current environmental monitors aboard the ISS will alert crew members and mission control if there is an emergency, long-duration environmental monitoring cannot be done in-orbit as current methodologies rely largely on sending environmental samples back to Earth. The LSS project is developing onboard analysis capabilities that will replace the need to return air and water samples from space for ground analysis. Air Revitalization- The air revitalization task is comprised of work in carbon dioxide removal, oxygen generation and recovery and trace contamination and particulate control. The CO2 Removal and associated air drying development efforts under the LSS project are focused both on improving the current SOA technology on the ISS and assessing and examining the viability of other sorbents and technologies available in academia and industry. The Oxygen Generation and Recovery technology development area encompasses several sub-tasks in an effort to supply O2 to the crew at the required conditions, to recover O2 from metabolic CO2, and to recycle recovered O2 back to the cabin environment. Current state-of-the-art oxygen generation systems aboard space station are capable of generating or recovering approximately 40% of required oxygen; for exploration missions this percentage needs to be greatly increased. A spacecraft cabin trace contaminant and particulate control system serves to keep the environment below the spacecraft maximum allowable concentration (SMAC) for chemicals and particulates. Both passive (filters) and active (scrubbers) methods contribute to the overall TC & PC design. Work in the area of trace contamination and particulate control under the LSS project is focused on making improvements to the SOA TC & PC systems on ISS to improve performance and reduce consumables. Wastewater Processing and Water Management- A major goal of the LSS project is the development of water recovery systems to support long duration human exploration beyond LEO. Current space station wastewater processing and water management systems distill urine and wastewater to recover water from urine and humidity condensate in the spacecraft at a approximately 74% recovery rate. For longer, farther missions into deep space, that recovery rate must be greatly increased so that astronauts can journey for months without resupply cargo ships from Earth.

  10. Environmental Control and Life Support System Reliability for Long-Duration Missions Beyond Lower Earth Orbit

    NASA Technical Reports Server (NTRS)

    Sargusingh, Miriam J.; Nelson, Jason R.

    2014-01-01

    NASA has highlighted reliability as critical to future human space exploration, particularly in the area of environmental controls and life support systems. The Advanced Exploration Systems (AES) projects have been encouraged to pursue higher reliability components and systems as part of technology development plans. However, no consensus has been reached on what is meant by improving on reliability, or on how to assess reliability within the AES projects. This became apparent when trying to assess reliability as one of several figures of merit for a regenerable water architecture trade study. In the spring of 2013, the AES Water Recovery Project hosted a series of events at Johnson Space Center with the intended goal of establishing a common language and understanding of NASA's reliability goals, and equipping the projects with acceptable means of assessing the respective systems. This campaign included an educational series in which experts from across the agency and academia provided information on terminology, tools, and techniques associated with evaluating and designing for system reliability. The campaign culminated in a workshop that included members of the Environmental Control and Life Support System and AES communities. The goal of this workshop was to develop a consensus on what reliability means to AES and identify methods for assessing low- to mid-technology readiness level technologies for reliability. This paper details the results of that workshop.

  11. Management assessment of tank waste remediation system contractor readiness to proceed with phase 1B privatization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Certa, P.J.

    1998-01-07

    Readiness to Proceed With Phase 1B Privatization documents the processes used to determine readiness to proceed with tank waste treatment technologies from private industry, now known as TWRS privatization. An overall systems approach was applied to develop action plans to support the retrieval and disposal mission of the TWRS Project. The systems and infrastructure required to support the mission are known. Required systems are either in place or plans have been developed to ensure they exist when needed. Since October 1996 a robust system engineering approach to establishing integrated Technical Baselines, work breakdown structures, tank farms organizational structure and configurations,more » work scope, and costs has become part of the culture within the TWRS Project. An analysis of the programmatic, management, and technical activities necessary to declare readiness to proceed with execution of the mission demonstrates that the system, personnel, and hardware will be on line and ready to support the private contractors. The systems approach included defining the retrieval and disposal mission requirements and evaluating the readiness of the Project Hanford Management Contract (PHMC) team to support initiation of waste processing by the private contractors in June 2002 and to receive immobilized waste shortly thereafter. The Phase 1 feed delivery requirements from the private contractor Requests for Proposal were reviewed. Transfer piping routes were mapped, existing systems were evaluated, and upgrade requirements were defined.« less

  12. Reengineering the Project Design Process

    NASA Technical Reports Server (NTRS)

    Casani, E.; Metzger, R.

    1994-01-01

    In response to NASA's goal of working faster, better and cheaper, JPL has developed extensive plans to minimize cost, maximize customer and employee satisfaction, and implement small- and moderate-size missions. These plans include improved management structures and processes, enhanced technical design processes, the incorporation of new technology, and the development of more economical space- and ground-system designs. The Laboratory's new Flight Projects Implementation Office has been chartered to oversee these innovations and the reengineering of JPL's project design process, including establishment of the Project Design Center and the Flight System Testbed. Reengineering at JPL implies a cultural change whereby the character of its design process will change from sequential to concurrent and from hierarchical to parallel. The Project Design Center will support missions offering high science return, design to cost, demonstrations of new technology, and rapid development. Its computer-supported environment will foster high-fidelity project life-cycle development and cost estimating.

  13. Advanced Life Support

    NASA Technical Reports Server (NTRS)

    Chambliss, Joe

    2004-01-01

    Viewgraphs on Advanced Life Support (ALS) Systems are presented. The topics include: 1) Fundamental Need for Advanced Life Support; 2) ALS organization; 3) Requirements and Rationale; 4) Past Integrated tests; 5) The need for improvements in life support systems; 6) ALS approach to meet exploration goals; 7) ALS Projects showing promise to meet exploration goals; and 9) GRC involvement in ALS.

  14. Description and Performance Characteristics of a Captive Airfoil Balloon System Used in the Initial Phase of the Aeropalynologic Survey Project

    NASA Technical Reports Server (NTRS)

    Silbert, Mendel N.

    1967-01-01

    The purpose of this paper is to present results of a system analysis and operational evaluation of a captive airfoil balloon system. The system was used operationally in support of an Aeropalynologic Survey Project at NASA Wallops Island, Virginia, during the summer of 1966.

  15. Nascom System Development Plan: System Description, Capabilities and Plans

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The NASA Communications (Nascom) System Development Plan (NSDP), reissued annually, describes the organization of Nascom, how it obtains communication services, its current systems, its relationship with other NASA centers and International Partner Agencies, some major spaceflight projects which generate significant operational communication support requirements, and major Nascom projects in various stages of development or implementation.

  16. Integrated Logistics Support approach: concept for the new big projects: E-ELT, SKA, CTA

    NASA Astrophysics Data System (ADS)

    Marchiori, G.; Rampini, F.; Formentin, F.

    2014-08-01

    The Integrated Logistic Support is a process supporting strategies and optimizing activities for a correct project management and system engineering development. From the design & engineering of complex technical systems, to the erection on site, acceptance and after-sales service, EIE GROUP covers all aspects of the Integrated Logistics Support (ILS) process that includes: costing process centered around the life cycle cost and Level of Repair Analyses; engineering process which influences the design via means of reliability, modularization, etc.; technical publishing process based on international specifications; ordering administration process for supply support. Through the ILS, EIE GROUP plans and directs the identification and development of logistics support and system requirements for its products, with the goal of creating systems that last longer and require less support, thereby reducing costs and increasing return on investments. ILS therefore, addresses these aspects of supportability not only during acquisition, but also throughout the operational life cycle of the system. The impact of the ILS is often measured in terms of metrics such as reliability, availability, maintainability and testability (RAMT), and System Safety (RAMS). Example of the criteria and approach adopted by EIE GROUP during the design, manufacturing and test of the ALMA European Antennas and during the design phase of the E-ELT telescope and Dome are presented.

  17. Commercial Crew Development Environmental Control and Life Support System Status

    NASA Technical Reports Server (NTRS)

    Williams, David E.

    2011-01-01

    The National Aeronautics and Space Administration (NASA) Commercial Crew Development (CCDev) Project was a short term Project that was managed within the Commercial Crew and Cargo Program Office (C3PO) to help develop and demonstrate a small number of key human spaceflight capabilities in support of moving towards a possible commercial crew transportation system to low earth orbit (LEO). It was intended to foster entrepreneurial activities with a few selected companies. The other purpose of the Project was to try to reduce some of the possible risk with a commercial crew transportation system to LEO. The entrepreneurial activities were encouraged with these few selected companies by NASA providing only part of the total funding to complete specific tasks that were jointly agreed to by NASA and the company. These joint agreements were documented in a Space Act Agreement (SAA) that was signed by NASA and the company. This paper will provide an overview of the CCDev Project and it will also discuss in detail the Environmental Control and Life Support (ECLS) tasks that were performed under CCDev.

  18. Fossil Energy Program

    NASA Astrophysics Data System (ADS)

    McNeese, L. E.

    1981-01-01

    Increased utilization of coal and other fossil fuel alternatives as sources of clean energy is reported. The following topics are discussed: coal conversion development, chemical research and development, materials technology, component development and process evaluation studies, technical support to major liquefaction projects, process analysis and engineering evaluations, fossil energy environmental analysis, flue gas desulfurization, solid waste disposal, coal preparation waste utilization, plant control development, atmospheric fluidized bed coal combustor for cogeneration, TVA FBC demonstration plant program technical support, PFBC systems analysis, fossil fuel applications assessments, performance assurance system support for fossil energy projects, international energy technology assessment, and general equilibrium models of liquid and gaseous fuel supplies.

  19. Aids to navigation service force mix 2000 project. Volume 1 : development and application of an aids to navigation service force mix decision support system

    DOT National Transportation Integrated Search

    1992-07-01

    The Aids to Navigation (ATON) Service Force Mix (SFM) 2000 Project is documented in a Project Overview and three separately bound volumes. This is the Project Overview. The Project Overview describes the purpose, approach, analysis, and results of th...

  20. Health system and societal barriers for gestational diabetes mellitus (GDM) services - lessons from World Diabetes Foundation supported GDM projects.

    PubMed

    Nielsen, Karoline Kragelund; de Courten, Maximilian; Kapur, Anil

    2012-12-05

    Maternal mortality and morbidity remains high in many low- and middle-income countries (LMIC). Gestational Diabetes Mellitus (GDM) represents an underestimated and unrecognised impediment to optimal maternal health in LMIC; left untreated - it also has severe consequences for the offspring. A better understanding of the barriers hindering detection and treatment of GDM is needed. Based on experiences from World Diabetes Foundation (WDF) supported GDM projects this paper seeks to investigate societal and health system barriers to such efforts. Questionnaires were filled out by 10 WDF supported GDM project partners implementing projects in eight different LMIC. In addition, interviews were conducted with the project partners. The interviews were analysed using content analysis. Barriers to improving maternal health related to GDM nominated by project implementers included lack of trained health care providers - especially female doctors; high staff turnover; lack of standard protocols, consumables and equipment; financing of health services and treatment; lack of or poor referral systems, feedback mechanisms and follow-up systems; distance to health facility; perceptions of female body size and weight gain/loss in relation to pregnancy; practices related to pregnant women's diet; societal negligence of women's health; lack of decision-making power among women regarding their own health; stigmatisation; role of women in society and expectations that the pregnant woman move to her maternal home for delivery. A number of barriers within the health system and society exist. Programmes need to consider and address these barriers in order to improve GDM care and thereby maternal health in LMIC.

  1. Scratchpads 2.0: a Virtual Research Environment supporting scholarly collaboration, communication and data publication in biodiversity science.

    PubMed

    Smith, Vincent S; Rycroft, Simon D; Brake, Irina; Scott, Ben; Baker, Edward; Livermore, Laurence; Blagoderov, Vladimir; Roberts, David

    2011-01-01

    The Scratchpad Virtual Research Environment (http://scratchpads.eu/) is a flexible system for people to create their own research networks supporting natural history science. Here we describe Version 2 of the system characterised by the move to Drupal 7 as the Scratchpad core development framework and timed to coincide with the fifth year of the project's operation in late January 2012. The development of Scratchpad 2 reflects a combination of technical enhancements that make the project more sustainable, combined with new features intended to make the system more functional and easier to use. A roadmap outlining strategic plans for development of the Scratchpad project over the next two years concludes this article.

  2. The Childhood Obesity Research Demonstration project: a team approach for supporting a multisite, multisector intervention.

    PubMed

    Williams, Nancy; Dooyema, Carrie A; Foltz, Jennifer L; Belay, Brook; Blanck, Heidi M

    2015-02-01

    Comprehensive multisector, multilevel approaches are needed to address childhood obesity. This article introduces the structure of a multidisciplinary team approach used to support and guide the multisite, multisector interventions implemented as part of the Childhood Obesity Research Demonstration (CORD) project. This article will describe the function, roles, and lessons learned from the CDC-CORD approach to project management. The CORD project works across multisectors and multilevels in three demonstration communities. Working with principal investigators and their research teams who are engaging multiple stakeholder groups, including community organizations, schools and child care centers, health departments, and healthcare providers, can be a complex endeavor. To best support the community-based research project, scientific and programmatic expertise in a wide range of areas was required. The team was configured based on the skill sets needed to interact with the various levels of staff working with the project. By thoughtful development of the team and processes, an efficient system for supporting the multisite, multisector intervention project sites was developed. The team approach will be formally evaluated at the end of the project period.

  3. Human support issues and systems for the space exploration initiative: Results from Project Outreach

    NASA Technical Reports Server (NTRS)

    Aroesty, J.; Zimmerman, R.; Logan, J.

    1991-01-01

    The analyses and evaluations of the Human Support panel are discussed. The Human Support panel is one of eight panels created by RAND to screen and analyze submissions to the Space Exploration Initiative (SEI) Outreach Program. Submissions to the Human Support panel were in the following areas: radiation protection; microgravity; life support systems; medical care; and human factors (behavior and performance).

  4. Community Garden Information Systems: Analyzing and Strengthening Community-Based Resource Sharing Networks

    ERIC Educational Resources Information Center

    Loria, Kristen

    2013-01-01

    Extension professionals play an increasingly central role in supporting community garden and other community-based agriculture projects. With growing interest in community gardens as tools to improve community health and vitality, the best strategies for supporting these projects should be explored. Due to the importance of inter-personal networks…

  5. Accruals for HANDI 2000 business management system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, D.

    The Data Integration 2000 Project will result in an integrated and comprehensive set of functional applications containing core information necessary to support the Project Hanford Management Contract. It is based on the Commercial-Off-The-Shelf product solution with commercially proven business processes. The COTS product solution set, of PassPort and People Soft software, supports finance, supply and chemical management/Material Safety Data Sheet, human resources. Accruals are made at the project level. At the inception of each project, Project Management and the Accounts Payable Group make a mutual decision on whether periodic accrual entries should be made for it.

  6. Plan for CELSS test bed project

    NASA Technical Reports Server (NTRS)

    Knott, W. M.

    1986-01-01

    The Closed Ecological Life Support Systems (CELSS) testbed project will achieve two major goals: It will develop the knowledge and technology needed to build and test biological or combined biological physiochemical regenerative life support systems. It will fabricate, test, and operate ground based facilities to accomplish proof-of-concent testing and evaluation leading to flight experimentation. The project will combine basic research and applied research/engineering to achieve a phased, integrated development of hardware, systems, and techniques for food and oxygen production, food processing, and waste processing in closed systems. The project will design, fabricate, and operate within three years a botanical production system scaled to a sufficient size to verify oxygen and nutrient load production (carbohydrates, fats, proteins) at a useable level. It will develop within five years a waste management system compatible with the botanical production system and a food processing system that converts available biomass into edible products. It will design, construct, and operate within ten years a ground based candidate CELSS that includes man as an active participant in the system. It will design a flight CELSS module within twelve years and construct and conduct initial flight tests within fifteen years.

  7. Enhancing the Reflexivity of System Innovation Projects with System Analyses

    ERIC Educational Resources Information Center

    van Mierlo, Barbara; Arkesteijn, Marlen; Leeuwis, Cees

    2010-01-01

    Networks aiming for fundamental changes bring together a variety of actors who are part and parcel of a problematic context. These system innovation projects need to be accompanied by a monitoring and evaluation approach that supports and maintains reflexivity to be able to deal with uncertainties and conflicts while challenging current practices…

  8. Power Extension Package (PEP) system definition extension, orbital service module systems analysis study. Volume 12: PEP data item descriptions

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Contractor information requirements necessary to support the power extension package project of the space shuttle program are specified for the following categories of data: project management; configuration management; systems engineering and test; manufacturing; reliability, quality assurance and safety; logistics; training; and operations.

  9. Progress in solar thermal distributed receiver technology

    NASA Astrophysics Data System (ADS)

    Leonard, J. A.; Otts, J. V.

    A brief discussion is given on the fundamentals of parabolic dish collectors. Private and Department of Energy supported projects which employ parabolic dish collector systems are described. These projects include: the Distribution Receiver Test Facility, Shenandoah Solar Total Energy Project, Vangurd I, Solar Plant No. 1, the Dish/Stirling Solar Electric Generating System, the Organic Rankine Cycle, and the Solarized Automotive Gas Turbine.

  10. Harmony in Career Learning and Scholastic System (Project HI-CLASS). Final Evaluation Report 1992-93. OREA Report.

    ERIC Educational Resources Information Center

    Duque, Diana L.

    Harmony in Career Learning and Scholastic System (Project HI-CLASS) was a Transitional Bilingual Education Title VII-funded program in its fifth and final year in 1992-93. The project offered instructional and support services to 641 students of limited English proficiency (LEP) at three sites, all of which had many immigrant students, in…

  11. Northwest Region Clean Energy Application Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sjoding, David

    2013-09-30

    The main objective of the Northwest Clean Energy Application Center (NW CEAC) is to promote and support implementation of clean energy technologies. These technologies include combined heat and power (CHP), district energy, waste heat recovery with a primary focus on waste heat to power, and other related clean energy systems such as stationary fuel cell CHP systems. The northwest states include AK, ID, MT, OR, and WA. The key aim/outcome of the Center is to promote and support implementation of clean energy projects. Implemented projects result in a number of benefits including increased energy efficiency, renewable energy development (when usingmore » opportunity fuels), reduced carbon emissions, improved facility economics helping to preserve jobs, and reduced criteria pollutants calculated on an output-based emissions basis. Specific objectives performed by the NW CEAC fall within the following five broad promotion and support categories: 1) Center management and planning including database support; 2) Education and Outreach including plan development, website, target market workshops, and education/outreach materials development 3) Identification and provision of screening assessments & feasibility studies as funded by the facility or occasionally further support of Potential High Impact Projects; 4) Project implementation assistance/trouble shooting; and 5) Development of a supportive clean energy policy and initiative/financing framework.« less

  12. The intelligent user interface for NASA's advanced information management systems

    NASA Technical Reports Server (NTRS)

    Campbell, William J.; Short, Nicholas, Jr.; Rolofs, Larry H.; Wattawa, Scott L.

    1987-01-01

    NASA has initiated the Intelligent Data Management Project to design and develop advanced information management systems. The project's primary goal is to formulate, design and develop advanced information systems that are capable of supporting the agency's future space research and operational information management needs. The first effort of the project was the development of a prototype Intelligent User Interface to an operational scientific database, using expert systems and natural language processing technologies. An overview of Intelligent User Interface formulation and development is given.

  13. The Lao PDR Inclusive Education Project 1993-2009: Reflections on the Impact of a National Project Aiming to Support the Inclusion of Disabled Students

    ERIC Educational Resources Information Center

    Grimes, Peter; Sayarath, Khomvanh; Outhaithany, Sithath

    2011-01-01

    The Lao People's Democratic Republic Inclusive Education Project started in 1993 and during a 16-year period, ending in May 2009, it aimed to support the participation of all children in school, with a particular focus on disabled students. The main strategy to enable this involved working to change the education system through the introduction of…

  14. Real-time operating system for selected Intel processors

    NASA Technical Reports Server (NTRS)

    Pool, W. R.

    1980-01-01

    The rationale for system development is given along with reasons for not using vendor supplied operating systems. Although many system design and performance goals were dictated by problems with vendor supplied systems, other goals surfaced as a result of a design for a custom system able to span multiple projects. System development and management problems and areas that required redesign or major code changes for system implementation are examined as well as the relative successes of the initial projects. A generic description of the actual project is provided and the ongoing support requirements and future plans are discussed.

  15. Technical Requirements Analysis and Control Systems (TRACS) Initial Operating Capability (IOC) documentation

    NASA Technical Reports Server (NTRS)

    Hammond, Dana P.

    1991-01-01

    The Technical Requirements Analysis and Control Systems (TRACS) software package is described. TRACS offers supplemental tools for the analysis, control, and interchange of project requirements. This package provides the fundamental capability to analyze and control requirements, serves a focal point for project requirements, and integrates a system that supports efficient and consistent operations. TRACS uses relational data base technology (ORACLE) in a stand alone or in a distributed environment that can be used to coordinate the activities required to support a project through its entire life cycle. TRACS uses a set of keyword and mouse driven screens (HyperCard) which imposes adherence through a controlled user interface. The user interface provides an interactive capability to interrogate the data base and to display or print project requirement information. TRACS has a limited report capability, but can be extended with PostScript conventions.

  16. Development of medical data information systems

    NASA Technical Reports Server (NTRS)

    Anderson, J.

    1971-01-01

    Computerized storage and retrieval of medical information is discussed. Tasks which were performed in support of the project are: (1) flight crew health stabilization computer system, (2) medical data input system, (3) graphic software development, (4) lunar receiving laboratory support, and (5) Statos V printer/plotter software development.

  17. Colliding Winds and Tomography of O-Type Binaries

    NASA Technical Reports Server (NTRS)

    Gies, Dougles R.

    1995-01-01

    This grant was awarded in support of an observational study with the NASA IUE Observatory during the 15th episode (1992), and it subsequently also supported our continuing work in 16th (1994) and 18th (1995) episodes. The project involved the study of FUV spectra of massive spectroscopic binary systems containing hot stars of spectral type O. We applied a Doppler tomography algorithm to reconstruct the individual component UV spectra of stars in order to obtain improved estimates of the temperature, gravity, UV intensity ratio, and projected rotational velocity for stars in each system, and to make a preliminary survey for abundance anomalies through comparison with standard spectra. We also investigated the orbital phase-related variations in the UV stellar wind lines to probe the geometries of wind-wind collisions in these systems. The project directly supported two Ph.D. dissertations at Georgia State University (by Penny and Thaller), and we are grateful for this support. No inventions were made in the performance of this work. Detailed results are summarized in the abstracts listed in the following section.

  18. A general-purpose development environment for intelligent computer-aided training systems

    NASA Technical Reports Server (NTRS)

    Savely, Robert T.

    1990-01-01

    Space station training will be a major task, requiring the creation of large numbers of simulation-based training systems for crew, flight controllers, and ground-based support personnel. Given the long duration of space station missions and the large number of activities supported by the space station, the extension of space shuttle training methods to space station training may prove to be impractical. The application of artificial intelligence technology to simulation training can provide the ability to deliver individualized training to large numbers of personnel in a distributed workstation environment. The principal objective of this project is the creation of a software development environment which can be used to build intelligent training systems for procedural tasks associated with the operation of the space station. Current NASA Johnson Space Center projects and joint projects with other NASA operational centers will result in specific training systems for existing space shuttle crew, ground support personnel, and flight controller tasks. Concurrently with the creation of these systems, a general-purpose development environment for intelligent computer-aided training systems will be built. Such an environment would permit the rapid production, delivery, and evolution of training systems for space station crew, flight controllers, and other support personnel. The widespread use of such systems will serve to preserve task and training expertise, support the training of many personnel in a distributed manner, and ensure the uniformity and verifiability of training experiences. As a result, significant reductions in training costs can be realized while safety and the probability of mission success can be enhanced.

  19. The Earth System Documentation (ES-DOC) Software Process

    NASA Astrophysics Data System (ADS)

    Greenslade, M. A.; Murphy, S.; Treshansky, A.; DeLuca, C.; Guilyardi, E.; Denvil, S.

    2013-12-01

    Earth System Documentation (ES-DOC) is an international project supplying high-quality tools & services in support of earth system documentation creation, analysis and dissemination. It is nurturing a sustainable standards based documentation eco-system that aims to become an integral part of the next generation of exa-scale dataset archives. ES-DOC leverages open source software, and applies a software development methodology that places end-user narratives at the heart of all it does. ES-DOC has initially focused upon nurturing the Earth System Model (ESM) documentation eco-system and currently supporting the following projects: * Coupled Model Inter-comparison Project Phase 5 (CMIP5); * Dynamical Core Model Inter-comparison Project (DCMIP); * National Climate Predictions and Projections Platforms Quantitative Evaluation of Downscaling Workshop. This talk will demonstrate that ES-DOC implements a relatively mature software development process. Taking a pragmatic Agile process as inspiration, ES-DOC: * Iteratively develops and releases working software; * Captures user requirements via a narrative based approach; * Uses online collaboration tools (e.g. Earth System CoG) to manage progress; * Prototypes applications to validate their feasibility; * Leverages meta-programming techniques where appropriate; * Automates testing whenever sensibly feasible; * Streamlines complex deployments to a single command; * Extensively leverages GitHub and Pivotal Tracker; * Enforces strict separation of the UI from underlying API's; * Conducts code reviews.

  20. NREL Advances Wells Fargo Innovation Incubator Projects | Energy Systems

    Science.gov Websites

    Integration Facility | NREL NREL Advances Wells Fargo Innovation Incubator Projects NREL Advances Wells Fargo Innovation Incubator Projects NREL has provided technical support and validation testing at the ESIF to help advance Wells Fargo Innovation Incubator (IN2) projects. The IN2 program helps

  1. Sorbent Structural Impacts Due to Humidity on Carbon Dioxide Removal Sorbents for Advanced Exploration Systems

    NASA Technical Reports Server (NTRS)

    Watson, David; Knox, James C.; West, Phillip; Stanley, Christine M.; Bush, Richard

    2015-01-01

    The Life Support Systems Project (LSSP) under the Advanced Exploration Systems (AES) program builds upon the work performed under the AES Atmosphere Resource Recovery and Environmental Monitoring (ARREM) project focusing on the numerous technology development areas. The CO2 removal and associated air drying development efforts are focused on improving the current state-of-the-art system on the International Space Station (ISS) utilizing fixed beds of sorbent pellets by seeking more robust pelletized sorbents, evaluating structured sorbents, and examining alternate bed configurations to improve system efficiency and reliability. A component of the CO2 removal effort encompasses structural stability testing of existing and emerging sorbents. Testing will be performed on dry sorbents and sorbents that have been conditioned to three humidity levels. This paper describes the sorbent structural stability screening efforts in support of the LSS Project within the AES Program.

  2. AHMCT Intelligent Roadway Information System (IRIS) technical support and testing

    DOT National Transportation Integrated Search

    2011-12-31

    This report documents the research project AHMCT IRIS Technical Support and Testing, : performed under contract 65A0275, Task ID 1777. It presents an overview of the Intelligent : Roadway Information System (IRIS), and its design and function. ...

  3. AHMCT Intelligent Roadway Information System (IRIS) technical support and testing.

    DOT National Transportation Integrated Search

    2011-12-01

    This report documents the research project AHMCT IRIS Technical Support and Testing, : performed under contract 65A0275, Task ID 1777. It presents an overview of the Intelligent : Roadway Information System (IRIS), and its design and function. ...

  4. Development of a support software system for real-time HAL/S applications

    NASA Technical Reports Server (NTRS)

    Smith, R. S.

    1984-01-01

    Methodologies employed in defining and implementing a software support system for the HAL/S computer language for real-time operations on the Shuttle are detailed. Attention is also given to the management and validation techniques used during software development and software maintenance. Utilities developed to support the real-time operating conditions are described. With the support system being produced on Cyber computers and executable code then processed through Cyber or PDP machines, the support system has a production level status and can serve as a model for other software development projects.

  5. The Controlled Ecological Life Support System Antarctic Analog Project: Prototype Crop Production and Water Treatment System Performance

    NASA Technical Reports Server (NTRS)

    Bubenheim, David L.; Flynn, Michael T.; Bates, Maynard; Schlick, Greg; Kliss, Mark (Technical Monitor)

    1997-01-01

    The Controlled Ecological Life Support System (CELSS) Antarctic Analog Project (CAAP), is a joint endeavor between the National Science Foundation, Office of Polar Programs (NSF-OPP) and the NASA. The fundamental objective is to develop, deploy, and operate a testbed of advanced life support technologies at the Amundsen-Scott South Pole Station that enable the objectives of both the NSF and NASA. The functions of food production, water purification, and waste treatment, recycle and reduction provided by CAAP will improve the quality of life for the South Pole inhabitants, reduce logistics dependence, enhance safety and minimize environmental impacts associated with human presence on the polar plateau. Because of the analogous technical, scientific, and mission features with Planetary missions such as a mission to Mars, CAAP provides NASA with a method for validating technologies and overall approaches to supporting humans. Prototype systems for sewage treatment, water recycle and crop production are being evaluated at Ames Research Center. The product water from sewage treatment using a Wiped-Film Rotating Disk is suitable for input to the crop production system. The crop production system has provided an enhanced level of performance compared with projected performance for plant-based life support: an approximate 50% increase in productivity per unit area, more than a 65% decrease in power for plant lighting, and more than a 75% decrease in the total power requirement to produce an equivalent mass of edible biomass.

  6. MISSION: Mission and Safety Critical Support Environment. Executive overview

    NASA Technical Reports Server (NTRS)

    Mckay, Charles; Atkinson, Colin

    1992-01-01

    For mission and safety critical systems it is necessary to: improve definition, evolution and sustenance techniques; lower development and maintenance costs; support safe, timely and affordable system modifications; and support fault tolerance and survivability. The goal of the MISSION project is to lay the foundation for a new generation of integrated systems software providing a unified infrastructure for mission and safety critical applications and systems. This will involve the definition of a common, modular target architecture and a supporting infrastructure.

  7. The Feasibility of a Decision Support System for the Determination of Source Selection Evaluation Criteria

    DTIC Science & Technology

    1984-09-01

    is not only difficult and time consuming , but also crucial to the success of the project, the question is whether a decision support system designed...KtI I - uAujvhIMtf IENE In THE FEASIBILITY OF A DECISION SUPPORT SYSTEM FOR THE DETERMINATION OF SOURCE SELECTION EVALUATION ’CRITERIA THESIS .2...INSTITUTE OF TECHNOLOGY Wright-Patterson Air Force Base, Ohio DZM=0N STATEMENT A ,’r !’ILMILSHIM S /8 4 THE FEASIBILITY OF A DECISION SUPPORT SYSTEM FOR

  8. In-situ materials processing systems and bioregenerative life support systems interrelationships

    NASA Technical Reports Server (NTRS)

    Mignon, George V.; Frye, Robert J.

    1992-01-01

    The synergy and linkages between bioregenerative life support systems and the materials produced by in-situ materials processing systems was investigated. Such systems produce a broad spectrum of byproducts such as oxygen, hydrogen, processed soil material, ceramics, refractory, and other materials. Some of these materials may be utilized by bioregenerative systems either directly or with minor modifications. The main focus of this project was to investigate how these materials can be utilized to assist a bioregenerative life support system. Clearly the need to provide a sustainable bioregenerative life support system for long term human habitation of space is significant.

  9. Constellation Training Facility Support

    NASA Technical Reports Server (NTRS)

    Flores, Jose M.

    2008-01-01

    The National Aeronautics and Space Administration is developing the next set of vehicles that will take men back to the moon under the Constellation Program. The Constellation Training Facility (CxTF) is a project in development that will be used to train astronauts, instructors, and flight controllers on the operation of Constellation Program vehicles. It will also be used for procedure verification and validation of flight software and console tools. The CxTF will have simulations for the Crew Exploration Vehicle (CEV), Crew Module (CM), CEV Service Module (SM), Launch Abort System (LAS), Spacecraft Adapter (SA), Crew Launch Vehicle (CLV), Pressurized Cargo Variant CM, Pressurized Cargo Variant SM, Cargo Launch Vehicle, Earth Departure Stage (EDS), and the Lunar Surface Access Module (LSAM). The Facility will consist of part-task and full-task trainers, each with a specific set of mission training capabilities. Part task trainers will be used for focused training on a single vehicle system or set of related systems. Full task trainers will be used for training on complete vehicles and all of its subsystems. Support was provided in both software development and project planning areas of the CxTF project. Simulation software was developed for the hydraulic system of the Thrust Vector Control (TVC) of the ARES I launch vehicle. The TVC system is in charge of the actuation of the nozzle gimbals for navigation control of the upper stage of the ARES I rocket. Also, software was developed using C standards to send and receive data to and from hand controllers to be used in CxTF cockpit simulations. The hand controllers provided movement in all six rotational and translational axes. Under Project Planning & Control, support was provided to the development and maintenance of integrated schedules for both the Constellation Training Facility and Missions Operations Facilities Division. These schedules maintain communication between projects in different levels. The CxTF support provided is one that requires continuous maintenance since the project is still on initial development phases.

  10. Management assessment of tank waste remediation system contractor readiness to proceed with phase 1B privatization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Honeyman, J.O.

    1998-01-09

    This Management Assessment of Tank Waste Remediation System (TWRS) Contractor Readiness to Proceed With Phase 1B Privatization documents the processes used to determine readiness to proceed with tank waste treatment technologies from private industry, now known as TWRS privatization. An overall systems approach was applied to develop action plans to support the retrieval and disposal mission of the TWRS Project. The systems and infrastructure required to support the mission are known. Required systems are either in place or plans have been developed to ensure they exist when needed. Since October 1996 a robust system engineering approach to establishing integrated Technicalmore » Baselines, work breakdown structures, tank farms organizational structure and configurations, work scope, and costs has become part of the culture within the TWRS Project. An analysis of the programmatic, management, and technical activities necessary to declare readiness to proceed with execution of the mission demonstrates that the system, personnel, and hardware will be on-line and ready to support the private contractors. The systems approach included defining the retrieval and disposal mission requirements and evaluating the readiness of the Project Hanford Management Contract (PHMC) team to support initiation of waste processing by the private contractors in June 2002 and to receive immobilized waste shortly thereafter. The Phase 1 feed delivery requirements from the private contractor Requests for Proposal were reviewed. Transfer piping routes were mapped, existing systems were evaluated, and upgrade requirements were defined.« less

  11. Evaluation strategy : Puget Sound regional fare card : FY01 earmark evaluation

    DOT National Transportation Integrated Search

    2003-06-24

    King County Metro Transit is the lead agency responsible for implementing the Central Puget Sound Regional Fare Coordination Project (RFC Project). The project features a smart card technology that will support and link the fare collection systems of...

  12. Proposed Project Selection Method for Human Support Research and Technology Development (HSR&TD)

    NASA Technical Reports Server (NTRS)

    Jones, Harry

    2005-01-01

    The purpose of HSR&TD is to deliver human support technologies to the Exploration Systems Mission Directorate (ESMD) that will be selected for future missions. This requires identifying promising candidate technologies and advancing them in technology readiness until they are acceptable. HSR&TD must select an may of technology development projects, guide them, and either terminate or continue them, so as to maximize the resulting number of usable advanced human support technologies. This paper proposes an effective project scoring methodology to support managing the HSR&TD project portfolio. Researchers strongly disagree as to what are the best technology project selection methods, or even if there are any proven ones. Technology development is risky and outstanding achievements are rare and unpredictable. There is no simple formula for success. Organizations that are satisfied with their project selection approach typically use a mix of financial, strategic, and scoring methods in an open, established, explicit, formal process. This approach helps to build consensus and develop management insight. It encourages better project proposals by clarifying the desired project attributes. We propose a project scoring technique based on a method previously used in a federal laboratory and supported by recent research. Projects are ranked by their perceived relevance, risk, and return - a new 3 R's. Relevance is the degree to which the project objective supports the HSR&TD goal of developing usable advanced human support technologies. Risk is the estimated probability that the project will achieve its specific objective. Return is the reduction in mission life cycle cost obtained if the project is successful. If the project objective technology performs a new function with no current cost, its return is the estimated cash value of performing the new function. The proposed project selection scoring method includes definitions of the criteria, a project evaluation questionnaire, and a scoring formula.

  13. Next Generation Life Support Project Status

    NASA Technical Reports Server (NTRS)

    Barta, Daniel J.; Chullen, Cinda; Pickering, Karen D.; Cox, Marlon; Towsend, Neil; Campbell, Colin; Flynn, Michael; Wheeler, Raymond

    2012-01-01

    Next Generation Life Support (NGLS) is one of several technology development projects sponsored by NASA s Game Changing Development Program. The NGLS Project is developing life support technologies (including water recovery and space suit life support technologies) needed for humans to live and work productively in space. NGLS has three project tasks: Variable Oxygen Regulator (VOR), Rapid Cycle Amine (RCA) swing bed, and Alternative Water Processor (AWP). The RCA swing bed and VOR tasks are directed at key technology needs for the Portable Life Support System (PLSS) for an Advanced Extravehicular Mobility Unit, with focus on test article development and integrated testing in an Advanced PLSS in cooperation with the Advanced Extra Vehicular Activity (EVA) Project. An RCA swing-bed provides integrated carbon dioxide removal and humidity control that can be regenerated in real time during an EVA. The VOR technology will significantly increase the number of pressure settings available to the space suit. Current space suit pressure regulators are limited to only two settings whereas the adjustability of the advanced regulator will be nearly continuous. The AWP effort, based on natural biological processes and membrane-based secondary treatment, will result in the development of a system capable of recycling wastewater from sources expected in future exploration missions, including hygiene and laundry water. This paper will provide a status of technology development activities and future plans.

  14. Modeling Advance Life Support Systems

    NASA Technical Reports Server (NTRS)

    Pitts, Marvin; Sager, John; Loader, Coleen; Drysdale, Alan

    1996-01-01

    Activities this summer consisted of two projects that involved computer simulation of bioregenerative life support systems for space habitats. Students in the Space Life Science Training Program (SLSTP) used the simulation, space station, to learn about relationships between humans, fish, plants, and microorganisms in a closed environment. One student complete a six week project to modify the simulation by converting the microbes from anaerobic to aerobic, and then balancing the simulation's life support system. A detailed computer simulation of a closed lunar station using bioregenerative life support was attempted, but there was not enough known about system restraints and constants in plant growth, bioreactor design for space habitats and food preparation to develop an integrated model with any confidence. Instead of a completed detailed model with broad assumptions concerning the unknown system parameters, a framework for an integrated model was outlined and work begun on plant and bioreactor simulations. The NASA sponsors and the summer Fell were satisfied with the progress made during the 10 weeks, and we have planned future cooperative work.

  15. SAGA: A project to automate the management of software production systems

    NASA Technical Reports Server (NTRS)

    Campbell, Roy H.; Beckman, Carol S.; Benzinger, Leonora; Beshers, George; Hammerslag, David; Kimball, John; Kirslis, Peter A.; Render, Hal; Richards, Paul; Terwilliger, Robert

    1985-01-01

    The SAGA system is a software environment that is designed to support most of the software development activities that occur in a software lifecycle. The system can be configured to support specific software development applications using given programming languages, tools, and methodologies. Meta-tools are provided to ease configuration. The SAGA system consists of a small number of software components that are adapted by the meta-tools into specific tools for use in the software development application. The modules are design so that the meta-tools can construct an environment which is both integrated and flexible. The SAGA project is documented in several papers which are presented.

  16. Transit operations decision support systems (TODSS) : core functional requirements for identification of service disruptions and provision of service restoration options 1.0

    DOT National Transportation Integrated Search

    2004-03-15

    The Transit Operations Decision Support System (TODSS) Project was initiated to address concerns raised by transit agencies that have implemented and are using Automated Vehicle Location (AVL) and Computer Aided Dispatch Systems (CAD). This document ...

  17. Multi-Tiered Systems of Support Preservice Residency: A Pilot Undergraduate Teacher Preparation Model

    ERIC Educational Resources Information Center

    Ross, Scott Warren; Lignugaris-Kraft, Ben

    2015-01-01

    This case study examined the implementation of a novel nontraditional teacher preparation program, "Multi-Tiered Systems of Support Preservice Residency Project" (MTSS-PR). The two-year program placed general and special education composite undergraduate majors full time in high-need schools implementing evidence-based systems of…

  18. Divorce in the context of domestic violence against women in Vietnam.

    PubMed

    Vu, Ha Song; Schuler, Sidney; Hoang, Tu Anh; Quach, Trang

    2014-06-01

    This paper examines obstacles for women who face domestic violence in making decisions about divorce and in seeking and securing support for a divorce. The research was undertaken in the context of a project in one district of a coastal province in Vietnam that sought to reduce gender based-violence and mitigate its effects. Data from in-depth interviews and focus-group discussions are used to examine abused women's attitudes, strategies and behaviours and the responses of people in their communities and in the support system established by the project. The findings show that social norms supporting marriage discourage abused women from seeking divorce and, in some cases, any kind of support, and discourage community-based support networks, police and local court systems from providing effective assistance to these women.

  19. Systems Engineering Technical Leadership Development Program

    DTIC Science & Technology

    2012-02-01

    leading others in creative problem solving, complexity, and why projects fail . These topics were additionally supported by case studies designed to...Your Core Values Dominick Wed 12:30-1:30 Lunch Wed 1:30-2:45 Case Study: Why Projects Fail Pennotti Wed 2:45-3:00 Break Wed 3:00-4:30 Project...Case Study: When Good Wasn’t Good Enough 11. Technical Value-5: Group Project: AR2D2 RFP 12. Customer Expectation-1: Lecture: Why Systems Fail

  20. Final Scientific/Technical Report for "Enabling Exascale Hardware and Software Design through Scalable System Virtualization"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dinda, Peter August

    2015-03-17

    This report describes the activities, findings, and products of the Northwestern University component of the "Enabling Exascale Hardware and Software Design through Scalable System Virtualization" project. The purpose of this project has been to extend the state of the art of systems software for high-end computing (HEC) platforms, and to use systems software to better enable the evaluation of potential future HEC platforms, for example exascale platforms. Such platforms, and their systems software, have the goal of providing scientific computation at new scales, thus enabling new research in the physical sciences and engineering. Over time, the innovations in systems softwaremore » for such platforms also become applicable to more widely used computing clusters, data centers, and clouds. This was a five-institution project, centered on the Palacios virtual machine monitor (VMM) systems software, a project begun at Northwestern, and originally developed in a previous collaboration between Northwestern University and the University of New Mexico. In this project, Northwestern (including via our subcontract to the University of Pittsburgh) contributed to the continued development of Palacios, along with other team members. We took the leadership role in (1) continued extension of support for emerging Intel and AMD hardware, (2) integration and performance enhancement of overlay networking, (3) connectivity with architectural simulation, (4) binary translation, and (5) support for modern Non-Uniform Memory Access (NUMA) hosts and guests. We also took a supporting role in support for specialized hardware for I/O virtualization, profiling, configurability, and integration with configuration tools. The efforts we led (1-5) were largely successful and executed as expected, with code and papers resulting from them. The project demonstrated the feasibility of a virtualization layer for HEC computing, similar to such layers for cloud or datacenter computing. For effort (3), although a prototype connecting Palacios with the GEM5 architectural simulator was demonstrated, our conclusion was that such a platform was less useful for design space exploration than anticipated due to inherent complexity of the connection between the instruction set architecture level and the microarchitectural level. For effort (4), we found that a code injection approach proved to be more fruitful. The results of our efforts are publicly available in the open source Palacios codebase and published papers, all of which are available from the project web site, v3vee.org. Palacios is currently one of the two codebases (the other being Sandia’s Kitten lightweight kernel) that underlies the node operating system for the DOE Hobbes Project, one of two projects tasked with building a systems software prototype for the national exascale computing effort.« less

  1. Project FAST: [Functional Analysis Systems Training]: Adopter/Facilitator Information.

    ERIC Educational Resources Information Center

    Essexville-Hampton Public Schools, MI.

    Presented is adopter/facilitator information of Project FAST (Functional Analysis Systems Training) to provide educational and support services to learning disordered children and their regular elementary teachers. Briefly described are the three schools in the Essexville-Hampton (Michigan) school district; objectives of the program; program…

  2. Guidelines of the Design of Electropyrotechnic Firing Circuit for Unmanned Flight and Ground Test Projects

    NASA Technical Reports Server (NTRS)

    Gonzalez, Guillermo A.; Lucy, Melvin H.; Massie, Jeffrey J.

    2013-01-01

    The NASA Langley Research Center, Engineering Directorate, Electronic System Branch, is responsible for providing pyrotechnic support capabilities to Langley Research Center unmanned flight and ground test projects. These capabilities include device selection, procurement, testing, problem solving, firing system design, fabrication and testing; ground support equipment design, fabrication and testing; checkout procedures and procedure?s training to pyro technicians. This technical memorandum will serve as a guideline for the design, fabrication and testing of electropyrotechnic firing systems. The guidelines will discuss the entire process beginning with requirements definition and ending with development and execution.

  3. A 'breadboard' biomass production chamber for CELSS

    NASA Technical Reports Server (NTRS)

    Prince, Ralph P.; Knott, William M., III; Hilding, Suzanne E.; Mack, Tommy L.

    1987-01-01

    The Breadboard Project of the Controlled Ecological Life Support System (CELSS) Program is the first attempt by NASA to integrate the primary components of a bioregenerative life support system into a functioning system. The central component of this project is a Biomass Production Chamber (BPC). The BPC is under construction, and when finished will be sealed for the study of the flux of gases, liquids, and solids through the production module of a CELSS. Features of the CELSS breadboard facility will be covered as will design requirements for the BPC. Cultural practices developed for wheat for the BPC wil be discussed.

  4. Hydrogen Vent Ground Umbilical Quick Disconnect - Flight Seal Advanced Development

    NASA Technical Reports Server (NTRS)

    Girard, Doug; Jankowski, Fred; Minich, Mark C.; Yu, Weiping

    2012-01-01

    This project is a team effort between NASA Engineering (NE) and Team QNA Engineering personnel to provide support for the Umbilical Systems Development project which is funded by Advanced Exploration Systems (AES) and 21st Century Launch Complex. Specifically, this project seeks to develop a new interface between the PPBE baselined Legacy SSP LH2 Vent Arm QD probe and SLS vent seal.

  5. Harmony in Career Learning and Scholastic System: Project Hi-Class 1988-89. OREA Evaluation Section Report.

    ERIC Educational Resources Information Center

    Berney, Tomi D.; Hriskos, Constantine

    The report presents an evaluation of the New York City Harmony in Career Learning and Scholastic System (Project HI-CLASS) based on results from the 1988-89 school year. The project provided support services to 420 Spanish- and Chinese-speaking students of limited English proficiency (LEP). It also proposed to instill pride in and respect for…

  6. Lessons Learned from the San Diego Urban Systemic Project (USP): Implications for Funders and Future Project Designers

    ERIC Educational Resources Information Center

    St. John, Mark; Heenan, Barbara; Helms, Jenifer

    2007-01-01

    This brief draws upon the five-year evaluation study of the San Diego Urban Systemic Project (USP) that Inverness Research Associates conducted from 2001 to 2006. The intended audiences for this brief are those interested in investing in, supporting, or designing initiatives that aim to improve math and science education in large urban districts.…

  7. Customer requirements process

    NASA Technical Reports Server (NTRS)

    Russell, Yvonne; Falsetti, Christine M.

    1991-01-01

    Customer requirements are presented through three viewgraphs. One graph presents the range of services, which include requirements management, network engineering, operations, and applications support. Another viewgraph presents the project planning process. The third viewgraph presents the programs and/or projects actively supported including life sciences, earth science and applications, solar system exploration, shuttle flight engineering, microgravity science, space physics, and astrophysics.

  8. 76 FR 56905 - The Central Valley Project, the California-Oregon Transmission Project, the Pacific Alternating...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-14

    ... capability of each transmission system and the costs that support the generation capability of the CVP system...) operates the water control and delivery system and all of the power plants with the exception of the San... existing formula rate methodologies for power; CVP, COTP, and PACI transmission; transmission of Western...

  9. A System for Providing Relevant Metrics Education for Vocational Teachers in Kentucky. Final Report.

    ERIC Educational Resources Information Center

    Crosby, Richard K.

    A project conducted in four vocational regions of Kentucky developed a system for providing vocational teachers with relevant metrics education and developed and identified materials to support and enhance the system. Ten occupational training areas selected as a focus of the project were air conditioning, auto body, auto mechanics, diesel…

  10. ORAC: a modern observing system for UKIRT

    NASA Astrophysics Data System (ADS)

    Bridger, Alan; Wright, Gillian S.; Economou, Frossie; Tan, Min; Currie, Malcolm J.; Pickup, David A.; Adamson, Andrew J.; Rees, Nicholas P.; Purves, Maren; Kackley, Russell

    2000-06-01

    The steady improvement in telescope performance at UKIRT and the increase in data acquisition rates led to a strong desired for an integrated observing framework that would meet the needs of future instrumentation, as well as providing some support for existing instrumentation. Thus the Observatory Reduction and Acquisition Control (ORAC) project was created in 1997 with the goals of improving the scientific productivity in the telescope, reducing the overall ongoing support requirements, and eventually supporting the use of more flexibly scheduled observing. The project was also expected to achieve this within a tight resource allocation. In October 1999 the ORAC system was commissioned at the United Kingdom Infrared Telescope.

  11. Project CLIMB.

    ERIC Educational Resources Information Center

    DeLucca, Adolph

    1982-01-01

    As a state and national model for a basic skills curriculum for Kindergarten through grade 12 students, Coordination Learning Integration--Middlesex Basics (Project CLIMB) is described. The unified system was developed by teachers with administrative support to accomodate all students' reading and mathematics needs. Project CLIMB's development and…

  12. US/Brazil joint pilot project objectives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-12-01

    This paper describes a joint US/Brazil pilot project for rural electrification, whose major goals are: to establish technical, institutional, and economic confidence in using renewable energy (PV and wind) to meet the needs of the citizens of rural Brazil; to establish on-going institutional, individual and business relationships necessary to implement sustainable programs and commitments; to lay the groundwork for larger scale rural electrification through the use of distributed renewable technologies. The projects have supported low power home lighting systems, lighting and refrigeration for schools and medical centers, and water pumping systems. This is viewed as a long term project, wheremore » much of the equipment will come from the US, but Brazil will be responsible for program management, and sharing data gained from the program. The paper describes in detail the Brazilian program which was instituted to support this phased project.« less

  13. Implementing chronic disease self-management in community settings: lessons from Australian demonstration projects.

    PubMed

    Francis, Caitlin F; Feyer, Anne-Marie; Smith, Ben J

    2007-11-01

    The evaluation of the Sharing Health Care Initiative addressed the translation of different models of chronic disease self-management into health and community service contexts in Australia. Across seven projects, four intervention models were adopted: (1) the Stanford Chronic Disease Self Management course; (2) generic disease management planning, training and support; (3) tailored disease management planning, training and support, and; (4) telephone coaching. Targeted recruitment through support groups and patient lists was most successful for reaching high-needs clients. Projects with well developed organisational structures and health system networks demonstrated more effective implementation. Engagement of GPs in recruitment and client support was limited. Future self-management programs will require flexible delivery methods in the primary health care setting, involving practice nurses or the equivalent. After 12 months there was little evidence of potential sustainability, although structures such as consumer resource centres and client support clubs were established in some locations. Only one project was able to use Medicare chronic disease-related items to integrate self-management support into routine general practice. Participants in all projects showed improvements in self-management practices, but those receiving Model 3, flexible and tailored support, and Model 4, telephone coaching, reported the greatest benefits.

  14. SANDS: A Service-Oriented Architecture for Clinical Decision Support in a National Health Information Network

    PubMed Central

    Wright, Adam; Sittig, Dean F.

    2008-01-01

    In this paper we describe and evaluate a new distributed architecture for clinical decision support called SANDS (Service-oriented Architecture for NHIN Decision Support), which leverages current health information exchange efforts and is based on the principles of a service-oriented architecture. The architecture allows disparate clinical information systems and clinical decision support systems to be seamlessly integrated over a network according to a set of interfaces and protocols described in this paper. The architecture described is fully defined and developed, and six use cases have been developed and tested using a prototype electronic health record which links to one of the existing prototype National Health Information Networks (NHIN): drug interaction checking, syndromic surveillance, diagnostic decision support, inappropriate prescribing in older adults, information at the point of care and a simple personal health record. Some of these use cases utilize existing decision support systems, which are either commercially or freely available at present, and developed outside of the SANDS project, while other use cases are based on decision support systems developed specifically for the project. Open source code for many of these components is available, and an open source reference parser is also available for comparison and testing of other clinical information systems and clinical decision support systems that wish to implement the SANDS architecture. PMID:18434256

  15. Maui Smart Grid Demonstration Project Managing Distribution System Resources for Improved Service Quality and Reliability, Transmission Congestion Relief, and Grid Support Functions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    none,

    2014-09-30

    The Maui Smart Grid Project (MSGP) is under the leadership of the Hawaii Natural Energy Institute (HNEI) of the University of Hawaii at Manoa. The project team includes Maui Electric Company, Ltd. (MECO), Hawaiian Electric Company, Inc. (HECO), Sentech (a division of SRA International, Inc.), Silver Spring Networks (SSN), Alstom Grid, Maui Economic Development Board (MEDB), University of Hawaii-Maui College (UHMC), and the County of Maui. MSGP was supported by the U.S. Department of Energy (DOE) under Cooperative Agreement Number DE-FC26-08NT02871, with approximately 50% co-funding supplied by MECO. The project was designed to develop and demonstrate an integrated monitoring, communications,more » database, applications, and decision support solution that aggregates renewable energy (RE), other distributed generation (DG), energy storage, and demand response technologies in a distribution system to achieve both distribution and transmission-level benefits. The application of these new technologies and procedures will increase MECO’s visibility into system conditions, with the expected benefits of enabling more renewable energy resources to be integrated into the grid, improving service quality, increasing overall reliability of the power system, and ultimately reducing costs to both MECO and its customers.« less

  16. SANDS: a service-oriented architecture for clinical decision support in a National Health Information Network.

    PubMed

    Wright, Adam; Sittig, Dean F

    2008-12-01

    In this paper, we describe and evaluate a new distributed architecture for clinical decision support called SANDS (Service-oriented Architecture for NHIN Decision Support), which leverages current health information exchange efforts and is based on the principles of a service-oriented architecture. The architecture allows disparate clinical information systems and clinical decision support systems to be seamlessly integrated over a network according to a set of interfaces and protocols described in this paper. The architecture described is fully defined and developed, and six use cases have been developed and tested using a prototype electronic health record which links to one of the existing prototype National Health Information Networks (NHIN): drug interaction checking, syndromic surveillance, diagnostic decision support, inappropriate prescribing in older adults, information at the point of care and a simple personal health record. Some of these use cases utilize existing decision support systems, which are either commercially or freely available at present, and developed outside of the SANDS project, while other use cases are based on decision support systems developed specifically for the project. Open source code for many of these components is available, and an open source reference parser is also available for comparison and testing of other clinical information systems and clinical decision support systems that wish to implement the SANDS architecture. The SANDS architecture for decision support has several significant advantages over other architectures for clinical decision support. The most salient of these are:

  17. ARC Research Areas and Projects

    Science.gov Websites

    support ground vehicle system-of-systems integration. This integration may involve not just a vehicle but also the humans inside and the support systems outside, as well as a wide variety of missions with issues pertaining to design, analysis and optimization of ground vehicle systems. Work is organized in

  18. User's operating procedures. Volume 1: Scout project information programs

    NASA Technical Reports Server (NTRS)

    Harris, C. G.; Harris, D. K.

    1985-01-01

    A review of the user's operating procedures for the Scout Project Automatic Data System, called SPADS is given. SPADS is the result of the past seven years of software development on a Prime minicomputer located at the Scout Project Office. SPADS was developed as a single entry, multiple cross reference data management and information retrieval system for the automation of Project office tasks, including engineering, financial, managerial, and clerical support. The instructions to operate the Scout Project Information programs in data retrieval and file maintenance via the user friendly menu drivers is presented.

  19. The logic of selecting an appropriate map projection in a Decision Support System (DSS)

    USGS Publications Warehouse

    Finn, Michael P.; Usery, E. Lynn; Woodard, Laura N.; Yamamoto, Kristina H.

    2017-01-01

    There are undeniable practical consequences to consider when choosing an appropriate map projection for a specific region. The surface of a globe covered by global, continental, and regional maps are so singular that each type distinctively affects the amount of distortion incurred during a projection transformation because of the an assortment of effects caused by distance, direction, scale , and area. A Decision Support System (DSS) for Map Projections of Small Scale Data was previously developed to help select an appropriate projection. This paper reports on a tutorial to accompany that DSS. The DSS poses questions interactively, allowing the user to decide on the parameters, which in turn determines the logic path to a solution. The objective of including a tutorial to accompany the DSS is achieved by visually representing the path of logic that is taken to a recommended map projection derived from the parameters the user selects. The tutorial informs the DSS user about the pedigree of the projection and provides a basic explanation of the specific projection design. This information is provided by informational pop-ups and other aids.

  20. On the Application of Science Systems Engineering and Uncertainty Quantification for Ice Sheet Science and Sea Level Projections

    NASA Astrophysics Data System (ADS)

    Schlegel, Nicole-Jeanne; Boening, Carmen; Larour, Eric; Limonadi, Daniel; Schodlok, Michael; Seroussi, Helene; Watkins, Michael

    2017-04-01

    Research and development activities at the Jet Propulsion Laboratory (JPL) currently support the creation of a framework to formally evaluate the observational needs within earth system science. One of the pilot projects of this effort aims to quantify uncertainties in global mean sea level rise projections, due to contributions from the continental ice sheets. Here, we take advantage of established uncertainty quantification tools embedded within the JPL-University of California at Irvine Ice Sheet System Model (ISSM). We conduct sensitivity and Monte-Carlo style sampling experiments on forward simulations of the Greenland and Antarctic ice sheets. By varying internal parameters and boundary conditions of the system over both extreme and credible worst-case ranges, we assess the impact of the different parameter ranges on century-scale sea level rise projections. The results inform efforts to a) isolate the processes and inputs that are most responsible for determining ice sheet contribution to sea level; b) redefine uncertainty brackets for century-scale projections; and c) provide a prioritized list of measurements, along with quantitative information on spatial and temporal resolution, required for reducing uncertainty in future sea level rise projections. Results indicate that ice sheet mass loss is dependent on the spatial resolution of key boundary conditions - such as bedrock topography and melt rates at the ice-ocean interface. This work is performed at and supported by the California Institute of Technology's Jet Propulsion Laboratory. Supercomputing time is also supported through a contract with the National Aeronautics and Space Administration's Cryosphere program.

  1. Intersection decision support : evaluation of a violation warning system to mitigate straight crossing path collisions.

    DOT National Transportation Integrated Search

    2006-01-01

    This project entailed the design, development, testing, and evaluation of intersection decision support (IDS) systems to address straight crossing path (SCP) intersection crashes. This type of intersection crash is responsible for more than 100,000 c...

  2. Functions and requirements for tank farm restoration and safe operations, Project W-314. Revision 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garrison, R.C.

    1995-02-01

    This Functions and Requirements document (FRD) establishes the basic performance criteria for Project W-314, in accordance with the guidance outlined in the letter from R.W. Brown, RL, to President, WHC, ``Tank Waste Remediation System (TWRS) Project Documentation Methodology,`` 94-PRJ-018, dated 3/18/94. The FRD replaces the Functional Design Criteria (FDC) as the project technical baseline documentation. Project W-314 will improve the reliability of safety related systems, minimize onsite health and safety hazards, and support waste retrieval and disposal activities by restoring and/or upgrading existing Tank Farm facilities and systems. The scope of Project W-314 encompasses the necessary restoration upgrades of themore » Tank Farms` instrumentation, ventilation, electrical distribution, and waste transfer systems.« less

  3. Advanced Modular Power Approach to Affordable, Supportable Space Systems

    NASA Technical Reports Server (NTRS)

    Oeftering, Richard C.; Kimnach, Greg L.; Fincannon, James; Mckissock,, Barbara I.; Loyselle, Patricia L.; Wong, Edmond

    2013-01-01

    Recent studies of missions to the Moon, Mars and Near Earth Asteroids (NEA) indicate that these missions often involve several distinct separately launched vehicles that must ultimately be integrated together in-flight and operate as one unit. Therefore, it is important to see these vehicles as elements of a larger segmented spacecraft rather than separate spacecraft flying in formation. The evolution of large multi-vehicle exploration architecture creates the need (and opportunity) to establish a global power architecture that is common across all vehicles. The Advanced Exploration Systems (AES) Modular Power System (AMPS) project managed by NASA Glenn Research Center (GRC) is aimed at establishing the modular power system architecture that will enable power systems to be built from a common set of modular building blocks. The project is developing, demonstrating and evaluating key modular power technologies that are expected to minimize non-recurring development costs, reduce recurring integration costs, as well as, mission operational and support costs. Further, modular power is expected to enhance mission flexibility, vehicle reliability, scalability and overall mission supportability. The AMPS project not only supports multi-vehicle architectures but should enable multi-mission capability as well. The AMPS technology development involves near term demonstrations involving developmental prototype vehicles and field demonstrations. These operational demonstrations not only serve as a means of evaluating modular technology but also provide feedback to developers that assure that they progress toward truly flexible and operationally supportable modular power architecture.

  4. DARPA/USAF/USN J-UCAS X-45A System Demonstration Program: A Review of Flight Test Site Processes and Personnel

    NASA Technical Reports Server (NTRS)

    Cosentino, Gary B.

    2008-01-01

    The Joint Unmanned Combat Air Systems (J-UCAS) program is a collaborative effort between the Defense Advanced Research Project Agency (DARPA), the US Air Force (USAF) and the US Navy (USN). Together they have reviewed X-45A flight test site processes and personnel as part of a system demonstration program for the UCAV-ATD Flight Test Program. The goal was to provide a disciplined controlled process for system integration and testing and demonstration flight tests. NASA's Dryden Flight Research Center (DFRC) acted as the project manager during this effort and was tasked with the responsibilities of range and ground safety, the provision of flight test support and infrastructure and the monitoring of technical and engineering tasks. DFRC also contributed their engineering knowledge through their contributions in the areas of autonomous ground taxi control development, structural dynamics testing and analysis and the provision of other flight test support including telemetry data, tracking radars, and communications and control support equipment. The Air Force Flight Test Center acted at the Deputy Project Manager in this effort and was responsible for the provision of system safety support and airfield management and air traffic control services, among other supporting roles. The T-33 served as a J-UCAS surrogate aircraft and demonstrated flight characteristics similar to that of the the X-45A. The surrogate served as a significant risk reduction resource providing mission planning verification, range safety mission assessment and team training, among other contributions.

  5. DISCOVER: A Computer-Based Career Guidance and Counselor-Administrative Support System. Final Report. July 1974-August 1975.

    ERIC Educational Resources Information Center

    Harris-Bowlsbey, JoAnn

    Based on the Computerized Vocational Information System (CVIS), Project DISCOVER was conceptualized in three parts: Guidance subsystem for direct use by individuals at three age levels (grades 4-6, grades 7-12, and adult) seeking career guidance; the counselor-support subsystem; and the administrator support subsystem. Guidance development and…

  6. Application of NASA's advanced life support technologies in polar regions

    NASA Astrophysics Data System (ADS)

    Bubenheim, D. L.; Lewis, C.

    1997-01-01

    NASA's advanced life support technologies are being combined with Arctic science and engineering knowledge in the Advanced Life Systems for Extreme Environments (ALSEE) project. This project addresses treatment and reduction of waste, purification and recycling of water, and production of food in remote communities of Alaska. The project focus is a major issue in the state of Alaska and other areas of the Circumpolar North; the health and welfare of people, their lives and the subsistence lifestyle in remote communities, care for the environment, and economic opportunity through technology transfer. The challenge is to implement the technologies in a manner compatible with the social and economic structures of native communities, the state, and the commercial sector. NASA goals are technology selection, system design and methods development of regenerative life support systems for planetary and Lunar bases and other space exploration missions. The ALSEE project will provide similar advanced technologies to address the multiple problems facing the remote communities of Alaska and provide an extreme environment testbed for future space applications. These technologies have never been assembled for this purpose. They offer an integrated approach to solving pressing problems in remote communities.

  7. Managing Information On Technical Requirements

    NASA Technical Reports Server (NTRS)

    Mauldin, Lemuel E., III; Hammond, Dana P.

    1993-01-01

    Technical Requirements Analysis and Control Systems/Initial Operating Capability (TRACS/IOC) computer program provides supplemental software tools for analysis, control, and interchange of project requirements so qualified project members have access to pertinent project information, even if in different locations. Enables users to analyze and control requirements, serves as focal point for project requirements, and integrates system supporting efficient and consistent operations. TRACS/IOC is HyperCard stack for use on Macintosh computers running HyperCard 1.2 or later and Oracle 1.2 or later.

  8. The Genomes OnLine Database (GOLD) v.5: a metadata management system based on a four level (meta)genome project classification

    PubMed Central

    Reddy, T.B.K.; Thomas, Alex D.; Stamatis, Dimitri; Bertsch, Jon; Isbandi, Michelle; Jansson, Jakob; Mallajosyula, Jyothi; Pagani, Ioanna; Lobos, Elizabeth A.; Kyrpides, Nikos C.

    2015-01-01

    The Genomes OnLine Database (GOLD; http://www.genomesonline.org) is a comprehensive online resource to catalog and monitor genetic studies worldwide. GOLD provides up-to-date status on complete and ongoing sequencing projects along with a broad array of curated metadata. Here we report version 5 (v.5) of the database. The newly designed database schema and web user interface supports several new features including the implementation of a four level (meta)genome project classification system and a simplified intuitive web interface to access reports and launch search tools. The database currently hosts information for about 19 200 studies, 56 000 Biosamples, 56 000 sequencing projects and 39 400 analysis projects. More than just a catalog of worldwide genome projects, GOLD is a manually curated, quality-controlled metadata warehouse. The problems encountered in integrating disparate and varying quality data into GOLD are briefly highlighted. GOLD fully supports and follows the Genomic Standards Consortium (GSC) Minimum Information standards. PMID:25348402

  9. Integrated remote sensing and visualization (IRSV) system for transportation infrastructure operations and management, phase one, volume 4 : use of knowledge integrated visual analytics system in supporting bridge management.

    DOT National Transportation Integrated Search

    2009-12-01

    The goals of integration should be: Supporting domain oriented data analysis through the use of : knowledge augmented visual analytics system. In this project, we focus on: : Providing interactive data exploration for bridge managements. : ...

  10. System Software Framework for System of Systems Avionics

    NASA Technical Reports Server (NTRS)

    Ferguson, Roscoe C.; Peterson, Benjamin L; Thompson, Hiram C.

    2005-01-01

    Project Constellation implements NASA's vision for space exploration to expand human presence in our solar system. The engineering focus of this project is developing a system of systems architecture. This architecture allows for the incremental development of the overall program. Systems can be built and connected in a "Lego style" manner to generate configurations supporting various mission objectives. The development of the avionics or control systems of such a massive project will result in concurrent engineering. Also, each system will have software and the need to communicate with other (possibly heterogeneous) systems. Fortunately, this design problem has already been solved during the creation and evolution of systems such as the Internet and the Department of Defense's successful effort to standardize distributed simulation (now IEEE 1516). The solution relies on the use of a standard layered software framework and a communication protocol. A standard framework and communication protocol is suggested for the development and maintenance of Project Constellation systems. The ARINC 653 standard is a great start for such a common software framework. This paper proposes a common system software framework that uses the Real Time Publish/Subscribe protocol for framework-to-framework communication to extend ARINC 653. It is highly recommended that such a framework be established before development. This is important for the success of concurrent engineering. The framework provides an infrastructure for general system services and is designed for flexibility to support a spiral development effort.

  11. Research on Comprehensive Evaluation Method for Heating Project Based on Analytic Hierarchy Processing

    NASA Astrophysics Data System (ADS)

    Han, Shenchao; Yang, Yanchun; Liu, Yude; Zhang, Peng; Li, Siwei

    2018-01-01

    It is effective to reduce haze in winter by changing the distributed heat supply system. Thus, the studies on comprehensive index system and scientific evaluation method of distributed heat supply project are essential. Firstly, research the influence factors of heating modes, and an index system with multiple dimension including economic, environmental, risk and flexibility was built and all indexes were quantified. Secondly, a comprehensive evaluation method based on AHP was put forward to analyze the proposed multiple and comprehensive index system. Lastly, the case study suggested that supplying heat with electricity has great advantage and promotional value. The comprehensive index system of distributed heating supply project and evaluation method in this paper can evaluate distributed heat supply project effectively and provide scientific support for choosing the distributed heating project.

  12. Harmony in Career Learning and Scholastic System (Project HI-CLASS). Transitional Bilingual Education, 1991-92. Final Evaluation Profile. OREA Report.

    ERIC Educational Resources Information Center

    Angelina, Edward; Duque, Diana L.

    An evaluation was done of the first year of a 2-year renewal program at three high schools in New York City, Harmony in Career Learning and Scholastic System (Project HI-CLASS), designed to provide support services to students of limited English proficiency (LEP). The project proposed to provide individualized instruction focusing on basic skills,…

  13. NASA Redox system development project status

    NASA Technical Reports Server (NTRS)

    Nice, A. W.

    1981-01-01

    NASA-Redox energy storage systems developed for solar power applications and utility load leveling applications are discussed. The major objective of the project is to establish the technology readiness of Redox energy storage for transfer to industry for product development and commercialization by industry. The approach is to competitively contract to design, build, and test Redox systems progressively from preprototype to prototype multi-kW and megawatt systems and conduct supporting technology advancement tasks. The Redox electrode and membrane are fully adequate for multi-kW solar related applications and the viability of the Redox system technology as demonstrated for multi-kW solar related applications. The status of the NASA Redox Storage System Project is described along with the goals and objectives of the project elements.

  14. Knowledge-based geographic information systems on the Macintosh computer: a component of the GypsES project

    Treesearch

    Gregory Elmes; Thomas Millette; Charles B. Yuill

    1991-01-01

    GypsES, a decision-support and expert system for the management of Gypsy Moth addresses five related research problems in a modular, computer-based project. The modules are hazard rating, monitoring, prediction, treatment decision and treatment implementation. One common component is a geographic information system designed to function intelligently. We refer to this...

  15. Small business innovation research. Abstracts of completed 1987 phase 1 projects

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Non-proprietary summaries of Phase 1 Small Business Innovation Research (SBIR) projects supported by NASA in the 1987 program year are given. Work in the areas of aeronautical propulsion, aerodynamics, acoustics, aircraft systems, materials and structures, teleoperators and robotics, computer sciences, information systems, spacecraft systems, spacecraft power supplies, spacecraft propulsion, bioastronautics, satellite communication, and space processing are covered.

  16. The environmental control and life support system advanced automation project

    NASA Technical Reports Server (NTRS)

    Dewberry, Brandon S.

    1991-01-01

    The objective of the ECLSS Advanced Automation project includes reduction of the risk associated with the integration of new, beneficial software techniques. Demonstrations of this software to baseline engineering and test personnel will show the benefits of these techniques. The advanced software will be integrated into ground testing and ground support facilities, familiarizing its usage by key personnel.

  17. Tracking and data systems support for the Helios project. Volume 3: DSN support of Project Helios May 1976 - June 1977

    NASA Technical Reports Server (NTRS)

    Goodwin, P. S.; Jensen, W. N.; Flanagan, F. M.

    1979-01-01

    Spacecraft extended mission coverage does not generally carry a high priority, but Helios was fortunate in that a combination of separated viewperiods and unique utilization of the STDN Goldstone antenna have provided a considerable amount of additional science data return, particularly at key times such a perihelion and/or solar occultation.

  18. Making the Grid "Smart" Through "Smart" Microgrids: Real-Time Power Management of Microgrids with Multiple Distributed Generation Sources Using Intelligent Control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nehrir, M. Hashem

    In this Project we collaborated with two DOE National Laboratories, Pacific Northwest National Lab (PNNL) and Lawrence Berkeley National Lab (LBL). Dr. Hammerstrom of PNNL initially supported our project and was on the graduate committee of one of the Ph.D. students (graduated in 2014) who was supported by this project. He is also a committee member of a current graduate student of the PI who was supported by this project in the last two years (August 2014-July 2016). The graduate student is now supported be the Electrical and Computer Engineering (ECE) Department at Montana State University (MSU). Dr. Chris Marneymore » of LBL provided actual load data, and the software WEBOPT developed at LBL for microgrid (MG) design for our project. NEC-Labs America, a private industry, also supported our project, providing expert support and modest financial support. We also used the software “HOMER,” originally developed at the National Renewable Energy Laboratory (NREL) and the most recent version made available to us by HOMER Energy, Inc., for MG (hybrid energy system) unit sizing. We compared the findings from WebOpt and HOMER and designed appropriately sized hybrid systems for our case studies. The objective of the project was to investigate real-time power management strategies for MGs using intelligent control, considering maximum feasible energy sustainability, reliability and efficiency while, minimizing cost and undesired environmental impact (emissions). Through analytic and simulation studies, we evaluated the suitability of several heuristic and artificial-intelligence (AI)-based optimization techniques that had potential for real-time MG power management, including genetic algorithms (GA), ant colony optimization (ACO), particle swarm optimization (PSO), and multi-agent systems (MAS), which is based on the negotiation of smart software-based agents. We found that PSO and MAS, in particular, distributed MAS, were more efficient and better suited for our work. We investigated the following: • Intelligent load control - demand response (DR) - for frequency stabilization in islanded MGs (partially supported by PNNL). • The impact of high penetration of solar photovoltaic (PV)-generated power at the distribution level (partially supported by PNNL). • The application of AI approaches to renewable (wind, PV) power forecasting (proposed by the reviewers of our proposal). • Application of AI approaches and DR for real-time MG power management (partially supported by NEC Labs-America) • Application of DR in dealing with the variability of wind power • Real-time MG power management using DR and storage (partially supported by NEC Labs-America) • Application of DR in enhancing the performance of load-frequency controller • MAS-based whole-sale and retail power market design for smart grid A« less

  19. Environmentally-Preferable Launch Coatings

    NASA Technical Reports Server (NTRS)

    Kessel, Kurt R.

    2015-01-01

    The Ground Systems Development and Operations (GSDO) Program at NASA Kennedy Space Center (KSC), Florida, has the primary objective of modernizing and transforming the launch and range complex at KSC to benefit current and future NASA programs along with other emerging users. Described as the launch support and infrastructure modernization program in the NASA Authorization Act of 2010, the GSDO Program will develop and implement shared infrastructure and process improvements to provide more flexible, affordable, and responsive capabilities to a multi-user community. In support of NASA and the GSDO Program, the objective of this project is to determine the feasibility of environmentally friendly corrosion protecting coatings for launch facilities and ground support equipment (GSE). The focus of the project is corrosion resistance and survivability with the goal to reduce the amount of maintenance required to preserve the performance of launch facilities while reducing mission risk. The project compares coating performance of the selected alternatives to existing coating systems or standards.

  20. Utilizing Remote Sensing Data to Ascertain Soil Moisture Applications and Air Quality Conditions

    NASA Technical Reports Server (NTRS)

    Leptoukh, Gregory; Kempler, Steve; Teng, William; Friedl, Lawrence; Lynnes, Chris

    2009-01-01

    Recognizing the significance of NASA remote sensing Earth science data in monitoring and better understanding our planet's natural environment, NASA Earth Applied Sciences has implemented the 'Decision Support Through Earth Science Research Results' program. Several applications support systems through collaborations with benefiting organizations have been implemented. The Goddard Earth Sciences Data and Information Services Center (GES DISC) has participated in this program on two projects (one complete, one ongoing), and has had opportune ad hoc collaborations utilizing NASA Earth science data. GES DISC's understanding of Earth science missions and resulting data and information enables the GES DISC to identify challenges that come with bringing science data to research applications. In this presentation we describe applications research projects utilizing NASA Earth science data and a variety of resulting GES DISC applications support system project experiences. In addition, defining metrics that really evaluate success will be exemplified.

  1. 0-6758 : maintaining project consistency with transportation plans through the project life cycle with an emphasis on maintaining air quality conformity.

    DOT National Transportation Integrated Search

    2014-03-01

    Streamlined project delivery is a federally : mandated goal that the Texas Department of : Transportation (TxDOT) leadership supports to : achieve a more efficient and effective : transportation system in Texas. : Federal and state transportation pla...

  2. 7 CFR 1710.300 - General.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... board of directors and the manager to guide the system towards its financial goals. (b) A borrower must... in support of a loan application shall include: (1) The projected results of future actions planned... DSC; (5) Current and projected cash flows; (6) Projections of future borrowings and the associated...

  3. AGSM Intelligent Devices/Smart Sensors Project

    NASA Technical Reports Server (NTRS)

    Harp, Janicce Leshay

    2014-01-01

    This project provides development and qualification of Smart Sensors capable of self-diagnosis and assessment of their capability/readiness to support operations. These sensors will provide pressure and temperature measurements to use in ground systems.

  4. Advanced life support technology development for the Space Exploration Initiative

    NASA Technical Reports Server (NTRS)

    Evanich, Peggy L.; Voecks, Gerald E.; Seshan, P. K.

    1990-01-01

    An overview is presented of NASA's advanced life support technology development strategy for the Space Exploration Initiative. Three basic life support technology areas are discussed in detail: air revitalization, water reclamation, and solid waste management. It is projected that regenerative life support systems will become increasingly more complex as system closure is maximized. Advanced life support technology development will utilize three complementary elements, including the Research and Technology Program, the Regenerative Life Support Program, and the Technology Testbed Validations.

  5. Cognitive engineering in aerospace applications

    NASA Technical Reports Server (NTRS)

    Woods, David D.

    1993-01-01

    The progress that was made with respect to the objectives and goals of the research that is being carried out in the Cognitive Systems Engineering Laboratory (CSEL) under a Cooperative Agreement with NASA Ames Research Center is described. The major objective of this project is to expand the research base in Cognitive Engineering to be able to support the development and human-centered design of automated systems for aerospace applications. This research project is in support of the Aviation Safety/Automation Research plan and related NASA research goals in space applications.

  6. Operational Overview for UAS Integration in the NAS Project Flight Test Series 3

    NASA Technical Reports Server (NTRS)

    Valkov, Steffi B.; Sternberg, Daniel; Marston, Michael

    2018-01-01

    The National Aeronautics and Space Administration Unmanned Aircraft Systems Integration in the National Airspace System Project has conducted a series of flight tests intended to support the reduction of barriers that prevent unmanned aircraft from flying without the required waivers from the Federal Aviation Administration. The 2015 Flight Test Series 3, supported two separate test configurations. The first configuration investigated the timing of Detect and Avoid alerting thresholds using a radar equipped unmanned vehicle and multiple live intruders flown at varying encounter geometries.

  7. Administrative Information Systems Plan for FY89

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1988-11-01

    The Administrative Information Systems (AIS) Plan was developed to prioritize, track, and control the cost of AIS activities. This annually published plan, in conjunction with quarterly status reports, measures projected AIS activities and progress. The AIS Plan and quarterly reporting are administered jointly by the Director of Computing and an Organization 30 director. Priority development projects are clearly defined and closely managed efforts that consume significant resources. Directorate supplementals describe other AIS activity within each directorate, which may include: production support; technical support; development activity; and other AIS effort.

  8. Automated simulation as part of a design workstation

    NASA Technical Reports Server (NTRS)

    Cantwell, Elizabeth; Shenk, T.; Robinson, P.; Upadhye, R.

    1990-01-01

    A development project for a design workstation for advanced life-support systems (called the DAWN Project, for Design Assistant Workstation), incorporating qualitative simulation, required the implementation of a useful qualitative simulation capability and the integration of qualitative and quantitative simulation such that simulation capabilities are maximized without duplication. The reason is that to produce design solutions to a system goal, the behavior of the system in both a steady and perturbed state must be represented. The Qualitative Simulation Tool (QST), on an expert-system-like model building and simulation interface toll called ScratchPad (SP), and on the integration of QST and SP with more conventional, commercially available simulation packages now being applied in the evaluation of life-support system processes and components are discussed.

  9. CCD detector development projects by the Beamline Technical Support Group at the Advanced Photon Source

    NASA Astrophysics Data System (ADS)

    Lee, John H.; Fernandez, Patricia; Madden, Tim; Molitsky, Michael; Weizeorick, John

    2007-11-01

    This paper will describe two ongoing detector projects being developed by the Beamline Technical Support Group at the Advanced Photon Source (APS) at Argonne National Laboratory (ANL). The first project is the design and construction of two detectors: a single-CCD system and a two-by-two Mosaic CCD camera for Small-Angle X-ray Scattering (SAXS). Both of these systems utilize the Kodak KAF-4320E CCD coupled to fiber optic tapers, custom mechanical hardware, electronics, and software developed at ANL. The second project is a Fast-CCD (FCCD) detector being developed in a collaboration between ANL and Lawrence Berkeley National Laboratory (LBNL). This detector will use ANL-designed readout electronics and a custom LBNL-designed CCD, with 480×480 pixels and 96 outputs, giving very fast readout.

  10. An overview of the NASA electronic components information management system

    NASA Technical Reports Server (NTRS)

    Kramer, G.; Waterbury, S.

    1991-01-01

    The NASA Parts Project Office (NPPO) comprehensive data system to support all NASA Electric, Electronic, and Electromechanical (EEE) parts management and technical data requirements is described. A phase delivery approach is adopted, comprising four principal phases. Phases 1 and 2 support Space Station Freedom (SSF) and use a centralized architecture with all data and processing kept on a mainframe computer. Phases 3 and 4 support all NASA centers and projects and implement a distributed system architecture, in which data and processing are shared among networked database servers. The Phase 1 system, which became operational in February of 1990, implements a core set of functions. Phase 2, scheduled for release in 1991, adds functions to the Phase 1 system. Phase 3, to be prototyped beginning in 1991 and delivered in 1992, introduces a distributed system, separate from the Phase 1 and 2 system, with a refined semantic data model. Phase 4 extends the data model and functionality of the Phase 3 system to provide support for the NASA design community, including integration with Computer Aided Design (CAD) environments. Phase 4 is scheduled for prototyping in 1992 to 93 and delivery in 1994.

  11. NASA Advanced Refrigerator/Freezer Technology Development Project Overview

    NASA Technical Reports Server (NTRS)

    Cairelli, J. E.

    1995-01-01

    NASA Lewis Research Center (LeRC) has recently initiated a three-year project to develop the advanced refrigerator/freezer (R/F) technologies needed to support future life and biomedical sciences space experiments. Refrigerator/freezer laboratory equipment, most of which needs to be developed, is enabling to about 75 percent of the planned space station life and biomedical science experiments. These experiments will require five different classes of equipment; three storage freezers operating at -20 C, -70 C and less than 183 C, a -70 C freeze-dryer, and a cryogenic (less than 183 C) quick/snap freezer. This project is in response to a survey of cooling system technologies, performed by a team of NASA scientists and engineers. The team found that the technologies, required for future R/F systems to support life and biomedical sciences spaceflight experiments, do not exist at an adequate state of development and concluded that a program to develop the advanced R/F technologies is needed. Limitations on spaceflight system size, mass, and power consumption present a significant challenge in developing these systems. This paper presents some background and a description of the Advanced R/F Technology Development Project, project approach and schedule, general description of the R/F systems, and a review of the major R/F equipment requirements.

  12. Developing a decision support system for R&D project portfolio selection with interdependencies

    NASA Astrophysics Data System (ADS)

    Ashrafi, Maryam; Davoudpour, Hamid; Abbassi, Mohammad

    2012-11-01

    Although investment in research and technology is a promising tool for technology centered organizations through obtaining their objectives, resource constraints make organizations select between their pool of research and technology projects through means of R&D project portfolio selection techniques mitigating corresponding risks and enhancing the overall value of project portfolio.

  13. Next Generation Life Support Project Status

    NASA Technical Reports Server (NTRS)

    Barta, Daniel J.; Chullen, Cinda; Vega, Leticia; Cox, Marlon R.; Aitchison, Lindsay T.; Lange, Kevin E.; Pensinger, Stuart J.; Meyer, Caitlin E.; Flynn, Michael; Jackson, W. Andrew; hide

    2014-01-01

    Next Generation Life Support (NGLS) is one of over twenty technology development projects sponsored by NASA's Game Changing Development Program. The NGLS Project develops selected life support technologies needed for humans to live and work productively in space, with focus on technologies for future use in spacecraft cabin and space suit applications. Over the last three years, NGLS had five main project elements: Variable Oxygen Regulator (VOR), Rapid Cycle Amine (RCA) swing bed, High Performance (HP) Extravehicular Activity (EVA) Glove, Alternative Water Processor (AWP) and Series-Bosch Carbon Dioxide Reduction. The RCA swing bed, VOR and HP EVA Glove tasks are directed at key technology needs for the Portable Life Support System (PLSS) and pressure garment for an Advanced Extravehicular Mobility Unit (EMU). Focus is on prototyping and integrated testing in cooperation with the Advanced Exploration Systems (AES) Advanced EVA Project. The HP EVA Glove Element, new this fiscal year, includes the generation of requirements and standards to guide development and evaluation of new glove designs. The AWP and Bosch efforts focus on regenerative technologies to further close spacecraft cabin atmosphere revitalization and water recovery loops and to meet technology maturation milestones defined in NASA's Space Technology Roadmaps. These activities are aimed at increasing affordability, reliability, and vehicle self-sufficiency while decreasing mass and mission cost, supporting a capability-driven architecture for extending human presence beyond low-Earth orbit, along a human path toward Mars. This paper provides a status of current technology development activities with a brief overview of future plans.

  14. Systems integrated human engineering on the Navy's rapid acquisition of manufactured parts/test and integration facility

    NASA Technical Reports Server (NTRS)

    Gallaway, Glen R.

    1987-01-01

    Human Engineering in many projects is at best a limited support function. In this Navy project the Human Engineering function is an integral component of the systems design and development process. Human Engineering is a member of the systems design organization. This ensures that people considerations are: (1) identified early in the project; (2) accounted for in the specifications; (3) incorporated into the design; and (4) the tested product meets the needs and expectations of the people while meeting the overall systems requirements. The project exemplifies achievements that can be made by the symbiosis between systems designers, engineers and Human Engineering. This approach increases Human Engineering's effectiveness and value to a project because it becomes an accepted, contributing team member. It is an approach to doing Human Engineering that should be considered for most projects. The functional and organizational issues giving this approach strength are described.

  15. Projects without a purpose: Why a top down strategy to resilience matters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kingery, Kristine M.; Fowler, Kimberly M.; Harrove

    Energy resilience is a key focus of the current administration and Department of Defense (DoD) leaders, and is in the title of every energy conference session. Most case studies and success stories focus on resilience projects hardening systems or microgriding critical infrastructure. Some case studies focus on unique financing approaches to bring private sector innovation and increased investment to military installations. Many times, what initially look like innovative resilience projects, end as isolated systems or stranded infrastructure. This article will explore how the DoD can make greater strides advancing resilience objectives and ultimately developing projects that support installation mission readinessmore » by first focusing on top down strategies. The Army established energy and water security/resilience requirements, developed a comprehensive measurement framework, is evolving integrated planning approaches in collaboration with local communities, and is supporting project development activities across third-party and appropriated programs. The Army’s multi-year strategic energy and water security planning activities can provide helpful guidance to both the lifecycle of programs or individual projects, and ensure resilience projects both have and achieve a purpose.« less

  16. Solid waste projection model: Model version 1. 0 technical reference manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilkins, M.L.; Crow, V.L.; Buska, D.E.

    1990-11-01

    The Solid Waste Projection Model (SWPM) system is an analytical tool developed by Pacific Northwest Laboratory (PNL) for Westinghouse Hanford Company (WHC). The SWPM system provides a modeling and analysis environment that supports decisions in the process of evaluating various solid waste management alternatives. This document, one of a series describing the SWPM system, contains detailed information regarding the software utilized in developing Version 1.0 of the modeling unit of SWPM. This document is intended for use by experienced software engineers and supports programming, code maintenance, and model enhancement. Those interested in using SWPM should refer to the SWPM Modelmore » User's Guide. This document is available from either the PNL project manager (D. L. Stiles, 509-376-4154) or the WHC program monitor (B. C. Anderson, 509-373-2796). 8 figs.« less

  17. The CELSS breadboard project: Plant production

    NASA Technical Reports Server (NTRS)

    Knott, William M.

    1990-01-01

    NASA's Breadboard Project for the Controlled Ecological Life Support System (CELSS) program is described. The simplified schematic of a CELSS is given. A modular approach is taken to building the CELSS Breadboard. Each module is researched in order to develop a data set for each one prior to its integration into the complete system. The data being obtained from the Biomass Production Module or the Biomass Production Chamber is examined. The other primary modules, food processing and resource recovery or waste management, are discussed briefly. The crew habitat module is not discussed. The primary goal of the Breadboard Project is to scale-up research data to an integrated system capable of supporting one person in order to establish feasibility for the development and operation of a CELSS. Breadboard is NASA's first attempt at developing a large scale CELSS.

  18. GEO-6 project for Galileo data scientific utilization

    NASA Astrophysics Data System (ADS)

    Buresova, Dalia; Lastovicka, Jan; Boska, Josef; Sauli, Petra; Kouba, Daniel; Mosna, Zbysek

    The future GNSS Galileo system offer a number of benefits (e.g. availability of better accuracy positioning, new frequencies bands allowing the implementation of specific techniques, provable time-stamp and location data using SIS authorisation, integrity, better support ad-hoc algorithms for data analysis and other service guarantee for liability and regulated applications) are widely spread among different disciplines. Also applications which are less interesting from the commercial and market point of view could successfully contribute to the numerous social benefits and support the innovation in the international research. The aim of the GEO-6 project "Scientific research Using GNSS" is to propose and broaden scientific utilization of future GNSS Galileo system data in research. It is a joint project of seven institutions from six countries led by the Atos Origin Company from Spain. The core of the project consists from six projects in five priority areas: PA-1 Remote sensing of the ocean using GNSS reflections, PA-2a Investigating GNSS ionospheric data assimilation, PA-2b 3-D gravity wave detection and determination (both PA-2a and PA-2b are ionospheric topics), PA-3 Demonstration of capability for operational forecasting of atmospheric delays, PA-4 GNSS seismometer, PA-5 Spacecraft formation flying using global navigation satellite systems. Institute of Atmospheric Physics, Prague, Czech Republic is responsible for the project PA-2b, where we developed and tested (to the extent allowed by available data) an algorithm and computer code for the 3-D detection of gravity waves and determination of their characteristics. The main drivers of the GEO-6 project are: high levels of accuracy even with the support of local elements, sharing of solutions and results for the worldwide scientific community. The paper will present basic description of the project with more details concerning Czech participation in it.

  19. The Coordinated Ocean Wave Climate Project

    NASA Astrophysics Data System (ADS)

    Hemer, Mark; Dobrynin, Mikhail; Erikson, Li; Lionello, Piero; Mori, Nobuhito; Semedo, Alvaro; Wang, Xiaolan

    2016-04-01

    Future 21st Century changes in wind-wave climate have broad implications for marine and coastal infrastructure and ecosystems. Atmosphere-ocean general circulation models (GCM) are now routinely used for assessing and providing future projections of climatological parameters such as temperature and precipitation, but generally these provide no information on ocean wind-waves. To fill this information gap a growing number of studies are using GCM outputs and independently producing global and regional scale wind-wave climate projections. Furthermore, additional studies are actively coupling wind-wave dependent atmosphere-ocean exchanges into GCMs, to improve physical representation and quantify the impact of waves in the coupled climate system, and can also deliver wave characteristics as another variable in the climate system. To consolidate these efforts, understand the sources of variance between projections generated by different methodologies and International groups, and ultimately provide a robust picture of the role of wind-waves in the climate system and their projected changes, we present outcomes of the JCOMM supported Coordinated Ocean Wave Climate Project (COWCLIP). The objective of COWCLIP is twofold: to make community based ensembles of wave climate projections openly accessible, to provide the necessary information to support diligent marine and coastal impacts of climate change studies; and to understand the effects and feedback influences of wind-waves in the coupled ocean-atmosphere climate system. We will present the current status of COWCLIP, providing an overview of the objectives, analysis and results of the initial phase - now complete - and the progress of ongoing phases of the project.

  20. QAIT: a quality assurance issue tracking tool to facilitate the improvement of clinical data quality.

    PubMed

    Zhang, Yonghong; Sun, Weihong; Gutchell, Emily M; Kvecher, Leonid; Kohr, Joni; Bekhash, Anthony; Shriver, Craig D; Liebman, Michael N; Mural, Richard J; Hu, Hai

    2013-01-01

    In clinical and translational research as well as clinical trial projects, clinical data collection is prone to errors such as missing data, and misinterpretation or inconsistency of the data. A good quality assurance (QA) program can resolve many such errors though this requires efficient communications between the QA staff and data collectors. Managing such communications is critical to resolving QA problems but imposes a major challenge for a project involving multiple clinical and data processing sites. We have developed a QA issue tracking (QAIT) system to support clinical data QA in the Clinical Breast Care Project (CBCP). This web-based application provides centralized management of QA issues with role-based access privileges. It has greatly facilitated the QA process and enhanced the overall quality of the CBCP clinical data. As a stand-alone system, QAIT can supplement any other clinical data management systems and can be adapted to support other projects. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  1. Jet engine nozzle exit configurations, including projections oriented relative to pylons, and associated systems and methods

    NASA Technical Reports Server (NTRS)

    Mengle, Vinod G. (Inventor); Thomas, Russell H. (Inventor)

    2012-01-01

    Nozzle exit configurations and associated systems and methods are disclosed. An aircraft system in accordance with one embodiment includes a jet engine exhaust nozzle having an internal flow surface and an exit aperture, with the exit aperture having a perimeter that includes multiple projections extending in an aft direction. Aft portions of individual neighboring projections are spaced apart from each other by a gap, and a geometric feature of the multiple can change in a monotonic manner along at least a portion of the perimeter. Projections near a support pylon and/or associated heat shield can have particular configurations, including greater flow immersion than other projections.

  2. Which Advisory System to Support Innovation in Conservation Agriculture? The Case of Madagascar's Lake Alaotra

    ERIC Educational Resources Information Center

    Faure, Guy; Penot, Eric; Rakotondravelo, Jean Chrysostome; Ramahatoraka, Haja Andrisoa; Dugue, Patrick; Toillier, Aurelie

    2013-01-01

    Purpose: To promote sustainable agriculture, various development projects are encouraging farmers around Madagascar's Lake Alaotra to adopt conservation agriculture techniques. This article's objective is to analyze the capacity of a project-funded advisory system to accompany such an innovation and to design and implement an advisory method aimed…

  3. Small business innovation research. Abstracts of 1988 phase 1 awards

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Non-proprietary proposal abstracts of Phase 1 Small Business Innovation Research (SBIR) projects supported by NASA are presented. Projects in the fields of aeronautical propulsion, aerodynamics, acoustics, aircraft systems, materials and structures, teleoperators and robots, computer sciences, information systems, data processing, spacecraft propulsion, bioastronautics, satellite communication, and space processing are covered.

  4. An Open Specification for Space Project Mission Operations Control Architectures

    NASA Technical Reports Server (NTRS)

    Hooke, A.; Heuser, W. R.

    1995-01-01

    An 'open specification' for Space Project Mission Operations Control Architectures is under development in the Spacecraft Control Working Group of the American Institute for Aeronautics and Astro- nautics. This architecture identifies 5 basic elements incorporated in the design of similar operations systems: Data, System Management, Control Interface, Decision Support Engine, & Space Messaging Service.

  5. TADS and Technical Assistance: Readings on System Design, Needs Assessment, Consultation, and Evaluation.

    ERIC Educational Resources Information Center

    Trohanis, Pascal L., Ed.

    The document reviews the technical assistance process used by TADS (Technical Assistance Development System), a project to provide support to HCEEP (Handicapped Children's Early Education Program) demonstration projects serving young handicapped children and their families. Chapter 1, by P. Trohanis, focuses on a number of questions that people…

  6. The controlled ecological life support system Antarctic analog project: Analysis of wastewater from the South Pole Station, Antarctica, volume 1

    NASA Technical Reports Server (NTRS)

    Flynn, Michael T.; Bubenheim, David L.; Straight, Christian L.; Belisle, Warren

    1994-01-01

    The Controlled Ecological Life Support system (CELSS) Antarctic Analog Project (CAAP) is a joint National Science Foundation (NSF) and NASA project for the development, deployment and operation of CELSS technologies at the Amundsen-Scott South Pole Station. NASA goals are operational testing of CELSS technologies and the conduct of scientific studies to facilitate technology selection and system design. The NSF goals are that the food production, water purification, and waste treatment capabilities which will be provided by CAAP will improve the quality of life for the South Pole inhabitants, reduce logistics dependence, and minimize environmental impacts associated with human presence on the polar plateau. This report presents an analysis of wastewater samples taken from the Amundsen-Scott South Pole Station, Antarctica. The purpose of the work is to develop a quantitative understanding of the characteristics of domestic sewage streams at the South Pole Station. This information will contribute to the design of a proposed plant growth/waste treatment system which is part of the CELSS Antarctic Analog Project (CAAP).

  7. SMUD Community Renewable Energy Deployment Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sison-Lebrilla, Elaine; Tiangco, Valentino; Lemes, Marco

    2015-06-08

    This report summarizes the completion of four renewable energy installations supported by California Energy Commission (CEC) grant number CEC Grant PIR-11-005, the US Department of Energy (DOE) Assistance Agreement, DE-EE0003070, and the Sacramento Municipal Utility District (SMUD) Community Renewable Energy Deployment (CRED) program. The funding from the DOE, combined with funding from the CEC, supported the construction of a solar power system, biogas generation from waste systems, and anaerobic digestion systems at dairy facilities, all for electricity generation and delivery to SMUD’s distribution system. The deployment of CRED projects shows that solar projects and anaerobic digesters can be successfully implementedmore » under favorable economic conditions and business models and through collaborative partnerships. This work helps other communities learn how to assess, overcome barriers, utilize, and benefit from renewable resources for electricity generation in their region. In addition to reducing GHG emissions, the projects also demonstrate that solar projects and anaerobic digesters can be readily implemented through collaborative partnerships. This work helps other communities learn how to assess, overcome barriers, utilize, and benefit from renewable resources for electricity generation in their region.« less

  8. Project WISH: The Emerald City

    NASA Technical Reports Server (NTRS)

    1990-01-01

    When Project WISH (Wandering Interplanetary Space Harbor) was initiated as a multi-year project, several design requirements were specified. The space station must have a lifetime of at least 50 years, be autonomous and independent of Earth resources, be capable of traveling throughout the solar system within a maximum flight time of three years, and have a population of 500 to 1000 people. The purpose of the station is to provide a permanent home for space colonists and to serve as a service station for space missions. The orbital mechanics, propulsion system, vehicle dynamics and control, life support system, communication system, power system, and thermal system are discussed.

  9. Computer Simulation and Modeling of CO2 Removal Systems for Exploration 2013-2014

    NASA Technical Reports Server (NTRS)

    Coker, R.; Knox, J.; Gomez, C.

    2015-01-01

    The Atmosphere Revitalization Recovery and Environmental Monitoring (ARREM) project was initiated in September of 2011 as part of the Advanced Exploration Systems (AES) program. Under the ARREM project and the follow-on Life Support Systems (LSS) project, testing of sub-scale and full-scale systems has been combined with multiphysics computer simulations for evaluation and optimization of subsystem approaches. In particular, this paper will describes the testing and 1-D modeling of the combined water desiccant and carbon dioxide sorbent subsystems of the carbon dioxide removal assembly (CDRA). The goal is a full system predictive model of CDRA to guide system optimization and development.

  10. Portable Virtual Training Units

    NASA Technical Reports Server (NTRS)

    Malone, Reagan; Johnston, Alan

    2015-01-01

    The Mission Operations Lab initiated a project to design, develop, deliver, test, and validate a unique training system for astronaut and ground support personnel. In an effort to keep training costs low, virtual training units (VTUs) have been designed based on images of actual hardware and manipulated by a touch screen style interface for ground support personnel training. This project helped modernized the training system and materials by integrating them with mobile devices for training when operators or crew are unavailable to physically train in the facility. This project also tested the concept of a handheld remote device to control integrated trainers using International Space Station (ISS) training simulators as a platform. The portable VTU can interface with the full-sized VTU, allowing a trainer co-located with a trainee to remotely manipulate a VTU and evaluate a trainee's response. This project helped determine if it is useful, cost effective, and beneficial for the instructor to have a portable handheld device to control the behavior of the models during training. This project has advanced NASA Marshall Space Flight Center's (MSFC's) VTU capabilities with modern and relevant technology to support space flight training needs of today and tomorrow.

  11. ADC Mothers Reach Self-Sufficiency through Comprehensive Support and Family Development Services Program.

    ERIC Educational Resources Information Center

    Randolph, Gayle C., II; McCarthy, Karen V.

    Families whose primary or sole means of financial support is derived from the welfare system are attempting to meet immediate survival needs in the same manner as families outside of the system. Project Self-Sufficiency is a program which dedicates time to building trusting relationships based on mutual respect and the belief that, with support,…

  12. Texas urban triangle : creating a spatial decision support system for mobility policy and investments that shape the sustainable growth of Texas.

    DOT National Transportation Integrated Search

    2010-11-01

    This project developed a GIS-based Spatial Decision Support System to help local, metropolitan, and state : jurisdictions and authorities in Texas understand the implications of transportation planning and : investment decisions, and plan appropriate...

  13. MIDAS Website. Revised

    NASA Technical Reports Server (NTRS)

    Goodman, Allen; Shively, R. Joy (Technical Monitor)

    1997-01-01

    MIDAS, Man-machine Integration Design and Analysis System, is a unique combination of software tools aimed at reducing design cycle time, supporting quantitative predictions of human-system effectiveness and improving the design of crew stations and their associated operating procedures. This project is supported jointly by the US Army and NASA.

  14. Design of components for the NASA OCEAN project

    NASA Technical Reports Server (NTRS)

    Wright, Jenna (Editor); Clift, James; Dumais, Bryan; Gardner, Shannon; Hernandez, Juan Carlos; Nolan, Laura; Park, Mia; Peoples, Don; Phillips, Elizabeth; Tillman, Mark

    1993-01-01

    The goal of the Fall 1993 semester of the EGM 4000 class was to design, fabricate, and test components for the 'Ocean CELSS Experimental Analog NASA' Project (OCEAN Project) and to aid in the future development of NASA's Controlled Ecological Life Support System (CELSS). The OCEAN project's specific aims are to place a human, Mr. Dennis Chamberland from NASA's Life Science Division of Research, into an underwater habitat off the shore of Key Largo, FL for three months. During his stay, he will monitor the hydroponic growth of food crops and evaluate the conditions necessary to have a successful harvest of edible food. The specific designs chosen to contribute to the OCEAN project by the EGM 4000 class are in the areas of hydroponic habitat monitoring, human health monitoring, and production of blue/green algae. The hydroponic monitoring system focused on monitoring the environment of the plants. This included the continuous sensing of the atmospheric and hydroponic nutrient solution temperatures. Methods for monitoring the continuous flow of the hydroponic nutrient solution across the plants and the continuous supply of power for these sensing devices were also incorporated into the design system. The human health monitoring system concentrated on continuously monitoring various concerns of the occupant in the underwater living habitat of the OCEAN project. These concerns included monitoring the enclosed environment for dangerous levels of carbon monoxide and smoke, high temperatures from fire, and the ceasing of the continuous airflow into the habitat. The blue/green algae project emphasized both the production and harvest of a future source of food. This project did not interact with any part of the OCEAN project. Rather, it was used to show the possibility of growing this kind of algae as a supplemental food source inside a controlled ecological life support system.

  15. Space applications of Automation, Robotics and Machine Intelligence Systems (ARAMIS). Volume 2: Space projects overview

    NASA Technical Reports Server (NTRS)

    Miller, R. H.; Minsky, M. L.; Smith, D. B. S.

    1982-01-01

    Applications of automation, robotics, and machine intelligence systems (ARAMIS) to space activities, and their related ground support functions are studied so that informed decisions can be made on which aspects of ARAMIS to develop. The space project breakdowns, which are used to identify tasks ('functional elements'), are described. The study method concentrates on the production of a matrix relating space project tasks to pieces of ARAMIS.

  16. Technical Leadership Development Program - Year 2

    DTIC Science & Technology

    2012-02-01

    Why Projects Fail Pennotti Wed 2:45-3:00 Break Wed 3:00-4:30 Project: AR2D2: RFP Robinson UNCLASSIFIED Contract Number: H98230-08-D-0171 DO 02...Project: AR2D2 RFP 12. Customer Expectation-1: Lecture: Why Systems Fail 13. Customer Expectation-2: Case Study: Process Automation 14...01 February 2012 UNCLASSIFIED 65 Syllabus Segment 12: Why Systems Fail (Lecture) Time: 1.5 hours Responsible: Mike Pennotti Support

  17. Computer Applications in Health Care. NCHSR Research Report Series.

    ERIC Educational Resources Information Center

    Medical Information Systems Cluster, Rockville, MD.

    This NCHSR research program in the application of computers in health care--conducted over the ten year span 1968-1978--identified two areas of application research, an inpatient care support system, and an outpatient care support system. Both of these systems were conceived as conceptual frameworks for a related network of projects and ideas that…

  18. Environmental Assessment and FONSI for the Bison School District Heating Plant Project (Institutional Conservation Program [ICP]).

    ERIC Educational Resources Information Center

    Department of Energy, Washington, DC.

    This paper examines the environmental impacts of replacing the Bison, South Dakota School District's elementary and high school heating system consisting of oil-fired boilers, and supporting electrical components with a new coal-fired boiler and supporting control system piping. Various alternative systems are also examined, including purchasing a…

  19. Services for Children with Deaf-Blindness in Louisiana. Final Performance Report.

    ERIC Educational Resources Information Center

    Teddlie, Charles

    This final report describes activities and accomplishments of the Services for Children with Deaf-Blindness project, a 1-year federally supported project in Louisiana to improve identification and curriculum for these children by providing technical assistance and training to parents, school systems, and agency personnel. Project activities…

  20. Interagency Planning and Support Project. Final Report.

    ERIC Educational Resources Information Center

    Salisbury, Christine

    This final report describes the activities and outcomes of a federally funded project designed to develop, implement, and evaluate a systemically oriented process model for improving the coordination of education and human services for young children with identified disabilities and their families at the local level. The project developed and used…

  1. The Costs and Benefits of Pre-Planned Product Improvements for the Consolidated Automated Support System (CASS)

    DTIC Science & Technology

    1993-11-01

    ground missions and must operate effectively in both domains . Figure A-3 shows a block diagram of a modem fighter radar3 system . Technologies that are...I AUTOMATED SUPPORT SYSTEM (CASS) I i Daniel B. Levine Waynard C. Devers, Project Leader Bernard L. Retterer Howard S. Savage Clayton V. Stewart...Improvements for theI Consolidated Automated Support System (CASS) MDA 903 89C 0003 6. AUThiOR( T-B7-1095 Daniel B. Levine, Waynard C. Devers

  2. Application of Project Portfolio Management

    NASA Astrophysics Data System (ADS)

    Pankowska, Malgorzata

    The main goal of the chapter is the presentation of the application project portfolio management approach to support development of e-Municipality and public administration information systems. The models of how people publish and utilize information on the web have been transformed continually. Instead of simply viewing on static web pages, users publish their own content through blogs and photo- and video-sharing slides. Analysed in this chapter, ICT (Information Communication Technology) projects for municipalities cover the mixture of the static web pages, e-Government information systems, and Wikis. So, for the management of the ICT projects' mixtures the portfolio project management approach is proposed.

  3. Tracking and data systems support for the Helios project. Volume 1: Project development through end of mission, phase 2

    NASA Technical Reports Server (NTRS)

    Goodwin, P. S.; Traxler, M. R.; Meeks, W. G.; Flanagan, F. M.

    1976-01-01

    The overall evolution of the Helios Project is summarized from its conception through to the completion of the Helios-1 mission phase 2. Beginning with the project objectives and concluding with the Helios-1 spacecraft entering its first superior conjunction (end of mission phase 2), descriptions of the project, the mission and its phases, international management and interfaces, and Deep Space Network-spacecraft engineering development in telemetry, tracking, and command systems to ensure compatibility between the U.S. Deep Space Network and the German-built spacecraft are included.

  4. Life Support Systems for Lunar Landers

    NASA Technical Reports Server (NTRS)

    Anderson, Molly

    2008-01-01

    Engineers designing life support systems for NASA s next Lunar Landers face unique challenges. As with any vehicle that enables human spaceflight, the needs of the crew drive most of the lander requirements. The lander is also a key element of the architecture NASA will implement in the Constellation program. Many requirements, constraints, or optimization goals will be driven by interfaces with other projects, like the Crew Exploration Vehicle, the Lunar Surface Systems, and the Extravehicular Activity project. Other challenges in the life support system will be driven by the unique location of the vehicle in the environments encountered throughout the mission. This paper examines several topics that may be major design drivers for the lunar lander life support system. There are several functional requirements for the lander that may be different from previous vehicles or programs and recent experience. Some of the requirements or design drivers will change depending on the overall Lander configuration. While the configuration for a lander design is not fixed, designers can examine how these issues would impact their design and be prepared for the quick design iterations required to optimize a spacecraft.

  5. Miami regional advanced traveler information system project : final evaluation report

    DOT National Transportation Integrated Search

    2002-04-01

    In 1999 the U.S. Congress earmarked funds for selected projects that were assessed as supporting the improvements of transportation efficiency, promoting safety, increasing traffic flow, reducing emissions, improving traveler information, enhancing a...

  6. Can ICTs contribute to the efficiency and provide equitable access to the health care system in Sub-Saharan Africa? The Mali experience.

    PubMed

    Bagayoko, C O; Anne, A; Fieschi, M; Geissbuhler, A

    2011-01-01

    The aim of this study is to demonstrate from actual projects that ICT can contribute to the balance of health systems in developing countries and to equitable access to human resources and quality health care service. Our study is focused on two essential elements which are: i) Capacity building and support of health professionals, especially those in isolated areas using telemedicine tools; ii) Strengthening of hospital information systems by taking advantage of full potential offered by open-source software. Our research was performed on the activities carried out in Mali and in part through the RAFT (Réseau en Afrique Francophone pour la Télémédecine) Network. We focused mainly on the activities of e-learning, telemedicine, and hospital information systems. These include the use of platforms that work with low Internet connection bandwidth. With regard to information systems, our strategy is mainly focused on the improvement and implementation of open-source tools. Several telemedicine application projects were reviewed including continuing online medical education and the support of isolated health professionals through the usage of innovative tools. This review covers the RAFT project for continuing medical education in French-speaking Africa, the tele-radiology project in Mali, the "EQUI-ResHuS" project for equal access to health over ICT in Mali, The "Pact-e.Santé" project for community health workers in Mali. We also detailed a large-scale experience of an open-source hospital information system implemented in Mali: "Cinz@n". We report on successful experiences in the field of telemedicine and on the evaluation by the end-users of the Cinz@n project, a pilot hospital information system in Mali. These reflect the potential of healthcare-ICT for Sub-Saharan African countries.

  7. Scalable collaborative risk management technology for complex critical systems

    NASA Technical Reports Server (NTRS)

    Campbell, Scott; Torgerson, Leigh; Burleigh, Scott; Feather, Martin S.; Kiper, James D.

    2004-01-01

    We describe here our project and plans to develop methods, software tools, and infrastructure tools to address challenges relating to geographically distributed software development. Specifically, this work is creating an infrastructure that supports applications working over distributed geographical and organizational domains and is using this infrastructure to develop a tool that supports project development using risk management and analysis techniques where the participants are not collocated.

  8. Bioregenerative life support: not a picnic

    NASA Technical Reports Server (NTRS)

    Knott, W. M.

    1998-01-01

    If humans are to live permanently in space, regenerative life support systems are an enabling technology and must replace the picnic approach of taking all supplies required for each mission. These systems are classified by technologies as either physical/chemical or bioregenerative. Both of these system-types can recycle water, remove carbon dioxide, produce oxygen, and recover essential elements from waste products. Bioregenerative can also produce food, thus, making it essential if humans are to exist in space independent of earth. A solely bioregenerative life support system includes plants as a biomass production module and microbial organisms in bioreactors as a resource recovery module. In the Advanced Life Support Program, bioregenerative life support systems are being investigated through a research and technology development project which includes large scale testing as part of the Breadboard Project and human tests conducted in the soon to be constructed BioPlex facility. Research and technology development efforts are directed toward optimizing biomass productivity in controlled chambers by developing light weight, energy efficient, and automated systems; recycling liquid and solid wastes; baselining the operation of bioreactors; determining system microbial stability; assessing chemical contamination; and building models required for long term system operations. The program will include space flight studies in the near future to determine if these life support technologies will function in microgravity. When a bioregenerative system is finally incorporated into a mission, the conversion from a picnic and resupply mentality to permanent recycling and independence from earth will be complete.

  9. A Multi-mission Event-Driven Component-Based System for Support of Flight Software Development, ATLO, and Operations first used by the Mars Science Laboratory (MSL) Project

    NASA Technical Reports Server (NTRS)

    Dehghani, Navid; Tankenson, Michael

    2006-01-01

    This viewgraph presentation reviews the architectural description of the Mission Data Processing and Control System (MPCS). MPCS is an event-driven, multi-mission ground data processing components providing uplink, downlink, and data management capabilities which will support the Mars Science Laboratory (MSL) project as its first target mission. MPCS is designed with these factors (1) Enabling plug and play architecture (2) MPCS has strong inheritance from GDS components that have been developed for other Flight Projects (MER, MRO, DAWN, MSAP), and are currently being used in operations and ATLO, and (3) MPCS components are Java-based, platform independent, and are designed to consume and produce XML-formatted data

  10. The Iodine Satellite (iSAT) Hall Thruster Demonstration Mission Concept and Development

    NASA Technical Reports Server (NTRS)

    Dankanich, John W.; Polzin, Kurt A.; Calvert, Derek; Kamhawi, Hani

    2014-01-01

    The use of iodine propellant for Hall thrusters has been studied and proposed by multiple organizations due to the potential mission benefits over xenon. In 2013, NASA Marshall Space Flight Center competitively selected a project for the maturation of an iodine flight operational feed system through the Technology Investment Program. Multiple partnerships and collaborations have allowed the team to expand the scope to include additional mission concept development and risk reduction to support a flight system demonstration, the iodine Satellite (iSAT). The iSAT project was initiated and is progressing towards a technology demonstration mission preliminary design review. The current status of the mission concept development and risk reduction efforts in support of this project is presented.

  11. M/A-COM linkabit eastern operations

    NASA Astrophysics Data System (ADS)

    Mills, D. L.; Avramovic, Z.

    1983-03-01

    This first Quarterly Project Report on LINKABIT's contribution to the Defense Advanced Research Projects Agency (DARPA) Internet Program covers the period from 22 December 1982 through 21 March 1983. LINKABIT's support of the Internet Program is concentrated in the areas of protocol design, implementation, testing, and evaluation. In addition, LINKABIT staff are providing integration and support services for certain computer systems to be installed at DARPA sites in Washington, D.C., and Stuttgart, West Germany. During the period covered by this report, LINKABIT organized the project activities and established staff responsibilities. Several computers and peripheral devices were made available from Government sources for use in protocol development and network testing. Considerable time was devoted to installing this equipment, integrating the software, and testing it with the Internet system.

  12. Implementation of a Sustainable Training System for Emergency in Vietnam.

    PubMed

    Kang, Sunjoo; Seo, Hyejin; Ho, Binh Duy; Nguyen, Phuong Thi Anh

    2018-01-01

    This study analyzed the project outcomes to share lessons regarding the development of an emergency medicine education system in Vietnam. Retrospective evaluation was implemented using project outcome indicators. A total of 13 training courses were administered, with the collaboration of international experts in Korea and Vietnam. A total of 23 kinds of emergency medicine education equipment were purchased, and a basic life support (BLS) and two advanced cardiac life support labs were remodeled to provide appropriate simulation training. Throughout the 2 years of the project, nine Vietnamese BLS instructors were approved by the Korea Association of Cardiopulmonary Resuscitation under American Heart Association. Results of evaluation by Korean international development experts were based on five criteria, provided by the Development Assistance Committee of the Organization for Economic Co-operation and Development, were excellent. Success factors were identified as partnership, ownership, commitment, government support, and global networking. Project indicators were all accomplished and received an excellent evaluation by external experts. For sustainable success, healthcare policy and legal regulation to promote high quality and safe service to the Vietnamese people are recommended.

  13. The Development and Validation of a Special Education Intelligent Administration Support Program. Final Report.

    ERIC Educational Resources Information Center

    Utah State Univ., Logan. Center for Persons with Disabilities.

    This project studied the effects of implementing a computerized management information system developed for special education administrators. The Intelligent Administration Support Program (IASP), an expert system and database program, assisted in information acquisition and analysis pertaining to the district's quality of decisions and procedures…

  14. Using Learning Labs for Culturally Responsive Positive Behavioral Interventions and Supports

    ERIC Educational Resources Information Center

    Bal, Aydin; Schrader, Elizabeth M.; Afacan, Kemal; Mawene, Dian

    2016-01-01

    Culturally responsive positive behavioral interventions and supports (CRPBIS) is a statewide research project designed to renovate behavioral support systems to become more inclusive, adaptive, and supportive for all. The CRPBIS methodology, called "learning lab," provides a research-based process to bring together local stakeholders and…

  15. User's operating procedures. Volume 3: Projects directorate information programs

    NASA Technical Reports Server (NTRS)

    Haris, C. G.; Harris, D. K.

    1985-01-01

    A review of the user's operating procedures for the scout project automatic data system, called SPADS is presented. SPADS is the results of the past seven years of software development on a prime mini-computer. SPADS was developed as a single entry, multiple cross-reference data management and information retrieval system for the automation of Project office tasks, including engineering, financial, managerial, and clerical support. This volume, three of three, provides the instructions to operate the projects directorate information programs in data retrieval and file maintenance via the user friendly menu drivers.

  16. Cascade Distillation Subsystem Development: Progress Toward a Distillation Comparison Test

    NASA Technical Reports Server (NTRS)

    Callahan, M. R.; Lubman, A.; Pickering, Karen D.

    2009-01-01

    Recovery of potable water from wastewater is essential for the success of long-duration manned missions to the Moon and Mars. Honeywell International and a team from NASA Johnson Space Center (JSC) are developing a wastewater processing subsystem that is based on centrifugal vacuum distillation. The wastewater processor, referred to as the Cascade Distillation Subsystem (CDS), utilizes an innovative and efficient multistage thermodynamic process to produce purified water. The rotary centrifugal design of the system also provides gas/liquid phase separation and liquid transport under microgravity conditions. A five-stage subsystem unit has been designed, built, delivered and integrated into the NASA JSC Advanced Water Recovery Systems Development Facility for performance testing. A major test objective of the project is to demonstrate the advancement of the CDS technology from the breadboard level to a subsystem level unit. An initial round of CDS performance testing was completed in fiscal year (FY) 2008. Based on FY08 testing, the system is now in development to support an Exploration Life Support (ELS) Project distillation comparison test expected to begin in early 2009. As part of the project objectives planned for FY09, the system will be reconfigured to support the ELS comparison test. The CDS will then be challenged with a series of human-gene-rated waste streams representative of those anticipated for a lunar outpost. This paper provides a description of the CDS technology, a status of the current project activities, and data on the system s performance to date.

  17. Aids to navigation service force mix 2000 project. Volume 2 : development and application of an aids to navigation service force mix decision support system : aid assignments and vessel summary reports

    DOT National Transportation Integrated Search

    1992-06-01

    The Aids to Navigation (ATON) Service Force Mix (SFM) 2000 Project is documented in a Project Overview and three separately bound volumes. This is Volume II. The Project Overview describes the purpose, approach, analysis, and results of the ATON SFM ...

  18. Identification of genes in anonymous DNA sequences. Final report: Report period, 15 April 1993--15 April 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fields, C.A.

    1994-09-01

    This Report concludes the DOE Human Genome Program project, ``Identification of Genes in Anonymous DNA Sequence.`` The central goals of this project have been (1) understanding the problem of identifying genes in anonymous sequences, and (2) development of tools, primarily the automated identification system gm, for identifying genes. The activities supported under the previous award are summarized here to provide a single complete report on the activities supported as part of the project from its inception to its completion.

  19. An efficient temporal logic for robotic task planning

    NASA Technical Reports Server (NTRS)

    Becker, Jeffrey M.

    1989-01-01

    Computations required for temporal reasoning can be prohibitively expensive if fully general representations are used. Overly simple representations, such as totally ordered sequence of time points, are inadequate for use in a nonlinear task planning system. A middle ground is identified which is general enough to support a capable nonlinear task planner, but specialized enough that the system can support online task planning in real time. A Temporal Logic System (TLS) was developed during the Intelligent Task Automation (ITA) project to support robotic task planning. TLS is also used within the ITA system to support plan execution, monitoring, and exception handling.

  20. Earth Resources Laboratory research and technology

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The accomplishments of the Earth Resources Laboratory's research and technology program are reported. Sensors and data systems, the AGRISTARS project, applied research and data analysis, joint research projects, test and evaluation studies, and space station support activities are addressed.

  1. Pattern dynamics of network-organized system with cross-diffusion

    NASA Astrophysics Data System (ADS)

    Zheng, Qianqian; Wang, Zhijie; Shen, Jianwei

    2017-02-01

    Not Available Project supported by the National Natural Science Foundation of China (Grant Nos. 11272277, 11572278, and 11572084) and the Innovation Scientists and Technicians Troop Construction Projects of Henan Province, China (Grant No. 2017JR0013).

  2. Development Status of the Advanced Life Support On-Line Project Information System

    NASA Technical Reports Server (NTRS)

    Levri, Julie A.; Hogan, John A.; Cavazzoni, Jim; Brodbeck, Christina; Morrow, Rich; Ho, Michael; Kaehms, Bob; Whitaker, Dawn R.

    2005-01-01

    The Advanced Life Support Program has recently accelerated an effort to develop an On-line Project Information System (OPIS) for research project and technology development data centralization and sharing. The core functionality of OPIS will launch in October of 2005. This paper presents the current OPIS development status. OPIS core functionality involves a Web-based annual solicitation of project and technology data directly from ALS Principal Investigators (PIS) through customized data collection forms. Data provided by PIs will be reviewed by a Technical Task Monitor (TTM) before posting the information to OPIS for ALS Community viewing via the Web. The data will be stored in an object-oriented relational database (created in MySQL(R)) located on a secure server at NASA ARC. Upon launch, OPIS can be utilized by Managers to identify research and technology development gaps and to assess task performance. Analysts can employ OPIS to obtain.

  3. Factors Influencing the Selection of the Systems Integration Organizational Model Type for Planning and Implementing Government High-Technology Programs

    NASA Technical Reports Server (NTRS)

    Thomas, Leann; Utley, Dawn

    2006-01-01

    While there has been extensive research in defining project organizational structures for traditional projects, little research exists to support high technology government project s organizational structure definition. High-Technology Government projects differ from traditional projects in that they are non-profit, span across Government-Industry organizations, typically require significant integration effort, and are strongly susceptible to a volatile external environment. Systems Integration implementation has been identified as a major contributor to both project success and failure. The literature research bridges program management organizational planning, systems integration, organizational theory, and independent project reports, in order to assess Systems Integration (SI) organizational structure selection for improving the high-technology government project s probability of success. This paper will describe the methodology used to 1) Identify and assess SI organizational structures and their success rate, and 2) Identify key factors to be used in the selection of these SI organizational structures during the acquisition strategy process.

  4. Intelligent Systems Technologies for Ops

    NASA Technical Reports Server (NTRS)

    Smith, Ernest E.; Korsmeyer, David J.

    2012-01-01

    As NASA supports International Space Station assembly complete operations through 2020 (or later) and prepares for future human exploration programs, there is additional emphasis in the manned spaceflight program to find more efficient and effective ways of providing the ground-based mission support. Since 2006 this search for improvement has led to a significant cross-fertilization between the NASA advanced software development community and the manned spaceflight operations community. A variety of mission operations systems and tools have been developed over the past decades as NASA has operated the Mars robotic missions, the Space Shuttle, and the International Space Station. NASA Ames Research Center has been developing and applying its advanced intelligent systems research to mission operations tools for both unmanned Mars missions operations since 2001 and to manned operations with NASA Johnson Space Center since 2006. In particular, the fundamental advanced software development work under the Exploration Technology Program, and the experience and capabilities developed for mission operations systems for the Mars surface missions, (Spirit/Opportunity, Phoenix Lander, and MSL) have enhanced the development and application of advanced mission operation systems for the International Space Station and future spacecraft. This paper provides an update on the status of the development and deployment of a variety of intelligent systems technologies adopted for manned mission operations, and some discussion of the planned work for Autonomous Mission Operations in future human exploration. We discuss several specific projects between the Ames Research Center and the Johnson Space Centers Mission Operations Directorate, and how these technologies and projects are enhancing the mission operations support for the International Space Station, and supporting the current Autonomous Mission Operations Project for the mission operation support of the future human exploration programs.

  5. Collecting and Reporting Occupational Education Information. Final Report, July 1, 1980 through June 30, 1981.

    ERIC Educational Resources Information Center

    City Univ. of New York, NY. Inst. for Research and Development in Occupational Education.

    To support the New York State Education Department's efforts, a project was carried out to design and implement information and reporting systems that serve the needs of occupational information. Technical assistance was provided throughout the project to implement an occupational education reporting system in New York City and coordinate that…

  6. Post-Project Assessment of Community-Supported Emergency Transport Systems for Health Care Services in Tanzania

    ERIC Educational Resources Information Center

    Ahluwalia, Indu B.; Robinson, Dorcas; Vallely, Lisa; Myeya, Juliana; Ngitoria, Lukumay; Kitambi, Victor; Kabakama, Alfreda

    2012-01-01

    We examined the continuation of community-organized and financed emergency transport systems implemented by the Community-Based Reproductive Health Project (CBRHP) from 1998 to 2000 in two rural districts in Tanzania. The CBRHP was a multipronged program, one component of which focused on affordable transport to health facilities from the…

  7. Development of the System of Investment Support of Projects in the Industrial-Innovative Development of Kazakhstan

    ERIC Educational Resources Information Center

    Doskaliyeva, Bayan B.; Orynbassarova, Yerkenazym D.; Omarkhanov?, Zhibek M.; Karibaev, Yerkebulan S.; Baimukhametova, Ayagul S.

    2016-01-01

    The purpose of this study is to determine specific features of investment regulation mechanism aimed at providing effective implementation of projects in the context of industrial-innovative development of Kazakhstan. There the used the system of general scientific and special research methods providing the possibility to disclose processes and…

  8. The Bilingual Academic Services and Integrated Career Systems Program: Project BASICS, 1987-1988. OREA Report.

    ERIC Educational Resources Information Center

    Berney, Tomi D.; Carey, Cecilia

    The Bilingual Academic Services and Integrated Career Systems Program (Project BASICS) is a federally-funded program of instructional and support services provided to 122 students at a Queens high school. The program's aim was to develop English literacy skills and appreciation of cultural diversity, and to prepare students for the psychosocial…

  9. Putting the Power of Configuration in the Hands of the Users

    NASA Technical Reports Server (NTRS)

    Al-Shihabi, Mary-Jo; Brown, Mark; Rigolini, Marianne

    2011-01-01

    Goal was to reduce the overall cost of human space flight while maintaining the most demanding standards for safety and mission success. In support of this goal, a project team was chartered to replace 18 legacy Space Shuttle nonconformance processes and systems with one fully integrated system Problem Reporting and Corrective Action (PRACA) processes provide a closed-loop system for the identification, disposition, resolution, closure, and reporting of all Space Shuttle hardware/software problems PRACA processes are integrated throughout the Space Shuttle organizational processes and are critical to assuring a safe and successful program Primary Project Objectives Develop a fully integrated system that provides an automated workflow with electronic signatures Support multiple NASA programs and contracts with a single "system" architecture Define standard processes, implement best practices, and minimize process variations

  10. Tracking and data system support for the Pioneer project. Volume 2: Pioneer 11 prelaunch planning through second trajectory correction, to 1 May 1973

    NASA Technical Reports Server (NTRS)

    Barton, W. R.; Miller, R. B.

    1975-01-01

    The tracking and data system support of the planning, testing, launch, near-earth, and deep space phases of the Pioneer 11 Jupiter Mission are described, including critical phases of spacecraft flight and guidance. Scientific instruments aboard the spacecraft registered information relative to interplanetary particles and fields. Knowledge of the celestial mechanics of the solar system was improved through radiometric data gathering. Network performance, details of network support activity, and special support activities are discussed.

  11. Implementing the President's Vision: JPL and NASA's Exploration Systems Mission Directorate

    NASA Technical Reports Server (NTRS)

    Sander, Michael J.

    2006-01-01

    As part of the NASA team the Jet Propulsion Laboratory is involved in the Exploration Systems Mission Directorate (ESMD) work to implement the President's Vision for Space exploration. In this slide presentation the roles that are assigned to the various NASA centers to implement the vision are reviewed. The plan for JPL is to use the Constellation program to advance the combination of science an Constellation program objectives. JPL's current participation is to contribute systems engineering support, Command, Control, Computing and Information (C3I) architecture, Crew Exploration Vehicle, (CEV) Thermal Protection System (TPS) project support/CEV landing assist support, Ground support systems support at JSC and KSC, Exploration Communication and Navigation System (ECANS), Flight prototypes for cabin atmosphere instruments

  12. NASA Redox Storage System Development Project

    NASA Technical Reports Server (NTRS)

    Hagedorn, N. H.

    1984-01-01

    The Redox Storage System Technology Project was jointly supported by the U.S. Department of Energy and NASA. The objectives of the project were to develop the Redox flow battery concept and to probe its technical and economic viability. The iron and chromium redox couples were selected as the reactants. Membranes and electrodes were developed for the original mode of operating at 25 C with the reactants separated by an ion-exchange membrane. Analytical capabilities and system-level operating concepts were developed and verified in a 1-kW, 13-kWh preprototype system. A subsequent change was made in operating mode, going to 65 C and using mixed reactants. New membranes and a new electrode catalyst were developed, resulting in single cell operation as high as 80 mA/sq cm with energy efficiencies greater than 80 percent. Studies indicate a likely system cost of about $75/kWh. Standard Oil of Ohio (Sohio) has undertaken further development of the Redox system. An exclusive patent license was obtained from NASA by Sohio. Transfer of Redox technology to Sohio is supported by the NASA Technology Utilization Office.

  13. Version Control in Project-Based Learning

    ERIC Educational Resources Information Center

    Milentijevic, Ivan; Ciric, Vladimir; Vojinovic, Oliver

    2008-01-01

    This paper deals with the development of a generalized model for version control systems application as a support in a range of project-based learning methods. The model is given as UML sequence diagram and described in detail. The proposed model encompasses a wide range of different project-based learning approaches by assigning a supervisory…

  14. Developing Support Systems within Schools: Creating a Foundation for Change.

    ERIC Educational Resources Information Center

    Steele, Toren Anderson

    This paper describes and evaluates the Blalock FIRST (Fund for the Improvement and Reform of Schools and Teaching) project, a 3-year, federally funded project based in an elementary school that serves mainly female-headed, African-American families who receive government assistance and live in public housing. The Blalock FIRST project seeks to…

  15. The Genomes OnLine Database (GOLD) v.5: a metadata management system based on a four level (meta)genome project classification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reddy, Tatiparthi B. K.; Thomas, Alex D.; Stamatis, Dimitri

    The Genomes OnLine Database (GOLD; http://www.genomesonline.org) is a comprehensive online resource to catalog and monitor genetic studies worldwide. GOLD provides up-to-date status on complete and ongoing sequencing projects along with a broad array of curated metadata. Within this paper, we report version 5 (v.5) of the database. The newly designed database schema and web user interface supports several new features including the implementation of a four level (meta)genome project classification system and a simplified intuitive web interface to access reports and launch search tools. The database currently hosts information for about 19 200 studies, 56 000 Biosamples, 56 000 sequencingmore » projects and 39 400 analysis projects. More than just a catalog of worldwide genome projects, GOLD is a manually curated, quality-controlled metadata warehouse. The problems encountered in integrating disparate and varying quality data into GOLD are briefly highlighted. Lastly, GOLD fully supports and follows the Genomic Standards Consortium (GSC) Minimum Information standards.« less

  16. Reengineering the project design process

    NASA Astrophysics Data System (ADS)

    Kane Casani, E.; Metzger, Robert M.

    1995-01-01

    In response to the National Aeronautics and Space Administration's goal of working faster, better, and cheaper, the Jet Propulsion Laboratory (JPL) has developed extensive plans to minimize cost, maximize customer and employee satisfaction, and implement small- and moderate-size missions. These plans include improved management structures and processes, enhanced technical design processes, the incorporation of new technology, and the development of more economical space- and ground-system designs. The Laboratory's new Flight Projects Implementation Development Office has been chartered to oversee these innovations and the reengineering of JPL's project design process, including establishment of the Project Design Center (PDC) and the Flight System Testbed (FST). Reengineering at JPL implies a cultural change whereby the character of the Laboratory's design process will change from sequential to concurrent and from hierarchical to parallel. The Project Design Center will support missions offering high science return, design to cost, demonstrations of new technology, and rapid development. Its computer-supported environment will foster high-fidelity project life-cycle development and more accurate cost estimating. These improvements signal JPL's commitment to meeting the challenges of space exploration in the next century.

  17. Site systems engineering fiscal year 1999 multi-year work plan (MYWP) update for WBS 1.8.2.2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    GRYGIEL, M.L.

    1998-10-08

    Manage the Site Systems Engineering process to provide a traceable integrated requirements-driven, and technically defensible baseline. Through the Site Integration Group(SIG), Systems Engineering ensures integration of technical activities across all site projects. Systems Engineering's primary interfaces are with the RL Project Managers, the Project Direction Office and with the Project Major Subcontractors, as well as with the Site Planning organization. Systems Implementation: (1) Develops, maintains, and controls the site integrated technical baseline, ensures the Systems Engineering interfaces between projects are documented, and maintain the Site Environmental Management Specification. (2) Develops and uses dynamic simulation models for verification of the baselinemore » and analysis of alternatives. (3) Performs and documents fictional and requirements analyses. (4) Works with projects, technology management, and the SIG to identify and resolve technical issues. (5) Supports technical baseline information for the planning and budgeting of the Accelerated Cleanup Plan, Multi-Year Work Plans, Project Baseline Summaries as well as performance measure reporting. (6) Works with projects to ensure the quality of data in the technical baseline. (7) Develops, maintains and implements the site configuration management system.« less

  18. Overview of Heatshield for Extreme Entry Environment Technology (HEEET)

    NASA Technical Reports Server (NTRS)

    Driver, David M.; Ellerby, Donald T.; Gasch, Matthew J.; Mahzari, Milad; Milos, Frank S.; Nishioka, Owen S.; Stackpoole, Margaret M.; Venkatapathy, Ethiraj; Young, Zion W.; Gage, Peter J.; hide

    2018-01-01

    The Heatshield for Extreme Entry Environment Technology (HEEET) projects objective is to mature a 3-D Woven Thermal Protection System (TPS) to Technical Readiness Level (TRL) 6 to support future NASA missions to destinations such as Venus and Saturn. The scope of the project, status of which will be discussed, encompasses development of manufacturing and integration processes, fabrication of a prototype 1m diameter engineering test unit (ETU) that will undergo a series of structural tests, characterizing material aerothermal performance including development of a material response model, and structural testing and analysis to develop tools to support design and establish system capability.

  19. Region and database management for HANDI 2000 business management system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, D.

    The Data Integration 2000 Project will result in an integrated and comprehensive set of functional applications containing core information necessary to support the Project Hanford Management Contract. It is based on the Commercial-Off-The-Shelf product solution with commercially proven business processes. The COTS product solution set, of PassPort and People Soft software, supports finance, supply and chemical management/Material Safety Data Sheet, human resources.

  20. Learning from the implementation of inter-organisational web-based care planning and coordination.

    PubMed

    Walker, Rae; Blacker, Vivian; Pandita, Linda; Close, Jacky; Mason, Wendy; Watson, Julie

    2013-01-01

    In Victoria, despite strong policy support, e-care planning and coordination is poorly developed. The action research project discussed here was developed to overcome organisational and worker-level barriers to change. The project outcomes highlighted the need for work on the building blocks of e-care coordination that enhance workers' knowledge and skills, and provide permission and support for appropriate collaborative system and services coordination practices.

  1. Paperless medical records: measuring success.

    PubMed

    Tobey, Mary Ellen

    2004-01-01

    North Shore Magnetic Imaging Center (NSMIC) underwent a major transformation of the patient process through an 18-month "Reinvention Project." The project began in October 2002, with an assessment of systems in place. A complete review of each stage of the patient process--scheduling, registration, insurance verification, screening, scanning, transcription, and billing--resulted in the discovery that the paperwork for a single patient examination could go though as many as 20 sets of hands. The project was supported by the formation of an internal team comprised of staff members from all departments (support, patient accounts, and technical), radiologists, and members of the center's senior management team. The team had 2 goals: increase the level of patient care, and create a paperless environment. External teams were formed to address specific areas targeted to support the process. The transformation for all involved--patients, staff, radiologists, and referring physicians--has proved to be very positive. The work, however, was not finished. Upon the project's completion, NSMIC recognized the importance of identifying successes and areas for improvement. These included ongoing reviews of the project's impact on all stakeholders and looking for new technologies and programs to enhance the new systems in place. There are plans for a project "sequel." Strategies are being developed for "Reinvention, Phase II." Elements of these strategies include enhancement of the scheduling programs to create more checks and balances for the staff and investigating an online scheduling option for the center's referring physicians. The purchase and implementation of a voice recognition system--tabled during Phase I--is scheduled for the first quarter of 2005.

  2. Protocol Development for the NASA-JSC Lunar-Mars Life Support Test Project (LMLSTP) Phase 3 Project: A Report on Baseline Studies at KSC for Continuous Salad Production

    NASA Technical Reports Server (NTRS)

    Goins, G. D.; Yorio, N. C.; Vivenzio, H. R.

    1998-01-01

    The Phase 3 Lunar-Mars Life Support Test Project (LMLSTP) was conducted in a 20-foot chamber at Johnson Space Center. The overall objective of the Phase 3 project was to conduct a 90-day regenerative life support system test involving 4 human subjects to demonstrate an integrated biological and physicochemical life support system. A secondary objective of the Phase 3 LMLSTP was to demonstrate the ability to produce salad-type vegetable by integration of a small benchtop growth chamber located within the crew habitat area. This small chamber, commercially manufactured as the Controlled Environment Research Ecosystem (CERES 2010(TM)), functioned as a means to continuously provide fresh lettuce crops for crew members. The CERES 2010(TM) growth chamber utilized hardware components developed for effective plant biomass production in spaceflight applications. These components included: (1) LED lighting; (2) Astroculture(TM) Root Trays; and (3) Zeoponic media. In planning for the LMLSTP Phase 3, a request was put forward for KSC scientists to generate a protocol for successful continuous planting, culturing, and harvesting of the salad-crop, lettuce. By conducting baseline tests with components of the CERES 2010(TM), a protocol was developed.

  3. Multi-Modal Traveler Information System - Corridor User Needs and Data Exchange Elements

    DOT National Transportation Integrated Search

    1997-07-30

    Intended as a resource for the members of the GCM Deployment Committee, : Architecture Communication and Information Work Group, project managers, system : designers, system developers and system integrators, this Working Paper supports : the design,...

  4. Development of an Intelligent Monitoring and Control System for a Heterogeneous Numerical Propulsion System Simulation

    NASA Technical Reports Server (NTRS)

    Reed, John A.; Afjeh, Abdollah A.; Lewandowski, Henry; Homer, Patrick T.; Schlichting, Richard D.

    1996-01-01

    The NASA Numerical Propulsion System Simulation (NPSS) project is exploring the use of computer simulation to facilitate the design of new jet engines. Several key issues raised in this research are being examined in an NPSS-related research project: zooming, monitoring and control, and support for heterogeneity. The design of a simulation executive that addresses each of these issues is described. In this work, the strategy of zooming, which allows codes that model at different levels of fidelity to be integrated within a single simulation, is applied to the fan component of a turbofan propulsion system. A prototype monitoring and control system has been designed for this simulation to support experimentation with expert system techniques for active control of the simulation. An interconnection system provides a transparent means of connecting the heterogeneous systems that comprise the prototype.

  5. From science fair to project-based science: A study of the implementation of an innovation through an existing activity system

    NASA Astrophysics Data System (ADS)

    Walker, Lisa Jean

    The implementation process is critical to the success of educational innovations. Project-based science is an innovation designed to support students' science learning. Science fair is a pervasive school practice in which students exhibit science projects. Little is known about how science fair may affect the implementation of reform efforts in science education. This study explores the relationship of science fair and project-based science in the classrooms of three science teachers. Two theories are used to understand science fair as an instructional practice. Cultural historical activity theory supports an analysis of the origins and development of science fair. The idea of communities of practice supports a focus on why and how educational practitioners participate in science fair and what meanings the activity holds for them. The study identifies five historically-based design themes that have shaped science fair: general science, project method, scientific method, extra-curricular activity, and laboratory science. The themes provide a new framework for describing teachers' classroom practices for science fair activities and support analysis of the ways their practices incorporate aspects of project-based science. Three case studies in Chicago present ethnographic descriptions of science fair practices within the context of school communities. One focuses on the scientific method as a linear process for doing science, another on knowledge generation through laboratory experiments, and the third on student ability to engage in open-ended inquiry. One teacher reinvents a project-based science curriculum to strengthen students' laboratory-based science fair projects, while another reinvents science fair to teach science as inquiry. In each case, science fair is part of the school's efforts to improve science instruction. The cases suggest that reform efforts help to perpetuate science fair practice. To support systemic improvements in science education, this study recommends that science fair be recognized as a classroom instructional activity---rather than an extra-curricular event---and part of the system of science education in this country. If science fair is to reflect new ideas in science education, direct intervention in the practice is necessary. This study---including both the history and examples of current practice---provides valuable insights for reconsidering science fair's design.

  6. Unmanned Aircraft Systems (UAS) Integration in the National Airspace System (NAS) Project: KDP-A for Phase 2 Minimum Operational Performance Standards

    NASA Technical Reports Server (NTRS)

    Grindle, Laurie; Hackenberg, Davis L.

    2016-01-01

    UAS Integration in the NAS Project has: a) Developed Technical Challenges that are crucial to UAS integration, aligned with NASA's Strategic Plan and Thrusts, and support FAA standards development. b) Demonstrated rigorous project management processes through the execution of previous phases. c) Defined Partnership Plans. d) Established path to KDP-C. Request approval of Technical Challenges, execution of partnerships and plans, and execution of near-term FY17 activities. There is an increasing need to fly UAS in the NAS to perform missions of vital importance to National Security and Defense, Emergency Management, and Science. There is also an emerging need to enable commercial applications such as cargo transport (e.g. FedEx). Unencumbered NAS Access for Civil/Commercial UAS. Provide research findings, utilizing simulation and flight tests, to support the development and validation of DAA and C2 technologies necessary for integrating Unmanned Aircraft Systems into the National Airspace System.

  7. System Requirements Analysis and Technological Support for the Ballistic Missile Defense System (BMDS) - FY07 Progress Report

    DTIC Science & Technology

    2007-07-01

    Systems , Boeing-led Airborne Laser Team Actively Tracks Airborne Target, Compensates for Atmospheric Turbulence and Fires Sur- rogate High-Energy Laser...7100 System Requirements Analysis and Technological Support for the Ballistic Missile Defense System (BMDS) FY07 Progress Report By...Office of Management and Budget , Paperwork Reduction Project (0704-0188) Washington DC 20503. 1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE July

  8. EPA SUPPORT OF TECHNOLOGY DEVELOPMENT FOR REHABILITATION

    EPA Science Inventory

    Several EPA projects are currently underway to encourage technology development and dissemination in key aspects of the condition assessment and rehabilitation and replacement process for water and wastewater systems. The progress on one of these projects, Task Order 58 -- being ...

  9. Modifying the Human-Machine Interface Based on Quantitative Measurements of the Level of Awareness

    NASA Technical Reports Server (NTRS)

    Freund, Louis E.; Knapp, Benjamin

    1999-01-01

    This project got underway without funding approved during the summer of 1998. The initial project steps were to identify previously published work in the fields of error classification systems, physiological measurements of awareness, and related topics. This agenda was modified at the request of NASA Ames in August, 1998 to include supporting the new Cargo Air Association (CAA) evaluation of the Human Factors related to the ADS-B technology. Additional funding was promised to fully support both efforts. Work on library research ended in the late Fall, 1998 when the SJSU project directors were informed that NASA would not be adding to the initial funding of the research project as had been initially committed. However, NASA did provide additional funding for the CAA project activity. NASA elected to leave the research grant in place to provide a pathway for the CAA project funding to SJSU (San Jose State University) to support Dr. Freund's work on the CAA tasks. Dr. Knapp essentially terminated his involvement with the project at this time.

  10. Perinatal research and its support. Corporate contributions at McGill University.

    PubMed

    Little, B; Hamilton, E; Quillen, E; Watkin, K; Nuwayhid, B; Stripp, B

    1994-05-01

    Three technologic projects with potentially patentable end results are slowly evolving in the Department of Obstetrics and Gynecology, McGill University and Royal Victoria Hospital. A tax shelter infusion of a significant amount of venture capital developed opportunities for all three projects over two years. The three projects--fetal heart rate tracing analysis related to fetal outcome, a distributed and intelligent data acquisition system and selected ultrasonic three dimensional imaging--were advanced considerably, and their results are expressed in outline. The effects of such infusions of business support into an environment of sparse research grant support have been extremely encouraging to the investigators, but the department, with its obligations of ongoing research, teaching and patient care, must develop the next steps with care, although one of the projects has been extended by an interested corporation.

  11. Management of Service Projects in Support of Space Flight Research

    NASA Technical Reports Server (NTRS)

    Love, J.

    2009-01-01

    Goal:To provide human health and performance countermeasures, knowledge, technologies, and tools to enable safe, reliable, and productive human space exploration . [HRP-47051] Specific Objectives: 1) Develop capabilities, necessary countermeasures, and technologies in support of human space exploration, focusing on mitigating the highest risks to human health and performance. 2) Define and improve human spaceflight medical, environmental, and human factors standards. 3) Develop technologies that serve to reduce medical and environmental risks, to reduce human systems resource requirements (mass, volume, power, data, etc.) and to ensure effective human-system integration across exploration systems. 4) Ensure maintenance of Agency core competencies necessary to enable risk reduction in the following areas: A. Space medicine B. Physiological and behavioral effects of long duration spaceflight on the human body C. Space environmental effects, including radiation, on human health and performance D. Space "human factors" [HRP-47051]. Service projects can form integral parts of research-based project-focused programs to provide specialized functions. Traditional/classic project management methodologies and agile approaches are not mutually exclusive paradigms. Agile strategies can be combined with traditional methods and applied in the management of service projects functioning in changing environments. Creative collaborations afford a mechanism for mitigation of constrained resource limitations.

  12. Medical Data Architecture Project Status

    NASA Technical Reports Server (NTRS)

    Krihak, M.; Middour, C.; Lindsey, A.; Marker, N.; Wolfe, S.; Winther, S.; Ronzano, K.; Bolles, D.; Toscano, W.; Shaw, T.

    2017-01-01

    The Medical Data Architecture (MDA) project supports the Exploration Medical Capability (ExMC) risk to minimize or reduce the risk of adverse health outcomes and decrements in performance due to in-flight medical capabilities on human exploration missions. To mitigate this risk, the ExMC MDA project addresses the technical limitations identified in ExMC Gap Med 07: We do not have the capability to comprehensively process medically-relevant information to support medical operations during exploration missions. This gap identifies that the current International Space Station (ISS) medical data management includes a combination of data collection and distribution methods that are minimally integrated with on-board medical devices and systems. Furthermore, there are variety of data sources and methods of data collection. For an exploration mission, the seamless management of such data will enable an increasingly autonomous crew than the current ISS paradigm. The MDA will develop capabilities that support automated data collection, and the necessary functionality and challenges in executing a self-contained medical system that approaches crew health care delivery without assistance from ground support. To attain this goal, the first year of the MDA project focused on reducing technical risk, developing documentation and instituting iterative development processes that established the basis for the first version of MDA software (or Test Bed 1). Test Bed 1 is based on a nominal operations scenario authored by the ExMC Element Scientist. This narrative was decomposed into a Concept of Operations that formed the basis for Test Bed 1 requirements. These requirements were successfully vetted through the MDA Test Bed 1 System Requirements Review, which permitted the MDA project to begin software code development and component integration. This paper highlights the MDA objectives, development processes, and accomplishments, and identifies the fiscal year 2017 milestones and deliverables in the upcoming year.

  13. User's operating procedures. Volume 2: Scout project financial analysis program

    NASA Technical Reports Server (NTRS)

    Harris, C. G.; Haris, D. K.

    1985-01-01

    A review is presented of the user's operating procedures for the Scout Project Automatic Data system, called SPADS. SPADS is the result of the past seven years of software development on a Prime mini-computer located at the Scout Project Office, NASA Langley Research Center, Hampton, Virginia. SPADS was developed as a single entry, multiple cross-reference data management and information retrieval system for the automation of Project office tasks, including engineering, financial, managerial, and clerical support. This volume, two (2) of three (3), provides the instructions to operate the Scout Project Financial Analysis program in data retrieval and file maintenance via the user friendly menu drivers.

  14. Groundwater Data Package for Hanford Assessments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thorne, Paul D.; Bergeron, Marcel P.; Williams, Mark D.

    2006-01-31

    This report presents data and interpreted information that supports the groundwater module of the System Assessment Capability (SAC) used in Hanford Assessments. The objective of the groundwater module is to predict movement of radioactive and chemical contaminants through the aquifer to the Columbia River or other potential discharge locations. This data package is being revised as part of the deliverables under the Characterization of Systems Project (#49139) aimed at providing documentation for assessments being conducted under the Hanford Assessments Project (#47042). Both of these projects are components of the Groundwater Remediation and Closure Assessments Projects, managed by the Management andmore » Integration Project (#47043).« less

  15. A Multi-criterial Decision Support System for Forest Management

    Treesearch

    Donald Nute; Geneho Kim; Walter D. Potter; Mark J. Twery; H. Michael Rauscher; Scott Thomasma; Deborah Bennett; Peter Kollasch

    1999-01-01

    We describe a research project that has as its goal development of a full-featured decision support system for managing forested land to satisfy multiple criteria represented as timber, wildlife, water, ecological, and wildlife objectives. The decision process proposed for what was originally conceived of as a Northeast Decision Model (NED) includes data acquisition,...

  16. The ASSERT Virtual Machine Kernel: Support for Preservation of Temporal Properties

    NASA Astrophysics Data System (ADS)

    Zamorano, J.; de la Puente, J. A.; Pulido, J. A.; Urueña

    2008-08-01

    A new approach to building embedded real-time software has been developed in the ASSERT project. One of its key elements is the concept of a virtual machine preserving the non-functional properties of the system, and especially real-time properties, all the way down from high- level design models down to executable code. The paper describes one instance of the virtual machine concept that provides support for the preservation of temporal properties both at the source code level —by accept- ing only "legal" entities, i.e. software components with statically analysable real-tim behaviour— and at run-time —by monitoring the temporal behaviour of the system. The virtual machine has been validated on several pilot projects carried out by aerospace companies in the framework of the ASSERT project.

  17. Use of Natural and Nature-Based Features for Coastal Resilience

    NASA Astrophysics Data System (ADS)

    Piercy, C.; Bridges, T. S.

    2017-12-01

    Natural and Nature-Based Features (NNBF) have been used for decades to support a variety of objectives in coastal systems. Beach and dune projects have been a longstanding part of flood risk reduction strategies in Europe, the United States and elsewhere. Coastal restoration projects supporting wetlands, seagrass, oysters and other habitats and communities have been undertaken around the world to restore ecosystem functions. In more recent years there has been a growing interest in developing a technically sound engineering approach for integrating NNBF, in combination with conventional flood defense systems (e.g., levees, seawalls, etc.), for more comprehensive and sustainable flood defense systems. This interest was further stimulated by the outcomes of recent storm events, including Hurricanes Katrina and Sandy in the United States, which have given rise to a range of studies and projects focused on the role of coastal landscape features in flood risk management. The global dialogue that has been underway for several years—including within the Engineering with Nature program in the United States—has revealed the demand for an authoritative guidance on the use of NNBF in shoreline management. The U.S. Army Corps of Engineers has initiated a collaborative project involving participants from several countries and organizations representing government, academia, and the private sector to develop international guidelines to inform the planning, design, construction, and operation or NNBF projects to support coastal resilience. This paper will describe the key issues and objectives informing the work of the international team that is developing the guidelines.

  18. Optimization of the Carbon Dioxide Removal Assembly (CDRA-4EU) in Support of the International Space System and Advanced Exploration Systems

    NASA Technical Reports Server (NTRS)

    Knox, James C.; Stanley, Christine M.

    2015-01-01

    The Life Support Systems Project (LSSP) under the Advanced Exploration Systems (AES) program builds upon the work performed under the AES Atmosphere Resource Recovery and Environmental Monitoring (ARREM) project focusing on the numerous technology development areas. The Carbon Dioxide (CO2) removal and associated air drying development efforts are focused on improving the current state-of-the-art system on the International Space Station (ISS) utilizing fixed beds of sorbent pellets by seeking more robust pelletized sorbents, evaluating structured sorbents, and examining alternate bed configurations to improve system efficiency and reliability. A component of the CO2 removal effort utilizes a virtual Carbon Dioxide Removal Assembly, revision 4 (CDRA-4) test bed to test a large number of potential operational configurations with independent variations in flow rate, cycle time, heater ramp rate, and set point. Initial ground testing will provide prerequisite source data and provide baseline data in support of the virtual CDRA. Once the configurations with the highest performance and lowest power requirements are determined by the virtual CDRA, the results will be confirmed by testing these configurations with the CDRA-4EU ground test hardware. This paper describes the initial ground testing of select configurations. The development of the virtual CDRA under the AES-LSS Project will be discussed in a companion paper.

  19. DAWN (Design Assistant Workstation) for advanced physical-chemical life support systems

    NASA Technical Reports Server (NTRS)

    Rudokas, Mary R.; Cantwell, Elizabeth R.; Robinson, Peter I.; Shenk, Timothy W.

    1989-01-01

    This paper reports the results of a project supported by the National Aeronautics and Space Administration, Office of Aeronautics and Space Technology (NASA-OAST) under the Advanced Life Support Development Program. It is an initial attempt to integrate artificial intelligence techniques (via expert systems) with conventional quantitative modeling tools for advanced physical-chemical life support systems. The addition of artificial intelligence techniques will assist the designer in the definition and simulation of loosely/well-defined life support processes/problems as well as assist in the capture of design knowledge, both quantitative and qualitative. Expert system and conventional modeling tools are integrated to provide a design workstation that assists the engineer/scientist in creating, evaluating, documenting and optimizing physical-chemical life support systems for short-term and extended duration missions.

  20. Humanoid Flight Metabolic Simulator Project

    NASA Technical Reports Server (NTRS)

    Ross, Stuart

    2015-01-01

    NASA's Evolvable Mars Campaign (EMC) has identified several areas of technology that will require significant improvements in terms of performance, capacity, and efficiency, in order to make a manned mission to Mars possible. These include crew vehicle Environmental Control and Life Support System (ECLSS), EVA suit Portable Life Support System (PLSS) and Information Systems, autonomous environmental monitoring, radiation exposure monitoring and protection, and vehicle thermal control systems (TCS). (MADMACS) in a Suit can be configured to simulate human metabolism, consuming crew resources (oxygen) in the process. In addition to providing support for testing Life Support on unmanned flights, MADMACS will also support testing of suit thermal controls, and monitor radiation exposure, body zone temperatures, moisture, and loads.

  1. Recommendations for an Executive Information System (EIS) for the NASA Accounting and Financial Information System (NAFIS)

    NASA Technical Reports Server (NTRS)

    Goss, Ernest Preston

    1991-01-01

    The objectives were to: (1) survey state-of-the-art computing architectures, tools, and technologies for implementing an Executive Information System (EIS); (2) review MSFC capabilities and efforts in developing an EIS for Shuttle Projects Office and the Payloads Project Office; (3) review management reporting requirements for the NASA Accounting and Financial Information System (NAFIS) Project in the areas of cost, schedule, and technical performance, and insure that the EIS fully supports these requirements; and (4) develop and implement a pilot concept for a NAFIS EIS. A summary of the findings of this work is presented.

  2. Mobile Inquiry Learning in Sweden: Development Insights on Interoperability, Extensibility and Sustainability of the LETS GO Software System

    ERIC Educational Resources Information Center

    Vogel, Bahtijar; Kurti, Arianit; Milrad, Marcelo; Johansson, Emil; Müller, Maximilian

    2014-01-01

    This paper presents the overall lifecycle and evolution of a software system we have developed in relation to the "Learning Ecology through Science with Global Outcomes" (LETS GO) research project. One of the aims of the project is to support "open inquiry learning" using mobile science collaboratories that provide open…

  3. Operations-oriented performance measures for freeway management systems : final report.

    DOT National Transportation Integrated Search

    2008-12-01

    This report describes the second and final year activities of the project titled Using Operations-Oriented Performance Measures to Support Freeway Management Systems. Work activities included developing a prototype system architecture for testi...

  4. Weather monitoring and forecasting over eastern Attica (Greece) in the frame of FLIRE project

    NASA Astrophysics Data System (ADS)

    Kotroni, Vassiliki; Lagouvardos, Konstantinos; Chrysoulakis, Nektarios; Makropoulos, Christtos; Mimikou, Maria; Papathanasiou, Chrysoula; Poursanidis, Dimitris

    2015-04-01

    In the frame of FLIRE project a Decision Support System has been built with the aim to support decision making of Civil Protection Agencies and local stakeholders in the area of east Attica (Greece), in the cases of forest fires and floods. In this presentation we focus on a specific action that focuses on the provision of high resolution short-term weather forecasting data as well as of dense meteorological observations over the study area. Both weather forecasts and observations serve as an input in the Weather Information Management Tool (WIMT) of the Decision Support System. We focus on: (a) the description of the adopted strategy for setting-up the operational weather forecasting chain that provides the weather forecasts for the FLIRE project needs, (b) the presentation of the surface network station that provides real-time weather monitoring of the study area and (c) the strategy adopted for issuing smart alerts for thunderstorm forecasting based of real-time lightning observations as well as satellite observations.

  5. New developments in instrumentation at the W. M. Keck Observatory

    NASA Astrophysics Data System (ADS)

    Adkins, Sean M.; Armandroff, Taft E.; Fitzgerald, Michael P.; Johnson, James; Larkin, James E.; Lewis, Hilton A.; Martin, Christopher; Matthews, Keith Y.; Prochaska, J. X.; Wizinowich, Peter

    2014-07-01

    The W. M. Keck Observatory continues to develop new capabilities in support of our science driven strategic plan which emphasizes leadership in key areas of observational astronomy. This leadership is a key component of the scientific productivity of our observing community and depends on our ability to develop new instrumentation, upgrades to existing instrumentation, and upgrades to supporting infrastructure at the observatory. In this paper we describe the as measured performance of projects completed in 2014 and the expected performance of projects currently in the development or construction phases. Projects reaching completion in 2014 include a near-IR tip/tilt sensor for the Keck I adaptive optics system, a new center launch system for the Keck II laser guide star facility, and NIRES, a near-IR Echelle spectrograph for the Keck II telescope. Projects in development include a new seeing limited integral field spectrograph for the visible wavelength range called the Keck Cosmic Web Imager, a deployable tertiary mirror for the Keck I telescope, upgrades to the spectrograph detector and the imager of the OSIRIS instrument, and an upgrade to the telescope control systems on both Keck telescopes.

  6. Altair Lander Life Support: Requirement Analysis Cycles 1 and 2

    NASA Technical Reports Server (NTRS)

    Anderson, Molly; Curley, Su; Rotter, Henry; Yagoda, Evan

    2009-01-01

    Life support systems are a critical part of human exploration beyond low earth orbit. NASA s Altair Lunar Lander has unique missions to perform and will need a unique life support system to complete them. Initial work demonstrated a feasible minimally-functional Lander design. This work was completed in Design Analysis Cycles (DAC) 1, 2, and 3 were reported in a previous paper. On October 21, 2008, the Altair project completed the Mission Concept Review (MCR), moving the project into Phase A. In Phase A activities, the project is preparing for the System Requirements Review (SRR). Altair has conducted two Requirements Analysis Cycles (RACs) to begin this work. During this time, the life support team must examine the Altair mission concepts, Constellation Program level requirements, and interfaces with other vehicles and spacesuits to derive the right set of requirements for the new vehicle. The minimum functionality design meets some of these requirements already and can be easily adapted to meet others. But Altair must identify which will be more costly in mass, power, or other resources to meet. These especially costly requirements must be analyzed carefully to be sure they are truly necessary, and are the best way of explaining and meeting the true need. If they are necessary and clear, they become important mass threats to track at the vehicle level. If they are not clear or do not seem necessary to all stakeholders, Altair must work to redefine them or push back on the requirements writers. Additionally, the life support team is evaluating new technologies to see if they are more effective than the existing baseline design at performing necessary functions in Altair s life support system.

  7. Altair Lander Life Support: Requirements Analysis Cycles 1 and 2

    NASA Technical Reports Server (NTRS)

    Anderson, Molly; Curley, Su; Rotter, Henry; Yagoda, Evan

    2010-01-01

    Life support systems are a critical part of human exploration beyond low earth orbit. NASA's Altair Lunar Lander has unique missions to perform and will need a unique life support system to complete them. Initial work demonstrated a feasible minimally -functional Lander design. This work was completed in Design Analysis Cycles (DAC) 1, 2, and 3 were reported in a previous paper'. On October 21, 2008, the Altair project completed the Mission Concept Review (MCR), moving the project into Phase A. In Phase A activities, the project is preparing for the System Requirements Review (SRR). Altair has conducted two Requirements Analysis Cycles (RACs) to begin this work. During this time, the life support team must examine the Altair mission concepts, Constellation Program level requirements, and interfaces with other vehicles and spacesuits to derive the right set of requirements for the new vehicle. The minimum functionality design meets some of these requirements already and can be easily adapted to meet others. But Altair must identify which will be more costly in mass, power, or other resources to meet. These especially costly requirements must be analyzed carefully to be sure they are truly necessary, and are the best way of explaining and meeting the true need. If they are necessary and clear, they become important mass threats to track at the vehicle level. If they are not clear or do not seem necessary to all stakeholders, Altair must work to redefine them or push back on the requirements writers. Additionally, the life support team is evaluating new technologies to see if they are more effective than the existing baseline design at performing necessary functions in Altair's life support system.

  8. Huntington's Disease Research Roster Support with a Microcomputer Database Management System

    PubMed Central

    Gersting, J. M.; Conneally, P. M.; Beidelman, K.

    1983-01-01

    This paper chronicles the MEGADATS (Medical Genetics Acquisition and DAta Transfer System) database development effort in collecting, storing, retrieving, and plotting human family pedigrees. The newest system, MEGADATS-3M, is detailed. Emphasis is on the microcomputer version of MEGADATS-3M and its use to support the Huntington's Disease research roster project. Examples of data input and pedigree plotting are included.

  9. Process Improvement Should Link to Security: SEPG 2007 Security Track Recap

    DTIC Science & Technology

    2007-09-01

    the Systems Security Engineering Capability Maturity Model (SSE- CMM / ISO 21827) and its use in system software developments ...software development life cycle ( SDLC )? 6. In what ways should process improvement support security in the SDLC ? 1.2 10BPANEL RESOURCES For each... project management, and support practices through the use of the capability maturity models including the CMMI and the Systems Security

  10. Environmental Cost Analysis System (ECAS) Status and Compliance Requirements for EM Consolidated Business Center Contracts - 13204

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanford, P.C.; Moe, M.A.; Hombach, W.G.

    2013-07-01

    The Department of Energy (DOE) Office of Environmental Management (EM) has developed a web-accessible database to collect actual cost data from completed EM projects to support cost estimating and analysis. This Environmental Cost Analysis System (ECAS) database was initially deployed in early 2009 containing the cost and parametric data from 77 decommissioning, restoration, and waste management projects completed under the Rocky Flats Closure Project. In subsequent years we have added many more projects to ECAS and now have a total of 280 projects from 8 major DOE sites. This data is now accessible to DOE users through a web-based reportingmore » tool that allows users to tailor report outputs to meet their specific needs. We are using it as a principal resource supporting the EM Consolidated Business Center (EMCBC) and the EM Applied Cost Engineering (ACE) team cost estimating and analysis efforts across the country. The database has received Government Accountability Office review as supporting its recommended improvements in DOE's cost estimating process, as well as review from the DOE Office of Acquisition and Project Management (APM). Moving forward, the EMCBC has developed a Special Contract Requirement clause or 'H-Clause' to be included in all current and future EMCBC procurements identifying the process that contractors will follow to provide DOE their historical project data in a format compatible with ECAS. Changes to DOE O 413.3B implementation are also in progress to capture historical costs as part of the Critical Decision project closeout process. (authors)« less

  11. Collision Avoidance, Driver Support and Safety Intervention Systems

    NASA Astrophysics Data System (ADS)

    Gilling, Simon P.

    Autonomous Intelligent Cruise Control (AICC) will be marketed by a number of vehicle manufacturers before the end of the decade. This paper will describe AICC and the next generation systems currently being developed and validated within the EC Fourth Framework project, Anti-Collision Autonomous Support and Safety Intervention SysTem (AC ASSIST).The currently available cruise control systems which maintain a fixed speed are a well-known form of longitudinal driver support. The fixed speed cruise control becomes less useful with increased traffic volumes, as the driver must disable the system when a slower preceding vehicle is encountered.

  12. Linking Logistics and Operations: A Case Study of World War II Air Power

    DTIC Science & Technology

    1991-01-01

    Weapon System Evaluation Group, 1951, p. 30). The logistic innovation greatly extended the time that combat ships could remain on station and...presented. This Note was produced under the Project AIR FORCE Resource Management and System Acquisition Program in the project "Combat Support C3 Needs...maintenance workload data suggest either unacceptable system performance or excessive costs. The predictive power of these models is so poor as to

  13. Composite Technology for Exploration

    NASA Technical Reports Server (NTRS)

    Fikes, John

    2017-01-01

    The CTE (Composite Technology for Exploration) Project will develop and demonstrate critical composites technologies with a focus on joints that utilize NASA expertise and capabilities. The project will advance composite technologies providing lightweight structures to support future NASA exploration missions. The CTE project will demonstrate weight-saving, performance-enhancing bonded joint technology for Space Launch System (SLS)-scale composite hardware.

  14. End effector monitoring system: An illustrated case of operational prototyping

    NASA Technical Reports Server (NTRS)

    Malin, Jane T.; Land, Sherry A.; Thronesbery, Carroll

    1994-01-01

    Operational prototyping is introduced to help developers apply software innovations to real-world problems, to help users articulate requirements, and to help develop more usable software. Operational prototyping has been applied to an expert system development project. The expert system supports fault detection and management during grappling operations of the Space Shuttle payload bay arm. The dynamic exchanges among operational prototyping team members are illustrated in a specific prototyping session. We discuss the requirements for operational prototyping technology, types of projects for which operational prototyping is best suited and when it should be applied to those projects.

  15. The CELSS Antarctic Analog Project: an advanced life support testbed at the Amundsen-Scott South Pole Station, Antarctica.

    PubMed

    Straight, C L; Bubenheim, D L; Bates, M E; Flynn, M T

    1994-01-01

    The Controlled Ecological Life Support System (CELSS) Antarctic Analog Project (CAAP) is a joint endeavor between the National Science Foundation, Office of Polar Programs (NSF-OPP) and the National Aeronautics and Space Administration (NASA). Its fundamental objective is to develop, deploy and operate a testbed of NASA CELSS technologies and life support approaches at the Amundsen-Scott South Pole Station, located at latitude 90 degrees S, longitude 0 degrees. The goal of NASA's CELSS Program is to develop technologies and systems that will allow spacefaring scientists and explorers to carry out long duration extraterrestrial missions, leading ultimately to permanent habitation of the Solar System, without total dependence on a costly resupply system. A CELSS would do this by providing regenerated life support materials (air, food and water) and by processing "waste" materials into useful resources. This will be accomplished using biological and physical/chemical techniques in a nearly closed environmental habitation system. CELSS technologies also have great implications for application to terrestrial systems with intrinsic transferability to society at large. The CELSS Program intends to provide opportunities for the transfer of these systems and technologies outside the US Space Program, to applications within the American economy as space technology spin-offs.

  16. The Pioneer Projects - Economical exploration of the solar system

    NASA Technical Reports Server (NTRS)

    Spahr, J. R.; Hall, C. F.

    1975-01-01

    The interplanetary Pioneer missions are reviewed in terms of management implications and cost control. The responsibilities, organizational structure, and management practices of the Pioneer Projects are presented. The lines of authority and areas of responsibility of the principal organizational elements supporting the Pioneer missions are identified, and the methods employed for maintaining effective and timely interactions among these elements are indicated. The technical and administrative functions of various organizational elements of the project are described. The management and control of activities prior to and during the hardware procurement phase are described to indicate the basis for obtaining visibility of the technical progress, utilization of resources, and cost performance of the contractors and other institutions supporting the Pioneer projects.

  17. Systems Biology of the Immune Response to Live and Inactivated Dengue Virus Vaccines

    DTIC Science & Technology

    2017-09-01

    Financial support;  In-kind support (e.g., partner makes software, computers , equipment, etc., available to project staff);  Facilities (e.g...reprints of manuscripts and abstracts, a curriculum vitae, patent applications, study questionnaires, and surveys , etc. Organization name: Walter...memory B-cells and the isotype usage of the antibody response. 9. A project-specific SQL database has been set up on a server based at URI. Major

  18. Data management plan for HANDI 2000 business management system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, D.

    The Hanford Data Integration 2000 (HANDI 2000) Project will result in an integrated and comprehensive set of functional applications containing core information necessary to support the Project Hanford Management Contract (PHMC). It is based on the Commercial-Off-The-Shelf (COTS) product solution with commercially proven business processes. The COTS product solution set, of PassPort (PP) and PeopleSoft (PS) software, supports finance, supply and chemical management/Material Safety Data Sheet.

  19. Platform for frail elderly people supporting information and communication.

    PubMed

    Man, Yan Ping; Cremers, Ger; Spreeuwenberg, Marieke; de Witte, Luc

    2015-01-01

    There is a growing need for technology to support the frail elderly living independently in home situations. Several telecommunication systems already exist. These systems are developed mainly from the perspective of healthcare professionals and focus on efficient delivery of healthcare services. They hardly meet the specific needs of the frail elderly. In this project a platform with specific needs of the frail elderly people has been designed, running on standard PCs. This system supports living independently, social participation, wellbeing, and asking for care services. The platform was evaluated and subjects assess the system as user friendly, and supportive for their independence and self-reliance. They recommend it to other users.

  20. Dynamic Modeling of Solar Dynamic Components and Systems

    NASA Technical Reports Server (NTRS)

    Hochstein, John I.; Korakianitis, T.

    1992-01-01

    The purpose of this grant was to support NASA in modeling efforts to predict the transient dynamic and thermodynamic response of the space station solar dynamic power generation system. In order to meet the initial schedule requirement of providing results in time to support installation of the system as part of the initial phase of space station, early efforts were executed with alacrity and often in parallel. Initially, methods to predict the transient response of a Rankine as well as a Brayton cycle were developed. Review of preliminary design concepts led NASA to select a regenerative gas-turbine cycle using a helium-xenon mixture as the working fluid and, from that point forward, the modeling effort focused exclusively on that system. Although initial project planning called for a three year period of performance, revised NASA schedules moved system installation to later and later phases of station deployment. Eventually, NASA selected to halt development of the solar dynamic power generation system for space station and to reduce support for this project to two-thirds of the original level.

  1. A human factors methodology for real-time support applications

    NASA Technical Reports Server (NTRS)

    Murphy, E. D.; Vanbalen, P. M.; Mitchell, C. M.

    1983-01-01

    A general approach to the human factors (HF) analysis of new or existing projects at NASA/Goddard is delineated. Because the methodology evolved from HF evaluations of the Mission Planning Terminal (MPT) and the Earth Radiation Budget Satellite Mission Operations Room (ERBS MOR), it is directed specifically to the HF analysis of real-time support applications. Major topics included for discussion are the process of establishing a working relationship between the Human Factors Group (HFG) and the project, orientation of HF analysts to the project, human factors analysis and review, and coordination with major cycles of system development. Sub-topics include specific areas for analysis and appropriate HF tools. Management support functions are outlined. References provide a guide to sources of further information.

  2. Bantam System Technology Project

    NASA Technical Reports Server (NTRS)

    Moon, J. M.; Beveridge, J. R.

    1998-01-01

    This report focuses on determining a best value, low risk, low cost and highly reliable Data and Command System for support of the launch of low cost vehicles which are to carry small payloads into low earth orbit. The ground-based DCS is considered as a component of the overall ground and flight support system which includes the DCS, flight computer, mission planning system and simulator. Interfaces between the DCS and these other component systems are considered. Consideration is also given to the operational aspects of the mission and of the DCS selected. This project involved: defining requirements, defining an efficient operations concept, defining a DCS architecture which satisfies the requirements and concept, conducting a market survey of commercial and government off-the-shelf DCS candidate systems and rating the candidate systems against the requirements/concept. The primary conclusions are that several low cost, off-the-shelf DCS solutions exist and these can be employed to provide for very low cost operations and low recurring maintenance cost. The primary recommendation is that the DCS design/specification should be integrated within the ground and flight support system design as early as possible to ensure ease of interoperability and efficient allocation of automation functions among the component systems.

  3. Final Report for DOE Project: Portal Web Services: Support of DOE SciDAC Collaboratories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mary Thomas, PI; Geoffrey Fox, Co-PI; Gannon, D

    2007-10-01

    Grid portals provide the scientific community with familiar and simplified interfaces to the Grid and Grid services, and it is important to deploy grid portals onto the SciDAC grids and collaboratories. The goal of this project is the research, development and deployment of interoperable portal and web services that can be used on SciDAC National Collaboratory grids. This project has four primary task areas: development of portal systems; management of data collections; DOE science application integration; and development of web and grid services in support of the above activities.

  4. The Independent Technical Analysis Process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duberstein, Corey A.; Ham, Kenneth D.; Dauble, Dennis D.

    2007-04-13

    The Bonneville Power Administration (BPA) contracted with the Pacific Northwest National Laboratory (PNNL) to provide technical analytical support for system-wide fish passage information (BPA Project No. 2006-010-00). The goal of this project was to produce rigorous technical analysis products using independent analysts and anonymous peer reviewers. In the past, regional parties have interacted with a single entity, the Fish Passage Center to access the data, analyses, and coordination related to fish passage. This project provided an independent technical source for non-routine fish passage analyses while allowing routine support functions to be performed by other well-qualified entities.

  5. Space Adaptation of Active Mirror Segment Concepts

    NASA Technical Reports Server (NTRS)

    Ames, Gregory H.

    1999-01-01

    This report summarizes the results of a three year effort by Blue Line Engineering Co. to advance the state of segmented mirror systems in several separate but related areas. The initial set of tasks were designed to address the issues of system level architecture, digital processing system, cluster level support structures, and advanced mirror fabrication concepts. Later in the project new tasks were added to provide support to the existing segmented mirror testbed at Marshall Space Flight Center (MSFC) in the form of upgrades to the 36 subaperture wavefront sensor. Still later, tasks were added to build and install a new system processor based on the results of the new system architecture. The project was successful in achieving a number of important results. These include the following most notable accomplishments: 1) The creation of a new modular digital processing system that is extremely capable and may be applied to a wide range of segmented mirror systems as well as many classes of Multiple Input Multiple Output (MIMO) control systems such as active structures or industrial automation. 2) A new graphical user interface was created for operation of segmented mirror systems. 3) The development of a high bit rate serial data loop that permits bi-directional flow of data to and from as many as 39 segments daisy-chained to form a single cluster of segments. 4) Upgrade of the 36 subaperture Hartmann type Wave Front Sensor (WFS) of the Phased Array Mirror, Extendible Large Aperture (PAMELA) testbed at MSFC resulting in a 40 to 5OX improvement in SNR which in turn enabled NASA personnel to achieve many significant strides in improved closed-loop system operation in 1998. 5) A new system level processor was built and delivered to MSFC for use with the PAMELA testbed. This new system featured a new graphical user interface to replace the obsolete and non-supported menu system originally delivered with the PAMELA system. The hardware featured Blue Line's new stackable processing system which included fiber optic data links, a WFS digital interface, and a very compact and reliable electronics package. The project also resulted in substantial advances in the evolution of concepts for integrated structures to be used to support clusters of segments while also serving as the means to distribute power, timing, and data communications resources. A prototype cluster base was built and delivered that would support a small array of 7 cm mirror segments. Another conceptual design effort led to substantial progress in the area of laminated silicon mirror segments. While finished mirrors were never successfully produced in this exploratory effort, the basic feasibility of the concept was established through a significant amount of experimental development in microelectronics processing laboratories at the University of Colorado in Colorado Springs. Ultimately lightweighted aluminum mirrors with replicated front surfaces were produced and delivered as part of a separate contract to develop integrated segmented mirror assemblies. Overall the project was very successful in advancing segmented mirror system architectures on several fronts. In fact, the results of this work have already served as the basic foundation for the system architectures of several projects proposed by Blue Line for different missions and customers. These include the NMSD and AMSD procurements for NASA's Next Generation Space Telescope, the HET figure maintenance system, and the 1 meter FAST telescope project.

  6. NREL and SDG&E Collaboration to Support SDG&E Grid and Storage Efforts: Cooperative Research and Development Final Report, CRADA Number CRD-14-562

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baggu, Murali

    2017-01-01

    This project will enable effective utilization of high penetration of photovoltaics (PV) in islanded microgrids, increasing overall system efficiency, decreased fuel costs and resiliency of the overall system to help meet the SunShot goals of enhancing system integration methods to increase penetration of PV. National Renewable Energy Laboratory (NREL) will collaborate with San Diego Gas & Electric (SDG&E) to provide research and testing support to address their needs in energy storage sizing and placement, Integrated Test Facility (ITF) development, Real Time Digital Simulator (RTDS) Modeling and simulation support at ITF, Visualization and Virtual connection to Energy Systems Integration Facility (ESIF),more » and microgrid simulation and testing areas. Specifically in this project a real microgrid scenario with high penetration of PV (existing in SDG&E territory) is tested in the ESIF laboratory. Multiple control cases for firming PV using storage in a microgrid scenario will be investigated and tested in the laboratory setup.« less

  7. Tailoring a software production environment for a large project

    NASA Technical Reports Server (NTRS)

    Levine, D. R.

    1984-01-01

    A software production environment was constructed to meet the specific goals of a particular large programming project. These goals, the specific solutions as implemented, and the experiences on a project of over 100,000 lines of source code are discussed. The base development environment for this project was an ordinary PWB Unix (tm) system. Several important aspects of the development process required support not available in the existing tool set.

  8. Telescience Resource Kit Software Lifecycle

    NASA Technical Reports Server (NTRS)

    Griner, Carolyn S.; Schneider, Michelle

    1998-01-01

    The challenge of a global operations capability led to the Telescience Resource Kit (TReK) project, an in-house software development project of the Mission Operations Laboratory (MOL) at NASA's Marshall Space Flight Center (MSFC). The TReK system is being developed as an inexpensive comprehensive personal computer- (PC-) based ground support system that can be used by payload users from their home sites to interact with their payloads on board the International Space Station (ISS). The TReK project is currently using a combination of the spiral lifecycle model and the incremental lifecycle model. As with any software development project, there are four activities that can be very time consuming: Software design and development, project documentation, testing, and umbrella activities, such as quality assurance and configuration management. In order to produce a quality product, it is critical that each of these activities receive the appropriate amount of attention. For TReK, the challenge was to lay out a lifecycle and project plan that provides full support for these activities, is flexible, provides a way to deal with changing risks, can accommodate unknowns, and can respond to changes in the environment quickly. This paper will provide an overview of the TReK lifecycle, a description of the project's environment, and a general overview of project activities.

  9. Vasculitis Syndromes of the Central and Peripheral Nervous Systems

    MedlinePlus

    ... VCRC, www.rarediseasesnetwork.org/vcrc/ ), a network of academic medical centers, patient support organizations, and clinical research ... NIH RePORTER ( http://projectreporter.nih.gov ), a searchable database of current and past research projects supported by ...

  10. Use of a Relational Database to Support Clinical Research: Application in a Diabetes Program

    PubMed Central

    Lomatch, Diane; Truax, Terry; Savage, Peter

    1981-01-01

    A database has been established to support conduct of clinical research and monitor delivery of medical care for 1200 diabetic patients as part of the Michigan Diabetes Research and Training Center (MDRTC). Use of an intelligent microcomputer to enter and retrieve the data and use of a relational database management system (DBMS) to store and manage data have provided a flexible, efficient method of achieving both support of small projects and monitoring overall activity of the Diabetes Center Unit (DCU). Simplicity of access to data, efficiency in providing data for unanticipated requests, ease of manipulations of relations, security and “logical data independence” were important factors in choosing a relational DBMS. The ability to interface with an interactive statistical program and a graphics program is a major advantage of this system. Out database currently provides support for the operation and analysis of several ongoing research projects.

  11. Intelligent command and control systems for satellite ground operations

    NASA Technical Reports Server (NTRS)

    Mitchell, Christine M.

    1994-01-01

    The Georgia Tech portion of the Intelligent Control Center project includes several complementary activities. Two major activities entail thesis level research; the other activities are either support activities or preliminary explorations (e.g., task analyses) to support the research. The first research activity is the development of principles for the design of active interfaces to support monitoring during real-time supports. It is well known that as the operator's task becomes less active, i.e., more monitoring and less active control, there is concern that the operator will be less involved and less able to rapidly identify anomalous or failure situations. The research project to design active monitoring interfaces is an attempt to remediate this undesirable side-effect of increasingly automated control systems that still depend ultimately on operator supervision. The second research activity is the exploration of the use of case-based reasoning as a way to accumulate operator experience and make it available in computational form.

  12. Identifying Barriers and Facilitators in Implementing Schoolwide Positive Behavior Support

    ERIC Educational Resources Information Center

    Kincaid, Don; Childs, Karen; Blase, Karen A.; Wallace, Frances

    2007-01-01

    As the number of schools implementing systemic, schoolwide positive behavior support (PBS) processes expands (nationally, at least 5,000 schools are participating), increasing attention is being paid to the efficacy of implementation. This article describes a case study of the experiences of Florida's Positive Behavior Support Project, which used…

  13. A Model for Statewide Evaluation of a Universal Positive Behavior Support Initiative

    ERIC Educational Resources Information Center

    Elfner Childs, Karen; Kincaid, Don; George, Heather Peshak

    2010-01-01

    Several statewide evaluations of Tier 1/Universal Level Positive Behavior Support (PBS) implementation efforts have been conducted, adhering to the evaluation template developed by Horner, Sugai, and Lewis-Palmer in 2005. Building on these examples, Florida's Positive Behavior Support Project developed a comprehensive evaluation system that sought…

  14. Project RavenCare: global multimedia telemedicine in Alaska

    NASA Astrophysics Data System (ADS)

    Tohme, Walid G.; Collmann, Jeff R.; Mun, Seong K.; Vastola, David J.

    1995-05-01

    Project RavenCare is a testbed for assessing the utility of teleradiology, telemedicine and electronic patient records systems for delivering health care to Native Alaskans in remote villages. It is being established as a joint project between the department of radiology at Georgetown University Medical Center and the Southeast Alaska Regional Health Corporation (SEARHC) in Sitka, Alaska. This initiative will establish a sustained routine clinical multimedia telemedicine support for a village clinic in Hoonah, Alaska and a regional hospital in Sitka. It will link the village clinic in Hoonah to Mt. Edgecumbe Hospital in Sitka. This regional hospital will in turn be linked to Georgetown University Hospital through the T1- VSAT (very small aperture terminal) of the NASA-ACTS (Advanced Communication Technology Satellite). Regional physicians in Hoonah lack support in providing relatively routine care in areas such as radiology and pathology. This project is an initial step in a general plan to upgrade telecommunications in the health care system of the Southeast Alaska region and will address aspects of two problems; limited communication between the village health clinics and the hospital and lack of subspecialty support for hospital-based physicians in Sitka.

  15. WISE: Automated support for software project management and measurement. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Ramakrishnan, Sudhakar

    1995-01-01

    One important aspect of software development and IV&V is measurement. Unless a software development effort is measured in some way, it is difficult to judge the effectiveness of current efforts and predict future performances. Collection of metrics and adherence to a process are difficult tasks in a software project. Change activity is a powerful indicator of project status. Automated systems that can handle change requests, issues, and other process documents provide an excellent platform for tracking the status of the project. A World Wide Web based architecture is developed for (a) making metrics collection an implicit part of the software process, (b) providing metric analysis dynamically, (c) supporting automated tools that can complement current practices of in-process improvement, and (d) overcoming geographical barrier. An operational system (WISE) instantiates this architecture allowing for the improvement of software process in a realistic environment. The tool tracks issues in software development process, provides informal communication between the users with different roles, supports to-do lists (TDL), and helps in software process improvement. WISE minimizes the time devoted to metrics collection, analysis, and captures software change data. Automated tools like WISE focus on understanding and managing the software process. The goal is improvement through measurement.

  16. Exploiting the Use of Social Networking to Facilitate Collaboration in the Scientific Community

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coppock, Edrick G.

    The goal of this project was to exploit social networking to facilitate scientific collaboration. The project objective was to research and identify scientific collaboration styles that are best served by social networking applications and to model the most effective social networking applications to substantiate how social networking can support scientific collaboration. To achieve this goal and objective, the project was to develop an understanding of the types of collaborations conducted by scientific researchers, through classification, data analysis and identification of unique collaboration requirements. Another technical objective in support of this goal was to understand the current state of technology inmore » collaboration tools. In order to test hypotheses about which social networking applications effectively support scientific collaboration the project was to create a prototype scientific collaboration system. The ultimate goal for testing the hypotheses and research of the project was to refine the prototype into a functional application that could effectively facilitate and grow collaboration within the U.S. Department of Energy (DOE) research community.« less

  17. Final Technical Report for "Nuclear Technologies for Near Term Fusion Devices"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, Paul P.H.; Sawan, Mohamed E.; Davis, Andrew

    Over approximately 18 years, this project evolved to focus on a number of related topics, all tied to the nuclear analysis of fusion energy systems. For the earliest years, the University of Wisconsin (UW)’s effort was in support of the Advanced Power Extraction (APEX) study to investigate high power density first wall and blanket systems. A variety of design concepts were studied before this study gave way to a design effort for a US Test Blanket Module (TBM) to be installed in ITER. Simultaneous to this TBM project, nuclear analysis supported the conceptual design of a number of fusion nuclearmore » science facilities that might fill a role in the path to fusion energy. Beginning in approximately 2005, this project added a component focused on the development of novel radiation transport software capability in support of the above nuclear analysis needs. Specifically, a clear need was identified to support neutron and photon transport on the complex geometries associated with Computer-Aided Design (CAD). Following the initial development of the Direct Accelerated Geoemtry Monte Carlo (DAGMC) capability, additional features were added, including unstructured mesh tallies and multi-physics analysis such as the Rigorous 2-Step (R2S) methodology for Shutdown Dose Rate (SDR) prediction. Throughout the project, there were also smaller tasks in support of the fusion materials community and for the testing of changes to the nuclear data that is fundamental to this kind of nuclear analysis.« less

  18. The Jet Propulsion Laboratory Electric and Hybrid Vehicle System Research and Development Project, 1977-1984: A Review

    NASA Technical Reports Server (NTRS)

    Kurtz, D.; Roan, V.

    1985-01-01

    The JPL Electric and Hybrid Vehicle System Research and Development Project was established in the spring of 1977. Originally administered by the Energy Research and Development Administration (ERDA) and later by the Electric and Hybrid Vehicle Division of the U.S. Department of Energy (DOE), the overall Program objective was to decrease this nation's dependence on foreign petroleum sources by developing the technologies and incentives necessary to bring electric and hybrid vehicles successfully into the marketplace. The ERDA/DOE Program structure was divided into two major elements: (1) technology research and system development and (2) field demonstration and market development. The Jet Propulsion Laboratory (JPL) has been one of several field centers supporting the former Program element. In that capacity, the specific historical areas of responsibility have been: (1) Vehicle system developments (2) System integration and test (3) Supporting subsystem development (4) System assessments (5) Simulation tool development.

  19. Global Stress Classification System for Materials Used in Solar Energy Applications

    NASA Astrophysics Data System (ADS)

    Slamova, Karolina; Schill, Christian; Herrmann, Jan; Datta, Pawan; Chih Wang, Chien

    2016-08-01

    Depending on the geographical location, the individual or combined impact of environmental stress factors and corresponding performance losses for solar applications varies significantly. Therefore, as a strategy to reduce investment risks and operating and maintenance costs, it is necessary to adapt the materials and components of solar energy systems specifically to regional environmental conditions. The project «GloBe Solar» supports this strategy by focusing on the development of a global stress classification system for materials in solar energy applications. The aim of this classification system is to assist in the identification of the individual stress conditions for every location on the earth's surface. The stress classification system could serve as a decision support tool for the industry (manufacturers, investors, lenders and project developers) and help to improve knowledge and services that can provide higher confidence to solar power systems.

  20. Relational systems change: implementing a model of change in integrating services for women with substance abuse and mental health disorders and histories of trauma.

    PubMed

    Markoff, Laurie S; Finkelstein, Norma; Kammerer, Nina; Kreiner, Peter; Prost, Carol A

    2005-01-01

    This article describes the "relational systems change" model developed by the Institute for Health and Recovery, and the implementation of the model in Massachusetts from 1998-2002 to facilitate systems change to support the delivery of integrated and trauma-informed services for women with co-occurring substance abuse and mental health disorders and histories of violence and empirical evidence of resulting systems changes. The federally funded Women Embracing Life and Living (WELL) Project utilized relational strategies to facilitate systems change within and across 3 systems levels: local treatment providers, community (or region), and state. The WELL Project demonstrates that a highly collaborative, inclusive, and facilitated change process can effect services integration within agencies (intra-agency), strengthen integration within a regional network of agencies (interagency), and foster state support for services integration.

  1. Designing an Alternate Mission Operations Control Room

    NASA Technical Reports Server (NTRS)

    Montgomery, Patty; Reeves, A. Scott

    2014-01-01

    The Huntsville Operations Support Center (HOSC) is a multi-project facility that is responsible for 24x7 real-time International Space Station (ISS) payload operations management, integration, and control and has the capability to support small satellite projects and will provide real-time support for SLS launches. The HOSC is a service-oriented/ highly available operations center for ISS payloads-directly supporting science teams across the world responsible for the payloads. The HOSC is required to endure an annual 2-day power outage event for facility preventive maintenance and safety inspection of the core electro-mechanical systems. While complete system shut-downs are against the grain of a highly available sub-system, the entire facility must be powered down for a weekend for environmental and safety purposes. The consequence of this ground system outage is far reaching: any science performed on ISS during this outage weekend is lost. Engineering efforts were focused to maximize the ISS investment by engineering a suitable solution capable of continuing HOSC services while supporting safety requirements. The HOSC Power Outage Contingency (HPOC) System is a physically diversified compliment of systems capable of providing identified real-time services for the duration of a planned power outage condition from an alternate control room. HPOC was designed to maintain ISS payload operations for approximately three continuous days during planned HOSC power outages and support a local Payload Operations Team, International Partners, as well as remote users from the alternate control room located in another building.

  2. Satellite irrigation management support with the terrestrial observation and prediction system: A framework for integration of satellite & surface observations to support improvements in agricultural water resource management

    USDA-ARS?s Scientific Manuscript database

    In California and other regions vulnerable to water shortages, satellite-derived estimates of key hydrologic parameters can support agricultural producers and water managers in maximizing the benefits of available water supplies. The Satellite Irrigation Management Support (SIMS) project combines N...

  3. US Gateway to SIMBAD Astronomical Database

    NASA Technical Reports Server (NTRS)

    Eichhorn, G.

    1998-01-01

    During the last year the US SIMBAD Gateway Project continued to provide services like user registration to the US users of the SIMBAD database in France. User registration is required by the SIMBAD project in France. Currently, there are almost 3000 US users registered. We also provide user support by answering questions from users and handling requests for lost passwords. We have worked with the CDS SIMBAD project to provide access to the SIMBAD database to US users on an Internet address basis. This will allow most US users to access SIMBAD without having to enter passwords. This new system was installed in August, 1998. The SIMBAD mirror database at SAO is fully operational. We worked with the CDS to adapt it to our computer system. We implemented automatic updating procedures that update the database and password files daily. This mirror database provides much better access to the US astronomical community. We also supported a demonstration of the SIMBAD database at the meeting of the American Astronomical Society in January. We shipped computer equipment to the meeting and provided support for the demonstration activities at the SIMBAD booth. We continued to improve the cross-linking between the SIMBAD project and the Astro- physics Data System. This cross-linking between these systems is very much appreciated by the users of both the SIMBAD database and the ADS Abstract Service. The mirror of the SIMBAD database at SAO makes this connection faster for the US astronomers. The close cooperation between the CDS in Strasbourg and SAO, facilitated by this project, is an important part of the astronomy-wide digital library initiative called Urania. It has proven to be a model in how different data centers can collaborate and enhance the value of their products by linking with other data centers.

  4. An Overview of High Temperature Seal Development and Testing Capabilities at the NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Demange, Jeffrey J.; Taylor, Shawn C.; Dunlap, Patrick H.; Steinetz, Bruce M.; Finkbeiner, Joshua R.; Proctor, Margaret P.

    2014-01-01

    The NASA Glenn Research Center (GRC), partnering with the University of Toledo, has a long history of developing and testing seal technologies for high-temperature applications. The GRC Seals Team has conducted research and development on high-temperature seal technologies for applications including advanced propulsion systems, thermal protection systems (airframe and control surface thermal seals), high-temperature preloading technologies, and other extreme-environment seal applications. The team has supported several high-profile projects over the past 30 years and has partnered with numerous organizations, including other government entities, academic institutions, and private organizations. Some of these projects have included the National Aerospace Space Plane (NASP), Space Shuttle Space Transport System (STS), the Multi-Purpose Crew Vehicle (MPCV), and the Dream Chaser Space Transportation System, as well as several high-speed vehicle programs for other government organizations. As part of the support for these programs, NASA GRC has developed unique seal-specific test facilities that permit evaluations and screening exercises in relevant environments. The team has also embarked on developing high-temperature preloaders to help maintain seal functionality in extreme environments. This paper highlights several propulsion-related projects that the NASA GRC Seals Team has supported over the past several years and will provide an overview of existing testing capabilities

  5. Enhancement of the FDOT's project level and network level bridge management analysis tools

    DOT National Transportation Integrated Search

    2011-02-01

    Over several years, the Florida Department of Transportation (FDOT) has been implementing the AASHTO Pontis Bridge Management System to support network-level and project-level decision making in the headquarters and district offices. Pontis is an int...

  6. Aerosol Microphysics and Radiation Integration

    DTIC Science & Technology

    2005-09-30

    www.nrlmry.navy.mil/ flambe / LONG-TERM GOALS This long-term goals of this project is the development of systems that support real time global... FLAMBE ) project is currently being utilized by Internet Community, Air quality/human health research (University of Kansas Medical Center), Environment

  7. On Financial Support System for Compulsory Education in China's Western Minority Areas

    ERIC Educational Resources Information Center

    Jinyu, Qi

    2008-01-01

    China's Western Development is a policy adopted to boost its less developed Western regions, that is, a systematic project and a longterm and arduous task. The development of compulsory education in China's minority areas is the key to it. This paper attempts to use the beneficial experience of developing compulsory education support system of…

  8. NOAASIS (NOAA Satellite Information System) Home Page - Office of Satellite

    Science.gov Websites

    and Product Operations » DOC » NOAA » NESDIS » NOAASIS NOAA Satellite Information System Organizational Links National Environmental Satellite, Data, and Information Service (NESDIS) Office of Satellite ): Information and specific ground project support data for the Direct Broadcast Community from JPSS supported

  9. HALOE test and evaluation software

    NASA Technical Reports Server (NTRS)

    Edmonds, W.; Natarajan, S.

    1987-01-01

    Computer programming, system development and analysis efforts during this contract were carried out in support of the Halogen Occultation Experiment (HALOE) at NASA/Langley. Support in the major areas of data acquisition and monitoring, data reduction and system development are described along with a brief explanation of the HALOE project. Documented listings of major software are located in the appendix.

  10. A Knowledge-based Multimedia System to Support the Teaching and Learning of Chinese Characters.

    ERIC Educational Resources Information Center

    Ki, W.; And Others

    A current project is underway to develop a multimedia system that would support the teaching and learning of Chinese characters, as well as provide a platform for conducting research into the cognitive aspects of Chinese language acquisition. Although the number of commonly used Chinese characters amounts to thousands, there are many structural…

  11. Projections of the number of Australians with disability aged 65 and over eligible for the National Disability Insurance Scheme: 2017-2026.

    PubMed

    Biddle, Nicholas; Crawford, Heather

    2017-12-01

    To develop projections of the size of the Australian population aged 65 years and over eligible for disability support through the National Disability Insurance Scheme (NDIS) for the decade following its introduction, to support planning and costing of the scheme. We estimate disability and mortality transition probabilities and develop projections of the NDIS-eligible, ageing population from 2017 to 2026. An estimated 8000 men and 10 200 women aged 65 years and over will be eligible for support through the NDIS in 2017 (the scheme's first full year), increasing to 48 800 men and 56 900 women in 2026. Growth in the NDIS-eligible, ageing population has implications for relative budget allocations between the NDIS and the aged-care system, and projections of the size of this population are useful for calculating the overall cost of the NDIS. © 2017 AJA Inc.

  12. The NASA teleconferencing system: An evaluation

    NASA Technical Reports Server (NTRS)

    Connors, M. M.; Lindsey, G.; Miller, R. H.

    1976-01-01

    The communication requirements of the Apollo project led to the development of a teleconferencing network which linked together, in an audio-fax mode, the several NASA centers and supporting contractors of the Apollo project. The usefulness of this communication linkage for the Apollo project suggested that the system might be extended to include all NASA centers, enabling them to conduct their in-house business more efficiently than by traveling to other centers. A pilot project was run in which seventeen NASA center and subcenters, some with multiple facilities, were connected into the NASA teleconferencing network. During that year, costs were charted and, at the end of the year, an evaluation was made to determine how the system had been used and with what results. The year-end evaluation of the use of NASA teleconferencing system is summarized.

  13. What we were asked to do

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Recommendations are made after 32 interviews, lesson identification, lesson analysis, and mission characteristics identification. The major recommendations are as follows: (1) to develop end-to-end planning and scheduling operations concepts by mission class and to ensure their consideration in system life cycle documentation; (2) to create an organizational infrastructure at the Code 500 level, supported by a Directorate level steering committee with project representation, responsible for systems engineering of end-to-end planning and scheduling systems; (3) to develop and refine mission capabilities to assess impacts of early mission design decisions on planning and scheduling; and (4) to emphasize operational flexibility in the development of the Advanced Space Network, other institutional resources, external (e.g., project) capabilities and resources, operational software and support tools.

  14. Scratchpads 2.0: a Virtual Research Environment supporting scholarly collaboration, communication and data publication in biodiversity science

    PubMed Central

    Smith, Vincent S.; Rycroft, Simon D.; Brake, Irina; Scott, Ben; Baker, Edward; Livermore, Laurence; Blagoderov, Vladimir; Roberts, David

    2011-01-01

    Abstract The Scratchpad Virtual Research Environment (http://scratchpads.eu/) is a flexible system for people to create their own research networks supporting natural history science. Here we describe Version 2 of the system characterised by the move to Drupal 7 as the Scratchpad core development framework and timed to coincide with the fifth year of the project’s operation in late January 2012. The development of Scratchpad 2 reflects a combination of technical enhancements that make the project more sustainable, combined with new features intended to make the system more functional and easier to use. A roadmap outlining strategic plans for development of the Scratchpad project over the next two years concludes this article. PMID:22207806

  15. Project W-211 initial tank retrieval systems year 2000 compliance assessment project plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BUSSELL, J.H.

    1999-08-24

    This assessment describes the potential Year 2000 (Y2K) problems and describes the methods for achieving Y2K Compliance for Project W-211, Initial Tank Retrieval Systems (ITRS). The purpose of this assessment is to give an overview of the project. This document will not be updated and any dates contained in this document are estimates and may change. The scope of project W-211 is to provide systems for retrieval of radioactive wastes from ten double-shell tanks (DST). systems will be installed in tanks 102-AP, 104-AP, 105-AN, 104-AN, 102-AZ, 101-AW, 103-AN, 107-AN, 102-AY, and 102-SY. The current tank selection and sequence supports phasemore » I feed delivery to privatized processing plants. A detailed description of system dates, functions, interfaces, potential Y2K problems, and date resolutions can not be described since the project is in the definitive design phase. This assessment will describe the methods, protocols, and practices to assure that equipment and systems do not have Y2K problems.« less

  16. [Structural Study in the Platform for Drug Discovery, Informatics, and Structural Life Science].

    PubMed

    Senda, Toshiya

    2016-01-01

    The Platform for Drug Discovery, Informatics, and Structural Life Science (PDIS), which has been launched since FY2012, is a national project in the field of structural biology. The PDIS consists of three cores - structural analysis, control, and informatics - and aims to support life science researchers who are not familiar with structural biology. The PDIS project is able to provide full-scale support for structural biology research. The support provided by the PDIS project includes protein purification with various expression systems, large scale protein crystallization, crystal structure determination, small angle scattering (SAXS), NMR, electron microscopy, bioinformatics, etc. In order to utilize these methods of support, PDIS users need to submit an application form to the one-stop service office. Submitted applications will be reviewed by three referees. It is strongly encouraged that PDIS users have sufficient discussion with researchers in the PDIS project before submitting the application. This discussion is very useful in the process of project design, particularly for beginners in structural biology. In addition to this user support, the PDIS project has conducted R&D, which includes the development of synchrotron beamlines. In the PDIS project, PF and SPring-8 have developed beamlines for micro-crystallography, high-throughput data collection, supramolecular assembly, and native single anomalous dispersion (SAD) phasing. The newly developed beamlines have been open to all users, and have accelerated structural biology research. Beamlines for SAXS have also been developed, which has dramatically increased bio-SAXS users.

  17. Low Emissions Alternative Power (LEAP) Project Office Business Team of the Aeropropulsion Research Program Office (ARPO) Org. 0140

    NASA Technical Reports Server (NTRS)

    Buttler, Jennifer A.

    2004-01-01

    The program for which I am working at this summer is Propulsion and Power/Low Emissions Alternative Power (P&P/LEAP). It invests in a fundamental TRL 1-6 research and technology portfolio that will enable the future of: Alternative fuels and/or alternative propulsion systems, non-combustion (electric) propulsion systems. P&P/LEAP will identify and capitalize on the highest potential concepts generated both internal and external to the Agency. During my 2004 summer at NASA Glenn Research Center, I worked with my mentor Barbara Mader, in the Project Office with the Business Team completing various tasks for the project and personnel. The LEAP project is a highly matrixed organization. The Project Office is responsible for the goals advocacy and dollar (budget) of the LEAP project. The objectives of the LEAP Project are to discover new energy sources and develop unconventional engines and power systems directed towards greatly reduced emissions, enable new vehicle concepts for public mobility, new science missions and national security. The Propulsion and PowerLow Emissions Alternative Power directly supports the environmental, mobility, national security objectives of the Vehicle Systems Program and the Aeronautics Technology Theme. Technology deliverables include the demonstration through integrated ground tests, a constant volume combustor in an engine system, and UAV/small transport aircraft all electric power system. My mentor serves as a key member of the management team for the Aeropropulsion Research Program Office (ARPO). She has represented the office on numerous occasions, and is a member of a number of center-wide panels/teams, such as the Space management Committee and is chair to the Business Process Consolidation Team. She is responsible for the overall coordination of resources for the Propulsion and Power Project - from advocacy to implementation. The goal for my summer at NASA was to document processes and archive program documents from the past years. I used the computer and office machines, and also worked with personnel in setting up a Cost Estimation Plan. I gained office experience in Word, Excel, and Power Point, with the completion of a variety of tasks. I made spreadsheets that pertained to the budget plan for Journey to Tomorrow, to name a few I have supported the office by tracking resource information: including programmatic travel, project budget at the center level to budgets for individual research sub-projects and grants. I also assisted the Program Support Office in their duties including, representing the office on numerous occasions on center-wide team/panels, such as the Space management committee, IFMP Budget Formulation, Journey to Tomorrow Committee, and the Vehicle Systems Program Business Process Team.

  18. A computer based approach for Material, Manpower and Equipment managementin the Construction Projects

    NASA Astrophysics Data System (ADS)

    Sasidhar, Jaladanki; Muthu, D.; Venkatasubramanian, C.; Ramakrishnan, K.

    2017-07-01

    The success of any construction project will depend on efficient management of resources in a perfect manner to complete the project with a reasonable budget and time and the quality cannot be compromised. The efficient and timely procurement of material, deployment of adequate labor at correct time and mobilization of machinery lacking in time, all of them causes delay, lack of quality and finally affect the project cost. It is known factor that Project cost can be controlled by taking corrective actions on mobilization of resources at a right time. This research focuses on integration of management systems with the computer to generate the model which uses OOM data structure which decides to include automatic commodity code generation, automatic takeoff execution, intelligent purchase order generation, and components of design and schedule integration to overcome the problems of stock out. To overcome the problem in equipment management system inventory management module is suggested and the data set of equipment registration number, equipment number, description, date of purchase, manufacturer, equipment price, market value, life of equipment, production data of the equipment which includes equipment number, date, name of the job, hourly rate, insurance, depreciation cost of the equipment, taxes, storage cost, interest, oil, grease, and fuel consumption, etc. is analyzed and the decision support systems to overcome the problem arising out improper management is generated. The problem on labor is managed using scheduling, Strategic management of human resources. From the generated support systems tool, the resources are mobilized at a right time and help the project manager to finish project in time and thereby save the abnormal project cost and also provides the percentage that can be improved and also research focuses on determining the percentage of delays that are caused by lack of management of materials, manpower and machinery in different types of projects and how the percentage various from project to project.

  19. Aluminization and mirror removal of the Magellan 6.5-meter telescope

    NASA Astrophysics Data System (ADS)

    Perez, Frank S.

    1994-06-01

    The Magellan Project 6.5-meter telescope is a collaboration of the Carnegie Institution of Washington and the University of Arizona. The telescope will be located on Cerro Manqui, at the Las Campanas Observatory, Chile. At the beginning of the Magellan Project several schemes were investigated for realuminizing the primary mirror. We have chosen to leave the primary mirror in its cell with the mirror support system intact. Two major advantages of leaving the mirror in its cell are that it does not have to be lifted or handled and the support system does not have to be removed or reinstalled for aluminization.

  20. Tactical Approaches for Making a Successful Satellite Passive Microwave ESDR

    NASA Astrophysics Data System (ADS)

    Hardman, M.; Brodzik, M. J.; Gotberg, J.; Long, D. G.; Paget, A. C.

    2014-12-01

    Our NASA MEaSUREs project is producing a new, enhanced resolution gridded Earth System Data Record for the entire satellite passive microwave (SMMR, SSM/I-SSMIS and AMSR-E) time series. Our project goals are twofold: to produce a well-documented, consistently processed, high-quality historical record at higher spatial resolutions than have previously been available, and to transition the production software to the NSIDC DAAC for ongoing processing after our project completion. In support of these goals, our distributed team at BYU and NSIDC faces project coordination challenges to produce a high-quality data set that our user community will accept as a replacement for the currently available historical versions of these data. We work closely with our DAAC liaison on format specifications, data and metadata plans, and project progress. In order for the user community to understand and support our project, we have solicited a team of Early Adopters who are reviewing and evaluating a prototype version of the data. Early Adopter feedback will be critical input to our final data content and format decisions. For algorithm transparency and accountability, we have released an Algorithm Theoretical Basis Document (ATBD) and detailed supporting technical documentation, with rationale for all algorithm implementation decisions. For distributed team management, we are using collaborative tools for software revision control and issue tracking. For reliably transitioning a research-quality image reconstruction software system to production-quality software suitable for use at the DAAC, we have adopted continuous integration methods for running automated regression testing. Our presentation will summarize bothadvantages and challenges of each of these tactics in ensuring production of a successful ESDR and an enduring production software system.

  1. Electric and hybrid vehicle system R/D

    NASA Technical Reports Server (NTRS)

    Schwartz, H. J.

    1980-01-01

    The work being done to characterize the level of current propulsion technology through component testing is described. Important interactions between the battery and the propulsion system will be discussed. Component development work, involving traction motors, motor controllers and transmissions are described and current results are presented. Studies of advanced electric and hybrid propulsion system studies are summarized and the status of propulsion system development work supported by the project is described. A strategy for fostering joint industry/government projects for commercialization of propulsion components and systems is described briefly.

  2. Medical Data Architecture (MDA) Project Status

    NASA Technical Reports Server (NTRS)

    Krihak, M.; Middour, C.; Gurram, M.; Wolfe, S.; Marker, N.; Winther, S.; Ronzano, K.; Bolles, D.; Toscano, W.; Shaw, T.

    2018-01-01

    The Medical Data Architecture (MDA) project supports the Exploration Medical Capability (ExMC) risk to minimize or reduce the risk of adverse health outcomes and decrements in performance due to in-flight medical capabilities on human exploration missions. To mitigate this risk, the ExMC MDA project addresses the technical limitations identified in ExMC Gap Med 07: We do not have the capability to comprehensively process medically-relevant information to support medical operations during exploration missions. This gap identifies that the current in-flight medical data management includes a combination of data collection and distribution methods that are minimally integrated with on-board medical devices and systems. Furthermore, there are a variety of data sources and methods of data collection. For an exploration mission, the seamless management of such data will enable a more medically autonomous crew than the current paradigm. The medical system requirements are being developed in parallel with the exploration mission architecture and vehicle design. ExMC has recognized that in order to make informed decisions about a medical data architecture framework, current methods for medical data management must not only be understood, but an architecture must also be identified that provides the crew with actionable insight to medical conditions. This medical data architecture will provide the necessary functionality to address the challenges of executing a self-contained medical system that approaches crew health care delivery without assistance from ground support. Hence, the products supported by current prototype development will directly inform exploration medical system requirements.

  3. Observing control and data reduction at the UKIRT

    NASA Astrophysics Data System (ADS)

    Bridger, Alan; Economou, Frossie; Wright, Gillian S.; Currie, Malcolm J.

    1998-07-01

    For the past seven years observing with the major instruments at the United Kingdom IR Telescope (UKIRT) has been semi-automated, using ASCII files top configure the instruments and then sequence a series of exposures and telescope movements to acquire the data. For one instrument automatic data reduction completes the cycle. The emergence of recent software technologies has suggested an evolution of this successful system to provide a friendlier and more powerful interface to observing at UKIRT. The Observatory Reduction and Acquisition Control (ORAC) project is now underway to construct this system. A key aim of ORAC is to allow a more complete description of the observing program, including the target sources and the recipe that will be used to provide on-line data reduction. Remote observation preparation and submission will also be supported. In parallel the observatory control system will be upgraded to use these descriptions for more automatic observing, while retaining the 'classical' interactive observing mode. The final component of the project is an improved automatic data reduction system, allowing on-line reduction of data at the telescope while retaining the flexibility to cope with changing observing techniques and instruments. The user will also automatically be provided with the scripts used for the real-time reduction to help provide post-observing data reduction support. The overall project goal is to improve the scientific productivity of the telescope, but it should also reduce the overall ongoing support requirements, and has the eventual goal of supporting the use of queue- scheduled observing.

  4. Medical Data Architecture Project Status

    NASA Technical Reports Server (NTRS)

    Krihak, M.; Middour, C.; Gurram, M.; Wolfe, S.; Marker, N.; Winther, S.; Ronzano, K.; Bolles, D.; Toscano, W.; Shaw, T.

    2018-01-01

    The Medical Data Architecture (MDA) project supports the Exploration Medical Capability (ExMC) risk to minimize or reduce the risk of adverse health outcomes and decrements in performance due to in-flight medical capabilities on human exploration missions. To mitigate this risk, the ExMC MDA project addresses the technical limitations identified in ExMC Gap Med 07: We do not have the capability to comprehensively process medically-relevant information to support medical operations during exploration missions. This gap identifies that the current in-flight medical data management includes a combination of data collection and distribution methods that are minimally integrated with on-board medical devices and systems. Furthermore, there are a variety of data sources and methods of data collection. For an exploration mission, the seamless management of such data will enable a more medically autonomous crew than the current paradigm. The medical system requirements are being developed in parallel with the exploration mission architecture and vehicle design. ExMC has recognized that in order to make informed decisions about a medical data architecture framework, current methods for medical data management must not only be understood, but an architecture must also be identified that provides the crew with actionable insight to medical conditions. This medical data architecture will provide the necessary functionality to address the challenges of executing a self-contained medical system that approaches crew health care delivery without assistance from ground support. Hence, the products supported by current prototype development will directly inform exploration medical system requirements.

  5. M and S supporting unmanned autonomous systems (UAxS) concept development and experimentation

    NASA Astrophysics Data System (ADS)

    Biagini, Marco; Scaccianoce, Alfio; Corona, Fabio; Forconi, Sonia; Byrum, Frank; Fowler, Olivia; Sidoran, James L.

    2017-05-01

    The development of the next generation of multi-domain unmanned semi and fully autonomous C4ISR systems involves a multitude of security concerns and interoperability challenges. Conceptual solutions to capability shortfalls and gaps can be identified through Concept Development and Experimentation (CD and E) cycles. Modelling and Simulation (M and S) is a key tool in supporting unmanned autonomous systems (UAxS) CD and E activities and addressing associated security challenges. This paper serves to illustrate the application of M and S to UAxS development and highlight initiatives made by the North Atlantic Treaty Organization (NATO) M and S Centre of Excellence (CoE) to facilitate interoperability. The NATO M and S CoE collaborates with other NATO and Nations bodies in order to develop UAxS projects such as the Allied Command for Transformation Counter Unmanned Autonomous Systems (CUAxS) project or the work of Science and Technology Organization (STO) panels. Some initiatives, such as Simulated Interactive Robotics Initiative (SIRI) made the baseline for further developments and to study emerging technologies in M and S and robotics fields. Artificial Intelligence algorithm modelling, Robot Operating Systems (ROS), network operations, cyber security, interoperable languages and related data models are some of the main aspects considered in this paper. In particular, the implementation of interoperable languages like C-BML and NIEM MilOps are discussed in relation to a Command and Control - Simulation Interoperability (C2SIM) paradigm. All these technologies are used to build a conceptual architecture to support UAxS CD and E.In addition, other projects that the NATO M and S CoE is involved in, such as the NATO Urbanization Project could provide credible future operational environments and benefit UAxS project development, as dual application of UAxS technology in large urbanized areas.In conclusion, this paper contains a detailed overview regarding how applying Modelling and Simulation to support CD and E activities is a valid approach to develop and validate future capabilities requirements in general and next generation UAxS.

  6. Group Decision Support System to Aid the Process of Design and Maintenance of Large Scale Systems

    DTIC Science & Technology

    1992-03-23

    from a fuzzy set of user requirements. The overall objective of the project is to develop a system combining the characteristics of a compact computer... AHP ) for hierarchical prioritization. 4) Individual Evaluation and Selection of Alternatives - Allows the decision maker to individually evaluate...its concept of outranking relations. The AHP method supports complex decision problems by successively decomposing and synthesizing various elements

  7. Considerations for the Design and Implementation of a Management Support System for the Electronic Warfare System Support Laboratory.

    DTIC Science & Technology

    1985-06-01

    Division Organization Chart . . . . . . . . . . . . . . . . 54 4.4 Uaval Air Systeis Commana Organization Relationships...56 4.5 Groups Within AIR -05 Responsible For Electronic Warfare Projects ................. 57 8 I. IN OODUCTION A. BACKGRCUNID With technological...environment. Navy, Air Force, and Army developers of EW systems utilize the EWSSL. In the past 15 years the size of the EWSSL has greatly increased

  8. FOX: A Fault-Oblivious Extreme-Scale Execution Environment Boston University Final Report Project Number: DE-SC0005365

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Appavoo, Jonathan

    Exascale computing systems will provide a thousand-fold increase in parallelism and a proportional increase in failure rate relative to today's machines. Systems software for exascale machines must provide the infrastructure to support existing applications while simultaneously enabling efficient execution of new programming models that naturally express dynamic, adaptive, irregular computation; coupled simulations; and massive data analysis in a highly unreliable hardware environment with billions of threads of execution. The FOX project explored systems software and runtime support for a new approach to the data and work distribution for fault oblivious application execution. Our major OS work at Boston University focusedmore » on developing a new light-weight operating systems model that provides an appropriate context for both multi-core and multi-node application development. This work is discussed in section 1. Early on in the FOX project BU developed infrastructure for prototyping dynamic HPC environments in which the sets of nodes that an application is run on can be dynamically grown or shrunk. This work was an extension of the Kittyhawk project and is discussed in section 2. Section 3 documents the publications and software repositories that we have produced. To put our work in context of the complete FOX project contribution we include in section 4 an extended version of a paper that documents the complete work of the FOX team.« less

  9. Systems engineering management plan : Dallas Integrated Corridor Management (ICM) demonstration project.

    DOT National Transportation Integrated Search

    2010-12-01

    The purpose of the Dallas ICM System is to implement a multi-modal operations decision support tool enabled by real-time data pertaining to the operation of freeways, arterials, and public transit. The system will be shared between information system...

  10. GTFS for Estimating Transit Ridership and Supporting Multimodal Performance Measures

    DOT National Transportation Integrated Search

    2017-12-15

    This project demonstrates a potential avenue to use new data sources to support State and local agencies in measuring the use and effectiveness of their public transportation systems. General Transit Feed Specification (GTFS) data provided by transit...

  11. The Deep Space Network

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Work accomplished on the Deep Space Network (DSN) was described, including the following topics: supporting research and technology, advanced development and engineering, system implementation, and DSN operations pertaining to mission-independent or multiple-mission development as well as to support of flight projects.

  12. Development Approach of the Advanced Life Support On-line Project Information System

    NASA Technical Reports Server (NTRS)

    Levri, Julie A.; Hogan, John A.; Morrow, Rich; Ho, Michael C.; Kaehms, Bob; Cavazzoni, Jim; Brodbeck, Christina A.; Whitaker, Dawn R.

    2005-01-01

    The Advanced Life Support (ALS) Program has recently accelerated an effort to develop an On-line Project Information System (OPIS) for research project and technology development data centralization and sharing. There has been significant advancement in the On-line Project Information System (OPIS) over the past year (Hogan et al, 2004). This paper presents the resultant OPIS development approach. OPIS is being built as an application framework consisting of an uderlying Linux/Apache/MySQL/PHP (LAMP) stack, and supporting class libraries that provides database abstraction and automatic code generation, simplifying the ongoing development and maintenance process. Such a development approach allows for quick adaptation to serve multiple Programs, although initial deployment is for an ALS module. OPIS core functionality will involve a Web-based annual solicitation of project and technology data directly from ALS Principal Investigators (PIs) through customized data collection forms. Data provided by PIs will be reviewed by a Technical Task Monitor (TTM) before posting the information to OPIS for ALS Community viewing via the Web. Such Annual Reports will be permanent, citable references within OPIS. OPlS core functionality will also include Project Home Sites, which will allow PIS to provide updated technology information to the Community in between Annual Report updates. All data will be stored in an object-oriented relational database, created in MySQL(Reistered Trademark) and located on a secure server at NASA Ames Research Center (ARC). Upon launch, OPlS can be utilized by Managers to identify research and technology development (R&TD) gaps and to assess task performance. Analysts can employ OPlS to obtain the current, comprehensive, accurate information about advanced technologies that is required to perform trade studies of various life support system options. ALS researchers and technology developers can use OPlS to achieve an improved understanding of the NASA and ALS Program needs and to understand how other researchers and technology developers are addressing those needs. OPlS core functionality will launch for 'Ihe ALS Program in October, 2005. However, the system has been developed with the ability to evolve with Program needs. Because of open-source construction, software costs are minimized. Any functionality that is technologically feasible can be built into OPIS, and OPlS can expand through module cloning and adaptation, to any level deemed useful to the Agency.

  13. [Requirements for the successful installation of an data management system].

    PubMed

    Benson, M; Junger, A; Quinzio, L; Hempelmann, G

    2002-08-01

    Due to increasing requirements on medical documentation, especially with reference to the German Social Law binding towards quality management and introducing a new billing system (DRGs), an increasing number of departments consider to implement a patient data management system (PDMS). The installation should be professionally planned as a project in order to insure and complete a successful installation. The following aspects are essential: composition of the project group, definition of goals, finance, networking, space considerations, hardware, software, configuration, education and support. Project and finance planning must be prepared before beginning the project and the project process must be constantly evaluated. In selecting the software, certain characteristics should be considered: use of standards, configurability, intercommunicability and modularity. Our experience has taught us that vaguely defined goals, insufficient project planning and the existing management culture are responsible for the failure of PDMS installations. The software used tends to play a less important role.

  14. Pilot's Automated Weather Support System (PAWSS) concepts demonstration project. Phase 1: Pilot's weather information requirements and implications for weather data systems design

    NASA Technical Reports Server (NTRS)

    Crabill, Norman L.; Dash, Ernie R.

    1991-01-01

    The weather information requirements for pilots and the deficiencies of the current aviation weather support system in meeting these requirements are defined. As the amount of data available to pilots increases significantly in the near future, expert system technology will be needed to assist pilots in assimilating that information. Some other desirable characteristics of an automation-assisted system for weather data acquisition, dissemination, and assimilation are also described.

  15. A 1-D Model of the 4 Bed Molecular Sieve of the Carbon Dioxide Removal Assembly

    NASA Technical Reports Server (NTRS)

    Coker, Robert; Knox, Jim

    2015-01-01

    Developments to improve system efficiency and reliability for water and carbon dioxide separation systems on crewed vehicles combine sub-scale systems testing and multi-physics simulations. This paper describes the development of COMSOL simulations in support of the Life Support Systems (LSS) project within NASA's Advanced Exploration Systems (AES) program. Specifically, we model the 4 Bed Molecular Sieve (4BMS) of the Carbon Dioxide Removal Assembly (CDRA) operating on the International Space Station (ISS).

  16. The deep space network, volume 6

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Progress on Deep Space Network (DSN) supporting research and technology is presented, together with advanced development and engineering, implementation, and DSN operations of flight projects. The DSN is described. Interplanetary and planetary flight projects and radio science experiments are discussed. Tracking and navigational accuracy analysis, communications systems and elements research, and supporting research are considered. Development of the ground communications and deep space instrumentation facilities is also presented. Network allocation schedules and angle tracking and test development are included.

  17. Tracking and data system support for the Pioneer project. Volume 1: Pioneer 10-prelaunch planning through second trajectory correction, 4 December 1969 - 1 April 1972

    NASA Technical Reports Server (NTRS)

    Siegmeth, A. J.; Purdue, R. E.; Ryan, R. E.

    1973-01-01

    The tracking and data system support of the launch, near-earth, and deep space phases of the Pioneer 10 mission, which sent a Pioneer spacecraft into a flyby of Jupiter that would eventually allow the spacecraft to escape the solar system is discussed. The support through the spacecraft's second trajectory correction is reported. During this period, scientific instruments aboard the spacecraft registered information relative to interplanetary particles and fields, and radiometric data generated by the network continued to improve knowledge of the celestial mechanics of the solar system. In addition to network support activity detail, network performance and special support activities are covered.

  18. Controlled ecological life-support system - Use of plants for human life-support in space

    NASA Technical Reports Server (NTRS)

    Chamberland, D.; Knott, W. M.; Sager, J. C.; Wheeler, R.

    1992-01-01

    Scientists and engineers within NASA are conducting research which will lead to development of advanced life-support systems that utilize higher plants in a unique approach to solving long-term life-support problems in space. This biological solution to life-support, Controlled Ecological Life-Support System (CELSS), is a complex, extensively controlled, bioengineered system that relies on plants to provide the principal elements from gas exchange and food production to potable water reclamation. Research at John F. Kennedy Space Center (KSC) is proceeding with a comprehensive investigation of the individual parts of the CELSS system at a one-person scale in an approach called the Breadboard Project. Concurrently a relatively new NASA sponsored research effort is investigating plant growth and metabolism in microgravity, innovative hydroponic nutrient delivery systems, and use of highly efficient light emitting diodes for artificial plant illumination.

  19. A Grant Project to Initiate School Counselors' Development of a Multi-Tiered System of Supports Based on Social-Emotional Data

    ERIC Educational Resources Information Center

    Harrington, Karen; Griffith, Catherine; Gray, Katharine; Greenspan, Scott

    2016-01-01

    This article provides an overview of a grant project designed to create a district-wide elementary school counseling program with a strong data-based decision-making process. Project goals included building data literacy skills among school counselors and developing the infrastructure to efficiently collect important social-emotional indicators…

  20. Final report.

    DOT National Transportation Integrated Search

    2017-02-14

    This project report provides a descriptive overview of the architecture and design of wireless underground radio frequency smart sensors, data collection and Internet of Things (IOT) [8] transmission system and an SLR decision support system. The roa...

  1. Standards Participation Guidance : ITS Standards Program

    DOT National Transportation Integrated Search

    2018-04-15

    The Intelligent Transportation System Joint Program Office (ITS JPO) focuses on research projects, exploratory studies and deployment support for the intelligent transportation system. The ITS Architecture and Standards Programs are foundational to t...

  2. Building sustainable multi-functional prospective electronic clinical data systems.

    PubMed

    Randhawa, Gurvaneet S; Slutsky, Jean R

    2012-07-01

    A better alignment in the goals of the biomedical research enterprise and the health care delivery system can help fill the large gaps in our knowledge of the impact of clinical interventions on patient outcomes in the real world. There are several initiatives underway to align the research priorities of patients, providers, researchers, and policy makers. These include Agency for Healthcare Research and Quality (AHRQ)-supported projects to build flexible prospective clinical electronic data infrastructure that meet the needs of these diverse users. AHRQ has previously supported the creation of 2 distributed research networks as a new approach to conduct comparative effectiveness research (CER) while protecting a patient's confidential information and the proprietary needs of a clinical organization. It has applied its experience in building these networks in directing the American Recovery and Reinvestment Act funds for CER to support new clinical electronic infrastructure projects that can be used for several purposes including CER, quality improvement, clinical decision support, and disease surveillance. In addition, AHRQ has funded a new Electronic Data Methods forum to advance the methods in clinical informatics, research analytics, and governance by actively engaging investigators from the American Recovery and Reinvestment Act-funded projects and external stakeholders.

  3. The deep space network, volume 15

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The DSN progress is reported in flight project support, TDA research and technology, network engineering, hardware and software implementation, and operations. Topics discussed include: DSN functions and facilities, planetary flight projects, tracking and ground-based navigation, communications, data processing, network control system, and deep space stations.

  4. Second generation heliostat development for solar central receiver systems. Volume 4, appendices F-J: Control software test results manufacturing pile installation pile coatings

    NASA Astrophysics Data System (ADS)

    1981-03-01

    Support documentation for a second generation heliostat project is presented. Flowcharts of control software are included. Numerical and graphic test results are provided. Project management information is also provided.

  5. Alaska road weather project : technical performance assessment report Fairbanks field demonstration 2013-2014.

    DOT National Transportation Integrated Search

    2014-02-01

    The Alaska Department of Transportation and Public Facilities began implementation of a Maintenance Decision Support System in an : effort to improve snow and ice control in the Fairbanks area. As part of the project the reliability of the weather fo...

  6. The Environmental Geophysics Web Site and Geophysical Decision Support System (GDSS)

    EPA Science Inventory

    This product provides assistance to project managers, remedial project managers, stakeholders, and anyone interested in on-site investigations or environmental geophysics. The APM is the beta version of the new U.S. EPA Environmental Geophysics Web Site which includes the Geophys...

  7. ANFIS multi criteria decision making for overseas construction projects: a methodology

    NASA Astrophysics Data System (ADS)

    Utama, W. P.; Chan, A. P. C.; Zulherman; Zahoor, H.; Gao, R.; Jumas, D. Y.

    2018-02-01

    A critical part when a company targeting a foreign market is how to make a better decision in connection with potential project selection. Since different attributes of information are often incomplete, imprecise and ill-defined in overseas projects selection, the process of decision making by relying on the experiences and intuition is a risky attitude. This paper aims to demonstrate a decision support method in deciding overseas construction projects (OCPs). An Adaptive Neuro-Fuzzy Inference System (ANFIS), the amalgamation of Neural Network and Fuzzy Theory, was used as decision support tool to decide to go or not go on OCPs. Root mean square error (RMSE) and coefficient of correlation (R) were employed to identify the ANFIS system indicating an optimum and efficient result. The optimum result was obtained from ANFIS network with two input membership functions, Gaussian membership function (gaussmf) and hybrid optimization method. The result shows that ANFIS may help the decision-making process for go/not go decision in OCPs.

  8. Materials, Processes and Manufacturing in Ares 1 Upper Stage: Integration with Systems Design and Development

    NASA Technical Reports Server (NTRS)

    Bhat, Biliyar N.

    2008-01-01

    Ares I Crew Launch Vehicle Upper Stage is designed and developed based on sound systems engineering principles. Systems Engineering starts with Concept of Operations and Mission requirements, which in turn determine the launch system architecture and its performance requirements. The Ares I-Upper Stage is designed and developed to meet these requirements. Designers depend on the support from materials, processes and manufacturing during the design, development and verification of subsystems and components. The requirements relative to reliability, safety, operability and availability are also dependent on materials availability, characterization, process maturation and vendor support. This paper discusses the roles and responsibilities of materials and manufacturing engineering during the various phases of Ares IUS development, including design and analysis, hardware development, test and verification. Emphasis is placed how materials, processes and manufacturing support is integrated over the Upper Stage Project, both horizontally and vertically. In addition, the paper describes the approach used to ensure compliance with materials, processes, and manufacturing requirements during the project cycle, with focus on hardware systems design and development.

  9. Design, Development, Test, and Evaluation of Atmosphere Revitalization and Environmental Monitoring Systems for Long Duration Missions

    NASA Technical Reports Server (NTRS)

    Roman, Monsi C.; Perry, Jay L.; Jan, Darrell L.

    2012-01-01

    The Advanced Exploration Systems Program's Atmosphere Resource Recovery and Environmental Monitoring (ARREM) project is working to mature optimum atmosphere revitalization and environmental monitoring system architectures. It is the project's objective to enable exploration beyond Lower Earth Orbit (LEO) and improve affordability by focusing on three primary goals: 1) achieving high reliability, 2) reducing dependence on a ground-based logistics resupply model, and 3) maximizing commonality between atmosphere revitalization subsystem components and those needed to support other exploration elements. The ARREM project's strengths include using existing developmental hardware and testing facilities, when possible, and and a well-coordinated effort among the NASA field centers that contributed to past ARS and EMS technology development projects.

  10. The environmental control and life support system advanced automation project. Phase 1: Application evaluation

    NASA Technical Reports Server (NTRS)

    Dewberry, Brandon S.

    1990-01-01

    The Environmental Control and Life Support System (ECLSS) is a Freedom Station distributed system with inherent applicability to advanced automation primarily due to the comparatively large reaction times of its subsystem processes. This allows longer contemplation times in which to form a more intelligent control strategy and to detect or prevent faults. The objective of the ECLSS Advanced Automation Project is to reduce the flight and ground manpower needed to support the initial and evolutionary ECLS system. The approach is to search out and make apparent those processes in the baseline system which are in need of more automatic control and fault detection strategies, to influence the ECLSS design by suggesting software hooks and hardware scars which will allow easy adaptation to advanced algorithms, and to develop complex software prototypes which fit into the ECLSS software architecture and will be shown in an ECLSS hardware testbed to increase the autonomy of the system. Covered here are the preliminary investigation and evaluation process, aimed at searching the ECLSS for candidate functions for automation and providing a software hooks and hardware scars analysis. This analysis shows changes needed in the baselined system for easy accommodation of knowledge-based or other complex implementations which, when integrated in flight or ground sustaining engineering architectures, will produce a more autonomous and fault tolerant Environmental Control and Life Support System.

  11. Evaluation of regional project to strengthen national health research systems in four countries in West Africa: lessons learned.

    PubMed

    Sombié, Issiaka; Aidam, Jude; Montorzi, Gabriela

    2017-07-12

    Since the Commission on Health Research for Development (COHRED) published its flagship report, more attention has been focused on strengthening national health research systems (NHRS). This paper evaluates the contribution of a regional project that used a participatory approach to strengthen NHRS in four post-conflict West African countries - Guinea-Bissau, Liberia, Sierra Leone and Mali. The data from the situation analysis conducted at the start of the project was compared to data from the project's final evaluation, using a hybrid conceptual framework built around four key areas identified through the analysis of existing frameworks. The four areas are governance and management, capacities, funding, and dissemination/use of research findings. The project helped improve the countries' governance and management mechanisms without strengthening the entire NHRS. In the four countries, at least one policy, plan or research agenda was developed. One country put in place a national health research ethics committee, while all four countries could adopt a research information management system. The participatory approach and support from the West African Health Organisation and COHRED were all determining factors. The lessons learned from this project show that the fragile context of these countries requires long-term engagement and that support from a regional institution is needed to address existing challenges and successfully strengthen the entire NHRS.

  12. Physicians' accounts of frontline tensions when implementing pilot projects to improve primary care.

    PubMed

    Mansfield, Elizabeth; Bhattacharyya, Onil; Christian, Jennifer; Naglie, Gary; Steriopoulos, Vicky; Webster, Fiona

    2018-03-19

    Purpose Canada's primary care system has been described as "a culture of pilot projects" with little evidence of converting successful initiatives into funded, permanent programs or sharing project outcomes and insights across jurisdictions. Health services pilot projects are advocated as an effective strategy for identifying promising models of care and building integrated care partnerships in local settings. In the qualitative study reported here, the purpose of this paper is to investigate the strengths and challenges of this approach. Design/methodology/approach Semi-structured interviews were conducted with 34 primary care physicians who discussed their experiences as pilot project leads. Following thematic analysis methods, broad system issues were captured as well as individual project information. Findings While participants often portrayed themselves as advocates for vulnerable patients, mobilizing healthcare organizations and providers to support new models of care was discussed as challenging. Competition between local healthcare providers and initiatives could impact pilot project success. Participants also reported tensions between their clinical, project management and research roles with additional time demands and skill requirements interfering with the work of implementing and evaluating service innovations. Originality/value Study findings highlight the complexity of pilot project implementation, which encompasses physician commitment to addressing care for vulnerable populations through to the need for additional skill set requirements and the impact of local project environments. The current pilot project approach could be strengthened by including more multidisciplinary collaboration and providing infrastructure supports to enhance the design, implementation and evaluation of health services improvement initiatives.

  13. Sustainability: the elusive dimension of international health projects.

    PubMed

    Edwards, Nancy C; Roelofs, Susan M

    2006-01-01

    The Canada-China Yunnan Maternal and Child Health Project (1997-2003) sought to improve the quality of village life and promote development of productivity and social prosperity in Yunnan province, China. The project targeted grassroots maternal and child health workers: new and in-service village doctors; traditional village midwives; doctors at township health centres; doctors at county maternal and child health hospitals; and provincial health staff. Ten impoverished counties (population 2.2 million) in Yunnan province with high proportions of ethnic minority populations. There were three major innovations: training grassroots maternal and child health workers in participatory and community-based approaches and clinical skills; designing a model comprehensive referral system including provision of basic equipment; and introducing participatory monitoring and evaluation methods. Strategies to support sustainability were built into the project from the outset. Over 4,000 village, township, and county health workers received training. Maternal, infant, and under-five mortality rates declined over 30% in project counties. Project innovations were disseminated throughout the province, into other donor-funded initiatives, and integrated into national health projects by local partners. Maintaining the long-term benefits of international health interventions depends on sustaining innovations beyond short project timelines. Achieving sustainability poses a conundrum to implementing agencies. Three mechanisms influenced uptake in the Yunnan project: maintaining a good fit between core project elements and the existing health system; developing adequate organizational supports; and creating a handover plan from the outset. This project highlights some of the ways in which sustainability can be operationalized.

  14. Production roll out plan for HANDI 2000 business management system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, D.E.

    The Hanford Data Integration 2000 (HANDI 2000) Project will result in an integrated and comprehensive set of functional applications containing core information necessary to support the Project Hanford Management Contract (PHMC). It is based on the Commercial-Off-The-Shelf (COTS) product solution with commercially proven business processes. The COTS product solution set, of Passport (PP) and PeopleSoft (PS) software, supports finance, supply, human resources, and payroll activities under the current PHMC direction. The PP software is an integrated application for Accounts Payable, Contract Management, Inventory Management, Purchasing and Material Safety Data Sheets (MSDS). The PS software is an integrated application for Projects,more » General Ledger, Human Resources Training, Payroll, and Base Benefits. This set of software constitutes the Business Management System (BMS) and MSDS, a subset of the HANDI 2000 suite of systems. The primary objective of the Production Roll Out Plan is to communicate the methods and schedules for implementation and roll out to end users of BMS.« less

  15. Independent technical review, handbook

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Purpose Provide an independent engineering review of the major projects being funded by the Department of Energy, Office of Environmental Restoration and Waste Management. The independent engineering review will address questions of whether the engineering practice is sufficiently developed to a point where a major project can be executed without significant technical problems. The independent review will focus on questions related to: (1) Adequacy of development of the technical base of understanding; (2) Status of development and availability of technology among the various alternatives; (3) Status and availability of the industrial infrastructure to support project design, equipment fabrication, facility construction,more » and process and program/project operation; (4) Adequacy of the design effort to provide a sound foundation to support execution of project; (5) Ability of the organization to fully integrate the system, and direct, manage, and control the execution of a complex major project.« less

  16. The pioneer projects: Economical exploration of the solar system

    NASA Technical Reports Server (NTRS)

    Spahr, J. R.; Hall, C. F.

    1975-01-01

    The interplanetary Pioneer missions are reviewed in terms of management implications and cost control. The responsibilities, organizational structure, and management practices of the Pioneer Projects are presented. The lines of authority and areas of responsibility of the principal organizational elements supporting the Pioneer missions are identified, and the methods employed for maintaining effective and timely interactions among these elements are indicated. The technical and administrative functions of the various organizational elements of the Pioneer Project Office at Ames Research Center are described in terms of their management responsibilities and interactions with other elements of the Project Office and with external organizations having Pioneer Project responsibilities. The management and control of activities prior to and during the hardware procurement phase are described to indicate the basis for obtaining visibility of the technical progress, utilization of resources, and cost performance of the contractors and other institutions supporting the Pioneer projects.

  17. Earthdata Cloud Analytics Project

    NASA Technical Reports Server (NTRS)

    Ramachandran, Rahul; Lynnes, Chris

    2018-01-01

    This presentation describes a nascent project in NASA to develop a framework to support end-user analytics of NASA's Earth science data in the cloud. The chief benefit of migrating EOSDIS (Earth Observation System Data and Information Systems) data to the cloud is to position the data next to enormous computing capacity to allow end users to process data at scale. The Earthdata Cloud Analytics project will user a service-based approach to facilitate the infusion of evolving analytics technology and the integration with non-NASA analytics or other complementary functionality at other agencies and in other nations.

  18. Device Oriented Project Controller

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dalesio, Leo; Kraimer, Martin

    2013-11-20

    This proposal is directed at the issue of developing control systems for very large HEP projects. A de-facto standard in accelerator control is the Experimental Physics and Industrial Control System (EPICS), which has been applied successfully to many physics projects. EPICS is a channel based system that requires that each channel of each device be configured and controlled. In Phase I, the feasibility of a device oriented extension to the distributed channel database was demonstrated by prototyping a device aware version of an EPICS I/O controller that functions with the current version of the channel access communication protocol. Extensions havemore » been made to the grammar to define the database. Only a multi-stage position controller with limit switches was developed in the demonstration, but the grammar should support a full range of functional record types. In phase II, a full set of record types will be developed to support all existing record types, a set of process control functions for closed loop control, and support for experimental beam line control. A tool to configure these records will be developed. A communication protocol will be developed or extensions will be made to Channel Access to support introspection of components of a device. Performance bench marks will be made on both communication protocol and the database. After these records and performance tests are under way, a second of the grammar will be undertaken.« less

  19. Surgical Robotics Research in Cardiovascular Disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pohost, Gerald M; Guthrie, Barton L; Steiner, Charles

    This grant is to support a research in robotics at three major medical centers: the University of Southern California-USC- (Project 1); the University of Alabama at Birmingham-UAB-(Project 2); and the Cleveland Clinic Foundation-CCF-(Project 3). Project 1 is oriented toward cardiovascular applications, while projects 2 and 3 are oriented toward neurosurgical applications. The main objective of Project 1 is to develop an approach to assist patients in maintaining a constant level of stress while undergoing magnetic resonance imaging or spectroscopy. The specific project is to use handgrip to detect the changes in high energy phosphate metabolism between rest and stress. Themore » high energy phosphates, ATP and phosphocreatine (PCr) are responsible for the energy of the heart muscle (myocardium) responsible for its contractile function. If the blood supply to the myocardium in insufficient to support metabolism and contractility during stress, the high energy phosphates, particularly PCr, will decrease in concentration. The high energy phosphates can be tracked using phosphorus-31 magnetic resonance spectroscopy ({sup 31}P MRS). In Project 2 the UAB Surgical Robotics project focuses on the use of virtual presence to assist with remote surgery and surgical training. The goal of this proposal was to assemble a pilot system for proof of concept. The pilot project was completed successfully and was judged to demonstrate that the concept of remote surgical assistance as applied to surgery and surgical training was feasible and warranted further development. The main objective of Project 3 is to develop a system to allow for the tele-robotic delivery of instrumentation during a functional neurosurgical procedure (Figure 3). Instrumentation such as micro-electrical recording probes or deep brain stimulation leads. Current methods for the delivery of these instruments involve the integration of linear actuators to stereotactic navigation systems. The control of these delivery devices utilizes an open-loop configuration involving a team consisting of neurosurgeon, neurologist and neurophysiologist all present and participating in the decision process of delivery. We propose the development of an integrated system which provides for distributed decision making and tele-manipulation of the instrument delivery system.« less

  20. MIT-CSR XIS Project

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This report outlines the proposers' progress toward MIT's contribution to the X-Ray Imaging Spectrometer (XIS) experiment on the Japanese ASTRO-E mission. The report discusses electrical system design, mechanical system design, and ground support equipment.

  1. Controlled ecological life support system: Transportation analysis

    NASA Technical Reports Server (NTRS)

    Gustan, E.; Vinopal, T.

    1982-01-01

    This report discusses a study utilizing a systems analysis approach to determine which NASA missions would benefit from controlled ecological life support system (CELSS) technology. The study focuses on manned missions selected from NASA planning forecasts covering the next half century. Comparison of various life support scenarios for the selected missions and characteristics of projected transportation systems provided data for cost evaluations. This approach identified missions that derived benefits from a CELSS, showed the magnitude of the potential cost savings, and indicated which system or combination of systems would apply. This report outlines the analytical approach used in the evaluation, describes the missions and systems considered, and sets forth the benefits derived from CELSS when applicable.

  2. Traditional Medicine Collection Tracking System (TM-CTS): a database for ethnobotanically driven drug-discovery programs.

    PubMed

    Harris, Eric S J; Erickson, Sean D; Tolopko, Andrew N; Cao, Shugeng; Craycroft, Jane A; Scholten, Robert; Fu, Yanling; Wang, Wenquan; Liu, Yong; Zhao, Zhongzhen; Clardy, Jon; Shamu, Caroline E; Eisenberg, David M

    2011-05-17

    Ethnobotanically driven drug-discovery programs include data related to many aspects of the preparation of botanical medicines, from initial plant collection to chemical extraction and fractionation. The Traditional Medicine Collection Tracking System (TM-CTS) was created to organize and store data of this type for an international collaborative project involving the systematic evaluation of commonly used Traditional Chinese Medicinal plants. The system was developed using domain-driven design techniques, and is implemented using Java, Hibernate, PostgreSQL, Business Intelligence and Reporting Tools (BIRT), and Apache Tomcat. The TM-CTS relational database schema contains over 70 data types, comprising over 500 data fields. The system incorporates a number of unique features that are useful in the context of ethnobotanical projects such as support for information about botanical collection, method of processing, quality tests for plants with existing pharmacopoeia standards, chemical extraction and fractionation, and historical uses of the plants. The database also accommodates data provided in multiple languages and integration with a database system built to support high throughput screening based drug discovery efforts. It is accessed via a web-based application that provides extensive, multi-format reporting capabilities. This new database system was designed to support a project evaluating the bioactivity of Chinese medicinal plants. The software used to create the database is open source, freely available, and could potentially be applied to other ethnobotanically driven natural product collection and drug-discovery programs. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  3. Traditional Medicine Collection Tracking System (TM-CTS): A Database for Ethnobotanically-Driven Drug-Discovery Programs

    PubMed Central

    Harris, Eric S. J.; Erickson, Sean D.; Tolopko, Andrew N.; Cao, Shugeng; Craycroft, Jane A.; Scholten, Robert; Fu, Yanling; Wang, Wenquan; Liu, Yong; Zhao, Zhongzhen; Clardy, Jon; Shamu, Caroline E.; Eisenberg, David M.

    2011-01-01

    Aim of the study. Ethnobotanically-driven drug-discovery programs include data related to many aspects of the preparation of botanical medicines, from initial plant collection to chemical extraction and fractionation. The Traditional Medicine-Collection Tracking System (TM-CTS) was created to organize and store data of this type for an international collaborative project involving the systematic evaluation of commonly used Traditional Chinese Medicinal plants. Materials and Methods. The system was developed using domain-driven design techniques, and is implemented using Java, Hibernate, PostgreSQL, Business Intelligence and Reporting Tools (BIRT), and Apache Tomcat. Results. The TM-CTS relational database schema contains over 70 data types, comprising over 500 data fields. The system incorporates a number of unique features that are useful in the context of ethnobotanical projects such as support for information about botanical collection, method of processing, quality tests for plants with existing pharmacopoeia standards, chemical extraction and fractionation, and historical uses of the plants. The database also accommodates data provided in multiple languages and integration with a database system built to support high throughput screening based drug discovery efforts. It is accessed via a web-based application that provides extensive, multi-format reporting capabilities. Conclusions. This new database system was designed to support a project evaluating the bioactivity of Chinese medicinal plants. The software used to create the database is open source, freely available, and could potentially be applied to other ethnobotanically-driven natural product collection and drug-discovery programs. PMID:21420479

  4. New identities: the changing profile of patients with cancer, their families, and their professional caregivers.

    PubMed

    Boyle, D M

    1994-01-01

    To discuss and project cancer care needs and a vision of oncology nursing in the next century. Scholarly, professional, and governmental sources of information. Projections of a changed patient/family profile, social support dilemmas, and a new "hybrid" oncology nurse. Opportunities for nurses, resulting from these projections, include roles as minority needs specialist, director of new care-delivery models, facilitator of intergenerational support teams, overseer of neighborhood-based care systems, multispecialty nursing care provider, cancer care policy activist. Nursing education, community models, and current care-delivery settings will all be affected by the projected changes and will all need to consider adjusting to meet the demands that will be placed on them to facilitate change.

  5. STARS - Supportability Trend Analysis and Reporting System for the National Space Transportation System

    NASA Technical Reports Server (NTRS)

    Graham, Leroy J.; Doempke, Gerald T.

    1990-01-01

    The concept, implementation, and long-range goals of a Supportability Trend Analysis and Reporting System (STARS) for the National Space Transportation System (NSTS) are discussed. The requirement was established as a direct result of the recommendations of the Rogers Commission investigation of the circumstances of the Space Shuttle Challenger accident. STARS outlines the requirements for the supportability-trend data collection, analysis, and reporting requirements that each of the project offices supporting the Space Shuttle are required to provide to the NSTS program office. STARS data give the historic and predictive logistics information necessary for all levels of NSTS management to make safe and cost-effective decisions concerning the smooth flow of Space Shuttle turnaround.

  6. The implementation of the Human Exploration Demonstration Project (HEDP), a systems technology testbed

    NASA Technical Reports Server (NTRS)

    Rosen, Robert; Korsmeyer, David J.

    1993-01-01

    The Human Exploration Demonstration Project (HEDP) is an ongoing task at the NASA's Ames Research Center to address the advanced technology requirements necessary to implement an integrated working and living environment for a planetary surface habitat. The integrated environment consists of life support systems, physiological monitoring of project crew, a virtual environment work station, and centralized data acquisition and habitat systems health monitoring. The HEDP is an integrated technology demonstrator, as well as an initial operational testbed. There are several robotic systems operational in a simulated planetary landscape external to the habitat environment, to provide representative work loads for the crew. This paper describes the evolution of the HEDP from initial concept to operational project; the status of the HEDP after two years; the final facilities composing the HEDP; the project's role as a NASA Ames Research Center systems technology testbed; and the interim demonstration scenarios that have been run to feature the developing technologies in 1993.

  7. Prioritization of engineering support requests and advanced technology projects using decision support and industrial engineering models

    NASA Technical Reports Server (NTRS)

    Tavana, Madjid

    1995-01-01

    The evaluation and prioritization of Engineering Support Requests (ESR's) is a particularly difficult task at the Kennedy Space Center (KSC) -- Shuttle Project Engineering Office. This difficulty is due to the complexities inherent in the evaluation process and the lack of structured information. The evaluation process must consider a multitude of relevant pieces of information concerning Safety, Supportability, O&M Cost Savings, Process Enhancement, Reliability, and Implementation. Various analytical and normative models developed over the past have helped decision makers at KSC utilize large volumes of information in the evaluation of ESR's. The purpose of this project is to build on the existing methodologies and develop a multiple criteria decision support system that captures the decision maker's beliefs through a series of sequential, rational, and analytical processes. The model utilizes the Analytic Hierarchy Process (AHP), subjective probabilities, the entropy concept, and Maximize Agreement Heuristic (MAH) to enhance the decision maker's intuition in evaluating a set of ESR's.

  8. Re-engineering Nascom's network management architecture

    NASA Technical Reports Server (NTRS)

    Drake, Brian C.; Messent, David

    1994-01-01

    The development of Nascom systems for ground communications began in 1958 with Project Vanguard. The low-speed systems (rates less than 9.6 Kbs) were developed following existing standards; but, there were no comparable standards for high-speed systems. As a result, these systems were developed using custom protocols and custom hardware. Technology has made enormous strides since the ground support systems were implemented. Standards for computer equipment, software, and high-speed communications exist and the performance of current workstations exceeds that of the mainframes used in the development of the ground systems. Nascom is in the process of upgrading its ground support systems and providing additional services. The Message Switching System (MSS), Communications Address Processor (CAP), and Multiplexer/Demultiplexer (MDM) Automated Control System (MACS) are all examples of Nascom systems developed using standards such as, X-windows, Motif, and Simple Network Management Protocol (SNMP). Also, the Earth Observing System (EOS) Communications (Ecom) project is stressing standards as an integral part of its network. The move towards standards has produced a reduction in development, maintenance, and interoperability costs, while providing operational quality improvement. The Facility and Resource Manager (FARM) project has been established to integrate the Nascom networks and systems into a common network management architecture. The maximization of standards and implementation of computer automation in the architecture will lead to continued cost reductions and increased operational efficiency. The first step has been to derive overall Nascom requirements and identify the functionality common to all the current management systems. The identification of these common functions will enable the reuse of processes in the management architecture and promote increased use of automation throughout the Nascom network. The MSS, CAP, MACS, and Ecom projects have indicated the potential value of commercial-off-the-shelf (COTS) and standards through reduced cost and high quality. The FARM will allow the application of the lessons learned from these projects to all future Nascom systems.

  9. Effort to Accelerate MBSE Adoption and Usage at JSC

    NASA Technical Reports Server (NTRS)

    Wang, Lui; Izygon, Michel; Okron, Shira; Garner, Larry; Wagner, Howard

    2016-01-01

    This paper describes the authors' experience in adopting Model Based System Engineering (MBSE) at the NASA/Johnson Space Center (JSC). Since 2009, NASA/JSC has been applying MBSE using the Systems Modeling Language (SysML) to a number of advanced projects. Models integrate views of the system from multiple perspectives, capturing the system design information for multiple stakeholders. This method has allowed engineers to better control changes, improve traceability from requirements to design and manage the numerous interactions between components. As the project progresses, the models become the official source of information and used by multiple stakeholders. Three major types of challenges that hamper the adoption of the MBSE technology are described. These challenges are addressed by a multipronged approach that includes educating the main stakeholders, implementing an organizational infrastructure that supports the adoption effort, defining a set of modeling guidelines to help engineers in their modeling effort, providing a toolset that support the generation of valuable products, and providing a library of reusable models. JSC project case studies are presented to illustrate how the proposed approach has been successfully applied.

  10. An Operational Computational Terminal Area PBL Prediction System

    NASA Technical Reports Server (NTRS)

    Lin, Yuh-Lang; Kaplan, Michael L.; Weglarz, Ronald P.; Hamilton, David W.

    1997-01-01

    There are two fundamental goals of this research project. The first and primary goal is to develop a prognostic system which could satisfy the operational weather prediction requirements of the meteorological subsystem within the Aircraft Vortex Spacing System (AVOSS). The secondary goal is to perform indepth diagnostic analyses of the meteorological conditions affecting the Memphis field experiment held during August 1995. These two goals are interdependent because a thorough understanding of the atmospheric dynamical processes which produced the unique meteorology during the Memphis deployment will help us design a prognostic system for the planetary boundary layer (PBL) which could be utilized to support the meteorological subsystem within AVOSS. The secondary goal occupied much of the first year of the research project. This involved extensive data acquisition and indepth analyses of a spectrum of atmospheric observational data sets. Concerning the primary goal, the first part of the four-stage prognostic system in support of AVOSS entitled: Terminal Area PBL Prediction System (TAPPS) was also formulated and tested in a research environment during 1996. We describe this system, and the three stages which are planned to follow. This first part of a software system designed to meet the primary goal of this research project is relatively inexpensive to implement and run operationally.

  11. The NATO Unmanned Aircraft System Human Systems Integration Guidebook

    DTIC Science & Technology

    2012-11-01

    Stakeholders HSI Management Activity Goals Project SMEs HCR Acceptance Methods & Criteria Figure 2. Overarching HSI Goal Structure ...88ABW Clear 10/21/2013; 88ABW-2013-4442 55 N NATO North Atlantic Treaty Organisation NTSB National Transportation Safety Board S SME Subject...support the organisation Personnel trained to support safety Operational Concepts HSI Technical Activity Goals Allocation of Functions

  12. Cyrogenic Life Support Technology Development Project

    NASA Technical Reports Server (NTRS)

    Bush, David R.

    2015-01-01

    KSC has used cryogenic life support (liquid air based) technology successfully for many years to support spaceflight operations. This technology has many benefits unique to cryogenics when compared to traditional compressed gas systems: passive cooling, lighter, longer duration, and lower operating pressure. However, there are also several limiting factors that have prevented the technology from being commercialized. The National Institute of Occupational Safety and Health, Office of Mine Safety and Health Research (NIOSH-OMSHR) has partnered with NASA to develop a complete liquid air based life support solution for emergency mine escape and rescue. The project will develop and demonstrate various prototype devices and incorporate new technological innovations that have to date prevented commercialization.

  13. 77 FR 50699 - Proposed Information Collection Activity; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-22

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Administration for Children and Families [OMB No.: New Collection] Proposed Information Collection Activity; Comment Request Proposed Projects Title: Child Support Document Exchange System (CSDES). Description: The federal Office of Child Support Enforcement (OCSE) is...

  14. Research on Current Water Systems and Regulatory Support

    EPA Science Inventory

    This project will supply research results to support federal regulations and guidance. It will also provide strategies to regions, states, and communities for improved regulatory compliance and rapid and effective emergency response where appropriate (e.g. harmful algal bloom out...

  15. Preoperational test report, recirculation ventilation systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clifton, F.T.

    1997-11-11

    This represents a preoperational test report for Recirculation Ventilation Systems, Project W-030. Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks. The system provides vapor space cooling of tanks AY1O1, AY102, AZ1O1, AZ102 and supports the ability to exhaust air from each tank. Each system consists of a valved piping loop, a fan, condenser, and moisture separator; equipment is located inside each respective tank farm in its own hardened building. The tests verify correct system operation and correct indications displayed by the central Monitor and Control System.

  16. Rich Support for Heterogeneous Polar Data in RAMADDA

    NASA Astrophysics Data System (ADS)

    McWhirter, J.; Crosby, C. J.; Griffith, P. C.; Khalsa, S.; Lazzara, M. A.; Weber, W. J.

    2013-12-01

    Difficult to navigate environments, tenuous logistics, strange forms, deeply rooted cultures - these are all experiences shared by Polar scientist in the field as well as the developers of the underlying data management systems back in the office. Among the key data management challenges that Polar investigations present are the heterogeneity and complexity of data that are generated. Polar regions are intensely studied across many science domains through a variety of techniques - satellite and aircraft remote sensing, in-situ observation networks, modeling, sociological investigations, and extensive PI-driven field project data collection. While many data management efforts focus on large homogeneous collections of data targeting specific science domains (e.g., satellite, GPS, modeling), multi-disciplinary efforts that focus on Polar data need to be able to address a wide range of data formats, science domains and user communities. There is growing use of the RAMADDA (Repository for Archiving, Managing and Accessing Diverse Data) system to manage and provide services for Polar data. RAMADDA is a freely available extensible data repository framework that supports a wide range of data types and services to allow the creation, management, discovery and use of data and metadata. The broad range of capabilities provided by RAMADDA and its extensibility makes it well-suited as an archive solution for Polar data. RAMADDA can run in a number of diverse contexts - as a centralized archive, at local institutions, and can even run on an investigator's laptop in the field, providing in-situ metadata and data management services. We are actively developing archives and support for a number of Polar initiatives: - NASA-Arctic Boreal Vulnerability Experiment (ABoVE): ABoVE is a long-term multi-instrument field campaign that will make use of a wide range of data. We have developed an extensive ontology of program, project and site metadata in RAMADDA, in support of the ABoVE Science Definition Team and Project Office. See: http://above.nasa.gov - UNAVCO Terrestrial Laser Scanning (TLS): UNAVCO's Polar program provides support for terrestrial laser scanning field projects. We are using RAMADDA to archive these field projects, with over 40 projects ingested to date. - NASA-IceBridge: As part of the NASA LiDAR Access System (NLAS) project, RAMADDA supports numerous airborne and satellite LiDAR data sets - GLAS, LVIS, ATM, Paris, McORDS, etc. - Antarctic Meteorological Research Center (AMRC): Satellite and surface observation network - Support for numerous other data from AON-ACADIS, Greenland GC-Net, NOAA-GMD, AmeriFlux, etc. In this talk we will discuss some of the challenges that Polar data brings to geoinformatics and describe the approaches we have taken to address these challenges in RAMADDA.

  17. New Directions for NASA's Advanced Life Support Program

    NASA Technical Reports Server (NTRS)

    Barta, Daniel J.

    2006-01-01

    Advanced Life Support (ALS), an element of Human Systems Research and Technology s (HSRT) Life Support and Habitation Program (LSH), has been NASA s primary sponsor of life support research and technology development for the agency. Over its history, ALS sponsored tasks across a diverse set of institutions, including field centers, colleges and universities, industry, and governmental laboratories, resulting in numerous publications and scientific articles, patents and new technologies, as well as education and training for primary, secondary and graduate students, including minority serving institutions. Prior to the Vision for Space Exploration (VSE) announced on January 14th, 2004 by the President, ALS had been focused on research and technology development for long duration exploration missions, emphasizing closed-loop regenerative systems, including both biological and physicochemical. Taking a robust and flexible approach, ALS focused on capabilities to enable visits to multiple potential destinations beyond low Earth orbit. ALS developed requirements, reference missions, and assumptions upon which to structure and focus its development program. The VSE gave NASA a plan for steady human and robotic space exploration based on specific, achievable goals. Recently, the Exploration Systems Architecture Study (ESAS) was chartered by NASA s Administrator to determine the best exploration architecture and strategy to implement the Vision. The study identified key technologies required to enable and significantly enhance the reference exploration missions and to prioritize near-term and far-term technology investments. This technology assessment resulted in a revised Exploration Systems Mission Directorate (ESMD) technology investment plan. A set of new technology development projects were initiated as part of the plan s implementation, replacing tasks previously initiated under HSRT and its sister program, Exploration Systems Research and Technology (ESRT). The Exploration Life Support (ELS) Project, under the Exploration Technology Development Program, has recently been initiated to perform directed life support technology development in support of Constellation and the Crew Exploration Vehicle (CEV). ELS) has replaced ALS, with several major differences. Thermal Control Systems have been separated into a new stand alone project (Thermal Systems for Exploration Missions). Tasks in Advanced Food Technology have been relocated to the Human Research Program. Tasks in a new discipline area, Habitation Engineering, have been added. Research and technology development for capabilities required for longer duration stays on the Moon and Mars, including bioregenerative system, have been deferred.

  18. Test Telemetry And Command System (TTACS)

    NASA Technical Reports Server (NTRS)

    Fogel, Alvin J.

    1994-01-01

    The Jet Propulsion Laboratory has developed a multimission Test Telemetry and Command System (TTACS) which provides a multimission telemetry and command data system in a spacecraft test environment. TTACS reuses, in the spacecraft test environment, components of the same data system used for flight operations; no new software is developed for the spacecraft test environment. Additionally, the TTACS is transportable to any spacecraft test site, including the launch site. The TTACS is currently operational in the Galileo spacecraft testbed; it is also being provided to support the Cassini and Mars Surveyor Program projects. Minimal personnel data system training is required in the transition from pre-launch spacecraft test to post-launch flight operations since test personnel are already familiar with the data system's operation. Additionally, data system components, e.g. data display, can be reused to support spacecraft software development; and the same data system components will again be reused during the spacecraft integration and system test phases. TTACS usage also results in early availability of spacecraft data to data system development and, as a result, early data system development feedback to spacecraft system developers. The TTACS consists of a multimission spacecraft support equipment interface and components of the multimission telemetry and command software adapted for a specific project. The TTACS interfaces to the spacecraft, e.g., Command Data System (CDS), support equipment. The TTACS telemetry interface to the CDS support equipment performs serial (RS-422)-to-ethernet conversion at rates between 1 bps and 1 mbps, telemetry data blocking and header generation, guaranteed data transmission to the telemetry data system, and graphical downlink routing summary and control. The TTACS command interface to the CDS support equipment is nominally a command file transferred in non-real-time via ethernet. The CDS support equipment is responsible for metering the commands to the CDS; additionally for Galileo, TTACS includes a real-time-interface to the CDS support equipment. The TTACS provides the basic functionality of the multimission telemetry and command data system used during flight operations. TTACS telemetry capabilities include frame synchronization, Reed-Solomon decoding, packet extraction and channelization, and data storage/query. Multimission data display capabilities are also available. TTACS command capabilities include command generation verification, and storage.

  19. Cascade Distiller System Performance Testing Interim Results

    NASA Technical Reports Server (NTRS)

    Callahan, Michael R.; Pensinger, Stuart; Sargusingh, Miriam J.

    2014-01-01

    The Cascade Distillation System (CDS) is a rotary distillation system with potential for greater reliability and lower energy costs than existing distillation systems. Based upon the results of the 2009 distillation comparison test (DCT) and recommendations of the expert panel, the Advanced Exploration Systems (AES) Water Recovery Project (WRP) project advanced the technology by increasing reliability of the system through redesign of bearing assemblies and improved rotor dynamics. In addition, the project improved the CDS power efficiency by optimizing the thermoelectric heat pump (TeHP) and heat exchanger design. Testing at the NASA-JSC Advanced Exploration System Water Laboratory (AES Water Lab) using a prototype Cascade Distillation Subsystem (CDS) wastewater processor (Honeywell d International, Torrance, Calif.) with test support equipment and control system developed by Johnson Space Center was performed to evaluate performance of the system with the upgrades as compared to previous system performance. The system was challenged with Solution 1 from the NASA Exploration Life Support (ELS) distillation comparison testing performed in 2009. Solution 1 consisted of a mixed stream containing human-generated urine and humidity condensate. A secondary objective of this testing is to evaluate the performance of the CDS as compared to the state of the art Distillation Assembly (DA) used in the ISS Urine Processor Assembly (UPA). This was done by challenging the system with ISS analog waste streams. This paper details the results of the AES WRP CDS performance testing.

  20. Utilization of design data on conventional system to building information modeling (BIM)

    NASA Astrophysics Data System (ADS)

    Akbar, Boyke M.; Z. R., Dewi Larasati

    2017-11-01

    Nowadays infrastructure development becomes one of the main priorities in the developed country such as Indonesia. The use of conventional design system is considered no longer effectively support the infrastructure projects, especially for the high complexity building design, due to its fragmented system issues. BIM comes as one of the solutions in managing projects in an integrated manner. Despite of the all known BIM benefits, there are some obstacles on the migration process to BIM. The two main of the obstacles are; the BIM implementation unpreparedness of some project parties and a concerns to leave behind the existing database and create a new one on the BIM system. This paper discusses the utilization probabilities of the existing CAD data from the conventional design system for BIM system. The existing conventional CAD data's and BIM design system output was studied to examine compatibility issues between two subject and followed by an utilization scheme-strategy probabilities. The goal of this study is to add project parties' eagerness in migrating to BIM by maximizing the existing data utilization and hopefully could also increase BIM based project workflow quality.

  1. 76 FR 4703 - Proposed Information Collection Activity; Comment Request Proposed Projects:

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-26

    ... Information Collection Activity; Comment Request Proposed Projects: Title: Computerized Support Enforcement Systems. OMB No. 0980-0271. Description: The information being collected is mandated by Section 454(16) of...) approved under section 452(d) of the title, of a statewide automated data processing and information...

  2. Laser Bioeffects Resulting from Non-Linear Interactions of Ultrashort Pulses with Biological Systems

    DTIC Science & Technology

    2004-07-01

    project Saher Maswadi, Ph.D. (Postdoctoral Fellow) 100% on project Manuscripts submitted/published: Glickman RD. Phototoxicity to the retina...with Dr. Saher Maswadi, the AFOSR- supported postdoctoral fellow in my laboratory, we have implemented a non-invasive method for measuring absolute

  3. Employment Priorities for the '90s for People with Disabilities.

    ERIC Educational Resources Information Center

    President's Committee on Employment of People with Disabilities, Washington, DC.

    This report resulted from a project designed to involve people with disabilities in the development of employment policies and rehabilitation services. The report presents recommendations addressing employment preparation, placement, postemployment, and support systems. The project, titled "National Agenda for the Employment of People with…

  4. Software engineering principles applied to large healthcare information systems--a case report.

    PubMed

    Nardon, Fabiane Bizinella; de A Moura, Lincoln

    2007-01-01

    São Paulo is the largest city in Brazil and one of the largest cities in the world. In 2004, São Paulo City Department of Health decided to implement a Healthcare Information System to support managing healthcare services and provide an ambulatory health record. The resulting information system is one of the largest public healthcare information systems ever built, with more than 2 million lines of code. Although statistics shows that most software projects fail, and the risks for the São Paulo initiative were enormous, the information system was completed on-time and on-budget. In this paper, we discuss the software engineering principles adopted that allowed to accomplish that project's goals, hoping that sharing the experience of this project will help other healthcare information systems initiatives to succeed.

  5. Geographic information system development in the CARETS project

    USGS Publications Warehouse

    Mitchell, William B.; Fegeas, Robin G.; Fitzpatrick, Katherine A.; Hallam, Cheryl A.

    1977-01-01

    Experience in the development of a geographic information system to support the CARETS project has confirmed the considerable advantages that may accrue by paralleling the system development with a rational and balanced system production effort which permits the integration of the education and training of users with interim deliverable products to them. Those advantages include support for a long-term staff plan that recognizes substantial staff changes through system development and implementation, a fiscal plan that provides continuity in resources necessary for total system development, and a feedback system which allows the user to communicate his experiences in using the system. Thus far balance between system development and system production has not been achieved because of continuing large-scale spatial data processing requirements coupled with strong and insistent demands from users for immediately deliverable products from the system. That imbalance has refocussed staffing and fiscal plans from long-term system development to short- and near-term production requirements, continuously extends total system development time, and increases the possibility that later system development may reduce the usefulness of current interim products.

  6. Method for modeling social care processes for national information exchange.

    PubMed

    Miettinen, Aki; Mykkänen, Juha; Laaksonen, Maarit

    2012-01-01

    Finnish social services include 21 service commissions of social welfare including Adoption counselling, Income support, Child welfare, Services for immigrants and Substance abuse care. This paper describes the method used for process modeling in the National project for IT in Social Services in Finland (Tikesos). The process modeling in the project aimed to support common national target state processes from the perspective of national electronic archive, increased interoperability between systems and electronic client documents. The process steps and other aspects of the method are presented. The method was developed, used and refined during the three years of process modeling in the national project.

  7. ADP Analysis project for the Human Resources Management Division

    NASA Technical Reports Server (NTRS)

    Tureman, Robert L., Jr.

    1993-01-01

    The ADP (Automated Data Processing) Analysis Project was conducted for the Human Resources Management Division (HRMD) of NASA's Langley Research Center. The three major areas of work in the project were computer support, automated inventory analysis, and an ADP study for the Division. The goal of the computer support work was to determine automation needs of Division personnel and help them solve computing problems. The goal of automated inventory analysis was to find a way to analyze installed software and usage on a Macintosh. Finally, the ADP functional systems study for the Division was designed to assess future HRMD needs concerning ADP organization and activities.

  8. Analysis of Solar Receiver Flux Distributions for US/Russian Solar Dynamic System Demonstration on the MIR Space Station

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Analyses have been performed at the NASA Lewis Research Center's Power Systems Project Office to support the design and development of the joint U.S./Russian Solar Dynamic Flight Demonstration Project. The optical analysis of the concentrator and solar flux predictions on target receiver surfaces have an important influence on receiver design and control of the Brayton engine.

  9. Industry Support

    NASA Technical Reports Server (NTRS)

    2003-01-01

    NASA Glenn Research Center (GRC) is responsible for the Advanced Communications for Air Traffic Management (AC/ATM) Project, a sub-element task of the Advanced Air Transportation Technologies (AATT) Project of the NASA Aviation System Capacity Program (ASC). The AC/ATM Project is developing new communications technologies and tools that will improve throughput in the U.S. Air Traffic Control System. The goal of the AC/ATM Project is to enable a communications infrastructure providing the capacity, efficiency, and flexibility necessary to realize benefits of the future mature Free-Flight environment. The capabilities and scope of communications technologies needed to accomplish this goal depend on characteristics of the future Free-Flight environment. There are many operational concepts being proposed for a future ATM system to enable user flexibility and efficiency. GRC s focus is on developing new technologies and techniques to support the digital communication of information involving airborne and ground-based users. However, the technologies and techniques must be integrated with the systems and services that industry and the Federal Aviation Administration (FAA) are developing. Thus, GRC needs to monitor and provide input to the various industry and FAA organizations and committees that are specifying new systems and services. Adoption of technologies by the FAA is partially dependent on acceptance of the technology by the aviation community. The commercial aviation community in particular would like to adopt technologies that can be used throughout the world. As a result, the adoption of common or at least compatible technologies by European countries is a key factor in getting commitments to those technologies by the US aviation community. GRC desires to keep informed of European activities that relate to aviation communication technologies, particularly those that are being supported by Eurocontrol.

  10. INcreasing Security and Protection through Infrastructure REsilience: The INSPIRE Project

    NASA Astrophysics Data System (ADS)

    D'Antonio, Salvatore; Romano, Luigi; Khelil, Abdelmajid; Suri, Neeraj

    The INSPIRE project aims at enhancing the European potential in the field of security by ensuring the protection of critical information infrastructures through (a) the identification of their vulnerabilities and (b) the development of innovative techniques for securing networked process control systems. To increase the resilience of such systems INSPIRE will develop traffic engineering algorithms, diagnostic processes and self-reconfigurable architectures along with recovery techniques. Hence, the core idea of the INSPIRE project is to protect critical information infrastructures by appropriately configuring, managing, and securing the communication network which interconnects the distributed control systems. A working prototype will be implemented as a final demonstrator of selected scenarios. Controls/Communication Experts will support project partners in the validation and demonstration activities. INSPIRE will also contribute to standardization process in order to foster multi-operator interoperability and coordinated strategies for securing lifeline systems.

  11. Computer-based communication in support of scientific and technical work. [conferences on management information systems used by scientists of NASA programs

    NASA Technical Reports Server (NTRS)

    Vallee, J.; Wilson, T.

    1976-01-01

    Results are reported of the first experiments for a computer conference management information system at the National Aeronautics and Space Administration. Between August 1975 and March 1976, two NASA projects with geographically separated participants (NASA scientists) used the PLANET computer conferencing system for portions of their work. The first project was a technology assessment of future transportation systems. The second project involved experiments with the Communication Technology Satellite. As part of this project, pre- and postlaunch operations were discussed in a computer conference. These conferences also provided the context for an analysis of the cost of computer conferencing. In particular, six cost components were identified: (1) terminal equipment, (2) communication with a network port, (3) network connection, (4) computer utilization, (5) data storage and (6) administrative overhead.

  12. Marine Corps Research and Development Objectives Document (RADOD)

    DTIC Science & Technology

    1980-08-08

    461.1 Data exchange /joint projects, evaluation of foreign weapon systems .......................... N/A MANAGEMENT SUPPORT 471.0 General management...DI3ZITiL WIDEBAND TtAMS𔃾ISSION ;YSTem W2AK D~ CQ)43L CCC 9S22 AUTOMATED DATA ENTlY SYSTEM (A𔃾ES) usM: CCC 9269 ORMBDAND 3MNDIRE:TID04AL VHF 4NTEM44...Standardization and Interoper- ability through data exchanges , joint projects, evaluation of foreign weapon systems , material or related technology. 461.0

  13. Updates of Land Surface and Air Quality Products in NASA MAIRS and NEESPI Data Portals

    NASA Technical Reports Server (NTRS)

    Shen, Suhung; Leptoukh, Gregory G.; Gerasimov, Irina

    2010-01-01

    Following successful support of the Northern Eurasia Earth Sciences Partner Initiative (NEESPI) project with NASA satellite remote sensing data, from Spring 2009 the NASA GES DISC (Goddard Earth Sciences Data and Information Services Center) has been working on collecting more satellite and model data to support the Monsoon Asia Integrated Regional Study (MAIRS) project. The established data management and service infrastructure developed for NEESPI has been used and improved for MAIRS support.Data search, subsetting, and download functions are available through a single system. A customized Giovanni system has been created for MAIRS.The Web-based on line data analysis and visualization system, Giovanni (Goddard Interactive Online Visualization ANd aNalysis Infrastructure) allows scientists to explore, quickly analyze, and download data easily without learning the original data structure and format. Giovanni MAIRS includes satellite observations from multiple sensors and model output from the NASA Global Land Data Assimilation System (GLDAS), and from the NASA atmospheric reanalysis project, MERRA. Currently, we are working on processing and integrating higher resolution land data in to Giovanni, such as vegetation index, land surface temperature, and active fire at 5km or 1km from the standard MODIS products. For data that are not archived at the GESDISC,a product metadata portal is under development to serve as a gateway for providing product level information and data access links, which include both satellite, model products and ground-based measurements information collected from MAIRS scientists.Due to the large overlap of geographic coverage and many similar scientific interests of NEESPI and MAIRS, these data and tools will serve both projects.

  14. Tracking and data system support for the Pioneer project. Pioneers 6-9, extended missions: 1 July 1972 - 1 July 1973, volume 12

    NASA Technical Reports Server (NTRS)

    Miller, R. B.

    1974-01-01

    The Tracking and Data System supported the deep space phases of the Pioneer 6, 7, 8, and 9 missions, with two spacecraft in an inward trajectory and two spacecraft in an outward trajectory from the earth in heliocentric orbits. During the period of this report, scientific instruments aboard each of the spacecraft continued to register information relative to interplanetary particles and fields, and radiometric data generated by the network continued to contribute to knowledge of the celestial mechanics of the solar system. In addition, to network support activity detail, network performance and special support activities are covered.

  15. Tracking and data system support for the pioneer project. Volume 11 Pioneers 6-9. Extended missions: 1 July 1971 - 1 July 1973

    NASA Technical Reports Server (NTRS)

    Renzetti, N. A.; Siegmeth, A. J.

    1973-01-01

    The Tracking and Data System supported the deep space phases of the Pioneer 6, 7, 8, and 9 missions, with two spacecraft in an inward trajectory and two spacecraft in an outward trajectory from the earth in heliocentric orbits. Scientific instruments aboard each of the spacecraft continued to register information relative to interplanetary particles and fields, and radio metric data generated by the network continued to improve our knowledge of the celestial mechanics of the solar system. In addition to network support activity detail, network performance and special support activities are covered.

  16. Computer tools for systems engineering at LaRC

    NASA Technical Reports Server (NTRS)

    Walters, J. Milam

    1994-01-01

    The Systems Engineering Office (SEO) has been established to provide life cycle systems engineering support to Langley research Center projects. over the last two years, the computing market has been reviewed for tools which could enhance the effectiveness and efficiency of activities directed towards this mission. A group of interrelated applications have been procured, or are under development including a requirements management tool, a system design and simulation tool, and project and engineering data base. This paper will review the current configuration of these tools and provide information on future milestones and directions.

  17. COBRA System Engineering Processes to Achieve SLI Strategic Goals

    NASA Technical Reports Server (NTRS)

    Ballard, Richard O.

    2003-01-01

    The COBRA Prototype Main Engine Development Project was an endeavor conducted as a joint venture between Pratt & Whitney and Aerojet to conduct risk reduction in LOX/LH2 main engine technology for the NASA Space Launch Initiative (SLI). During the seventeen months of the project (April 2001 to September 2002), approximately seventy reviews were conducted, beginning with the Engine Systems Requirements Review (SRR) and ending with the Engine Systems Interim Design Review (IDR). This paper discusses some of the system engineering practices used to support the reviews and the overall engine development effort.

  18. Human Centered Autonomous and Assistant Systems Testbed for Exploration Operations

    NASA Technical Reports Server (NTRS)

    Malin, Jane T.; Mount, Frances; Carreon, Patricia; Torney, Susan E.

    2001-01-01

    The Engineering and Mission Operations Directorates at NASA Johnson Space Center are combining laboratories and expertise to establish the Human Centered Autonomous and Assistant Systems Testbed for Exploration Operations. This is a testbed for human centered design, development and evaluation of intelligent autonomous and assistant systems that will be needed for human exploration and development of space. This project will improve human-centered analysis, design and evaluation methods for developing intelligent software. This software will support human-machine cognitive and collaborative activities in future interplanetary work environments where distributed computer and human agents cooperate. We are developing and evaluating prototype intelligent systems for distributed multi-agent mixed-initiative operations. The primary target domain is control of life support systems in a planetary base. Technical approaches will be evaluated for use during extended manned tests in the target domain, the Bioregenerative Advanced Life Support Systems Test Complex (BIO-Plex). A spinoff target domain is the International Space Station (ISS) Mission Control Center (MCC). Prodl}cts of this project include human-centered intelligent software technology, innovative human interface designs, and human-centered software development processes, methods and products. The testbed uses adjustable autonomy software and life support systems simulation models from the Adjustable Autonomy Testbed, to represent operations on the remote planet. Ground operations prototypes and concepts will be evaluated in the Exploration Planning and Operations Center (ExPOC) and Jupiter Facility.

  19. Technology Base Research Project for electrochemical energy storage

    NASA Astrophysics Data System (ADS)

    Kinoshita, K.

    1985-06-01

    The DOE Electrochemical Energy Storage Program is divided into two projects: (1) the exploratory technology development and testing (ETD) project and (2) the technology base research (TBR) project. The role of the TBR Project is to perform supporting research for the advanced battery systems under development by the ETD Project, and to evaluate new systems with potentially superior performance, durability and/or cost characteristics. The specific goal of the TBR Project is to identify the most promising electrochemical technologies and transfer them to industry and/or the ETD Project for further development and scale-up. This report summarizes the research, financial, and management activities relevant to the TBR Project in CY 1984. General problem areas addressed by the project include identification of new electrochemical couples for advanced batteries, determination of technical feasibility of the new couples, improvements in battery components and materials, establishment of engineering principles applicable to electrochemical energy storage and conversion, and the assessment of fuel-cell technology for transportation applications. Major emphasis is given to applied research which will lead to superior performance and lower life-cycle costs. The TBR Project is divided into three major project elements: exploratory research, applied science research, and air systems research.

  20. Allocations for HANDI 2000 business management system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, D.

    The Data Integration 2000 Project will result in an integrated and comprehensive set of functional applications containing core information necessary to support the Project Hanford Management Contract. It is based on the Commercial-Off-The-Shelf product solution with commercially proven business processes. The COTS product solution set, of PassPort and People Soft software, supports finance, supply and chemical management/Material Safety Data Sheet, human resources. Allocations at Fluor Daniel Hanford are burdens added to base costs using a predetermined rate.

  1. International Space Station (ISS) Expedite the Process of Experiments to Space Station (EXPRESS) Racks Software Support

    NASA Technical Reports Server (NTRS)

    2003-01-01

    bd Systems personnel accomplished the technical responsibilities for this reporting period, as planned. A close working relationship was maintained with personnel of the MSFC Avionics Department Software Group (ED 14), the MSFC EXPRESS Project Office (FD3 l), and the Huntsville Boeing Company. Work accomplishments included the support of SRB activities, ATB activities, ESCP activities, participating in technical meetings, coordinating issues between the Boeing Company and the MSFC Project Office, and performing special tasks as requested.

  2. Genomes OnLine Database (GOLD) v.6: data updates and feature enhancements

    PubMed Central

    Mukherjee, Supratim; Stamatis, Dimitri; Bertsch, Jon; Ovchinnikova, Galina; Verezemska, Olena; Isbandi, Michelle; Thomas, Alex D.; Ali, Rida; Sharma, Kaushal; Kyrpides, Nikos C.; Reddy, T. B. K.

    2017-01-01

    The Genomes Online Database (GOLD) (https://gold.jgi.doe.gov) is a manually curated data management system that catalogs sequencing projects with associated metadata from around the world. In the current version of GOLD (v.6), all projects are organized based on a four level classification system in the form of a Study, Organism (for isolates) or Biosample (for environmental samples), Sequencing Project and Analysis Project. Currently, GOLD provides information for 26 117 Studies, 239 100 Organisms, 15 887 Biosamples, 97 212 Sequencing Projects and 78 579 Analysis Projects. These are integrated with over 312 metadata fields from which 58 are controlled vocabularies with 2067 terms. The web interface facilitates submission of a diverse range of Sequencing Projects (such as isolate genome, single-cell genome, metagenome, metatranscriptome) and complex Analysis Projects (such as genome from metagenome, or combined assembly from multiple Sequencing Projects). GOLD provides a seamless interface with the Integrated Microbial Genomes (IMG) system and supports and promotes the Genomic Standards Consortium (GSC) Minimum Information standards. This paper describes the data updates and additional features added during the last two years. PMID:27794040

  3. Decision support frameworks and tools for conservation

    USGS Publications Warehouse

    Schwartz, Mark W.; Cook, Carly N.; Pressey, Robert L.; Pullin, Andrew S.; Runge, Michael C.; Salafsky, Nick; Sutherland, William J.; Williamson, Matthew A.

    2018-01-01

    The practice of conservation occurs within complex socioecological systems fraught with challenges that require transparent, defensible, and often socially engaged project planning and management. Planning and decision support frameworks are designed to help conservation practitioners increase planning rigor, project accountability, stakeholder participation, transparency in decisions, and learning. We describe and contrast five common frameworks within the context of six fundamental questions (why, who, what, where, when, how) at each of three planning stages of adaptive management (project scoping, operational planning, learning). We demonstrate that decision support frameworks provide varied and extensive tools for conservation planning and management. However, using any framework in isolation risks diminishing potential benefits since no one framework covers the full spectrum of potential conservation planning and decision challenges. We describe two case studies that have effectively deployed tools from across conservation frameworks to improve conservation actions and outcomes. Attention to the critical questions for conservation project planning should allow practitioners to operate within any framework and adapt tools to suit their specific management context. We call on conservation researchers and practitioners to regularly use decision support tools as standard practice for framing both practice and research.

  4. Microhole Coiled Tubing Bottom Hole Assemblies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Don Macune

    2008-06-30

    The original objective of the project, to deliver an integrated 3 1/8-inch diameter Measurement While Drilling (MWD) and Logging While Drilling (LWD) system for drilling small boreholes using coiled tubing drilling, has been achieved. Two prototype systems have been assembled and tested in the lab. One of the systems has been successfully tested downhole in a conventional rotary drilling environment. Development of the 3 1/8-inch system has also lead to development and commercialization of a slightly larger 3.5-inch diameter system. We are presently filling customer orders for the 3.5-inch system while continuing with commercialization of the 3 1/8-inch system. Themore » equipment developed by this project will be offered for sale to multiple service providers around the world, enabling the more rapid expansion of both coiled tubing drilling and conventional small diameter drilling. The project was based on the reuse of existing technology whenever possible in order to minimize development costs, time, and risks. The project was begun initially by Ultima Labs, at the time a small company ({approx}12 employees) which had successfully developed a number of products for larger oil well service companies. In September, 2006, approximately 20 months after inception of the project, Ultima Labs was acquired by Sondex plc, a worldwide manufacturer of downhole instrumentation for cased hole and drilling applications. The acquisition provided access to proven technology for mud pulse telemetry, downhole directional and natural gamma ray measurements, and surface data acquisition and processing, as well as a global sales and support network. The acquisition accelerated commercialization through existing Sondex customers. Customer demand resulted in changes to the product specification to support hotter (150 C) and deeper drilling (20,000 psi pressure) than originally proposed. The Sondex acquisition resulted in some project delays as the resistivity collar was interfaced to a different MWD system and also as the mechanical design was revised for the new pressure requirements. However, the Sondex acquisition has resulted in a more robust system, secure funding for completion of the project, and more rapid commercialization.« less

  5. eXascale PRogramming Environment and System Software (XPRESS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chapman, Barbara; Gabriel, Edgar

    Exascale systems, with a thousand times the compute capacity of today’s leading edge petascale computers, are expected to emerge during the next decade. Their software systems will need to facilitate the exploitation of exceptional amounts of concurrency in applications, and ensure that jobs continue to run despite the occurrence of system failures and other kinds of hard and soft errors. Adapting computations at runtime to cope with changes in the execution environment, as well as to improve power and performance characteristics, is likely to become the norm. As a result, considerable innovation is required to develop system support to meetmore » the needs of future computing platforms. The XPRESS project aims to develop and prototype a revolutionary software system for extreme-­scale computing for both exascale and strong­scaled problems. The XPRESS collaborative research project will advance the state-­of-­the-­art in high performance computing and enable exascale computing for current and future DOE mission-­critical applications and supporting systems. The goals of the XPRESS research project are to: A. enable exascale performance capability for DOE applications, both current and future, B. develop and deliver a practical computing system software X-­stack, OpenX, for future practical DOE exascale computing systems, and C. provide programming methods and environments for effective means of expressing application and system software for portable exascale system execution.« less

  6. A near miss: the importance of context in a public health informatics project in a New Zealand case study.

    PubMed

    Wells, Stewart; Bullen, Chris

    2008-01-01

    This article describes the near failure of an information technology (IT) system designed to support a government-funded, primary care-based hepatitis B screening program in New Zealand. Qualitative methods were used to collect data and construct an explanatory model. Multiple incorrect assumptions were made about participants, primary care workflows and IT capacity, software vendor user knowledge, and the health IT infrastructure. Political factors delayed system development and it was implemented untested, almost failing. An intensive rescue strategy included system modifications, relaxation of data validity rules, close engagement with software vendors, and provision of intensive on-site user support. This case study demonstrates that consideration of the social, political, technological, and health care contexts is important for successful implementation of public health informatics projects.

  7. Building beyond the Evaluation Of Environmental Education and Sustainable Development in African Schools and Communities: The Women Global Green Action Network (WGGAN) Africa Perspective

    ERIC Educational Resources Information Center

    Enie, Rosemary Olive Mbone

    2006-01-01

    This article describes the Community Health Education and School Sanitation (CHESS) Project, an initiative by the Women Global Green Action Network International to support community-based environmental projects in Africa. The CHESS Project uses women, children and youth to develop more sustainable health and sanitation systems in urban and rural…

  8. Aviation System Analysis Capability Quick Response System Report

    NASA Technical Reports Server (NTRS)

    Roberts, Eileen; Villani, James A.; Ritter, Paul

    1998-01-01

    The purpose of this document is to present the additions and modifications made to the Aviation System Analysis Capability (ASAC) Quick Response System (QRS) in FY 1997 in support of the ASAC ORS development effort. This document contains an overview of the project background and scope and defines the QRS. The document also presents an overview of the Logistics Management Institute (LMI) facility that supports the QRS, and it includes a summary of the planned additions to the QRS in FY 1998. The document has five appendices.

  9. Space Synthetic Biology Project

    NASA Technical Reports Server (NTRS)

    Howard, David; Roman, Monsi; Mansell, James (Matt)

    2015-01-01

    Synthetic biology is an effort to make genetic engineering more useful by standardizing sections of genetic code. By standardizing genetic components, biological engineering will become much more similar to traditional fields of engineering, in which well-defined components and subsystems are readily available in markets. Specifications of the behavior of those components and subsystems can be used to model a system which incorporates them. Then, the behavior of the novel system can be simulated and optimized. Finally, the components and subsystems can be purchased and assembled to create the optimized system, which most often will exhibit behavior similar to that indicated by the model. The Space Synthetic Biology project began in 2012 as a multi-Center effort. The purpose of this project was to harness Synthetic Biology principals to enable NASA's missions. A central target for application was to Environmental Control & Life Support (ECLS). Engineers from NASA Marshall Space Flight Center's (MSFC's) ECLS Systems Development Branch (ES62) were brought into the project to contribute expertise in operational ECLS systems. Project lead scientists chose to pursue the development of bioelectrochemical technologies to spacecraft life support. Therefore, the ECLS element of the project became essentially an effort to develop a bioelectrochemical ECLS subsystem. Bioelectrochemical systems exploit the ability of many microorganisms to drive their metabolisms by direct or indirect utilization of electrical potential gradients. Whereas many microorganisms are capable of deriving the energy required for the processes of interest (such as carbon dioxide (CO2) fixation) from sunlight, it is believed that subsystems utilizing electrotrophs will exhibit smaller mass, volume, and power requirements than those that derive their energy from sunlight. In the first 2 years of the project, MSFC personnel conducted modeling, simulation, and conceptual design efforts to assist the project in selecting the best approaches to the application of bioelectrochemical technologies to ECLS. Figure 1 shows results of simulation of charge transport in an experimental system. Figure 2 shows one of five conceptual designs for ECLS subsystems based on bioelectrochemical reactors. Also during the first 2 years, some work was undertaken to gather fundamental data (conductivities, overpotentials) relevant to the modeling efforts.

  10. Unmanned aircraft systems for transportation decision support.

    DOT National Transportation Integrated Search

    2016-11-30

    Our nation relies on accurate geospatial information to map, measure, and monitor transportation infrastructure and the surrounding landscapes. This project focused on the application of Unmanned Aircraft systems (UAS) as a novel tool for improving e...

  11. Land and Hold Short Operations : A Primer

    DOT National Transportation Integrated Search

    1996-04-20

    Michigan Department of Transportation (M-DOT) started its Systems Re-engineering process with a clear road map the PROSE initiative. PROSE, standing for PROject Support Environment, is an ambitious venture to develop strategic information systems aut...

  12. Condition Assessment of Wastewater Collection Systems

    EPA Science Inventory

    This project will assist wastewater utilities with the condition assessment of their deteriorating wastewater collections systems, and will support the U.S. Environmental Protection Agency’s (EPA) Program Offices with addressing proposed capacity, management, operation and mainte...

  13. Evolving the Technical Infrastructure of the Planetary Data System for the 21st Century

    NASA Technical Reports Server (NTRS)

    Beebe, Reta F.; Crichton, D.; Hughes, S.; Grayzeck, E.

    2010-01-01

    The Planetary Data System (PDS) was established in 1989 as a distributed system to assure scientific oversight. Initially the PDS followed guidelines recommended by the National Academies Committee on Data Management and Computation (CODMAC, 1982) and placed emphasis on archiving validated datasets. But overtime user demands, supported by increased computing capabilities and communication methods, have placed increasing demands on the PDS. The PDS must add additional services to better enable scientific analysis within distributed environments and to ensure that those services integrate with existing systems and data. To face these challenges the Planetary Data System (PDS) must modernize its architecture and technical implementation. The PDS 2010 project addresses these challenges. As part of this project, the PDS has three fundamental project goals that include: (1) Providing more efficient client delivery of data by data providers to the PDS (2) Enabling a stable, long-term usable planetary science data archive (3) Enabling services for the data consumer to find, access and use the data they require in contemporary data formats. In order to achieve these goals, the PDS 2010 project is upgrading both the technical infrastructure and the data standards to support increased efficiency in data delivery as well as usability of the PDS. Efforts are underway to interface with missions as early as possible and to streamline the preparation and delivery of data to the PDS. Likewise, the PDS is working to define and plan for data services that will help researchers to perform analysis in cost-constrained environments. This presentation will cover the PDS 2010 project including the goals, data standards and technical implementation plans that are underway within the Planetary Data System. It will discuss the plans for moving from the current system, version PDS 3, to version PDS 4.

  14. Causes and remedies for the dominant risk factors in Enterprise System implementation projects: the consultants' perspective.

    PubMed

    Lech, Przemysław

    2016-01-01

    The purpose of this research was to investigate the causes of the dominant risk factors, affecting Enterprise System implementation projects and propose remedies for those risk factors from the perspective of implementation consultants. The study used a qualitative research strategy, based on e-mail interviews, semi-structured personal interviews with consultants and participant observation during implementation projects. The main contribution of this paper is that it offers viable indications of how to mitigate the dominant risk factors. These indications were grouped into the following categories: stable project scope, smooth communication supported by the project management, dedicated, competent and decision-making client team, competent and engaged consultant project manager, schedule and budget consistent with the project scope, use of methodology and procedures, enforced and enabled by the project managers, competent and dedicated consultants. A detailed description is provided for each category.

  15. Development of a database system for mapping insertional mutations onto the mouse genome with large-scale experimental data

    PubMed Central

    2009-01-01

    Background Insertional mutagenesis is an effective method for functional genomic studies in various organisms. It can rapidly generate easily tractable mutations. A large-scale insertional mutagenesis with the piggyBac (PB) transposon is currently performed in mice at the Institute of Developmental Biology and Molecular Medicine (IDM), Fudan University in Shanghai, China. This project is carried out via collaborations among multiple groups overseeing interconnected experimental steps and generates a large volume of experimental data continuously. Therefore, the project calls for an efficient database system for recording, management, statistical analysis, and information exchange. Results This paper presents a database application called MP-PBmice (insertional mutation mapping system of PB Mutagenesis Information Center), which is developed to serve the on-going large-scale PB insertional mutagenesis project. A lightweight enterprise-level development framework Struts-Spring-Hibernate is used here to ensure constructive and flexible support to the application. The MP-PBmice database system has three major features: strict access-control, efficient workflow control, and good expandability. It supports the collaboration among different groups that enter data and exchange information on daily basis, and is capable of providing real time progress reports for the whole project. MP-PBmice can be easily adapted for other large-scale insertional mutation mapping projects and the source code of this software is freely available at http://www.idmshanghai.cn/PBmice. Conclusion MP-PBmice is a web-based application for large-scale insertional mutation mapping onto the mouse genome, implemented with the widely used framework Struts-Spring-Hibernate. This system is already in use by the on-going genome-wide PB insertional mutation mapping project at IDM, Fudan University. PMID:19958505

  16. Funding and Strategic Alignment Guidance for Infusing Small Business Innovation Research Technology Into Human Exploration and Operations Mission Directorate Projects for 2016

    NASA Technical Reports Server (NTRS)

    Nguyen, Hung D.; Steele, Gynelle C.

    2017-01-01

    This report is intended to help NASA program and project managers incorporate Small Business Innovation Research Small Business Technology Transfer (SBIR/STTR) technologies into NASA Human Exploration and Operations Mission Directorate (HEOMD) projects. Other Government and commercial projects managers can also find this useful. Space Transportation; Life Support and Habitation Systems; Extra-Vehicular Activity; High EfficiencySpace Power; Human Exploration and Operations Mission,

  17. Advanced Distributed Measurements and Data Processing at the Vibro-Acoustic Test Facility, GRC Space Power Facility, Sandusky, Ohio - an Architecture and an Example

    NASA Technical Reports Server (NTRS)

    Hill, Gerald M.; Evans, Richard K.

    2009-01-01

    A large-scale, distributed, high-speed data acquisition system (HSDAS) is currently being installed at the Space Power Facility (SPF) at NASA Glenn Research Center s Plum Brook Station in Sandusky, OH. This installation is being done as part of a facility construction project to add Vibro-acoustic Test Capabilities (VTC) to the current thermal-vacuum testing capability of SPF in support of the Orion Project s requirement for Space Environments Testing (SET). The HSDAS architecture is a modular design, which utilizes fully-remotely managed components, enables the system to support multiple test locations with a wide-range of measurement types and a very large system channel count. The architecture of the system is presented along with details on system scalability and measurement verification. In addition, the ability of the system to automate many of its processes such as measurement verification and measurement system analysis is also discussed.

  18. The Virtual Liver Network: systems understanding from bench to bedside.

    PubMed

    Henney, Adriano; Coaker, Hannah

    2014-01-01

    Adriano Henney speaks to Hannah Coaker, Commissioning Editor. After achieving a PhD in medicine and spending many years in academic research in the field of cardiovascular disease, Adriano Henney was recruited by Zeneca Pharmaceuticals from a British Heart Foundation Senior Fellowship, where he led the exploration of new therapeutic approaches in atherosclerosis, specifically focusing on his research interests in vascular biology. Following the merger with Astra to form AstraZeneca, Henney became responsible for exploring strategic improvements to the company's approaches to pharmaceutical target identification and the reduction of attrition in early development, directing projects across research sites and across functional project teams in the USA, Sweden and the UK. This resulted in the creation of a new multidisciplinary department that focused on pathway mapping, modeling and simulation and supporting projects across research and development, which evolved into the establishment of the practice of systems biology within the company. Here, projects prototyped the application of mechanistic disease-modeling approaches in order to support the discovery of innovative new medicines, such as Iressa®. Since leaving AstraZeneca, Henney has continued his interest in systems biology, synthetic biology and systems medicine through his company, Obsidian Biomedical Consulting Ltd. He now directs a major €50 million German national flagship program – the Virtual Liver Network – which is currently the largest systems biology program in Europe.

  19. Use of real-time tools to support field operations of NSF's Lower Atmosphere Observing Facilities

    NASA Astrophysics Data System (ADS)

    Daniels, M.; Stossmeister, G.; Johnson, E.; Martin, C.; Webster, C.; Dixon, M.; Maclean, G.

    2012-12-01

    NCAR's Earth Observing Laboratory (EOL) operates Lower Atmosphere Observing Facilities (LAOF) for the scientific community, under sponsorship of the National Science Foundation. In order to obtain the highest quality dataset during field campaigns, real-time decision-making critically depends on the availability of timely data and reliable communications between field operations staff and instrument operators. EOL incorporates the latest technologies to monitor the health of instrumentation, facilitate remote operations of instrumentation and keep project participants abreast of changing conditions in the field. As the availability of bandwidth on mobile communication networks and the capabilities of their associated devices (smart phone, tablets, etc.) improved, so has the ability of researchers to respond to rapidly changing conditions and coordinate ever more detailed measurements from multiple remote fixed, portable and airborne platforms. This presentation will describe several new tools that EOL is making available to project investigators and how these tools are being used in a mobile computing environment to support enhanced data collection during field campaigns. LAOF platforms such as radars, aircraft, sondes, balloons and surface stations all rely on displays of real-time data for their operations. Data from sondes are ingested into the Global Telecommunications System (GTS) for assimilation into regional forecasting models that help guide project operations. Since many of EOL's projects occur around the globe and at the same time instrument complexity has increased, automated monitoring of instrumentation platforms and systems has become essential. Tools are being developed to allow remote instrument control of our suite of observing systems where feasible. The Computing, Data and Software (CDS) Facility of EOL develops and supports a Field Catalog used in field campaigns for nearly two decades. Today, the Field Catalog serves as a hub for the collection and browsing of field research products, related operational and forecast imagery, project documentation as well as tools for real-time decision-making, communication, mission planning and post analysis. Incorporation of new capabilities into the Field Catalog to support the mobile computing environment and devices has led to the development of new tools which will be described. EOL/CDS has also developed a customized Internet Relay Chat (IRC) chat system to enable communication between all project participants distributed across various land-based, shipboard and airborne remote sites. The CDS chat system has incorporated aspects of fault tolerance in order to handle intermittent communications links. NOAA and NASA have used this chat system for their field missions as well. These new tools were recently deployed in support of the Deep Convective Clouds and Chemistry (DC3) field campaign that took place May - June 2012 in the Central United States. This presentation will show examples of these real-time tools from recent projects. We will also describe some of the challenges, problems and surprises, as well as improvements that have been made to the tools. The capabilities of this system continue to advance, taking advantage of new technology and guided by our experience and feedback from users participating in field campaigns.

  20. Making the most of MBSE: pragmatic model-based engineering for the SKA Telescope Manager

    NASA Astrophysics Data System (ADS)

    Le Roux, Gerhard; Bridger, Alan; MacIntosh, Mike; Nicol, Mark; Schnetler, Hermine; Williams, Stewart

    2016-08-01

    Many large projects including major astronomy projects are adopting a Model Based Systems Engineering approach. How far is it possible to get value for the effort involved in developing a model that accurately represents a significant project such as SKA? Is it possible for such a large project to ensure that high-level requirements are traceable through the various system-engineering artifacts? Is it possible to utilize the tools available to produce meaningful measures for the impact of change? This paper shares one aspect of the experience gained on the SKA project. It explores some of the recommended and pragmatic approaches developed, to get the maximum value from the modeling activity while designing the Telescope Manager for the SKA. While it is too early to provide specific measures of success, certain areas are proving to be the most helpful and offering significant potential over the lifetime of the project. The experience described here has been on the 'Cameo Systems Modeler' tool-set, supporting a SysML based System Engineering approach; however the concepts and ideas covered would potentially be of value to any large project considering a Model based approach to their Systems Engineering.

Top