Ripple formation in unilamellar-supported lipid bilayer revealed by FRAPP.
Harb, Frédéric; Simon, Anne; Tinland, Bernard
2013-12-01
The mechanisms of formation and conditions of the existence of the ripple phase are fundamental thermodynamic questions with practical implications for medicine and pharmaceuticals. We reveal a new case of ripple formation occurring in unilamellar-supported bilayers in water, which results solely from the bilayer/support interaction, without using lipid mixtures or specific ions. This ripple phase is detected by FRAPP using diffusion coefficient measurements as a function of temperature: a diffusivity plateau is observed. It occurs in the same temperature range where ripple phase existence has been observed using other methods. When AFM experiments are performed in the appropriate temperature range the ripple phase is confirmed.
Material design of two-phase-coexisting niobate dielectrics by electrostatic adsorption
NASA Astrophysics Data System (ADS)
Fuchigami, Teruaki; Yoshida, Katsuya; Kakimoto, Ken-ichi
2017-10-01
A material design process using electrostatic adsorption was proposed to synthesize composite ceramics with a two-phase-coexisting structure. Supported particles were fabricated by the electrostatic adsorption of (Na,K)NbO3-SrTiO3 (NKN-ST) nanoparticles on (Na,K)NbO3-Ba2NaNb5O15 (NKN-BNN) particles. NKN-ST and NKN-BNN were well dispersed with no aggregate in NKN-ST/NKN-BNN ceramics synthesized using the supported particles in comparison with ceramics synthesized using a mixture obtained by simply mixing NKN-ST and NKN-BNN powder. The temperature dependence of dielectric constant is closely related to the composite structure and the dielectric constant was stable in a wide temperature range from room temperature to 400 °C. Capacitance for DC bias was also insensitive to temperature in the range of 0-2 kV/mm, and the change rate of the capacitance was within ±5% in the temperature range from room temperature to 200 °C.
Enzymatic temperature change indicator
Klibanov, Alexander M.; Dordick, Jonathan S.
1989-01-21
A temperature change indicator is described which is composed of an enzyme and a substrate for that enzyme suspended in a solid organic solvent or mixture of solvents as a support medium. The organic solvent or solvents are chosen so as to melt at a specific temperature or in a specific temperature range. When the temperature of the indicator is elevated above the chosen, or critical temperature, the solid organic solvent support will melt, and the enzymatic reaction will occur, producing a visually detectable product which is stable to further temperature variation.
The 136 MHZ/400 MHz earth station antenna-noise temperature prediction program for RAE-B
NASA Technical Reports Server (NTRS)
Taylor, R. E.; Fee, J. J.; Chin, M.
1972-01-01
A simulation study was undertaken to determine the 136 MHz and 400 MHz noise temperature of the ground network antennas which will track the RAE-B satellite during data transmission periods. Since the noise temperature of the antenna effectively sets the signal-to-noise ratio of the received signal, a knowledge of SNR will be helpful in locating the optimum time windows for data transmission during low noise periods. Antenna noise temperatures will be predicted for selected earth-based ground stations which will support RAE-B. Telemetry data acquisition will be at 400 MHz; tracking support at 136 MHz will be provided by the Goddard Range and Range Rate (RARR) stations. The antenna-noise temperature predictions will include the effects of galactic-brightness temperature, the sun, and the brightest radio stars. Predictions will cover the ten-month period from March 1, 1973 to December 31, 1973.
Some advances in experimentation supporting development of viscoplastic constitutive models
NASA Technical Reports Server (NTRS)
Ellis, J. R.; Robinson, D. N.
1985-01-01
The development of a biaxial extensometer capable of measuring axial, torsion, and diametral strains to near-microstrain resolution at elevated temperatures is discussed. An instrument with this capability was needed to provide experimental support to the development of viscoplastic constitutive models. The advantages gained when torsional loading is used to investigate inelastic material response at elevated temperatures are highlighted. The development of the biaxial extensometer was conducted in two stages. The first involved a series of bench calibration experiments performed at room temperature. The second stage involved a series of in-place calibration experiments performed at room temperature. A review of the calibration data indicated that all performance requirements regarding resolution, range, stability, and crosstalk had been met by the subject instrument over the temperature range of interest, 21 C to 651 C. The scope of the in-placed calibration experiments was expanded to investigate the feasibility of generating stress relaxation data under torsional loading.
Some advances in experimentation supporting development of viscoplastic constitutive models
NASA Technical Reports Server (NTRS)
Ellis, J. R.; Robinson, D. N.
1985-01-01
The development of a biaxial extensometer capable of measuring axial, torsion, and diametral strains to near-microstrain resolution at elevated temperatures is discussed. An instrument with this capability was needed to provide experimental support to the development of viscoplastic constitutive models. The advantages gained when torsional loading is used to investigate inelastic material response at elevated temperatures are highlighted. The development of the biaxial extensometer was conducted in two stages. The first involved a series of bench calibration experiments performed at room temperature. The second stage involved a series of in-place calibration experiments conducted at room and elevated temperature. A review of the calibration data indicated that all performance requirements regarding resolution, range, stability, and crosstalk had been met by the subject instrument over the temperature range of interest, 21 C to 651 C. The scope of the in-place calibration experiments was expanded to investigate the feasibility of generating stress relaxation data under torsional loading.
Note: A wide temperature range MOKE system with annealing capability.
Chahil, Narpinder Singh; Mankey, G J
2017-07-01
A novel sample stage integrated with a longitudinal MOKE system has been developed for wide temperature range measurements and annealing capabilities in the temperature range 65 K < T < 760 K. The sample stage incorporates a removable platen and copper block with inserted cartridge heater and two thermocouple sensors. It is supported and thermally coupled to a cold finger with two sapphire bars. The sapphire based thermal coupling enables the system to perform at higher temperatures without adversely affecting the cryostat and minimizes thermal drift in position. In this system the hysteresis loops of magnetic samples can be measured simultaneously while annealing the sample in a magnetic field.
Photomicrographic Investigation of Spontaneous Freezing Temperatures of Supercooled Water Droplets
NASA Technical Reports Server (NTRS)
Dorsch, R. G.; Hacker, P. T.
1950-01-01
A photomicrographic technique for investigating eupercooled. water droplets has been devised and. used. to determine the spontaneous freezing temperatures of eupercooled. water droplets of the size ordinarily found. in the atmosphere. The freezing temperatures of 4527 droplets ranging from 8.75 to 1000 microns in diameter supported on a platinum surface and 571 droplets supported on copper were obtained. The average spontaneous freezing temperature decreased with decrease in the size of the droplets. The effect of size on the spontaneous freezing temperature was particularly marked below 60 microns. Frequency-distribution curves of the spontaneous freezing temperatures observed for droplets of a given size were obtained. Although no droplet froze at a temperature above 20 0 F, all droplets melted at 32 F. Results obtained with a copper support did not differ essentially from those obtained with a platinum surface.
Fast, Computer Supported Experimental Determination of Absolute Zero Temperature at School
ERIC Educational Resources Information Center
Bogacz, Bogdan F.; Pedziwiatr, Antoni T.
2014-01-01
A simple and fast experimental method of determining absolute zero temperature is presented. Air gas thermometer coupled with pressure sensor and data acquisition system COACH is applied in a wide range of temperature. By constructing a pressure vs temperature plot for air under constant volume it is possible to obtain--by extrapolation to zero…
A new approach on JPSS VIIRS BCS and SVS PRT calibration
NASA Astrophysics Data System (ADS)
Wang, Tung R.; Marschke, Steve; Borroto, Michael; Jones, Christopher M.; Chovit, Christopher
2015-05-01
A set of calibrated platinum resistance thermometers (PRT's) was used to monitor the temperature of a Blackbody Calibration Source (BCS) and Space View Source (SVS). BCS is Ground Support Equipment (GSE) used to validate the emissive band calibration of Visible Infrared Imaging Radiometer Suite (VIIRS) of the Joint Polar Satellite System (JPSS). Another GSE, the SVS was used as an optical simulator to provide zero radiance sources for all VIIRS bands. The required PRT temperature 1 uncertainty is less than 0.030K. A process was developed to calibrate the PRTs in its thermal block by selecting a single thermal bath fluid that is compatible with spaceflight, is easy to clean and supported the entire temperature range. The process involves thermal cycling the PRTs that are installed in an aluminum housing using RTV566A prior to calibration. The PRTs were calibrated thermal cycled again and then calibrated once more to verify repeatability. Once completed these PRTs were installed on both the BCS and SVS. The PRT calibration uncertainty was estimated and deemed sufficient to support the effective temperature requirements for the operating temperature range of the BCS and SVS.
NASA Space Cryocooler Programs: A 2003 Overview
NASA Technical Reports Server (NTRS)
Ross, R. G., Jr.; Boyle, R. F.; Kittel, P.
2004-01-01
Mechanical cryocoolers represent a significant enabling technology for NASA's Earth and Space Science missions. An overview is presented of ongoing cryocooler activities within NASA in support of current flight projects, near-term flight instruments, and long-term technology development. NASA programs in Earth and space science observe a wide range of phenomena, from crop dynamics to stellar birth. Many of the instruments require cryogenic refrigeration to improve dynamic range, extend wavelength coverage, and enable the use of advanced detectors. Although, the largest utilization of coolers over the last decade has been for instruments operating at medium to high cryogenic temperatures (55 to 150 K), reflecting the relative maturity of the technology at these temperatures, important new developments are now focusing at the lower temperature range from 4 to 20 K in support of studies of the origin of the universe and the search for planets around distant stars. NASA's development of a 20K cryocooler for the European Planck spacecraft and its new Advanced Cryocooler Technology Development Program (ACTDP) for 6-18 K coolers are examples of the thrust to provide low temperature cooling for this class of missions.
Opto-mechanical design of small infrared cloud measuring device
NASA Astrophysics Data System (ADS)
Zhang, Jiao; Yu, Xun; Tao, Yu; Jiang, Xu
2018-01-01
In order to make small infrared cloud measuring device can be well in a wide temperature range and day-night environment, a design idea using catadioptric infrared panoramic imaging optical system and simple mechanical structure for realizing observation clode under all-weather conditions was proposed. Firstly, the optical system of cloud measuring device was designed. An easy-to-use numerical method was proposed to acquire the profile of a catadioptric mirror, which brought the property of equidistance projection and played the most important role in a catadioptric panoramic lens. Secondly, the mechanical structure was studied in detail. Overcoming the limitations of traditional primary mirror support structure, integrative design was used for refractor and mirror support structure. Lastly, temperature adaptability and modes of the mirror support structure were analyzed. Results show that the observation range of the cloud measuring device is wide and the structure is simple, the fundamental frequency of the structure is greater than 100 Hz, the surface precision of the system reflector reaches PV of λ/10 and RMS of λ/40under the load of temperature range - 40 60°C, it can meet the needs of existing meteorological observation.
Mechanical Properties of LaRC(tm) SI Polymer for a Range of Molecular Weights
NASA Technical Reports Server (NTRS)
Whitley, Karen S.; Gates, Thomas S.; Hinkley, Jeffrey A.; Nicholson, Lee M.
2000-01-01
Mechanical testing of an advanced polyimide resin (LaRC(tm)-SI) with known variations in molecular weight was performed over a range of temperatures below the glass transition temperature. Elastic and inelastic properties were characterized as a function of molecular weight and test temperature. It was shown that notched tensile strength is a strong function of both temperature and molecular weight, whereas stiffness is only a strong function of temperature. The combined analysis of calculated yield stress and notched tensile strength indicated that low molecular weight materials tended to fail in a brittle manner, whereas high molecular weight materials exhibited ductile failure. The microphotographs of the failure surfaces also supported these findings.
Development of a Standard Platinum Resistance Thermometer for Use up to the Copper Point
NASA Astrophysics Data System (ADS)
Tavener, J. P.
2015-08-01
The international temperature scale of 1990 defines temperatures in the range from 13.8 K to 1234.93 K () using a standard platinum resistance thermometer (SPRT) as an interpolating instrument. For temperatures above , the current designs of an SPRT require extreme care to avoid contamination, especially by metallic impurities, which can cause rapid and irreversible drift. This study investigates the performance of a new design of a high-temperature SPRT with the aim of improving the stability of the SPRTs and extending their temperature range. The prototype SPRTs have an alumina sheath, a sapphire support for the sensing element, which are aspirated with dry air and operated with a dc bias voltage to suppress the diffusion of metal-ion contaminants. Three prototype thermometers were exposed to temperatures near or above the copper freezing point, , for total exposure times in excess of 500 h and exhibited drifts in the triple-point resistance of less than 10 mK. The new design eliminates some of the problems associated with fused-silica sheaths and sensor-support structures and is a viable option for a high-accuracy thermometer for temperatures approaching.
Performance of Wide Operating Temperature Range Electrolytes in Quallion Prototype Li-Ion Cells
NASA Technical Reports Server (NTRS)
Smart, M. C.; Ratnakumar, B. V.; Tomcsi, M. R.; Nagata, M.; Visco, V.; Tsukamoto, H.
2010-01-01
For a number of applications, there is a continued interest in the development of rechargeable lithium-based batteries that can effectively operate over a wide temperature range (i.e., -40 to +70 deg C). These applications include powering future planetary rovers for NASA, enabling the next generation of automotive batteries for DOE, and supporting many DOD applications. Li-ion technology has been demonstrated to have good performance over a reasonably wide temperature range with many systems; however, there is still a desire to improve the low temperature rate capacity as well as the high temperature resilience. In the current study, we would like to present recent results obtained with prototype Li-Ion cells (manufactured by Quallion, LLC) which include various wide operating temperature range electrolytes developed by both JPL and Quallion. To demonstrate the viability of the technology, a number of performance tests were carried out, including: (a) discharge rate characterization over a wide temperature range (down to -60 deg C) using various rates (up to 20C rates), (b) discharge rate characterization at low temperatures with low temperature charging, (c) variable temperature cycling over a wide temperature range (-40 to +70 deg C), and (d) cycling at high temperature (50 deg C). As will be discussed, impressive rate capability was observed at low temperatures with many systems, as well as good resilience to high temperature cycling. To augment the performance testing on the prototype cells, a number of experimental three electrodes cells were fabricated (including Li reference electrodes) to allow the determination of the lithium kinetics of the respective electrodes and interfacial properties as a function of temperatures.
Silicon device performance measurements to support temperature range enhancement
NASA Technical Reports Server (NTRS)
Bromstead, James; Weir, Bennett; Nelms, R. Mark; Johnson, R. Wayne; Askew, Ray
1994-01-01
Silicon based power devices can be used at 200 C. The device measurements made during this program show a predictable shift in device parameters with increasing temperature. No catastrophic or abrupt changes occurred in the parameters over the temperature range. As expected, the most dramatic change was the increase in leakage currents with increasing temperature. At 200 C the leakage current was in the milliAmp range but was still several orders of magnitude lower than the on-state current capabilities of the devices under test. This increase must be considered in the design of circuits using power transistors at elevated temperature. Three circuit topologies have been prototyped using MOSFET's and IGBT's. The circuits were designed using zero current or zero voltage switching techniques to eliminate or minimize hard switching of the power transistors. These circuits have functioned properly over the temperature range. One thousand hour life data have been collected for two power supplies with no failures and no significant change in operating efficiency. While additional reliability testing should be conducted, the feasibility of designing soft switched circuits for operation at 200 C has been successfully demonstrated.
Pyrolysis of polystyrene - polyphenylene oxide to recover styrene and useful products
Evans, Robert J.; Chum, Helena L.
1995-01-01
A process of using fast pyrolysis in a carrier gas to convert a polystyrene and polyphenylene oxide plastic waste to a given polystyrene and polyphenylene oxide prior to pyrolysis of other plastic components therein comprising: selecting a first temperature range to cause pyrolysis of given polystyrene and polyphenylene oxide and its high value monomeric constituent prior to a temperature range that causes pyrolysis of other plastic components; selecting a catalyst and a support and treating the feed stream with the catalyst to affect acid or base catalyzed reaction pathways to maximize yield or enhance separation of high value monomeric constituent of styrene from polystyrene and polyphenylene oxide in the first temperature range; differentially heating the feed stream at a heat rate within the first temperature range to provide differential pyrolysis for selective recovery of the high value monomeric constituent of styrene from polystyrene and polyphenylene oxide prior to pyrolysis of other plastic components; separating the high value monomer constituent of styrene; selecting a second higher temperature range to cause pyrolysis to a different derived high value product of polyphenylene oxide from the plastic waste and differentially heating the feed stream at the higher temperature range to cause pyrolysis of the plastic into a polyphenylene oxide derived product; and separating the different derived high value polyphenylene oxide product.
Evans, R.J.; Chum, H.L.
1998-10-13
A process is described for using fast pyrolysis in a carrier gas to convert a plastic waste feed stream having a mixed polymeric composition in a manner such that pyrolysis of a given polymer to its high value monomeric constituent occurs prior to pyrolysis of other plastic components therein comprising: selecting a first temperature program range to cause pyrolysis of said given polymer to its high value monomeric constituent prior to a temperature range that causes pyrolysis of other plastic components; selecting a catalyst and support for treating said feed streams with said catalyst to effect acid or base catalyzed reaction pathways to maximize yield or enhance separation of said high value monomeric constituent in said temperature program range; differentially heating said feed stream at a heat rate within the first temperature program range to provide differential pyrolysis for selective recovery of optimum quantities of the high value monomeric constituent prior to pyrolysis of other plastic components; separating the high value monomeric constituents; selecting a second higher temperature range to cause pyrolysis of a different high value monomeric constituent of said plastic waste and differentially heating the feed stream at the higher temperature program range to cause pyrolysis of the different high value monomeric constituent; and separating the different high value monomeric constituent. 83 figs.
Evans, Robert J.; Chum, Helena L.
1994-01-01
A process of using fast pyrolysis in a carrier gas to convert a plastic waste feedstream having a mixed polymeric composition in a manner such that pyrolysis of a given polymer to its high value monomeric constituent occurs prior to pyrolysis of other plastic components therein comprising: selecting a first temperature program range to cause pyrolysis of said given polymer to its high value monomeric constituent prior to a temperature range that causes pyrolysis of other plastic components; selecting a catalyst and support for treating said feed streams with said catalyst to effect acid or base catalyzed reaction pathways to maximize yield or enhance separation of said high value monomeric constituent in said temperature program range; differentially heating said feed stream at a heat rate within the first temperature program range to provide differential pyrolysis for selective recovery of optimum quantities of the high value monomeric constituent prior to pyrolysis of other plastic components; separating the high value monomeric constituents, selecting a second higher temperature range to cause pyrolysis of a different high value monomeric constituent of said plastic waste and differentially heating the feedstream at the higher temperature program range to cause pyrolysis of the different high value monomeric constituent; and separating the different high value monomeric constituent.
Evans, Robert J.; Chum, Helena L.
1994-01-01
A process of using fast pyrolysis in a carrier gas to convert a plastic waste feedstream having a mixed polymeric composition in a manner such that pyrolysis of a given polymer to its high value monomeric constituent occurs prior to pyrolysis of other plastic components therein comprising: selecting a first temperature program range to cause pyrolysis of said given polymer to its high value monomeric constituent prior to a temperature range that causes pyrolysis of other plastic components; selecting a catalyst and support for treating said feed streams with said catalyst to effect acid or base catalyzed reaction pathways to maximize yield or enhance separation of said high value monomeric constituent in said temperature program range; differentially heating said feed stream at a heat rate within the first temperature program range to provide differential pyrolysis for selective recovery of optimum quantities of the high value monomeric constituent prior to pyrolysis of other plastic components; separating the high value monomeric constituents; selecting a second higher temperature range to cause pyrolysis of a different high value monomeric constituent of said plastic waste and differentially heating the feedstream at the higher temperature program range to cause pyrolysis of the different high value monomeric constituent; and separating the different high value monomeric constituent.
Evans, Robert J.; Chum, Helena L.
1993-01-01
A process of using fast pyrolysis in a carrier gas to convert a plastic waste feedstream having a mixed polymeric composition in a manner such that pyrolysis of a given polymer to its high value monomeric constituent occurs prior to pyrolysis of other plastic components therein comprising: selecting a first temperature program range to cause pyrolysis of said given polymer to its high value monomeric constituent prior to a temperature range that causes pyrolysis of other plastic components; selecting a catalyst and support for treating said feed streams with said catalyst to effect acid or base catalyzed reaction pathways to maximize yield or enhance separation of said high value monomeric constituent in said temperature program range; differentially heating said feed stream at a heat rate within the first temperature program range to provide differential pyrolysis for selective recovery of optimum quantities of the high value monomeric constituent prior to pyrolysis of other plastic components; separating the high value monomeric constituents; selecting a second higher temperature range to cause pyrolysis of a different high value monomeric constituent of said plastic waste and differentially heating the feedstream at the higher temperature program range to cause pyrolysis of the different high value monomeric constituent; and separating the different high value monomeric constituent.
Evans, Robert J.; Chum, Helena L.
1998-01-01
A process of using fast pyrolysis in a carrier gas to convert a plastic waste feedstream having a mixed polymeric composition in a manner such that pyrolysis of a given polymer to its high value monomeric constituent occurs prior to pyrolysis of other plastic components therein comprising: selecting a first temperature program range to cause pyrolysis of said given polymer to its high value monomeric constituent prior to a temperature range that causes pyrolysis of other plastic components; selecting a catalyst and support for treating said feed streams with said catalyst to effect acid or base catalyzed reaction pathways to maximize yield or enhance separation of said high value monomeric constituent in said temperature program range; differentially heating said feed stream at a heat rate within the first temperature program range to provide differential pyrolysis for selective recovery of optimum quantities of the high value monomeric constituent prior to pyrolysis of other plastic components; separating the high value monomeric constituents; selecting a second higher temperature range to cause pyrolysis of a different high value monomeric constituent of said plastic waste and differentially heating the feedstream at the higher temperature program range to cause pyrolysis of the different high value monomeric constituent; and separating the different high value monomeric constituent.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhan, Wangcheng; He, Qian; Liu, Xiaofei
Supported gold (Au) nanocatalysts hold great promise for heterogeneous catalysis; however, their practical application is greatly hampered by poor thermodynamic stability. Herein, a general synthetic strategy is reported where discrete metal nanoparticles are made resistant to sintering, preserving their catalytic activities in high-temperature oxidation processes. Taking advantage of the unique coating chemistry of dopamine, sacrificial carbon layers are constructed on the material surface, stabilizing the supported catalyst. Upon annealing at high temperature under an inert atmosphere, the interactions between support and metal nanoparticle are dramatically enhanced, while the sacrificial carbon layers can be subsequently removed through oxidative calcination in air.more » Owing to the improved metal-support contact and strengthened electronic interactions, the resulting Au nanocatalysts are resistant to sintering and exhibit excellent durability for catalytic combustion of propylene at elevated temperatures. Moreover, the facile synthetic strategy can be extended to the stabilization of other supported catalysts on a broad range of supports, providing a general approach to enhancing the thermal stability and sintering resistance of supported nanocatalysts.« less
Traceable low and ultra-low temperatures in The Netherlands
NASA Astrophysics Data System (ADS)
Peruzzi, A.; Bosch, W. A.
2009-02-01
The basis for worldwide uniformity of low and ultra-low temperature measurements is provided by two international temperature scales, the International Temperature Scale of 1990 (ITS-90) for temperatures above 0.65 K and the Provisional Low Temperature Scale of 2000 (PLTS-2000) for temperatures in the range 0.9 mK to 1 K. Over the past 10 years, the thermometry research in the Netherlands provided substantial contributions to the definition, realization and dissemination of these scales. We first give an overview of the Dutch contributions to the ITS-90 realization: a) 3He and 4He vapour pressure thermometer range of the ITS-90, 0.65 K to 4 K (1997), b) 4He interpolating constant volume gas thermometry for the ITS-90 range 3 K to 24.5 K (2007) and c) cryogenic fixed points for the ITS-90 range 13.8 K to 273.16 K (2005). Then we highlight our work on 3He melting pressure thermometry from 10 mK to 1 K (2003) to support the dissemination of the PLTS-2000. Finally we present the current status of the Dutch calibration facilities and dissemination devices providing for traceable low and ultra-low temperatures for use in science and industry: a) the NMi-VSL cryogenic calibration facility for the range 0.65 K to 273.16 K and b) the SRD1000 superconductive reference devices for the range 10 mK to 1 K.
NASA Technical Reports Server (NTRS)
Jansen, Mark; Montague, Gerald; Provenza, Andrew; Palazzolo, Alan
2004-01-01
Closed loop operation of a single, high temperature magnetic radial bearing to 30,000 RPM (2.25 million DN) and 540 C (1000 F) is discussed. Also, high temperature, fault tolerant operation for the three axis system is examined. A novel, hydrostatic backup bearing system was employed to attain high speed, high temperature, lubrication free support of the entire rotor system. The hydrostatic bearings were made of a high lubricity material and acted as journal-type backup bearings. New, high temperature displacement sensors were successfully employed to monitor shaft position throughout the entire temperature range and are described in this paper. Control of the system was accomplished through a stand alone, high speed computer controller and it was used to run both the fault-tolerant PID and active vibration control algorithms.
NASA Astrophysics Data System (ADS)
Pal, Sandip; Kar, Ranjan; Mandal, Anupam; Das, Ananda; Saha, Subrata
2017-05-01
A prototype of a variable temperature insert has been developed in-house as a cryogenic thermometer calibration facility. It was commissioned in fulfilment of the very stringent requirements of the temperature control of the cryogenic system. The calibration facility is designed for calibrating industrial cryogenic thermometers that include a temperature sensor and the wires heat-intercept in the 2.2 K-325 K temperature range. The isothermal section of the calibration block onto which the thermometers are mounted is weakly linked with the temperature control zone mounted with cooling capillary coil and cryogenic heater. The connecting wires of the thermometer are thermally anchored with the support of the temperature insert. The calibration procedure begins once the temperature of the support is stabilized. Homogeneity of the calibration block’s temperature is established both by simulation and by cross-comparison of two calibrated sensors. The absolute uncertainty present in temperature measurement is calculated and found comparable with the measured uncertainty at different temperature points. Measured data is presented in comparison to the standard thermometers at fixed points and it is possible to infer that the absolute accuracy achieved is better than ±0.5% of the reading in comparison to the fixed point temperature. The design and development of simpler, low cost equipment, and approach to analysis of the calibration results are discussed further in this paper, so that it can be easily devised by other researchers.
Zhan, Wangcheng; He, Qian; Liu, Xiaofei; ...
2016-11-22
Supported gold (Au) nanocatalysts hold great promise for heterogeneous catalysis; however, their practical application is greatly hampered by poor thermodynamic stability. Herein, a general synthetic strategy is reported where discrete metal nanoparticles are made resistant to sintering, preserving their catalytic activities in high-temperature oxidation processes. Taking advantage of the unique coating chemistry of dopamine, sacrificial carbon layers are constructed on the material surface, stabilizing the supported catalyst. Upon annealing at high temperature under an inert atmosphere, the interactions between support and metal nanoparticle are dramatically enhanced, while the sacrificial carbon layers can be subsequently removed through oxidative calcination in air.more » Owing to the improved metal-support contact and strengthened electronic interactions, the resulting Au nanocatalysts are resistant to sintering and exhibit excellent durability for catalytic combustion of propylene at elevated temperatures. Moreover, the facile synthetic strategy can be extended to the stabilization of other supported catalysts on a broad range of supports, providing a general approach to enhancing the thermal stability and sintering resistance of supported nanocatalysts.« less
Thermoelectric properties of Sr0.61Ba0.39Nb2O6-δ ceramics in different oxygen-reduction conditions
NASA Astrophysics Data System (ADS)
Li, Yi; Liu, Jian; Wang, Chun-Lei; Su, Wen-Bin; Zhu, Yuan-Hu; Li, Ji-Chao; Mei, Liang-Mo
2015-04-01
The thermoelectric properties of Sr0.61Ba0.39Nb2O6-δ ceramics, reduced in different conditions, are investigated in the temperature range from 323 K to 1073 K. The electrical transport behaviors of the samples are dominated by the thermal-activated polaron hopping in the low temperature range, the Fermi glass behavior in the middle temperature range, and the Anderson localized behavior in the high temperature range. The thermal conductivity presents a plateau at high-temperatures, indicating a glass-like thermal conduction behavior. Both the thermoelectric power factor and the thermal conductivity increase with the increase of the degree of oxygen-reduction. Taking these two factors into account, the oxygen-reduction can still contribute to promoting the thermoelectric figure of merit. The highest ZT value is obtained to be ˜0.19 at 1073 K in the heaviest oxygen reduced sample. Project supported by the National Basic Research Program of China (Grant No. 2013CB632506) and the National Natural Science Foundation of China (Grant Nos. 51202132 and 51002087).
Evans, R.J.; Chum, H.L.
1994-10-25
A process of using fast pyrolysis in a carrier gas to convert a plastic waste feedstream having a mixed polymeric composition in a manner such that pyrolysis of a given polymer to its high value monomeric constituent occurs prior to pyrolysis of other plastic components therein comprising: selecting a first temperature program range to cause pyrolysis of said given polymer to its high value monomeric constituent prior to a temperature range that causes pyrolysis of other plastic components; selecting a catalyst and support for treating said feed streams with said catalyst to effect acid or base catalyzed reaction pathways to maximize yield or enhance separation of said high value monomeric constituent in said temperature program range; differentially heating said feed stream at a heat rate within the first temperature program range to provide differential pyrolysis for selective recovery of optimum quantities of the high value monomeric constituent prior to pyrolysis of other plastic components; separating the high value monomeric constituents; selecting a second higher temperature range to cause pyrolysis of a different high value monomeric constituent of said plastic waste and differentially heating the feedstream at the higher temperature program range to cause pyrolysis of the different high value monomeric constituent; and separating the different high value monomeric constituent. 83 figs.
Evans, Robert J.; Chum, Helena L.
1994-01-01
A process of using fast pyrolysis in a carrier gas to convert a plastic waste feedstream having a mixed polymeric composition in a manner such that pyrolysis of a given polymer to its high value monomeric constituent occurs prior to pyrolysis of other plastic components therein comprising: selecting a first temperature program range to cause pyrolysis of said given polymer to its high value monomeric constituent prior to a temperature range that causes pyrolysis of other plastic components; selecting a catalyst and support for treating said feed streams with said catalyst to effect acid or base catalyzed reaction pathways to maximize yield or enhance separation of said high value monomeric constituent in said temperature program range; differentially heating said feed stream at a heat rate within the first temperature program range to provide differential pyrolysis for selective recovery of optimum quantities of the high value monomeric constituent prior to pyrolysis of other plastic components; separating the high value monomeric constituents; selecting a second higher temperature range to cause pyrolysis of a different high value monomeric constituent of said plastic waste and differentially heating the feedstream at the higher temperature program range to cause pyrolysis of the different high value monomeric constituent; and separating the different high value monomeric constituent.
Evans, R.J.; Chum, H.L.
1994-04-05
A process is described for using fast pyrolysis in a carrier gas to convert a plastic waste feedstream having a mixed polymeric composition in a manner such that pyrolysis of a given polymer to its high value monomeric constituent occurs prior to pyrolysis of other plastic components therein comprising: selecting a first temperature program range to cause pyrolysis of said given polymer to its high value monomeric constituent prior to a temperature range that causes pyrolysis of other plastic components; selecting a catalyst and support for treating said feed streams with said catalyst to effect acid or base catalyzed reaction pathways to maximize yield or enhance separation of said high value monomeric constituent in said temperature program range; differentially heating said feed stream at a heat rate within the first temperature program range to provide differential pyrolysis for selective recovery of optimum quantities of the high value monomeric constituent prior to pyrolysis of other plastic components; separating the high value monomeric constituents, selecting a second higher temperature range to cause pyrolysis of a different high value monomeric constituent of said plastic waste and differentially heating the feedstream at the higher temperature program range to cause pyrolysis of the different high value monomeric constituent; and separating the different high value monomeric constituent. 87 figures.
Evans, R.J.; Chum, H.L.
1994-10-25
A process of using fast pyrolysis in a carrier gas to convert a plastic waste feedstream having a mixed polymeric composition in a manner such that pyrolysis of a given polymer to its high value monomeric constituent occurs prior to pyrolysis of other plastic components therein comprising: selecting a first temperature program range to cause pyrolysis of said given polymer to its high value monomeric constituent prior to a temperature range that causes pyrolysis of other plastic components; selecting a catalyst and support for treating said feed streams with said catalyst to effect acid or base catalyzed reaction pathways to maximize yield or enhance separation of said high value monomeric constituent in said temperature program range; differentially heating said feed stream at a heat rate within the first temperature program range to provide differential pyrolysis for selective recovery of optimum quantities of the high value monomeric constituent prior to pyrolysis of other plastic components; separating the high value monomeric constituents; selecting a second higher temperature range to cause pyrolysis of a different high value monomeric constituent of said plastic waste and differentially heating the feedstream at the higher temperature program range to cause pyrolysis of the different high value monomeric constituent; and separating the different high value monomeric constituent. 83 figs.
NASA Technical Reports Server (NTRS)
Lerch, Bradley A.; Arnold, Steven M.
2014-01-01
In support of an effort on damage prognosis, the viscoelastic behavior of Ti-6Al-4V (Ti-6-4) was investigated. This report documents the experimental characterization of this titanium alloy. Various uniaxial tests were conducted to low load levels over the temperature range of 20 to 538 C to define tensile, creep, and relaxation behavior. A range of strain rates (6x10(exp -7) to 0.001/s) were used to document rate effects. All tests were designed to include an unloading portion, followed by a hold time at temperature to allow recovery to occur either at zero stress or strain. The titanium alloy was found to exhibit viscoelastic behavior below the "yield" point and over the entire range of temperatures (although at lower temperatures the magnitude is extremely small). These experimental data will be used for future characterization of a viscoelastic model.
Flint, Lorraine E.; Flint, Alan L.
2012-01-01
Stream temperature estimates under future climatic conditions were needed in support of fish production modeling for evaluation of effects of dam removal in the Klamath River Basin. To allow for the persistence of the Klamath River salmon fishery, an upcoming Secretarial Determination in 2012 will review potential changes in water quality and stream temperature to assess alternative scenarios, including dam removal. Daily stream temperature models were developed by using a regression model approach with simulated net solar radiation, vapor density deficit calculated on the basis of air temperature, and mean daily air temperature. Models were calibrated for 6 streams in the Lower, and 18 streams in the Upper, Klamath Basin by using measured stream temperatures for 1999-2008. The standard error of the y-estimate for the estimation of stream temperature for the 24 streams ranged from 0.36 to 1.64°C, with an average error of 1.12°C for all streams. The regression models were then used with projected air temperatures to estimate future stream temperatures for 2010-99. Although the mean change from the baseline historical period of 1950-99 to the projected future period of 2070-99 is only 1.2°C, it ranges from 3.4°C for the Shasta River to no change for Fall Creek and Trout Creek. Variability is also evident in the future with a mean change in temperature for all streams from the baseline period to the projected period of 2070-99 of only 1°C, while the range in stream temperature change is from 0 to 2.1°C. The baseline period, 1950-99, to which the air temperature projections were corrected, established the starting point for the projected changes in air temperature. The average measured daily air temperature for the calibration period 1999-2008, however, was found to be as much as 2.3°C higher than baseline for some rivers, indicating that warming conditions have already occurred in many areas of the Klamath River Basin, and that the stream temperature projections for the 21st century could be underestimating the actual change.
NASA Astrophysics Data System (ADS)
Jablin, Michael S.; Zhernenkov, Mikhail; Toperverg, Boris P.; Dubey, Manish; Smith, Hillary L.; Vidyasagar, Ajay; Toomey, Ryan; Hurd, Alan J.; Majewski, Jaroslaw
2011-04-01
Polymer-supported single lipid bilayers are models to study configurations of cell membranes. We used off-specular neutron scattering to quantify in-plane height-height correlations of interfacial fluctuations of such a lipid bilayer. As temperature decreased from 37°C to 25°C, the polymer swells and the polymer-supported lipid membrane deviates from its initially nearly planar structure. A correlation length characteristic of capillary waves changes from 30μm at 37°C to 11μm at 25°C, while the membrane bending rigidity remains roughly constant in this temperature range.
Thermal dependence of locomotor performance in two cool-temperate lizards.
Gaby, Mya J; Besson, Anne A; Bezzina, Chalene N; Caldwell, Amanda J; Cosgrove, Sarai; Cree, Alison; Haresnape, Steff; Hare, Kelly M
2011-09-01
Temperate-zone ectotherms experience varying or very low ambient temperatures and may have difficulty in attaining preferred body temperatures. Thus, adaptations to reduce the thermal dependence of physiological processes may be present. We measured the optimal temperature range for sprint speed and compared it with the selected body temperatures (T (sel)) of two sympatric, cool-temperate lizards: the diurnal skink Oligosoma maccanni and the primarily nocturnal gecko Woodworthia (previously Hoplodactylus) "Otago/Southland". We also investigated whether time-of-day influenced sprint speed. Contrary to results for other reptiles, we found that time-of-day did not influence speed in either species. For each species, the optimal temperature range for sprinting and T (sel) overlapped, supporting the 'thermal coadaptation' hypothesis. However, the optimal range of temperatures for speed is not always attainable during activity by either species, which have limited opportunities to attain T (sel) in the field. The thermal sensitivity of sprint speed in these two species does not appear to have evolved to fully match their current thermal environment. More data on cold-adapted species are needed to fully understand physiological adaptation in ectotherms.
Asymmetry of projected increases in extreme temperature distributions
Kodra, Evan; Ganguly, Auroop R.
2014-01-01
A statistical analysis reveals projections of consistently larger increases in the highest percentiles of summer and winter temperature maxima and minima versus the respective lowest percentiles, resulting in a wider range of temperature extremes in the future. These asymmetric changes in tail distributions of temperature appear robust when explored through 14 CMIP5 climate models and three reanalysis datasets. Asymmetry of projected increases in temperature extremes generalizes widely. Magnitude of the projected asymmetry depends significantly on region, season, land-ocean contrast, and climate model variability as well as whether the extremes of consideration are seasonal minima or maxima events. An assessment of potential physical mechanisms provides support for asymmetric tail increases and hence wider temperature extremes ranges, especially for northern winter extremes. These results offer statistically grounded perspectives on projected changes in the IPCC-recommended extremes indices relevant for impacts and adaptation studies. PMID:25073751
Andersson, A; Laurent, P; Kihn, A; Prévost, M; Servais, P
2001-08-01
The impact of temperature on nitrification in biological granular activated carbon (GAC) filters was evaluated in order to improve the understanding of the nitrification process in drinking water treatment. The study was conducted in a northern climate where very cold water temperatures (below 2 degrees C) prevail for extended periods and rapid shifts of temperature are frequent in the spring and fall. Ammonia removals were monitored and the fixed nitrifying biomass was measured using a method of potential nitrifying activity. The impact of temperature was evaluated on two different filter media: an opened superstructure wood-based activated carbon and a closed superstructure activated carbon-based on bituminous coal. The study was conducted at two levels: pilot scale (first-stage filters) and full-scale (second-stage filters) and the results indicate a strong temperature impact on nitrification activity. Ammonia removal capacities ranged from 40 to 90% in pilot filters, at temperatures above 10 degrees C, while more than 90% ammonia was removed in the full-scale filters for the same temperature range. At moderate temperatures (4-10 degrees C), the first stage pilot filters removed 10-40% of incoming ammonia for both media (opened and closed superstructure). In the full-scale filters, a difference between the two media in nitrification performances was observed at moderate temperatures: the ammonia removal rate in the opened superstructure support (more than 90%) was higher than in the closed superstructure support (45%). At low temperatures (below 4 degrees C) both media performed poorly. Ammonia removal capacities were below 30% in both pilot- and full-scale filters.
Temperature Controller System for Gas Gun Targets
NASA Astrophysics Data System (ADS)
Bucholtz, Scott; Sheffield, Stephen
2005-07-01
A temperature controller system capable of heating and cooling gas gun targets over the range -75 C to +200 C was designed and tested. The system uses cold nitrogen gas from a liquid nitrogen Dewar for cooling and compressed air for heating. Two gas flow heaters control the gas temperature for both heating and cooling. One heater controls the temperature of the target mounting plate and the other the temperature of a copper tubing coil surrounding the target. Each heater is separately adjustable, so the target material will achieve a uniform temperature throughout its volume. A magnetic gauge with integrated thermocouples was developed to measure the internal temperature of the target. Using this system shock experiments, including equation-of-state measurements and shock initiation of high explosives, can be performed over a range of initial temperatures. Successful tests were completed on Teflon samples. This work was supported by the NNSA Enhanced Surveillance Campaign through contract DE-ACO4-01AL66850.
Particle size effect of redox reactions for Co species supported on silica
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chotiwan, Siwaruk; Tomiga, Hiroki; Katagiri, Masaki
Conversions of chemical states during redox reactions of two silica-supported Co catalysts, which were prepared by the impregnation method, were evaluated by using an in situ XAFS technique. The addition of citric acid into the precursor solution led to the formation on silica of more homogeneous and smaller Co particles, with an average diameter of 4 nm. The supported Co{sub 3}O{sub 4} species were reduced to metallic Co via the divalent CoO species during a temperature-programmed reduction process. The reduced Co species were quantitatively oxidized with a temperature-programmed oxidation process. The higher observed reduction temperature of the smaller CoO particlesmore » and the lower observed oxidation temperature of the smaller metallic Co particles were induced by the higher dispersion of the Co oxide species, which apparently led to a stronger interaction with supporting silica. The redox temperature between CoO and Co{sub 3}O{sub 4} was found to be independent of the particle size. - Graphical abstract: Chemical state conversions of SiO{sub 2}-supported Co species and the particle size effect have been analyzed by means of in situ XAFS technique. The small CoO particles have endurance against the reduction and exist in a wide temperature range. Display Omitted - Highlights: • The conversions of the chemical state of supported Co species during redox reaction are evaluated. • In operando XAFS technique were applied to measure redox properties of small Co particles. • A small particle size affects to the redox temperatures of cobalt catalysts.« less
Exploration of the Structure of the High Temperature Phase of the Hexagonal RMnO3 System
NASA Astrophysics Data System (ADS)
Wu, T.; Tyson, T. A.; Zhang, H.; Yu, T.; Page, K.; Ghose, S.
Temperature dependent structural studies of the high temperature phase of hexagonal RMnO3 systems have been conducted. Both long range and local structural probes have been utilized. Discussions of the appropriate space groups and local distortions relevant to length scale will be given. Ab initio MD simulations are used to interpret the observations. This work is supported by DOE Grant DE-FG02-07ER46402.
Evans, R.J.; Chum, H.L.
1994-06-14
A process is described using fast pyrolysis to convert a plastic waste feed stream containing polycarbonate and ABS to high value monomeric constituents prior to pyrolysis of other plastic components therein comprising: selecting a first temperature program range to cause pyrolysis of a given polymer to its high value monomeric constituents prior to a temperature range that causes pyrolysis of other plastic components; selecting an acid or base catalysts and an oxide or carbonate support for treating the feed stream to affect acid or base catalyzed reaction pathways to maximize yield or enhance separation of the high value monomeric constituents of polycarbonate and ABS in the first temperature program range; differentially heating the feed stream at a heat rate within the first temperature program range to provide differential pyrolysis for selective recovery of optimum quantities of the high value monomeric constituents prior to pyrolysis or other plastic components; separating the high value monomeric constituents from the polycarbonate to cause pyrolysis to a different high value monomeric constituent of the plastic waste and differentially heating the feed stream at the second higher temperature program range to cause pyrolysis of different high value monomeric constituents; and separating the different high value monomeric constituents. 68 figs.
Evans, Robert J.; Chum, Helena L.
1994-01-01
A process of using fast pyrolysis to convert a plastic waste feed stream containing polycarbonate and ABS to high value monomeric constituents prior to pyrolysis of other plastic components therein comprising: selecting a first temperature program range to cause pyrolysis of a given polymer to its high value monomeric constituents prior to a temperature range that causes pyrolysis of other plastic components; selecting an acid or base catalysts and an oxide or carbonate support for treating the feed stream to affect acid or base catalyzed reaction pathways to maximize yield or enhance separation of the high value monomeric constituents of polycarbonate and ABS in the first temperature program range; differentially heating the feed stream at a heat rate within the first temperature program range to provide differential pyrolysis for selective recovery of optimum quantities of the high value monomeric constituents prior to pyrolysis or other plastic components; separating the high value monomeric constituents from the polycarbonate to cause pyrolysis to a different high value monomeric constituent of the plastic waste and differentially heating the feed stream at the second higher temperature program range to cause pyrolysis of different high value monomeric constituents; and separating the different high value monomeric constituents.
Chum, H.L.; Evans, R.J.
1992-08-04
A process is described for using fast pyrolysis in a carrier gas to convert a waste phenolic resin containing feedstreams in a manner such that pyrolysis of said resins and a given high value monomeric constituent occurs prior to pyrolyses of the resins in other monomeric components therein comprising: selecting a first temperature program range to cause pyrolysis of said resin and a given high value monomeric constituent prior to a temperature range that causes pyrolysis of other monomeric components; selecting, if desired, a catalyst and a support and treating said feedstreams with said catalyst to effect acid or basic catalyzed reaction pathways to maximize yield or enhance separation of said high value monomeric constituent in said first temperature program range to utilize reactive gases such as oxygen and steam in the pyrolysis process to drive the production of specific products; differentially heating said feedstreams at a heat rate within the first temperature program range to provide differential pyrolysis for selective recovery of optimum quantity of said high value monomeric constituent prior to pyrolysis of other monomeric components therein; separating said high value monomeric constituent; selecting a second higher temperature program range to cause pyrolysis of a different high value monomeric constituent of said phenolic resins waste and differentially heating said feedstreams at said higher temperature program range to cause pyrolysis of said different high value monomeric constituent; and separating said different high value monomeric constituent. 11 figs.
Chum, Helena L.; Evans, Robert J.
1992-01-01
A process of using fast pyrolysis in a carrier gas to convert a waste phenolic resin containing feedstreams in a manner such that pyrolysis of said resins and a given high value monomeric constituent occurs prior to pyrolyses of the resins in other monomeric components therein comprising: selecting a first temperature program range to cause pyrolysis of said resin and a given high value monomeric constituent prior to a temperature range that causes pyrolysis of other monomeric components; selecting, if desired, a catalyst and a support and treating said feedstreams with said catalyst to effect acid or basic catalyzed reaction pathways to maximize yield or enhance separation of said high value monomeric constituent in said first temperature program range to utilize reactive gases such as oxygen and steam in the pyrolysis process to drive the production of specific products; differentially heating said feedstreams at a heat rate within the first temperature program range to provide differential pyrolysis for selective recovery of optimum quantity of said high value monomeric constituent prior to pyrolysis of other monomeric components therein; separating said high value monomeric constituent; selecting a second higher temperature program range to cause pyrolysis of a different high value monomeric constituent of said phenolic resins waste and differentially heating said feedstreams at said higher temperature program range to cause pyrolysis of said different high value monomeric constituent; and separating said different high value monomeric constituent.
Advanced human-machine interface for collaborative building control
Zheng, Xianjun S.; Song, Zhen; Chen, Yanzi; Zhang, Shaopeng; Lu, Yan
2015-08-11
A system for collaborative energy management and control in a building, including an energy management controller, one or more occupant HMIs that supports two-way communication between building occupants and a facility manager, and between building occupants and the energy management controller, and a facility manager HMI that supports two-way communication between the facility manager and the building occupants, and between the facility manager and the energy management controller, in which the occupant HMI allows building occupants to provide temperature preferences to the facility manager and the energy management controller, and the facility manager HMI allows the facility manager to configure an energy policy for the building as a set of rules and to view occupants' aggregated temperature preferences, and the energy management controller determines an optimum temperature range that resolves conflicting occupant temperature preferences and occupant temperature preferences that conflict with the facility manager's energy policy for the building.
Analysis of ORNL site temperature and humidity data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Willis, B.E.
1989-08-01
The Advanced Neutron Source (ANS) is planned as a new state-of-the-art facility for neutron research and is currently undergoing conceptual design at the Oak Ridge National Laboratory (ORNL). The current concept calls for a nuclear research reactor with an operating power near 350 MW and extensive experiment and user support facilities. Analyses have been undertaken to determine an acceptable design basis wet-bulb temperature range for the facility. Comparisons are drawn with the design wet-bulb temperature previously used for the High Flux Isotope Reactor (HFIR), which is located on an adjacent site a Oak Ridge. This report explains the importance ofmore » wet-bulb temperature to the reactor cooling system performance, and describes the analysis of available meteorological data, and presents the results and the recommendations for a wet-bulb temperature range for use as a part of the plant design basis conditions. 1 ref., 6 figs.« less
Joining of Silicon Carbide-Based Ceramics for MEMS-LDI Fuel Injector Applications
NASA Technical Reports Server (NTRS)
Halbig, Michael C.; Singh, Mrityunjay
2012-01-01
Deliver the benefits of ceramics in turbine engine applications- increased efficiency, performance, horsepower, range, operating temperature, and payload and reduced cooling and operation and support costs for future engines.
An Overview of NASA Space Cryocooler Programs--2006
NASA Technical Reports Server (NTRS)
Ross, Ronald G., Jr.; Boyle, R. F.
2006-01-01
Mechanical cryocoolers represent a significant enabling technology for NASA's Earth and Space Science Enterprises. Many of NASA's space instruments require cryogenic refrigeration to improve dynamic range, extend wavelength coverage, or enable the use of advanced detectors to observe a wide range of phenomena--from crop dynamics to stellar birth. Reflecting the relative maturity of the technology at these temperatures, the largest utilization of coolers over the last fifteen years has been for instruments operating at medium to high cryogenic temperatures (55 to 150K). For the future, important new developments are focusing on the lower temperature range, from 6 to 20 K, in support of studies of the origin of the Universe and the search for planets around distant stars. NASA's development of a 20K cryocooler for the European Planck spacecraft and a 6 K cryocooler for the MIRI instrument on the James Webb Space Telescope (JWST) are examples of the thrust to provide low-temperature cooling for this class of future missions.
Survival of charged ρ condensation at high temperature and density
NASA Astrophysics Data System (ADS)
Liu, Hao; Yu, Lang; Huang, Mei
2016-02-01
The charged vector ρ mesons in the presence of external magnetic fields at finite temperature T and chemical potential μ have been investigated in the framework of the Nambu-Jona-Lasinio model. We compute the masses of charged ρ mesons numerically as a function of the magnetic field for different values of temperature and chemical potential. The self-energy of the ρ meson contains the quark-loop contribution, i.e. the leading order contribution in 1/Nc expansion. The charged ρ meson mass decreases with the magnetic field and drops to zero at a critical magnetic field eBc, which indicates that the charged vector meson condensation, i.e. the electromagnetic superconductor can be induced above the critical magnetic field. Surprisingly, it is found that the charged ρ condensation can even survive at high temperature and density. At zero temperature, the critical magnetic field just increases slightly with the chemical potential, which indicates that charged ρ condensation might occur inside compact stars. At zero density, in the temperature range 0.2-0.5 GeV, the critical magnetic field for charged ρ condensation is in the range of 0.2-0.6 GeV2, which indicates that a high temperature electromagnetic superconductor might be created at LHC. Supported by the NSFC (11275213, 11261130311) (CRC 110 by DFG and NSFC), CAS Key Project (KJCX2-EW-N01), and Youth Innovation Promotion Association of CAS. L.Yu is Partially Supported by China Postdoctoral Science Foundation (2014M550841)
Out in the cold: the hypothermic heart response
Nabeel, Yassar; Ali, Omair
2014-01-01
We present an interesting case of a 49-year-old woman with hypothermia and associated Osborn waves (also called J waves) on ECG. She was found on the floor of her home and difficult to arouse. On arrival to the emergency department (ED), her rectal temperature was 87.5°F. ECG showed Osborn waves in diffuse leads. She was intubated in the ED and was started on vasopressor support for hypotension refractory to intravenous fluid boluses. She was transferred to the critical care unit for continued respiratory and cardiovascular support. With active external rewarming her core body temperature continued to improve. Blood pressure also improved and vasopressor was tapered off. She was extubated and was transferred to the medical floor for continued supportive care. Osborn waves on ECG resolved within 12 h of achieving normal range body temperature. The patient was eventually discharged home with medical follow-up. PMID:25406217
Out in the cold: the hypothermic heart response.
Nabeel, Yassar; Ali, Omair
2014-11-18
We present an interesting case of a 49-year-old woman with hypothermia and associated Osborn waves (also called J waves) on ECG. She was found on the floor of her home and difficult to arouse. On arrival to the emergency department (ED), her rectal temperature was 87.5°F. ECG showed Osborn waves in diffuse leads. She was intubated in the ED and was started on vasopressor support for hypotension refractory to intravenous fluid boluses. She was transferred to the critical care unit for continued respiratory and cardiovascular support. With active external rewarming her core body temperature continued to improve. Blood pressure also improved and vasopressor was tapered off. She was extubated and was transferred to the medical floor for continued supportive care. Osborn waves on ECG resolved within 12 h of achieving normal range body temperature. The patient was eventually discharged home with medical follow-up. 2014 BMJ Publishing Group Ltd.
Wide-Temperature Electronics for Thermal Control of Nanosats
NASA Technical Reports Server (NTRS)
Dickman, John Ellis; Gerber, Scott
2000-01-01
This document represents a presentation which examines the wide and low-temperature electronics required for NanoSatellites. In the past, larger spacecraft used Radioisotope Heating Units (RHU's). The advantage of the use of these electronics is that they could eliminate or reduce the requirement for RHU's, reduce system weight and simplify spacecraft design by eliminating containment/support structures for RHU's. The Glenn Research Center's Wide/Low Temperature Power Electronics Program supports the development of power systems capable of reliable, efficient operation over wide and low temperature ranges. Included charts review the successes and failures of various electronic devices, the IRF541 HEXFET, The NE76118n-Channel GaAS MESFET, the Lithium Carbon Monofluoride Primary Battery, and a COTS DC-DC converter. The preliminary result of wide/low temperature testing of CTS and custom parts and power circuit indicate that through careful selection of components and technologies it is possible to design and build power circuits which operate from room temperature to near 100K.
Model Lipid Membranes on a Tunable Polymer Cushion
NASA Astrophysics Data System (ADS)
Smith, Hillary L.; Jablin, Michael S.; Vidyasagar, Ajay; Saiz, Jessica; Watkins, Erik; Toomey, Ryan; Hurd, Alan J.; Majewski, Jaroslaw
2009-06-01
A hydrated, surface-tethered polymer network capable of fivefold change in thickness over a 25-37°C temperature range has been demonstrated via neutron reflectivity and fluorescence microscopy to be a novel support for single lipid bilayers in a liquid environment. As the polymer swells from 170 to 900 Å, it promotes both in- and out-of-plane fluctuations of the supported membrane. The cushioned bilayer proved to be very robust, remaining structurally intact for 16 days and many temperature cycles. The promotion of membrane fluctuations offers far-reaching applications for this system as a surrogate biomembrane.
The Case of the Missing Mechanism: How Does Temperature Influence Seasonal Timing in Endotherms?
Caro, Samuel P.; Schaper, Sonja V.; Hut, Roelof A.; Ball, Gregory F.; Visser, Marcel E.
2013-01-01
Temperature has a strong effect on the seasonal timing of life-history stages in both mammals and birds, even though these species can regulate their body temperature under a wide range of ambient temperatures. Correlational studies showing this effect have recently been supported by experiments demonstrating a direct, causal relationship between ambient temperature and seasonal timing. Predicting how endotherms will respond to global warming requires an understanding of the physiological mechanisms by which temperature affects the seasonal timing of life histories. These mechanisms, however, remain obscure. We outline a road map for research aimed at identifying the pathways through which temperature is translated into seasonal timing. PMID:23565055
Wide-Field Imaging Using Nitrogen Vacancies
NASA Technical Reports Server (NTRS)
Englund, Dirk Robert (Inventor); Trusheim, Matthew Edwin (Inventor)
2017-01-01
Nitrogen vacancies in bulk diamonds and nanodiamonds can be used to sense temperature, pressure, electromagnetic fields, and pH. Unfortunately, conventional sensing techniques use gated detection and confocal imaging, limiting the measurement sensitivity and precluding wide-field imaging. Conversely, the present sensing techniques do not require gated detection or confocal imaging and can therefore be used to image temperature, pressure, electromagnetic fields, and pH over wide fields of view. In some cases, wide-field imaging supports spatial localization of the NVs to precisions at or below the diffraction limit. Moreover, the measurement range can extend over extremely wide dynamic range at very high sensitivity.
Kleinhesselink, Andrew R; Adler, Peter B
2018-05-01
Understanding how annual climate variation affects population growth rates across a species' range may help us anticipate the effects of climate change on species distribution and abundance. We predict that populations in warmer or wetter parts of a species' range should respond negatively to periods of above average temperature or precipitation, respectively, whereas populations in colder or drier areas should respond positively to periods of above average temperature or precipitation. To test this, we estimated the population sensitivity of a common shrub species, big sagebrush (Artemisia tridentata), to annual climate variation across its range. Our analysis includes 8,175 observations of year-to-year change in sagebrush cover or production from 131 monitoring sites in western North America. We coupled these observations with seasonal weather data for each site and analyzed the effects of spring through fall temperatures and fall through spring accumulated precipitation on annual changes in sagebrush abundance. Sensitivity to annual temperature variation supported our hypothesis: years with above average temperatures were beneficial to sagebrush in colder locations and detrimental to sagebrush in hotter locations. In contrast, sensitivity to precipitation did not change significantly across the distribution of sagebrush. This pattern of responses suggests that regional abundance of this species may be more limited by temperature than by precipitation. We also found important differences in how the ecologically distinct subspecies of sagebrush responded to the effects of precipitation and temperature. Our model predicts that a short-term temperature increase could produce an increase in sagebrush cover at the cold edge of its range and a decrease in cover at the warm edge of its range. This prediction is qualitatively consistent with predictions from species distribution models for sagebrush based on spatial occurrence data, but it provides new mechanistic insight and helps estimate how much and how fast sagebrush cover may change within its range. © 2018 by the Ecological Society of America.
AC conductivity and dielectric properties of bulk tungsten trioxide (WO3)
NASA Astrophysics Data System (ADS)
El-Nahass, M. M.; Ali, H. A. M.; Saadeldin, M.; Zaghllol, M.
2012-11-01
AC conductivity and dielectric properties of tungsten trioxide (WO3) in a pellet form were studied in the frequency range from 42 Hz to 5 MHz with a variation of temperature in the range from 303 K to 463 K. AC conductivity, σac(ω) was found to be a function of ωs where ω is the angular frequency and s is the frequency exponent. The values of s were found to be less than unity and decrease with increasing temperature, which supports the correlated barrier hopping mechanism (CBH) as the dominant mechanism for the conduction in WO3. The dielectric constant (ε‧) and dielectric loss (ε″) were measured. The Cole-Cole diagram determined complex impedance for different temperatures.
1974-06-30
hydrosilates, 130 including irradiation by ultraviolet light, elevated temperatures (up to 3500) in sealed tubes, and free radical initiators (up to 10 mol...to 160 ml dry pyridine and stirred at 00 in a 250 ml Erlenmeyer flask fitted with a septum. After the temperature had equilibrated, p-toluene sulfonyl...chloride (80 g, 0.41 mol) was added slowly, carefully maintaining the temperature below 100. The vessel was tightly capped, the mixture stirred an
Xu, Xue-Feng; Ji, Xiang
2006-01-01
We used Eremias brenchleyi as a model animal to examine differences in thermal tolerance, selected body temperature, and the thermal dependence of food assimilation and locomotor performance between juvenile and adult lizards. Adults selected higher body temperatures (33.5 vs. 31.7 degrees C) and were able to tolerate a wider range of body temperatures (3.4-43.6 vs. 5.1-40.8 degrees C) than juveniles. Within the body temperature range of 26-38 degrees C, adults overall ate more than juveniles, and food passage rate was faster in adults than juveniles. Apparent digestive coefficient (ADC) and assimilation efficiency (AE) varied among temperature treatments but no clear temperature associated patterns could be discerned for these two variables. At each test temperature ADC and AE were both higher in adults than in juveniles. Sprint speed increased with increase in body temperature at lower body temperatures, but decreased at higher body temperatures. At each test temperature adults ran faster than did juveniles, and the range of body temperatures where lizards maintained 90% of maximum speed differed between adults (27-34 degrees C) and juveniles (29-37 degrees C). Optimal temperatures and thermal sensitivities differed between food assimilation and sprint speed. Our results not only show strong patterns of ontogenetic variation in thermal tolerance, selected body temperature and thermal dependence of food assimilation and locomotor performance in E. brenchleyi, but also add support for the multiple optima hypothesis for the thermal dependence of behavioral and physiological variables in reptiles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghosh-Dastidar, A.; Mahuli, S.; Agnihotri, R.
1996-03-01
The focus of this project is on toxic metal removal by sorbent injection in the upper furnace and economizer sections of a coal- fired boiler. Selenium was chosen as the candidate heavy metal to be studied because of its high volatility and associated difficulties in removal. A thorough mechanistic investigation of the SeO{sub 2}-Ca(OH){sub 2} interaction at both medium and high temperatures has been conducted in this project. Experiments were performed in the two temperature ranges in the presence and absence of O{sub 2}; desorption studies were conducted to characterize the nature of interaction; and XRD/XPS and Ion Chromatography studiesmore » were performed for species identification. It was inferred from these findings that the selenium capture was significantly more in the medium temperature range (450-650{degrees}C) than in high temperature range (800-1000{degrees}C) and the captured selenium species in the medium temperature range is in the form of calcium selenite (CaSeO{sub 3}) and a reaction scheme was proposed for the CaO/SeO{sub 2} interaction: CaO (s) + SeO{sub 2} (g) = CaSeO{sub 3} (s). This reaction process does not require the participation of oxygen, as was confirmed by various analytical techniques and supported by the experimental evidence. Results of the high-temperature studies indicate much reduced capture at these temperatures with negligible selenium sorption above 900{degrees}C. This behavior was attributed to the decomposition of calcium selenite at higher temperatures.« less
NASA Astrophysics Data System (ADS)
Sentić, Stipo; Sessions, Sharon L.
2017-06-01
The weak temperature gradient (WTG) approximation is a method of parameterizing the influences of the large scale on local convection in limited domain simulations. WTG simulations exhibit multiple equilibria in precipitation; depending on the initial moisture content, simulations can precipitate or remain dry for otherwise identical boundary conditions. We use a hypothesized analogy between multiple equilibria in precipitation in WTG simulations, and dry and moist regions of organized convection to study tropical convective organization. We find that the range of wind speeds that support multiple equilibria depends on sea surface temperature (SST). Compared to the present SST, low SSTs support a narrower range of multiple equilibria at higher wind speeds. In contrast, high SSTs exhibit a narrower range of multiple equilibria at low wind speeds. This suggests that at high SSTs, organized convection might occur with lower surface forcing. To characterize convection at different SSTs, we analyze the change in relationships between precipitation rate, atmospheric stability, moisture content, and the large-scale transport of moist entropy and moisture with increasing SSTs. We find an increase in large-scale export of moisture and moist entropy from dry simulations with increasing SST, which is consistent with a strengthening of the up-gradient transport of moisture from dry regions to moist regions in organized convection. Furthermore, the changes in diagnostic relationships with SST are consistent with more intense convection in precipitating regions of organized convection for higher SSTs.
Giant Paramagnetism of Copper Nanoparticles in Nanocomposites Cu@C
NASA Astrophysics Data System (ADS)
Sharoyan, Eduard; Mirzakhanyan, Armen; Gyulasaryan, Harutyun; Manukyan, Aram; Estiphanos, Medhanie; Goff, Michael; Bernal, Oscar; Kocharian, Armen
The copper nanoparticles in nanocomposites Cu@C, encapsulated in graphitized carbon shell was obtained by the solid-phase pyrolysis method of polycrystalline phthalocyanine (CuPc, Pc =C32N8H16) . The average sizes of the nanoparticles are in the range of 2-6 nm. Magnetic measurements were carried out by vibrational magnetometer in the temperature range 10-300 K. At low temperatures (<70K) we observed a giant paramagnetism, apparently due to the (ballistic) conduction electron (large orbital magnetism). The values of the specific susceptibility at T = 10K with magnetic specific susceptibility of 510-5 emu/gOe order. This work was supported by the RA MES State Committee of Science, in the frames of the research project SCS-13-1C090. The work at California State University was supported by the National Science Foundation-Partnerships for Research and Education in Materials under Grant DMR-1523588.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Jinyong; Gao, Feng; Karim, Ayman M.
MgAlOx mixed oxides were employed as supports for potassium-based lean NOx traps (LNTs) targeted for high temperature applications. Effects of support compositions, K/Pt loadings, thermal aging and catalyst regeneration on NOx storage capacity were systematically investigated. The catalysts were characterized by XRD, NOx-TPD, TEM, STEM-HAADF and in-situ XAFS. The results indicate that MgAlOx mixed oxides have significant advantages over conventional gamma-Al2O3-supports for LNT catalysts, in terms of high temperature NOx trapping capacity and thermal stability. First, as a basic support, MgAlOx stabilizes stored nitrates (in the form of KNO3) to much higher temperatures than mildly acidic gamma-Al2O3. Second, MgAlOx minimizesmore » Pt sintering during thermal aging, which is not possible for gamma-Al2O3 supports. Notably, combined XRD, in-situ XAFS and STEM-HAADF results indicate that Pt species in the thermally aged Pt/MgAlOx samples are finely dispersed in the oxide matrix as isolated atoms. This strong metal-support interaction stabilizes Pt and minimizes the extent of sintering. However, such strong interactions result in Pt oxidation via coordination with the support so that NO oxidation activity can be adversely affected after aging which, in turn, decreases NOx trapping ability for these catalysts. Interestingly, a high-temperature reduction treatment regenerates essentially full NOx trapping performance. In fact, regenerated Pt/K/MgAlOx catalyst exhibits much better NOx trapping performance than fresh Pt/K/Al2O3 LNTs over the entire temperature range investigated here. In addition to thermal aging, Pt/K loading effects were systemically studied over the fresh samples. The results indicate that NOx trapping is kinetically limited at low temperatures, while thermodynamically limited at high temperatures. A simple conceptual model was developed to explain the Pt and K loading effects on NOx storage. An optimized K loading, which allows balancing between the stability of nitrates and exposed Pt surface, gives the best NOx trapping capability.« less
Phenological response of sea turtles to environmental variation across a species' northern range.
Mazaris, Antonios D; Kallimanis, Athanasios S; Pantis, John D; Hays, Graeme C
2013-01-22
Variations in environmental parameters (e.g. temperature) that form part of global climate change have been associated with shifts in the timing of seasonal events for a broad range of organisms. Most studies evaluating such phenological shifts of individual taxa have focused on a limited number of locations, making it difficult to assess how such shifts vary regionally across a species range. Here, by using 1445 records of the date of first nesting for loggerhead sea turtles (Caretta caretta) at different breeding sites, on different continents and in different years across a broad latitudinal range (25-39° 'N), we demonstrate that the gradient of the relationship between temperature and the date of first breeding is steeper at higher latitudes, i.e. the phenological responses to temperature appear strongest at the poleward range limit. These findings support the hypothesis that biological changes in response to climate change will be most acute at the poleward range limits and are in accordance with the predictions of MacArthur's hypothesis that poleward range limit for species range is environmentally limited. Our findings imply that the poleward populations of loggerheads are more sensitive to climate variations and thus they might display the impacts of climate change sooner and more prominently.
Phenological response of sea turtles to environmental variation across a species' northern range
Mazaris, Antonios D.; Kallimanis, Athanasios S.; Pantis, John D.; Hays, Graeme C.
2013-01-01
Variations in environmental parameters (e.g. temperature) that form part of global climate change have been associated with shifts in the timing of seasonal events for a broad range of organisms. Most studies evaluating such phenological shifts of individual taxa have focused on a limited number of locations, making it difficult to assess how such shifts vary regionally across a species range. Here, by using 1445 records of the date of first nesting for loggerhead sea turtles (Caretta caretta) at different breeding sites, on different continents and in different years across a broad latitudinal range (25–39° ′N), we demonstrate that the gradient of the relationship between temperature and the date of first breeding is steeper at higher latitudes, i.e. the phenological responses to temperature appear strongest at the poleward range limit. These findings support the hypothesis that biological changes in response to climate change will be most acute at the poleward range limits and are in accordance with the predictions of MacArthur's hypothesis that poleward range limit for species range is environmentally limited. Our findings imply that the poleward populations of loggerheads are more sensitive to climate variations and thus they might display the impacts of climate change sooner and more prominently. PMID:23193130
Species traits and climate velocity explain geographic range shifts in an ocean-warming hotspot.
Sunday, Jennifer M; Pecl, Gretta T; Frusher, Stewart; Hobday, Alistair J; Hill, Nicole; Holbrook, Neil J; Edgar, Graham J; Stuart-Smith, Rick; Barrett, Neville; Wernberg, Thomas; Watson, Reg A; Smale, Dan A; Fulton, Elizabeth A; Slawinski, Dirk; Feng, Ming; Radford, Ben T; Thompson, Peter A; Bates, Amanda E
2015-09-01
Species' ranges are shifting globally in response to climate warming, with substantial variability among taxa, even within regions. Relationships between range dynamics and intrinsic species traits may be particularly apparent in the ocean, where temperature more directly shapes species' distributions. Here, we test for a role of species traits and climate velocity in driving range extensions in the ocean-warming hotspot of southeast Australia. Climate velocity explained some variation in range shifts, however, including species traits more than doubled the variation explained. Swimming ability, omnivory and latitudinal range size all had positive relationships with range extension rate, supporting hypotheses that increased dispersal capacity and ecological generalism promote extensions. We find independent support for the hypothesis that species with narrow latitudinal ranges are limited by factors other than climate. Our findings suggest that small-ranging species are in double jeopardy, with limited ability to escape warming and greater intrinsic vulnerability to stochastic disturbances. © 2015 John Wiley & Sons Ltd/CNRS.
Cryogenic refractive index of Heraeus homosil glass
NASA Astrophysics Data System (ADS)
Miller, Kevin H.; Quijada, Manuel A.; Leviton, Douglas B.
2017-08-01
This paper reports measurements of the refractive index of Homosil (Heraeus) over the wavelength range of 0.34—3.16 μm and temperature range of 120—335 K. These measurements were performed by using the Cryogenic High Accuracy Refraction Measuring System (CHARMS) facility at the NASA's Goddard Space Flight Center. These measurements were in support of an integrated Structural-Thermal-Optical-Performance (STOP) model that was developed for a fieldwidened Michelson interferometer that is being built and tested for the High Spectral Resolution Lidar (HSRL) project at the NASA Langley Research Center (LaRC). The cryogenic refractive index measurements were required in order to account for the highly sensitive performance of the HSRL instrument to changes in refractive index with temperature, temperature gradients, thermal expansion, and deformation due to mounting stresses. A dense coverage of the absolute refractive index over the aforementioned wavelength and temperature ranges was used to determine the thermo-optic coefficient (dn/dT) and dispersion relation (dn/dλ) as a function of wavelength and temperature. Our measurements of Homosil will be compared with measurements of other glasses from the fused silica family studied in CHARMS as well as measurements reported elsewhere in the literature.
Cryogenic Refractive Index of Heraeus Homosil Glass
NASA Technical Reports Server (NTRS)
Miller, Kevin H.; Quijada, Manuel A.; Leviton, Douglas B.
2017-01-01
This paper reports measurements of the refractive index of Homosil (Heraeus) over the wavelength range of 0.343.16 m and temperature range of 120335 K. These measurements were performed by using the Cryogenic High Accuracy Refraction Measuring System (CHARMS) facility at the NASAs Goddard Space Flight Center. These measurements were in support of an integrated Structural-Thermal-Optical-Performance (STOP) model that was developed for a field-widened Michelson interferometer that is being built and tested for the High Spectral Resolution Lidar (HSRL) project at the NASA Langley Research Center (LaRC). The cryogenic refractive index measurements were required in order to account for the highly sensitivity performance of the HSRL instrument to changes in refractive index with temperature, temperature gradients, thermal expansion, and deformation due to mounting stresses. A dense coverage of the absolute refractive index over the aforementioned wavelength and temperature ranges was used to determine the thermo-optic coefficient (dndT) and dispersion relation (dnd) as a function of wavelength and temperature. Our measurements of Homosil will be compared with measurements of other glasses from the fused silica family studied in CHARMS as well as measurements reported elsewhere in literature.
Cryogenic Refractive Index of Heraeus Homosil Glass
NASA Technical Reports Server (NTRS)
Miller, Kevin H.; Quijada, Manuel A.; Leviton, Douglas B.
2017-01-01
This paper reports measurements of the refractive index of Homosil (Heraeus) over the wavelength range of 0.34-3.16 microns and temperature range of 120-335 K. These measurements were performed by using the Cryogenic High Accuracy Refraction Measuring System (CHARMS) facility at the NASAs Goddard Space Flight Center. These measurements were in support of an integrated Structural-Thermal-Optical-Performance (STOP) model that was developed for a field-widened Michelson interferometer that is being built and tested for the High Spectral Resolution Lidar (HSRL) project at the NASA Langley Research Center (LaRC). The cryogenic refractive index measurements were required in order to account for the highly sensitivity performance of the HSRL instrument to changes in refractive index with temperature, temperature gradients, thermal expansion, and deformation due to mounting stresses. A dense coverage of the absolute refractive index over the aforementioned wavelength and temperature ranges was used to determine the thermo-optic coefficient (dn/dT) and dispersion relation (dn/d(lamda)) as a function of wavelength and temperature. Our measurements of Homosil will be compared with measurements of other glasses from the fused silica family studied in CHARMS as well as measurements reported elsewhere in literature.
Secondary relaxations in supercooled and glassy sucrose-borate aqueous solutions.
Longinotti, M Paula; Corti, Horacio R; Pablo, Juan J de
2008-10-13
The dielectric relaxation spectra of concentrated aqueous solutions of sucrose-borate mixtures have been measured in the supercooled and glassy regions in the frequency range of 40Hz to 2MHz. The secondary (beta) relaxation process was analyzed in the temperature range 183-233K at water contents between 20 and 30wt%. The relaxation times were obtained, and the activation energy of that process was calculated. In order to assess the effect of borate on the relaxation of disaccharide-water mixtures, we also studied the dielectric behavior of sucrose aqueous solutions in the same range of temperatures and water contents. Our findings support the view that, beyond a water content of approximately 20wt%, the secondary relaxation of water-sucrose and water-sucrose-borate mixtures adopts a universal character that can be explained in terms of a simple exponential function of the temperature scaled by the glass transition temperature (T(g)). The behavior observed for water-sucrose and water-sucrose-borate mixtures is compared with previous results obtained in other water-carbohydrate systems.
Lane, John W.; Day-Lewis, Frederick D.; Johnson, Carole D.; Dawson, Cian B.; Nelms, David L.; Miller, Cheryl; Wheeler, Jerrod D.; Harvey, Charles F.; Karam, Hanan N.
2008-01-01
Fiber‐optic distributed temperature sensing (FO DTS) is an emerging technology for characterizing and monitoring a wide range of important earth processes. FO DTS utilizes laser light to measure temperature along the entire length of standard telecommunications optical fibers. The technology can measure temperature every meter over FO cables up to 30 kilometers (km) long. Commercially available systems can measure fiber temperature as often as 4 times per minute, with thermal precision ranging from 0.1 to 0.01 °C depending on measurement integration time. In 2006, the U.S. Geological Survey initiated a project to demonstrate and evaluate DTS as a technology to support hydrologic studies. This paper demonstrates the potential of the technology to assess and monitor hydrologic processes through case‐study examples of FO DTS monitoring of stream‐aquifer interaction on the Shenandoah River near Locke's Mill, Virginia, and on Fish Creek, near Jackson Hole, Wyoming, and estuary‐aquifer interaction on Waquoit Bay, Falmouth, Massachusetts. The ability to continuously observe temperature over large spatial scales with high spatial and temporal resolution provides a new opportunity to observe and monitor a wide range of hydrologic processes with application to other disciplines including hazards, climate‐change, and ecosystem monitoring.
Tertiary climates and floristic relationships at high latitudes in the northern hemisphere
Wolfe, J.A.
1980-01-01
During the Paleocene and Eocene, climates were characterized by a low mean annual range of temperature (a maximum of 10-15??C), a moderate to high mean annual temperature (10-20??C), and abundant precipitation; strong broad-leaved evergreen vegetation extended to almost lat. 60??N during the Paleocene and to well above 61??N during the Eocene. Poleward of the broad-leaved evergreen forests were forests that were broad-leaved deciduous; these deciduous forests, however, were unlike extant broad-leaved deciduous forests in general floristic composition and physiognomy. Coniferous forests probably occupied the northernmost latitudes. At the end of the Eocene, a major climatic deterioration resulted in a high (> 30??C) mean annual range of temperature and a low mean annual temperature (< 10??C). Vegetation represented temperate broad-leaved deciduous and coniferous forests. The Oligocene and Neogene climatic trends represent a decrease in both mean annual range of temperature and mean annual temperature. Tundra vegetation did not appear until late in the Neogene. The present distribution of broad-leaved evergreens concomitant with the principles of plant physiology indicates that present winter light conditions at high latitudes could not support broad-leaved evergreen forest. A possible solution to the problem is to increase winter light by lessening the inclination of the earth's rotational axis. ?? 1980.
Sheth, Seema N; Angert, Amy L
2014-10-01
The geographic ranges of closely related species can vary dramatically, yet we do not fully grasp the mechanisms underlying such variation. The niche breadth hypothesis posits that species that have evolved broad environmental tolerances can achieve larger geographic ranges than species with narrow environmental tolerances. In turn, plasticity and genetic variation in ecologically important traits and adaptation to environmentally variable areas can facilitate the evolution of broad environmental tolerance. We used five pairs of western North American monkeyflowers to experimentally test these ideas by quantifying performance across eight temperature regimes. In four species pairs, species with broader thermal tolerances had larger geographic ranges, supporting the niche breadth hypothesis. As predicted, species with broader thermal tolerances also had more within-population genetic variation in thermal reaction norms and experienced greater thermal variation across their geographic ranges than species with narrow thermal tolerances. Species with narrow thermal tolerance may be particularly vulnerable to changing climatic conditions due to lack of plasticity and insufficient genetic variation to respond to novel selection pressures. Conversely, species experiencing high variation in temperature across their ranges may be buffered against extinction due to climatic changes because they have evolved tolerance to a broad range of temperatures. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.
NASA Astrophysics Data System (ADS)
Massa, Gioia D.; Chase, Elaine; Santini, Judith B.; Mitchell, Cary A.
2015-04-01
Strawberry (Fragaria x ananassa L.) is a promising candidate crop for space life-support systems with desirable sensory quality and health attributes. Day-neutral cultivars such as 'Seascape' are adaptable to a range of photoperiods, including short days that would save considerable energy for crop lighting without reductions in productivity or yield. Since photoperiod and temperature interact to affect strawberry growth and development, several diurnal temperature regimes were tested under a short photoperiod of 10 h per day for effects on yield and quality attributes of 'Seascape' strawberry during production cycles longer than 270 days. The coolest day/night temperature regime, 16°/8 °C, tended to produce smaller numbers of larger fruit than did the intermediate temperature range of 18°/10 °C or the warmest regime, 20°/12 °C, both of which produced similar larger numbers of smaller fruit. The intermediate temperature regime produced the highest total fresh mass of berries over an entire production cycle. Independent experiments examined either organoleptic or physicochemical quality attributes. Organoleptic evaluation indicated that fruit grown under the coolest temperature regime tended to score the highest for both hedonic preference and descriptive evaluation of sensory attributes related to sweetness, texture, aftertaste, and overall approval. The physicochemical quality attributes Brix, pH, and sugar/acid ratio were highest for fruits harvested from the coolest temperature regime and lower for those from the warmer temperature regimes. The cool-regime fruits also were lowest in titratable acidity. The yield parameters fruit number and size oscillated over the course of a production cycle, with a gradual decline in fruit size under all three temperature regimes. Brix and titratable acidity both decreased over time for all three temperature treatments, but sugar/acid ratio remained highest for the cool temperature regime over the entire production period. Periodic rejuvenation or replacement of strawberry propagules may be needed to maintain both quality and quantity of strawberry yield in space.
CHANGES IN AMBIENT TEMPERATURE TRIGGER YAWNING BUT NOT STRETCHING IN RATS
Gallup, Andrew C.; Miller, Ralph R.; Clark, Anne B.
2010-01-01
Yawning appears to be involved in arousal, state change, and activity across vertebrates. Recent research suggests that yawning may support effective changes in mental state or vigilance through cerebral cooling. To further investigate the relationship between yawning, state change, and thermoregulation, 12 Sprague-Dawley rats (Rattus norvegicus) were exposed to a total of two hours of ambient temperature manipulation over a period of 48 hours. Using a repeated measures design, each rat experienced a range of increasing (22→32°C), decreasing (32→22°C), and constant temperatures (22°C; 32°C). Yawning and locomotor activity occurred most frequently during initial changes in temperature, irrespective of direction, compared to more extended periods of temperature manipulation. The rate of yawning also diminished during constant high temperatures (32°C) compared to low temperatures (22°C). Unlike yawning, however, stretching was unaffected by ambient temperature variation. These findings are compared to recent work on budgerigars (Melopsittacus undulatus), and the ecological selective pressures for yawning in challenging thermal environments are discussed. The results support previous comparative research connecting yawning with arousal and state change, and contribute to refining the predictions of the thermoregulatory hypothesis across vertebrates. PMID:21132114
Porous Ceramic Cures at Moderate Temperatures, Is Good Heat Insulator
NASA Technical Reports Server (NTRS)
Eubanks, Alfred G.; Hunkeler, Ronald E.
1965-01-01
The problem: To develop a foamed-in-place refractory material that would provide good thermal insulation, mechanical support, and vibration shielding for enclosed objects at temperatures up to 30000 F. The preparation of conventional foamed refractory materials required long curing times (as much as 48 hours) and high temperatures (at least 700 F), rendering such materials unusable for in-place potting of heat-sensitive components. The solution: A foamed ceramic material that has the requisite thermal insulation and strength, and also displays other properties that suggest a wide range of applications.
NASA Technical Reports Server (NTRS)
Ryu, Si-Ok; Hwang, Soon Muk; Rabinowitz, Martin Jay
1995-01-01
The rate coefficient of the reaction H + 02 = OH + 0 was determined using OH laser absorption spectroscopy behind reflected shock waves over the temperature range 1050-2500 K and the pressure range 0.7-4.0 atm. Eight mixtures and three stoichiometries were used. Two distinct and independent criteria were employed in the evaluation of k(sub 1). Our recommended expression for k(sub 1) is k(sub 1) = 7.13 x 10(exp 13)exp(-6957 K/T) cm(exp 3)mol(exp -1)s(exp -1) with a statistical uncertainty of 6%. A critical review of recent evaluations of k(sub 1) yields a consensus expression given by k(sub 1) = 7.82 x 10(exp 13)exp(-7105 K/7) cm(exp 3)mol(exp -1)s(exp -1) over the temperature range 960-5300 K. We do not support a non-Arrhenius rate coefficient expression, nor do we find evidence of composition dependence upon the determination of k(sub 1).
Electrolyte matrix for molten carbonate fuel cells
Huang, C.M.; Yuh, C.Y.
1999-02-09
A matrix is described for a carbonate electrolyte including a support material and an additive constituent having a relatively low melting temperature and a relatively high coefficient of thermal expansion. The additive constituent is from 3 to 45 weight percent of the matrix and is formed from raw particles whose diameter is in a range of 0.1 {micro}m to 20 {micro}m and whose aspect ratio is in a range of 1 to 50. High energy intensive milling is used to mix the support material and additive constituent during matrix formation. Also disclosed is the use of a further additive constituent comprising an alkaline earth containing material. The further additive is mixed with the support material using high energy intensive milling. 5 figs.
Electrolyte matrix for molten carbonate fuel cells
Huang, Chao M.; Yuh, Chao-Yi
1999-01-01
A matrix for a carbonate electrolyte including a support material and an additive constituent having a relatively low melting temperature and a relatively high coefficient of thermal expansion. The additive constituent is from 3 to 45 weight percent of the matrix and is formed from raw particles whose diameter is in a range of 0.1 .mu.m to 20 .mu.m and whose aspect ratio is in a range of 1 to 50. High energy intensive milling is used to mix the support material and additive constituent during matrix formation. Also disclosed is the use of a further additive constituent comprising an alkaline earth containing material. The further additive is mixed with the support material using high energy intensive milling.
Pulsating gliding transition in the dynamics of levitating liquid nitrogen droplets
NASA Astrophysics Data System (ADS)
Snezhko, Alexey; Ben Jacob, Eshel; Aranson, Igor S.
2008-04-01
Hot surfaces can cause levitation of small liquid droplets if the temperature is kept above the Leidenfrost point (220 °C for water) due to the pressure formed because of rapid evaporation. Here, we demonstrate a new class of pulsating-gliding dynamic transitions in a special setting of the Leidenfrost effect at room temperatures and above a viscous fluid for droplets of liquid nitrogen. A whole range of highly dynamic patterns unfolds when droplets of liquid nitrogen are poured on the surface of another, more viscous liquid at room temperature. We also discovered that the levitating droplets induce vortex motion in the supporting viscous liquid. Depending on the viscosity of the supporting liquid, the nitrogen droplets either adopt an oscillating (pulsating) star-like shape with different azimuthal symmetries (from 2-9 petals) or glide on the surface with random trajectories. Thus, by varying the viscosity of the supporting liquid, we achieve controlled morphology and dynamics of Leidenfrost droplets.
The thermal properties of beeswaxes: unexpected findings.
Buchwald, Robert; Breed, Michael D; Greenberg, Alan R
2008-01-01
Standard melting point analyses only partially describe the thermal properties of eusocial beeswaxes. Differential scanning calorimetry (DSC) revealed that thermal phase changes in wax are initiated at substantially lower temperatures than visually observed melting points. Instead of a sharp, single endothermic peak at the published melting point of 64 degrees C, DSC analysis of Apis mellifera Linnaeus wax yielded a broad melting curve that showed the initiation of melting at approximately 40 degrees C. Although Apis beeswax retained a solid appearance at these temperatures, heat absorption and initiation of melting could affect the structural characteristics of the wax. Additionally, a more complete characterization of the thermal properties indicated that the onset of melting, melting range and heat of fusion of beeswaxes varied significantly among tribes of social bees (Bombini, Meliponini, Apini). Compared with other waxes examined, the relatively malleable wax of bumblebees (Bombini) had the lowest onset of melting and lowest heat of fusion but an intermediate melting temperature range. Stingless bee (Meliponini) wax was intermediate between bumblebee and honeybee wax (Apini) in heat of fusion, but had the highest onset of melting and the narrowest melting temperature range. The broad melting temperature range and high heat of fusion in the Apini may be associated with the use of wax comb as a free-hanging structural material, while the Bombini and Meliponini support their wax structures with exogenous materials.
NASA Technical Reports Server (NTRS)
Ryan, Robert E.
2006-01-01
Simple field-portable white light LED calibration source shows promise for visible range (420-750 nm) 1) Prototype demonstrated <0.5% drift over 10-40 C temperature range; 2) Additional complexity (more LEDs) will be necessary for extending spectral range into the NIR and SWIR; 3) LED long lifetimes should produce at least several hundreds of hours or more stability, minimizing need for expensive calibrations and supporting long-duration field campaigns; and 4) Enabling technology for developing autonomous sites.
Extending the Range of a BEV - Early Progress
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meyer, John; Agathocleous, Nicos; Kang, SH
The 2015 BEV Kia Soul is available with either a Positive Temperature Coefficient (PTC) heater only or an air-source R134a heat pump with PTC heater combination. Hanon, HATCI, and NREL are jointly, with financial support from the DoE, working towards extending the driving range of the heat pump vehicle. This presentation will focus on the early findings of the project, including test data of the baseline vehicle, early data from a modified vehicle, and range extension goals of the project.
Giri, Ashutosh; Wee, Sung Hun; Jain, Shikha; ...
2016-08-26
Here, we report on the out-of-plane thermal conductivities of tetragonal L1 0 FePt (001) easy-axis and cubic A1 FePt thin films via time-domain thermoreflectance over a temperature range from 133 K to 500 K. The out-of-plane thermal conductivity of the chemically ordered L10 phase with alternating Fe and Pt layers is ~23% greater than the thermal conductivity of the disordered A1 phase at room temperature and below. However, as temperature is increased above room temperature, the thermal conductivities of the two phases begin to converge. Molecular dynamics simulations on model FePt structures support our experimental findings and help shed moremore » light into the relative vibrational thermal transport properties of the L1 0 and A1 phases. Furthermore, unlike the varying temperature trends in the thermal conductivities of the two phases, the electronic scattering rates in the out-of-plane direction of the two phases are similar for the temperature range studied in this work.« less
Global surface temperature/heat transfer measurements using infrared imaging
NASA Technical Reports Server (NTRS)
Daryabeigi, Kamran
1992-01-01
A series of studies were conducted to evaluate the use of scanning radiometric infrared imaging systems for providing global surface temperature/heat transfer measurements in support of hypersonic wind tunnel testing. The in situ precision of the technique with narrow temperature span setting over the temperature range of 20 to 200 C was investigated. The precision of the technique over wider temperature span settings was also determined. The accuracy of technique for providing aerodynamic heating rates was investigated by performing measurements on a 10.2-centimeter hemisphere model in the Langley 31-inch Mach 10 tunnel, and comparing the results with theoretical predictions. Data from tests conducted on a generic orbiter model in this tunnel are also presented.
Proportional and Integral Thermal Control System for Large Scale Heating Tests
NASA Technical Reports Server (NTRS)
Fleischer, Van Tran
2015-01-01
The National Aeronautics and Space Administration Armstrong Flight Research Center (Edwards, California) Flight Loads Laboratory is a unique national laboratory that supports thermal, mechanical, thermal/mechanical, and structural dynamics research and testing. A Proportional Integral thermal control system was designed and implemented to support thermal tests. A thermal control algorithm supporting a quartz lamp heater was developed based on the Proportional Integral control concept and a linearized heating process. The thermal control equations were derived and expressed in terms of power levels, integral gain, proportional gain, and differences between thermal setpoints and skin temperatures. Besides the derived equations, user's predefined thermal test information generated in the form of thermal maps was used to implement the thermal control system capabilities. Graphite heater closed-loop thermal control and graphite heater open-loop power level were added later to fulfill the demand for higher temperature tests. Verification and validation tests were performed to ensure that the thermal control system requirements were achieved. This thermal control system has successfully supported many milestone thermal and thermal/mechanical tests for almost a decade with temperatures ranging from 50 F to 3000 F and temperature rise rates from -10 F/s to 70 F/s for a variety of test articles having unique thermal profiles and test setups.
Microscopic theory of vortex interaction in two-band superconductors and type-1.5 superconductivity
NASA Astrophysics Data System (ADS)
Silaev, Mihail; Babaev, Egor
2011-03-01
In the framework of self-consistent microscopic theory we study the structure and interaction of vortices in two-gap superconductor taking into account the interband Josephson coupling. The asymptotical behavior of order parameter densities and magnetic field is studied analytically within the microscopic theory at low temperature. At higher temperatures, results consistent with Ginzburg-Landau theory are obtained. It is shown that under quite general conditions and in a wide temperature ranges (in particular outside the validity of the Ginzburg-Landau theory) there can exist an additional characteristic length scale of the order parameter density variation which exceeds the London penetration length of magnetic field due to the multi-component nature of superconducting state. Such behavior of order parameter density variation leads to the attractive long-range and repulsive short-range interaction between vortices. Supported by NSF CAREER Award DMR-0955902, Knut and Alice Wallenberg Foundation through the Royal Swedish Academy of Sciences and Swedish Research Council, ''Dynasty'' foundation and Russian Foundation for Basic Research.
Dynamic Response and Failure Mechanisms of Layered Ceramic-Elastomer-Polymer/Metal Composites
2010-08-20
characterization of each material constituent of interest, i.e., polyurea and DH-36 steel, over broad ranges of deformation rates, strains, and temperature of...metal-metal, metal- polyurea -metal and polyurea -ceramic composites. New steel plate designs with different thicknesses were employed to avoid tearing...of the sample at its supporting ring. New experiments support the hypothesis that the steel- polyurea sandwich samples show a noticeably better
Magnetic Levitation Force Measurement System at Any Low Temperatures From 20 K To 300 K
NASA Astrophysics Data System (ADS)
Celik, Sukru; Guner, S. Baris; Coskun, Elvan
2015-03-01
Most of the magnetic levitation force measurements in previous studies were performed at liquid nitrogen temperatures. For the levitation force of MgB2 and iron based superconducting samples, magnetic levitation force measurement system is needed. In this study, magnetic levitation force measurement system was designed. In this system, beside vertical force versus vertical motion, lateral and vertical force versus lateral motion measurements, the vertical force versus temperature at the fixed distance between permanent magnet PM - superconducting sample SS and the vertical force versus time measurements were performed at any temperatures from 20 K to 300 K. Thanks to these measurements, the temperature dependence, time dependence, and the distance (magnetic field) and temperature dependences of SS can be investigated. On the other hand, the magnetic stiffness MS measurements can be performed in this system. Using the measurement of MS at different temperature in the range, MS dependence on temperature can be investigated. These measurements at any temperatures in the range help to the superconductivity properties to be characterized. This work was supported by TUBTAK-the Scientific and technological research council of Turkey under project of MFAG - 110T622. This system was applied to the Turkish patent institute with the Application Number of 2013/13638 on 22/11/2013.
Range Extension Opportunities While Heating a Battery Electric Vehicle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lustbader, Jason A; Rugh, John P; Titov, Eugene V
The Kia Soul battery electric vehicle (BEV) is available with either a positive temperature coefficient (PTC) heater or an R134a heat pump (HP) with PTC heater combination (1). The HP uses both ambient air and waste heat from the motor, inverter, and on-board-charger (OBC) for its heat source. Hanon Systems, Hyundai America Technical Center, Inc. (HATCI) and the National Renewable Energy Laboratory jointly, with financial support from the U.S. Department of Energy, developed and proved-out technologies that extend the driving range of a Kia Soul BEV while maintaining thermal comfort in cold climates. Improved system configuration concepts that use thermalmore » storage and waste heat more effectively were developed and evaluated. Range extensions of 5%-22% at ambient temperatures ranging from 5 degrees C to -18 degrees C were demonstrated. This paper reviews the three-year effort, including test data of the baseline and modified vehicles, resulting range extension, and recommendations for future actions.« less
NASA Astrophysics Data System (ADS)
Sigmund, Armin; Pfister, Lena; Sayde, Chadi; Thomas, Christoph K.
2017-06-01
In recent years, the spatial resolution of fiber-optic distributed temperature sensing (DTS) has been enhanced in various studies by helically coiling the fiber around a support structure. While solid polyvinyl chloride tubes are an appropriate support structure under water, they can produce considerable errors in aerial deployments due to the radiative heating or cooling. We used meshed reinforcing fabric as a novel support structure to measure high-resolution vertical temperature profiles with a height of several meters above a meadow and within and above a small lake. This study aimed at quantifying the radiation error for the coiled DTS system and the contribution caused by the novel support structure via heat conduction. A quantitative and comprehensive energy balance model is proposed and tested, which includes the shortwave radiative, longwave radiative, convective, and conductive heat transfers and allows for modeling fiber temperatures as well as quantifying the radiation error. The sensitivity of the energy balance model to the conduction error caused by the reinforcing fabric is discussed in terms of its albedo, emissivity, and thermal conductivity. Modeled radiation errors amounted to -1.0 and 1.3 K at 2 m height but ranged up to 2.8 K for very high incoming shortwave radiation (1000 J s-1 m-2) and very weak winds (0.1 m s-1). After correcting for the radiation error by means of the presented energy balance, the root mean square error between DTS and reference air temperatures from an aspirated resistance thermometer or an ultrasonic anemometer was 0.42 and 0.26 K above the meadow and the lake, respectively. Conduction between reinforcing fabric and fiber cable had a small effect on fiber temperatures (< 0.18 K). Only for locations where the plastic rings that supported the reinforcing fabric touched the fiber-optic cable were significant temperature artifacts of up to 2.5 K observed. Overall, the reinforcing fabric offers several advantages over conventional support structures published to date in the literature as it minimizes both radiation and conduction errors.
NASA Technical Reports Server (NTRS)
1973-01-01
Major conclusions of the space shuttle heat source assembly study are reported that project a minimum weight design for a Titan 3 C synchronous orbit mission; requirements to recover the heat source in orbit are eliminated. This concept permits location of the heat source end enclosure supports and heat source assembly support housing in a low temperature region external to the insulation enclosure and considers titanium and beryllium alloys for these support elements. A high melting insulation blanket consisting of nickel foil coated with zirconia, or of gold foil separated with glass fiber layers, is selected to provide emergency cooling in the range 2000 to 2700 F to prevent the isotope heat source from reaching unsafe temperatures. A graphic view of the baseline heat source assembly is included.
NASA Astrophysics Data System (ADS)
Lanfredi, M.; Simoniello, T.; Cuomo, V.; Macchiato, M.
2009-02-01
This study originated from recent results reported in literature, which support the existence of long-range (power-law) persistence in atmospheric temperature fluctuations on monthly and inter-annual scales. We investigated the results of Detrended Fluctuation Analysis (DFA) carried out on twenty-two historical daily time series recorded in Europe in order to evaluate the reliability of such findings in depth. More detailed inspections emphasized systematic deviations from power-law and high statistical confidence for functional form misspecification. Rigorous analyses did not support scale-free correlation as an operative concept for Climate modelling, as instead suggested in literature. In order to understand the physical implications of our results better, we designed a bivariate Markov process, parameterised on the basis of the atmospheric observational data by introducing a slow dummy variable. The time series generated by this model, analysed both in time and frequency domains, tallied with the real ones very well. They accounted for both the deceptive scaling found in literature and the correlation details enhanced by our analysis. Our results seem to evidence the presence of slow fluctuations from another climatic sub-system such as ocean, which inflates temperature variance up to several months. They advise more precise re-analyses of temperature time series before suggesting dynamical paradigms useful for Climate modelling and for the assessment of Climate Change.
NASA Astrophysics Data System (ADS)
Lanfredi, M.; Simoniello, T.; Cuomo, V.; Macchiato, M.
2009-07-01
This study originated from recent results reported in literature, which support the existence of long-range (power-law) persistence in atmospheric temperature fluctuations on monthly and inter-annual scales. We investigated the results of Detrended Fluctuation Analysis (DFA) carried out on twenty-two historical daily time series recorded in Europe in order to evaluate the reliability of such findings in depth. More detailed inspections emphasized systematic deviations from power-law and high statistical confidence for functional form misspecification. Rigorous analyses did not support scale-free correlation as an operative concept for Climate modelling, as instead suggested in literature. In order to understand the physical implications of our results better, we designed a bivariate Markov process, parameterised on the basis of the atmospheric observational data by introducing a slow dummy variable. The time series generated by this model, analysed both in time and frequency domains, tallied with the real ones very well. They accounted for both the deceptive scaling found in literature and the correlation details enhanced by our analysis. Our results seem to evidence the presence of slow fluctuations from another climatic sub-system such as ocean, which inflates temperature variance up to several months. They advise more precise re-analyses of temperature time series before suggesting dynamical paradigms useful for Climate modelling and for the assessment of Climate Change.
NASA Astrophysics Data System (ADS)
Zhang, Guoqiang; Li, Zhong; Zheng, Huayan; Hao, Zhiqiang; Wang, Xia; Wang, Jiajun
2016-12-01
Activated carbon (AC) supported Cu catalysts are employed to study the influence of surface oxygenated groups on the formation of active Cu species and the catalytic activity of Cu/AC catalyst for oxidative carbonylation of methanol to dimethyl carbonate (DMC). The AC supports are thermal treated under different temperatures in order to adjust the levels of surface oxygenated groups. The AC supports are characterized by BET, TPD-MS and XRD, and the Cu/AC catalysts are characterized by BET, XRD, TEM, XPS, AAS, CH3OH-TPD and N2O chemisorption. The results show that as the treatment temperature is below 800 °C, the BET surface area of the corresponding AC supports are nearly unchanged and close to that of the original AC (1529.6 m2/g). But as the thermal treatment temperature is elevated from 1000 to 1600 °C, the BET surface area of AC supports gradually decreases from 1407.6 to 972.2 m2/g. After loading of Cu, the BET surface area of copper catalysts is in the range of 834.4 to 1545.3 m2/g, which is slightly less than that of the respective supports. When AC is thermal treated at 400 and 600 °C, the unstable carboxylic acid and anhydrides groups are selectively removed, which has weakened the mobility and agglomeration of Cu species during the calcination process, and thus improve the Cu species dispersion over AC support. But as the treatment temperature is elevated from 600 °C to 1200 °C, the Cu species dispersion begins to decline suggesting further removal of stable surface oxygenated groups is unfavorable for Cu species dispersion. Moreover, higher thermal treatment temperature (above 1200 °C) promotes the graphitization degree of AC and leds to the decrease of Cu loading on AC support. Meanwhile, the removal of surface oxygenated groups by thermal treatment is conducive to the formation of more π-sites, and thus promote the reduction of Cu2+ to Cu+ and Cu0 as active centers. The specific surface area of (Cu+ + Cu0) is improved by thermal treatment of AC, however, the space time yield of DMC on unit specific surface area of (Cu+ + Cu0) is in the range of 23.1-49.1 mg h-1 m-2, which is much less than that (77.6 mg h-1 m-2) of the original catalyst. The possible reason is that the removal of surface oxygenated groups results in AC support transforms from hydrophilicity to hydrophobicity, which is detrimental for the adsorption of CH3OH resulting in the decreased local concentration of CH3OH on active Cu species.
Atmospheric Plasma Spraying Low-Temperature Cathode Materials for Solid Oxide Fuel Cells
NASA Astrophysics Data System (ADS)
Harris, J.; Kesler, O.
2010-01-01
Atmospheric plasma spraying (APS) is attractive for manufacturing solid oxide fuel cells (SOFCs) because it allows functional layers to be built rapidly with controlled microstructures. The technique allows SOFCs that operate at low temperatures (500-700 °C) to be fabricated by spraying directly onto robust and inexpensive metallic supports. However, standard cathode materials used in commercial SOFCs exhibit high polarization resistances at low operating temperatures. Therefore, alternative cathode materials with high performance at low temperatures are essential to facilitate the use of metallic supports. Coatings of lanthanum strontium cobalt ferrite (LSCF) were fabricated on steel substrates using axial-injection APS. The thickness and microstructure of the coating layers were evaluated, and x-ray diffraction analysis was performed on the coatings to detect material decomposition and the formation of undesired phases in the plasma. These results determined the envelope of plasma spray parameters in which coatings of LSCF can be manufactured, and the range of conditions in which composite cathode coatings could potentially be manufactured.
Determination of the Darcy permeability of porous media including sintered metal plugs
NASA Technical Reports Server (NTRS)
Frederking, T. H. K.; Hepler, W. A.; Yuan, S. W. K.; Feng, W. F.
1986-01-01
Sintered-metal porous plugs with a normal size of the order of 1-10 microns are used to evaluate the Darcy permeability of laminar flow at very small velocities in laminar fluids. Porous media experiment results and data adduced from the literature are noted to support the Darcy law analog for normal fluid convection in the laminar regime. Low temperature results suggest the importance of collecting room temperature data prior to runs at liquid He(4) temperatures. The characteristic length diagram gives a useful picture of the tolerance range encountered with a particular class of porous media.
Engineering support for magnetohydrodynamic power plant analysis and design studies
NASA Technical Reports Server (NTRS)
Carlson, A. W.; Chait, I. L.; Marchmont, G.; Rogali, R.; Shikar, D.
1980-01-01
The major factors which influence the economic engineering selection of stack inlet temperatures in combined cycle MHD powerplants are identified and the range of suitable stack inlet temperatures under typical operating conditions is indicated. Engineering data and cost estimates are provided for four separately fired high temperature air heater (HTAH) system designs for HTAH system thermal capacity levels of 100, 250, 500 and 1000 MWt. An engineering survey of coal drying and pulverizing equipment for MHD powerplant application is presented as well as capital and operating cost estimates for varying degrees of coal pulverization.
Relaxation dynamics in AgI-doped silver vanadate superionic glasses.
Bhattacharya, S; Ghosh, A
2005-09-22
Relaxation dynamics of Ag+ ions in several series of AgI-Ag2O-V2O5 superionic glasses has been studied in the frequency range from 10 Hz to 2 MHz and in the temperature range from 93 to 323 K. The composition dependence of the dc conductivity and the activation energy of these glasses has been compared with those of AgI-doped silver phosphate and borate glasses. The frequency-dependent electrical data have been analyzed in the framework of conductivity formalism. We have obtained the mobile ion concentration and the power-law exponent from the analysis of the conductivity spectra. We have observed that the concentration of Ag+ ions is independent of temperature and the conductivity is primarily determined by the mobility. A fraction of the Ag+ ions in the glass compositions are involved in the dynamic process. We have also shown that the power-law exponent is independent of temperature. The results are also supported by the temperature and composition independence of the scaling of the conductivity spectra.
NASA Astrophysics Data System (ADS)
Kumar, Nikhil; Winkelmann, C. B.; Biswas, Sourav; Courtois, H.; Gupta, Anjan K.
We have fabricated and studied the current-voltage characteristics of a number of niobium film based weak-link devices and μ-SQUIDs showing a critical current and two re-trapping currents. We have proposed a new understanding for the re-trapping currents in terms of thermal instabilities in different portions of the device. We also find that the superconducting proximity effect and the phase-slip processes play an important role in dictating the temperature dependence of the critical current in the non-hysteretic regime. The proximity effect helps in widening the temperature range of hysteresis-free characteristics. Finally we demonstrate control on temperature-range with hysteresis-free characteristics in two ways: 1) By using a parallel shunt resistor in close vicinity of the device, and 2) by reducing the weak-link width. Thus we get non-hysteretic behavior down to 1.3 K temperature in some of the studied devices. We acknowledge the financial support from CSIR, India as well as CNRS-Institute Neel, Grenoble, France.
NASA Technical Reports Server (NTRS)
Benson, R. F.
1973-01-01
The electron temperatures deduced from Alouette 2 diffuse resonance observations are compared with the temperature obtained from the Alouette 2 cylindrical electrostatic probe experiment using data from 5 mid-to-high latitude telemetry stations. The probe temperature is consistently higher than the diffuse resonance temperature. The average difference ranged from approximately 10% to 40% with the lower values occurring at the lowest altitudes sampled (near 500 km) and at high latitudes (dip latitude greater than 55 deg), and the larger values occurring at high altitudes and lower latitudes. The discrepancy appears to be of geophysical origin since it is dependent on the location of the data sample. The present observations support the view that the often observed radar backscatter - probe electron temperature discrepancy is also of geophysical origin.
NASA Astrophysics Data System (ADS)
Paul, Barnita; Chatterjee, Swastika; Roy, Anushree; Midya, A.; Mandal, P.; Grover, Vinita; Tyagi, A. K.
2017-02-01
In this article, we report negative thermal expansion and spin frustration in hexagonal GdInO3. Rietveld refinements of the x-ray diffraction patterns reveal that the negative thermal expansion in the temperature range of 50-100 K stems from the triangular lattice of Gd3 + ions. The downward deviation of the low-temperature inverse susceptibility (χ-1) versus T plot from the Curie-Weiss law and the large value of the ratio, | θCW|/ TN>28 , where θCW and TN are respectively Curie-Weiss and Neel temperature, indicate a strong spin frustration, which inhibits long-range magnetic ordering down to 1.8 K. Magnetostriction measurements clearly demonstrate a spin-lattice coupling in the system. Low-temperature anomalous phonon softening, as obtained from temperature-dependent Raman measurements, also reveals the same. Our experimental observations are supported by first-principles density functional theory calculations of the electronic and phonon dispersion in GdInO3. The calculations suggest that the GdInO3 lattice is highly frustrated at low temperature. Further, the calculated normal mode frequencies of the Gd-related Γ point phonon modes reveal significant magnetoelastic coupling in this system. The competitive role of magnetic interaction energy and thermal stabilization energy in determining the change in interatomic distances is the possible origin for the negative thermal expansion in GdInO3 over a limited range of temperature.
Marden; Kramer; Frisch
1996-01-01
Thoracic temperatures (Tth) of Libellula pulchella dragonflies during activity in the field were compared between age classes and with laboratory measures of optimal thoracic temperature for flight performance (Tth,opt; a trait that varies during adult maturation in this species). Newly emerged adults (tenerals) had mean Tth values during flight (34.5 °C; range 29-40 °C) that did not differ from their mean Tth,opt (34.6 °C; range 28.5-43.8 °C). Mature adults had higher and more precisely regulated thoracic temperatures (mean Tth 41.7 °C; range 37.5-45.2 °C), which were somewhat lower than their mean Tth,opt (43.6 °C; range 38.7-49.9 °C). Among matures, behaviors requiring the highest levels of flight exertion (aerial copulation; mate guarding; escalated territorial contests) caused an elevation of Tth above that of concurrently sampled individuals engaged in routine flight (mean Tth difference 1.3 °C), which raised mean Tth to a level that was not significantly different from Tth,opt (42.5 versus 43.5 °C). Compared with tenerals, matures spent more time flying, made longer-duration flights and showed a more restricted pattern of daily activity. Sympatric Anax junius dragonflies that regulate Tth endothermically had a uniform pattern of activity across the entire day, i.e. occupied a broader ecological niche than that of L. pulchella. These results support the hypotheses that optimal body temperature evolves to match the elevated body temperatures that occur during exercise and that the ecological benefits of an expanded niche are a secondary benefit rather than a primary selective force during the evolution of homeothermy and high body temperatures.
Temperature Sensitivities of Extracellular Enzyme Vmax and Km Across Thermal Environments
NASA Astrophysics Data System (ADS)
Allison, S. D.; Romero-Olivares, A.; Lu, Y.; Taylor, J.; Treseder, K. K.
2017-12-01
The magnitude and direction of carbon cycle feedbacks under climate warming remain uncertain due to insufficient knowledge about the temperature sensitivity of microbial processes in soil. Enzymatic rates could increase at higher temperatures, but this response is determined by multiple parameters that may change over time if soil microbes adapt to warming. We used the Michaelis-Menten relationship, the Arrhenius relationship, and biochemical transition state theory to construct hypotheses about the responses of extracellular enzyme Vmax and Km to temperature. Based on the Arrhenius relationship, we hypothesized that Vmax and Km would show positive temperature sensitivities. For enzymes from warmer environments, we expected to find lower Vmax, Km, and Km temperature sensitivity but higher Vmax temperature sensitivity. We tested these hypotheses with enzymes from isolates of the filamentous fungus Neurospora discreta collected around the globe and from decomposing leaf litter in a warming experiment in Alaskan boreal forest. Vmax and Km of most Neurospora extracellular enzymes were temperature sensitive with average Vmax Q10 ranging from 1.48 to 2.25 and Km Q10 ranging from 0.71 to 2.80. For both Vmax and Km, there was a tendency for the parameter to correlate negatively with its temperature sensitivity, a pattern predicted by biochemical theory. Also in agreement with theory, Vmax and Km were positively correlated for some enzymes. In contrast, there was little support for biochemical theory when comparing Vmax and Km across thermal environments. There was no relationship between temperature sensitivity of Vmax or Km and mean annual temperature of the isolation site for Neurospora strains. There was some evidence for greater Vmax under experimental warming in Alaskan litter, but the temperature sensitivities of Vmax and Km did not vary with warming as expected. We conclude that relationships among Vmax, Km, and temperature are largely consistent with biochemical theory, and our enzyme data should be useful for parameterizing trait-based models of microbial processes. However, theoretical predictions about adaptation to thermal environment were not supported by our data, suggesting that covarying edaphic and ecological factors may play a dominant role in soil enzyme responses to climate warming.
Characterizing Temperatures of FOXSI-2 Microflares Using RHESSI and AIA Observations
NASA Astrophysics Data System (ADS)
Han, R.; Glesener, L.; Buitrago Casas, J. C.; Lopez, A.; Badman, S.; Krucker, S.
2015-12-01
The second flight of the Focusing Optics X-ray Solar Imager sounding rocket payload (FOXSI-2) was successfully completed on December 11, 2014. FOXSI's direct imaging technology allows it to measure hard X-ray (HXR) emissions from the Sun with superior dynamic range and sensitivity relative to indirect HXR observations. During the December FOXSI-2 flight, several microflares were observed. We wish to characterize the temperature distributions of these microflares using supporting measurements in order to validate the FOXSI spectral response. The temperature distribution of solar plasma is best described by the differential emission measure (DEM), a physical quantity that characterizes the amount of material present in the corona in each temperature range. To determine the DEM, we employ multi-wavelength extreme ultraviolet observations by the Atmospheric Imaging Assembly (SDO/AIA) using a regularization method. We also perform isothermal fitting of thermal X-ray spectra from the Reuven Ramaty Solar Spectroscopic Imager (RHESSI). This poster will show the temperature distribution for each of the December 11 microflares and compare these results with those obtained from FOXSI-2.
de Freitas, Normanda L; Gonçalves, José A S; Innocentini, Murilo D M; Coury, José R
2006-08-25
The performance of double-layered ceramic filters for aerosol filtration at high temperatures was evaluated in this work. The filtering structure was composed of two layers: a thin granular membrane deposited on a reticulate ceramic support of high porosity. The goal was to minimize the high pressure drop inherent of granular structures, without decreasing their high collection efficiency for small particles. The reticulate support was developed using the technique of ceramic replication of polyurethane foam substrates of 45 and 75 pores per inch (ppi). The filtering membrane was prepared by depositing a thin layer of granular alumina-clay paste on one face of the support. Filters had their permeability and fractional collection efficiency analyzed for filtration of an airborne suspension of phosphatic rock in temperatures ranging from ambient to 700 degrees C. Results revealed that collection efficiency decreased with gas temperature and was enhanced with filtration time. Also, the support layer influenced the collection efficiency: the 75 ppi support was more effective than the 45 ppi. Particle collection efficiency dropped considerably for particles below 2 microm in diameter. The maximum collection occurred for particle diameters of approximately 3 microm, and decreased again for diameters between 4 and 8 microm. Such trend was successfully represented by the proposed correlation, which is based on the classical mechanisms acting on particle collection. Inertial impaction seems to be the predominant collection mechanism, with particle bouncing/re-entrainment acting as detachment mechanisms.
NASA Astrophysics Data System (ADS)
Jha, Pardeep K.; Jha, Priyanka A.; Singh, Vikash; Kumar, Pawan; Asokan, K.; Dwivedi, R. K.
2015-01-01
Investigations on the solid solutions (1-x) BiFeO3 - (x) Ba Zr0.025Ti0.975O3 (0.1 ≤ x ≤ 0.3) in the temperature range 300-750 K show colossal permittivity behavior and the occurrence of diffuse phase ferroelectric transition along with frequency dependent anomaly which disappears at temperature ˜450 K. For x = 0.3, these anomalies have been verified through differential scanning calorimetry and dielectric/impedance/conductivity measurements. The occurrence of peak in pyrocurrent (dPs/dT) vs. T plots also supports phase transition. With the increasing x, transition temperature decreases and diffusivity increases. This anomaly is absent at high frequencies (>100 kHz) in conductivity plots, indicating Polomska like surface phase transition, which is supported by modulus study.
NASA Astrophysics Data System (ADS)
Seibel, Brad A.
2013-10-01
Dosidicus gigas is a large, metabolically active squid that migrates across a strong oxygen and temperature gradient in the Eastern Pacific. Here we analyze the oxygen-binding properties of the squid's respiratory protein (hemocyanin, Hc) that facilitate such activity. A high Hc-oxygen affinity, strong temperature dependence, and pronounced pH sensitivity (P50=0.009T2.03, pH 7.4; Bohr coefficient=ΔlogP50/ΔpH=-1.55+0.034T) of oxygen binding facilitate night-time foraging in the upper water column, and support suppressed oxygen demand in hypoxic waters at greater depths. Expanding hypoxia may act to alter the species habitable depth range. This analysis supports the contention that ocean acidification could limit oxygen carrying capacity in squids at warmer temperature leading to reduced activity levels or altered distribution.
Sturm, Marc; Quinten, Sascha; Huber, Christian G.; Kohlbacher, Oliver
2007-01-01
We propose a new model for predicting the retention time of oligonucleotides. The model is based on ν support vector regression using features derived from base sequence and predicted secondary structure of oligonucleotides. Because of the secondary structure information, the model is applicable even at relatively low temperatures where the secondary structure is not suppressed by thermal denaturing. This makes the prediction of oligonucleotide retention time for arbitrary temperatures possible, provided that the target temperature lies within the temperature range of the training data. We describe different possibilities of feature calculation from base sequence and secondary structure, present the results and compare our model to existing models. PMID:17567619
Methods of Measurement of High Air Velocities by the Hot-wire Method
NASA Technical Reports Server (NTRS)
Weske, John R.
1943-01-01
Investigations of strengths of hot wires at high velocities were conducted with platinum, nickel, and tungsten at approximately 200 Degrees Celcius hot-wire temperature. The results appear to disqualify platinum for velocities approaching the sonic range; whereas nickel withstands sound velocity, and tungsten may be used for supersonic velocities under standard atmospheric conditions. Hot wires must be supported by rigid prolongs at high velocities to avoid wire breakage. Resting current measurements for constant temperature show agreement with King's relation.
Metals and Ceramics Division progress report for period ending December 31, 1992
DOE Office of Scientific and Technical Information (OSTI.GOV)
Craig, D.F.; Weir, J.R. Jr.
1993-04-01
This report provides a brief overview of the activities and accomplishments of the division, whose purpose is to provide technical support, primarily in the area of high-temperature materials, for the various technologies being developed by US DOE. Activities range from basic research to industrial research and technology transfer. The division (and the report) is divided into the following: Engineering materials, high-temperature materials, materials science, ceramics, nuclear fuel materials, program activities, collaborative research facilities and technology transfer, and educational programs.
Mazzucato, E; Smith, D R; Bell, R E; Kaye, S M; Hosea, J C; LeBlanc, B P; Wilson, J R; Ryan, P M; Domier, C W; Luhmann, N C; Yuh, H; Lee, W; Park, H
2008-08-15
Measurements with coherent scattering of electromagnetic waves in plasmas of the National Spherical Torus Experiment indicate the existence of turbulent fluctuations in the range of wave numbers k perpendicular rho(e)=0.1-0.4, corresponding to a turbulence scale length nearly equal to the collisionless skin depth. Experimental observations and agreement with numerical results from a linear gyrokinetic stability code support the conjecture that the observed turbulence is driven by the electron-temperature gradient.
Late Paleocene Arctic Ocean shallow-marine temperatures from mollusc stable isotopes
Bice, Karen L.; Arthur, Michael A.; Marincovich, Louie
1996-01-01
Late Paleocene high-latitude (80°N) Arctic Ocean shallow-marine temperatures are estimated from molluscan δ18O time series. Sampling of individual growth increments of two specimens of the bivalve Camptochlamys alaskensis provides a high-resolution record of shell stable isotope composition. The heavy carbon isotopic values of the specimens support a late Paleocene age for the youngest marine beds of the Prince Creek Formation exposed near Ocean Point, Alaska. The oxygen isotopic composition of regional freshwater runoff is estimated from the mean δ18O value of two freshwater bivalves collected from approximately coeval fluviatile beds. Over a 30 – 34‰ range of salinity, values assumed to represent the tolerance of C. alaskensis, the mean annual shallow-marine temperature recorded by these individuals is between 11° and 22°C. These values could represent maximum estimates of the mean annual temperature because of a possible warm-month bias imposed on the average δ18O value by slowing or cessation of growth in winter months. The amplitude of the molluscan δ18O time series probably records most of the seasonality in shallow-marine temperature. The annual temperature range indicated is approximately 6°C, suggesting very moderate high-latitude marine temperature seasonality during the late Paleocene. On the basis of analogy with modern Chlamys species, C. alaskensis probably inhabited water depths of 30–50 m. The seasonal temperature range derived from δ18O is therefore likely to be damped relative to the full range of annual sea surface temperatures. High-resolution sampling of molluscan shell material across inferred growth bands represents an important proxy record of seasonality of marine and freshwater conditions applicable at any latitude. If applied to other regions and time periods, the approach used here would contribute substantially to the paleoclimate record of seasonality.
Effects of suspended sulfates on human health.
French, J G
1975-01-01
Recent evidence from epidemiologic studies conducted in several areas of the United States shows an association of excess risk of asthmatic attacks with elevated levels of suspended sulfates within specific temperature ranges. These findings are disscussed in the context of experimental animal studies which tend to support these observations. PMID:1157797
USDA-ARS?s Scientific Manuscript database
Mechanically purified raw cotton fiber finds a growing range of applications in support of environmental sustainability, but its unique thermal stability, which is important in processes and utilization, is little known. This study shows that at low temperatures (< 300 'C), the accelerated dehydrati...
NASA Astrophysics Data System (ADS)
Moretti, Elisa; Molina, Antonia Infantes; Sponchia, Gabriele; Talon, Aldo; Frattini, Romana; Rodriguez-Castellon, Enrique; Storaro, Loretta
2017-05-01
A study was conducted to investigate the effect of the preparation route of ZrO2 in CuO-CeO2/ZrO2 catalysts for the oxidation of carbon monoxide at low temperature (COX). Four ZrO2 supports were synthetized via either type sol-gel methodology or precipitation. The final Cu-Ce-Zr oxide catalysts were prepared by incipient wetness co-impregnation with copper and cerium solutions (with a loading of 6 wt% of CuO and 20 wt% of CeO2). The catalyst crystalline phases, texture and active species reducibility were determined by XRD, N2 physisorption at -196 °C and H2-TPR, respectively; meanwhile the surface composition and copper-cerium electronic states were studied by XPS. The catalytic activity was evaluated in the oxidation of CO to CO2, in the 40-215 °C temperature range. Catalytic results evidenced that the samples prepared by a sol-gel methodology showed, after the impregnation, a severe decrease of specific surface area and pore volume attributable to a wide degree of pore blockage caused by the presence of metal oxide particles and a collapse of the structure partially burying the active sites. A simple co-impregnation of a zirconia support, obtained through facile and fast precipitation, provided instead a catalyst with very good redox properties and high dispersion of the active phases, which completely oxidizes CO in the range 115-215 °C with T50 of 65 °C. This higher observed activity was ascribed to the formation of a larger fraction of highly dispersed and easily reducible Cu species and ceria nanocrystallites, mainly present as Ce(IV), with an average size of 5 nm.
Comparison Actin- and Glass-Supported Phospholipid Bilayer Diffusion Coefficients
Sterling, Sarah M.; Dawes, Ryan; Allgeyer, Edward S.; Ashworth, Sharon L.; Neivandt, David J.
2015-01-01
The formation of biomimetic lipid membranes has the potential to provide insights into cellular lipid membrane dynamics. The construction of such membranes necessitates not only the utilization of appropriate lipids, but also physiologically relevant substrate/support materials. The substrate materials employed have been shown to have demonstrable effects on the behavior of the overlying lipid membrane, and thus must be studied before use as a model cushion support. To our knowledge, we report the formation and investigation of a novel actin protein-supported lipid membrane. Specifically, inner leaflet lateral mobility of globular actin-supported DMPC (1,2-dimyristoyl-sn-glycero-3-phosphocholine) bilayers, deposited via the Langmuir-Blodgett/Langmuir Schaefer methodology, was investigated by z-scan fluorescence correlation spectroscopy across a temperature range of 20–44°C. The actin substrate was found to decrease the diffusion coefficient when compared to an identical membrane supported on glass. The depression of the diffusion coefficient occurred across all measured temperatures. These results indicated that the actin substrate exerted a direct effect on the fluidity of the lipid membrane and highlighted the fact that the choice of substrate/support is critical in studies of model lipid membranes. PMID:25902434
Feng, Jianmeng; Hu, Xiaokang; Wang, Jie; Wang, Yanmei
2016-10-01
As one of the most important hypotheses on biogeographical distribution, Rapoport's rule has attracted attention around the world. However, it is unclear whether the applicability of the elevational Rapoport's Rule differs between organisms from different biogeographical regions. We used Stevens' method, which uses species diversity and the averaged range sizes of all species within each (100 m) elevational band to explore diversity-elevation, range-elevation, and diversity-range relationships. We compared support for the elevational Rapoport's rule between tropical and temperate species of seed plants in Nepal. Neither tropical nor temperate species supported the predictions of the elevational Rapoport's rule along the elevation gradient of 100-6,000 m a.s.l. for any of the studied relationships. However, along the smaller 1,000-5,000 m a.s.l. gradient (4,300 m a.s.l. for range-elevation relationships) which is thought to be less influenced by boundary effects, we observed consistent support for the rule by tropical species, although temperate species did not show consistent support. The degree of support for the elevational Rapoport's rule may not only be influenced by hard boundary effects, but also by the biogeographical affinities of the focal taxa. With ongoing global warming and increasing variability of temperature in high-elevation regions, tropical taxa may shift upward into higher elevations and expand their elevational ranges, causing the loss of temperate taxa diversity. Relevant studies on the elevational Rapoport's rule with regard to biogeographical affinities may be a promising avenue to further our understanding of this rule.
Glyoxal Oxidation Mechanism: Implications for the Reactions HCO + O2 and OCHCHO + HO2.
Faßheber, Nancy; Friedrichs, Gernot; Marshall, Paul; Glarborg, Peter
2015-07-16
A detailed mechanism for the thermal decomposition and oxidation of the flame intermediate glyoxal (OCHCHO) has been assembled from available theoretical and experimental literature data. The modeling capabilities of this extensive mechanism have been tested by simulating experimental HCO profiles measured at intermediate and high temperatures in previous glyoxal photolysis and pyrolysis studies. Additionally, new experiments on glyoxal pyrolysis and oxidation have been performed with glyoxal and glyoxal/oxygen mixtures in Ar behind shock waves at temperatures of 1285-1760 K at two different total density ranges. HCO concentration-time profiles have been detected by frequency modulation spectroscopy at a wavelength of λ = 614.752 nm. The temperature range of available direct rate constant data of the high-temperature key reaction HCO + O2 → CO + HO2 has been extended up to 1705 K and confirms a temperature dependence consistent with a dominating direct abstraction channel. Taking into account available literature data obtained at lower temperatures, the following rate constant expression is recommended over the temperature range 295 K < T < 1705 K: k1/(cm(3) mol(-1) s(-1)) = 6.92 × 10(6) × T(1.90) × exp(+5.73 kJ/mol/RT). At intermediate temperatures, the reaction OCHCHO + HO2 becomes more important. A detailed reanalysis of previous experimental data as well as more recent theoretical predictions favor the formation of a recombination product in contrast to the formerly assumed dominating and fast OH-forming channel. Modeling results of the present study support the formation of HOCH(OO)CHO and provide a 2 orders of magnitude lower rate constant estimate for the OH channel. Hence, low-temperature generation of chain carriers has to be attributed to secondary reactions of HOCH(OO)CHO.
High Temperature Catalytic Combustion Suppports Final Report CRADA No. TSB-0841-94
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hair, Lucy; Magno, Scott
This Small Business CRADA between LLNL and Catalytica was executed on January 25, 1995. The total estimated cost of this project was 113K. LLNL's contribution was estimated at $50K funded under the DOE/Defense Program Small Business Initiative. Catalytica's in-kind contribution was estimated at 63K. Catalytic combusion catalyst systems operate at temperatures from 600°C to above 1300°C. Catalytica has developed technology that limits the catalyst temperature to below 1000°C. At temperatures in the range of 850 to 1000°C, the thermal stability of the catalyst is an important issue. Typical supports such as stabilized aluminas, hexaluminates, zirconia and stabilized zirconia supports aremore » typically used but lack either thermal stability or other desirable properties. Catalytica had developed a new concept for thermally stable mixed oxide supports but this concept required the preparation of molecularly uniform precursors; that is, prior to high temperature treatment of these materials, the elements that make up the mixed oxide must be as nearly uniform as possible on a molecular level. The technique of sol gel processing appeared to be the preferred technique to make these molecularly uniform precursors, and a cooperative program with LLNL was established to prepare and test the proposed compounds. Catalytica proposed the composition and concentration levels for the materials to be prepared.« less
Dynamic crystallization of silicate melts
NASA Technical Reports Server (NTRS)
Russell, W. J.
1984-01-01
Two types of furnaces with differing temperature range capabilities were used to provide variations in melt temperatures and cooling rates in a study of the effects of heterogeneous nucleation on crystallization. Materials of chondrule composition were used to further understanding of how the disequilibrium features displayed by minerals in rocks are formed. Results show that the textures of natural chondrules were duplicated. It is concluded that the melt history is dominant over cooling rate and composition in controlling texture. The importance of nuclei, which are most readily derived from preexisting crystalline material, support an origin for natural chondrules based on remelting of crystalline material. This would be compatible with a simple, uniform chondrule forming process having only slight variations in thermal histories resulting in the wide range of textures.
Thermal physiology, disease, and amphibian declines on the eastern slopes of the Andes.
Catenazzi, Alessandro; Lehr, Edgar; Vredenburg, Vance T
2014-04-01
Rising temperatures, a widespread consequence of climate change, have been implicated in enigmatic amphibian declines from habitats with little apparent human impact. The pathogenic fungus Batrachochytrium dendrobatidis (Bd), now widespread in Neotropical mountains, may act in synergy with climate change causing collapse in thermally stressed hosts. We measured the thermal tolerance of frogs along a wide elevational gradient in the Tropical Andes, where frog populations have collapsed. We used the difference between critical thermal maximum and the temperature a frog experiences in nature as a measure of tolerance to high temperatures. Temperature tolerance increased as elevation increased, suggesting that frogs at higher elevations may be less sensitive to rising temperatures. We tested the alternative pathogen optimal growth hypothesis that prevalence of the pathogen should decrease as temperatures fall outside the optimal range of pathogen growth. Our infection-prevalence data supported the pathogen optimal growth hypothesis because we found that prevalence of Bd increased when host temperatures matched its optimal growth range. These findings suggest that rising temperatures may not be the driver of amphibian declines in the eastern slopes of the Andes. Zoonotic outbreaks of Bd are the most parsimonious hypothesis to explain the collapse of montane amphibian faunas; but our results also reveal that lowland tropical amphibians, despite being shielded from Bd by higher temperatures, are vulnerable to climate-warming stress. © 2013 Society for Conservation Biology.
Loss of thermal refugia near equatorial range limits.
Lima, Fernando P; Gomes, Filipa; Seabra, Rui; Wethey, David S; Seabra, Maria I; Cruz, Teresa; Santos, António M; Hilbish, Thomas J
2016-01-01
This study examines the importance of thermal refugia along the majority of the geographical range of a key intertidal species (Patella vulgata Linnaeus, 1758) on the Atlantic coast of Europe. We asked whether differences between sun-exposed and shaded microhabitats were responsible for differences in physiological stress and ecological performance and examined the availability of refugia near equatorial range limits. Thermal differences between sun-exposed and shaded microhabitats are consistently associated with differences in physiological performance, and the frequency of occurrence of high temperatures is most probably limiting the maximum population densities supported at any given place. Topographical complexity provides thermal refugia throughout most of the distribution range, although towards the equatorial edges the magnitude of the amelioration provided by shaded microhabitats is largely reduced. Importantly, the limiting effects of temperature, rather than being related to latitude, seem to be tightly associated with microsite variability, which therefore is likely to have profound effects on the way local populations (and consequently species) respond to climatic changes. © 2015 John Wiley & Sons Ltd.
Structural characteristics and properties of the regenerated silk fibroin prepared from formic acid.
Um, I C; Kweon, H Y; Park, Y H; Hudson, S
2001-08-20
Structural characteristics and thermal and solution properties of the regenerated silk fibroin (SF) prepared from formic acid (FU) were compared with those of SF from water (AU). According to the turbidity and shear viscosity measurement, SF formic acid solution was stable and transparent, no molecular aggregations occurred. The sample FU exhibited the beta-sheet structure, while AU random coil conformation using Fourier transform infrared (FTIR), X-ray diffraction (XRD), and differential scanning calorimetry. The effects of methanol treatment on samples were also examined. According to the measurement of crystallinity (XRD) and crystallinity index (FTIR), the concept of long/short-range ordered structure formation was proposed. Long-range ordered crystallites are predominantly formed for methanol treated SF film while SF film cast from formic acid favors the formation of short-range ordered structure. The relaxation temperatures of SF films measured by dynamic thermomechanical analysis supported the above mechanism due to the sensitivity of relaxation temperature on the short-range order.
Factors affecting temperature variation and habitat use in free-ranging diamondback terrapins.
Akins, C D; Ruder, C D; Price, S J; Harden, L A; Gibbons, J W; Dorcas, M E
2014-08-01
Measuring the thermal conditions of aquatic reptiles with temperature dataloggers is a cost-effective way to study their behavior and habitat use. Temperature dataloggers are a particularly useful and informative approach to studying organisms such as the estuarine diamondback terrapin (Malaclemys terrapin) that inhabits a dynamic environment often inaccessible to researchers. We used carapace-mounted dataloggers to measure hourly carapace temperature (Tc) of free-ranging terrapins in South Carolina from October 2007 to 2008 to examine the effects of month, sex, creek site, and tide on Tc and to determine the effects of month, sex, and time of day on terrapin basking frequency. Simultaneous measurements of environmental temperatures (Te; shallow mud, deep mud, water) allowed us to make inferences about terrapin microhabitat use. Terrapin Tc differed significantly among months and creek and between sexes. Terrapin microhabitat use also varied monthly, with shallow mud temperature being the best predictor of Tc November-March and water temperature being the best predictor of Tc April-October. Terrapins basked most frequently in spring and fall and males basked more frequently than females. Our study contributes to a fuller understanding of terrapin thermal biology and provides support for using dataloggers to investigate behavior and habitat use of aquatic ectotherms inhabiting dynamic environments. Copyright © 2014 Elsevier Ltd. All rights reserved.
Thermal dependence of cardiac function in arctic fish: implications of a warming world.
Franklin, Craig E; Farrell, Anthony P; Altimiras, Jordi; Axelsson, Michael
2013-11-15
With the Arctic experiencing one of the greatest and most rapid increases in sea temperatures in modern time, predicting how Arctic marine organisms will respond to elevated temperatures has become crucial for conservation biology. Here, we examined the thermal sensitivity of cardiorespiratory performance for three closely related species of sculpins that inhabit the Arctic waters, two of which, Gymnocanthus tricuspis and Myoxocephalus scorpioides, have adapted to a restricted range within the Arctic, whereas the third species, Myoxocephalus scorpius, has a wider distribution. We tested the hypothesis that the fish restricted to Arctic cold waters would show reduced cardiorespiratory scope in response to an increase in temperature, as compared with the more eurythermal M. scorpius. As expected from their biogeography, M. scorpioides and G. tricuspis maximised cardiorespiratory performance at temperatures between 1 and 4°C, whereas M. scorpius maximised performance over a wider range of temperatures (1-10°C). Furthermore, factorial scope for cardiac output collapsed at elevated temperature for the two high-latitude species, negatively impacting their ability to support aerobically driven metabolic processes. Consequently, these results concurred with our hypothesis, suggesting that the sculpin species restricted to the Arctic are likely to be negatively impacted by increases in ocean temperatures.
Determining the Optimal Design for a New ADR Mechanical Support
NASA Astrophysics Data System (ADS)
Waldvogel, Kelly; Stacey, Gordon; Nikola, Thomas; Parshley, Stephen
2018-01-01
ZEUS-2 is a grating spectrometer that is used to observe emission lines in submillimeter wavelengths. It is capable of detecting redshifted fine structure lines of galaxies over a wide redshift range. ZEUS-2 can observe carbon, nitrogen, and oxygen lines, which will in turn allow for modeling of optically thick molecular clouds, provide information about star temperatures, and help gain insight about the interstellar medium and gases from which stars form. The detections collected by ZEUS-2 can provide a glimpse into star formation in the early universe and improve the current understanding of the star formation process.ZEUS-2 utilizes an Adiabatic Demagnetization Refrigerator (ADR) to cool its detectors to around 100 mK. Copper rods connect the salt pills within the ADR and the mechanical supports. These supports are comprised of three main pieces: a base member, an inner member, and a guard member. On two separate mechanical supports, the Kevlar strands have broken. This led to thermal contact between the three members, preventing the detector from reaching its final operating temperature. It is clear that a replacement mechanical support system is necessary for operation.
Pang, Cheng; Bae, Hyungdae; Gupta, Ashwani; Bryden, Kenneth; Yu, Miao
2013-09-23
We present a micro-electro-mechanical systems (MEMS) based Fabry-Perot (FP) sensor along with an optical system-on-a-chip (SOC) interrogator for simultaneous pressure and temperature sensing. The sensor employs a simple structure with an air-backed silicon membrane cross-axially bonded to a 45° polished optical fiber. This structure renders two cascaded FP cavities, enabling simultaneous pressure and temperature sensing in close proximity along the optical axis. The optical SOC consists of a broadband source, a MEMS FP tunable filter, a photodetector, and the supporting circuitry, serving as a miniature spectrometer for retrieving the two FP cavity lengths. Within the measured pressure and temperature ranges, experimental results demonstrate that the sensor exhibits a good linear response to external pressure and temperature changes.
Selective catalysts and their preparation for catalytic hydrocarbon synthesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iglesia, E.; Vroman, H.; Soled, S.
1991-07-30
This patent describes a method for preparing a supported cobalt catalyst particle. It comprises contacting a support particle with a molten cobalt salt, for a period sufficient to impregnate substantially all of the molten cobalt salt on the support to a depth of less than about 200 {mu}m; drying the supported cobalt salt obtained; reducing the cobalt of the supported cobalt salt to metallic cobalt by heating the salt in the presence of H{sub 2}, wherein the heating is conducted at a rate of less than about 1{degrees} C./min. up to a maximum temperature ranging from about 100{degrees} C. tomore » about 500{degrees} C., to produce a supported cobalt catalyst particle.« less
Wawrzkiewicz-Jałowiecka, Agata; Dworakowska, Beata; Grzywna, Zbigniew J
2017-10-01
Large-conductance, voltage dependent, Ca 2+ -activated potassium channels (BK) are transmembrane proteins that regulate many biological processes by controlling potassium flow across cell membranes. Here, we investigate to what extent temperature (in the range of 17-37°C with ΔT=5°C step) is a regulating parameter of kinetic properties of the channel gating and memory effect in the series of dwell-time series of subsequent channel's states, at membrane depolarization and hyperpolarization. The obtained results indicate that temperature affects strongly the BK channels' gating, but, counterintuitively, it exerts no effect on the long-range correlations, as measured by the Hurst coefficient. Quantitative differences between dependencies of appropriate channel's characteristics on temperature are evident for different regimes of voltage. Examining the characteristics of BK channel activity as a function of temperature allows to estimate the net activation energy (E act ) and changes of thermodynamic parameters (ΔH, ΔS, ΔG) by channel opening. Larger E act corresponds to the channel activity at membrane hyperpolarization. The analysis of entropy and enthalpy changes of closed to open channel's transition suggest the entropy-driven nature of the increase of open state probability during voltage activation and supports the hypothesis about the voltage-dependent geometry of the channel vestibule. Copyright © 2017 Elsevier B.V. All rights reserved.
Rock melting tool with annealer section
Bussod, Gilles Y.; Dick, Aaron J.; Cort, George E.
1998-01-01
A rock melting penetrator is provided with an afterbody that rapidly cools a molten geological structure formed around the melting tip of the penetrator to the glass transition temperature for the surrounding molten glass-like material. An annealing afterbody then cools the glass slowly from the glass transition temperature through the annealing temperature range to form a solid self-supporting glass casing. This allows thermally induced strains to relax by viscous deformations as the molten glass cools and prevents fracturing of the resulting glass liner. The quality of the glass lining is improved, along with its ability to provide a rigid impermeable casing in unstable rock formations.
Blackbody Cavity for Calibrations at 200 to 273 K
NASA Technical Reports Server (NTRS)
Howell, Dane; Ryan, Robert; Ryan, Jim; Henderson, Doug; Clayton, Larry
2004-01-01
A laboratory blackbody cavity has been designed and built for calibrating infrared radiometers used to measure radiant temperatures in the range from about 200 to about 273 K. In this below-room-temperature range, scattering of background infrared radiation from room-temperature surfaces could, potentially, contribute significantly to the spectral radiance of the blackbody cavity, thereby contributing a significant error to the radiant temperature used as the calibration value. The present blackbody cavity is of an established type in which multiple reflections from a combination of conical and cylindrical black-coated walls are exploited to obtain an effective emissivity greater than the emissivity value of the coating material on a flat exposed surface. The coating material in this case is a flat black paint that has an emissivity of approximately of 0.91 in the thermal spectral range and was selected over other, higher-emissivity materials because of its ability to withstand thermal cycling. We found many black coatings cracked and flaked after thermal cycling due to differences in the coefficient of expansion differences. On the basis of theoretical calculations, the effective emissivity is expected to approach 0.999. The cylindrical/conical shell enclosing the cavity is machined from copper, which is chosen for its high thermal conductivity. In use, the shell is oriented vertically, open end facing up, and inserted in a Dewar flask filled with isopropyl alcohol/dry-ice slush. A flange at the open end of the shell is supported by a thermally insulating ring on the lip of the Dewar flask. The slush cools the shell (and thus the black-body cavity) to the desired temperature. Typically, the slush starts at a temperature of about 194 K. The slush is stirred and warmed by bubbling dry air or nitrogen through it, thereby gradually increasing the temperature through the aforementioned calibration range during an interval of several hours. The temperature of the slush is monitored by use of a precise thermocouple probe.
Remarkable support effect on the reactivity of Pt/In2O3/MOx catalysts for methanol steam reforming
NASA Astrophysics Data System (ADS)
Liu, Xin; Men, Yong; Wang, Jinguo; He, Rong; Wang, Yuanqiang
2017-10-01
Effects of supports over Pt/In2O3/MOx catalysts with extremely low loading of Pt (1 wt%) and In2O3 loadings (3 wt%) are investigated for the hydrogen production of methanol steam reforming (MSR) in the temperature range of 250-400 °C. Under practical conditions without the pre-reduction, the 1Pt/3In2O3/CeO2 catalyst shows the highly efficient catalytic performance, achieving almost complete methanol conversion (98.7%) and very low CO selectivity of 2.6% at 325 °C. The supported Pt/In2O3 catalysts are characterized by means of Brunauer-Emmett-Teller (BET) surface area, X-ray diffraction (XRD), high-resolution transmission microscopy (HRTEM), temperature programmed reduction with hydrogen (H2-TPR), CO pulse chemisorption, temperature programmed desorption of methanol and water (CH3OH-TPD and H2O-TPD). These demonstrate that the nature of catalyst support of Pt/In2O3/MOx plays crucial roles in the Pt dispersion associated by the strong interaction among Pt, In2O3 and supporting materials and the surface redox properties at low temperature, and thus affects their capability to activate the reactants and determines the catalytic activity of methanol steam reforming. The superior 1Pt/3In2O3/CeO2 catalyst, exhibiting a remarkable reactivity and stability for 32 h on stream, demonstrates its potential for efficient hydrogen production of methanol steam reforming in mobile and de-centralized H2-fueled PEMFC systems.
High temperature electromagnetic characterization of thermal protection system tile materials
NASA Technical Reports Server (NTRS)
Heil, Garrett G.
1993-01-01
This study investigated the impact of elevated temperatures on the electromagnetic performance of the LI-2200 thermal protection system. A 15-kilowatt CO2 laser was used to heat an LI-2200 specimen to 3000 F while electromagnetic measurements were performed over the frequency range of l9 to 21 GHz. The electromagnetic measurement system consisted of two Dual-Lens Spot-Focusing (DLSF) antennas, a sample support structure, and an HP-8510B vector network analyzer. Calibration of the electromagnetic system was accomplished with a Transmission-Reflection-Line (TRL) procedure and was verified with measurements on a two-layer specimen of known properties. The results of testing indicated that the LI-2200 system's electromagnetic performance is slightly temperature dependent at temperatures up to 3000 F.
Thermal Decomposition Study on CuInSe2 Single Crystals
NASA Astrophysics Data System (ADS)
Chauhan, Sanjaysinh M.; Chaki, Sunil H.; Deshpande, M. P.; Malek, Tasmira J.; Tailor, J. P.
2018-01-01
The thermal analysis of the chemical vapor transport (CVT)-grown CuInSe2 single crystals was carried out by recording the thermogravimetric, differential thermogravimetric and differential thermal analysis curves. All the three thermo-curves were recorded simultaneously by thermal analyzer in the temperature range of ambient to 1080 K in inert nitrogen atmosphere. The thermo-curves were recorded for four heating rates of 5 K \\cdot min^{-1}, 10 K \\cdot min^{-1}, 15 K \\cdot min^{-1} and 20 K \\cdot min^{-1}. The TG curve analysis showed negligible mass loss in the temperature range of ambient to 600 K, stating the sample material to be thermally stable in this temperature range. Above 601 K to the temperature of 1080 K, the sample showed continuous mass loss. The DTG curves showed two peaks in the temperature range of 601 K to 1080 K. The corresponding DTA showed initial minor exothermic nature followed by endothermic nature up to nearly 750 K and above it showed exothermic nature. The initial exothermic nature is due to absorbed water converting to water vapor, whereas the endothermic nature states the absorption of heat by the sample up to nearly 950 K. Above nearly 950 K the exothermic nature is due to the decomposition of sample material. The absorption of heat in the endothermic region is substantiated by corresponding weight loss in TG. The thermal kinetic parameters of the CVT-grown CuInSe2 single crystals were determined employing the non-mechanistic Kissinger relation. The determined kinetic parameters support the observations of the thermo-curves.
Xiao, Ruiyang; Zammit, Ian; Wei, Zongsu; Hu, Wei-Ping; MacLeod, Matthew; Spinney, Richard
2015-11-17
The ubiquitous presence of cyclic volatile methylsiloxanes (cVMS) in the global atmosphere has recently raised environmental concern. In order to assess the persistence and long-range transport potential of cVMS, their second-order rate constants (k) for reactions with hydroxyl radical ((•)OH) in the gas phase are needed. We experimentally and theoretically investigated the kinetics and mechanism of (•)OH oxidation of a series of cVMS, hexamethylcyclotrisiloxane (D3), octamethycyclotetrasiloxane (D4), and decamethycyclopentasiloxane (D5). Experimentally, we measured k values for D3, D4, and D5 with (•)OH in a gas-phase reaction chamber. The Arrhenius activation energies for these reactions in the temperature range from 313 to 353 K were small (-2.92 to 0.79 kcal·mol(-1)), indicating a weak temperature dependence. We also calculated the thermodynamic and kinetic behaviors for reactions at the M06-2X/6-311++G**//M06-2X/6-31+G** level of theory over a wider temperature range of 238-358 K that encompasses temperatures in the troposphere. The calculated Arrhenius activation energies range from -2.71 to -1.64 kcal·mol(-1), also exhibiting weak temperature dependence. The measured k values were approximately an order of magnitude higher than the theoretical values but have the same trend with increasing size of the siloxane ring. The calculated energy barriers for H-atom abstraction at different positions were similar, which provides theoretical support for extrapolating k for other cyclic siloxanes from the number of abstractable hydrogens.
Some recent developments in spacecraft environmental control/life support subsystems
NASA Technical Reports Server (NTRS)
Gillen, R. J.; Olcott, T. M.
1974-01-01
The subsystems considered include a flash evaporator for heat rejection, a regenerable carbon dioxide and humidity control subsystem, an iodinating subsystem for potable water, a cabin contaminant control subsystem, and a wet oxidation subsystem for processing spacecraft wastes. The flash evaporator discussed is a simple unit which efficiently controls life support system temperatures over a wide range of heat loads. For certain advanced spacecraft applications the control of cabin carbon dioxide and humidity can be successfully achieved by a regenerable solid amine subsystem.
Ranging Behaviour of Commercial Free-Range Laying Hens
Chielo, Leonard Ikenna; Pike, Tom; Cooper, Jonathan
2016-01-01
Simple Summary Commercial free-range production has become a significant sector of the fresh egg market due to legislation banning conventional cages and consumer preference for products perceived as welfare friendly, as access to outdoor range can lead to welfare benefits such as greater freedom of movement and enhanced behavioural opportunities. This study investigated dispersal patterns, feather condition and activity of laying hens in three distinct zones of the range area; the apron area near shed; enriched zone 10–50 m from shed; and outer range beyond 50 m, in six flocks of laying hens under commercial free-range conditions varying in size between 4000 and 24,000 hens. Each flock was visited for four days to record number of hens in each zone, their behaviour, feather condition and nearest neighbour distances (NND), as well as record temperature and relative humidity during the visit. Temperature and relative humidity varied across the study period in line with seasonal variations and influenced the use of range with fewer hens out of shed as temperature fell or relative humidity rose. On average, 12.5% of the hens were observed on the range and most of these hens were recorded in the apron zone as hen density decreased rapidly with increasing distance from the shed. Larger flocks appeared to have a lower proportion of hens on range. The hens used the range more in the early morning followed by a progressive decrease through to early afternoon. The NND was greatest in the outer range and decreased towards the shed. Feather condition was generally good and hens observed in the outer range had the best overall feather condition. Standing, pecking, walking and foraging were the most commonly recorded behaviours and of these, standing occurred most in the apron whereas walking and foraging behaviours were recorded most in the outer range. This study supported the findings of previous studies that reported few hens in the range and greater use of areas closer to the shed in free-range flocks. This study suggests that hens in the outer range engaged more in walking and foraging activities and showed signs of better welfare than those closer to the shed. Abstract In this study, the range use and behaviour of laying hens in commercial free-range flocks was explored. Six flocks were each visited on four separate days and data collected from their outdoor area (divided into zones based on distance from shed and available resources). These were: apron (0–10 m from shed normally without cover or other enrichments); enriched belt (10–50 m from shed where resources such as manmade cover, saplings and dust baths were provided); and outer range (beyond 50 m from shed with no cover and mainly grass pasture). Data collection consisted of counting the number of hens in each zone and recording behaviour, feather condition and nearest neighbour distance (NND) of 20 birds per zone on each visit day. In addition, we used techniques derived from ecological surveys to establish four transects perpendicular to the shed, running through the apron, enriched belt and outer range. Number of hens in each 10 m × 10 m quadrat was recorded four times per day as was the temperature and relative humidity of the outer range. On average, 12.5% of hens were found outside. Of these, 5.4% were found in the apron; 4.3% in the enriched zone; and 2.8% were in the outer range. This pattern was supported by data from quadrats, where the density of hens sharply dropped with increasing distance from shed. Consequently, NND was greatest in the outer range, least in the apron and intermediate in the enriched belt. Hens sampled in outer range and enriched belts had better feather condition than those from the apron. Standing, ground pecking, walking and foraging were the most commonly recorded activities with standing and pecking most likely to occur in the apron, and walking and foraging more common in the outer range. Use of the outer range declined with lower temperatures and increasing relative humidity, though use of apron and enriched belt was not affected by variation in these measures. These data support previous findings that outer range areas tend to be under-utilized in commercial free-range flocks and suggest positive relationships between range use, feather condition and increased behavioural opportunities and decline in the use of range in cold and/or damp conditions. PMID:27128946
Report on FY17 testing in support of integrated EPP-SMT design methods development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yanli .; Jetter, Robert I.; Sham, T. -L.
The goal of the proposed integrated Elastic Perfectly-Plastic (EPP) and Simplified Model Test (SMT) methodology is to incorporate a SMT data-based approach for creep-fatigue damage evaluation into the EPP methodology to avoid the separate evaluation of creep and fatigue damage and eliminate the requirement for stress classification in current methods; thus greatly simplifying evaluation of elevated temperature cyclic service. The purpose of this methodology is to minimize over-conservatism while properly accounting for localized defects and stress risers. To support the implementation of the proposed methodology and to verify the applicability of the code rules, thermomechanical tests continued in FY17. Thismore » report presents the recent test results for Type 1 SMT specimens on Alloy 617 with long hold times, pressurization SMT on Alloy 617, and two-bar thermal ratcheting test results on SS316H at the temperature range of 405 °C to 705 °C. Preliminary EPP strain range analysis on the two-bar tests are critically evaluated and compared with the experimental results.« less
Wood, James L.
1996-01-01
il-heat-flux data were collected at a study site adjacent to a low-level radioactive-waste burial facility near Beatty, Nevada, for calendar year 1992. Data were collected in support of ongoing studies to estimate the potential for downward movement of radionuclides into the unsaturated sediments beneath waste-burial trenches at the arid facility. Data collected for the whole year include air temperature, relative humidity, vapor pressure, incident solar radiation, windspeed, wind direction, barometric pressure, and precipitation. Net radiation, soil temperature, and soil-heat flux data also were collected for part of the year. The data are summarized in tables and graphs.Instrumentation used at the site is discussed. The discussion includes the type, reported accuracy, and the mounting height of each sensor.During 1992, the hourly and 20-minute mean air temperatures ranged from -8.6 degrees Celsius, in January, to 42.3 degrees Celsius, in July. Hourly and 20-minute mean relative humidity ranged from 2 percent to 100 percent. Hourly and 20-minute mean vapor pressures ranged from 0.07 to 2.47 kilopascals. Daily maximum incident solar radiation values ranged from 115 to 1,021 watts per square meter. Daily maximum net radiation values ranged from 195 to 632 watts per square meter. Daily mean windspeed ranged from 0.6 to 8.1 meters per second. Wind direction was primarily from the northwest in fall, winter, and spring and was from the southeast, southwest, or northwest during the summer. Barometric pressures ranged from 100.16 kilopascals to 103.38 kilopascals. Total precipitation for 1992 was 165.3 millimeters, with more than 50 percent in February and March. Daily mean soil temperatures at a depth from 2 to 6 centimeters ranged from 10.7 to 39.1 degrees Celsius between June and October. Daily mean soil-heat flux at a dep*h of 8 centimeters ranged from -13.4 to 12.2 watts per square meter during the same period.
The energetic and carbon economic origins of leaf thermoregulation.
Michaletz, Sean T; Weiser, Michael D; McDowell, Nate G; Zhou, Jizhong; Kaspari, Michael; Helliker, Brent R; Enquist, Brian J
2016-08-22
Leaf thermoregulation has been documented in a handful of studies, but the generality and origins of this pattern are unclear. We suggest that leaf thermoregulation is widespread in both space and time, and originates from the optimization of leaf traits to maximize leaf carbon gain across and within variable environments. Here we use global data for leaf temperatures, traits and photosynthesis to evaluate predictions from a novel theory of thermoregulation that synthesizes energy budget and carbon economics theories. Our results reveal that variation in leaf temperatures and physiological performance are tightly linked to leaf traits and carbon economics. The theory, parameterized with global averaged leaf traits and microclimate, predicts a moderate level of leaf thermoregulation across a broad air temperature gradient. These predictions are supported by independent data for diverse taxa spanning a global air temperature range of ∼60 °C. Moreover, our theory predicts that net carbon assimilation can be maximized by means of a trade-off between leaf thermal stability and photosynthetic stability. This prediction is supported by globally distributed data for leaf thermal and photosynthetic traits. Our results demonstrate that the temperatures of plant tissues, and not just air, are vital to developing more accurate Earth system models.
Isolation and Identification of Oedogonium Species and Strains for Biomass Applications
Lawton, Rebecca J.; de Nys, Rocky; Skinner, Stephen; Paul, Nicholas A.
2014-01-01
Freshwater macroalgae from the genus Oedogonium have recently been targeted for biomass applications; however, strains of Oedogonium for domestication have not yet been identified. Therefore, the objective of this study was to compare the performance of isolates of Oedogonium collected from multiple geographic locations under varying environmental conditions. We collected and identified wild-type isolates of Oedogonium from three geographic locations in Eastern Australia, then measured the growth of these isolates under a range of temperature treatments corresponding to ambient conditions in each geographic location. Our sampling identified 11 isolates of Oedogonium that could be successfully maintained under culture conditions. It was not possible to identify most isolates to species level using DNA barcoding techniques or taxonomic keys. However, there were considerable genetic and morphological differences between isolates, strongly supporting each being an identifiable species. Specific growth rates of species were high (>26% day−1) under 7 of the 9 temperature treatments (average tested temperature range: 20.9–27.7°C). However, the variable growth rates of species under lower temperature treatments demonstrated that some were better able to tolerate lower temperatures. There was evidence for local adaptation under lower temperature treatments (winter conditions), but not under higher temperature treatments (summer conditions). The high growth rates we recorded across multiple temperature treatments for the majority of species confirm the suitability of this diverse genus for biomass applications and the domestication of Oedogonium. PMID:24603705
Wu, Heng-Liang; Tong, Yujin; Peng, Qiling; Li, Na; Ye, Shen
2016-01-21
The phase transition behaviors of a supported bilayer of dipalmitoylphosphatidyl-choline (DPPC) have been systematically evaluated by in situ sum frequency generation (SFG) vibrational spectroscopy and atomic force microscopy (AFM). By using an asymmetric bilayer composed of per-deuterated and per-protonated monolayers, i.e., DPPC-d75/DPPC and a symmetric bilayer of DPPC/DPPC, we were able to probe the molecular structural changes during the phase transition process of the lipid bilayer by SFG spectroscopy. It was found that the DPPC bilayer is sequentially melted from the top (adjacent to the solution) to bottom leaflet (adjacent to the substrate) over a wide temperature range. The conformational ordering of the supported bilayer does not decrease (even slightly increases) during the phase transition process. The conformational defects in the bilayer can be removed after the complete melting process. The phase transition enthalpy for the bottom leaflet was found to be approximately three times greater than that for the top leaflet, indicating a strong interaction of the lipids with the substrate. The present SFG and AFM observations revealed similar temperature dependent profiles. Based on these results, the temperature-induced structural changes in the supported lipid bilayer during its phase transition process are discussed in comparison with previous studies.
McLendon, Christopher; Opalko, F Jeffrey; Illangkoon, Heshan I; Benner, Steven A
2015-03-01
Ethers are proposed here as the repeating backbone linking units in linear genetic biopolymers that might support Darwinian evolution in hydrocarbon oceans. Hydrocarbon oceans are found in our own solar system as methane mixtures on Titan. They may be found as mixtures of higher alkanes (propane, for example) on warmer hydrocarbon-rich planets in exosolar systems ("warm Titans"). We report studies on the solubility of several short polyethers in propane over its liquid range (from 85 to 231 K, or -188 °C to -42 °C). These show that polyethers are reasonably soluble in propane at temperatures down to ca. 200 K. However, their solubilities drop dramatically at still lower temperatures and become immeasurably low below 170 K, still well above the ∼ 95 K in Titan's oceans. Assuming that a liquid phase is essential for any living system, and genetic biopolymers must dissolve in that biosolvent to support Darwinism, these data suggest that we must look elsewhere to identify linear biopolymers that might support genetics in Titan's surface oceans. However, genetic molecules with polyether backbones may be suitable to support life in hydrocarbon oceans on warm Titans, where abundant organics and environments lacking corrosive water might make it easier for life to originate.
2006-11-01
disinfection) was tested using soil microcosms and respirometry to determine diesel range and total organic compound degradation. These tests were...grease) such as benzo(a)pyrene were detected above chronic (long term-measured in years) screening levels. Levels of diesel and oil range organics... bioremediation , and toxicity of liquid and solid samples. The Comput-OX 4R is a 4 reactor unit with no stirring modules or temperature controlled water bath
Temperature dependence of the plastic scintillator detector for DAMPE
NASA Astrophysics Data System (ADS)
Wang, Zhao-Min; Yu, Yu-Hong; Sun, Zhi-Yu; Yue, Ke; Yan, Duo; Zhang, Yong-Jie; Zhou, Yong; Fang, Fang; Huang, Wen-Xue; Chen, Jun-Ling
2017-01-01
The Plastic Scintillator Detector (PSD) is one of the main sub-detectors in the DArk Matter Particle Explorer (DAMPE) project. It will be operated over a large temperature range from -10 to 30 °C, so the temperature effect of the whole detection system should be studied in detail. The temperature dependence of the PSD system is mainly contributed by the three parts: the plastic scintillator bar, the photomultiplier tube (PMT), and the Front End Electronics (FEE). These three parts have been studied in detail and the contribution of each part has been obtained and discussed. The temperature coefficient of the PMT is -0.320(±0.033)%/°C, and the coefficient of the plastic scintillator bar is -0.036(±0.038)%/°C. This result means that after subtracting the FEE pedestal, the variation of the signal amplitude of the PMT-scintillator system due to temperature mainly comes from the PMT, and the plastic scintillator bar is not sensitive to temperature over the operating range. Since the temperature effect cannot be ignored, the temperature dependence of the whole PSD has been also studied and a correction has been made to minimize this effect. The correction result shows that the effect of temperature on the signal amplitude of the PSD system can be suppressed. Supported by Strategic Priority Research Program on Space Science of the Chinese Academy of Sciences (XDA04040202-3) and Youth Innovation Promotion Association, CAS
Important Variation in Vibrational Properties of LiFePO4 and FePO4 Induced by Magnetism
Seifitokaldani, Ali; Gheribi, Aïmen E.; Phan, Anh Thu; Chartrand, Patrice; Dollé, Mickaël
2016-01-01
A new thermodynamically self-consistent (TSC) method, based on the quasi-harmonic approximation (QHA), is used to obtain the Debye temperatures of LiFePO4 (LFP) and FePO4 (FP) from available experimental specific heat capacities for a wide temperature range. The calculated Debye temperatures show an interesting critical and peculiar behavior so that a steep increase in the Debye temperatures is observed by increasing the temperature. This critical behavior is fitted by the critical function and the adjusted critical temperatures are very close to the magnetic phase transition temperatures in LFP and FP. Hence, the critical behavior of the Debye temperatures is correlated with the magnetic phase transitions in these compounds. Our first-principle calculations support our conjecture that the change in electronic structures, i.e. electron density of state and electron localization function, and consequently the change in thermophysical properties due to the magnetic transition may be the reason for the observation of this peculiar behavior of the Debye temperatures. PMID:27604551
Important Variation in Vibrational Properties of LiFePO4 and FePO4 Induced by Magnetism
NASA Astrophysics Data System (ADS)
Seifitokaldani, Ali; Gheribi, Aïmen E.; Phan, Anh Thu; Chartrand, Patrice; Dollé, Mickaël
2016-09-01
A new thermodynamically self-consistent (TSC) method, based on the quasi-harmonic approximation (QHA), is used to obtain the Debye temperatures of LiFePO4 (LFP) and FePO4 (FP) from available experimental specific heat capacities for a wide temperature range. The calculated Debye temperatures show an interesting critical and peculiar behavior so that a steep increase in the Debye temperatures is observed by increasing the temperature. This critical behavior is fitted by the critical function and the adjusted critical temperatures are very close to the magnetic phase transition temperatures in LFP and FP. Hence, the critical behavior of the Debye temperatures is correlated with the magnetic phase transitions in these compounds. Our first-principle calculations support our conjecture that the change in electronic structures, i.e. electron density of state and electron localization function, and consequently the change in thermophysical properties due to the magnetic transition may be the reason for the observation of this peculiar behavior of the Debye temperatures.
Important Variation in Vibrational Properties of LiFePO4 and FePO4 Induced by Magnetism.
Seifitokaldani, Ali; Gheribi, Aïmen E; Phan, Anh Thu; Chartrand, Patrice; Dollé, Mickaël
2016-09-08
A new thermodynamically self-consistent (TSC) method, based on the quasi-harmonic approximation (QHA), is used to obtain the Debye temperatures of LiFePO4 (LFP) and FePO4 (FP) from available experimental specific heat capacities for a wide temperature range. The calculated Debye temperatures show an interesting critical and peculiar behavior so that a steep increase in the Debye temperatures is observed by increasing the temperature. This critical behavior is fitted by the critical function and the adjusted critical temperatures are very close to the magnetic phase transition temperatures in LFP and FP. Hence, the critical behavior of the Debye temperatures is correlated with the magnetic phase transitions in these compounds. Our first-principle calculations support our conjecture that the change in electronic structures, i.e. electron density of state and electron localization function, and consequently the change in thermophysical properties due to the magnetic transition may be the reason for the observation of this peculiar behavior of the Debye temperatures.
NASA Astrophysics Data System (ADS)
Kulikov, M. Y.; Krasil'nikov, A. A.; Shvetsov, A. A.; Mukhin, D. N.; Fedoseev, L. I.; Ryskin, V. G.; Belikovich, M. V.; Karashtin, D. A.; Kukin, L. M.; Feigin, A. M.
2012-04-01
At the present time we carry out the experimental campaign aimed to study the response of middle atmosphere on current sudden stratospheric warming above Nizhny Novgorod, Russia (56N, 44E). The equipment consists of two room-temperature radiometers which specially have been designed to detect emission ozone line at 110.8 GHz and atmospheric radiation in the frequency range 52.5 - 54.5 GHz accordingly. Two digital fast Fourier transform spectroanalyzers developed by "Acqiris" are employed for signal analysis in the intermediate frequency range 0.05-1 GHz with the effective resolution 61 KHz. For retrieval vertical profiles of ozone and temperature from radiometric data we apply novel method based on Bayesian approach to inverse problems which assumes a construction of probability distribution of the characteristics of retrieved profiles with taking into account measurement noise and available a priori information about possible distributions of ozone and temperature in the middle atmosphere. Here we are going to introduce the fist results of the campaign in comparison with Aura MLS data and temperature maps from High Resolution Transport Model MIMOSA. The work was done under support of the RFBR (projects 11-05-97050 and 12-05-00999).
The physical and functional thermal sensitivity of bacterial chemoreceptors.
Frank, Vered; Koler, Moriah; Furst, Smadar; Vaknin, Ady
2011-08-19
The bacterium Escherichia coli exhibits chemotactic behavior at temperatures ranging from approximately 20 °C to at least 42 °C. This behavior is controlled by clusters of transmembrane chemoreceptors made from trimers of dimers that are linked together by cross-binding to cytoplasmic components. By detecting fluorescence energy transfer between various components of this system, we studied the underlying molecular behavior of these receptors in vivo and throughout their operating temperature range. We reveal a sharp modulation in the conformation of unclustered and clustered receptor trimers and, consequently, in kinase activity output. These modulations occurred at a characteristic temperature that depended on clustering and were lower for receptors at lower adaptational states. However, in the presence of dynamic adaptation, the response of kinase activity to a stimulus was sustained up to 45 °C, but sensitivity notably decreased. Thus, this molecular system exhibits a clear thermal sensitivity that emerges at the level of receptor trimers, but both receptor clustering and adaptation support the overall robust operation of the system at elevated temperatures. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
O'Steen, M. L.; Fedler, F.; Hauenstein, R. J.
1999-10-01
Reflection high-energy electron diffraction (RHEED) and laterally spatially resolved high resolution x-ray diffraction (HRXRD) have been used to identify and characterize rf plasma-assisted molecular-beam epitaxial growth factors which strongly affect the efficiency of In incorporation into InxGa1-xN epitaxial materials. HRXRD results for InxGa1-xN/GaN superlattices reveal a particularly strong dependence of average alloy composition x¯ upon both substrate growth temperature and incident V/III flux ratio. For fixed flux ratio, results reveal a strong thermally activated behavior, with over an order-of-magnitude decrease in x¯ with increasing growth temperature within the narrow range 590-670 °C. Within this same range, a further strong dependence upon V/III flux ratio is observed. The decreased In incorporation at elevated substrate temperatures is tentatively attributed to In surface-segregation and desorption processes. RHEED observations support this segregation/desorption interpretation to account for In loss.
Mensonides, Femke I. C.; Brul, Stanley; Klis, Frans M.; Hellingwerf, Klaas J.; Teixeira de Mattos, M. Joost
2005-01-01
This paper reports on physiological and molecular responses of Saccharomyces cerevisiae to heat stress conditions. We observed that within a very narrow range of culture temperatures, a shift from exponential growth to growth arrest and ultimately to cell death occurred. A detailed analysis was carried out of the accumulation of trehalose and the activation of the protein kinase C1 (PKC1) (cell integrity) pathway in both glucose- and ethanol-grown cells upon temperature upshifts within this narrow range of growth temperatures. It was observed that the PKC1 pathway was hardly activated in a tps1 mutant that is unable to accumulate any trehalose. Furthermore, it was observed that an increase of the extracellular osmolarity during a continuous heat stress prevented the activation of the pathway. The results of these analyses support our hypothesis that under heat stress conditions the activation of the PKC1 pathway is triggered by an increase in intracellular osmolarity, due to the accumulation of trehalose, rather than by the increase in temperature as such. PMID:16085846
Miniature Sensor Probe for O2, CO2, and H2O Monitoring in Portable Life Support Systems
NASA Technical Reports Server (NTRS)
Delgado, Jesus; Chambers, Antja
2013-01-01
A miniature sensor probe, composed of four sensors which monitor the partial pressure of O2, CO2, H2O, and temperature, designed to operate in the portable life support system (PLSS), has been demonstrated. The probe provides an important advantage over existing technology in that it is able to operate reliably while wet. These luminescence-based fiber optic sensors consist of an indicator chemistry immobilized in a polymeric film, whose emission lifetime undergoes a strong change upon a reversible interaction with the target gas. Each sensor includes chemistry specifically sensitive to one target parameter. All four sensors are based on indicator chemistries that include luminescent dyes from the same chemical family, and therefore exhibit similar photochemical properties, which allow performing measurements of all the sensors by a single, compact, low-power optoelectronic unit remotely connected to the sensors by an electromagnetic interference-proof optical fiber cable. For space systems, using these miniature sensor elements with remote optoelectronics provides unmatched design flexibility for measurements in highly constrained volume systems such as the PLSS. A 10 mm diameter and 15 mm length prototype multiparameter probe was designed, fabricated, tested, and demonstrated over a wide operational range of gas concentration, humidity, and temperature relevant to operation in the PLSS. The sensors were evaluated for measurement range, precision, accuracy, and response time in temperatures ranging from 50 aF-150 aF and relative humidity from dry to 100% RH. Operation of the sensors in water condensation conditions was demonstrated wherein the sensors not only tolerated liquid water but actually operated while wet.
NASA Technical Reports Server (NTRS)
Green, Robert D.; Kissock, Barbara I.; Bennett, William R.
2010-01-01
This report documents the results of two system related analyses to support the Exploration Technology Development Program (ETDP) Energy Storage Project. The first study documents a trade study to determine the optimum Li-ion battery cell capacity for the ascent stage battery for the Altair lunar lander being developed under the Constellation Systems program. The battery cell capacity for the Ultra High Energy (UHE) Li-ion battery initially chosen as the target for development was 35 A-hr; this study concludes that a 19.4 A-hr cell capacity would be more optimum from a minimum battery mass perspective. The second study in this report is an assessment of available low temperature Li-ion battery cell performance data to determine whether lowering the operating temperature range of the Li-ion battery, in a rover application, could save overall system mass by eliminating thermal control system mass normally needed to maintain battery temperature within a tighter temperature limit than electronics or other less temperature sensitive components. The preliminary assessment for this second study indicates that the reduction in the thermal control system mass is negated by an increase in battery mass to compensate for the loss in battery capacity due to lower temperature operating conditions.
Evolution of short range order in Ar: Liquid to glass and solid transitions-A computational study
NASA Astrophysics Data System (ADS)
Shor, Stanislav; Yahel, Eyal; Makov, Guy
2018-04-01
The evolution of the short range order (SRO) as a function of temperature in a Lennard-Jones model liquid with Ar parameters was determined and juxtaposed with thermodynamic and kinetic properties obtained as the liquid was cooled (heated) and transformed between crystalline solid or glassy states and an undercooled liquid. The Lennard-Jones system was studied by non-equilibrium molecular dynamics simulations of large supercells (approximately 20000 atoms) rapidly cooled or heated at selected quenching rates and at constant pressure. The liquid to solid transition was identified by discontinuities in the atomic volume and molar enthalpy; the glass transition temperature range was identified from the temperature dependence of the self-diffusion. The SRO was studied within the quasi-crystalline model (QCM) framework and compared with the Steinhardt bond order parameters. Within the QCM it was found that the SRO evolves from a bcc-like order in the liquid through a bct-like short range order (c/a=1.2) in the supercooled liquid which persists into the glass and finally to a fcc-like ordering in the crystalline solid. The variation of the SRO that results from the QCM compares well with that obtained with Steinhardt's bond order parameters. The hypothesis of icosahedral order in liquids and glasses is not supported by our results.
Influence of Molecular Weight on the Mechanical Performance of a Thermoplastic Glassy Polyimide
NASA Technical Reports Server (NTRS)
Nicholson, Lee M.; Whitley, Karen S.; Gates, Thomas S.; Hinkley, Jeffrey A.
1999-01-01
Mechanical Testing of an advanced thermoplastic polyimide (LaRC-TM-SI) with known variations in molecular weight was performed over a range of temperatures below the glass transition temperature. The physical characterization, elastic properties and notched tensile strength were all determined as a function of molecular weight and test temperature. It was shown that notched tensile strength is a strong function of both temperature and molecular weight, whereas stiffness is only a strong function of temperature. A critical molecular weight (Mc) was observed to occur at a weight-average molecular weight (Mw) of approx. 22000 g/mol below which, the notched tensile strength decreases rapidly. This critical molecular weight transition is temperature-independent. Furthermore, inelastic analysis showed that low molecular weight materials tended to fail in a brittle manner, whereas high molecular weight materials exhibited ductile failure. The microstructural images supported these findings.
On nonstationarity and antipersistency in global temperature series
NASA Astrophysics Data System (ADS)
KäRner, O.
2002-10-01
Statistical analysis is carried out for satellite-based global daily tropospheric and stratospheric temperature anomaly and solar irradiance data sets. Behavior of the series appears to be nonstationary with stationary daily increments. Estimating long-range dependence between the increments reveals a remarkable difference between the two temperature series. Global average tropospheric temperature anomaly behaves similarly to the solar irradiance anomaly. Their daily increments show antipersistency for scales longer than 2 months. The property points at a cumulative negative feedback in the Earth climate system governing the tropospheric variability during the last 22 years. The result emphasizes a dominating role of the solar irradiance variability in variations of the tropospheric temperature and gives no support to the theory of anthropogenic climate change. The global average stratospheric temperature anomaly proceeds like a 1-dim random walk at least up to 11 years, allowing good presentation by means of the autoregressive integrated moving average (ARIMA) models for monthly series.
HyspIRI Measurements of Agricultural Systems in California: 2013-2015
NASA Astrophysics Data System (ADS)
Townsend, P. A.; Kruger, E. L.; Singh, A.; Jablonski, A. D.; Kochaver, S.; Serbin, S.
2015-12-01
During 2013-2015, NASA collected high-altitude AVIRIS hyperspectral and MASTER thermal infrared imagery across large swaths of California in support of the HyspIRI planning and prototyping activities. During these campaigns, we made extensive measurements of photosynthetic capacity—Vcmax and Jmax—and their temperature sensitivities across a range of sites, crop types and environmental conditions. Our objectives were to characterize the physiological diversity of agricultural vegetation in California and develop generalizable algorithms to map these physiological parameters across several image acquisitions, regardless of crop type and canopy temperatures. We employed AVIRIS imagery to scale and estimate the vegetation parameters and MASTER surface temperature to provide context, since physiology responds exponentially to leaf temperature. We demonstrate a segmentation approach to disentangling leaf and background soil temperature, and then illustrate our retrievals of Vcmax and Jmax during overflight conditions across a large number of the 2013-2015 HyspIRI acquisitions. Our results show >80% repeatability (R2) across split sample jack-knifing, with RMSEs within 15% of the range of our data. The approach was robust across crop types (e.g., grape, almond, pistachio, avocado, pomegranate, oats, peppers, citrus, date palm, alfalfa, melons, beets) and leaf temperatures. A global imaging spectroscopy system such as HyspIRI will offer unprecedented ability to monitor agricultural crop performance under widely varying surface conditions.
Iron active electrode and method of making same
Jackovitz, John F.; Seidel, Joseph; Pantier, Earl A.
1982-10-26
An iron active electrode and method of preparing same in which iron sulfate is calcined in an oxidizing atmosphere at a temperature in the range of from about 600.degree. C. to about 850.degree. C. for a time sufficient to produce an iron oxide with a trace amount of sulfate. The calcined material is loaded into an electrically conductive support and then heated in a reducing atmosphere at an elevated temperature to produce activated iron having a trace amount of sulfide which is formed into an electrode plate.
Bentley, Michael T.; Oi, Faith M.; Gezan, Salvador A.; Hahn, Daniel A.
2015-01-01
Nylanderia fulva (Mayr), the tawny crazy ant, is an invasive pest established in Florida and several other Gulf Coast states. In their invasive ranges in the Southeastern USA, large N. fulva populations have reduced species abundance, even displacing another invasive ant, Solenopsis invicta (Buren). In North Florida, N. fulva populations survive winter temperatures that reach below freezing for extended periods. However, the shallow littoral debris used by N. fulva for nest construction offers little insulation to brood and reproductives when exposed to freezing temperatures. Field populations of N. fulva in North Florida were observed tunneling below ground, a previously undescribed behavior. Other invasive ants exhibit similar subterranean tunneling behavior as a means of thermoregulation. To test the hypothesis that N. fulva has the capacity to construct subterranean tunnels across a range of ecologically relevant temperatures, tunneling performance for N. fulva and S. invicta, another invasive ant that tunnels extensively, were compared at four temperatures (15.0, 18.0, 20.0, and 22.0 °C). Overall, N. fulva tunneled significantly less than S. invicta. Nylanderia fulva tunneled furthest at warmer temperatures whereas S. invicta tunneled furthest at cooler temperatures. However, N. fulva constructed subterranean tunnels at all temperatures evaluated. These data support the hypothesis that N. fulva is capable of tunneling in temperatures as low as 15.0 °C, confirming that this ant can also perform a behavior that is used by other ants for cold avoidance. PMID:26463409
Bentley, Michael T; Oi, Faith M; Gezan, Salvador A; Hahn, Daniel A
2015-07-23
Nylanderia fulva (Mayr), the tawny crazy ant, is an invasive pest established in Florida and several other Gulf Coast states. In their invasive ranges in the Southeastern USA, large N. fulva populations have reduced species abundance, even displacing another invasive ant, Solenopsis invicta (Buren). In North Florida, N. fulva populations survive winter temperatures that reach below freezing for extended periods. However, the shallow littoral debris used by N. fulva for nest construction offers little insulation to brood and reproductives when exposed to freezing temperatures. Field populations of N. fulva in North Florida were observed tunneling below ground, a previously undescribed behavior. Other invasive ants exhibit similar subterranean tunneling behavior as a means of thermoregulation. To test the hypothesis that N. fulva has the capacity to construct subterranean tunnels across a range of ecologically relevant temperatures, tunneling performance for N. fulva and S. invicta, another invasive ant that tunnels extensively, were compared at four temperatures (15.0, 18.0, 20.0, and 22.0 °C). Overall, N. fulva tunneled significantly less than S. invicta. Nylanderia fulva tunneled furthest at warmer temperatures whereas S. invicta tunneled furthest at cooler temperatures. However, N. fulva constructed subterranean tunnels at all temperatures evaluated. These data support the hypothesis that N. fulva is capable of tunneling in temperatures as low as 15.0 °C, confirming that this ant can also perform a behavior that is used by other ants for cold avoidance.
NASA Technical Reports Server (NTRS)
Cowen, Jonathan; Hepp, Aloysius F.
2016-01-01
Fisher-Tröpsch synthesis (FTS) is a century-old gas-to-liquid (GTL) technology that commonly employs cobalt (Co, on an oxide support) or iron (supported or not) species catalysts. It has been well established that the activity of the Co catalyst depends directly upon the number of surface Co atoms. The addition of promoter (mainly noble) metals has been widely utilized to increase the fraction of Co that is available for surface catalysis. Direct synthesis of Co nanoparticles is a possible alternative approach; our preliminary synthesis and characterization efforts are described. Materials were characterized by various transmission microscopies and energy dispersive spectroscopy. Tri-n-octylphosphine oxide (TOPO) and dicobalt octacarbonyl were heated under argon to a temperature of 180 deg with constant stirring for 1 hr. Quenching the reaction in toluene produced Co-containing nanoparticles with a diameter of 5 to 10 nm. Alternatively, an alumina support (SBA-200 Al2O3) was added; the reaction was further stirred and the temperature was decreased to 140 deg to reduce the rate of further growth/ripening of the nucleated Co nanoparticles. A typical size of Co-containing NPs was also found to be in the range of 5 to 10 nm. This can be contrasted with a range of 50 to 200 nm for conventionally-produced Co-Al2O3 Fischer-Tröpsch catalysts. This method shows great potential for production of highly dispersed catalysts that are either supported or unsupported.
NASA Astrophysics Data System (ADS)
Lenderink, Geert; Barbero, Renaud; Loriaux, Jessica; Fowler, Hayley
2017-04-01
Present-day precipitation-temperature scaling relations indicate that hourly precipitation extremes may have a response to warming exceeding the Clausius-Clapeyron (CC) relation; for The Netherlands the dependency on surface dew point temperature follows two times the CC relation corresponding to 14 % per degree. Our hypothesis - as supported by a simple physical argument presented here - is that this 2CC behaviour arises from the physics of convective clouds. So, we think that this response is due to local feedbacks related to the convective activity, while other large scale atmospheric forcing conditions remain similar except for the higher temperature (approximately uniform warming with height) and absolute humidity (corresponding to the assumption of unchanged relative humidity). To test this hypothesis, we analysed the large-scale atmospheric conditions accompanying summertime afternoon precipitation events using surface observations combined with a regional re-analysis for the data in The Netherlands. Events are precipitation measurements clustered in time and space derived from approximately 30 automatic weather stations. The hourly peak intensities of these events again reveal a 2CC scaling with the surface dew point temperature. The temperature excess of moist updrafts initialized at the surface and the maximum cloud depth are clear functions of surface dew point temperature, confirming the key role of surface humidity on convective activity. Almost no differences in relative humidity and the dry temperature lapse rate were found across the dew point temperature range, supporting our theory that 2CC scaling is mainly due to the response of convection to increases in near surface humidity, while other atmospheric conditions remain similar. Additionally, hourly precipitation extremes are on average accompanied by substantial large-scale upward motions and therefore large-scale moisture convergence, which appears to accelerate with surface dew point. This increase in large-scale moisture convergence appears to be consequence of latent heat release due to the convective activity as estimated from the quasi-geostrophic omega equation. Consequently, most hourly extremes occur in precipitation events with considerable spatial extent. Importantly, this event size appears to increase rapidly at the highest dew point temperature range, suggesting potentially strong impacts of climatic warming.
NASA Astrophysics Data System (ADS)
Yamamoto, Yusaku; Suzuki, Atsushi; Tsutsumi, Naoki; Katagiri, Masaki; Yamashita, Shohei; Niwa, Yasuhiro; Katayama, Misaki; Inada, Yasuhiro
2018-02-01
The chemical states of Ni species were systematically investigated using an in situ XAFS technique for a series of SiO2-supported Ni catalysts with different Ni particle sizes. The Ni particles were refined by varying the Ni loading in the range between 0.10 and 5 wt% and by adding citric acid into the precursor solution. An in situ observation cell for fluorescence-yield XAFS measurements was developed for the dilute Ni catalysts. The chemical state of the supported Ni species converted between Ni(0) and NiO, and no other stable species were formed during the temperature-programmed oxidation and reduction processes. Refinement of the Ni particles resulted in decreasing the oxidation temperature and increasing the reduction temperature. These shifts were explained by the affinity of NiO to SiO2, and more effective stabilization was thus anticipated for flattened small NiO particles with an increased contact area. In addition, the inhomogeneous distribution of small Ni particles observed for dilute catalysts was explained in terms of the precursor solution volume when nuclei of the precursor compound precipitated on SiO2 during the drying process.
Comparison of [corrected] actin- and glass-supported phospholipid bilayer diffusion coefficients.
Sterling, Sarah M; Dawes, Ryan; Allgeyer, Edward S; Ashworth, Sharon L; Neivandt, David J
2015-04-21
The formation of biomimetic lipid membranes has the potential to provide insights into cellular lipid membrane dynamics. The construction of such membranes necessitates not only the utilization of appropriate lipids, but also physiologically relevant substrate/support materials. The substrate materials employed have been shown to have demonstrable effects on the behavior of the overlying lipid membrane, and thus must be studied before use as a model cushion support. To our knowledge, we report the formation and investigation of a novel actin protein-supported lipid membrane. Specifically, inner leaflet lateral mobility of globular actin-supported DMPC (1,2-dimyristoyl-sn-glycero-3-phosphocholine) bilayers, deposited via the Langmuir-Blodgett/Langmuir Schaefer methodology, was investigated by z-scan fluorescence correlation spectroscopy across a temperature range of 20-44°C. The actin substrate was found to decrease the diffusion coefficient when compared to an identical membrane supported on glass. The depression of the diffusion coefficient occurred across all measured temperatures. These results indicated that the actin substrate exerted a direct effect on the fluidity of the lipid membrane and highlighted the fact that the choice of substrate/support is critical in studies of model lipid membranes. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Kvenvolden, K.A.; Claypool, G.E.
1980-01-01
Carbon dioxide from a submarine seep in Norton Sound carries a minor component of gas- and gasoline-range hydrocarbons. The molecular and isotopic compositions of the hydrocarbon gases and the presence of gasoline-range hydrocarbons indicate that these molecules are derived from thermal alteration of marine and/or nonmarine organic matter buried within Norton basin. The gasoline-range hydrocarbon distribution suggests that the hydrocarbon mixture is an immature petroleum-like condensate of lower temperature origin than normal crude oil. The submarine seep provides a natural example in support of a carbon dioxide solution transport mechanism thought to be operative in the migration of hydrocarbons in certain reservoirs.-Authors
Fristoe, Trevor S; Burger, Joseph R; Balk, Meghan A; Khaliq, Imran; Hof, Christian; Brown, James H
2015-12-29
The extent to which different kinds of organisms have adapted to environmental temperature regimes is central to understanding how they respond to climate change. The Scholander-Irving (S-I) model of heat transfer lays the foundation for explaining how endothermic birds and mammals maintain their high, relatively constant body temperatures in the face of wide variation in environmental temperature. The S-I model shows how body temperature is regulated by balancing the rates of heat production and heat loss. Both rates scale with body size, suggesting that larger animals should be better adapted to cold environments than smaller animals, and vice versa. However, the global distributions of ∼9,000 species of terrestrial birds and mammals show that the entire range of body sizes occurs in nearly all climatic regimes. Using physiological and environmental temperature data for 211 bird and 178 mammal species, we test for mass-independent adaptive changes in two key parameters of the S-I model: basal metabolic rate (BMR) and thermal conductance. We derive an axis of thermal adaptation that is independent of body size, extends the S-I model, and highlights interactions among physiological and morphological traits that allow endotherms to persist in a wide range of temperatures. Our macrophysiological and macroecological analyses support our predictions that shifts in BMR and thermal conductance confer important adaptations to environmental temperature in both birds and mammals.
Volcanic explosion clouds - Density, temperature, and particle content estimates from cloud motion
NASA Technical Reports Server (NTRS)
Wilson, L.; Self, S.
1980-01-01
Photographic records of 10 vulcanian eruption clouds produced during the 1978 eruption of Fuego Volcano in Guatemala have been analyzed to determine cloud velocity and acceleration at successive stages of expansion. Cloud motion is controlled by air drag (dominant during early, high-speed motion) and buoyancy (dominant during late motion when the cloud is convecting slowly). Cloud densities in the range 0.6 to 1.2 times that of the surrounding atmosphere were obtained by fitting equations of motion for two common cloud shapes (spheres and vertical cylinders) to the observed motions. Analysis of the heat budget of a cloud permits an estimate of cloud temperature and particle weight fraction to be made from the density. Model results suggest that clouds generally reached temperatures within 10 K of that of the surrounding air within 10 seconds of formation and that dense particle weight fractions were less than 2% by this time. The maximum sizes of dense particles supported by motion in the convecting clouds range from 140 to 1700 microns.
Integrated modeling of temperature and rotation profiles in JET ITER-like wall discharges
NASA Astrophysics Data System (ADS)
Rafiq, T.; Kritz, A. H.; Kim, Hyun-Tae; Schuster, E.; Weiland, J.
2017-10-01
Simulations of 78 JET ITER-like wall D-D discharges and 2 D-T reference discharges are carried out using the TRANSP predictive integrated modeling code. The time evolved temperature and rotation profiles are computed utilizing the Multi-Mode anomalous transport model. The discharges involve a broad range of conditions including scans over gyroradius, collisionality, and values of q95. The D-T reference discharges are selected in anticipation of the D-T experimental campaign planned at JET in 2019. The simulated temperature and rotation profiles are compared with the corresponding experimental profiles in the radial range from the magnetic axis to the ρ = 0.9 flux surface. The comparison is quantified by calculating the RMS deviations and Offsets. Overall, good agreement is found between the profiles produced in the simulations and the experimental data. It is planned that the simulations obtained using the Multi-Mode model will be compared with the simulations using the TGLF model. Research supported in part by the US, DoE, Office of Sciences.
Evidence for intertwined superfluid and density wave order in two dimensional 4He
NASA Astrophysics Data System (ADS)
Saunders, John
2015-03-01
We report the identification of a new state of quantum matter with intertwined superfluid and density wave order in a system of two dimensional bosons subject to a triangular lattice potential. Using a torsional oscillator we have measured the response of the second atomic layer of 4He adsorbed on the surface of graphite over a wide temperature range down to 2 mK. Superfluidity is observed over a narrow range of film densities, emerging suddenly and collapsing towards a quantum critical point, near to layer completion where a Mott insulating phase is predicted to form. The unusual temperature dependence of the superfluid density in the T --> 0 limit and the absence of a clear superfluid onset temperature are explained, self-consistently, by an ansatz for the excitation spectrum, reflecting density wave order, and a quasi-condensate wavefunction breaking both gauge and translational symmetry. In collaboration with Jan Nyeki, Anastasia Phillis, Andrew Ho, Derek Lee, Piers Coleman, Jeevak Parpia, Brian Cowan. Supported by EPSRC (U.K) EP/H048375/1.
NASA Astrophysics Data System (ADS)
Weiss, Monika; Thatje, Sven; Heilmayer, Olaf
2010-06-01
Phenotypic plasticity is an important but often ignored ability that enables organisms, within species-specific physiological limits, to respond to gradual or sudden extrinsic changes in their environment. In the marine realm, the early ontogeny of decapod crustaceans is among the best known examples to demonstrate a temperature-dependent phenotypic response. Here, we present morphometric results of larvae of the hairy crab Cancer setosus, the embryonic development of which took place at different temperatures at two different sites (Antofagasta, 23°45' S; Puerto Montt, 41°44' S) along the Chilean Coast. Zoea I larvae from Puerto Montt were significantly larger than those from Antofagasta, when considering embryonic development at the same temperature. Larvae from Puerto Montt reared at 12 and 16°C did not differ morphometrically, but sizes of larvae from Antofagasta kept at 16 and 20°C did, being larger at the colder temperature. Zoea II larvae reared in Antofagasta at three temperatures (16, 20, and 24°C) showed the same pattern, with larger larvae at colder temperatures. Furthermore, larvae reared at 24°C, showed deformations, suggesting that 24°C, which coincides with temperatures found during strong EL Niño events, is indicative of the upper larval thermal tolerance limit. C. setosus is exposed to a wide temperature range across its distribution range of about 40° of latitude. Phenotypic plasticity in larval offspring does furthermore enable this species to locally respond to the inter-decadal warming induced by El Niño. Morphological plasticity in this species does support previously reported energetic trade-offs with temperature throughout early ontogeny of this species, indicating that plasticity may be a key to a species’ success to occupy a wide distribution range and/or to thrive under highly variable habitat conditions.
When do Indians feel hot? Internet searches indicate seasonality suppresses adaptation to heat
NASA Astrophysics Data System (ADS)
Singh, Tanya; Siderius, Christian; Van der Velde, Ype
2018-05-01
In a warming world an increasing number of people are being exposed to heat, making a comfortable thermal environment an important need. This study explores the potential of using Regional Internet Search Frequencies (RISF) for air conditioning devices as an indicator for thermal discomfort (i.e. dissatisfaction with the thermal environment) with the aim to quantify the adaptation potential of individuals living across different climate zones and at the high end of the temperature range, in India, where access to health data is limited. We related RISF for the years 2011–2015 to daily daytime outdoor temperature in 17 states and determined at which temperature RISF for air conditioning starts to peak, i.e. crosses a ‘heat threshold’, in each state. Using the spatial variation in heat thresholds, we explored whether people continuously exposed to higher temperatures show a lower response to heat extremes through adaptation (e.g. physiological, behavioural or psychological). State-level heat thresholds ranged from 25.9 °C in Madhya Pradesh to 31.0 °C in Orissa. Local adaptation was found to occur at state level: the higher the average temperature in a state, the higher the heat threshold; and the higher the intra-annual temperature range (warmest minus coldest month) the lower the heat threshold. These results indicate there is potential within India to adapt to warmer temperatures, but that a large intra-annual temperature variability attenuates this potential to adapt to extreme heat. This winter ‘reset’ mechanism should be taken into account when assessing the impact of global warming, with changes in minimum temperatures being an important factor in addition to the change in maximum temperatures itself. Our findings contribute to a better understanding of local heat thresholds and people’s adaptive capacity, which can support the design of local thermal comfort standards and early heat warning systems.
Three-dimensional tracking solar energy concentrator and method for making same
NASA Technical Reports Server (NTRS)
Miller, C. G.; Pohl, J. G. (Inventor)
1977-01-01
A three dimensional tracking solar energy concentrator, consisting of a stretched aluminized polymeric membrane supported by a hoop, was presented. The system is sturdy enough to withstand expected windage forces and precipitation. It can provide the high temperature output needed by central station power plants for power production in the multi-megawatt range.
Henry's law constants for dimethylsulfide in freshwater and seawater
NASA Technical Reports Server (NTRS)
Dacey, J. W. H.; Wakeham, S. G.; Howes, B. L.
1984-01-01
Distilled water and several waters of varying salinity were subjected, over a 0-32 C temperature range, to measurements for Henry's law constants for dimethylsulfide. Values for distilled water and seawater of the solubility parameters A and C are obtained which support the concept that the concentration of dimethylsulfide in the atmosphere is far from equilibrium with seawater.
NASA Astrophysics Data System (ADS)
Shekhar, M. S.; Devi, Usha; Dash, S. K.; Singh, G. P.; Singh, Amreek
2018-04-01
The current trends in diurnal temperature range, maximum temperature, minimum temperature, mean temperature, and sun shine hours over different ranges and altitudes of Western Himalaya during winter have been studied. Analysis of 25 years of data shows an increasing trend in diurnal temperature range over all the ranges and altitudes of Western Himalaya during winter, thereby confirming regional warming of the region due to present climate change and global warming. Statistical studies show significant increasing trend in maximum temperature over all the ranges and altitudes of Western Himalaya. Minimum temperature shows significant decreasing trend over Pir Panjal and Shamshawari range and significant increasing trend over higher altitude of Western Himalaya. Similarly, sunshine hours show significant decreasing trend over Karakoram range. There exists strong positive correlation between diurnal temperature range and maximum temperature for all the ranges and altitudes of Western Himalaya. Strong negative correlation exists between diurnal temperature range and minimum temperature over Shamshawari and Great Himalaya range and lower altitude of Western Himalaya. Sunshine hours show strong positive correlation with diurnal temperature range over Pir Panjal and Great Himalaya range and lower and higher altitudes.
The Cooling History and Structure of the Ordinary Chondrite Parent Bodies
NASA Technical Reports Server (NTRS)
Benoit, P. H.; Sears, D. W. G.
1996-01-01
Most major meteorite classes exhibit significant ranges of metamorphism. The effects of metamorphism have been extensively characterized, but the heat source(s) and the metamorphic environment are unknown. Proposed beat sources include Al-26, Fe-60, electromagnetic induction, and impact. It is typically assumed that metamorphism occurred in parent bodies of some sort, but it uncertain whether these bodies were highly structured ("onion skins") or were chaotic mixes of material ("rubble piles"). The lack of simple trends of metallographic cooling rates with petrologic type has been considered supportive of both concepts. In this study, we use induced thermoluminescence (TL) as an indicator of thermal history. The TL of ordinary chondrites is produced by sodic feldspar, and the induced TL peak temperature is related to its crystallographic order/disorder. Ordered feldspar has TL peak temperatures of approx. 120 C, and disordered feldspar has TL peak temperatures of approx. 220 C. While ordered feldspar can be easily disordered in the laboratory by heating above 650 C and is easily quenched in the disordered form, producing ordered feldspar requires cooling at geologic cooling rates. We have measured the induced TL properties of 101 equilibrated ordinary chondrites, including 49 H, 29 L, and 23 LL chondrites. For the H chondrites there is an apparent trend of decreasing induced TL peak temperature with increasing petrologic type. H4 chondrites exhibit a tight range of TL peak temperatures, 190 C - 200 C, while H6 chondrites exhibit TL peak temperatures between 180 C and 190 C. H5 chondrites cover the range between H4 and H6, and also extend up to 210 C. Similar results are obtained for LL chondfiles and most L6 chondrites have lower induced TL peak temperatures than L5 chondrites.
Polaron-electron assisted giant dielectric dispersion in SrZrO{sub 3} high-k dielectric
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borkar, Hitesh; Barvat, Arun; Pal, Prabir
2016-06-07
The SrZrO{sub 3} is a well known high-k dielectric constant (∼22) and high optical bandgap (∼5.8 eV) material and one of the potential candidates for future generation nanoelectronic logic elements (8 nm node technology) beyond silicon. Its dielectric behavior is fairly robust and frequency independent till 470 K; however, it suffers a strong small-polaron based electronic phase transition (T{sub e}) linking 650 to 750 K. The impedance spectroscopy measurements revealed the presence of conducting grains and grain boundaries at elevated temperature which provide energetic mobile charge carriers with activation energy in the range of 0.7 to 1.2 eV supporting the oxygen ions and proton conduction.more » X-ray photoemission spectroscopy measurements suggest the presence of weak non-stoichiometric O{sup 2−} anions and hydroxyl species bound to different sites at the surface and bulk. These thermally activated charge carriers at elevated temperature significantly contribute to the polaronic based dielectric anomaly and conductivity. Our dielectric anomaly supports pseudo phase transition due to high degree of change in ZrO{sub 6} octahedral angle in the temperature range of 650–750 K, where electron density and phonon vibration affect the dielectric and conductivity properties.« less
High-temperature fcc phase of Pr: Negative thermal expansion and intermediate valence state
NASA Astrophysics Data System (ADS)
Kuznetsov, A. Yu.; Dmitriev, V. P.; Bandilet, O. I.; Weber, H.-P.
2003-08-01
A high-temperature angle-dispersive synchrotron radiation diffraction study has revealed the double hexagonal-close-packed-to-face-centered-cubic (dhcp-to-fcc) transformation in the Pr metal occurring martensitically between 575 and 1035 K. The high-temperature fcc phase shows a negative thermal expansion in the range 600 800 K, attributed to the 4f-electron delocalization. A phenomenological theory is developed, which explains consistently the observed effect in terms of the mean valence variation of the metal as a function of temperature; it also predicts the existence of an isostructural phase transition and of a critical end point of a gas-liquid type in compressed Pr. The analysis of published data on P-T variation of conductivity of Pr supports this prediction.
Compilation of reinforced carbon-carbon transatlantic abort landing arc jet test results
NASA Technical Reports Server (NTRS)
Milhoan, James D.; Pham, Vuong T.; Yuen, Eric H.
1993-01-01
This document consists of the entire test database generated to support the Reinforced Carbon-Carbon Transatlantic Abort Landing Study. RCC components used for orbiter nose cap and wing leading edge thermal protection were originally designed to have a multi-mission entry capability of 2800 F. Increased orbiter range capability required a predicted increase in excess of 3300 F. Three test series were conducted. Test series #1 used ENKA-based RCC specimens coated with silicon carbide, treated with tetraethyl orthosilicate, sealed with Type A surface enhancement, and tested at 3000-3400 F with surface pressure of 60-101 psf. Series #2 used ENKA- or AVTEX-based RCC, with and without silicon carbide, Type A or double Type AA surface enhancement, all impregnated with TEOS, and at temperatures from 1440-3350 F with pressures from 100-350 psf. Series #3 tested ENKA-based RCC, with and without silicon carbide coating. No specimens were treated with TEOS or sealed with Type A. Surface temperatures ranged from 2690-3440 F and pressures ranged from 313-400 psf. These combined test results provided the database for establishing RCC material single-mission-limit temperature and developing surface recession correlations used to predict mass loss for abort conditions.
NASA Astrophysics Data System (ADS)
Hodell, David A.; Turchyn, Alexandra V.; Wiseman, Camilla J.; Escobar, Jaime; Curtis, Jason H.; Brenner, Mark; Gilli, Adrian; Mueller, Andreas D.; Anselmetti, Flavio; Ariztegui, Daniel; Brown, Erik T.
2012-01-01
We applied a new method to reconstruct paleotemperature in the tropics during the last deglaciation by measuring oxygen isotopes of co-occurring gypsum hydration water and biogenic carbonate in sediment cores from two lakes on the Yucatan Peninsula. Oxygen and hydrogen isotope values of interstitial and gypsum hydration water indicate that the crystallization water preserves the isotopic signal of the lake water, and has not undergone post-depositional isotopic exchange with sediment pore water. The estimated lake water δ18O is combined with carbonate δ18O to calculate paleotemperature. Three paired measurements of 1200-yr-old gypsum and gastropod aragonite from Lake Chichancanab, Mexico, yielded a mean temperature of 26 °C (range 23-29.5 °C), which is consistent with the mean and range of mean annual temperatures (MAT) in the region today. Paired measurements of ostracods, gastropods, and gypsum hydration water samples were measured in cores from Lake Petén Itzá, Guatemala, spanning the Late Glacial and early Holocene period (18.5-10.4 ka). The lowest recorded temperatures occurred at the start of Heinrich Stadial (HS) 1 at 18.5 ka. Inferred temperatures from benthic ostracods ranged from 16 to 20 °C during HS 1, which is 6-10 °C cooler than MAT in the region today, whereas temperatures derived from shallow-water gastropods were generally warmer (20-25 °C), reflecting epilimnetic temperatures. The derived temperatures support previous findings of greater tropical cooling on land in Central America during the Late Glacial than indicated by nearby marine records. Temperature increased in two steps during the last deglaciation. The first occurred during the Bolling-Allerod (B-A; from 14.7 to 13 ka) when temperature rose to 20-24 °C towards the end of this period. The second step occurred at 10.4 ka near the beginning of the Holocene when ostracod-inferred temperature rose to 26 °C, reflecting modern hypolimnetic temperature set during winter, whereas gastropod-derived temperature attained 30 °C, reflecting modern summer epilimnetic temperature.
Land Surface Modeling and Data Assimilation to Support Physical Precipitation Retrievals for GPM
NASA Technical Reports Server (NTRS)
Peters-Lidard, Christa D.; Tian. Yudong; Kumar, Sujay; Geiger, James; Choudhury, Bhaskar
2010-01-01
Objective: The objective of this proposal is to provide a routine land surface modeling and data assimilation capability for GPM in order to provide global land surface states that are necessary to support physical precipitation retrieval algorithms over land. It is well-known that surface emission, particularly over the range of frequencies to be included in GPM, is sensitive to land surface states, including soil properties, vegetation type and greenness, soil moisture, surface temperature, and snow cover, density, and grain size. Therefore, providing a robust capability to routinely provide these critical land states is essential to support GPM-era physical retrieval algorithms over land.
Steenbergen, Krista G; Gaston, Nicola
2013-10-07
First-principles Born-Oppenheimer molecular dynamics simulations of small gallium clusters, including parallel tempering, probe the distinction between cluster and molecule in the size range of 7-12 atoms. In contrast to the larger sizes, dynamic measures of structural change at finite temperature demonstrate that Ga7 and Ga8 do not melt, suggesting a size limit to melting in gallium exists at 9 atoms. Analysis of electronic structure further supports this size limit, additionally demonstrating that a covalent nature cannot be identified for clusters larger than the gallium dimer. Ga9, Ga10 and Ga11 melt at greater-than-bulk temperatures, with no evident covalent character. As Ga12 represents the first small gallium cluster to melt at a lower-than-bulk temperature, we examine the structural properties of each cluster at finite temperature in order to probe both the origins of greater-than-bulk melting, as well as the significant differences in melting temperatures induced by a single atom addition. Size-sensitive melting temperatures can be explained by both energetic and entropic differences between the solid and liquid phases for each cluster. We show that the lower-than-bulk melting temperature of the 12-atom cluster can be attributed to persistent pair bonding, reminiscent of the pairing observed in α-gallium. This result supports the attribution of greater-than-bulk melting in gallium clusters to the anomalously low melting temperature of the bulk, due to its dimeric structure.
Ahn, Ho-Geun; Lee, Hwan-Gyu; Chung, Min-Chul; Park, Kwon-Pil; Kim, Ki-Joong; Kang, Byeong-Mo; Jeong, Woon-Jo; Jung, Sang-Chul; Lee, Do-Jin
2016-02-01
In this study, titanium chips (TC) generated from industrial facilities was utilized as TiO2 support for hydrogenation of carbon dioxide (CO2) to methyl alcohol (CH3OH) over Cu-based catalysts. Nano-sized CuO and ZnO catalysts were deposited on TiO2 support using a co-precipitation (CP) method (CuO-ZnO/TiO2), where the thermal treatment of TC and the particle size of TiC2 are optimized on CO2 conversion under different reaction temperature and contact time. Direct hydrogenation of CO2 to CH3OH over CuO-ZnO/TiO2 catalysts was achieved and the maximum selectivity (22%) and yield (18.2%) of CH3OH were obtained in the range of reaction temperature 210-240 degrees C under the 30 bar. The selectivity was readily increased by increasing the flow rate, which does not affect much to the CO2 conversion and CH3OH yield.
NASA Astrophysics Data System (ADS)
Bai, M.; Miskowiec, A.; Wang, S.-K.; Taub, H.; Jenkins, T.; Tyagi, M.; Neumann, D. A.; Hansen, F. Y.
2010-03-01
Bilayer lipid membranes supported on a solid surface are attractive model systems for understanding the structure and dynamics of more complex biological membranes that form the outer boundary of living cells. We have recently demonstrated the feasibility of using quasielastic neutron scattering to study on a ˜1 ns time scale the diffusion of water bound to single-supported bilayer lipid membranes. Two different membrane samples characterized by AFM were investigated: protonated DMPC + D2O and tail-deuterated DMPC + H2O. Both fully hydrated membranes were deposited onto SiO2-coated Si(100) substrates. Measurements of elastic neutron intensity as a function of temperature on the High Flux Backscattering Spectrometer at NIST reveal features in the diffusive motion of water that have not been observed previously using multilayer membrane stacks. On slow cooling, the elastic intensity shows sharp step-like increases in the temperature range 265 to 272 K that we tentatively interpret as successive mobile-to-immobile transitions of water bound to the membrane.
Coherent changes of wintertime surface air temperatures over North Asia and North America.
Yu, Bin; Lin, Hai
2018-03-29
The surface temperature variance and its potential change with global warming are most prominent in winter over Northern Hemisphere mid-high latitudes. Consistent wintertime surface temperature variability has been observed over large areas in Eurasia and North America on a broad range of time scales. However, it remains a challenge to quantify where and how the coherent change of temperature anomalies occur over the two continents. Here we demonstrate the coherent change of wintertime surface temperature anomalies over North Asia and the central-eastern parts of North America for the period from 1951 to 2015. This is supported by the results from the empirical orthogonal function analysis of surface temperature and temperature trend anomalies over the Northern Hemisphere extratropical lands and the timeseries analysis of the regional averaged temperature anomalies over North Asia and the Great Plains and Great Lakes. The Asian-Bering-North American (ABNA) teleconnection provides a pathway to connect the regional temperature anomalies over the two continents. The ABNA is also responsible for the decadal variation of the temperature relationship between North Asia and North America.
NASA Astrophysics Data System (ADS)
Leonard, E. M.; Laabs, B. J.; Refsnider, K. A.; Plummer, M. A.; Jacobsen, R. E.; Wollenberg, J. A.
2010-12-01
Global climate model (GCM) simulations of the last glacial maximum (LGM) in the western United States predict changes in atmospheric circulation and storm tracks that would have resulted in significantly less-than-modern precipitation in the Northwest and northern Rockies, and significantly more-than-modern precipitation in the Southwest and southern Rockies. Model simulations also suggest that late Pleistocene pluvial lakes in the intermontane West may have modified local moisture regimes in areas immediately downwind. In this study, we present results of the application of a coupled energy/mass balance and glacier-flow model (Plummer and Phillips, 2003) to reconstructed paleoglaciers in Rocky Mountains of Utah, New Mexico, Colorado, and Wyoming to assess the changes from modern climate that would have been necessary to sustain each glacier in mass-balance equilibrium at its LGM extent. Results demonstrate that strong west-to-east and north-to-south gradients in LGM precipitation, relative to present, would be required if a uniform LGM temperature depression with respect to modern is assumed across the region. At an assumed 7oC temperature depression, approximately modern precipitation would have been necessary to support LGM glaciation in the Colorado Front Range, significantly less than modern precipitation to support glaciation in the Teton Range, and almost twice modern precipitation to sustain glaciers in the Wasatch and Uinta ranges of Utah and the New Mexico Sangre de Cristo Range. The observed west-to-east (Utah-to-Colorado) LGM moisture gradient is consistent with precipitation enhancement from pluvial Lake Bonneville, decreasing with distance downwind from the lake. The north-to-south (Wyoming-to-New Mexico) LGM moisture gradient is consistent with a southward LGM displacement of the mean winter storm track associated with the winter position of the Pacific Jet Stream across the western U.S. Our analysis of paleoglacier extents in the Rocky Mountain region supports the results of GCM simulations of western U.S. precipitation distribution during the LGM, and suggests that this approach provides a practical means of testing such hypotheses about large-scale paleoclimate patterns. Finally, we note that most GCM results indicate greater LGM temperature depression in the northern and eastern portions of the study region than in its southern and western portions - which would necessitate LGM precipitation differences even greater than those determined based on an assumed uniform temperature depression.
Kobey, Robert L.; Montooth, Kristi L.
2013-01-01
SUMMARY Survival at cold temperatures is a complex trait, primarily because of the fact that the physiological cause of injury may differ across degrees of cold exposure experienced within the lifetime of an ectothermic individual. In order to better understand how chill-sensitive insects experience and adapt to low temperatures, we investigated the physiological basis for cold survival across a range of temperature exposures from −4 to 6°C in five genetic lines of the fruit fly Drosophila melanogaster. Genetic effects on cold survival were temperature dependent and resulted in a significant genotype–temperature interaction for survival across cold temperature exposures that differ by as little as 2°C. We investigated desiccation as a potential mechanism of injury across these temperature exposures. Flies were dehydrated following exposures near 6°C, whereas flies were not dehydrated following exposures near −4°C. Furthermore, decreasing humidity during cold exposure decreased survival, and increasing humidity during cold exposure increased survival at 6°C, but not at −4°C. These results support the conclusion that in D. melanogaster there are multiple physiological mechanisms of cold-induced mortality across relatively small differences in temperature, and that desiccation contributes to mortality for exposures near 6°C but not for subzero temperatures. Because D. melanogaster has recently expanded its range from tropical to temperate latitudes, the complex physiologies underlying cold tolerance are likely to be important traits in the recent evolutionary history of this fruit fly. PMID:23197100
Lu, Zhou; Hebert, Vincent R; Miller, Glenn C
2017-02-01
Temperature is a major environmental factor influencing land surface volatilization at the time of agricultural field fumigation. Cooler fumigation soil temperatures relevant to Pacific Northwest (PNW) application practices with metam sodium/potassium should result in appreciably reduced methyl isothiocyanate (MITC) emission rates, thus minimizing off target movement and bystander inhalation exposure. Herein, a series of laboratory controlled flow-through soil column assessments were performed evaluating MITC emissions over the range of cooler temperatures (2-13°C). Assessments were also conducted at the maximum allowed label application temperature of 32°C. All assessments were conducted at registration label-specified field moisture capacity, and no more than 50% cumulative MITC loss was observed over the 2-day post-fumigation timeframe. Three-fold reductions in MITC peak fluxes at cooler PNW application temperatures were observed compared to the label maximum temperature. This study supports current EPA metam sodium/potassium label language that indicates surface fumigations during warmer soil conditions should be discouraged.
Temperature dependence of laser induced insulator-metal transition in VO2
NASA Astrophysics Data System (ADS)
Wang, Siming; Bar-Ad, Shimshon; Ramirez, Juan Gabriel; Huppert, Dan; Schuller, Ivan K.
2013-03-01
We performed optical pump-probe experiments on VO2 thin films with low laser fluence at temperatures ranging across the insulator-metal transition (IMT). At room temperature, the reflectivity of VO2 increases in the first 400-500 fs when pumped by 150 fs laser pulses. An exponential decay of the reflectivity is observed in the following 1 ps. Interestingly, as the temperature approaches the transition temperature (340 K), the reflectivity shows a second increase on an 80 ps time scale following the exponential decay, indicating an IMT. We propose that the decay of the reflectivity is due to electron-phonon thermalization, which raises the phonon temperature and causes a superheating of the lattice. This process provides the latent heat and induces the IMT on the 80 ps time scale. The coexistence of the insulating and metallic phases is observed in the reflectivity measurements for temperatures above 340 K. This work is supported by the Air Force Office of Scientific Research No. FA9550-12-1-0381.
Transport study of self-supporting porous silicon
NASA Astrophysics Data System (ADS)
Fejfar, A.; Pelant, I.; Šípek, E.; Kočka, J.; Juška, G.; Matsumoto, T.; Kanemitsu, Y.
1995-02-01
We have measured dark DC conductivity and time-of-flight (TOF) of carriers in self-supporting porous silicon films in the temperature range 298-480 K. The dark I-V curves show superlinear behavior with activation energies of 0.38-0.67 eV. The TOF measurements allowed us to evaluate the drift-length of non-equilibrium carriers and revealed a significant decrease of the collected charge with increasing delay (tdel≥1 ms) of the exciting 3 ns laser pulse after the voltage application, probably due to field redistribution in the Si crystallites.
NASA Lewis 9- by 15-foot low-speed wind tunnel user manual
NASA Technical Reports Server (NTRS)
Soeder, Ronald H.
1993-01-01
This manual describes the 9- by 15-Foot Low-Speed Wind Tunnel at the Lewis Research Center and provides information for users who wish to conduct experiments in this atmospheric facility. Tunnel variables such as pressures, temperatures, available tests section area, and Mach number ranges (0.05 to 0.20) are discussed. In addition, general support systems such as air systems, hydraulic system, hydrogen system, laser system, flow visualization system, and model support systems are described. Instrumentation and data processing and acquisition systems are also discussed.
Power MOSFET Thermal Instability Operation Characterization Support
NASA Technical Reports Server (NTRS)
Shue, John L.; Leidecker, Henning
2010-01-01
Metal-oxide semiconductor field-effect transistors (MOSFETs) are used extensively in flight hardware and ground support equipment. In the quest for faster switching times and lower "on resistance," the MOSFETs designed from 1998 to the present have achieved most of their intended goals. In the quest for lower on resistance and higher switching speeds, the designs now being produced allow the charge-carrier dominated region (once small and outside of the area of concern) to become important and inside the safe operating area (SOA). The charge-carrier dominated region allows more current to flow as the temperature increases. The higher temperatures produce more current resulting in the beginning of thermal runaway. Thermal runaway is a problem affecting a wide range of modern MOSFETs from more than one manufacturer. This report contains information on MOSFET failures, their causes and test results and information dissemination.
Sanciangco, Jonnell C.; Carpenter, Kent E.; Etnoyer, Peter J.; Moretzsohn, Fabio
2013-01-01
Range overlap patterns were observed in a dataset of 10,446 expert-derived marine species distribution maps, including 8,295 coastal fishes, 1,212 invertebrates (crustaceans and molluscs), 820 reef-building corals, 50 seagrasses, and 69 mangroves. Distributions of tropical Indo-Pacific shore fishes revealed a concentration of species richness in the northern apex and central region of the Coral Triangle epicenter of marine biodiversity. This pattern was supported by distributions of invertebrates and habitat-forming primary producers. Habitat availability, heterogeneity, and sea surface temperatures were highly correlated with species richness across spatial grains ranging from 23,000 to 5,100,000 km2 with and without correction for autocorrelation. The consistent retention of habitat variables in our predictive models supports the area of refuge hypothesis which posits reduced extinction rates in the Coral Triangle. This does not preclude support for a center of origin hypothesis that suggests increased speciation in the region may contribute to species richness. In addition, consistent retention of sea surface temperatures in models suggests that available kinetic energy may also be an important factor in shaping patterns of marine species richness. Kinetic energy may hasten rates of both extinction and speciation. The position of the Indo-Pacific Warm Pool to the east of the Coral Triangle in central Oceania and a pattern of increasing species richness from this region into the central and northern parts of the Coral Triangle suggests peripheral speciation with enhanced survival in the cooler parts of the Coral Triangle that also have highly concentrated available habitat. These results indicate that conservation of habitat availability and heterogeneity is important to reduce extinction of marine species and that changes in sea surface temperatures may influence the evolutionary potential of the region. PMID:23457533
Sanciangco, Jonnell C; Carpenter, Kent E; Etnoyer, Peter J; Moretzsohn, Fabio
2013-01-01
Range overlap patterns were observed in a dataset of 10,446 expert-derived marine species distribution maps, including 8,295 coastal fishes, 1,212 invertebrates (crustaceans and molluscs), 820 reef-building corals, 50 seagrasses, and 69 mangroves. Distributions of tropical Indo-Pacific shore fishes revealed a concentration of species richness in the northern apex and central region of the Coral Triangle epicenter of marine biodiversity. This pattern was supported by distributions of invertebrates and habitat-forming primary producers. Habitat availability, heterogeneity, and sea surface temperatures were highly correlated with species richness across spatial grains ranging from 23,000 to 5,100,000 km(2) with and without correction for autocorrelation. The consistent retention of habitat variables in our predictive models supports the area of refuge hypothesis which posits reduced extinction rates in the Coral Triangle. This does not preclude support for a center of origin hypothesis that suggests increased speciation in the region may contribute to species richness. In addition, consistent retention of sea surface temperatures in models suggests that available kinetic energy may also be an important factor in shaping patterns of marine species richness. Kinetic energy may hasten rates of both extinction and speciation. The position of the Indo-Pacific Warm Pool to the east of the Coral Triangle in central Oceania and a pattern of increasing species richness from this region into the central and northern parts of the Coral Triangle suggests peripheral speciation with enhanced survival in the cooler parts of the Coral Triangle that also have highly concentrated available habitat. These results indicate that conservation of habitat availability and heterogeneity is important to reduce extinction of marine species and that changes in sea surface temperatures may influence the evolutionary potential of the region.
NASA Astrophysics Data System (ADS)
Stevens, M.; Benyon, R.; Bell, S. A.; Vicente, T.
2008-10-01
In order to effectively implement the Mutual Recognition Arrangement (MRA) of the International Committee for Weights and Measures (CIPM), national metrology institutes (NMIs) are required to support their claims of calibration and measurement capability (CMC) with a quality system compliant with ISO/IEC 17025, and with suitable evidence of participation in key or supplementary comparisons. The CMC review process, both at regional and inter-regional levels, uses criteria that combine the provisions mentioned above, together with additional evidence demonstrating scientific and technical competence of the institutes. For dew-point temperatures, there are key comparisons in progress under the Consultative Committee for Thermometry (CCT) and under the European regional metrology organisation (EUROMET), together with information available on past regional supplementary comparisons. However, for relative humidity there are, to date, no such comparisons available to support CMC entries. This paper presents and discusses the results of a preliminary investigation of the use of relative humidity and temperature transmitters in order to determine their suitability for the intercomparison of standard humidity generators in support of CMC claims for the calibration of relative humidity instruments. The results of a recent bilateral comparison between 2 NMIs at the extremes of the range up to 98%rh at 70 °C, and down to 1%rh at -40 °C are reported. Specific precautions and recommendations on the use of the devices as transfer standards are presented.
NASA Astrophysics Data System (ADS)
Wang, Lili; Huang, Shouying; Zhu, Baolin; Zhang, Shoumin; Huang, Weiping
2016-11-01
Mesoporous TiO2-sphere-supported Au-nanoparticles (Au/m-TiO2-spheres) catalysts have been synthesized by a simple method using tetrabutyl titanate as TiO2 precursor and characterized with XRD, BET, ICP, SEM, TEM, UV-Vis DRS, XPS, as well as FT-IR. The samples with the size in the range of 200-400 nm were almost perfectly spherical. The average diameter of pores was about 3.6 nm, and the mesopore size distribution was in the range of 2-6 nm with a narrow distribution. When the catalyst was calcined at 300 °C, the Au NPs with the size ca. 5 nm were highly dispersed on the surfaces of m-TiO2 spheres and partially embedded in the supports. Remarkably, the specific surface area of the Au/m-TiO2-spheres was as high as 117 m2 g-1. The CO-adsorbed catalyst showed an apparent IR adsorption peak at 1714 cm-1 that matched with bridging model CO. It means the catalysts should be of high catalytic activity for the CO oxidation due to they could adsorb and activate CO commendably. When Au-content was 0.48 wt.%, the Au/m-TiO2-spheres could convert CO completely into CO2 at ambient temperature.
Vanadium dioxide thin films prepared on silicon by low temperature MBE growth and ex-situ annealing
NASA Astrophysics Data System (ADS)
Homm, Pia; van Bilzen, Bart; Menghini, Mariela; Locquet, Jean-Pierre; Ivanova, Todora; Sanchez, Luis; Sanchis, Pablo
Vanadium dioxide (VO2) is a material that shows an insulator to metal transition (IMT) near room temperature. This property can be exploited for applications in field effect devices, electro-optical switches and nonlinear circuit components. We have prepared VO2 thin films on silicon wafers by combining a low temperature MBE growth with an ex-situ annealing at high temperature. We investigated the structural, electrical and optical characteristics of films with thicknesses ranging from 10 to 100 nm. We have also studied the influence of the substrate cleaning. The films grown with our method are polycrystalline with a preferred orientation in the (011) direction of the monoclinic phase. For the films produced on silicon with a native oxide, an IMT at around 75 °C is observed. The magnitude of the resistance change across the IMT decreases with thickness while the refractive index at room temperature corresponds with values reported in the literature for thin films. The successful growth of VO2 films on silicon with good electrical and optical properties is an important step towards the integration of VO2 in novel devices. The authors acknowledge financial support from the FWO project G052010N10 and EU-FP7 SITOGA project. PH acknowledges support from Becas Chile - CONICYT.
Carbon supported Pt-NiO nanoparticles for ethanol electro-oxidation in acid media
NASA Astrophysics Data System (ADS)
Comignani, Vanina; Sieben, Juan Manuel; Brigante, Maximiliano E.; Duarte, Marta M. E.
2015-03-01
In the present work, the influence of nickel oxide as a co-catalyst of Pt nanoparticles for the electro-oxidation of ethanol in the temperature range of 23-60 °C was investigated. The carbon supported nickel oxide and platinum nanoparticles were prepared by hydrothermal synthesis and microwave-assisted polyol process respectively, and characterized by XRD, EDX, TEM and ICP analysis. The electrocatalytic activity of the as-prepared materials was studied by cyclic voltammetry and chronoamperometry. Small metal nanoparticles with sizes in the range of 3.5-4.5 nm were obtained. The nickel content in the as-prepared Pt-NiO/C catalysts was between 19 and 35 at.%. The electrochemical experiments showed that the electrocatalytic activity of the Pt-NiO/C materials increase with NiO content in the entire temperature range. The apparent activation energy (Ea,app) for the overall ethanol oxidation reaction was found to decrease with NiO content (24-32 kJ mol-1 at 0.3 V), while for Pt/C the activation energy exceeds 48 kJ mol-1. The better performance of the Pt-NiO/C catalysts compared to Pt/C sample is ascribed to the activation of both the C-H and O-H bonds via oxygen-containing species adsorbed on NiO molecules and the modification of the surface electronic structure (changes in the density of states near the Fermi level).
Jin, Jiao; Lin, Feipeng; Liu, Ruohua; Xiao, Ting; Zheng, Jianlong; Qian, Guoping; Liu, Hongfu; Wen, Pihua
2017-12-05
Three kinds of mineral-supported polyethylene glycol (PEG) as form-stable composite phase change materials (CPCMs) were prepared to choose the most suitable CPCMs in asphalt pavements for the problems of asphalt pavements rutting diseases and urban heat islands. The microstructure and chemical structure of CPCMs were characterized by SEM, FT-IR and XRD. Thermal properties of the CPCMs were determined by TG and DSC. The maximum PEG absorption of diatomite (DI), expanded perlite (EP) and expanded vermiculite (EVM) could reach 72%, 67% and 73.6%, respectively. The melting temperatures and latent heat of CPCMs are in the range of 52-55 °C and 100-115 J/g, respectively. The results show that PEG/EP has the best thermal and chemical stability after 100 times of heating-cooling process. Moreover, crystallization fraction results show that PEG/EP has slightly higher latent heats than that of PEG/DI and PEG/EVM. Temperature-adjusting asphalt mixture was prepared by substituting the fine aggregates with PEG/EP CPCMs. The upper surface maximum temperature difference of temperature-adjusting asphalt mixture reaches about 7.0 °C in laboratory, and the surface peak temperature reduces up to 4.3 °C in the field experiment during a typical summer day, indicating a great potential application for regulating pavement temperature field and alleviating the urban heat islands.
The Influence of Phonons and Phonon Decay on the Optical Properties of GaN
NASA Astrophysics Data System (ADS)
Song, D. Y.; Basavaraj, M.; Nikishin, S. A.; Holtz, M.; Soukhoveev, V.; Usikov, A.; Dmitriev, V.
2006-03-01
The temperature dependences of vibrational and optical properties of high-quality GaN are studied using Raman and photoluminescence (PL) spectroscopies in the range 20 to 325 K. The Raman-active A1(LO) phonon has temperature dependence described well by combined two- and three-phonon decay. The temperature dependences of E2^2 phonon are almost entirely dominated by the thermal expansion, and the contribution of three-phonon decay process is very small throughout interested temperature range. The shallow neutral donor-bound exciton (D^0,X) and two free excitons (XA and XB) are observed at low temperatrue PL spectra. Also seen are two A1(LO) phonon sidebands (PSBs), originating from the XB free exciton, with the characteristic asymmetry attributed to interactions between discrete and continuum states. Analysis of the band-edge excitons reveals that energy gap shrinkage and exciton linewidths are completely described based on electron-phonon interactions with phonon properties consistent with the Raman analysis. First and second PSBs have temperature dependence associated with the A1(LO) phonon. The shift, broadening, and asymmetry of the PSBs are explained by Segall-Mahan theory adding the decay mechanism of A1(LO) phonon and the exciton broadening from electron-phonon interactions. Work at Texas Tech University supported by National Science Foundation grant ECS-0323640.
NASA Astrophysics Data System (ADS)
Poolton, N. R. J.; Kars, R. H.; Wallinga, J.; Bos, A. J. J.
2009-12-01
The significance and extent of band-tail states in the luminescence and dosimetry properties of natural aluminosilicates (feldspars) is investigated by means of studies using low temperature (10 K) irradiation and optically stimulated luminescence (OSL) stimulation spectroscopy, and thermoluminescence (TL) in the range 10-200 K, made in comparison with high temperature (300 K) irradiation and photo-transferred OSL and TL investigations undertaken at low temperature. These measurements allow mappings of the band-tails to be made; they are found to be ~0.4 eV in extent in the typical materials studied. Furthermore, by populating charge trapping centres at high temperature (300 K) and monitoring the OSL stimulation spectra at temperatures in the range 10-300 K, clear evidence is presented for the presence of both thermally activated and non-thermally activated OSL processes; it is argued that the former result from thermally activated hopping through the band-tail states, whilst the latter are due to tunnelling processes, either from the excited state of the OSL centres or through the tail states. The spectral measurements are supported by analysis of the temporal dependence of the OSL signals, which correspond to either tunnelling or general order kinetic decay processes.
Reynolds, Pamela L; Stachowicz, John J; Hovel, Kevin; Boström, Christoffer; Boyer, Katharyn; Cusson, Mathieu; Eklöf, Johan S; Engel, Friederike G; Engelen, Aschwin H; Eriksson, Britas Klemens; Fodrie, F Joel; Griffin, John N; Hereu, Clara M; Hori, Masakazu; Hanley, Torrance C; Ivanov, Mikhail; Jorgensen, Pablo; Kruschel, Claudia; Lee, Kun-Seop; McGlathery, Karen; Moksnes, Per-Olav; Nakaoka, Masahiro; O'Connor, Mary I; O'Connor, Nessa E; Orth, Robert J; Rossi, Francesca; Ruesink, Jennifer; Sotka, Erik E; Thormar, Jonas; Tomas, Fiona; Unsworth, Richard K F; Whalen, Matthew A; Duffy, J Emmett
2018-01-01
Latitudinal gradients in species interactions are widely cited as potential causes or consequences of global patterns of biodiversity. However, mechanistic studies documenting changes in interactions across broad geographic ranges are limited. We surveyed predation intensity on common prey (live amphipods and gastropods) in communities of eelgrass (Zostera marina) at 48 sites across its Northern Hemisphere range, encompassing over 37° of latitude and four continental coastlines. Predation on amphipods declined with latitude on all coasts but declined more strongly along western ocean margins where temperature gradients are steeper. Whereas in situ water temperature at the time of the experiments was uncorrelated with predation, mean annual temperature strongly positively predicted predation, suggesting a more complex mechanism than simply increased metabolic activity at the time of predation. This large-scale biogeographic pattern was modified by local habitat characteristics; predation declined with higher shoot density both among and within sites. Predation rates on gastropods, by contrast, were uniformly low and varied little among sites. The high replication and geographic extent of our study not only provides additional evidence to support biogeographic variation in predation intensity, but also insight into the mechanisms that relate temperature and biogeographic gradients in species interactions. © 2017 by the Ecological Society of America.
Development of a high temperature capacitive pressure transducer
NASA Technical Reports Server (NTRS)
Egger, R. L.
1977-01-01
High temperature pressure transducers capable of continuous operation while exposed to 650 C were developed and evaluated over a full-scale differential pressure range of + or - 69 kPa. The design of the pressure transducers was based on the use of a diaphragm to respond to pressure, variable capacitive elements arranged to operate as a differential capacitor to measure diaphragm response and on the use of fused silica for the diaphragm and its supporting assembly. The uncertainty associated with measuring + or - 69 kPa pressures between 20C and 650C was less than + or - 6%.
Task-Specific Ionic Liquids for Mars Exploration (Green Chemistry for a Red Planet)
NASA Technical Reports Server (NTRS)
Karr, L. J.; Curreri, P. A.; Paley, M. S.; Kaukler, W. F.; Marone, M. J.
2012-01-01
Ionic Liquids (ILs) are organic salts with low melting points that are liquid at or near room temperature. The combinations of available ions and task-specific molecular designability make them suitable for a huge variety of tasks. Because of their low flammability, low vapor pressure, and stability in harsh environments (extreme temperatures, hard vacuum) they are generally much safer and "greener" than conventional chemicals and are thus suitable for a wide range of applications that support NASA exploration goals. This presentation describes several of the ongoing applications that are being developed at MSFC.
Sorbent for use in hot gas desulfurization
Gasper-Galvin, Lee D.; Atimtay, Aysel T.
1993-01-01
A multiple metal oxide sorbent supported on a zeolite of substantially silicon oxide is used for the desulfurization of process gas streams, such as from a coal gasifier, at temperatures in the range of about 1200.degree. to about 1600.degree. F. The sorbent is provided by a mixture of copper oxide and manganese oxide and preferably such a mixture with molybdenum oxide. The manganese oxide and the molybdenum are believed to function as promoters for the reaction of hydrogen sulfide with copper oxide. Also, the manganese oxide inhibits the volatilization of the molybdenum oxide at the higher temperatures.
NASA Technical Reports Server (NTRS)
Gates, Thomas S.
1992-01-01
In order to support materials selection for the next-generation supersonic civilian-passenger transport aircraft, a study has been undertaken to evaluate the material stress/strain relationships needed to describe advanced polymer matrix composites under conditions of high load and elevated temperature. As part of this effort, this paper describes the materials testing which was performed to investigate the viscoplastic behavior of graphite/thermoplastic and graphite/bismaleimide composites. Test procedures, results and data-reduction schemes which were developed for generating material constants for tension and compression loading, over a range of useful temperatures, are explained.
Solution properties of almandine-pyrope garnet as determined by phase equilibrium experiments
Koziol, A.M.; Bohlen, S.R.
1992-01-01
The thermodynamic mixing properties of almandine-pyrope garnet were derived from phase equilibrium experiments at temperatures of 900 and 1000??C and pressures from 8 to 14 kbar. Almandine has essentially ideal behavior in almandine-pyrope garnet over the composition range Alm89-Alm61 at the above experimental conditions. In all experimental products a systematic partitioning of Fe and Mg between garnet and ilmenite was seen with ln Kd ??? 1.59 which was not temperature sensitive. The results support the use of garnet mixing models that incorporate ideal or nearly ideal Fe-Mg parameters. -from Authors
Measurement of Xenon Viscosity as a Function of Low Temperature and Pressure
NASA Technical Reports Server (NTRS)
Grisnik, Stanley P.
1998-01-01
The measurement of xenon gas viscosity at low temperatures (175-298 K) and low pressures (350 torr-760 torr) has been performed in support of Hall Thruster testing at NASA Lewis Research Center. The measurements were taken using the capillary flow technique. Viscosity measurements were repeatable to within 3%. The results in this paper are in agreement with data from Hanley and Childs and suggest that the data from Clarke and Smith is approximately 2% low. There are no noticeable pressure effects on xenon absolute viscosity for the pressure range from 350 torr to 760 torr.
NASA Technical Reports Server (NTRS)
Hadley, H.
1980-01-01
The stratospheric and mesospheric sounder (SAMS) experiment on Nimbus 7 includes a 2 axis scanning mirror and 7 pressure modulator cells. The SAMS experiment is a limb sounding instrument to measure the temperature profile and minor constituents of the atmosphere. The limb scan requires small mirror steps over a 3 deg range, while the scan in azimuth is in larger steps over a 15 deg range. The mirror is plane, 20 cm in diameter, and of zero expansion glass-ceramic. It is supported on two tilt tables, fitted one on the other, with the axes at right angles. The angle of tilt is adjusted by means of recirculating ball screws which are ion plated with lead for lubrication and driven by stepper motors. The seven gas filled cells are each pressure modulated by a 3 cm diameter, 0.3 cm stroke piston which is supported by diaphragm springs and driven electromagnetically at the system's mechanical resonant frequency. The mean pressure of the filling gas, which is the atmospheric constituent being measured, is changed by varying the temperature of a suitable molecular sieve.
Lei, Zhongli; Ren, Na; Li, Yanli; Li, Na; Mu, Bo
2009-02-25
Polymer nanocomposite microspheres (PNCMs) as solid supports can improve the efficiency of immobilized enzymes by reducing diffusional limitation as well as by increasing the surface area per mass unit. In this work, pectinase was immobilized on Fe(3)O(4)/SiO2-g-poly(PSStNa) nanocomposite microspheres by covalent attachment. Biochemical studies showed an improved storage stability of the immobilized pectinase as well as enhanced performance at higher temperatures and over a wider pH range. The immobilized enzyme retained >50% of its initial activity over 30 days, and the optimum temperature and pH also increased to the ranges of 50-60 degrees C and 3.0-4.7, respectively. The kinetics of a model reaction catalyzed by the immobilized pectinase was finally investigated by the Michaelis-Menten equation. The PSStNa support presents a very simple, mild, and time-saving process for enzyme immobilization, and this strategy of immobilizing pectinase also makes use of expensive enzymes economically viable, strengthening repeated use of them as catalysts following their rapid and easy separation with a magnet.
Geochemical and physical drivers of microbial community structure in hot spring ecosystems
NASA Astrophysics Data System (ADS)
Havig, J. R.; Hamilton, T. L.; Boyd, E. S.; Meyer-Dombard, D. R.; Shock, E.
2012-12-01
Microbial communities in natural systems are typically characterized using samples collected from a single time point, thereby neglecting the temporal dynamics that characterize natural systems. The composition of these communities obtained from single point samples is then related to the geochemistry and physical parameters of the environment. Since most microbial life is adapted to a relatively narrow ecological niche (multiplicity of physical and chemical parameters that characterize a local habitat), these assessments provide only modest insight into the controls on community composition. Temporal variation in temperature or geochemical composition would be expected to add another dimension to the complexity of niche space available to support microbial diversity, with systems that experience greater variation supporting a greater biodiversity until a point where the variability is too extreme. . Hot springs often exhibit significant temporal variation, both in physical as well as chemical characteristics. This is a result of subsurface processes including boiling, phase separation, and differential mixing of liquid and vapor phase constituents. These characteristics of geothermal systems, which vary significantly over short periods of time, provide ideal natural laboratories for investigating how i) the extent of microbial community biodiversity and ii) the composition of those communities are shaped by temporal fluctuations in geochemistry. Geochemical and molecular samples were collected from 17 temporally variable hot springs across Yellowstone National Park, Wyoming. Temperature measurements using data-logging thermocouples, allowing accurate determination of temperature maximums, minimums, and ranges for each collection site, were collected in parallel, along with multiple geochemical characterizations as conditions varied. There were significant variations in temperature maxima (54.5 to 90.5°C), minima (12.5 to 82.5°C), and range (3.5 to 77.5°C) for the hot spring environments that spanned ranges of pH values (2.2 to 9.0) and geochemical compositions. We characterized the abundance, composition, and phylogenetic diversity of bacterial and archaeal 16S rRNA gene assemblages in sediment/biofilm samples collected from each site. 16S data can be used as proxy for metabolic dissimilarity. We predict that temporally fluctuating environments should provide additional complexity to the system (additional niche space) capable of supporting additional taxa, which should lead to greater 16S rRNA gene diversity. However, systems with too much variability should collapse the diversity. Thus, one would expect an optimal system for variability, with respect to 16S phylogenetic diversity. Community ecology tools were then applied to model the relative influence of physical and chemical characteristics (including temperature dynamics) on the local biodiversity. The results reveal unique insight into the role of temporal environmental variation in the development of biodiverse communities and provide a platform for predicting the response of an ecosystem to temperature perturbation.
Physiological Limits along an Elevational Gradient in a Radiation of Montane Ground Beetles
Slatyer, Rachel A.; Schoville, Sean D.
2016-01-01
A central challenge in ecology and biogeography is to determine the extent to which physiological constraints govern the geographic ranges of species along environmental gradients. This study tests the hypothesis that temperature and desiccation tolerance are associated with the elevational ranges of 12 ground beetle species (genus Nebria) occurring on Mt. Rainier, Washington, U.S.A. Species from higher elevations did not have greater cold tolerance limits than lower-elevation species (all species ranged from -3.5 to -4.1°C), despite a steep decline in minimum temperature with elevation. Although heat tolerance limits varied among species (from 32.0 to 37.0°C), this variation was not generally associated with the relative elevational range of a species. Temperature gradients and acute thermal tolerance do not support the hypothesis that physiological constraints drive species turnover with elevation. Measurements of intraspecific variation in thermal tolerance limits were not significant for individuals taken at different elevations on Mt. Rainier, or from other mountains in Washington and Oregon. Desiccation resistance was also not associated with a species’ elevational distribution. Our combined results contrast with previously-detected latitudinal gradients in acute physiological limits among insects and suggest that other processes such as chronic thermal stress or biotic interactions might be more important in constraining elevational distributions in this system. PMID:27043311
Tabas-Madrid, Daniel; Méndez-Vigo, Belén; Arteaga, Noelia; Marcer, Arnald; Pascual-Montano, Alberto; Weigel, Detlef; Xavier Picó, F; Alonso-Blanco, Carlos
2018-03-08
Current global change is fueling an interest to understand the genetic and molecular mechanisms of plant adaptation to climate. In particular, altered flowering time is a common strategy for escape from unfavourable climate temperature. In order to determine the genomic bases underlying flowering time adaptation to this climatic factor, we have systematically analysed a collection of 174 highly diverse Arabidopsis thaliana accessions from the Iberian Peninsula. Analyses of 1.88 million single nucleotide polymorphisms provide evidence for a spatially heterogeneous contribution of demographic and adaptive processes to geographic patterns of genetic variation. Mountains appear to be allele dispersal barriers, whereas the relationship between flowering time and temperature depended on the precise temperature range. Environmental genome-wide associations supported an overall genome adaptation to temperature, with 9.4% of the genes showing significant associations. Furthermore, phenotypic genome-wide associations provided a catalogue of candidate genes underlying flowering time variation. Finally, comparison of environmental and phenotypic genome-wide associations identified known (Twin Sister of FT, FRIGIDA-like 1, and Casein Kinase II Beta chain 1) and new (Epithiospecifer Modifier 1 and Voltage-Dependent Anion Channel 5) genes as candidates for adaptation to climate temperature by altered flowering time. Thus, this regional collection provides an excellent resource to address the spatial complexity of climate adaptation in annual plants. © 2018 John Wiley & Sons Ltd.
Russo, Christopher J.; Passmore, Lori A.
2016-01-01
Electron cryomicroscopy (cryo-EM) allows structure determination of a wide range of biological molecules and specimens. All-gold supports improve cryo-EM images by reducing radiation-induced motion and image blurring. Here we compare the mechanical and electrical properties of all-gold supports to amorphous carbon foils. Gold supports are more conductive, and have suspended foils that are not compressed by differential contraction when cooled to liquid nitrogen temperatures. These measurements show how the choice of support material and geometry can reduce specimen movement by more than an order of magnitude during low-dose imaging. We provide methods for fabrication of all-gold supports and preparation of vitrified specimens. We also analyse illumination geometry for optimal collection of high resolution, low-dose data. Together, the support structures and methods herein can improve the resolution and quality of images from any electron cryomicroscope. PMID:26592474
Thermotolerance in preirradiated intestine and its influence on time-temperature relationships
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hume, S.P.; Marigold, J.C.; Manjil, L.G.
The crypt compartment of mouse jejunum showed a transient increase in thermal susceptibility approximately 10 days after moderate X-ray doses to the abdomen (9-10 Gy). The increase in response was manifest as an increase in slope of the crypt dose-response curve but was limited to temperatures below 43/sup 0/C. As a result, the 43/sup 0/C inflexion in the Arrhenius plot (the relationship between treatment time and temperature) for thermal sensitivity of crypts was eliminated in preirradiated tissue, and the curve became monophasic over the range 42.0-44.5/sup 0/C. At temperatures below 42/sup 0/C, the curve again deviated. At supranormal temperatures ofmore » 42/sup 0/C and below, the durations of hyperthermia needed for measurable effect were sufficient to allow thermotolerance to be expressed within the heating period. Neither the threshold heating times nor this thermotolerance were affected by prior irradiation. In the temperature range 42-43/sup 0/C, an earlier development of thermotolerance could be demonstrated in control tissue by challenging with an acute high-temperature heat treatment. This thermotolerance was eliminated in preirradiated tissue, resulting in the apparent increase in sensitivity. The findings support the view that the complex nature of the time-temperature relationship seen in normal tissue in vivo is a manifestation of the ability of the tissue to progressively acquire a thermotolerant state during treatment at temperatures below approximately 43/sup 0/C, so that the intrinsic sensitivity is modulated while being assessed.« less
Amburgey, Staci M.; Miller, David A. W.; Grant, Evan H. Campbell; Rittenhouse, Tracy A. G.; Benard, Michael F.; Richardson, Jonathan L.; Urban, Mark C.; Hughson, Ward; Brand, Adrianne B,; Davis, Christopher J.; Hardin, Carmen R.; Paton, Peter W. C.; Raithel, Christopher J.; Relyea, Rick A.; Scott, A. Floyd; Skelly, David K.; Skidds, Dennis E.; Smith, Charles K.; Werner, Earl E.
2018-01-01
Species’ distributions will respond to climate change based on the relationship between local demographic processes and climate and how this relationship varies based on range position. A rarely tested demographic prediction is that populations at the extremes of a species’ climate envelope (e.g., populations in areas with the highest mean annual temperature) will be most sensitive to local shifts in climate (i.e., warming). We tested this prediction using a dynamic species distribution model linking demographic rates to variation in temperature and precipitation for wood frogs (Lithobates sylvaticus) in North America. Using long-term monitoring data from 746 populations in 27 study areas, we determined how climatic variation affected population growth rates and how these relationships varied with respect to long-term climate. Some models supported the predicted pattern, with negative effects of extreme summer temperatures in hotter areas and positive effects on recruitment for summer water availability in drier areas. We also found evidence of interacting temperature and precipitation influencing population size, such as extreme heat having less of a negative effect in wetter areas. Other results were contrary to predictions, such as positive effects of summer water availability in wetter parts of the range and positive responses to winter warming especially in milder areas. In general, we found wood frogs were more sensitive to changes in temperature or temperature interacting with precipitation than to changes in precipitation alone. Our results suggest that sensitivity to changes in climate cannot be predicted simply by knowing locations within the species’ climate envelope. Many climate processes did not affect population growth rates in the predicted direction based on range position. Processes such as species-interactions, local adaptation, and interactions with the physical landscape likely affect the responses we observed. Our work highlights the need to measure demographic responses to changing climate.
NASA Astrophysics Data System (ADS)
Celtek, M.; Sengul, S.
2018-03-01
In the present work, the glass formation process and structural properties of Zr50Cu50-xCox (0 ≤ x ≤ 50) bulk metallic glasses were investigated by a molecular dynamics simulation with the many body tight-binding potentials. The evolution of structure and glass formation process with temperature were discussed using the coordination number, the radial distribution functions, the volume-temperature curve, icosahedral short-range order, glass transition temperature, Voronoi analysis, Honeycutt-Andersen pair analysis technique and the distribution of bond-angles. Results indicate that adding Co causes similar responses on the nature of the Zr50Cu50-xCox (0 ≤ x ≤ 50) alloys except for higher glass transition temperature and ideal icosahedral type ordered local atomic environment. Also, the differences of the atomic radii play the key role in influencing the atomic structure of these alloys. Both Cu and Co atoms play a significant role in deciding the chemical and topological short-range orders of the Zr50Cu50-xCox ternary liquids and amorphous alloys. The glass-forming ability of these alloys is supported by the experimental observations reported in the literature up to now.
Standard High Solids Vessel Design De-inventory Simulant Qualification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fiskum, Sandra K.; Burns, Carolyn A.M.; Gauglitz, Phillip A.
The Hanford Tank Waste Treatment and Immobilization Plant (WTP) is working to develop a Standard High Solids Vessel Design (SHSVD) process vessel. To support testing of this new design, WTP engineering staff requested that a Newtonian simulant be developed that would represent the de-inventory (residual high-density tank solids cleanout) process. Its basis and target characteristics are defined in 24590-WTP-ES-ENG-16-021 and implemented through PNNL Test Plan TP-WTPSP-132 Rev. 1.0. This document describes the de-inventory Newtonian carrier fluid (DNCF) simulant composition that will satisfy the basis requirement to mimic the density (1.18 g/mL ± 0.1 g/mL) and viscosity (2.8 cP ± 0.5more » cP) of 5 M NaOH at 25 °C.1 The simulant viscosity changes significantly with temperature. Therefore, various solution compositions may be required, dependent on the test stand process temperature range, to meet these requirements. Table ES.1 provides DNCF compositions at selected temperatures that will meet the density and viscosity specifications as well as the temperature range at which the solution will meet the acceptable viscosity tolerance.« less
NASA Technical Reports Server (NTRS)
Mizan, Muhammad; Higgins, Thomas; Sturzebecher, Dana
1993-01-01
EPSD has designed, fabricated and tested, ultra-stable, low phase noise microwave dielectric resonator oscillators (DRO's) at S, X, Ku, and K-bands, for potential application to high dynamic range and low radar cross section target detection radar systems. The phase noise and the temperature stability surpass commercially available DROs. Low phase noise signals are critical for CW Doppler radars, at both very close-in and large offset frequencies from the carrier. The oscillators were built without any temperature compensation techniques and exhibited a temperature stability of 25 parts per million (ppm) over an extended temperature range. The oscillators are lightweight, small and low cost compared to BAW & SAW oscillators, and can impact commercial systems such as telecommunications, built-in-test equipment, cellular phone and satellite communications systems. The key to obtaining this performance was a high Q factor resonant structure (RS) and careful circuit design techniques. The high Q RS consists of a dielectric resonator (DR) supported by a low loss spacer inside a metal cavity. The S and the X-band resonant structures demonstrated loaded Q values of 20,300 and 12,700, respectively.
Liu, Feng; Dumont, Charles; Zhu, Yongjin; DeGrado, William F; Gai, Feng; Gruebele, Martin
2009-02-14
We present fluorescence-detected measurements of the temperature-jump relaxation kinetics of the designed three-helix bundle protein alpha(3)D taken under solvent conditions identical to previous infrared-detected kinetics. The fluorescence-detected rate is similar to the IR-detected rate only at the lowest temperature where we could measure it (326 K). The fluorescence-detected rate decreases by a factor of 3 over the 326-344 K temperature range, whereas the IR-detected rate remains nearly constant over the same range. To investigate this probe dependence, we tested an extensive set of physically reasonable one-dimensional (1D) free energy surfaces by Langevin dynamics simulation. The simulations included coordinate- and temperature-dependent roughness, diffusion coefficients, and IR/fluorescence spectroscopic signatures. None of these can reproduce the IR and fluorescence data simultaneously, forcing us to the conclusion that a 1D free energy surface cannot accurately describe the folding of alpha(3)D. This supports the hypothesis that alpha(3)D has a multidimensional free energy surface conducive to downhill folding at 326 K, and that it is already an incipient downhill folder with probe-dependent kinetics near its melting point.
NASA Astrophysics Data System (ADS)
Criss, Robert Randolph, Jr.
The effect of the pre-exposure bake and the choice of casting solvent on the sensitivity and contrast of PMMA has been documented to an extent not previously reported in the literature. PMMA films were spin cast onto clean silicon substrates from chlorobenzene and tri-chloroethylene solutions. The temperature of the pre-bake was varied over the range of 59^circ to 170^circC using a convection oven with pre-bake times ranging from 30 to 90 minutes. At the end of the designated bake time, the films were removed from the oven and allowed to cool in a temperature and humidity controlled environment. They were promptly exposed to a 15 KeV electron beam, then developed, with mild agitation, in a 1:1 mixture of MIBK and IPA at 22.5^ circC. Film thickness profiles were determined with an alpha-step profilometer. Films baked at temperatures below T_{rm glass} (the temperature which marks the onset of long-range, coordinated molecular motion), exhibited improved sensitivity and poorer contrast when compared to those baked above T_{rm glass }. Unique to this work is the finding that the lithographic performance depends on the choice of casting solvent, even at pre-bake temperatures significantly above T_{rm glass}. The relative concentrations of the casting solvents remaining in the baked films was determined from UV absorption spectra. The dissolution rates of exposed films were also measured and compared to the fragmented molecular weight model of development. Energy depositions were calculated from the empirical model of Everhart and Hoff. Cross-correlation of these results indicate that the pre-bake temperature more strongly correlates with the observed improvement in sensitivity than the presence of residual casting solvent. Residual casting solvent changes the density of the film, thus changing the energy deposition and dissolution behavior. Calculations based on the aforementioned models indicate that the observed lithographic and dissolution behavior can not be accounted for by this change in density. Arguments are presented to support the conclusion that the observed behavior is associated with film morphology. Comparison of results from films cast from TCE and chlorobenzene and baked above T_{rm glass} further support this conclusion.
Superconducting properties of copper oxide high-temperature superconductors
Chen, Guanhua; Langlois, Jean-Marc; Guo, Yuejin; Goddard, William A.
1989-01-01
The equations for the magnon pairing theory of high-temperature copper-oxide-based superconductors are solved and used to calculate several properties, leading to results for specific heat and critical magnetic fields consistent with experimental results. In addition, the theory suggests an explanation of why there are two sets of transition temperatures (Tc ≈ 90 K and Tc ≈ 55 K) for the Y1Ba2Cu3O6+x class of superconductors. It also provides an explanation of why La2-xSrxCuO4 is a superconductor for only a small range of x (and suggests an experiment to independently test the theory). These results provide support for the magnon pairing theory of high-temperature superconductors. On the basis of the theory, some suggestions are made for improving these materials. PMID:16594038
Water-quality characteristics of Montana streams in a statewide monitoring network, 1999-2003
Lambing, John H.; Cleasby, Thomas E.
2006-01-01
A statewide monitoring network of 38 sites was operated during 1999-2003 in cooperation with the Montana Department of Environmental Quality to provide a broad geographic base of water-quality information on Montana streams. The purpose of this report is to summarize and describe the water-quality characteristics for those sites. Samples were collected at U.S. Geological Survey streamflow-gaging stations in the Missouri, Yellowstone, and Columbia River basins for stream properties, nutrients, suspended sediment, major ions, and selected trace elements. Mean annual streamflows were below normal during the period, which likely influenced water quality. Continuous water-temperature monitors were operated at 26 sites. The median of daily mean water temperatures for the June-August summer period ranged from 12.5 degC at Kootenai River below Libby Dam to 23.0 degC at Poplar River near Poplar and Tongue River at Miles City. In general, sites in the Missouri River basin commonly had the highest water temperatures. Median daily mean summer water temperatures at four sites (Jefferson River near Three Forks, Missouri River at Toston, Judith River near Winifred, and Poplar River near Poplar) classified as supporting or marginally supporting cold-water biota exceeded the general guideline of 19.4 degC for cold-water biota. Median daily mean temperatures at sites in the network classified as supporting warm-water biota did not exceed the guideline of 26.7 degC for warm-water biota, although several sites exceeded the warm-water guideline on several days during the summer. More...
A New Primary Dew-Point Generator at TUBITAK UME
NASA Astrophysics Data System (ADS)
Oğuz Aytekin, S.; Karaböce, N.; Heinonen, M.; Sairanen, H.
2018-05-01
An implementation of a new low-range primary humidity generator as a part of an international collaboration between TUBITAK UME and VTT MIKES was initiated as a EURAMET Project Number 1259. The dew-point generator was designed and constructed within the scope of the cooperation between TUBITAK UME and VTT MIKES in order to extend the dew-point temperature measurement capability of Humidity Laboratory of TUBITAK UME down to - 80 °C. The system was thoroughly characterized and validated at TUBITAK UME to support the evidence for dew-point temperature uncertainties. The new generator has a capability of operating in the range of - 80 °C to +10 °C, but at the moment, it was characterized down to - 60 °C. The core of the generator system is a saturator which is fully immersed in a liquid bath. Dry air is supplied to the saturator through a temperature-controlled pre-saturator. The operation of the system is based on the single-pressure generation method with a single pass, i.e., the dew-point temperature is only controlled by the saturator temperature, and the humidity-controlled air is not returned to the system after leaving of the saturator. The metrological performance of the saturator was investigated thoroughly at both National Metrology Institutes. The pre-saturator was also tested using a thermostatic bath at VTT MIKES prior to sending them to TUBITAK UME. This paper describes the principle and design of the generator in detail. The dew-point measurement system and the corresponding uncertainty analysis of the dew-point temperature scale realized with the generator in the range from - 60 °C to 10 °C is also presented.
NASA Technical Reports Server (NTRS)
Delgado, Jesus; Chullen, Cinda; Mendoza, Edgar
2014-01-01
Advanced space life support systems require lightweight, low-power, durable sensors for monitoring critical gas components. A luminescence-based optical flow-through cell to monitor carbon dioxide, oxygen, and humidity has been developed and was demonstrated using bench top instrumentation under environmental conditions relevant to portable life support systems, including initially pure oxygen atmosphere, pressure range from 3.5 to 14.7 psi, temperature range from 50 F to 150 F, and humidity from dry to 100% RH and under liquid water saturation. This paper presents the first compact readout unit for these optical sensors, designed for the volume, power, and weight restrictions of a spacesuit portable Life support system and the analytical characterization of the optical sensors interrogated by the novel optoelectronic system. Trace gas contaminants in a space suit, originating from hardware and material off-gassing and crew member metabolism, are from many chemical families. The result is a gas mix much more complex than the pure oxygen fed into the spacesuit, which may interfere with gas sensor readings. The paper also presents an evaluation of optical sensor performance when exposed to the most significant trace gases reported to be found in spacesuits. The studies were conducted with the spacecraft maximum allowable concentrations for those trace gases and the calculated 8-hr. concentrations resulting from having no trace contaminant control system in the ventilation loop. Finally, a profile of temperature, pressure, humidity, and gas composition for a typical EVA mission has been defined, and the performance of sensors operated repeatedly under simulated EVA mission conditions has been studied.
Ranging Behaviour of Commercial Free-Range Laying Hens.
Chielo, Leonard Ikenna; Pike, Tom; Cooper, Jonathan
2016-04-26
In this study, the range use and behaviour of laying hens in commercial free-range flocks was explored. Six flocks were each visited on four separate days and data collected from their outdoor area (divided into zones based on distance from shed and available resources). These were: apron (0-10 m from shed normally without cover or other enrichments); enriched belt (10-50 m from shed where resources such as manmade cover, saplings and dust baths were provided); and outer range (beyond 50 m from shed with no cover and mainly grass pasture). Data collection consisted of counting the number of hens in each zone and recording behaviour, feather condition and nearest neighbour distance (NND) of 20 birds per zone on each visit day. In addition, we used techniques derived from ecological surveys to establish four transects perpendicular to the shed, running through the apron, enriched belt and outer range. Number of hens in each 10 m × 10 m quadrat was recorded four times per day as was the temperature and relative humidity of the outer range. On average, 12.5% of hens were found outside. Of these, 5.4% were found in the apron; 4.3% in the enriched zone; and 2.8% were in the outer range. This pattern was supported by data from quadrats, where the density of hens sharply dropped with increasing distance from shed. Consequently, NND was greatest in the outer range, least in the apron and intermediate in the enriched belt. Hens sampled in outer range and enriched belts had better feather condition than those from the apron. Standing, ground pecking, walking and foraging were the most commonly recorded activities with standing and pecking most likely to occur in the apron, and walking and foraging more common in the outer range. Use of the outer range declined with lower temperatures and increasing relative humidity, though use of apron and enriched belt was not affected by variation in these measures. These data support previous findings that outer range areas tend to be under-utilized in commercial free-range flocks and suggest positive relationships between range use, feather condition and increased behavioural opportunities and decline in the use of range in cold and/or damp conditions.
Fristoe, Trevor S.; Burger, Joseph R.; Balk, Meghan A.; Khaliq, Imran; Hof, Christian; Brown, James H.
2015-01-01
The extent to which different kinds of organisms have adapted to environmental temperature regimes is central to understanding how they respond to climate change. The Scholander–Irving (S-I) model of heat transfer lays the foundation for explaining how endothermic birds and mammals maintain their high, relatively constant body temperatures in the face of wide variation in environmental temperature. The S-I model shows how body temperature is regulated by balancing the rates of heat production and heat loss. Both rates scale with body size, suggesting that larger animals should be better adapted to cold environments than smaller animals, and vice versa. However, the global distributions of ∼9,000 species of terrestrial birds and mammals show that the entire range of body sizes occurs in nearly all climatic regimes. Using physiological and environmental temperature data for 211 bird and 178 mammal species, we test for mass-independent adaptive changes in two key parameters of the S-I model: basal metabolic rate (BMR) and thermal conductance. We derive an axis of thermal adaptation that is independent of body size, extends the S-I model, and highlights interactions among physiological and morphological traits that allow endotherms to persist in a wide range of temperatures. Our macrophysiological and macroecological analyses support our predictions that shifts in BMR and thermal conductance confer important adaptations to environmental temperature in both birds and mammals. PMID:26668359
Three-dimensional thermal structure of the South Polar Vortex of Venus
NASA Astrophysics Data System (ADS)
Hueso, Ricardo; Garate-Lopez, Itziar; Garcia-Muñoz, Antonio; Sánchez-Lavega, Agustín
2014-11-01
We have analyzed thermal infrared images provided by the VIRTIS-M instrument aboard Venus Express (VEX) to obtain high resolution thermal maps of the Venus south polar region between 55 and 85 km altitudes. The maps investigate three different dynamical configurations of the polar vortex including its classical dipolar shape, a regularly oval shape and a transition shape between the different configurations of the vortex. We apply the atmospheric model described by García Muñoz et al. (2013) and a variant of the retrieval algorithm detailed in Grassi et al. (2008) to obtain maps of temperature over the Venus south polar region in the quoted altitude range. These maps are discussed in terms of cloud motions and relative vorticity distribution obtained previously (Garate-Lopez et al. 2013). Temperature maps retrieved at 55 - 63 km show the same structures that are observed in the ~5 µm radiance images. This altitude range coincides with the optimal expected values of the cloud top altitude at polar latitudes and magnitudes derived from the analysis of ~5 µm images are measured at this altitude range. We also study the imprint of the vortex on the thermal field above the cloud level which extends up to 80 km. From the temperature maps, we also study the vertical stability of different atmospheric layers. The cold collar is clearly the most statically stable structure at polar latitudes, while the vortex and subpolar latitudes show lower stability values. Furthermore, the hot filaments present within the vortex at 55-63 km exhibit lower values of static stability than their immediate surroundings.ReferencesGarate-Lopez et al. Nat. Geosci. 6, 254-257 (2013).García Muñoz et al. Planet. Space Sci. 81, 65-73 (2013).Grassi, D. et al. J. Geophys. Res. 113, 1-12 (2008).AcknowledgementsWe thank ESA for supporting Venus Express, ASI, CNES and the other national space agencies supporting VIRTIS on VEX and their principal investigators G. Piccioni and P. Drossart. This work was supported by projects AYA2012-36666 with FEDER support, PRICI-S2009/ESP-1496, Grupos Gobierno Vasco IT-765-13 and by UPV/EHU through program UFI11/55. IGL and AGM acknowledge ESA/RSSD for hospitality and access to ‘The Grid’ computing resources.
Thermally activated TRP channels: molecular sensors for temperature detection.
Castillo, Karen; Diaz-Franulic, Ignacio; Canan, Jonathan; Gonzalez-Nilo, Fernando; Latorre, Ramon
2018-01-24
Temperature sensing is one of the oldest capabilities of living organisms, and is essential for sustaining life, because failure to avoid extreme noxious temperatures can result in tissue damage or death. A subset of members of the transient receptor potential (TRP) ion channel family is finely tuned to detect temperatures ranging from extreme cold to noxious heat, giving rise to thermoTRP channels. Structural and functional experiments have shown that thermoTRP channels are allosteric proteins, containing different domains that sense changes in temperature, among other stimuli, triggering pore opening. Although temperature-dependence is well characterized in thermoTRP channels, the molecular nature of temperature-sensing elements remains unknown. Importantly, thermoTRP channels are involved in pain sensation, related to pathological conditions. Here, we provide an overview of thermoTRP channel activation. We also discuss the structural and functional evidence supporting the existence of an intrinsic temperature sensor in this class of channels, and we explore the basic thermodynamic principles for channel activation. Finally, we give a view of their role in painful pathophysiological conditions.
Catalyst support of mixed cerium zirconium titanium oxide, including use and method of making
Willigan, Rhonda R [Manchester, CT; Vanderspurt, Thomas Henry [Glastonbury, CT; Tulyani, Sonia [Manchester, CT; Radhakrishnan, Rakesh [Vernon, CT; Opalka, Susanne Marie [Glastonbury, CT; Emerson, Sean C [Broad Brook, CT
2011-01-18
A durable catalyst support/catalyst is capable of extended water gas shift operation under conditions of high temperature, pressure, and sulfur levels. The support is a homogeneous, nanocrystalline, mixed metal oxide of at least three metals, the first being cerium, the second being Zr, and/or Hf, and the third importantly being Ti, the three metals comprising at least 80% of the metal constituents of the mixed metal oxide and the Ti being present in a range of 5% to 45% by metals-only atomic percent of the mixed metal oxide. The mixed metal oxide has an average crystallite size less than 6 nm and forms a skeletal structure with pores whose diameters are in the range of 4-9 nm and normally greater than the average crystallite size. The surface area of the skeletal structure per volume of the material of the structure is greater than about 240 m.sup.2/cm.sup.3. The method of making and use are also described.
Scaled centrifugal compressor, collector and running gear program
NASA Technical Reports Server (NTRS)
Kenehan, J. G.
1983-01-01
The Scaled Centrifugal Compressor, Collector and Running gear Program was conducted in support of an overall NASA strategy to improve small-compressor performance, durability, and reliability while reducing initial and life-cycle costs. Accordingly, Garrett designed and provided a test rig, gearbox coupling, and facility collector for a new NASA facility, and provided a scaled model of an existing, high-performance impeller for evaluation scaling effects on aerodynamic performance and for obtaining other performance data. Test-rig shafting was designed to operate smoothly throughout a speed range up to 60,000 rpm. Pressurized components were designed to operate at pressures up to 300 psia and at temperatures to 1000 F. Nonrotating components were designed to provide a margin-of-safety of 0.05 or greater; rotating components, for a margin-of-safety based on allowable yield and ultimate strengths. Design activities were supported by complete design analysis, and the finished hardware was subjected to check-runs to confirm proper operation. The test rig will support a wide range of compressor tests and evaluations.
Luo, Zhenhua; Tang, Songhua; Li, Chunwang; Fang, Hongxia; Hu, Huijian; Yang, Ji; Ding, Jingjing; Jiang, Zhigang
2012-01-01
Explaining species richness patterns is a central issue in biogeography and macroecology. Several hypotheses have been proposed to explain the mechanisms driving biodiversity patterns, but the causes of species richness gradients remain unclear. In this study, we aimed to explain the impacts of energy, environmental stability, and habitat heterogeneity factors on variation of vertebrate species richness (VSR), based on the VSR pattern in China, so as to test the energy hypothesis, the environmental stability hypothesis, and the habitat heterogeneity hypothesis. A dataset was compiled containing the distributions of 2,665 vertebrate species and eleven ecogeographic predictive variables in China. We grouped these variables into categories of energy, environmental stability, and habitat heterogeneity and transformed the data into 100 × 100 km quadrat systems. To test the three hypotheses, AIC-based model selection was carried out between VSR and the variables in each group and correlation analyses were conducted. There was a decreasing VSR gradient from the southeast to the northwest of China. Our results showed that energy explained 67.6% of the VSR variation, with the annual mean temperature as the main factor, which was followed by annual precipitation and NDVI. Environmental stability factors explained 69.1% of the VSR variation and both temperature annual range and precipitation seasonality had important contributions. By contrast, habitat heterogeneity variables explained only 26.3% of the VSR variation. Significantly positive correlations were detected among VSR, annual mean temperature, annual precipitation, and NDVI, whereas the relationship of VSR and temperature annual range was strongly negative. In addition, other variables showed moderate or ambiguous relations to VSR. The energy hypothesis and the environmental stability hypothesis were supported, whereas little support was found for the habitat heterogeneity hypothesis.
Luo, Zhenhua; Tang, Songhua; Li, Chunwang; Fang, Hongxia; Hu, Huijian; Yang, Ji; Ding, Jingjing; Jiang, Zhigang
2012-01-01
Background Explaining species richness patterns is a central issue in biogeography and macroecology. Several hypotheses have been proposed to explain the mechanisms driving biodiversity patterns, but the causes of species richness gradients remain unclear. In this study, we aimed to explain the impacts of energy, environmental stability, and habitat heterogeneity factors on variation of vertebrate species richness (VSR), based on the VSR pattern in China, so as to test the energy hypothesis, the environmental stability hypothesis, and the habitat heterogeneity hypothesis. Methodology/Principal Findings A dataset was compiled containing the distributions of 2,665 vertebrate species and eleven ecogeographic predictive variables in China. We grouped these variables into categories of energy, environmental stability, and habitat heterogeneity and transformed the data into 100×100 km quadrat systems. To test the three hypotheses, AIC-based model selection was carried out between VSR and the variables in each group and correlation analyses were conducted. There was a decreasing VSR gradient from the southeast to the northwest of China. Our results showed that energy explained 67.6% of the VSR variation, with the annual mean temperature as the main factor, which was followed by annual precipitation and NDVI. Environmental stability factors explained 69.1% of the VSR variation and both temperature annual range and precipitation seasonality had important contributions. By contrast, habitat heterogeneity variables explained only 26.3% of the VSR variation. Significantly positive correlations were detected among VSR, annual mean temperature, annual precipitation, and NDVI, whereas the relationship of VSR and temperature annual range was strongly negative. In addition, other variables showed moderate or ambiguous relations to VSR. Conclusions/Significance The energy hypothesis and the environmental stability hypothesis were supported, whereas little support was found for the habitat heterogeneity hypothesis. PMID:22530038
Growth of EuO Single Crystals at Reduced Temperatures
NASA Astrophysics Data System (ADS)
Besara, Tiglet; Ramirez, Daniel; Whalen, Jeffrey; Siegrist, Theo
Single crystals of Eu1-xBaxO have been grown in a barium-magnesium flux at moderate temperatures up to 1000°C, producing single crystals with barium doping levels ranging from x = 0 . 03 to x = 0 . 25 . Magnetic measurements show that the ferromagnetic Curie temperature TC correlates with the Ba doping levels, and a modified Heisenberg model is employed to describe the TC dependence on the stoichiometry. The decrease in TC is dominated by the Ba substitution on the Eu lattice with a small contribution arising from the lattice strain. Extrapolation of results indicates that a sample at x = 0 . 72 should have a TC = 0 K, potentially producing a quantum phase transition in this material. DOE SC-0008832, NSF DMR-1157490. This work was supported by the Department of Energy, Office of Basic Science, under contract DOE SC-0008832. This work has been performed at the National High Magnetic Field Laboratory, which is supported by the National Science Foundation Cooperative Agreement DMR-1157490, the State of Florida, and the U.S. Department of Energy.
X-ray imaging spectroscopic diagnostics on Nike
NASA Astrophysics Data System (ADS)
Aglitskiy, Y.; Karasik, M.; Serlin, V.; Weaver, J. L.; Oh, J.; Obenschain, S. P.; Ralchenko, Yu.
2017-10-01
Electron temperature and density diagnostics of the laser plasma produced within the focal spot of the NRL's Nike laser are being explored with the help of X-ray imaging spectroscopy. Spectra of He-like and H-like ions were taken by Nike focusing spectrometers in a range of lower (1.8 kev, Si XIV) and higher (6.7 kev, Fe XXV) x-ray energies. Data that were obtained with spatial resolution were translated into the temperature and density as functions of distance from the target. As an example electron density was determined from He-like satellites to Ly-alpha in Si XIV. The dielectronic satellites with intensity ratios that are sensitive to collisional transfer of population between different triplet groups of double-excited states 2l2l' in Si XIII were observed with high spatial and spectral resolution Lineouts taken at different axial distances from the planar Si target show changing spectral shapes due to the different electron densities as determined by supporting non-LTE simulations. These shapes are relatively insensitive to the plasma temperature which was measured using different spectral lines. This work was supported by the US DOE/NNSA.
Improved techniques for thermomechanical testing in support of deformation modeling
NASA Technical Reports Server (NTRS)
Castelli, Michael G.; Ellis, John R.
1992-01-01
The feasibility of generating precise thermomechanical deformation data to support constitutive model development was investigated. Here, the requirement is for experimental data that is free from anomalies caused by less than ideal equipment and procedures. A series of exploratory tests conducted on Hastelloy X showed that generally accepted techniques for strain controlled tests were lacking in at least three areas. Specifically, problems were encountered with specimen stability, thermal strain compensation, and temperature/mechanical strain phasing. The source of these difficulties was identified and improved thermomechanical testing techniques to correct them were developed. These goals were achieved by developing improved procedures for measuring and controlling thermal gradients and by designing a specimen specifically for thermomechanical testing. In addition, innovative control strategies were developed to correctly proportion and phase the thermal and mechanical components of strain. Subsequently, the improved techniques were used to generate deformation data for Hastelloy X over the temperature range, 200 to 1000 C.
NASA Astrophysics Data System (ADS)
Mazuecos, Ignacio P.; Arístegui, Javier; Vázquez-Domínguez, Evaristo; Ortega-Retuerta, Eva; Gasol, Josep M.; Reche, Isabel
2015-01-01
We have measured both prokaryotic heterotrophic production (PHP) and respiration (R), then providing direct estimates of prokaryotic growth efficiencies (PGE), in the upper mesopelagic zone (300-600 m) of the South Atlantic and Indian Oceans. Our results show that in situ R ranged 3-fold, from 87 to 238 μmol C m-3 d-1. In situ PHP rates were much lower but also more variable than R (ranging from 0.3 to 9.1 μmol C m-3 d-1). The derived in situ PGE values were on average ~1.4% (from 0.3% to 3.7%), indicating that most of the organic substrates incorporated by prokaryotes were respired instead of being used for growth. Together with the few previous studies on PGE published before for the Atlantic Ocean and Mediterranean Sea, our findings support the hypothesis that the global mesopelagic zone represents a key remineralization site for export production in the open ocean. We also found a strong correlation between R and PGE with temperature across a gradient ranging from 8.7 to 14.9 °C. The derived Q10 value of 3.7 suggests that temperature variability in the mesopelagic zone plays a significant role in the remineralization of organic matter.
NASA Technical Reports Server (NTRS)
Pohorille, Andrew; Pratt, Lawrence
2006-01-01
"Follow the water" is the canonical strategy in searching for life in the universe. Conventionally, discussion of this topic is focused on how solvent supports organic chemistry sufficiently rich to seed life. Perhaps more importantly, solvent must promote self-organization of organic matter into functional structures capable of responding to environmental changes. This process is based on non-covalent interactions. They are constantly formed and broken in response to internal and external stimuli. This requires that their strength must be properly tuned. If they were too weak, the system would exhibit undesired, uncontrolled response to natural fluctuations of physical and chemical parameters. If they were too strong kinetics of biological processes would be slow and energetics costly. Non-covalent interactions are strongly mediated by the solvent. Specifically, high dielectric solvents for life are needed for solubility of polar species and flexibility of biological structures stabilized by electrostatic interactions. Water exhibits a remarkable trait that it promotes solvophobic interactions between non-polar species, which are responsible for self-organization phenomena such as the formation of cellular boundary structures, and protein folding and aggregation. Unusual temperature dependence of hydrophobic interactions - they often become stronger as temperature increases - is a consequence of the temperature insensitivity of properties of the liquid water. This contributes to the existence of robust life over a wide temperature range. Water is not the only liquid with favorable properties for supporting life. Other pure liquids or their mixtures that have high dielectric constants and simultaneously support some level of self-organization will be discussed.
Alptekin, Gokhan
2016-03-29
Sorbents and methods of using them for removing mercury from flue gases over a wide range of temperatures are disclosed. Sorbent materials of this invention comprise oxy- or hydroxyl-halogen (chlorides and bromides) of manganese, copper and calcium as the active phase for Hg.sup.0 oxidation, and are dispersed on a high surface porous supports. In addition to the powder activated carbons (PACs), this support material can be comprised of commercial ceramic supports such as silica (SiO.sub.2), alumina (Al.sub.2O.sub.3), zeolites and clays. The support material may also comprise of oxides of various metals such as iron, manganese, and calcium. The non-carbon sorbents of the invention can be easily injected into the flue gas and recovered in the Particulate Control Device (PCD) along with the fly ash without altering the properties of the by-product fly ash enabling its use as a cement additive. Sorbent materials of this invention effectively remove both elemental and oxidized forms of mercury from flue gases and can be used at elevated temperatures. The sorbent combines an oxidation catalyst and a sorbent in the same particle to both oxidize the mercury and then immobilize it.
Sea urchin fertilization in a warm, acidified and high pCO2 ocean across a range of sperm densities.
Byrne, Maria; Soars, Natalie; Selvakumaraswamy, Paulina; Dworjanyn, Symon A; Davis, Andrew R
2010-05-01
Marine invertebrate gametes are being spawned into an ocean simultaneously warming, acidifying and increasing in pCO(2). Decreased pH/increased pCO(2) narcotizes sperm indicating that acidification may impair fertilization, exacerbating problems of sperm limitation, with dire implications for marine life. In contrast, increased temperature may have a stimulatory effect, enhancing fertilization. We investigated effects of ocean change on sea urchin fertilization across a range of sperm densities. We address two predictions: (1) low pH/increased pCO(2) reduces fertilization at low sperm density and (2) increased temperature enhances fertilization, buffering negative effects of acidification and increased pCO(2). Neither prediction was supported. Fertilization was only affected by sperm density. Increased acidification and pCO(2) did not reduce fertilization even at low sperm density and increased temperature did not enhance fertilization. It is important to identify where vulnerabilities lie across life histories and our results indicate that sea urchin fertilization is robust to climate change stressors. However, developmental stages may be vulnerable to ocean change. Copyright 2009 Elsevier Ltd. All rights reserved.
Recruitment of burbot (Lota lota L.) in Lake Erie: An empirical modelling approach
Stapanian, M.A.; Witzel, L.D.; Cook, A.
2010-01-01
World-wide, many burbot Lota lota (L.) populations have been extirpated or are otherwise in need of conservation measures. By contrast, burbot made a dramatic recovery in Lake Erie during 1993-2001 but declined during 2002-2007, due in part to a sharp decrease in recruitment. We used Akaike's Information Criterion to evaluate 129 linear regression models that included all combinations of one to seven ecological indices as predictors of burbot recruitment. Two models were substantially supported by the data: (i) the number of days in which water temperatures were within optimal ranges for burbot spawning and development combined with biomass of yearling and older (YAO) yellow perch Perca flavescens (Mitchill); and (ii) biomass of YAO yellow perch. Warmer winter water temperatures and increases in yellow perch biomass were associated with decreases in burbot recruitment. Continued warm winter water temperatures could result in declines in burbot recruitment, particularly in the southern part of the species' range. Published 2010. This article is a US Government work and is in the public domain in the USA.
The catalytic removal of ammonia and nitrogen oxides from spacecabin atmospheres
NASA Technical Reports Server (NTRS)
Gully, A. J.; Graham, R. R.; Halligan, J. E.; Bentsen, P. C.
1973-01-01
Investigations were made on methods for the removal of ammonia and to a lesser extent nitrogen oxides in low concentrations from air. The catalytic oxidation of ammonia was studied over a temperature range of 250 F to 600 F and a concentration range 20 ppm to 500 ppm. Of the catalysts studied, 0.5 percent ruthenium supported on alumina was found to be superior. This material is active at temperatures as low as 250 F and was found to produce much less nitrous oxide than the other two active catalysts, platinum on alumina and Hopcalite. A quantitative design model was developed which will permit the performance of an oxidizer to be calculated. The ruthenium was found to be relatively insensitive to low concentrations of water and to oxygen concentration between 21 percent and 100 percent. Hydrogen sulfide was found to be a poison when injected in relatively large quantities. The adsorption of ammonia by copper sulfate treated silica gel was investigated at temperatures of 72 F and 100 F. A quantitative model was developed for predicting adsorption bed behavior.
Atomic structure data based on average-atom model for opacity calculations in astrophysical plasmas
NASA Astrophysics Data System (ADS)
Trzhaskovskaya, M. B.; Nikulin, V. K.
2018-03-01
Influence of the plasmas parameters on the electron structure of ions in astrophysical plasmas is studied on the basis of the average-atom model in the local thermodynamic equilibrium approximation. The relativistic Dirac-Slater method is used for the electron density estimation. The emphasis is on the investigation of an impact of the plasmas temperature and density on the ionization stages required for calculations of the plasmas opacities. The level population distributions and level energy spectra are calculated and analyzed for all ions with 6 ≤ Z ≤ 32 occurring in astrophysical plasmas. The plasma temperature range 2 - 200 eV and the density range 2 - 100 mg/cm3 are considered. The validity of the method used is supported by good agreement between our values of ionization stages for a number of ions, from oxygen up to uranium, and results obtained earlier by various methods among which are more complicated procedures.
Utilization of plasmas for graphene synthesis
NASA Astrophysics Data System (ADS)
Shashurin, Alexey; Keidar, Michael
2013-10-01
Graphene is a one-atom-thick planar sheet of carbon atoms that are densely packed in a honeycomb crystal lattice. Grapheen has tremendous range of potential applications ranging from high-speed transistors to electrochemical energy storage devices and biochemical sensors. Methods of graphene synthesis include mechanical exfoliation, epitaxial growth on SiC, CVD and colloidal suspensions. In this work the utilization of plasmas in synthesis process is considered. Types of carbonaceous structures produced by the anodic arc and regions of their synthesis were studied. Ultimate role of substrate temperature and transformations occurring with various carbonaceous structures generated in plasma discharge were considered. Formation of graphene film on copper substrate was detected at temperatures around the copper melting point. The film was consisted of several layers graphene flakes having typical sizes of about 200 nm. Time required for crystallization of graphene on externally heated substrates was determined. This work was supported by National Science Foundation (NSF Grant No. CBET-1249213).
New blackbody calibration source for low temperatures from -20 C to +350 C
NASA Astrophysics Data System (ADS)
Mester, Ulrich; Winter, Peter
2001-03-01
Calibration procedures for infrared thermometers and thermal imaging systems require radiation sources of precisely known radiation properties. In the physical absence of an ideal Planck's radiator, the German Committee VDI/VDE-GMA FA 2.51, 'Applied Radiation Thermometry', agreed upon desirable specifications and limiting parameters for a blackbody calibration source with a temperature range from -20 degree(s)C to +350 degree(s)C, a spectral range from 2 to 15 microns, an emissivity greater than 0.999 and a useful source aperture of 60 mm, among others. As a result of the subsequent design and development performed with the support of the laboratory '7.31 Thermometry' of the German national institute of natural and engineering sciences (PTB), the Mester ME20 Blackbody Calibration Source is presented. The ME20 meets or exceeds all of the specifications formulated by the VDI/VDE committee.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Chen
2015-01-01
We report here a constitutive model for predicting long-term creep strain evolution in’ strengthened Ni-base superalloys. Dislocation climb-bypassing’, typical in intermediate’ volume fraction (~20%) alloys, is considered as the primary deformation mechanism. Dislocation shearing’ to anti-phase boundary (APB) faults and diffusional creep are also considered for high-stress and high-temperature low-stress conditions, respectively. Additional damage mechanism is taken into account for rapid increase in tertiary creep strain. The model has been applied to Alloy 282, and calibrated in a temperature range of 1375-1450°F, and stress range of 15-45ksi. The model parameters and a MATLAB code are provided. This report is preparedmore » by Monica Soare and Chen Shen at GE Global Research. Technical discussions with Dr. Vito Cedro are greatly appreciated. This work was supported by DOE program DE-FE0005859« less
NASA Astrophysics Data System (ADS)
Kaczkowski, Peter J.; Anand, Ajay
2005-09-01
The spatial distribution and temporal history of tissue temperature is an essential indicator of thermal therapy progress, and treatment safety and efficacy. Magnetic resonance methods provide the gold standard noninvasive measurement of temperature but are costly and cumbersome compared to the therapy itself. We have been developing the use of ultrasound backscattering for real-time temperature estimation; ultrasonic methods have been limited to relatively low temperature rise, primarily due to lack of sensitivity at protein denaturation temperatures (50-70
Feng, Yibo; Li, Xisheng; Zhang, Xiaojuan
2015-05-13
We present an adaptive algorithm for a system integrated with micro-electro-mechanical systems (MEMS) gyroscopes and a compass to eliminate the influence from the environment, compensate the temperature drift precisely, and improve the accuracy of the MEMS gyroscope. We use a simplified drift model and changing but appropriate model parameters to implement this algorithm. The model of MEMS gyroscope temperature drift is constructed mostly on the basis of the temperature sensitivity of the gyroscope. As the state variables of a strong tracking Kalman filter (STKF), the parameters of the temperature drift model can be calculated to adapt to the environment under the support of the compass. These parameters change intelligently with the environment to maintain the precision of the MEMS gyroscope in the changing temperature. The heading error is less than 0.6° in the static temperature experiment, and also is kept in the range from 5° to -2° in the dynamic outdoor experiment. This demonstrates that the proposed algorithm exhibits strong adaptability to a changing temperature, and performs significantly better than KF and MLR to compensate the temperature drift of a gyroscope and eliminate the influence of temperature variation.
Local plant adaptation across a subarctic elevational gradient
Kardol, Paul; De Long, Jonathan R.; Wardle, David A.
2014-01-01
Predicting how plants will respond to global warming necessitates understanding of local plant adaptation to temperature. Temperature may exert selective effects on plants directly, and also indirectly through environmental factors that covary with temperature, notably soil properties. However, studies on the interactive effects of temperature and soil properties on plant adaptation are rare, and the role of abiotic versus biotic soil properties in plant adaptation to temperature remains untested. We performed two growth chamber experiments using soils and Bistorta vivipara bulbil ecotypes from a subarctic elevational gradient (temperature range: ±3°C) in northern Sweden to disentangle effects of local ecotype, temperature, and biotic and abiotic properties of soil origin on plant growth. We found partial evidence for local adaption to temperature. Although soil origin affected plant growth, we did not find support for local adaptation to either abiotic or biotic soil properties, and there were no interactive effects of soil origin with ecotype or temperature. Our results indicate that ecotypic variation can be an important driver of plant responses to the direct effects of increasing temperature, while responses to covariation in soil properties are of a phenotypic, rather than adaptive, nature. PMID:26064553
Space Tracking and Surveillance System (STSS) Cryogenic Technology Efforts and Needs
NASA Astrophysics Data System (ADS)
Kolb, I. L.; Curran, D. G. T.; Lee, C. S.
2004-06-01
The Missile Defense Agency's (MDA) STSS program, the former Space Based Infrared Systems (SBIRS) Low, has been actively supporting and working to advance space-borne cryocooler technology through efforts with the Air Force Research Lab (AFRL) and Small Business Innovation Research (SBIR) program. The envisioned infrared satellite system requires high efficiency, low power, and low weight cooling in a range of temperature and cooling loads below 120K for reliable 10-year operation to meet mission needs. This paper describes cryocooler efforts previously and currently supported by STSS and the possible future cryogenic requirements for later technology insertion.
Effects of Temperature on the Histotripsy Intrinsic Threshold for Cavitation.
Vlaisavljevich, Eli; Xu, Zhen; Maxwell, Adam; Mancia, Lauren; Zhang, Xi; Lin, Kuang-Wei; Duryea, Alexander; Sukovich, Jonathan; Hall, Tim; Johnsen, Eric; Cain, Charles
2016-05-10
Histotripsy is an ultrasound ablation method that depends on the initiation of a dense cavitation bubble cloud to fractionate soft tissue. Previous work has demonstrated that a cavitation cloud can be formed by a single acoustic pulse with one high amplitude negative cycle, when the negative pressure amplitude exceeds a threshold intrinsic to the medium. The intrinsic thresholds in soft tissues and tissue phantoms that are water-based are similar to the intrinsic threshold of water over an experimentally verified frequency range of 0.3-3 MHz. Previous work studying the histotripsy intrinsic threshold has been limited to experiments performed at room temperature (~20°C). In this study, we investigate the effects of temperature on the histotripsy intrinsic threshold in water, which is essential to accurately predict the intrinsic thresholds expected over the full range of in vivo therapeutic temperatures. Based on previous work studying the histotripsy intrinsic threshold and classical nucleation theory, we hypothesize that the intrinsic threshold will decrease with increasing temperature. To test this hypothesis, the intrinsic threshold in water was investigated both experimentally and theoretically. The probability of generating cavitation bubbles was measured by applying a single pulse with one high amplitude negative cycle at 1 MHz to distilled, degassed water at temperatures ranging from 10°C-90°C. Cavitation was detected and characterized by passive cavitation detection and high-speed photography, from which the probability of cavitation was measured vs. pressure amplitude. The results indicate that the intrinsic threshold (the negative pressure at which the cavitation probability=0.5) significantly decreases with increasing temperature, showing a nearly linear decreasing trend from 29.8±0.4 MPa at 10˚C to 14.9±1.4 MPa at 90˚C. Overall, the results of this study support our hypothesis that the intrinsic threshold is highly dependent upon the temperature of the medium, which may allow for better predictions of cavitation generation at body temperature in vivo and at the elevated temperatures commonly seen in high intensity focused ultrasound (HIFU) regimes.
Effects of Temperature on the Histotripsy Intrinsic Threshold for Cavitation
Vlaisavljevich, Eli; Xu, Zhen; Maxwell, Adam; Mancia, Lauren; Zhang, Xi; Lin, Kuang-Wei; Duryea, Alexander; Sukovich, Jonathan; Hall, Tim; Johnsen, Eric; Cain, Charles
2018-01-01
Histotripsy is an ultrasound ablation method that depends on the initiation of a dense cavitation bubble cloud to fractionate soft tissue. Previous work has demonstrated that a cavitation cloud can be formed by a single acoustic pulse with one high amplitude negative cycle, when the negative pressure amplitude exceeds a threshold intrinsic to the medium. The intrinsic thresholds in soft tissues and tissue phantoms that are water-based are similar to the intrinsic threshold of water over an experimentally verified frequency range of 0.3–3 MHz. Previous work studying the histotripsy intrinsic threshold has been limited to experiments performed at room temperature (~ 20°C). In this study, we investigate the effects of temperature on the histotripsy intrinsic threshold in water, which is essential to accurately predict the intrinsic thresholds expected over the full range of in vivo therapeutic temperatures. Based on previous work studying the histotripsy intrinsic threshold and classical nucleation theory, we hypothesize that the intrinsic threshold will decrease with increasing temperature. To test this hypothesis, the intrinsic threshold in water was investigated both experimentally and theoretically. The probability of generating cavitation bubbles was measured by applying a single pulse with one high amplitude negative cycle at 1 MHz to distilled, degassed water at temperatures ranging from 10°C–90°C. Cavitation was detected and characterized by passive cavitation detection and high-speed photography, from which the probability of cavitation was measured vs. pressure amplitude. The results indicate that the intrinsic threshold (the negative pressure at which the cavitation probability = 0.5) significantly decreases with increasing temperature, showing a nearly linear decreasing trend from 29.8±0.4 MPa at 10°C to 14.9±1.4 MPa at 90°C. Overall, the results of this study support our hypothesis that the intrinsic threshold is highly dependent upon the temperature of the medium, which may allow for better predictions of cavitation generation at body temperature in vivo and at the elevated temperatures commonly seen in high intensity focused ultrasound (HIFU) regimes. PMID:28113706
Taylor, Anne E; Giguere, Andrew T; Zoebelein, Conor M; Myrold, David D; Bottomley, Peter J
2017-04-01
Soil nitrification potential (NP) activities of ammonia-oxidizing archaea and bacteria (AOA and AOB, respectively) were evaluated across a temperature gradient (4-42 °C) imposed upon eight soils from four different sites in Oregon and modeled with both the macromolecular rate theory and the square root growth models to quantify the thermodynamic responses. There were significant differences in response by the dominant AOA and AOB contributing to the NPs. The optimal temperatures (T opt ) for AOA- and AOB-supported NPs were significantly different (P<0.001), with AOA having T opt >12 °C greater than AOB. The change in heat capacity associated with the temperature dependence of nitrification (ΔC P ‡ ) was correlated with T opt across the eight soils, and the ΔC P ‡ of AOB activity was significantly more negative than that of AOA activity (P<0.01). Model results predicted, and confirmatory experiments showed, a significantly lower minimum temperature (T min ) and different, albeit very similar, maximum temperature (T max ) values for AOB than for AOA activity. The results also suggested that there may be different forms of AOA AMO that are active over different temperature ranges with different T min , but no evidence of multiple T min values within the AOB. Fundamental differences in temperature-influenced properties of nitrification driven by AOA and AOB provides support for the idea that the biochemical processes associated with NH 3 oxidation in AOA and AOB differ thermodynamically from each other, and that also might account for the difficulties encountered in attempting to model the response of nitrification to temperature change in soil environments.
Taylor, Anne E; Giguere, Andrew T; Zoebelein, Conor M; Myrold, David D; Bottomley, Peter J
2017-01-01
Soil nitrification potential (NP) activities of ammonia-oxidizing archaea and bacteria (AOA and AOB, respectively) were evaluated across a temperature gradient (4–42 °C) imposed upon eight soils from four different sites in Oregon and modeled with both the macromolecular rate theory and the square root growth models to quantify the thermodynamic responses. There were significant differences in response by the dominant AOA and AOB contributing to the NPs. The optimal temperatures (Topt) for AOA- and AOB-supported NPs were significantly different (P<0.001), with AOA having Topt>12 °C greater than AOB. The change in heat capacity associated with the temperature dependence of nitrification (ΔCP‡) was correlated with Topt across the eight soils, and the ΔCP‡ of AOB activity was significantly more negative than that of AOA activity (P<0.01). Model results predicted, and confirmatory experiments showed, a significantly lower minimum temperature (Tmin) and different, albeit very similar, maximum temperature (Tmax) values for AOB than for AOA activity. The results also suggested that there may be different forms of AOA AMO that are active over different temperature ranges with different Tmin, but no evidence of multiple Tmin values within the AOB. Fundamental differences in temperature-influenced properties of nitrification driven by AOA and AOB provides support for the idea that the biochemical processes associated with NH3 oxidation in AOA and AOB differ thermodynamically from each other, and that also might account for the difficulties encountered in attempting to model the response of nitrification to temperature change in soil environments. PMID:27996979
Frequency response of a vaporization process to distorted acoustic disturbances
NASA Technical Reports Server (NTRS)
Heidmann, M. F.
1972-01-01
The open-loop response properties expressed as the mass vaporized in phase and out of phase with the pressure oscillations were numerically evaluated for a vaporizing n-heptane droplet. The evaluation includes the frequency dependence introduced by periodic oscillation in droplet mass and temperature. A given response was achieved over a much broader range of frequency with harmonically distorted disturbances than with sinusoidal disturbances. The results infer that distortion increases the probability of incurring spontaneous and triggered instability in any rocket engine combustor by broadening the frequency range over which the vaporization process can support an instability.
Polar Lunar Regions: Exploiting Natural and Augmented Thermal Environments
NASA Technical Reports Server (NTRS)
Ryan, Robert E.; McKellip, Rodney; Brannon, David P.; Underwood, Lauren; Russell, Kristen J.
2007-01-01
In polar regions of the Moon, some areas within craters are permanently shadowed from solar illumination and can reach temperatures of 100 K or less. These regions could serve as cold traps, capturing ice and other volatile compounds. These potential ice stores have many applications for lunar exploration. Within double-shaded craters, even colder regions exist, with temperatures never exceeding 50 K in many cases. Observed temperatures suggest that these regions could enable equivalent liquid nitrogen cryogenic functions. These permanently shaded polar craters also offer unprecedented high-vacuum cryogenic environments, which in their current state could support cryogenic applications. Besides ice stores, the unique conditions at the lunar poles harbor an environment that provides an opportunity to reduce the power, weight, and total mass that needs to be carried from the Earth to the Moon for lunar exploration and research. Reducing the heat flux of geothermal, black body radiation can have significant impacts on the achievable temperature. With a few manmade augmentations, permanently shaded craters located near the lunar poles achieve temperatures even lower than those that naturally exist. Our analysis reveals that lightweight thermal shielding within shaded craters could create an environment several Kelvin above absolute zero. The temperature ranges of both naturally shaded and thermally augmented craters could enable the long-term storage of most gases, low-temperature superconductors for large magnetic fields, devices and advanced high-speed computing instruments. Augmenting thermal conditions in these craters could then be used as a basis for the development of an advanced thermal management architecture that would support a wide variety of cryogenically based applications. Lunar exploration and habitation capabilities would significantly benefit if permanently shaded craters, augmented with thermal shielding, were used to facilitate the operation of near absolute zero instruments, including a wide variety of cryogenically based propulsion, energy, communication, sensing, and computing devices. The required burden of carrying massive life-supporting components from the Earth to the Moon for lunar exploration and research potentially could be reduced.
SPS Fabrication of Tungsten-Rhenium Alloys in Support of NTR Fuels Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jonathan A. Webb; Indrajit Charit; Cory Sparks
Abstract. Tungsten metal slugs were fabricated via Spark Plasma Sintering (SPS) of powdered metals at temperatures ranging from 1575 K to 1975 K and hold times of 5 minutes to 30 minutes, using powders with an average diameter of 7.8 ?m. Sintered tungsten specimens were found to have relative densities ranging from 83 % to 94 % of the theoretical density for tungsten. Consolidated specimens were also tested for their Vickers Hardness Number (VHN), which was fitted as a function of relative density; the fully consolidated VHN was extrapolated to be 381.45 kg/mm2. Concurrently, tungsten and rhenium powders with averagemore » respective diameters of 0.5 ?m and 13.3 ?m were pre-processed either by High-Energy-Ball-Milling (HEBM) or by homogeneous mixing to yield W-25at.%Re mixtures. The powder batches were sintered at temperatures of 1975 K and 2175 K for hold times ranging from 0 minutes to 60 minutes yielding relative densities ranging from 94% to 97%. The combination of HEBM and sintering showed a significant decrease in the inter-metallic phases compared to that of the homogenous mixing and sintering.« less
CO2 Acquisition Membrane (CAM)
NASA Technical Reports Server (NTRS)
Mason, Larry W.; Way, J. Douglas; Vlasse, Marcus
2003-01-01
The objective of CAM is to develop, test, and analyze thin film membrane materials for separation and purification of carbon dioxide (CO2) from mixtures of gases, such as those found in the Martian atmosphere. The membranes are targeted toward In Situ Resource Utilization (ISRU) applications that will operate in extraterrestrial environments and support future unmanned and human space missions. A primary application is the Sabatier Electrolysis process that uses Mars atmosphere CO2 as raw material for producing water, oxygen, and methane for rocket fuel and habitat support. Other applications include use as an inlet filter to collect and concentrate Mars atmospheric argon and nitrogen gases for habitat pressurization, and to remove CO2 from breathing gases in Closed Environment Life Support Systems (CELSS). CAM membrane materials include crystalline faujasite (FAU) zeolite and rubbery polymers such as silicone rubber (PDMS) that have been shown in the literature and via molecular simulation to favor adsorption and permeation of CO2 over nitrogen and argon. Pure gas permeation tests using commercial PDMS membranes have shown that both CO2 permeance and the separation factor relative to other gases increase as the temperature decreases, and low (Delta)P(Sub CO2) favors higher separation factors. The ideal CO2/N2 separation factor increases from 7.5 to 17.5 as temperature decreases from 22 C to -30 C. For gas mixtures containing CO2, N2, and Ar, plasticization decreased the separation factors from 4.5 to 6 over the same temperature range. We currently synthesize and test our own Na(+) FAU zeolite membranes using standard formulations and secondary growth methods on porous alumina. Preliminary tests with a Na(+) FAU membrane at 22 C show a He/SF6 ideal separation factor of 62, exceeding the Knudsen diffusion selectivity by an order of magnitude. This shows that the membrane is relatively free from large defects and associated non-selective (viscous flow) transport mechanisms. The Membrane Test Facility (MTF) has been developed to measure membrane permeance over a wide range of temperature and pressure. The facility uses two volume compartments separated by the membrane that are instrumented to measure temperature, delta pressure across the membrane, and gas composition. A thermal shroud supports and encloses the membrane, and provides temperature control. Methods were developed to determine membrane permeance using the first order decay of the pressure difference between the sealed compartments, using the total pressure for pure gases, and partial pressure of each species in gas mixtures. The technique provides an end-to-end measurement of gas permeance that includes concentration polarization effects. Experiments have shown that in addition to membrane permeance properties, the geometry and design of associated structures play an important role in how membrane systems will function on Mars.
High-Temperature Surface Thermometry Technique based on Upconversion Nano-Phosphors
NASA Astrophysics Data System (ADS)
Combs, C.; Clemens, N.; Guo, X.; Song, H.; Zhao, H.; Li, K. K.; Zou, Y. K.; Jiang, H.
2011-11-01
Downconversion thermographic phosphors have been extensively used for high-temperature surface thermometry applications (e.g., aerothermodynamics, turbine blades) where temperature-sensitive paint is not viable. In downconversion techniques the phosphorescence is at longer wavelengths than the excitation source. We are developing a new upconversion thermographic phosphor technique that employs rare-earth-doped ceramics whose phosphorescence exhibit a strong temperature dependence. In the upconversion technique the phosphor is excited with near-IR light and emission is at visible wavelengths; thus, it does not require expensive UV windows and does not suffer from interference from background fluorescence. In this work the upconversion phosphors have been characterized in terms of their intensity, lifetimes and spectral content over a temperature range of 300K to 1500K. The technique has been evaluated for applications of 2D surface temperature measurements by using the total integrated intensity and the ratio of emission in different visible color bands. The results indicate that upconversion phosphor thermometry is a promising technique for making non-contact high-surface temperature measurements with good accuracy. Work supported by NASA under contract NNX11CG89P.
Formoso, Anahí E; Martin, Gabriel M; Teta, Pablo; Carbajo, Aníbal E; Sauthier, Daniel E Udrizar; Pardiñas, Ulyses F J
2015-01-01
The Patagonian opossum (Lestodelphys halli), the southernmost living marsupial, inhabits dry and open environments, mainly in the Patagonian steppe (between ~32 °S and ~49 °S). Its rich fossil record shows its occurrence further north in Central Argentina during the Quaternary. The paleoenvironmental meaning of the past distribution of L. halli has been mostly addressed in a subjective framework without an explicit connection with the climatic "space" currently occupied by this animal. Here, we assessed the potential distribution of this species and the changes occurred in its geographic range during late Pleistocene-Holocene times and linked the results obtained with conservation issues. To this end, we generated three potential distribution models with fossil records and three with current ones, using MaxEnt software. These models showed a decrease in the suitable habitat conditions for the species, highlighting a range shift from Central-Eastern to South-Western Argentina. Our results support that the presence of L. halli in the Pampean region during the Pleistocene-Holocene can be related to precipitation and temperature variables and that its current presence in Patagonia is more related to temperature and dominant soils. The models obtained suggest that the species has been experiencing a reduction in its geographic range since the middle Holocene, a process that is in accordance with a general increase in moisture and temperature in Central Argentina. Considering the findings of our work and the future scenario of global warming projected for Patagonia, we might expect a harsh impact on the distribution range of this opossum in the near future.
2014-01-01
We have proposed a method to probe metal to insulator transition in VO2 measuring photoluminescence response of colloidal quantum dots deposited on the VO2 film. In addition to linear luminescence intensity decrease with temperature that is well known for quantum dots, temperature ranges with enhanced photoluminescence changes have been found during phase transition in the oxide. Corresponding temperature derived from luminescence dependence on temperature closely correlates with that from resistance measurement during heating. The supporting reflectance data point out that photoluminescence response mimics a reflectance change in VO2 across metal to insulator transition. Time-resolved photoluminescence study did not reveal any significant change of luminescence lifetime of deposited quantum dots under metal to insulator transition. It is a strong argument in favor of the proposed explanation based on the reflectance data. PACS 71.30. + h; 73.21.La; 78.47.jd PMID:25404877
NASA Technical Reports Server (NTRS)
1983-01-01
Experimental work in support of stress studies in high speed silicon sheet growth has been emphasized in this quarter. Creep experiments utilizing four-point bending have been made in the temperature range from 1000 C to 1360 C in CZ silicon as well as on EFG ribbon. A method to measure residual stress over large areas using laser interferometry to map strain distributions under load is under development. A fiber optics sensor to measure ribbon temperature profiles has been constructed and is being tested in a ribbon growth furnace environment. Stress and temperature field modeling work has been directed toward improving various aspects of the finite element computing schemes. Difficulties in computing stress distributions with a very high creep intensity and with non-zero interface stress have been encountered and additional development of the numerical schemes to cope with these problems is required. Temperature field modeling has been extended to include the study of heat transfer effects in the die and meniscus regions.
NASA Technical Reports Server (NTRS)
Shenk, W. E.; Adler, R. F.; Chesters, D.; Susskind, J.; Uccellini, L.
1984-01-01
The measurements from current and planned geosynchronous satellites provide quantitative estimates of temperature and moisture profiles, surface temperature, wind, cloud properties, and precipitation. A number of significant observation characteristics remain, they include: (1) temperature and moisture profiles in cloudy areas; (2) high vertical profile resolution; (3) definitive precipitation area mapping and precipitation rate estimates on the convective cloud scale; (4) winds from low level cloud motions at night; (5) the determination of convective cloud structure; and (6) high resolution surface temperature determination. Four major new observing capabilities are proposed to overcome these deficiencies: a microwave sounder/imager, a high resolution visible and infrared imager, a high spectral resolution infrared sounder, and a total ozone mapper. It is suggested that the four sensors are flown together and used to support major mesoscale and short range forecasting field experiments.
Temperature dependent BRDF facility
NASA Astrophysics Data System (ADS)
Airola, Marc B.; Brown, Andrea M.; Hahn, Daniel V.; Thomas, Michael E.; Congdon, Elizabeth A.; Mehoke, Douglas S.
2014-09-01
Applications involving space based instrumentation and aerodynamically heated surfaces often require knowledge of the bi-directional reflectance distribution function (BRDF) of an exposed surface at high temperature. Addressing this need, the Johns Hopkins University Applied Physics Laboratory (JHU/APL) developed a BRDF facility that features a multiple-port vacuum chamber, multiple laser sources covering the spectral range from the longwave infrared to the ultraviolet, imaging pyrometry and laser heated samples. Laser heating eliminates stray light that would otherwise be seen from a furnace and requires minimal sample support structure, allowing low thermal conduction loss to be obtained, which is especially important at high temperatures. The goal is to measure the BRDF of ceramic-coated surfaces at temperatures in excess of 1000°C in a low background environment. Most ceramic samples are near blackbody in the longwave infrared, thus pyrometry using a LWIR camera can be very effective and accurate.
NASA Astrophysics Data System (ADS)
Cortes-Huerto, R.; Sondon, T.; Saúl, A.
2013-12-01
The effect of temperature on the formation and growth of monoatomic chains is investigated by extensive molecular dynamics simulations using a semiempirical potential based on the second-moment approximation to the tight-binding Hamiltonian. Gold nanowires, with an aspect ratio of ˜13 and a cross section of ˜1 nm2, are stretched at a rate of 3 m /s in the range of temperatures 5-600 K with 50 initial configurations per temperature. A detailed study on the probability to form monoatomic chains (MACs) is presented. Two domains are apparent in our simulations: one at T <100 K, where MACs develop from crystalline disorder at the constriction, and the other at T >100 K, where MACs form as a consequence of plastic deformation of the nanowire. Our results show that the average length of the formed MACs maximizes at T =150 K, which is supported by simple energy arguments.
Toward a reaction rate model of condensed-phase RDX decomposition under high temperatures
NASA Astrophysics Data System (ADS)
Schweigert, Igor
2014-03-01
Shock ignition of energetic molecular solids is driven by microstructural heterogeneities, at which even moderate stresses can result in sufficiently high temperatures to initiate material decomposition and the release of the chemical energy. Mesoscale modeling of these ``hot spots'' requires a chemical reaction rate model that describes the energy release with a sub-microsecond resolution and under a wide range of temperatures. No such model is available even for well-studied energetic materials such as RDX. In this presentation, I will describe an ongoing effort to develop a reaction rate model of condensed-phase RDX decomposition under high temperatures using first-principles molecular dynamics, transition-state theory, and reaction network analysis. This work was supported by the Naval Research Laboratory, by the Office of Naval Research, and by the DOD High Performance Computing Modernization Program Software Application Institute for Multiscale Reactive Modeling of Insensitive Munitions.
Toward a reaction rate model of condensed-phase RDX decomposition under high temperatures
NASA Astrophysics Data System (ADS)
Schweigert, Igor
2015-06-01
Shock ignition of energetic molecular solids is driven by microstructural heterogeneities, at which even moderate stresses can result in sufficiently high temperatures to initiate material decomposition and chemical energy release. Mesoscale modeling of these ``hot spots'' requires a reaction rate model that describes the energy release with a sub-microsecond resolution and under a wide range of temperatures. No such model is available even for well-studied energetic materials such as RDX. In this presentation, I will describe an ongoing effort to develop a reaction rate model of condensed-phase RDX decomposition under high temperatures using first-principles molecular dynamics, transition-state theory, and reaction network analysis. This work was supported by the Naval Research Laboratory, by the Office of Naval Research, and by the DoD High Performance Computing Modernization Program Software Application Institute for Multiscale Reactive Modeling of Insensitive Munitions.
Low-Temperature Hydrocarbon Photochemistry: CH3 + CH3 Recombination in Giant Planet Atmospheres
NASA Technical Reports Server (NTRS)
Smith, Gregory P.; Huestis, David L.
2002-01-01
Planetary emissions of the methyl radical CH3 were observed for the first time in 1998 on Saturn and Neptune by the ISO (Infrared Space Observatory) mission satellite. CH3 is produced by VUV photolysis of CH4 and is the key photochemical intermediate leading complex organic molecules on the giant planets and moons. The CH3 emissions from Saturn were unexpectedly weak. A suggested remedy is to increase the rate of the recombination reaction CH3 + CH3 + H2 --> C2H6 + H2 at 140 K to a value at least 10 times that measured at room temperature in rare gases, but within the range of disagreeing theoretical expressions at low temperature. We are performing laboratory experiments at low temperature and very low pressure. The experiments are supported by RRKM theoretical modeling that is calibrated using the extensive combustion literature.
Optical diode effect at spin-wave excitations in the room-temperature multiferroic BiFeO 3.
Kezsmarki, I.; Nagel, U.; Bordacs, S.; ...
2015-09-15
The ability to read and write a magnetic state current-free by an electric voltage would provide a huge technological advantage. Dynamic or optical ME effects are equally interesting, because they give rise to unidirectional light propagation as recently observed in low-temperature multiferroics. This phenomenon, if realized at room temperature, would allow the development of optical diodes which transmit unpolarized light in one, but not in the opposite, direction. Here, we report strong unidirectional transmission in the room-temperature multiferroic BiFeO 3 over the gigahertz-terahertz frequency range. The supporting theory attributes the observed unidirectional transmission to the spin-current-driven dynamic ME effect. Ourmore » findings are an important step toward the realization of optical diodes, supplemented by the ability to switch the transmission direction with a magnetic or electric field.« less
Kassegne, Sam; Wibowo, Denni; Chi, James; Ramesh, Varsha; Narenji, Alaleh; Khosla, Ajit; Mokili, John
2015-06-01
In this study, AC characterisation of DNA molecular wires, effects of frequency, temperature and UV irradiation on their conductivity is presented. λ-DNA molecular wires suspended between high aspect-ratio electrodes exhibit highly frequency-dependent conductivity that approaches metal-like behaviour at high frequencies (∼MHz). Detailed temperature dependence experiments were performed that traced the impedance response of λ-DNA until its denaturation. UV irradiation experiments where conductivity was lost at higher and longer UV exposures helped to establish that it is indeed λ-DNA molecular wires that generate conductivity. The subsequent renaturation of λ-DNA resulted in the recovery of current conduction, providing yet another proof of the conducting DNA molecular wire bridge. The temperature results also revealed hysteretic and bi-modal impedance responses that could make DNA a candidate for nanoelectronics components like thermal transistors and switches. Further, these experiments shed light on the charge transfer mechanism in DNA. At higher temperatures, the expected increase in thermal-induced charge hopping may account for the decrease in impedance supporting the 'charge hopping mechanism' theory. UV light, on the other hand, causes damage to GC base-pairs and phosphate groups reducing the path available both for hopping and short-range tunneling mechanisms, and hence increasing impedance--this again supporting both the 'charge hopping' and 'tunneling' mechanism theories.
Testing the thermal-niche oxygen-squeeze hypothesis for estuarine striped bass
Kraus, Richard T.; Secor, D.H.; Wingate, Rebecca L.
2015-01-01
In many stratified coastal ecosystems, conceptual and bioenergetics models predict seasonal reduction in quality and quantity of fish habitat due to high temperatures and hypoxia. We tested these predictions using acoustic telemetry of 2 to 4 kg striped bass (Morone saxatilis Walbaum) and high-resolution spatial water quality sampling in the Patuxent River, a sub-estuary of the Chesapeake Bay, during 2008 and 2009. Striped bass avoided hypoxic (dissolved oxygen ≤2 mg·l−1) subpycnocline waters, but frequently occupied habitats with high temperatures (>25 °C) in the summer months, as cooler habitats were typically not available. Using traditional concepts of the seasonal thermal-niche oxygen-squeeze, most of the Patuxent estuary would beconsidered unsuitable habitat for adult striped bass during summer. Application of a bioenergetics model revealed that habitats selected by striped bass during summer would support positive growth rates assuming fish could feed at one-half ofmaximum consumption. Occupancy of the estuary during summer by striped bass in this study was likely facilitated by sufficient prey and innate tolerance of high temperatures by sub-adult fish of the size range that we tagged. Our results help extend the thermalniche oxygen-squeeze hypothesis to native populations of striped bass in semi-enclosed coastal systems. Tolerance of for supraoptimal temperatures in our study supports recent suggestions by others that the thermal-niche concept for striped bass should be revised to include warmer temperatures.
A Reassessment of Bergmann's Rule in Modern Humans
Foster, Frederick; Collard, Mark
2013-01-01
It is widely accepted that modern humans conform to Bergmann's rule, which holds that body size in endothermic species will increase as temperature decreases. However, there are reasons to question the reliability of the findings on which this consensus is based. One of these is that the main studies that have reported that modern humans conform to Bergmann's rule have employed samples that contain a disproportionately large number of warm-climate and northern hemisphere groups. With this in mind, we used latitudinally-stratified and hemisphere-specific samples to re-assess the relationship between modern human body size and temperature. We found that when groups from north and south of the equator were analyzed together, Bergmann's rule was supported. However, when groups were separated by hemisphere, Bergmann's rule was only supported in the northern hemisphere. In the course of exploring these results further, we found that the difference between our northern and southern hemisphere subsamples is due to the limited latitudinal and temperature range in the latter subsample. Thus, our study suggests that modern humans do conform to Bergmann's rule but only when there are major differences in latitude and temperature among groups. Specifically, groups must span more than 50 degrees of latitude and/or more than 30°C for it to hold. This finding has important implications for work on regional variation in human body size and its relationship to temperature. PMID:24015229
Telwala, Yasmeen; Brook, Barry W; Manish, Kumar; Pandit, Maharaj K
2013-01-01
Global average temperature increase during the last century has induced species geographic range shifts and extinctions. Montane floras, in particular, are highly sensitive to climate change and mountains serve as suitable observation sites for tracing climate-induced biological response. The Himalaya constitute an important global biodiversity hotspot, yet studies on species' response to climate change from this region are lacking. Here we use historical (1849-50) and the recent (2007-2010) data on temperature and endemic species' elevational ranges to perform a correlative study in the two alpine valleys of Sikkim. We show that the ongoing warming in the alpine Sikkim Himalaya has transformed the plant assemblages. This study lends support to the hypothesis that changing climate is causing species distribution changes. We provide first evidence of warmer winters in the region compared to the last two centuries, with mean temperatures of the warmest and the coldest months may have increased by 0.76±0.25°C and 3.65±2°C, respectively. Warming-driven geographical range shifts were recorded in 87% of 124 endemic plant species studied in the region; upper range extensions of species have resulted in increased species richness in the upper alpine zone, compared to the 19(th) century. We recorded a shift of 23-998 m in species' upper elevation limit and a mean upward displacement rate of 27.53±22.04 m/decade in the present study. We infer that the present-day plant assemblages and community structure in the Himalaya is substantially different from the last century and is, therefore, in a state of flux under the impact of warming. The continued trend of warming is likely to result in ongoing elevational range contractions and eventually, species extinctions, particularly at mountaintops.
Selected meteorological data for an arid site near Beatty, Nye County, Nevada, calendar year 1988
Wood, James L.; Hill, Kevin J.; Andraski, Brian J.
1992-01-01
Selected meteorological data were collected at a study site adjacent to a low-level radioactive-waste burial facility near Beatty/ Nevada, for calendar year 1988. Data were collected in support of ongoing studies to estimate the potential for downward movement of radionuclides into the unsaturated sediments beneath waste-burial trenches at the facility. The data include air temperature, relative humidity, vapor pressure, incident solar radiation, windspeed, wind direction, and precipitation. The data are summarized in tables and graphs.Instrumentation used at the site is discussed. The discussion includes the type, reported accuracy, and mounting height of each sensor.In 1988, the average hourly air temperatures ranged from -10.2 degrees Celsius, in December, to 45.3 degrees Celsius, in July. Hourly averaged relative humidity ranged from about 12 percent to over 80 percent. Hourly vapor pressures ranged from 0.09 to 2.22 kilopascals. Daily values for maximum incident solar radiation ranged from 63 to 1,064 watts per square meter. Daily mean windspeed ranged from 1.2 to 7.8 meters per second. Monthly wind-direction patterns are shown in a series of diagrams in which wind direction is summed over 10-degree arcs from hourly averaged data. Total precipitation for 1988 was 104.5 millimeters, with over 70 percent occurring from January through May.
NASA Astrophysics Data System (ADS)
Mishra, D. K.; Ahlawat, Anju; Sathe, V. G.
2011-07-01
Nonstoichiometric oriented thin films of LaCoO3-δ of equal thickness and varying oxygen content has been deposited on STO (001) substrate by pulsed laser deposition. X-ray diffraction results show that all films are single phase and c-axis oriented in the (001) direction with in plane tensile strain. In these films strain reduces with increasing oxygen content and Raman study also support this result. Low temperature Raman study shows no change in spin state of Co3+ in temperature range from 300 K to down to 80 K.
Radiant Heat Transfer in Reusable Surface Insulation
NASA Technical Reports Server (NTRS)
Hughes, T. A.; Linford, R. M. F.; Chmitt, R. J.; Christensen, H. E.
1973-01-01
During radiant testing of mullite panels, temperatures in the insulation and support structure exceeded those predicted on the basis of guarded hot plate thermal conductivity tests. Similar results were obtained during arc tunnel tests of mullite specimens. The differences between effective conductivity and guarded hot plate values suggested that radiant transfer through the mullite was occurring. To study the radiant transport, measurements were made of the infrared transmission through various insulating materials and fibers of interest to the shuttle program, using black body sources over the range of 780 to 2000 K. Experimental data were analyzed and scattering coefficients were derived for a variety of materials, fiber diameters, and source temperature.
NASA Astrophysics Data System (ADS)
Bilokur, M.; Gentle, A.; Arnold, M.; Cortie, M.; Smith, G.
2017-08-01
Cermet coatings based on nanoparticles of Au or Ag in a stable dielectric matrix provide a combination of spectral-selectivity and microstructural stability at elevated temperatures. The nanoparticles provide an absorption peak due to their localized surface plasmon resonance and the dielectric matrix provides red-shifting and intrinsic absorption from defects. The matrix and two separated cermet layers combined add mechanical support, greater thermal stability and extra absorptance. The coatings may be prepared by magnetron sputtering. They have solar absorptance ranging between 91% and 97% with low thermal emittance making them suitable for application in solar thermal conversion installations.
In-reactor oxidation of zircaloy-4 under low water vapor pressures
NASA Astrophysics Data System (ADS)
Luscher, Walter G.; Senor, David J.; Clayton, Kevin K.; Longhurst, Glen R.
2015-01-01
Complementary in- and ex-reactor oxidation tests have been performed to evaluate the oxidation and hydrogen absorption performance of Zircaloy-4 (Zr-4) under relatively low partial pressures (300 and 1000 Pa) of water vapor at specified test temperatures (330 and 370 °C). Data from these tests will be used to support the fabrication of components intended for isotope-producing targets and provide information regarding the temperature and pressure dependence of oxidation and hydrogen absorption of Zr-4 over the specified range of test conditions. Comparisons between in- and ex-reactor test results were performed to evaluate the influence of irradiation.
Hozain, Moh'd I; Salvucci, Michael E; Fokar, Mohamed; Holaday, A Scott
2010-01-01
Significant inhibition of photosynthesis occurs at temperatures only a few degrees (
Thermal adaptation and phosphorus shape thermal performance in an assemblage of rainforest ants.
Kaspari, Michael; Clay, Natalie A; Lucas, Jane; Revzen, Shai; Kay, Adam; Yanoviak, Stephen P
2016-04-01
We studied the Thermal Performance Curves (TPCs) of 87 species of rainforest ants and found support for both the Thermal Adaptation and Phosphorus-Tolerance hypotheses. TPCs relate a fitness proxy (here, worker speed) to environmental temperature. Thermal Adaptation posits that thermal generalists (ants with flatter, broader TPCs) are favored in the hotter, more variable tropical canopy compared to the cooler, less variable litter below. As predicted, species nesting in the forest canopy 1) had running speeds less sensitive to temperature; 2) ran over a greater range of temperatures; and 3) ran at lower maximum speeds. Tradeoffs between tolerance and maximum performance are often invoked for constraining the evolution of thermal generalists. There was no evidence that ant species traded off thermal tolerance for maximum speed, however. Phosphorus-Tolerance is a second mechanism for generating ectotherms able to tolerate thermal extremes. It posits that ants active at high temperatures invest in P-rich machinery to buffer their metabolism against thermal extremes. Phosphorus content in ant tissue varied three-fold, and as predicted, temperature sensitivity was lower and thermal range was higher in P-rich species. Combined, we show how the vertical distribution of hot and variable vs. cooler and stable microclimates in a single forest contribute to a diversity of TPCs and suggest that a widely varying P stoichiometry among these ants may drive some of these differences.
Ionic-to-electronic conductivity of glasses in the P2O5-V2O5-ZnO-Li2O system
NASA Astrophysics Data System (ADS)
Langar, A.; Sdiri, N.; Elhouichet, H.; Ferid, M.
2016-12-01
Glasses having a composition 15V2O5-5ZnO-(80- x P2O5- xLi2O ( x = 5 , 10, 15 mol%) were prepared by the conventional melt quenching. Conduction and relaxation mechanisms in these glasses were studied using impedance spectroscopy in a frequency range from 10 Hz to 10 MHz and in a temperature range from 513 K to 566 K. The structure of the amorphous synthetic product was corroborated by X-ray diffraction (disappearance of nacrite peaks). The DC conductivity follows the Arrhenius law and the activation energy determined by regression analysis varies with the content of Li2O. Frequency-dependent AC conductivity was analyzed by Jonscher's universal power law, which is varying as ωn, and the temperature-dependent power parameter supported by the Correlated Barrier Hopping (CBH) model. For x = 15 mol%, the values of n ≤ 0.5 confirm the dominance of ionic conductivity. The analysis of the modulus formalism with a distribution of relaxation times was carried out using the Kohlrausch-Williams-Watts (KWW) stretched exponential function. The stretching exponent, β, is dependent on temperature. The analysis of the temperature variation of the M" peak indicates that the relaxation process is thermally activated. Modulus study reveals the temperature-dependent non-Debye-type relaxation phenomenon.
3D Spin-Liquid State in an Organic Hyperkagome Lattice of Mott Dimers
NASA Astrophysics Data System (ADS)
Mizuno, Asato; Shuku, Yoshiaki; Matsushita, Michio M.; Tsuchiizu, Masahisa; Hara, Yuuki; Wada, Nobuo; Shimizu, Yasuhiro; Awaga, Kunio
2017-08-01
We report the first 3D spin liquid state of isotropic organic spins. Structural analysis, and magnetic and heat-capacity measurements were carried out for a chiral organic radical salt, (TBA) 1.5[(-)-NDI -Δ ] (TBA denotes tetrabutylammonium and NDI denotes naphthalene diimide), in which (-)-NDI -Δ forms a K4 structure due to its triangular molecular structure and an intermolecular π -π overlap between the NDI moieties. This lattice was identical to the hyperkagome lattice of S =1 /2 Mott dimers, and should exhibit 3D spin frustration. In fact, even though the high-temperature magnetic susceptibility followed the Curie-Weiss law with a negative Weiss constant of θ =-15 K , the low-temperature magnetic measurements revealed no long-range magnetic ordering down to 70 mK, and suggested the presence of a spin liquid state with a large residual paramagnetism χ0 of 8.5 ×10-6 emu g-1 at the absolute zero temperature. This was supported by the
Knies, Jennifer L.; Kingsolver, Joel G.
2013-01-01
The initial rise of fitness that occurs with increasing temperature is attributed to Arrhenius kinetics, in which rates of reaction increase exponentially with increasing temperature. Models based on Arrhenius typically assume single rate-limiting reaction(s) over some physiological temperature range for which all the rate-limiting enzymes are in 100% active conformation. We test this assumption using datasets for microbes that have measurements of fitness (intrinsic rate of population growth) at many temperatures and over a broad temperature range, and for diverse ectotherms that have measurements at fewer temperatures. When measurements are available at many temperatures, strictly Arrhenius kinetics is rejected over the physiological temperature range. However, over a narrower temperature range, we cannot reject strictly Arrhenius kinetics. The temperature range also affects estimates of the temperature dependence of fitness. These results indicate that Arrhenius kinetics only apply over a narrow range of temperatures for ectotherms, complicating attempts to identify general patterns of temperature dependence. PMID:20528477
Knies, Jennifer L; Kingsolver, Joel G
2010-08-01
The initial rise of fitness that occurs with increasing temperature is attributed to Arrhenius kinetics, in which rates of reaction increase exponentially with increasing temperature. Models based on Arrhenius typically assume single rate-limiting reactions over some physiological temperature range for which all the rate-limiting enzymes are in 100% active conformation. We test this assumption using data sets for microbes that have measurements of fitness (intrinsic rate of population growth) at many temperatures and over a broad temperature range and for diverse ectotherms that have measurements at fewer temperatures. When measurements are available at many temperatures, strictly Arrhenius kinetics are rejected over the physiological temperature range. However, over a narrower temperature range, we cannot reject strictly Arrhenius kinetics. The temperature range also affects estimates of the temperature dependence of fitness. These results indicate that Arrhenius kinetics only apply over a narrow range of temperatures for ectotherms, complicating attempts to identify general patterns of temperature dependence.
Fisher, Leah R; Godfrey, Matthew H; Owens, David W
2014-01-01
Incubation temperature has significant developmental effects on oviparous animals, including affecting sexual differentiation for several species. Incubation temperature also affects traits that can influence survival, a theory that is verified in this study for the Northwest Atlantic loggerhead sea turtle (Caretta caretta). We conducted controlled laboratory incubations and experiments to test for an effect of incubation temperature on performance of loggerhead hatchlings. Sixty-eight hatchlings were tested in 2011, and 31 in 2012, produced from eggs incubated at 11 different constant temperatures ranging from 27°C to 33°C. Following their emergence from the eggs, we tested righting response, crawling speed, and conducted a 24-hour long swim test. The results support previous studies on sea turtle hatchlings, with an effect of incubation temperature seen on survivorship, righting response time, crawling speed, change in crawl speed, and overall swim activity, and with hatchlings incubated at 27°C showing decreased locomotor abilities. No hatchlings survived to be tested in both years when incubated at 32°C and above. Differences in survivorship of hatchlings incubated at high temperatures are important in light of projected higher sand temperatures due to climate change, and could indicate increased mortality from incubation temperature effects.
Statistical Modeling of Daily Stream Temperature for Mitigating Fish Mortality
NASA Astrophysics Data System (ADS)
Caldwell, R. J.; Rajagopalan, B.
2011-12-01
Water allocations in the Central Valley Project (CVP) of California require the consideration of short- and long-term needs of many socioeconomic factors including, but not limited to, agriculture, urban use, flood mitigation/control, and environmental concerns. The Endangered Species Act (ESA) ensures that the decision-making process provides sufficient water to limit the impact on protected species, such as salmon, in the Sacramento River Valley. Current decision support tools in the CVP were deemed inadequate by the National Marine Fisheries Service due to the limited temporal resolution of forecasts for monthly stream temperature and fish mortality. Finer scale temporal resolution is necessary to account for the stream temperature variations critical to salmon survival and reproduction. In addition, complementary, long-range tools are needed for monthly and seasonal management of water resources. We will present a Generalized Linear Model (GLM) framework of maximum daily stream temperatures and related attributes, such as: daily stream temperature range, exceedance/non-exceedance of critical threshold temperatures, and the number of hours of exceedance. A suite of predictors that impact stream temperatures are included in the models, including current and prior day values of streamflow, water temperatures of upstream releases from Shasta Dam, air temperature, and precipitation. Monthly models are developed for each stream temperature attribute at the Balls Ferry gauge, an EPA compliance point for meeting temperature criteria. The statistical framework is also coupled with seasonal climate forecasts using a stochastic weather generator to provide ensembles of stream temperature scenarios that can be used for seasonal scale water allocation planning and decisions. Short-term weather forecasts can also be used in the framework to provide near-term scenarios useful for making water release decisions on a daily basis. The framework can be easily translated to other locations and is intended to be a complement to the physical stream temperature modeling efforts that are underway on the river.
NASA Astrophysics Data System (ADS)
Branciforte, R.; Weiss, S. B.; Schaefer, N.
2008-12-01
Climate change threatens California's vast and unique biodiversity. The Bay Area Upland Habitat Goals is a comprehensive regional biodiversity assessment of the 9 counties surrounding San Francisco Bay, and is designing conservation land networks that will serve to protect, manage, and restore that biodiversity. Conservation goals for vegetation, rare plants, mammals, birds, fish, amphibians, reptiles, and invertebrates are set, and those goals are met using the optimization algorithm MARXAN. Climate change issues are being considered in the assessment and network design in several ways. The high spatial variability at mesoclimatic and topoclimatic scales in California creates high local biodiversity, and provides some degree of local resiliency to macroclimatic change. Mesoclimatic variability from 800 m scale PRISM climatic norms is used to assess "mesoclimate spaces" in distinct mountain ranges, so that high mesoclimatic variability, especially local extremes that likely support range limits of species and potential climatic refugia, can be captured in the network. Quantitative measures of network resiliency to climate change include the spatial range of key temperature and precipitation variables within planning units. Topoclimatic variability provides a finer-grained spatial patterning. Downscaling to the topoclimatic scale (10-50 m scale) includes modeling solar radiation across DEMs for predicting maximum temperature differentials, and topographic position indices for modeling minimum temperature differentials. PRISM data are also used to differentiate grasslands into distinct warm and cool types. The overall conservation strategy includes local and regional connectivity so that range shifts can be accommodated.
Extending the spectral range of CdSe/ZnSe quantum wells by strain engineering
NASA Astrophysics Data System (ADS)
Finke, A.; Ruth, M.; Scholz, S.; Ludwig, A.; Wieck, A. D.; Reuter, D.; Pawlis, A.
2015-01-01
We demonstrate efficient room-temperature photoluminescence and spectral tuning of epitaxially grown ZnSe/CdSe quantum well structures almost over the whole visible spectrum (470-600 nm wavelength). The key element to achieve the observed high quantum efficiency and enormous tuning range was the implementation of a special strain engineering technique, which allows us to suppress substantial lattice relaxation of CdSe on ZnSe. Previous studies indicated that a CdSe coverage exceeding 3 ML on ZnSe results in the formation of extensive lattice defects and complete quenching of the photoluminescence at low and room temperature. In contrast, our approach of strain engineering enables the deposition of planar CdSe quantum wells with a thickness ranging from 1 to 6 ML with excellent optical properties. We attribute the observed experimental features to a controllable strain compensation effect that is present in an alternating system of tensile and compressively strained epitaxial layers and supported this model by calculations of the transition energies of the ZnSe/CdSe quantum wells.
Cheng, Jun; Li, Tao; Huang, Rui; Zhou, Junhu; Cen, Kefa
2014-04-01
To produce quality jet biofuel with high amount of alkanes and low amount of aromatic hydrocarbons, two zeolites of HY and HZSM-5 supporting Ni and Mo were used as catalysts to convert soybean oil into jet fuel. Zeolite HY exhibited higher jet range alkane selectivity (40.3%) and lower jet range aromatic hydrocarbon selectivity (23.8%) than zeolite HZSM-5 (13.8% and 58.9%). When reaction temperature increased from 330 to 390°C, yield of jet fuel over Ni-Mo/HY catalyst at 4 MPa hydrogen pressure increased from 0% to 49.1% due to the shift of reaction pathway from oligomerization to cracking reaction. Further increase of reaction temperature from 390 to 410°C resulted in increased yield of jet range aromatic hydrocarbons from 18.7% to 30%, which decreased jet fuel quality. A high yield of jet fuel (48.2%) was obtained at 1 MPa low hydrogen pressure over Ni (8 wt.%)-Mo (12 wt.%)/HY catalyst. Copyright © 2014 Elsevier Ltd. All rights reserved.
Current and efficiency optimization under oscillating forces in entropic barriers
NASA Astrophysics Data System (ADS)
Nutku, Ferhat; Aydıner, Ekrem
2016-09-01
The transport of externally overdriven particles confined in entropic barriers is investigated under various types of oscillating and temporal forces. Temperature, load, and amplitude dependence of the particle current and energy conversion efficiency are investigated in three dimensions. For oscillating forces, the optimized temperature-load, amplitude-temperature, and amplitude-load intervals are determined when fixing the amplitude, load, and temperature, respectively. By using three-dimensional plots rather than two-dimensional ones, it is clearly shown that oscillating forces provide more efficiency compared with a temporal one in specified optimized parameter regions. Furthermore, the dependency of efficiency to the angle between the unbiased driving force and a constant force is investigated and an asymmetric angular dependence is found for all types of forces. Finally, it is shown that oscillating forces with a high amplitude and under a moderate load lead to higher efficiencies than a temporal force at both low and high temperatures for the entire range of contact angle. Project supported by the Istanbul University, Turkey (Grant No. 55383).
Effects of temperature and relative humidity on the stability of paper-immobilized antibodies.
Wang, Jingyun; Yiu, Brian; Obermeyer, Jaclyn; Filipe, Carlos D M; Brennan, John D; Pelton, Robert
2012-02-13
The stability of a paper-immobilized antibody was investigated over a range of temperatures (40-140 °C) and relative humidities (RH, 30-90%) using both unmodified filter paper and the same paper impregnated with polyamide-epichlorohydrin (PAE) as supports. Antibody stability decreased with increasing temperature, as expected, but also decreased with increasing RH. At 40 °C, the half-life was more than 10 days, with little dependence on RH. However, at 80 °C, the half-life varied from ~3 days at low RH to less than half an hour at 90% RH, demonstrating that hydration of the antibody promotes unfolding. Antibody stability was not influenced by the PAE paper surface treatment. This work shows that antibodies are good candidates for development of bioactive paper as they have sufficient stability at high temperature to withstand printing and other roll-to-roll processing steps, and sufficient low temperature stability to allow long-term storage of bioactive paper materials.
Influence of roasting conditions on health-related compounds in different nuts.
Schlörmann, W; Birringer, M; Böhm, V; Löber, K; Jahreis, G; Lorkowski, S; Müller, A K; Schöne, F; Glei, M
2015-08-01
Due to their health-beneficial ingredients the consumption of nuts can contribute to a healthy diet. The composition of hazelnuts, almonds, macadamia nuts, pistachios and walnuts regarding health-promoting and potentially harmful compounds was examined before and after roasting under different time and temperature conditions. Fatty acid compositions were not affected by roasting. Malondialdehyde increased with higher roasting temperatures (17-fold in walnuts). Levels of tocopherol isomers were reduced after roasting (α-T: 38%, β-T: 40%, γ-T: 70%) and hydrophilic antioxidant capacity decreased significantly in hazelnuts (1.4-fold), macadamia nuts (1.7-fold) and walnuts (3.7-fold). Increasing roasting temperatures supported the formation of significant amounts of acrylamide only in almonds (1220 μg kg(-1)). In general, nuts roasted at low/middle temperatures (120-160°C) exhibited best sensory properties. Therefore, desired sensory quality along with a favourable healthy nut composition may be achieved by roasting over a low to medium temperature range. Copyright © 2015 Elsevier Ltd. All rights reserved.
Plasma protein denaturation with graded heat exposure.
Vazquez, R; Larson, D F
2013-11-01
During cardiopulmonary bypass (CPB), perfusion at tepid temperatures (33-35 °C) is recommended to avoid high temperature cerebral hyperthermia during and after the operation. However, the ideal temperature for uncomplicated adult cardiac surgery is an unsettled question. Typically, the heat exchanger maximum temperature is monitored between 40-42 °C to prevent denaturation of plasma proteins, but studies have not been performed to make these conclusions. Therefore, our hypothesis was to determine the temperature in which blood plasma protein degradation occurs after 2 hours of heat exposure. As a result, blood plasma proteins were exposed to heat in the 37-50 °C range for 2 hours. Plasma protein samples were loaded onto an 8-12% gradient gel for SDS-PAGE and low molecular weight plasma protein degradation was detected with graded heat exposure. Protein degradation was first detected between 43-45 °C of heat exposure. This study supports the practice of monitoring the heat exchanger between 40-42 °C to prevent denaturation of plasma proteins.
Framework for analyzing hyper-viscoelastic polymers
NASA Astrophysics Data System (ADS)
Trivedi, Akash; Siviour, Clive
2017-06-01
Hyper-viscoelastic polymers have multiple areas of application including aerospace, biomedicine, and automotive. Their mechanical responses are therefore extremely important to understand, particularly because they exhibit strong rate and temperature dependence, including a low temperature brittle transition. Relationships between the response at various strain rates and temperatures are investigated and a framework developed to predict response at rates where experiments are unfeasible. A master curve of the storage modulus's rate dependence at a reference temperature is constructed using a DMA test of the polymer. A frequency sweep spanning two decades and a temperature range from pre-glass transition to pre-melt is used. A fractional derivative model is fitted to the experimental data, and this model's parameters are used to derive stress-strain relationships at a desired strain rate. Finite element simulations with this constitutive model are used for verification with experimental data. This material is based upon work supported by the Air Force Office of Scientific Research, Air Force Materiel Command, USAF under Award No. FA9550-15-1-0448.
Open-cell glass crystalline porous material
Anshits, Alexander G.; Sharonova, Olga M.; Vereshchagina, Tatiana A.; Zykova, Irina D.; Revenko, Yurii A.; Tretyakov, Alexander A.; Aloy, Albert S.; Lubtsev, Rem I.; Knecht, Dieter A.; Tranter, Troy J.; Macheret, Yevgeny
2002-01-01
An open-cell glass crystalline porous material made from hollow microspheres which are cenospheres obtained from fly ash, having an open-cell porosity of up to 90 vol. % is produced. The cenospheres are separated into fractions based on one or more of grain size, density, magnetic or non-magnetic, and perforated or non-perforated. Selected fractions are molded and agglomerated by sintering with a binder at a temperature below the softening temperature, or without a binder at a temperature about, or above, the softening temperature but below the temperature of liquidity. The porous material produced has an apparent density of 0.3-0.6 g/cm.sup.3, a compressive strength in the range of 1.2-3.5 MPa, and two types of openings: through-flow wall pores in the cenospheres of 0.1-30 micrometers, and interglobular voids between the cenospheres of 20-100 micrometers. The porous material of the invention has properties useful as porous matrices for immobilization of liquid radioactive waste, heat-resistant traps and filters, supports for catalysts, adsorbents and ion-exchangers.
Open-cell glass crystalline porous material
Anshits, Alexander G.; Sharonova, Olga M.; Vereshchagina, Tatiana A.; Zykova, Irina D.; Revenko, Yurii A.; Tretyakov, Alexander A.; Aloy, Albert S.; Lubtsev, Rem I.; Knecht, Dieter A.; Tranter, Troy J.; Macheret, Yevgeny
2003-12-23
An open-cell glass crystalline porous material made from hollow microspheres which are cenospheres obtained from fly ash, having an open-cell porosity of up to 90 vol. % is produced. The cenospheres are separated into fractions based on one or more of grain size, density, magnetic or non-magnetic, and perforated or non-perforated. Selected fractions are molded and agglomerated by sintering with a binder at a temperature below the softening temperature, or without a binder at a temperature about, or above, the softening temperature but below the temperature of liquidity. The porous material produced has an apparent density of 0.3-0.6 g/cm.sup.3, a compressive strength in the range of 1.2-3.5 MPa, and two types of openings: through-flow wall pores in the cenospheres of 0.1-30 micrometers, and interglobular voids between the cenospheres of 20-100 micrometers. The porous material of the invention has properties useful as porous matrices for immobilization of liquid radioactive waste, heat-resistant traps and filters, supports for catalysts, adsorbents and ion-exchangers.
Influence of serving temperature on flavour perception and release of Bourbon Caturra coffee.
Steen, Ida; Waehrens, Sandra S; Petersen, Mikael A; Münchow, Morten; Bredie, Wender L P
2017-03-15
The present study aimed to investigate coffee flavour perception and release as function of serving temperature to support standardisation in the specialty coffee branch. The coffee cultivar Bourbon Caturra was evaluated at six serving temperatures ranging from 31°C to 62°C. Coffee samples were analysed by dynamic headspace sampling gas chromatography-mass spectrometry and descriptive analyses using sip-and-spit tasting. The release of volatiles followed mostly the van't Hoff principle and was exuberated at temperatures above 40°C. Aliphatic ketones, alkylpyrazines, some furans and pyridines increased most notably at temperatures ⩾50°C. The changes in volatile release profiles could explain some of the sensory differences observed. The flavour notes of 'sour', 'tobacco' and 'sweet' were mostly associated with the coffees served at 31-44°C, whereas coffees served between 50°C and 62°C exhibited stronger 'overall intensity', 'roasted' flavour and 'bitter' notes. Copyright © 2016 Elsevier Ltd. All rights reserved.
Theoretical modeling of critical temperature increase in metamaterial superconductors
NASA Astrophysics Data System (ADS)
Smolyaninov, Igor; Smolyaninova, Vera
Recent experiments have demonstrated that the metamaterial approach is capable of drastic increase of the critical temperature Tc of epsilon near zero (ENZ) metamaterial superconductors. For example, tripling of the critical temperature has been observed in Al-Al2O3 ENZ core-shell metamaterials. Here, we perform theoretical modelling of Tc increase in metamaterial superconductors based on the Maxwell-Garnett approximation of their dielectric response function. Good agreement is demonstrated between theoretical modelling and experimental results in both aluminum and tin-based metamaterials. Taking advantage of the demonstrated success of this model, the critical temperature of hypothetic niobium, MgB2 and H2S-based metamaterial superconductors is evaluated. The MgB2-based metamaterial superconductors are projected to reach the liquid nitrogen temperature range. In the case of an H2S-based metamaterial Tc appears to reach 250 K. This work was supported in part by NSF Grant DMR-1104676 and the School of Emerging Technologies at Towson University.
Ketola, Tarmo; Mikonranta, Lauri; Zhang, Ji; Saarinen, Kati; Ormälä, Anni-Maria; Friman, Ville-Petri; Mappes, Johanna; Laakso, Jouni
2013-10-01
Environmental fluctuations can select for generalism, which is also hypothesized to increase organisms' ability to invade novel environments. Here, we show that across a range of temperatures, opportunistic bacterial pathogen Serratia marcescens that evolved in fluctuating temperature (daily variation between 24°C and 38°C, mean 31°C) outperforms the strains that evolved in constant temperature (31°C). The growth advantage was also evident in novel environments in the presence of parasitic viruses and predatory protozoans, but less clear in the presence of stressful chemicals. Adaptation to fluctuating temperature also led to reduced virulence in Drosophila melanogaster host, which suggests that generalism can still be costly in terms of reduced fitness in other ecological contexts. While supporting the hypothesis that evolution of generalism is coupled with tolerance to several novel environments, our results also suggest that thermal fluctuations driven by the climate change could affect both species' invasiveness and virulence. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.
Including Effects of Water Stress on Dead Organic Matter Decay to a Forest Carbon Model
NASA Astrophysics Data System (ADS)
Kim, H.; Lee, J.; Han, S. H.; Kim, S.; Son, Y.
2017-12-01
Decay of dead organic matter is a key process of carbon (C) cycling in forest ecosystems. The change in decay rate depends on temperature sensitivity and moisture conditions. The Forest Biomass and Dead organic matter Carbon (FBDC) model includes a decay sub-model considering temperature sensitivity, yet does not consider moisture conditions as drivers of the decay rate change. This study aimed to improve the FBDC model by including a water stress function to the decay sub-model. Also, soil C sequestration under climate change with the FBDC model including the water stress function was simulated. The water stress functions were determined with data from decomposition study on Quercus variabilis forests and Pinus densiflora forests of Korea, and adjustment parameters of the functions were determined for both species. The water stress functions were based on the ratio of precipitation to potential evapotranspiration. Including the water stress function increased the explained variances of the decay rate by 19% for the Q. variabilis forests and 7% for the P. densiflora forests, respectively. The increase of the explained variances resulted from large difference in temperature range and precipitation range across the decomposition study plots. During the period of experiment, the mean annual temperature range was less than 3°C, while the annual precipitation ranged from 720mm to 1466mm. Application of the water stress functions to the FBDC model constrained increasing trend of temperature sensitivity under climate change, and thus increased the model-estimated soil C sequestration (Mg C ha-1) by 6.6 for the Q. variabilis forests and by 3.1 for the P. densiflora forests, respectively. The addition of water stress functions increased reliability of the decay rate estimation and could contribute to reducing the bias in estimating soil C sequestration under varying moisture condition. Acknowledgement: This study was supported by Korea Forest Service (2017044B10-1719-BB01)
Low-temperature thermal properties of a hyperaged geological glass.
Pérez-Castañeda, Tomás; Jiménez Riobóo, Rafael J; Ramos, Miguel A
2013-07-24
We have measured the specific heat of amber from the Dominican Republic, an ancient geological glass about 20 million years old, in the low-temperature range 0.6 K ≤ T ≤ 26 K, in order to assess the effects of its natural stabilization (hyperageing) process on the low-temperature glassy properties, i.e. boson peak and two-level systems. We have also conducted modulated differential scanning calorimetry experiments to characterize the thermodynamic state of our samples. We found that calorimetric curves exhibit a huge ageing signal ΔH ≈ 5 J g(-1) in the first upscan at the glass transition Tg = 389 K, that completely disappears after heating up (rejuvenating) the sample to T = 395 K for 3 h. To independently evaluate the phonon contribution to the specific heat, Brillouin spectroscopy was performed in the temperature range 80 K ≤ T ≤ 300 K. An expected increase in the Debye level was observed after rejuvenating the Dominican amber. However, no significant change was observed in the low-temperature specific heat of glassy amber after erasing its thermal history: both its boson peak (i.e., the maximum in the Cp/T(3) representation) and the density of tunnelling two-level systems (i.e., the Cp ∼ T contribution at the lowest temperatures) remained essentially the same. Also, a consistent analysis using the soft-potential model of our Cp data and earlier thermal-conductivity data found in the literature further supports our main conclusion, namely, that these glassy 'anomalous' properties at low temperatures remain essentially invariant after strong relaxational processes such as hyperageing.
A Decision Support System for Mitigating Stream Temperature Impacts in the Sacramento River
NASA Astrophysics Data System (ADS)
Caldwell, R. J.; Zagona, E. A.; Rajagopalan, B.
2014-12-01
Increasing demands on the limited and variable water supply across the West can result in insufficient streamflow to sustain healthy fish habitat. We develop an integrated decision support system (DSS) for modeling and mitigating stream temperature impacts and demonstrate it on the Sacramento River system in California. Water management in the Sacramento River is a complex task with a diverse set of demands ranging from municipal supply to mitigation of fisheries impacts due to high water temperatures. Current operations utilize the temperature control device (TCD) structure at Shasta Dam to mitigate these high water temperatures downstream at designated compliance points. The TCD structure at Shasta Dam offers a rather unique opportunity to mitigate water temperature violations through adjustments to both release volume and temperature. In this study, we develop and evaluate a model-based DSS with four broad components that are coupled to produce the decision tool for stream temperature mitigation: (i) a suite of statistical models for modeling stream temperature attributes using hydrology and climate variables of critical importance to fish habitat; (ii) a reservoir thermal model for modeling the thermal structure and, consequently, the water release temperature, (iii) a stochastic weather generator to simulate weather sequences consistent with seasonal outlooks; and, (iv) a set of decision rules (i.e., 'rubric') for reservoir water releases in response to outputs from the above components. Multiple options for modifying releases at Shasta Dam were considered in the DSS, including mixing water from multiple elevations through the TCD and using different acceptable levels of risk. The DSS also incorporates forecast uncertainties and reservoir operating options to help mitigate stream temperature impacts for fish habitat, while efficiently using the reservoir water supply and cold pool storage. The use of these coupled tools in simulating impacts of future climate on stream temperature variability is also demonstrated. Results indicate that the DSS could substantially reduce the number of violations of thermal criteria, while ensuring maintenance of the cold pool storage throughout the summer.
Characteristics of fall chum salmon spawning habitat on a mainstem river in Interior Alaska
Burril, Sean E.; Zimmerman, Christian E.; Finn, James E.
2010-01-01
Chum salmon (Oncorhynchus keta) are the most abundant species of salmon spawning in the Yukon River drainage system, and they support important personal use, subsistence, and commercial fisheries. Chum salmon returning to the Tanana River in Interior Alaska are a significant contribution to the overall abundance of Yukon River chum salmon and an improved understanding of habitat use is needed to improve conservation of this important resource. We characterized spawning habitat of chum salmon using the mainstem Tanana River as part of a larger study to document spawning distributions and habitat use in this river. Areas of spawning activity were located using radiotelemetry and aerial helicopter surveys. At 11 spawning sites in the mainstem Tanana River, we recorded inter-gravel and surface-water temperatures and vertical hydraulic gradient (an indication of the direction of water flux) in substrate adjacent to salmon redds. At all locations, vertical hydraulic gradient adjacent to redds was positive, indicating that water was upwelling through the gravel. Inter-gravel temperatures adjacent to redds generally were warmer than surface water at most locations and were more stable than surface-water temperature. Inter-gravel water temperature adjacent to redds ranged from 2.6 to 5.8 degrees Celsius, whereas surface-water temperature ranged from greater than 0 to 5.5 degrees Celsius. Some sites were affected more by extremes in air temperature than others. At these sites, inter-gravel water temperature profiles were variable (with ranges similar to those observed in surface water), suggesting that even though upwelling habitats provide a stable thermal incubation environment, eggs and embryos still may be affected by extremes in air temperature. Fine sand and silt covered redds at multiple sites and were evidence of increased river flow during the winter months, which may be a potential source of increased mortality during egg-to-fry development. This study provides documentation of spawning by fall chum salmon and is the first study to continuously measure inter-gravel water temperature at sites in the mainstem Tanana River.
Setting cumulative emissions targets to reduce the risk of dangerous climate change
Zickfeld, Kirsten; Eby, Michael; Matthews, H. Damon; Weaver, Andrew J.
2009-01-01
Avoiding “dangerous anthropogenic interference with the climate system” requires stabilization of atmospheric greenhouse gas concentrations and substantial reductions in anthropogenic emissions. Here, we present an inverse approach to coupled climate-carbon cycle modeling, which allows us to estimate the probability that any given level of carbon dioxide (CO2) emissions will exceed specified long-term global mean temperature targets for “dangerous anthropogenic interference,” taking into consideration uncertainties in climate sensitivity and the carbon cycle response to climate change. We show that to stabilize global mean temperature increase at 2 °C above preindustrial levels with a probability of at least 0.66, cumulative CO2 emissions from 2000 to 2500 must not exceed a median estimate of 590 petagrams of carbon (PgC) (range, 200 to 950 PgC). If the 2 °C temperature stabilization target is to be met with a probability of at least 0.9, median total allowable CO2 emissions are 170 PgC (range, −220 to 700 PgC). Furthermore, these estimates of cumulative CO2 emissions, compatible with a specified temperature stabilization target, are independent of the path taken to stabilization. Our analysis therefore supports an international policy framework aimed at avoiding dangerous anthropogenic interference formulated on the basis of total allowable greenhouse gas emissions. PMID:19706489
Experimental study on the coalescence process of SiO2 supported colloidal Au nanoparticles
NASA Astrophysics Data System (ADS)
Ruffino, F.; Torrisi, V.; Grimaldi, M. G.
2015-11-01
We report on an experimental study of the coalescence-driven grow process of colloidal Au nanoparticles on SiO2 surface. Nanoparticles with 30, 50, 80, 100 nm nominal diameters on a SiO2 substrate were deposited, from solutions, by the drop-casting method. Then, annealing processes, in the 573-1173 K temperature range and 900-3600 s time range, were performed. Using scanning electron microscopy analyses, the temporal evolution of the nanoparticles sizes has been studied. In particular, for all classes of nanoparticles, the experimental-obtained diameters distributions evidenced double-peak shapes (i. e. bimodal distributions): a first peak centered (and unchanged changing the annealing temperature and/or time) at the nominal diameter of the as-deposited nanoparticles,
Kalingan, A E; Liao, Chung-Min; Chen, Jein-Wen; Chen, Szu-Chieh
2004-01-01
The purpose of this research was to neutralize livestock-generated ammonia by using biofilters packed with inexpensive inorganic and organic packing material combined with multicultural microbial load at typical ambient temperatures. Peat and inorganic supporting materials were used as biofiltration matrix packed in a perfusion column through which gas was transfused. Results show the ammonia removal significantly fell in between 99 and 100% when ammonia concentration of 200 ppmv was used at different gas flow rates ranged from 0.030 to 0.060 m3 h(-1) at a fluctuating room temperature of 27.5 +/- 4.5 C (Mean +/- SD). Under these conditions, the emission concentration of ammonia that is liberated after biofiltration is less than 1 ppmv (0.707 mg m(-3)) over the period of our study, suggesting the usage of low-cost biofiltration systems for long-term function is effective at wider ranges of temperature fluctuations. The maximum (100%) ammonia removal efficiency was obtained in this biofilter was having an elimination capacity of 2.217 g m(-3) h(-1). This biofilter had high nitrification efficiencies and hence controlled ammonia levels with the reduced backpressure. The response of this biofilter to shut down and start up operation showed that the biofilm has a superior stability.
High-pressure high-temperature phase diagram of gadolinium studied using a boron-doped heater anvil
NASA Astrophysics Data System (ADS)
Montgomery, J. M.; Samudrala, G. K.; Velisavljevic, N.; Vohra, Y. K.
2016-04-01
A boron-doped designer heater anvil is used in conjunction with powder x-ray diffraction to collect structural information on a sample of quasi-hydrostatically loaded gadolinium metal up to pressures above 8 GPa and 600 K. The heater anvil consists of a natural diamond anvil that has been surface modified with a homoepitaxially grown chemical-vapor-deposited layer of conducting boron-doped diamond, and is used as a DC heating element. Internally insulating both diamond anvils with sapphire support seats allows for heating and cooling of the high-pressure area on the order of a few tens of seconds. This device is then used to scan the phase diagram of the sample by oscillating the temperature while continuously increasing the externally applied pressure and collecting in situ time-resolved powder diffraction images. In the pressure-temperature range covered in this experiment, the gadolinium sample is observed in its hcp, αSm, and dhcp phases. Under this temperature cycling, the hcp → αSm transition proceeds in discontinuous steps at points along the expected phase boundary. From these measurements (representing only one hour of synchrotron x-ray collection time), a single-experiment equation of state and phase diagram of each phase of gadolinium is presented for the range of 0-10 GPa and 300-650 K.
Setting cumulative emissions targets to reduce the risk of dangerous climate change.
Zickfeld, Kirsten; Eby, Michael; Matthews, H Damon; Weaver, Andrew J
2009-09-22
Avoiding "dangerous anthropogenic interference with the climate system" requires stabilization of atmospheric greenhouse gas concentrations and substantial reductions in anthropogenic emissions. Here, we present an inverse approach to coupled climate-carbon cycle modeling, which allows us to estimate the probability that any given level of carbon dioxide (CO2) emissions will exceed specified long-term global mean temperature targets for "dangerous anthropogenic interference," taking into consideration uncertainties in climate sensitivity and the carbon cycle response to climate change. We show that to stabilize global mean temperature increase at 2 degrees C above preindustrial levels with a probability of at least 0.66, cumulative CO2 emissions from 2000 to 2500 must not exceed a median estimate of 590 petagrams of carbon (PgC) (range, 200 to 950 PgC). If the 2 degrees C temperature stabilization target is to be met with a probability of at least 0.9, median total allowable CO2 emissions are 170 PgC (range, -220 to 700 PgC). Furthermore, these estimates of cumulative CO2 emissions, compatible with a specified temperature stabilization target, are independent of the path taken to stabilization. Our analysis therefore supports an international policy framework aimed at avoiding dangerous anthropogenic interference formulated on the basis of total allowable greenhouse gas emissions.
Thompson, Cynthia L; Williams, Susan H; Glander, Kenneth E; Teaford, Mark F; Vinyard, Christopher J
2014-05-01
Free-ranging primates are confronted with the challenge of maintaining an optimal range of body temperatures within a thermally dynamic environment that changes daily, seasonally, and annually. While many laboratory studies have been conducted on primate thermoregulation, we know comparatively little about the thermal pressures primates face in their natural, evolutionarily relevant environment. Such knowledge is critical to understanding the evolution of thermal adaptations in primates and for comparative evaluation of humans' unique thermal adaptations. We examined temperature and thermal environment in free-ranging, mantled howling monkeys (Alouatta palliata) in a tropical dry forest in Guanacaste, Costa Rica. We recorded subcutaneous (Tsc ) and near-animal ambient temperatures (Ta ) from 11 animals over 1586.5 sample hours during wet and dry seasons. Howlers displayed considerable variation in Tsc , which was largely attributable to circadian effects. Despite significant seasonal changes in the ambient thermal environment, howlers showed relatively little evidence for seasonal changes in Tsc . Howlers experienced warm thermal conditions which led to body cooling relative to the environment, and plateaus in Tsc at increasingly warm Ta . They also frequently faced cool thermal conditions (Ta < Tsc ) in which Tsc was markedly elevated compared with Ta . These data add to a growing body of evidence that non-human primates have more labile body temperatures than humans. Our data additionally support a hypothesis that, despite inhabiting a dry tropical environment, howling monkeys experience both warm and cool thermal pressures. This suggests that thermal challenges may be more prevalent for primates than previously thought, even for species living in nonextreme thermal environments. Copyright © 2014 Wiley Periodicals, Inc.
Levesque, Danielle L; Lobban, Kerileigh D; Lovegrove, Barry G
2014-12-01
Tenrecs (Order Afrosoricida) exhibit some of the lowest body temperatures (T b) of any eutherian mammal. They also have a high level of variability in both active and resting T bs and, at least in cool temperatures in captivity, frequently employ both short- and long-term torpor. The use of heterothermy by captive animals is, however, generally reduced during gestation and lactation. We present data long-term T b recordings collected from free-ranging S. setosus over the course of two reproductive seasons. In general, reproductive females had slightly higher (~32 °C) and less variable T b, whereas non-reproductive females and males showed both a higher propensity for torpor as well as lower (~30.5 °C) and more variable rest-phase T bs. Torpor expression defined using traditional means (using a threshold or cut-off T b) was much lower than predicted based on the high degree of heterothermy in captive tenrecs. However, torpor defined in this manner is likely to be underestimated in habitats where ambient temperature is close to T b. Our results caution against inferring metabolic states from T b alone and lend support to the recent call to define torpor in free-ranging animals based on mechanistic and not descriptive variables. In addition, lower variability in T b observed during gestation and lactation confirms that homeothermy is essential for reproduction in this species and probably for basoendothermic mammals in general. The relatively low costs of maintaining homeothermy in a sub-tropical environment might help shed light on how homeothermy could have evolved incrementally from an ancestral heterothermic condition.
Host selection and lethality of attacks by sea lampreys (Petromyzon marinus) in laboratory studies
Swink, William D.
2003-01-01
Parasitic-phase sea lampreys (Petromyzon marinus) are difficult to study in the wild. A series of laboratory studies (1984-1995) of single attacks on lake trout (Salvelinus namaycush), rainbow trout (Oncorhynchus mykiss), and burbot (Lota lota) examined host size selection; determined the effects of host size, host species, host strain, and temperature on host mortality; and estimated the weight of hosts killed per lamprey. Rainbow trout were more able and burbot less able to survive attacks than lake trout. Small sea lampreys actively selected the larger of two small hosts; larger sea lampreys attacked larger hosts in proportion to the hosts' body sizes, but actively avoided shorter hosts (a?? 600 mm) when larger were available. Host mortality was significantly less for larger (43-44%) than for smaller hosts (64%). However, the yearly loss of hosts per sea lamprey was less for small hosts (range, 6.8-14.2 kg per sea lamprey) than larger hosts (range, 11.4-19.3 kg per sea lamprey). Attacks at the lower of two temperature ranges (6.1-11.8A?C and 11.1-15.0A?C) did not significantly reduce the percentage of hosts killed (54% vs. 69%, p > 0.21), but longer attachment times at lower temperatures reduced the number of hosts attacked (33 vs. 45), and produced the lowest loss of hosts (6.6 kg per sea lamprey). Low temperature appeared to offset other factors that increase host mortality. Reanalysis of 789 attacks pooled from these studies, using forward stepwise logistic regression, also identified mean daily temperature as the dominant factor affecting host mortality. Observations in Lakes Superior, Huron, and Ontario support most laboratory results.
Jeong, Eun -Suk; Park, Chang -In; Jin, Zhenlan; ...
2015-01-21
This paper examined the local structural properties of Pt nanoparticles on SiO 2, TiO 2–SiO 2, and ZrO 2–SiO 2 supports to better understand the impact of oxide-support type on the performance of Pt-based catalysts. In situ X-ray absorption fine structure (XAFS) measurements were taken for the Pt L3-edge in a temperature range from 300 to 700 K in He, H 2, and O 2 gas environments. The XAFS measurements demonstrated that Pt atoms were highly dispersed on TiO 2–SiO 2 and ZrO 2–SiO 2 forming pancake-shaped nanoparticles, whereas Pt atoms formed larger particles of hemispherical shapes on SiO 2more » supports. Contrary to the SiO 2 case, the coordination numbers for Pt, Ti, and Zr around Pt atoms on the TiO 2–SiO 2 and ZrO 2–SiO 2 supports were nearly constant from 300 to 700 K under the different gas environments. These results are consistent with the improvements in thermal stability of Pt nanoparticles achieved by incorporating TiO 2 or ZrO 2 on the surface of SiO 2 supports. XAFS analysis further indicated that the enhanced dispersion and stability of Pt were a consequence of the strong metal support interaction via Pt–Ti and Pt–Zr bonds.« less
2009-09-01
Forecasts ECS East China Sea ESRL Earth Systems Research Laboratory FA False alarm FARate False alarm rate xviii GDEM Generalized Digital...uses a LTM based, global ocean climatology database called Generalized Digital Environment Model ( GDEM ), in tactical decision aid (TDA) software, such...environment for USW planning. GDEM climatology is derived using temperature and salinity profiles from the Modular Ocean Data Assimilation System
Wood, James L.; Andraski, Brian J.
1995-01-01
Selected meteorological data were collected at a study site adjacent to a low-level radioactive-waste burial facility near Beatty, Nevada, for calendar years 1990 and 1991. Data were collected in support of ongoing studies to estimate the potential for downward movement of radionuclides into the unsaturated sediments beneath waste-burial trenches at the facility. The data include air temperature, relative humidity, vapor pressure, incident solar radiation, windspeed, wind direction, barometric pressure, and precipitation. The data are summarized in tables and graphs.Instrumentation used at the site is discussed. The discussion includes the type, reported accuracy, and mounting height of each sensor.In 1990, the average hourly air temperatures ranged from -16.2 degrees Celsius, in December, to 44.2 degrees Celsius, in July. Hourly averaged relative humidity ranged from 6 percent to more than 90 percent. Hourly vapor pressures ranged from 0.08 to 1.84 kilopascals. Daily maximum incident solar radiation values ranged from 192 to 1,028 watts per square meter. Daily mean windspeed ranged from less than 1 to 8.7 meters per second. Wind direction was primarily from the northwest in fall, winter, and spring and varied from southeast, southwest, or northwest during the summer. Hourly barometric pressures ranged from 99.47 to 103.12 kilopascals. Total precipitation for 1990 was 32.4 millimeters; almost 45 percent was in September.In 1991, the average hourly air temperatures ranged from -9.2 degrees Celsius, in January, to 43.7 degrees Celsius, in July. Hourly averaged relative humidity ranged from 3 percent to more than 95 percent. Hourly vapor pressures ranged from 0.07 to 2.22 kilopascals. Daily maximum incident solar radiation values ranged from 143 to 1,041 watts per square meter. Daily mean windspeed ranged from 1.2 to 8.4 meters per second. Wind direction was primarily from the northwest in fall, winter, and spring and varied from southeast, southwest, or northwest during the summer. Hourly barometric pressures ranged from 99.52 to 103.40 kilopascals. Total precipitation for 1991 was 103.6 millimeters; almost 60 percent was in March.
Reliability of a novel thermal imaging system for temperature assessment of healthy feet.
Petrova, N L; Whittam, A; MacDonald, A; Ainarkar, S; Donaldson, A N; Bevans, J; Allen, J; Plassmann, P; Kluwe, B; Ring, F; Rogers, L; Simpson, R; Machin, G; Edmonds, M E
2018-01-01
Thermal imaging is a useful modality for identifying preulcerative lesions ("hot spots") in diabetic foot patients. Despite its recognised potential, at present, there is no readily available instrument for routine podiatric assessment of patients at risk. To address this need, a novel thermal imaging system was recently developed. This paper reports the reliability of this device for temperature assessment of healthy feet. Plantar skin foot temperatures were measured with the novel thermal imaging device (Diabetic Foot Ulcer Prevention System (DFUPS), constructed by Photometrix Imaging Ltd) and also with a hand-held infrared spot thermometer (Thermofocus® 01500A3, Tecnimed, Italy) after 20 min of barefoot resting with legs supported and extended in 105 subjects (52 males and 53 females; age range 18 to 69 years) as part of a multicentre clinical trial. The temperature differences between the right and left foot at five regions of interest (ROIs), including 1st and 4th toes, 1st, 3rd and 5th metatarsal heads were calculated. The intra-instrument agreement (three repeated measures) and the inter-instrument agreement (hand-held thermometer and thermal imaging device) were quantified using intra-class correlation coefficients (ICCs) and the 95% confidence intervals (CI). Both devices showed almost perfect agreement in replication by instrument. The intra-instrument ICCs for the thermal imaging device at all five ROIs ranged from 0.95 to 0.97 and the intra-instrument ICCs for the hand-held-thermometer ranged from 0.94 to 0.97. There was substantial to perfect inter-instrument agreement between the hand-held thermometer and the thermal imaging device and the ICCs at all five ROIs ranged between 0.94 and 0.97. This study reports the performance of a novel thermal imaging device in the assessment of foot temperatures in healthy volunteers in comparison with a hand-held infrared thermometer. The newly developed thermal imaging device showed very good agreement in repeated temperature assessments at defined ROIs as well as substantial to perfect agreement in temperature assessment with the hand-held infrared thermometer. In addition to the reported non-inferior performance in temperature assessment, the thermal imaging device holds the potential to provide an instantaneous thermal image of all sites of the feet (plantar, dorsal, lateral and medial views). Diabetic Foot Ulcer Prevention System NCT02317835, registered December 10, 2014.
Correlation of Nasal Mucosal Temperature With Subjective Nasal Patency in Healthy Individuals.
Bailey, Ryan S; Casey, Kevin P; Pawar, Sachin S; Garcia, Guilherme J M
2017-01-01
Historically, otolaryngologists have focused on nasal resistance to airflow and minimum airspace cross-sectional area as objective measures of nasal obstruction using methods such as rhinomanometry and acoustic rhinometry. However, subjective sensation of nasal patency may be more associated with activation of cold receptors by inspired air than with respiratory effort. To investigate whether subjective nasal patency correlates with nasal mucosal temperature in healthy individuals. Healthy adult volunteers first completed the Nasal Obstruction Symptom Evaluation (NOSE) and a unilateral visual analog scale to quantify subjective nasal patency. A miniaturized thermocouple sensor was then used to record nasal mucosal temperature bilaterally in 2 locations along the nasal septum: at the vestibule and across from the inferior turbinate head. Nasal mucosal temperature and subjective patency scores in healthy individuals. The 22 healthy adult volunteers (12 [55%] male; mean [SD] age, 28.3 [7.0] years) had a mean (SD) NOSE score of 5.9 (8.4) (range, 0-30) and unilateral VAS score of 1.2 (1.4) (range, 0-5). The range of temperature oscillations during the breathing cycle, defined as the difference between end-expiratory and end-inspiratory temperatures, was greater during deep breaths (mean [SD] change in temperature, 6.2°C [2.6°C]) than during resting breathing (mean [SD] change in temperature, 4.2°C [2.3°C]) in both locations (P < .001). Mucosal temperature measured at the right vestibule had a statistically significant correlation with both right-side visual analog scale score (Pearson r = -0.55; 95% CI, -0.79 to -0.17; P = .008) and NOSE score (Pearson r = -0.47; 95% CI, -0.74 to -0.06; P = .03). No other statistically significant correlations were found between mucosal temperature and subjective nasal patency scores. Nasal mucosal temperature was lower (mean of 1.5°C lower) in the first cavity to be measured, which was the right cavity in all participants. The greater mucosal temperature oscillations during deep breathing are consistent with the common experience that airflow sensation is enhanced during deep breaths, thus supporting the hypothesis that mucosal cooling plays a central role in nasal airflow sensation. A possible correlation was found between subjective nasal patency scores and nasal mucosal temperature, but our results were inconsistent. The higher temperature in the left cavity suggests that the sensor irritated the nasal mucosa, affecting the correlation between patency scores and mucosal temperature. Future studies should consider noncontact temperature sensors to prevent mucosa irritation. NA.
Nyboer, Elizabeth A; Chapman, Lauren J
2017-10-15
Increasing water temperatures owing to anthropogenic climate change are predicted to negatively impact the aerobic metabolic performance of aquatic ectotherms. Specifically, it has been hypothesized that thermal increases result in reductions in aerobic scope (AS), which lead to decreases in energy available for essential fitness and performance functions. Consequences of warming are anticipated to be especially severe for warm-adapted tropical species as they are thought to have narrow thermal windows and limited plasticity for coping with elevated temperatures. In this study we test how predicted warming may affect the aerobic performance of Nile perch ( Lates niloticus ), a commercially harvested fish species in the Lake Victoria basin of East Africa. We measured critical thermal maxima (CT max ) and key metabolic variables such as AS and excess post-exercise oxygen consumption (EPOC) across a range of temperatures, and compared responses between acute (3-day) exposures and 3-week acclimations. CT max increased with acclimation temperature; however, 3-week-acclimated fish had higher overall CT max than acutely exposed individuals. Nile perch also showed the capacity to increase or maintain high AS even at temperatures well beyond their current range; however, acclimated Nile perch had lower AS compared with acutely exposed fish. These changes were accompanied by lower EPOC, suggesting that drops in AS may reflect improved energy utilization after acclimation, a finding that is supported by improvements in growth at high temperatures over the acclimation period. Overall, the results challenge predictions that tropical species have limited thermal plasticity, and that high temperatures will be detrimental because of limitations in AS. © 2017. Published by The Company of Biologists Ltd.
Polyploidization mechanisms: temperature environment can induce diploid gamete formation in Rosa sp.
Pécrix, Yann; Rallo, Géraldine; Folzer, Hélène; Cigna, Mireille; Gudin, Serge; Le Bris, Manuel
2011-06-01
Polyploidy is an important evolutionary phenomenon but the mechanisms by which polyploidy arises still remain underexplored. There may be an environmental component to polyploidization. This study aimed to clarify how temperature may promote diploid gamete formation considered an essential element for sexual polyploidization. First of all, a detailed cytological analysis of microsporogenesis and microgametogenesis was performed to target precisely the key developmental stages which are the most sensitive to temperature. Then, heat-induced modifications in sporad and pollen characteristics were analysed through an exposition of high temperature gradient. Rosa plants are sensitive to high temperatures with a developmental sensitivity window limited to meiosis. Moreover, the range of efficient temperatures is actually narrow. 36 °C at early meiosis led to a decrease in pollen viability, pollen ectexine defects but especially the appearance of numerous diploid pollen grains. They resulted from dyads or triads mainly formed following heat-induced spindle misorientations in telophase II. A high temperature environment has the potential to increase gamete ploidy level. The high frequencies of diplogametes obtained at some extreme temperatures support the hypothesis that polyploidization events could have occurred in adverse conditions and suggest polyploidization facilitating in a global change context.
NASA Astrophysics Data System (ADS)
Taer, E.; Susanti, Y.; Awitdrus, Sugianto, Taslim, R.; Setiadi, R. N.; Bahri, S.; Agustino, Dewi, P.; Kurniasih, B.
2018-02-01
The effect of CO2 activation on the synthesis of activated carbon monolith from banana stem waste has been studied. Physical characteristics such as density, degree of crystallinity, surface morphology and elemental content has been analyzed, supporting the finding of an excellent electrochemical properties for the supercapacitor. The synthesis of activated carbon electrode began with pre-carbonization process at temperature of 250°C for 2.5 h. Then the process was continued by chemical activation using KOH as activating agent with a concentration of 0.4 M. The pellets were formed with 8 ton hydrolic pressure. All the samples were carbonized at a temperature of 600°C, followed by physical activation using CO2 gas at a various temperatures ranging from 800°C, 850°C, 900°C and 950°C for 2 h. The carbon content was increased with increasing temperature and the optimum temperature was 900°C. The specific capacitance depends on the activation temperature with the highest specific capacitance of 104.2 F/g at the activation temperature of 900°C.
Zhang, Yongming; Kennedy, John F; Knill, Charles J; Panesar, Parmjit S
2006-01-01
Yeast cells were immobilized by absorption onto porous ceramic support and evaluated for continuous beer primary fermentation using a bioreactor in comparison to yeast cells immobilized by entrapment in calcium alginate gel. The effects of temperature and flow rate as a function of reaction/fermentation time on fermentation rate were investigated. The fermentation reaction (in terms of loss of total soluble solids in the beer wort as a function of time) was first-order with half-lifes in the range of approximately 9-11 hours at approximately 10-12 degrees C at beer wort linear flow rates of approximately 0.8-1.6 cm/minute for ceramic support, compared with approximately 16 hours for Ca-alginate gel, the former support matrix being more efficient and demonstrating greater potential for future commercial application.
Catalysts for ultrahigh current density oxygen cathodes for space fuel cell applications
NASA Technical Reports Server (NTRS)
Tryk, D.; Yeager, E.; Shingler, M.; Aldred, W.; Wang, C.
1990-01-01
The objective of this research was to identify promising electrocatalyst/support systems for the oxygen cathode in alkaline fuel cells operating at relatively high temperatures, O2 pressures and current densities. A number of materials were prepared, including Pb-Ru and Pb-Ir pyrochlores, RuO2 and Pt-doped RuO2, and lithiated NiO. Several of these were prepared using techniques that had not been previously used to prepare them. Particularly interesting is the use of the alkaline solution technique to prepare the Pt-doped Pb-Ru pyrochlore in high area form. Well-crystallized Pb(2)Ru(2)O(7-y) was used to fabricate high performance O2 cathodes with relatively good stability in room temperature KOH. This material was also found to be stable over a useful potential range at approximately 140 C in concentrated KOH. Other pyrochlores were found to be either unstable (amorphous samples) or the fabrication of the gas-fed electrodes could not be fully optimized during this project period. Future work may be directed at this problem. High area platinum supported on conductive metal oxide supports produced mixed results: small improvements in O2 reduction performance for Pb(2)Ru(2)O(7-y) but a large improvement for Li-doped NiO at room temperature. Nearly reversible behavior was observed for the O2/OH couple for Li-doped NiO at approximately 200 C.
Effective Temperatures for Young Stars in Binaries
NASA Astrophysics Data System (ADS)
Muzzio, Ryan; Avilez, Ian; Prato, Lisa A.; Biddle, Lauren I.; Allen, Thomas; Wright-Garba, Nuria Meilani Laure; Wittal, Matthew
2017-01-01
We have observed about 100 multi-star systems, within the star forming regions Taurus and Ophiuchus, to investigate the individual stellar and circumstellar properties of both components in young T Tauri binaries. Near-infrared spectra were collected using the Keck II telescope’s NIRSPEC spectrograph and imaging data were taken with Keck II’s NIRC2 camera, both behind adaptive optics. Some properties are straightforward to measure; however, determining effective temperature is challenging as the standard method of estimating spectral type and relating spectral type to effective temperature can be subjective and unreliable. We explicitly looked for a relationship between effective temperatures empirically determined in Mann et al. (2015) and equivalent width ratios of H-band Fe and OH lines for main sequence spectral type templates common to both our infrared observations and to the sample of Mann et al. We find a fit for a wide range of temperatures and are currently testing the validity of using this method as a way to determine effective temperature robustly. Support for this research was provided by an REU supplement to NSF award AST-1313399.
In situ XPS study of methanol reforming on PdGa near-surface intermetallic phases
Rameshan, Christoph; Stadlmayr, Werner; Penner, Simon; Lorenz, Harald; Mayr, Lukas; Hävecker, Michael; Blume, Raoul; Rocha, Tulio; Teschner, Detre; Knop-Gericke, Axel; Schlögl, Robert; Zemlyanov, Dmitry; Memmel, Norbert; Klötzer, Bernhard
2012-01-01
In situ X-ray photoelectron spectroscopy and low-energy ion scattering were used to study the preparation, (thermo)chemical and catalytic properties of 1:1 PdGa intermetallic near-surface phases. Deposition of several multilayers of Ga metal and subsequent annealing to 503–523 K led to the formation of a multi-layered 1:1 PdGa near-surface state without desorption of excess Ga to the gas phase. In general, the composition of the PdGa model system is much more variable than that of its PdZn counterpart, which results in gradual changes of the near-surface composition with increasing annealing or reaction temperature. In contrast to near-surface PdZn, in methanol steam reforming, no temperature region with pronounced CO2 selectivity was observed, which is due to the inability of purely intermetallic PdGa to efficiently activate water. This allows to pinpoint the water-activating role of the intermetallic/support interface and/or of the oxide support in the related supported PdxGa/Ga2O3 systems, which exhibit high CO2 selectivity in a broad temperature range. In contrast, corresponding experiments starting on the purely bimetallic model surface in oxidative methanol reforming yielded high CO2 selectivity already at low temperatures (∼460 K), which is due to efficient O2 activation on PdGa. In situ detected partial and reversible oxidative Ga segregation on intermetallic PdGa is associated with total oxidation of intermediate C1 oxygenates to CO2. PMID:22875996
NASA Astrophysics Data System (ADS)
Weiss, Stephan; Wei, Ping; Ahlers, Guenter
2015-11-01
Turbulent thermal convection under rotation shows a remarkable variety of different flow states. The Nusselt number (Nu) at slow rotation rates (expressed as the dimensionless inverse Rossby number 1/Ro), for example, is not a monotonic function of 1/Ro. Different 1/Ro-ranges can be observed with different slopes ∂Nu / ∂ (1 / Ro) . Some of these ranges are connected by sharp transitions where ∂Nu / ∂ (1 / Ro) changes discontinuously. We investigate different regimes in cylindrical samples of aspect ratio Γ = 1 by measuring temperatures at the sidewall of the sample for various Prandtl numbers in the range 3 < Pr < 35 and Rayleigh numbers in the range of 108 < Ra < 4 ×1011 . From these measurements we deduce changes of the flow structure. We learn about the stability and dynamics of the large-scale circulation (LSC), as well as about its breakdown and the onset of vortex formation close to the top and bottom plate. We shall examine correlations between these measurements and changes in the heat transport. This work was supported by NSF grant DRM11-58514. SW acknowledges support by the Deutsche Forschungsgemeinschaft.
Experimental optimum design and luminescence properties of NaY(Gd)(MoO4)2:Er3+ phosphors
NASA Astrophysics Data System (ADS)
Jia-Shi, Sun; Sai, Xu; Shu-Wei, Li; Lin-Lin, Shi; Zi-Hui, Zhai; Bao-Jiu, Chen
2016-06-01
Three-factor orthogonal design (OD) of Er3+/Gd3+/T (calcination temperature) is used to optimize the luminescent intensity of NaY(Gd)(MoO4)2:Er3+ phosphor. Firstly, the uniform design (UD) is introduced to explore the doping concentration range of Er3+/Gd3+. Then OD and range analysis are performed based on the results of UD to obtain the primary and secondary sequence and the best combination of Er3+, Gd3+, and T within the experimental range. The optimum sample is prepared by the high temperature solid state method. Photoluminescence excitation and emission spectra of the optimum sample are detected. The intense green emissions (530 nm and 550 nm) are observed which originate from Er3+ 2H11/2→ 4I15/2 and 4S3/2→4I15/2, respectively. Thermal effect is investigated in the optimum NaY(Gd3+)(MoO4)2:Er3+ phosphors, and the green emission intensity decreases as temperature increases. Project supported by Education Reform Fund of Dalian Maritime University, China (Grant No. 2015Y37), the Natural Science Foundation of Liaoning Province, China (Grant Nos. 2015020190 and 2014025010), the Open Fund of the State Key Laboratory on Integrated Optoelectronics, China (Grant No. IOSKL2015KF27), and the Fundamental Research Funds for the Central Universities, China (Grant No. 3132016121).
NASA Astrophysics Data System (ADS)
Flakus, Henryk T.; Machelska, Aleksandra
2002-02-01
This paper deals with experimental studies of the polarization IR spectra of solid-state pyrazole H1345, as well as of its H1D345, D1H345 and D1345 deuterium derivatives. Spectra were measured for the νNH and νND band frequency ranges at temperatures of 298 and 77 K. The spectra were found to strongly change their intensity distribution and their polarization properties with the decrease of temperature. These effects were ascribed to some temperature-induced conformational changes in the hydrogen bond lattices. The studies reported allowed the finding of new kind of isotopic effects H/D in the open-chain hydrogen bond systems, i.e. the self-organization effects. It was found that the spectrally active aggregates of hydrogen bonds remain unchanged despite the growing isotope H/D exchange rate. This statement was supported by analysis of the residual polarized νNH and νND band properties, measured for the isotopically diluted crystalline samples. Analysis of the band shapes of the four hydrogen isotope derivative crystals proved the existence of another kind of H/D isotopic effect, i.e. the long-range isotopic effect. It depends on an influence of the pyrazole ring hydrogen atoms onto the νNH and νND band widths and onto the band fine structures.
NASA Technical Reports Server (NTRS)
Albertson, Cindy W.
1987-01-01
A model to be used in the flow studies and curved Thermal Protection System (TPS) evaluations was tested in the Langley 8 Foot High-Temperature Tunnel at a nominal Mach number of 6.8. The purpose of the study was to define the surface pressure and heating rates at high angles of attack (in support of curved metallic TPS studies) and to determine the conditions for which the model would be suitable as a test bed for aerothermal load studies. The present study was conducted at a nominal total temperature of 2400 and 3300 R, dynamic pressures from 2.3 to 10.9 psia, and free-stream Reynolds numbers from 4000,000 to 1,700,000/ft. The measurements consisted primarily of surface pressure and cold-wall (530 R) heating rates. Qualitative comparisons between predictions and data show that for this configuration, aerothermal tests should be limited to angles of attack between 10 and -10 degrees. Outside this range, the effects of free-stream flow nonuniformity appear in the data, as a result of the long length of the model. However, for TPS testing, this is not a concern and tests can be performed at angles of attack ranging from 20 to -20 degrees. Laminar and naturally turbulent boundary layers are available over limited ranges of conditions.
Xiong, Yijie; Green, Angela; Gates, Richard S.
2015-01-01
Simple Summary Temperature and thermal conditions of the interior of a swine trailer during transport were monitored over a broad range of outdoor conditions (34 trips total) managed according to industry best practice (Transport Quality Assurance (TQA) guidelines (NPB, 2008)). For the outdoor temperature range of 5 °C (40 °F) to 27 °C (80 °F), generally acceptable trailer thermal conditions were observed according to the TQA. Beyond this outdoor temperature range, undesirable conditions within the trailer were prevalent. Areas for potential improvement in transport management were identified. Stops resulted in rapid increases in temperature, which could be beneficial during cooler outdoor temperatures, but detrimental for warmer outdoor temperatures. Abstract Transport is a critical factor in modern pork production and can seriously affect swine welfare. While previous research has explored thermal conditions during transport, the impact of extreme weather conditions on the trailer thermal environment under industry practices has not been well documented; and the critical factors impacting microclimate are not well understood. To assess the trailer microclimate during transport events, an instrumentation system was designed and installed at the central ceiling level, pig level and floor-level in each of six zones inside a commercial swine trailer. Transport environmental data from 34 monitoring trips (approximately 1–4 h in duration each) were collected from May, 2012, to February, 2013, with trailer management corresponding to the National Pork Board Transport Quality Assurance (TQA) guidelines in 31 of these trips. According to the TQA guidelines, for outdoor temperature ranging from 5 °C (40 °F) to 27 °C (80 °F), acceptable thermal conditions were observed based on the criteria that no more than 10% of the trip duration was above 35 °C (95 °F) or below 0 °C (32 °F). Recommended bedding, boarding and water application were sufficient in this range. Measurements support relaxing boarding guidelines for moderate outdoor conditions, as this did not result in less desirable conditions. Pigs experienced extended undesirable thermal conditions for outdoor temperatures above 27 °C (80 °F) or below 5 °C (40 °F), meriting a recommendation for further assessment of bedding, boarding and water application guidelines for extreme outdoor temperatures. An Emergency Livestock Weather Safety Index (LWSI) condition was observed inside the trailer when outdoor temperature exceeded 10 °C (50 °F); although the validity of LWSI to indicate heat stress for pigs during transport is not well established. Extreme pig surface temperatures in the rear and middle zones of the trailer were more frequently experienced than in the front zones, and the few observations of pigs dead or down upon arrival were noted in these zones. Observations indicate that arranging boarding placement may alter the ventilation patterns inside the trailer. PMID:26479232
Role of charged impurities in thermoelectric transport in molybdenum disulfide monolayers
NASA Astrophysics Data System (ADS)
Patil, Sukanya B.; Sankeshwar, N. S.; Mulimani, B. G.
2017-12-01
A theoretical study of the electronic properties, namely, electrical conductivity (EC), electronic thermal conductivity (ETC) and thermoelectric power (TEP) in 2D MoS2 monolayers (MLs), over a wide range of temperatures (10 < T < 300 K), is presented employing Boltzmann transport formalism. Considering the electrons to be scattered by screened charged impurities and the acoustic, optical and remote phonons, the transport equation is solved using Ritz iterative method. Numerical calculations of EC, ETC and TEP presented for supported and free-standing MLs with high electron concentrations, as a function of temperature, bring out the relative importance of the various scattering mechanisms operative. The role of CIs, with regard to both concentration and separation from the substrate-ML interface, in determining the properties of supported MLs is demonstrated for the first time. Validity of Wiedemann-Franz law and Mott formula are examined for supported and free standing MLs. Calculations are in consonance with recent experimental data on mobility and TEP of exfoliated SiO2-supported MoS2 ML samples. In the case of TEP it is found that though the diffusion contribution is dominant the inclusion of the drag component, incorporating contributions from all relevant phonon scattering mechanisms, is needed to obtain good agreement with the data.
Autthanit, Chaowat; Jongsomjit, Bunjerd
2018-02-01
The present work deals with the catalytic performance of SBA-15 supported catalysts in the gas phase catalytic dehydration of ethanol in the temperature range of 200 to 400°C. The SBA-15 support was incorporated on a zirconium (Zr) and bimetal of zirconium and lanthanum (Zr-La) prepared by sol-gel (SG) and hydrothermal (HT) methods. The catalysts were characterized by means of N 2 physisorption, SEM/EDX, and NH 3 -TPD. The experimental results demonstrated that the Zr-La/SBA-15-HT exhibited the highest catalytic activity. Ethanol conversion and ethylene selectivity were found to increase with increased reaction temperature. The best catalytic results were achieved for Zr-La/SBA-15-HT indicating values of ethanol conversion and ethylene yield of ca. 84% and 80%, respectively at 400°C. The most important parameter influencing their catalytic properties appears to be the interaction between metal and support depending on different methods. The metal dispersion inside the siliceous matrix of SBA-15 has a direct influence on their surface acidity. Meanwhile, the performance of these SBA-15 supported catalysts in ethanol dehydration is also related with the alteration of surface acidity caused by the introduction of Zr and Zr-La.
Development of test methodology for dynamic mechanical analysis instrumentation
NASA Technical Reports Server (NTRS)
Allen, V. R.
1982-01-01
Dynamic mechanical analysis instrumentation was used for the development of specific test methodology in the determination of engineering parameters of selected materials, esp. plastics and elastomers, over a broad range of temperature with selected environment. The methodology for routine procedures was established with specific attention given to sample geometry, sample size, and mounting techniques. The basic software of the duPont 1090 thermal analyzer was used for data reduction which simplify the theoretical interpretation. Clamps were developed which allowed 'relative' damping during the cure cycle to be measured for the fiber-glass supported resin. The correlation of fracture energy 'toughness' (or impact strength) with the low temperature (glassy) relaxation responses for a 'rubber-modified' epoxy system was negative in result because the low-temperature dispersion mode (-80 C) of the modifier coincided with that of the epoxy matrix, making quantitative comparison unrealistic.
Integrated mechanics for the passive damping of polymer-matrix composites and composite structures
NASA Technical Reports Server (NTRS)
Saravanos, D. A.; Chamis, Christos C.
1991-01-01
Some recent developments on integrated damping mechanics for unidirectional composites, laminates, and composite structures are reviewed. Simplified damping micromechanics relate the damping of on-axis and off-axis composites to constituent properties, fiber volume ratio, fiber orientation, temperature, and moisture. Laminate and structural damping mechanics for thin composites are summarized. Discrete layer damping mechanics for thick laminates, including the effects of interlaminar shear damping, are developed and semianalytical predictions of modal damping in thick simply supported specialty composite plates are presented. Applications show the advantages of the unified mechanics, and illustrate the effect of fiber volume ratio, fiber orientation, structural geometry, and temperature on the damping. Additional damping properties for composite plates of various laminations, aspect ratios, fiber content, and temperature illustrate the merits and ranges of applicability of each theory (thin or thick laminates).
Using Google Earth in Marine Research and Operational Decision Support
NASA Astrophysics Data System (ADS)
Blower, J. D.; Bretherton, D.; Haines, K.; Liu, C.; Rawlings, C.; Santokhee, A.; Smith, I.
2006-12-01
A key advantage of Virtual Globes ("geobrowsers") such as Google Earth is that they can display many different geospatial data types at a huge range of spatial scales. In this demonstration and poster display we shall show how marine data from disparate sources can be brought together in a geobrowser in order to support both scientific research and operational search and rescue activities. We have developed the Godiva2 interactive website for browsing and exploring marine data, mainly output from supercomputer analyses and predictions of ocean circulation. The user chooses a number of parameters (e.g. sea temperature at 100m depth on 1st July 2006) and can load an image of the resulting data in Google Earth. Through the use of an automatically-refreshing NetworkLink the user can explore the whole globe at a very large range of spatial scales: the displayed data will automatically be refreshed to show data at increasingly fine resolution as the user zooms in. This is a valuable research tool for exploring these terabyte- scale datasets. Many coastguard organizations around the world use SARIS, a software application produced by BMT Cordah Ltd., to predict the drift pattern of objects in the sea in order to support search and rescue operations. Different drifting objects have different trajectories depending on factors such as their buoyancy and windage and so a computer model, supported by meteorological and oceanographic data, is needed to help rescuers locate their targets. We shall demonstrate how Google Earth is used to display output from the SARIS model (including the search target location and associated error polygon) alongside meteorological data (wind vectors) and oceanographic data (sea temperature, surface currents) from Godiva2 in order to support decision-making. We shall also discuss the limitations of using Google Earth in this context: these include the difficulties of working with time- dependent data and the need to access data securely. essc.ac.uk:8080/Godiva2
Formoso, Anahí E.; Martin, Gabriel M.; Teta, Pablo; Carbajo, Aníbal E.; Sauthier, Daniel E. Udrizar; Pardiñas, Ulyses F. J.
2015-01-01
The Patagonian opossum (Lestodelphys halli), the southernmost living marsupial, inhabits dry and open environments, mainly in the Patagonian steppe (between ~32°S and ~49°S). Its rich fossil record shows its occurrence further north in Central Argentina during the Quaternary. The paleoenvironmental meaning of the past distribution of L. halli has been mostly addressed in a subjective framework without an explicit connection with the climatic “space” currently occupied by this animal. Here, we assessed the potential distribution of this species and the changes occurred in its geographic range during late Pleistocene-Holocene times and linked the results obtained with conservation issues. To this end, we generated three potential distribution models with fossil records and three with current ones, using MaxEnt software. These models showed a decrease in the suitable habitat conditions for the species, highlighting a range shift from Central-Eastern to South-Western Argentina. Our results support that the presence of L. halli in the Pampean region during the Pleistocene-Holocene can be related to precipitation and temperature variables and that its current presence in Patagonia is more related to temperature and dominant soils. The models obtained suggest that the species has been experiencing a reduction in its geographic range since the middle Holocene, a process that is in accordance with a general increase in moisture and temperature in Central Argentina. Considering the findings of our work and the future scenario of global warming projected for Patagonia, we might expect a harsh impact on the distribution range of this opossum in the near future. PMID:26203650
NASA Astrophysics Data System (ADS)
Garcia-Valles, M.
2012-04-01
The volume of sludge produced in wastewater treatment plants in Egypt is becoming more important; this paper studied the chemical composition of sludge from four treatment plants located around Nile delta and valley: El-Sadat City (E-01), Alexandria (E-02), Abo-Rawash (E-03) and Minufiya (E-04), and is suggested as a possible solution, the vitrification of these sludges. Another important objective for obtaining correct this glass is to know the viscosity temperature curve, including developing a prototype of hot stage microscopy (HSM) and development of software suitable for the analysis of images. Each image has different morphology related to different viscosity, can that way determine the viscosity at the temperature of heating. The chemical composition of these sludges is close to a basalt rock except that the phosphorus content is higher, and sometimes with a certain proportion of heavy metals. Cr, Zn and Pb exceeds the limit allowed to be used in agriculture, this is one of the solutions actually used. In general, major oxides to sludges ranging from: SiO2 (36-48 wt %), Al2O3 (9-16 wt %), CaO (5-25 wt %), P2O5 (1.5-11 wt %) and Fe2O3 (~ 9 wt %), this composition. Since of them are formulated and prepared by four different glasses, in some cases being necessary to incorporate a quantity of raw materials. The sludge combustion heat, the thermal evolution, vitreous transition temperature (Tg) and crystal growth temperature of the glasses were obtained by carrying out a differential thermal analysis. Tg of the four glasses vary between 650 and 725 °C and the growth occurs between 938 and 1033 °C. The vitreous transition temperature was also determined with a dilatometer. Each original glass has been characterized mineralogically by X-ray diffraction: quartz, plagioclase, K-feldspar and calcite. Two samples contained gypsum and some clay mineral traces. We also obtained the viscosity - temperature curves with the aid of the hot stage microscopy that has allowed us to determine the working temperatures of the four glasses, ranging from 926 and to 1419 °C, depending on the type of forming process used. In all glass samples the viscosity-temperature curves have similar characteristics, but for higher viscosities a separation among the different viscosity-temperature curves occurs. This different behaviour is associated to chemical composition: Ca-rich silica aluminum melt, present low viscosity at low temperatures, > P2O5 content, the nucleation of a more refractory phosphate phase occurs. In order to obtain the original glasses working conditions (necessary for possible industrial applications) are used the Vogel-Fulcher-Tammann equation: a) upper and lower annealing temperatures of the samples are similar for the different glasses and ranging between 595-641 °C and 671-701 °C respectively; b) working temperature range from 917-1307 °C for the sample E-02, and 925-1503 °C for the sample E-04, depending on the conformation system used. Finally, the forming and melting temperatures of the samples vary between 1307-1403 °C (E-02) and 1503-1550 °C (E-04). The results confirm that HSM is a good technique for studying the sludge vitrification process, and could provide important information for the possible industrial application. Acknowledgements This study is a contribution of the bilateral project A/030032/10 and CICYT TIN2008-02903. The analytical work was conducted at Research Consolidated Groups 2009SGR-0044 (Mineral Resources). Wastewater treatment plants at El-Sadat City, Alexandria, Abo-Rawash and Minufiya are acknowledged for sampling authorization and facilities. We express our acknowledgement to the technical support of the Scientific-Technical Service Unit of the University of Barcelona and the additional support of the Institute for Bioengineering of Catalonia (IBEC).
Structure of wall-bounded flows at transcritical conditions
NASA Astrophysics Data System (ADS)
Ma, Peter C.; Yang, Xiang I. A.; Ihme, Matthias
2018-03-01
At transcritical conditions, the transition of a fluid from a liquidlike state to a gaslike state occurs continuously, which is associated with significant changes in fluid properties. Therefore, boiling in its conventional sense does not exist and the phase transition at transcritical conditions is known as "pseudoboiling." In this work, direct numerical simulations (DNS) of a channel flow at transcritical conditions are conducted in which the bottom and top walls are kept at temperatures below and above the pseudoboiling temperature, respectively. Over this temperature range, the density changes by a factor of 18 between both walls. Using the DNS data, the usefulness of the semilocal scaling and the Townsend attached-eddy hypothesis are examined in the context of flows at transcritical conditions—both models have received much empirical support from previous studies. It is found that while the semilocal scaling works reasonably well near the bottom cooled wall, where the fluid density changes only moderately, the same scaling has only limited success near the top wall. In addition, it is shown that the streamwise velocity structure function follows a logarithmic scaling and the streamwise energy spectrum exhibits an inverse wave-number scaling, thus providing support to the attached-eddy model at transcritical conditions.
Spectral Behavior of Weakly Compressible Aero-Optical Distortions
NASA Astrophysics Data System (ADS)
Mathews, Edwin; Wang, Kan; Wang, Meng; Jumper, Eric
2016-11-01
In classical theories of optical distortions by atmospheric turbulence, an appropriate and key assumption is that index-of-refraction variations are dominated by fluctuations in temperature and the effects of turbulent pressure fluctuations are negligible. This assumption is, however, not generally valid for aero-optical distortions caused by turbulent flow over an optical aperture, where both temperature and pressures fluctuations may contribute significantly to the index-of-refraction fluctuations. A general expression for weak fluctuations in refractive index is derived using the ideal gas law and Gladstone-Dale relation and applied to describe the spectral behavior of aero-optical distortions. Large-eddy simulations of weakly compressible, temporally evolving shear layers are then used to verify the theoretical results. Computational results support theoretical findings and confirm that if the log slope of the 1-D density spectrum in the inertial range is -mρ , the optical phase distortion spectral slope is given by - (mρ + 1) . The value of mρ is then shown to be dependent on the ratio of shear-layer free-stream densities and bounded by the spectral slopes of temperature and pressure fluctuations. Supported by HEL-JTO through AFOSR Grant FA9550-13-1-0001 and Blue Waters Graduate Fellowship Program.
Brunetti, Bruno; Ciccioli, Andrea; Gigli, Guido; Lapi, Andrea; Misceo, Nicolaemanuele; Tanzi, Luana; Vecchio Ciprioti, Stefano
2014-08-07
The vaporization behaviour and thermodynamics of the ionic liquid 1-butyl-3-methylimidazolium bis(trifluoromethyl)sulfonylimide (BMImNTf2) were studied by combining the Knudsen Effusion Mass Loss (KEML) and Knudsen Effusion Mass Spectrometry (KEMS) techniques. KEML studies were carried out in a large temperature range (398-567) K by using effusion orifices with 0.3, 1, and 3 mm diameters. The vapor pressures so measured revealed no kinetically hindered vaporization effects and provided second-law vaporization enthalpies at the mean experimental temperatures in close agreement with literature. By exploiting the large temperature range covered, the heat capacity change associated with vaporization was estimated, resulting in a value of -66.8 J K(-1) mol(-1), much lower than that predicted from calorimetric measurements on the liquid phase and theoretical calculations on the gas phase. The conversion of the high temperature vaporization enthalpy to 298 K was discussed and the value Δ(l)(g)H(m)(298 K) = (128.6 ± 1.3) kJ mol(-1) assessed on the basis of data from literature and present work. Vapor pressure data were also processed by the third-law procedure using different estimations for the auxiliary thermal functions, and a Δ(l)(g)H(m)(298 K) consistent with the assessed value was obtained, although the overall agreement is sensitive to the accuracy of heat capacity data. KEMS measurements were carried out in the lower temperature range (393-467) K and showed that the largely prevailing ion species is BMIm(+), supporting the common view of BMImNTf2 vaporizing as individual, neutral ion pairs also under equilibrium conditions. By monitoring the mass spectrometric signal of this ion as a function of temperature, a second-law Δ(l)(g)H(m)(298 K) of 129.4 ± 7.3 kJ mol(-1) was obtained, well consistent with KEML and literature results. Finally, by combining KEML and KEMS measurements, the electron impact ionization cross section of BMIm(+) was estimated.
NASA Astrophysics Data System (ADS)
Enriquez, M. V.; Eagle, R.; Eiler, J. M.; Tripati, A. K.; Ramirez, P. C.; Loyd, S. J.; Chiappe, L.; Montanari, S.; Norell, M.; Tuetken, T.
2012-12-01
Carbonate clumped isotope analysis of fossil eggshells has the potential to constrain both the physiology of extinct animals and, potentially, paleoenvironmental conditions, especially when coupled with isotopic measurements of co-occurring soil carbonates. Eggshell samples from both modern vertebrates and Cretaceous Hadrosaurid, Oviraptorid, Titanosaur, Hypselosaurus, Faveoolithus, dinosaur fossils have been collected from Auca Mahuevo, Argentina and Rousett, France, amongst other locations, for geochemical analysis to determine if isotopic signatures could be used to indicate warm- or cold-bloodedness. In some locations soil carbonates were also analyzed to constrain environmental temperatures. In order to test the validity of the geochemical results, an extensive study was undertaken to establish degree of diagenetic alteration. Petrographic and cathodoluminescence characterization of the eggshells were used to assess diagenetic alteration. An empirical 1-5 point scale was used to assign each sample an alteration level, and the observations were then compared with the geochemical results. Specimens displayed a wide range of alteration states. Some of which were well preserved and others highly altered. Another group seemed to be structural intact and only under cathodoluminescence was alteration clearly observed. In the majority of samples, alteration level was found to be predictably related to geochemical results. From specimens with little evidence for diagenesis, carbonate clumped isotope signatures support high (37-40°C) body temperature for Titanosaurid dinosaurs, but potentially lower body temperatures for other taxa. If these data do, in fact, represent original eggshell growth temperatures, these results support variability in body temperature amongst Cretaceous dinosaurs and potentially are consistent with variations between adult body temperature and size — a characteristic of 'gigantothermy'.
Paleomagnetism and tectonics of the Jura arcuate mountain belt in France and Switzerland
NASA Astrophysics Data System (ADS)
Gehring, Andreas U.; Keller, Peter; Heller, Friedrich
1991-02-01
Goethite and hematite in ferriferous oolitic beds of Callovian age from the Jura mountains (Switzerland, France) carry either pre- and/or post-tectonic magnetization. The frequent pre-tectonic origin of goethite magnetization indicates a temperature range during formation of the arcuate Jura mountain belt below the goethite Néel temperature of about 100°C. The scatter of the pre-tectonic paleomagnetic directions ( D = 11.5° E, I = 55.5°; α95 = 4.7) which reside both in goethite and hematite, provides strong evidence that the arcuate mountain belt was shaped without significant rotation. The paleomagnetic results support tectonic thin-skinned models for the formation of the Jura mountain belt.
Mead, Judith W.; Montoya, Orelio J.; Rand, Peter B.; Willan, Vernon O.
1984-01-01
Access to a space is impeded by generation of a sticky foam from a silicone polymer and a low boiling solvent such as a halogenated hydrocarbon. In a preferred aspect, the formulation is polydimethylsiloxane gel mixed with F502 Freon as a solvent and blowing agent, and pressurized with CO.sub.2 in a vessel to about 250 PSI, whereby when the vessel is opened, a sticky and solvent resistant foam is deployed. The foam is deployable, over a wide range of temperatures, adhering to wet surfaces as well as dry, is stable over long periods of time and does not propagate flame or lose adhesive properties during an externally supported burn.
Nonmetallic materials handbook. Volume 2: Epoxy and silicone materials
NASA Technical Reports Server (NTRS)
Podlaseck, S. E.
1982-01-01
Chemical and physical property test data obtained during qualification and receiving inspection testing of nonmetallic materials for the Viking Mars Lander program is presented. Thermochemical data showing degradation as a function of temperature from room temperature through 773 K is included. These data include activation energies for thermal degradation, rate constants, and exo- and/or endotherms. Thermal degradations carried out under vacuum include mass spectral data taken simultaneously during the decomposition. Many materials have supporting data such as condensation rates of degassed products and isothermal weight loss. Changes in mechanical, electrical, and thermal properties after exposure to 408 K in nitrogen for times ranging from 380 to 570 hours are included for many materials.
AATSR: global-change and surface-temperature measurements from Envisat
NASA Astrophysics Data System (ADS)
Llewellyn-Jones, D.; Edwards, M. C.; Mutlow, C. T.; Birks, A. R.; Barton, I. J.; Tait, H.
2001-02-01
The Advanced Along-Track Scanning Radiometer (AATSR) onboard ESA's Envisat spacecraft is designed to meet the challenging task of monitoring and detecting climate change. It builds on the success of its predecessor instruments on the ERS-1 and ERS-2 satellites, and will lead to a 15+ year record of precise and accurate global Sea-Surface Temperature (SST) measurements, thereby making a valuable contribution to the long-term climate record. With its high-accuracy, high-quality imagery and channels in the visible, near-infrared and thermal wavelengths, AATSR data will support many applications in addition to oceanographic and climate research, including a wide range of land-surface, cryosphere and atmospheric studies.
Catalysts based on PdO_ZrO2 in the hydrodechlorination reaction of chlorobenzene
NASA Astrophysics Data System (ADS)
Otroshchenko, T. P.; Turakulova, A. O.; Lokteva, E. S.; Golubina, E. V.; Lunin, V. V.
2015-07-01
The possibility of using mixed oxides of palladium and zirconium obtained with biotemplates (cellulose and wood pulp) as the precursor of catalysts for the hydrodechlorination of chlorobenzene is analyzed. The properties of the samples are studied by means of scanning electron microscopy (SEM), transmission electron microscopy (TEM), the Brunauer-Emmet-Teller (BET) method, and temperature-programmed reduction (TPR). They are then compared to the properties of a supported analogue. The biomorphic precursors are characterized by high porosity and include micropores, mesopores, and macropores; the results from TPR reveal the presence in the precursors of several forms of PdO that differ by reduction temperature. It is shown that the distribution of palladium in the catalysts obtained by reducing the precursors with hydrogen depends on the method used in synthesizing the precursor. It is shown that the studied catalysts ensure 100% conversion of chlorobenzene at temperatures of 100 to 250°C. It is established that cyclohexane is the principal product in the presence of the supported catalyst across the range of temperatures, while cyclohexane and benzene are detected among the products in the presence of biomorphous samples at temperatures above 130°C. The effect the presence of an admixture of alkaline and alkaline-earth metals in the catalyst has on the selectivity of the process is noted. It is established that the catalysts operate in a stable manner for at least 27 h of use under experimental conditions.
Graciani, J.; Stacchiola, D.; Yang, F.; ...
2015-09-09
Nanostructured RuO x/TiO 2(110) catalysts have a remarkable catalytic activity for CO oxidation at temperatures in the range of 350–375 K. Furthermore, the RuO 2(110) surface has no activity. The state-of-the-art DFT calculations indicate that the main reasons for such an impressive improvement in the catalytic activity are: (i) a decrease of the diffusion barrier of adsorbed O atoms by around 40%, from 1.07 eV in RuO 2(110) to 0.66 eV in RuO x/TiO 2(110), which explains the shift of the activity to lower temperatures and (ii) a lowering of the barrier by 20% for the association of adsorbed COmore » and O species to give CO 2 (the main barrier for the CO oxidation reaction) passing from around 0.7 eV in RuO 2(110) to 0.55 eV in RuO x/TiO 2(110). We show that the catalytic properties of ruthenia are strongly modified when supported as nanostructures on titania, attaining higher activity at temperatures 100 K lower than that needed for pure ruthenia. As in other systems consisting of ceria nanostructures supported on titania, nanostructured ruthenia shows strongly modified properties compared to the pure oxide, consolidating the fact that the nanostructuring of oxides is a main way to attain higher catalytic activity at lower temperatures.« less
Structural Stability of Light-harvesting Protein LH2 Adsorbed on Mesoporous Silica Supports.
Shibuya, Yuuta; Itoh, Tetsuji; Matsuura, Shun-ichi; Yamaguchi, Akira
2015-01-01
In the present study, we examined the reversible thermal deformation of the membrane protein light-harvesting complex LH2 adsorbed on mesoporous silica (MPS) supports. The LH2 complex from Thermochromatium tepidum cells was conjugated to MPS supports with a series of pore diameter (2.4 to 10.6 nm), and absorption spectra of the resulting LH2/MPS conjugates were observed over a temperature range of 273 - 313 K in order to examine the structure of the LH2 adsorbed on the MPS support. The experimental results confirmed that a slight ellipsoidal deformation of LH2 was induced by adsorption on the MPS supports. On the other hand, the structural stability of LH2 was not perturbed by the adsorption. Since the pore diameter of MPS support did not influence the structural stability of LH2, it could be considered that the spatial confinement of LH2 in size-matches pore did not improve the structural stability of LH2.
NASA Astrophysics Data System (ADS)
Dessler, Andrew E.; Mauritsen, Thorsten; Stevens, Bjorn
2018-04-01
Our climate is constrained by the balance between solar energy absorbed by the Earth and terrestrial energy radiated to space. This energy balance has been widely used to infer equilibrium climate sensitivity (ECS) from observations of 20th-century warming. Such estimates yield lower values than other methods, and these have been influential in pushing down the consensus ECS range in recent assessments. Here we test the method using a 100-member ensemble of the Max Planck Institute Earth System Model (MPI-ESM1.1) simulations of the period 1850-2005 with known forcing. We calculate ECS in each ensemble member using energy balance, yielding values ranging from 2.1 to 3.9 K. The spread in the ensemble is related to the central assumption in the energy budget framework: that global average surface temperature anomalies are indicative of anomalies in outgoing energy (either of terrestrial origin or reflected solar energy). We find that this assumption is not well supported over the historical temperature record in the model ensemble or more recent satellite observations. We find that framing energy balance in terms of 500 hPa tropical temperature better describes the planet's energy balance.
NIST-NRC Comparison of Total Immersion Liquid-in-Glass Thermometers
NASA Astrophysics Data System (ADS)
Hill, K. D.; Gee, D. J.; Cross, C. D.; Strouse, G. F.
2009-02-01
The use of liquid-in-glass (LIG) thermometers is described in many documentary standards in the fields of environmental testing, material testing, and material transfer. Many national metrology institutes, including the National Institute of Standards and Technology (NIST) and the National Research Council of Canada (NRC), list calibration services for these thermometers among the Calibration Measurement Capabilities of Appendix C of the BIPM Key Comparison Database. NIST and NRC arranged a bilateral comparison of a set of total-immersion ASTM-type LIG thermometers to validate their uncertainty claims. Two each of ASTM thermometer types 62C through 69C were calibrated at NIST and at NRC at four temperatures distributed over the range appropriate to each thermometer, in addition to the ice point. Collectively, the thermometers span a temperature range of - 38 °C to 305 °C. In total, 160 measurements (80 pairs) comprise the comparison data set. Pair-wise differences ( T NIST- T NRC) were formed for each thermometer at each temperature. For 8 of the 80 pairs (10 %), the differences exceed the k = 2 combined uncertainties. These results support the claimed capabilities of NIST and NRC for the calibration of LIG thermometers.
Long-Term Variability of Satellite Lake Surface Water Temperatures in the Great Lakes
NASA Astrophysics Data System (ADS)
Gierach, M. M.; Matsumoto, K.; Holt, B.; McKinney, P. J.; Tokos, K.
2014-12-01
The Great Lakes are the largest group of freshwater lakes on Earth that approximately 37 million people depend upon for fresh drinking water, food, flood and drought mitigation, and natural resources that support industry, jobs, shipping and tourism. Recent reports have stated (e.g., the National Climate Assessment) that climate change can impact and exacerbate a range of risks to the Great Lakes, including changes in the range and distribution of certain fish species, increased invasive species and harmful algal blooms, declining beach health, and lengthened commercial navigation season. In this study, we will examine the impact of climate change on the Laurentian Great Lakes through investigation of long-term lake surface water temperatures (LSWT). We will use the ATSR Reprocessing for Climate: Lake Surface Water Temperature & Ice Cover (ARC-Lake) product over the period 1995-2012 to investigate individual and interlake variability. Specifically, we will quantify the seasonal amplitude of LSWTs, the first and last appearances of the 4°C isotherm (i.e., an important identifier of the seasonal evolution of the lakes denoting winter and summer stratification), and interpret these quantities in the context of global interannual climate variability such as ENSO.
NASA Astrophysics Data System (ADS)
Howe, Jane Y.; Puretzky, Alex A.; Geohegan, David B.; Cui, Hongtao; Eres, Varela; Maria, Alex A.; Lowndes, Douglas H.
2003-03-01
The structure of single-wall and multiwall carbon nanotubes and associated metal catalyst nanoparticles produced during chemical vapor deposition from multilayered metal films deposited on Si and Mo substrates were studied by high-resolution TEM and EDS. Electron beam-evaporated metal multilayer films (e.g. Al-Fe-Mo, typically 11-50 nm total thickness) roughen upon heat treatment to form a variety of catalyst particle sizes suitable for carbon nanotube growth by chemical vapor deposition using acetylene, hydrogen, and argon flow gases. This study investigates these nanoparticles, the type of nanotubes grown, their wall, tip, and basal structures, as well as the associated amounts of amorphous carbon deposited on their walls in different temperature and pressure ranges. Mixtures of SWNT and MWNT are found even for low growth temperatures (650-700 C), while rapid growth of vertically-aligned multiwall nanotubes (VA-MWNTs) predominate in a narrow temperature range at a given pressure. Arrested growth experiments were performed to determine the time periods for SWNT vs. MWNT growth. The nature of the catalyst nanoparticles, their support structure, and insights on the mechanisms of growth will be discussed.
Dinosaur energetics: setting the bounds on feasible physiologies and ecologies.
Clarke, Andrew
2013-09-01
The metabolic status of dinosaurs has long been debated but remains unresolved as no consistent picture has emerged from a range of anatomical and isotopic evidence. Quantitative analysis of dinosaur energetics, based on general principles applicable to all vertebrates, shows that many features of dinosaur lifestyle are compatible with a physiology similar to that of extant lizards, scaled up to dinosaur body masses and temperatures. The analysis suggests that sufficient metabolic scope would have been available to support observed dinosaur growth rates and allow considerable locomotor activity, perhaps even migration. Since at least one dinosaur lineage evolved true endothermy, this study emphasizes there was no single dinosaur physiology. Many small theropods were insulated with feathers and appear to have been partial or full endotherms. Uninsulated small taxa, and all juveniles, presumably would have been ectothermic, with consequent diurnal and seasonal variations in body temperature. In larger taxa, inertial homeothermy would have resulted in warm and stable body temperatures but with a basal metabolism significantly below that of extant mammals or birds of the same size. It would appear that dinosaurs exhibited a range of metabolic levels to match the broad spectrum of ecological niches they occupied.
Tropical and Extratropical Cyclone Damages under Climate Change
NASA Astrophysics Data System (ADS)
Ranson, M.; Kousky, C.; Ruth, M.; Jantarasami, L.; Crimmins, A.; Tarquinio, L.
2014-12-01
This paper provides the first quantitative synthesis of the rapidly growing literature on future tropical and extratropical cyclone losses under climate change. We estimate a probability distribution for the predicted impact of changes in global surface air temperatures on future storm damages, using an ensemble of 296 estimates of the temperature-damage relationship from twenty studies. Our analysis produces three main empirical results. First, we find strong but not conclusive support for the hypothesis that climate change will cause damages from tropical cyclones and wind storms to increase, with most models (84 and 92 percent, respectively) predicting higher future storm damages due to climate change. Second, there is substantial variation in projected changes in losses across regions. Potential changes in damages are greatest in the North Atlantic basin, where the multi-model average predicts that a 2.5°C increase in global surface air temperature would cause hurricane damages to increase by 62 percent. The ensemble predictions for Western North Pacific tropical cyclones and European wind storms (extratropical cyclones) are approximately one third of that magnitude. Finally, our analysis shows that existing models of storm damages under climate change generate a wide range of predictions, ranging from moderate decreases to very large increases in losses.
NASA Astrophysics Data System (ADS)
Sane, Sandeep Bhalchandra
This thesis contains three chapters, which describe different aspects of an investigation of the bulk response of Poly(Methyl Methacrylate) (PMMA). The first chapter describes the physical measurements by means of a Belcher/McKinney-type apparatus. Used earlier for the measurement of the bulk response of Poly(Vinyl Acetate), it was now adapted for making measurements at higher temperatures commensurate with the glass transition temperature of PMMA. The dynamic bulk compliance of PMMA was measured at atmospheric pressure over a wide range of temperatures and frequencies, from which the master curves for the bulk compliance were generated by means of the time-temperature superposition principle. It was found that the extent of the transition ranges for the bulk and shear response were comparable. Comparison of the shift factors for bulk and shear responses supports the idea that different molecular mechanisms contribute to shear and bulk deformations. The second chapter delineates molecular dynamics computations for the bulk response for a range of pressures and temperatures. The model(s) consisted of 2256 atoms formed into three polymer chains with fifty monomer units per chain per unit cell. The time scales accessed were limited to tens of pico seconds. It was found that, in addition to the typical energy minimization and temperature annealing cycles for establishing equilibrium models, it is advantageous to subject the model samples to a cycle of relatively large pressures (GPa-range) for improving the equilibrium state. On comparing the computations with the experimentally determined "glassy" behavior, one finds that, although the computations were limited to small samples in a physical sense, the primary limitation rests in the very short times (pico seconds). The molecular dynamics computations do not model the physically observed temperature sensitivity of PMMA, even if one employs a hypothetical time-temperature shift to account for the large difference in time scales between experiment and computation. The values computed by the molecular dynamics method do agree with the values measured at the coldest temperature and at the highest frequency of one kiloHertz. The third chapter draws on measurements of uniaxial, shear and Poisson response conducted previously in our laboratory. With the availability of four time or frequency-dependent material functions for the same material, the process of interconversion between different material functions was investigated. Computed material functions were evaluated against the direct experimental measurements and the limitations imposed on successful interconversion due to the experimental errors in the underlying physical data were explored. Differences were observed that are larger than the experimental errors would suggest.
AIRS/AMSU/HSB Data at Goddard Earth Science DISC DAAC
NASA Astrophysics Data System (ADS)
Cho, S.; Qin, J.; Li, J.; Lu, L.
2003-12-01
The Atmospheric Infrared Sounder (AIRS) data product suite is now available at the NASA/GSFC Distributed Active Archive Center (GDAAC) located at the NASA Goddard Earth Sciences Data and Information Services Center (GES DISC) in Greenbelt, Maryland, USA. AIRS data products are a combination of AIRS, Advanced Microwave Sounding Unit (AMSU-A) and Humidity Sounder for Brazil (HSB) measurements. Global coverage by the instruments is obtained twice daily (day and night) and the data along the orbit is processed into 6-minute granules. AIRS alone has 2,378 channels measuring in the infrared range 3.74-15.4 mm and four channels measuring in the visible/near-infrared range 0.4-1.1mm. A day's worth of AIRS data is divided into 240 scenes each of 6 minute duration. The data is produced in HDF-EOS format and generally become available 30-36 hours after satellite measurement from the GDAAC. Level1B data (calibrated, geo-located radiances) contains radiances from 2378 AIRS infrared channels in the 3.74 to 15.4 μm and 4 visible/near infrared channels in the 0.4 to 1.0 μm, and brightness temperature from 15 AMSU-A channels in the 50 - 90 GHz and 23 - 32 GHz and 4 HSB in the 150 - 190 GHz. The brightness temperature from two microwave instruments is used to initialize the surface temperature and atmospheric temperature profile required for the retrieval of the final AIRS geophysical products. Level2 data (geophysical parameters) is grouped into three products - Cloud-Cleared Infrared Radiance, Standard Retrieval, and Support Retrieval. The retrieval products contain atmospheric parameters such as temperatures, humidity, cloud, water vapor, and ozone in 28 pressure levels and 100 pressure levels respectively. Support Retrieval product is intended for the knowledgeable, experienced user of AIRS/AMSU-A/HSB products. It contains high resolution profiles intended to be used for computation of radiances, as-yet unimplemented research products and various parameters and intermediate results used to evaluate and track the progress of the retrieval algorithm. AIRS/AMSU-A/HSB data products can be ordered on line at no cost via the GDAAC Search and Order interface or the EOS Data Gateway (EDG). Most recent data may also be obtained from the Data Pool, an online cache that provides FTP access for quick download. Daily summary browse images and preview images of individual data granules are also accessible from the search interfaces to help users evaluate the data prior to ordering or downloading. The Atmospheric Dynamics Data Support Team (ADDST) at GDAAC is providing science and data support to assist users in understanding, accessing, and applying the AIRS data products. An extensive informational AIRS data support web site has been prepared by ADDST for data users at http://daac.gsfc.nasa.gov/atmodyn/airs/
Lee, Il-Hyung; Saha, Suvrajit; Polley, Anirban; Huang, Hector; Mayor, Satyajit; Rao, Madan; Groves, Jay T
2015-03-26
Lipid/cholesterol mixtures derived from cell membranes as well as their synthetic reconstitutions exhibit well-defined miscibility phase transitions and critical phenomena near physiological temperatures. This suggests that lipid/cholesterol-mediated phase separation plays a role in the organization of live cell membranes. However, macroscopic lipid-phase separation is not generally observed in cell membranes, and the degree to which properties of isolated lipid mixtures are preserved in the cell membrane remain unknown. A fundamental property of phase transitions is that the variation of tagged particle diffusion with temperature exhibits an abrupt change as the system passes through the transition, even when the two phases are distributed in a nanometer-scale emulsion. We support this using a variety of Monte Carlo and atomistic simulations on model lipid membrane systems. However, temperature-dependent fluorescence correlation spectroscopy of labeled lipids and membrane-anchored proteins in live cell membranes shows a consistently smooth increase in the diffusion coefficient as a function of temperature. We find no evidence of a discrete miscibility phase transition throughout a wide range of temperatures: 14-37 °C. This contrasts the behavior of giant plasma membrane vesicles (GPMVs) blebbed from the same cells, which do exhibit phase transitions and macroscopic phase separation. Fluorescence lifetime analysis of a DiI probe in both cases reveals a significant environmental difference between the live cell and the GPMV. Taken together, these data suggest the live cell membrane may avoid the miscibility phase transition inherent to its lipid constituents by actively regulating physical parameters, such as tension, in the membrane.
NASA Astrophysics Data System (ADS)
Constans, Charlotte; Mateo, Philippe; Tanter, Mickaël; Aubry, Jean-François
2018-01-01
In the past decade, a handful but growing number of groups have reported worldwide successful low intensity focused ultrasound induced neurostimulation trials on rodents. Its effects range from movement elicitations to reduction of anesthesia time or reduction of the duration of drug induced seizures. The mechanisms underlying ultrasonic neuromodulation are still not fully understood. Given the low intensities used in most of the studies, a mechanical effect is more likely to be responsible for the neuromodulation effect, but a clear description of the thermal and mechanical effects is necessary to optimize clinical applications. Based on five studies settings, we calculated the temperature rise and thermal doses in order to evaluate its implication in the neuromodulation phenomenon. Our retrospective analysis shows thermal rise ranging from 0.002 °C to 0.8 °C in the brain for all setups, except for one setup for which the temperature increase is estimated to be as high as 7 °C. We estimate that in the latter case, temperature rise cannot be neglected as a possible cause of neuromodulation. Simulations results were supported by temperature measurements on a mouse with two different sets of parameters. Although the calculated temperature is compatible with the absence of visible thermal lesions on the skin, it is high enough to impact brain circuits. Our study highlights the usefulness of performing thermal simulations prior to experiment in order to fully take into account not only the impact of the peak intensity but also pulse duration and pulse repetition.
Selected meteorological data for an arid site near Beatty, Nye County, Nevada, calendar year 1987
Wood, James L.; Fischer, Jeffrey M.
1992-01-01
Selected meteorological data were collected at a study site adjacent to a low-level radioactive-waste burial facility near Beatty, Nevada, for calendar year 1987. Data were collected in support of an ongoing study to estimate the potential for downward movement of radionuclides into the unsaturated sediments beneath waste-burial trenches at the facility. The data include air temperature, relative humidity, vapor pressure, incident solar radiation, windspeed, wind direction, and precipitation. The data are summarized in tables and graphs A discussion of the instrumentation used at the site is presented. Included in the discussion are the type of sensors, their reported accuracy, and mounting height of each sensor.In 1987, the average hourly air temperatures ranged from -7.6 degrees Celsius, in December, to 43.1 degrees Celsius, in July. Hourly averaged relative humidity ranged from about 12 percent to over 80 percent. Hourly vapor pressures ranged from 0.12 to 1.77 kilopascals. Daily values for maximum incident solar radiation ranged from 118 to 1,067 watts per square meter. Daily mean windspeed ranged from 1.4 to 9.4 meters per second. Monthly wind-direction patterns are shown in a series of diagrams in which wind direction is summed over 10-degree arcs from hourly averaged data. Total precipitation for 1987 was 136.4 millimeters, more than 75 percent occurring during January-April and November-December.
Cable tunnel fire experiment study based on linear optical fiber fire detectors
NASA Astrophysics Data System (ADS)
Fan, Dian; Ding, Hongjun
2013-09-01
Aiming at exiting linear temperature fire detection technology including temperature sensing cable, fiber Raman scattering, fiber Bragg grating, this paper establish an experimental platform in cable tunnel, set two different experimental scenes of the fire and record temperature variation and fire detector response time in the processing of fire simulation. Since a small amount of thermal radiation and no flame for the beginning of the small-scale fire, only directly contacting heat detectors can make alarm response and the rest of other non- contact detectors are unable to respond. In large-scale fire, the alarm response time of the fiber Raman temperature sensing fire detector and fiber Bragg grating temperature sensing fire detector is about 30 seconds, and depending on the thermocouples' record the temperature over the fire is less than 35° in first 60 seconds of large-scale fire, while the temperature rising is more than 5°/min within the range of +/- 3m. According to the technical characteristics of the three detectors, the engineering suitability of the typical linear heat detectors in cable tunnels early fire detection is analyzed, which provide technical support for the preparation of norms.
Turbo-Brayton cryocooler technology for low-temperature space applications
NASA Astrophysics Data System (ADS)
Zagarola, Mark V.; Breedlove, Jeffrey F.; McCormick, John A.; Swift, Walter L.
2003-03-01
High performance, low temperature cryocoolers are being developed for future space-borne telescopes and instruments. To meet mission objectives, these coolers must be compact, lightweight, have low input power, operate reliably for 5-10 years, and produce no disturbances that would affect the pointing accuracy of the instruments. This paper describes progress in the development of turbo-Brayton cryocoolers addressing cooling in the 5 K to 20 K temperature range for loads of up to 300 mW. The key components for these cryocoolers are the miniature, high-speed turbomachines and the high performance recuperative heat exchangers. The turbomachines use gas-bearings to support the low mass, high speed rotors, resulting in negligible vibration and long life. Precision fabrication techniques are used to produce the necessary micro-scale geometric features that provide for high cycle efficiencies at these reduced sizes. Turbo-Brayton cryocoolers for higher temperatures and loads have been successfully developed for space applications. For efficient operation at low temperatures and capacities, advances in the core technologies have been pursued. Performance test results of a new, low poer compressor will be presented, and early cryogenic test results on a low temperature expansion turbine will be discussed. Projections for several low temperature cooler configurations are summarized.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gardiner, D. P.; Bardon, M. F.; Clark, W.
This study assessed differences in headspace flammability for summertime gasolines and new high-ethanol content fuel blends. The results apply to vehicle fuel tanks and underground storage tanks. Ambient temperature and fuel formulation effects on headspace vapor flammability of ethanol/gasoline blends were evaluated. Depending on the degree of tank filling, fuel type, and ambient temperature, fuel vapors in a tank can be flammable or non-flammable. Pure gasoline vapors in tanks generally are too rich to be flammable unless ambient temperatures are extremely low. High percentages of ethanol blended with gasoline can be less volatile than pure gasoline and can produce flammablemore » headspace vapors at common ambient temperatures. The study supports refinements of fuel ethanol volatility specifications and shows potential consequences of using noncompliant fuels. E85 is flammable at low temperatures; denatured ethanol is flammable at warmer temperatures. If both are stored at the same location, one or both of the tanks' headspace vapors will be flammable over a wide range of ambient temperatures. This is relevant to allowing consumers to splash -blend ethanol and gasoline at fueling stations. Fuels compliant with ASTM volatility specifications are relatively safe, but the E85 samples tested indicate that some ethanol fuels may produce flammable vapors.« less
A theory of local and global processes which affect solar wind electrons. 2: Experimental support
NASA Technical Reports Server (NTRS)
Scudder, J. D.; Olbert, S.
1979-01-01
The microscopic characteristics of the Coulomb cross section show that there are three natural subpopulations for plasma electrons: the subthermals with local kinetic energy E kT sub c; the transthermals with kT sub c E 7 kT sub c and the extrathermals E 7 kT sub c. Data from three experimental groups on three different spacecraft in the interplanetary medium over a radial range are presented to support the five interrelations projected between solar wind electron properties and changes in the interplanetary medium: (1) subthermals respond primarily to local changes (compression and rarefactions) in stream dynamics; (2) the extrathermal fraction of the ambient electron density should be anti-correlated with the asymptotic bulk speed; (3) the extrathermal "temperature" should be anti-correlated with the local wind speed at 1 AU; (4) the heat flux carried by electrons should be anti-correlated with the local bulk speed; and (5) the extrathermal differential 'temperature' should be nearly independent of radius within 1 AU.
O'Connor, Rory S; Hails, Rosemary S; Thomas, Jeremy A
2014-04-01
The dramatic recovery of three species of grassland specialist butterfly threatened with extinction at their high latitude range limits in the 1980s has been attributed to two factors: increased grazing on calcareous grassland sites and warmer air temperatures. Both result in the warming of soil surface temperatures, favourable to the larvae of these species. We address the influence of both of these factors on the habitat usage of the butterfly Polyommatus bellargus, undergoing recovery at its northern range edge. We test the hypothesis that the larval niche of P. bellargus has become less constrained in the past three decades, whilst controlling for changes in habitat structure. Once habitat change has been accounted for we find no evidence for a broadening of the larval niche of P. bellargus. Further, we show that coincident with the recovery of P. bellargus there have been drastic reductions in average turf height across UK chalk grasslands, but changes in air temperature have been highly variable. We conclude that changes to soil surface temperatures caused by reducing turf heights will have been a more consistent influence than air temperature increases, and so habitat improvements through increased grazing will have been the major driver of recovery in P. bellargus. We consider the need to account for changes in habitat when exploring the impacts of recent climate change on local habitats in thermophilous species, and emphasise the continued importance of habitat management to support such species under variable local climates.
Fisher, Leah R.; Godfrey, Matthew H.; Owens, David W.
2014-01-01
Incubation temperature has significant developmental effects on oviparous animals, including affecting sexual differentiation for several species. Incubation temperature also affects traits that can influence survival, a theory that is verified in this study for the Northwest Atlantic loggerhead sea turtle (Caretta caretta). We conducted controlled laboratory incubations and experiments to test for an effect of incubation temperature on performance of loggerhead hatchlings. Sixty-eight hatchlings were tested in 2011, and 31 in 2012, produced from eggs incubated at 11 different constant temperatures ranging from 27°C to 33°C. Following their emergence from the eggs, we tested righting response, crawling speed, and conducted a 24-hour long swim test. The results support previous studies on sea turtle hatchlings, with an effect of incubation temperature seen on survivorship, righting response time, crawling speed, change in crawl speed, and overall swim activity, and with hatchlings incubated at 27°C showing decreased locomotor abilities. No hatchlings survived to be tested in both years when incubated at 32°C and above. Differences in survivorship of hatchlings incubated at high temperatures are important in light of projected higher sand temperatures due to climate change, and could indicate increased mortality from incubation temperature effects. PMID:25517114
TSENG, HOW; LIN, SEY-EN; CHANG, YEN-LIANG; CHEN, MING-HSU; HUNG, SHIH-HAN
2016-01-01
The radiofrequency ablation (RFA) lesion size is posited to be disproportionate to the total delivered energy, and temperature-time integration (TTI) may have a more critical effect on lesion size. The present study aimed to evaluate this hypothesis by determining the temperature threshold and temperature distribution over tissues during the RFA lesioning process. Using an ex vivo chicken tissue model and an in vivo rabbit model with RFA applied for 2 min under various target temperature settings, the resultant lesions were evaluated histologically using Masson's trichrome stain. The temperature distribution over the tissue during the RFA lesioning process was also determined using a VT02 Visual IR Thermometer. It was revealed that the thermal injury threshold for RFA in the chicken tissues was ~65°C, but that it ranged from 55–65°C in mammals. Using infra-red thermal imaging, the temperature gradient (from the center to the periphery) during the RFA lesioning process demonstrated a uniform heat diffusion pattern. This data supports the proposed hypothesis that TTI is a critical parameter in determining RFA lesion size and can be applied clinically using the following equation: [Target temperature − 55 (°C)] × time (sec) is proportional to RFA lesion size. PMID:26997990
NASA Astrophysics Data System (ADS)
Wang, Chongyang
With the development of technologies for cellulosic biomass conversion to fuels and chemicals, bio-alcohols are among the main alternative feedstocks to fossil fuels. The research pursued in my thesis was the investigation of gold and palladium as catalysts for the application of short aliphatic alcohols to hydrogen generation and value-added chemicals production. Specifically, selective methanol steam reforming and non-oxidative ethanol dehydrogenation to hydrogen and acetaldehyde were investigated in this thesis work. A major aim of the thesis was to develop atomically efficient catalysts with tuned surface chemistry for the desired reactions, using suitable synthesis methods. Methanol steam reforming (SRM) for hydrogen production has recently been investigated on gold catalysts to overcome the drawbacks of copper catalysts (deactivation, pyrophoricity). Previous work at Tufts University has shown that both CeO2 and ZnO are suitable supports for gold. In this thesis, nanoscale composite oxides ZnZrOx were prepared by a carbon hard-template method, which resulted in homogeneous distribution of Zn species in the matrix of ZrO2. Tunable surface chemistry of ZnZrO x was demonstrated by varying the Zn/Zr ratio to suppress the strong Lewis acidity of ZrO2, which leads to undesired production of CO through methanol decomposition. With atomic dispersion of gold, Au/ZnZrO x catalyzes the SRM reaction exclusively via the methanol self-coupling pathway up to 375°C. The activity of Au/ZnZrOx catalysts was compared to Au/TiO2, which is another catalyst system demonstrating atomic dispersion of gold. Similarity in the apparent activation energy of SRM on all the supported gold catalysts studied in this thesis and in the literature further confirms the same single-site Au-Ox-MO centers as active sites for SRM with indirect effects of the supports exploited. With this fundamental understanding of gold-catalyzed C1 alcohol reforming, the Au/ZnZrOx catalyst was evaluated for the dehydrogenation of ethanol. Bare ZnZrOx activate ethanol conversion in the range of 280-300°C and produce undesired ethylene as product of ethanol dehydration, whereas, addition of small amount of gold (<1wt.%) was found to significantly change the product distribution in the low-temperature range (200°C-350°C). As gold passivates the strong Bronsted acid sites of ZrO2 and selectively facilitates the dehydrogenation of ethanol at low-temperature, a wide temperature range was found between the production of acetaldehyde (dehydrogenation products) and ethylene (dehydration product), which can be harnessed for the industrial application. Interestingly, the steam reforming of ethanol did not take place in the low-temperature region, thus the selectivity to acetaldehyde and hydrogen was 100% even in the presence of water. In addition to gold, palladium was also studied in this thesis work on the ZnZrOx composite oxides, and its activity and selectivity were compared to Au/ZnZrOx. Monometallic Pd catalyzes the decomposition of methanol and ethanol, resulting in different product distribution for C 1-C2 alcohol reactions. With ZnZrOx employed as the catalyst support in this thesis work, the finely dispersed ZnO species in ZrO2 were found to alloy with the supported palladium under reduction treatment. Alloying with Zn tunes the chemistry of Pd to catalyze the SRM reaction through the methanol coupling mechanism, shutting off the undesired methanol decomposition pathway. A preliminary study of the Pd/ZnZrO x system for ethanol dehydrogenation also demonstrated the modification of Pd when in the PdZn alloy form. Different from the monometallic Pd catalyst, which primarily catalyzes the C-C bond scission of ethanol, high selectivity to ethanol dehydrogenation products was found on PdZn, over the temperature range of 200-400°C. Formation of the PdZn alloy broadens the application of Pd and potentially other Group VIII metals for selective alcohol conversion reactions. In summary, this thesis work has investigated two noble metals Au and Pd from Group IB and Group VIII, respectively, for methanol and ethanol alcohol reforming reactions employing a novel ZnZrOx composite oxide as a platform catalyst support. Comprehensive study of Au catalyst has deepened our understanding of atomically dispersed Au anchored on various supports through oxygen bonds as the active sites for alcohol reforming reactions, and showed the support effect to be indirect, serving as the carrier and stabilizer of the gold species. For Pd, the Zn species of the composite oxide is necessary to modify the Pd catalyst and the PdZn alloy gives it the desired Au-like properties. Full characterization of the catalysts used here by ICP, XPS, XRD, FTIR and STEM imaging was conducted throughout the thesis to identify the stable species and correlate the catalyst performance with its composition and morphology. Surface acidity titration by isopropanol temperature-programmed desorption/mass spectrometry (IPA-TPD/MS) and pyridine-IR adsorption/desorption was conducted in parallel to temperature-programmed surface reaction (TPSR) studies and products from isothermal steady-state reactions were monitored online by mass spectrometry.
Wong, J Y; Park, C K; Seitz, M; Israelachvili, J
1999-01-01
We have created phospholipid bilayers supported on soft polymer "cushions" which act as deformable substrates (see accompanying paper, Wong, J. Y., J. Majewski, M. Seitz, C. K. Park, J. N. Israelachvili, and G. S. Smith. 1999. Biophys. J. 77:1445-1457). In contrast to "solid-supported" membranes, such "soft-supported" membranes can exhibit more natural (higher) fluidity. Our bilayer system was constructed by adsorption of small unilamellar dimyristoylphosphatidylcholine (DMPC) vesicles onto polyethylenimine (PEI)-supported Langmuir-Blodgett lipid monolayers on mica. We used the surface forces apparatus (SFA) to investigate the long-range forces, adhesion, and fusion of two DMPC bilayers both above and below their main transition temperature (T(m) approximately 24 degrees C). Above T(m), hemi-fusion activation pressures of apposing bilayers were considerably smaller than for solid-supported bilayers, e.g., directly supported on mica. After separation, the bilayers naturally re-formed after short healing times. Also, for the first time, complete fusion of two fluid (liquid crystalline) phospholipid bilayers was observed in the SFA. Below T(m) (gel state), very high pressures were needed for hemi-fusion and the healing process became very slow. The presence of the polymer cushion significantly alters the interaction potential, e.g., long-range forces as well as fusion pressures, when compared to solid-supported systems. These fluid model membranes should allow the future study of integral membrane proteins under more physiological conditions. PMID:10465756
Electrical conductivity of high-purity germanium crystals at low temperature
NASA Astrophysics Data System (ADS)
Yang, Gang; Kooi, Kyler; Wang, Guojian; Mei, Hao; Li, Yangyang; Mei, Dongming
2018-05-01
The temperature dependence of electrical conductivity of single-crystal and polycrystalline high-purity germanium (HPGe) samples has been investigated in the temperature range from 7 to 100 K. The conductivity versus inverse of temperature curves for three single-crystal samples consist of two distinct temperature ranges: a high-temperature range where the conductivity increases to a maximum with decreasing temperature, and a low-temperature range where the conductivity continues decreasing slowly with decreasing temperature. In contrast, the conductivity versus inverse of temperature curves for three polycrystalline samples, in addition to a high- and a low-temperature range where a similar conductive behavior is shown, have a medium-temperature range where the conductivity decreases dramatically with decreasing temperature. The turning point temperature ({Tm}) which corresponds to the maximum values of the conductivity on the conductivity versus inverse of temperature curves are higher for the polycrystalline samples than for the single-crystal samples. Additionally, the net carrier concentrations of all samples have been calculated based on measured conductivity in the whole measurement temperature range. The calculated results show that the ionized carrier concentration increases with increasing temperature due to thermal excitation, but it reaches saturation around 40 K for the single-crystal samples and 70 K for the polycrystalline samples. All these differences between the single-crystal samples and the polycrystalline samples could be attributed to trapping and scattering effects of the grain boundaries on the charge carriers. The relevant physical models have been proposed to explain these differences in the conductive behaviors between two kinds of samples.
Ultrafast Sol-Gel Synthesis of Graphene Aerogel Materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lim, Mathew; Hu, Matthew; Manandhar, Sandeep
2015-12-01
Graphene aerogels derived from graphene-oxide (GO) starting materials recently have been shown to exhibit a combination of high electrical conductivity, chemical stability, and low cost that has enabled a range of electrochemical applications. Standard synthesis protocols for manufacturing graphene aerogels require the use of sol-gel chemical reactions that are maintained at high temperatures for long periods of time ranging from 12 hours to several days. Here we report an ultrafast, acid-catalyzed sol-gel formation process in acetonitrile in which wet GO-loaded gels are realized within 2 hours at temperatures below 45°C. Spectroscopic and electrochemical analysis following supercritical drying and pyrolysis confirmsmore » the reduction of the GO in the aerogels to sp2 carbon crystallites with no residual carbon–nitrogen bonds from the acetonitrile or its derivatives. This rapid synthesis enhances the prospects for large-scale manufacturing of graphene aerogels for use in numerous applications including sorbents for environmental toxins, support materials for electrocatalysis, and high-performance electrodes for electrochemical capacitors and solar cells.« less
NASA Technical Reports Server (NTRS)
Chamberlin, P. C.; Milligan, R. O.; Woods, T. N.
2012-01-01
This paper describes the methods used to obtain the thermal evolution and radiative output during solar flares as observed by the Extreme u ltraviolet Variability Experiment (EVE) onboard the Solar Dynamics Ob servatory (SDO). Presented and discussed in detail are how EVE measur ements, due to its temporal cadence, spectral resolution and spectral range, can be used to determine how the thermal plasma radiates at v arious temperatures throughout the impulsive and gradual phase of fla res. EVE can very accurately determine the radiative output of flares due to pre- and in-flight calibrations. Events are presented that sh ow the total radiated output of flares depends more on the flare duration than the typical GOES X-ray peak magnitude classification. With S DO observing every flare throughout its entire duration and over a la rge temperature range, new insights into flare heating and cooling as well as the radiative energy release in EUV wavelengths support exis ting research into understanding the evolution of solar flares.
EAQUATE: An International Experiment for Hyper-Spectral Atmospheric Sounding Validation
NASA Technical Reports Server (NTRS)
Taylor, J. P.; Smith, W.; Cuomo, V.; Larar, A.; Zhou, D.; Serio, C.; Maestri, T.; Rizzi, R.; Newman, S.; Antonelli, P.;
2008-01-01
The international experiment called EAQUATE (European AQUA Thermodynamic Experiment) was held in September 2004 in Italy and the United Kingdom to demonstrate certain ground-based and airborne systems useful for validating hyperspectral satellite sounding observations. A range of flights over land and marine surfaces were conducted to coincide with overpasses of the AIRS instrument on the EOS Aqua platform. Direct radiance evaluation of AIRS using NAST-I and SHIS has shown excellent agreement. Comparisons of level 2 retrievals of temperature and water vapor from AIRS and NAST-I validated against high quality lidar and drop sonde data show that the 1K/1km and 10%/1km requirements for temperature and water vapor (respectively) are generally being met. The EAQUATE campaign has proven the need for synergistic measurements from a range of observing systems for satellite cal/val and has paved the way for future cal/val activities in support of IASI on the European Metop platform and CrIS on the US NPP/NPOESS platform.
Design and Implementation of a new Autonomous Sensor Fish to Support Advanced Hydropower Development
Deng, Zhiqun; Lu, Jun; Myjak, Mitchell J.; ...
2014-11-04
Acceleration in development of additional conventional hydropower requires tools and methods to perform laboratory and in-field validation of turbine performance and fish passage claims. The new-generation Sensor Fish has been developed with more capabilities to accommodate a wider range of users over a wider range of turbine designs and operating environments. It provides in situ measurements of three dimensional (3D) accelerations, 3D rotational velocities, 3D orientation, pressure, and temperature at a sampling frequency of 2048 Hz. It also has an automatic floatation system and built-in radio frequency transmitter for recovery. The relative errors of the pressure, acceleration and rotational velocitymore » were within ±2%, ±5%, and ±5%, respectively. The accuracy of orientation was within ±4° and accuracy of temperature was ±2°C. It is being deployed to evaluate the biological effects of turbines or other hydraulic structures in several countries.« less
Bounds on Energy Absorption and Prethermalization in Quantum Systems with Long-Range Interactions
NASA Astrophysics Data System (ADS)
Ho, Wen Wei; Protopopov, Ivan; Abanin, Dmitry A.
2018-05-01
Long-range interacting systems such as nitrogen vacancy centers in diamond and trapped ions serve as experimental setups to probe a range of nonequilibrium many-body phenomena. In particular, via driving, various effective Hamiltonians with physics potentially quite distinct from short-range systems can be realized. In this Letter, we derive general rigorous bounds on the linear response energy absorption rates of periodically driven systems of spins or fermions with long-range interactions that are sign changing and fall off as 1 /rα with α >d /2 . We show that the disorder averaged energy absorption rate at high temperatures decays exponentially with the driving frequency. This strongly suggests the presence of a prethermal plateau in which dynamics is governed by an effective, static Hamiltonian for long times, and we provide numerical evidence to support such a statement. Our results are relevant for understanding timescales of heating and new dynamical regimes described by effective Hamiltonians in such long-range systems.
First Test of Long-Range Collisional Drag via Plasma Wave Damping
NASA Astrophysics Data System (ADS)
Affolter, Matthew
2017-10-01
In magnetized plasmas, the rate of particle collisions is enhanced over classical predictions when the cyclotron radius rc is less than the Debye length λD. Classical theories describe local velocity scattering collisions with impact parameters ρ
On the Composition and Temperature of the Terrestrial Planetary Core
NASA Astrophysics Data System (ADS)
Fei, Yingwei
2013-06-01
The existence of liquid cores of terrestrial planets such as the Earth, Mar, and Mercury has been supported by various observation. The liquid state of the core provides a unique opportunity for us to estimate the temperature of the core if we know the melting temperature of the core materials at core pressure. Dynamic compression by shock wave, laser-heating in diamond-anvil cell, and resistance-heating in the multi-anvil device can melt core materials over a wide pressure range. There have been significant advances in both dynamic and static experimental techniques and characterization tool. In this tal, I will review some of the recent advances and results relevant to the composition and thermal state of the terrestrial core. I will also present new development to analyze the quenched samples recovered from laser-heating diamond-anvil cell experiments using combination of focused ion beam milling, high-resolution SEM imaging, and quantitative chemical analysi. With precision milling of the laser-heating spo, the melting point and element partitioning between solid and liquid can be precisely determined. It is also possible to re-construct 3D image of the laser-heating spot at multi-megabar pressures to better constrain melting point and understanding melting process. The new techniques allow us to extend precise measurements of melting relations to core pressures, providing better constraint on the temperature of the cor. The research is supported by NASA and NSF grants.
Li, Ji; Hu, Guoqing; Zhou, Yonghong; Zou, Chong; Peng, Wei; Alam SM, Jahangir
2017-01-01
As a high performance-cost ratio solution for differential pressure measurement, piezo-resistive differential pressure sensors are widely used in engineering processes. However, their performance is severely affected by the environmental temperature and the static pressure applied to them. In order to modify the non-linear measuring characteristics of the piezo-resistive differential pressure sensor, compensation actions should synthetically consider these two aspects. Advantages such as nonlinear approximation capability, highly desirable generalization ability and computational efficiency make the kernel extreme learning machine (KELM) a practical approach for this critical task. Since the KELM model is intrinsically sensitive to the regularization parameter and the kernel parameter, a searching scheme combining the coupled simulated annealing (CSA) algorithm and the Nelder-Mead simplex algorithm is adopted to find an optimal KLEM parameter set. A calibration experiment at different working pressure levels was conducted within the temperature range to assess the proposed method. In comparison with other compensation models such as the back-propagation neural network (BP), radius basis neural network (RBF), particle swarm optimization optimized support vector machine (PSO-SVM), particle swarm optimization optimized least squares support vector machine (PSO-LSSVM) and extreme learning machine (ELM), the compensation results show that the presented compensation algorithm exhibits a more satisfactory performance with respect to temperature compensation and synthetic compensation problems. PMID:28422080
Li, Ji; Hu, Guoqing; Zhou, Yonghong; Zou, Chong; Peng, Wei; Alam Sm, Jahangir
2017-04-19
As a high performance-cost ratio solution for differential pressure measurement, piezo-resistive differential pressure sensors are widely used in engineering processes. However, their performance is severely affected by the environmental temperature and the static pressure applied to them. In order to modify the non-linear measuring characteristics of the piezo-resistive differential pressure sensor, compensation actions should synthetically consider these two aspects. Advantages such as nonlinear approximation capability, highly desirable generalization ability and computational efficiency make the kernel extreme learning machine (KELM) a practical approach for this critical task. Since the KELM model is intrinsically sensitive to the regularization parameter and the kernel parameter, a searching scheme combining the coupled simulated annealing (CSA) algorithm and the Nelder-Mead simplex algorithm is adopted to find an optimal KLEM parameter set. A calibration experiment at different working pressure levels was conducted within the temperature range to assess the proposed method. In comparison with other compensation models such as the back-propagation neural network (BP), radius basis neural network (RBF), particle swarm optimization optimized support vector machine (PSO-SVM), particle swarm optimization optimized least squares support vector machine (PSO-LSSVM) and extreme learning machine (ELM), the compensation results show that the presented compensation algorithm exhibits a more satisfactory performance with respect to temperature compensation and synthetic compensation problems.
NASA Astrophysics Data System (ADS)
Hassan, Ayaz; Paganin, Valdecir A.; Ticianelli, Edson A.
2016-09-01
The CO tolerance mechanism and the stability of carbon supported PtW electrocatalysts are evaluated in the anode of a proton exchange membrane fuel cell (PEMFC) at two different temperatures. The electrocatalysts are characterized by energy dispersive spectroscopy, X-ray diffraction, and transmission electron spectroscopy. Employed electrochemical techniques include cyclic voltammetry, CO stripping, fuel cell polarization, and online mass spectrometry. At a cell temperature of 85 °C, the PtW/C catalyst shows higher CO tolerance compared to Pt/C due an electronic effect of WOx in the Pt 5d band, which reduces the CO adsorption. An increase in hydrogen oxidation activity in the presence of CO is observed for both the catalysts at a higher temperature, due to the decrease of the Pt-CO coverage. A reduction in the current densities occurs for the PtW/C catalyst in both polarization curves and cyclic voltammograms after 5000 cycles of the anode in the range of 0.1-0.7 V vs. RHE at 50 mVs-1. This decrease in performance is assigned to the dissolution of W, with a consequent increase in the membrane resistivity. However, the observed decline of performance is small either in the presence of pure H2 or in the presence of H2/CO.
Testing of fuel/oxidizer-rich, high-pressure preburners
NASA Technical Reports Server (NTRS)
Lawver, B. R.
1982-01-01
Results of an evaluation of high pressure combustion of fuel rich and oxidizer rich LOX/RP-1 propellants using 4.0 inch diameter prototype preburner injectors and chambers are presented. Testing covered a pressure range from 8.9 to 17.5 MN/square meters (1292 to 2540 psia). Fuel rich mixture ratios ranged from 0.238 to 0.367; oxidizer rich mixture ratios ranged from 27.2 to 47.5. Performance, gas temperature uniformity, and stability data for two fuel rich and two ozidizer rich preburner injectors are presented for a conventional like-on-like (LOL) design and a platelet design injector. Kinetically limited combustion is shown by the excellent agreement of measured fuel rich gas composition and C performance data with kinetic model predictions. The oxidizer rich test results support previous equilibrium combustion predictions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glynos, Emmanouil; Johnson, Kyle J.; Frieberg, Bradley
Here, the surface relaxation dynamics of supported star-shaped polymer thin films are shown to be slower than the bulk, persisting up to temperatures at least 50 degrees above the bulk glass transition temperature Tmore » $$bulk\\atop{g}$$. This behavior, exhibited by star-shaped polystyrenes (SPSs) with functionality f = 8 arms and molecular weights per arm M arm < M e (M e is the entanglement molecular weight), is shown by molecular dynamics simulations to be associated with a preferential localization of these macromolecules at the free surface. This new phenomenon is in notable contrast to that of linear chain polymer thin film systems where the surface relaxations are enhanced in relation to the bulk; this enhancement persists only for a limited temperature range above the bulk T$$bulk\\atop{g}$$. Finally, evidence of the slow surface dynamics, compared to the bulk, for temperatures well above T g and at length and time scales not associated with the glass transition has not previously been reported for polymers.« less
Metabolic cold adaptation in fishes occurs at the level of whole animal, mitochondria and enzyme
White, Craig R.; Alton, Lesley A.; Frappell, Peter B.
2012-01-01
Metabolic cold adaptation (MCA), the hypothesis that species from cold climates have relatively higher metabolic rates than those from warm climates, was first proposed nearly 100 years ago and remains one of the most controversial hypotheses in physiological ecology. In the present study, we test the MCA hypothesis in fishes at the level of whole animal, mitochondria and enzyme. In support of the MCA hypothesis, we find that when normalized to a common temperature, species with ranges that extend to high latitude (cooler climates) have high aerobic enzyme (citrate synthase) activity, high rates of mitochondrial respiration and high standard metabolic rates. Metabolic compensation for the global temperature gradient is not complete however, so when measured at their habitat temperature species from high latitude have lower absolute rates of metabolism than species from low latitudes. Evolutionary adaptation and thermal plasticity are therefore insufficient to completely overcome the acute thermodynamic effects of temperature, at least in fishes. PMID:22158960
Optical Diode Effect at Spin-Wave Excitations of the Room-Temperature Multiferroic BiFeO_{3}.
Kézsmárki, I; Nagel, U; Bordács, S; Fishman, R S; Lee, J H; Yi, Hee Taek; Cheong, S-W; Rõõm, T
2015-09-18
Multiferroics permit the magnetic control of the electric polarization and the electric control of the magnetization. These static magnetoelectric (ME) effects are of enormous interest: The ability to read and write a magnetic state current-free by an electric voltage would provide a huge technological advantage. Dynamic or optical ME effects are equally interesting, because they give rise to unidirectional light propagation as recently observed in low-temperature multiferroics. This phenomenon, if realized at room temperature, would allow the development of optical diodes which transmit unpolarized light in one, but not in the opposite, direction. Here, we report strong unidirectional transmission in the room-temperature multiferroic BiFeO_{3} over the gigahertz-terahertz frequency range. The supporting theory attributes the observed unidirectional transmission to the spin-current-driven dynamic ME effect. These findings are an important step toward the realization of optical diodes, supplemented by the ability to switch the transmission direction with a magnetic or electric field.
Ground temperature enhancements in seismic regions
NASA Astrophysics Data System (ADS)
Parrot, M.; Pokhotelov, O.; Surkov, V.; Hayakawa, M.
In the past decade, numerous observations of surface and near surface temperature anomalies before earthquakes have been published. Monitoring of the seismo -active regions from space have been made in visible and infrared ranges by various satellites: NOOA satellites, UARS, TERRA and etc. This paper presents some examples of these observations. A review of different mechanisms to explain the phenomenon is given and a more detailed explanation of the mechanism proposed by the authors is presented. It is shown that long term temperature anomalies can arise due to the rock warming resulting from the underground water upward filtrating. However, the short term temperature anomalies observed several days before an earthquake, are due to the change in the specific heat capacity and in the heat conductivity of the soil induced by the variations of the moisture. This research is partially supported by the Commission of the EU (Grant No. INTAS-2001-0456), by ISTC through Research Grant No. 1121 and by Russian Fund for Basic Research through Grant No. 02-05-64612.
Free Surface Relaxations of Star-Shaped Polymer Films
Glynos, Emmanouil; Johnson, Kyle J.; Frieberg, Bradley; ...
2017-11-28
Here, the surface relaxation dynamics of supported star-shaped polymer thin films are shown to be slower than the bulk, persisting up to temperatures at least 50 degrees above the bulk glass transition temperature Tmore » $$bulk\\atop{g}$$. This behavior, exhibited by star-shaped polystyrenes (SPSs) with functionality f = 8 arms and molecular weights per arm M arm < M e (M e is the entanglement molecular weight), is shown by molecular dynamics simulations to be associated with a preferential localization of these macromolecules at the free surface. This new phenomenon is in notable contrast to that of linear chain polymer thin film systems where the surface relaxations are enhanced in relation to the bulk; this enhancement persists only for a limited temperature range above the bulk T$$bulk\\atop{g}$$. Finally, evidence of the slow surface dynamics, compared to the bulk, for temperatures well above T g and at length and time scales not associated with the glass transition has not previously been reported for polymers.« less
Metabolic cold adaptation in fishes occurs at the level of whole animal, mitochondria and enzyme.
White, Craig R; Alton, Lesley A; Frappell, Peter B
2012-05-07
Metabolic cold adaptation (MCA), the hypothesis that species from cold climates have relatively higher metabolic rates than those from warm climates, was first proposed nearly 100 years ago and remains one of the most controversial hypotheses in physiological ecology. In the present study, we test the MCA hypothesis in fishes at the level of whole animal, mitochondria and enzyme. In support of the MCA hypothesis, we find that when normalized to a common temperature, species with ranges that extend to high latitude (cooler climates) have high aerobic enzyme (citrate synthase) activity, high rates of mitochondrial respiration and high standard metabolic rates. Metabolic compensation for the global temperature gradient is not complete however, so when measured at their habitat temperature species from high latitude have lower absolute rates of metabolism than species from low latitudes. Evolutionary adaptation and thermal plasticity are therefore insufficient to completely overcome the acute thermodynamic effects of temperature, at least in fishes.
Cooperativity in glassy dynamics investigated by higher-harmonic dielectric spectroscopy
NASA Astrophysics Data System (ADS)
Bauer, Thomas; Lunkenheimer, Peter; Loidl, Alois; Experimental Physics V Team
2014-03-01
In recent years, due to experimental advances initiated by hole burning experiments, nonlinear dielectric spectroscopy has gained increasing interest in the field of glass-forming matter. For example, refining the technique of high-field permittivity measurements, we found a surprising lack of nonlinearity in the so-called excess wing region, that could not be accessed by this method before. In the present contribution, we report new, detailed measurements of the third-order nonlinear dielectric susceptibility χ3 of four glass-forming liquids for a broad temperature range. We find a significant hump in χ3(ν) , from which we deduce the number of correlated molecules Ncorr. We detect a continuous increase of Ncorr on approaching the glass-transition temperature. Comparing these results with the temperature-dependent apparent energy barriers in these systems, our experiments finally prove the old notion that intermolecular correlations of glassy systems are responsible for the non-canonical temperature development of glassy dynamics. This work was supported by the Deutsche Forschungsgemeinschaft via Research Unit FOR1394.
Polar Lunar Regions: Exploiting Natural and Augmented Thermal Environments
NASA Astrophysics Data System (ADS)
Ryan, R. E.; McKellip, R. C.; Brannon, D. P.; Underwood, L. W.; Russell, K. J.
2007-12-01
In polar regions of the Moon, there are areas within craters that are permanently shadowed from solar illumination, which can reach temperatures of 100K or less. These regions could serve as cold traps, capturing ice and other volatile compounds. These potential ice stores have many applications for lunar exploration. Within double-shaded craters, even colder regions exist, with temperatures never exceeding 50K in many cases. Temperatures observed in theses regions suggest that they could enable equivalent liquid nitrogen cryogenic functions. These permanently shaded polar craters also offer unprecedented high vacuum cryogenic environments, which in their current state could support cryogenic applications. The unique conditions at the lunar poles, besides ice stores, harbor an environment that provides an opportunity to reduce the power, weight and total mass that needs to be carried from the Earth to the moon for lunar exploration and research. Reducing the heat flux of geothermal, black body radiation can have significant impacts on the achievable temperature. With a few man-made augmentations, permanently shaded craters located near the lunar poles achieve temperatures even lower than those that naturally exist there. Our analysis reveals that lightweight thermal shielding, within shaded craters, could create an environment several Kelvin above absolute zero. The temperature ranges of naturally shaded craters and thermally augmented ones could enable the long-term storage of most gases, low temperature superconductors for large magnetic fields, devices and advanced high speed computing instruments. Augmenting thermal conditions in these craters could then be used as a basis for the development of an advanced thermal management architecture that would support a wide variety of cryogenically based applications. Lunar exploration and habitation capabilities would significantly benefit if permanently shaded craters, augmented with thermal shielding, were to be used to facilitate the operation of near absolute zero instruments, including wide variety of cryogenically based propulsion, energy, communication, sensing and computing devices. Potentially, the required burden of carrying massive life-supporting components from the Earth to the moon for lunar exploration and research could be reduced.
High-pressure high-temperature phase diagram of gadolinium studied using a boron-doped heater anvil
DOE Office of Scientific and Technical Information (OSTI.GOV)
Montgomery, J. M.; Samudrala, G. K.; Vohra, Y. K.
A boron-doped designer heater anvil is used in conjunction with powder x-ray diffraction to collect structural information on a sample of quasi-hydrostatically loaded gadolinium metal up to pressures above 8 GPa and 600 K. The heater anvil consists of a natural diamond anvil that has been surface modified with a homoepitaxially grown chemical-vapor-deposited layer of conducting boron-doped diamond, and is used as a DC heating element. Internally insulating both diamond anvils with sapphire support seats allows for heating and cooling of the high-pressure area on the order of a few tens of seconds. This device is then used to scan the phasemore » diagram of the sample by oscillating the temperature while continuously increasing the externally applied pressure and collecting in situ time-resolved powder diffraction images. In the pressure-temperature range covered in this experiment, the gadolinium sample is observed in its hcp, αSm, and dhcp phases. Under this temperature cycling, the hcp → αSm transition proceeds in discontinuous steps at points along the expected phase boundary. From these measurements (representing only one hour of synchrotron x-ray collection time), a single-experiment equation of state and phase diagram of each phase of gadolinium is presented for the range of 0–10 GPa and 300–650 K.« less
Observations Of Planetary Nebula NGC 3242 Using STIS From HST19 GO 12600
NASA Astrophysics Data System (ADS)
Miller, Timothy R.; Dufour, Reginald J.; Henry, Richard B. C.; Kwitter, Karen B.; Shaw, Richard A.; Balick, Bruce; Corradi, Romano
2014-06-01
During HST Cycle 19, we obtained long-slit spectra using STIS of the planetary nebula NGC 3242 with higher spatial resolution than previously published. The full wavelength range is around 1100-10200Å, covering many nebular lines for determining numerous ionic abundances and electron densities and temperatures. In this work, we first analyze the low- and moderate-resolution UV emission lines of carbon, nitrogen and oxygen. In particular, the resolved lines of C_III] 1907 and C_III] 1909 have yielded a direct measurement of one of the dominant ionic species for carbon and a determination of the density occupied by doubly-ionized carbon and other similar ions. Next, the spatial emission profile of these lines reveals variations in the inferred density along the line of sight from about 2800-11500 cm-3, compared with a value ~3800 cm-3, when averaged over the entire slit. Similarly, the electron temperature is around 12000K for the entire slit and ranges from about 11400-14000K when the slit is divided into smaller sub-regions. Lastly, these sub-regions of the nebula have been modeled in detail with the photoionization code CLOUDY. This modeling will assess the density profile that produces the observed density variation, reproduce the temperature fluctuations, and constrain the central star temperature. We acknowledge the gracious support from HST and the University of Oklahoma.
Variation of Lunar Sodium During Passage of the Moon through the Earth's Magnetotail
NASA Technical Reports Server (NTRS)
Potter, Andrew E.; Killen, Rosemary M.; Morgan, Thomas H.
2000-01-01
We measured sodium emission above the lunar equator over a range of lunar altitudes from 100 to 4000 km. The measurements were repeated approximately every 24 hours from June 7 to 16, 1998, covering the period during which the Moon passed through the Earth's magnetotail. Sodium temperatures derived from the altitude dependence of emission intensity ranged from 1200 to 2900 K. This result supports the view that photodesorption is a primary source of sodium in the exosphere since the most probable temperature of sodium form this source is in this range. Passage of the Moon through the Earth's magnetotail (where solar wind is essentially absent) affected the sodium density, such that it was higher before the Moon entered the Earth's magnetotail than after the Moon left it. This suggests that the solar wind plays a role in production of lunar sodium. We propose that its function is to mobilize sodium and bring it to the surface, where photodesorption can eject it into the exosphere. A two-step process such as this could help to explain the latitude dependence of sodium density, which varies as the second or higher power of cosine latitude.
Chen, Guohui; Ji, Shaozheng; Li, Haidong; Kang, Xueliang; Chang, Sujie; Wang, Yana; Yu, Guangwei; Lu, Jianren; Claverie, Jerome; Sang, Yuanhua; Liu, Hong
2015-11-11
A SnO2 gas sensor was prepared by a two-step oxidation process whereby a Sn(II) precursor was partially oxidized by a hydrothermal process and the resulting Sn3O4 nanoplates were thermally oxidized to yield SnO2 nanoplates. The SnO2 sensor was selective and responsive toward ethanol at a temperature as low as 43 °C. This low sensing temperature stems from the rapid charge transport within SnO2 and from the presence of high-energy (001) facets available for oxygen chemisorption. SnO2/TiO2 nanobelt heterostructures were fabricated by a similar two-step process in which TiO2 nanobelts acted as support for the epitaxial growth of intermediate Sn3O4. At temperatures ranging from 43 to 276 °C, the response of these branched nanobelts is more than double the response of SnO2 for ethanol detection. Our observations demonstrate the potential of low-cost SnO2-based sensors with controlled morphology and reactive facets for detecting gases around room temperature.
Evidence for seismogenic fracture of silicic magma.
Tuffen, Hugh; Smith, Rosanna; Sammonds, Peter R
2008-05-22
It has long been assumed that seismogenic faulting is confined to cool, brittle rocks, with a temperature upper limit of approximately 600 degrees C (ref. 1). This thinking underpins our understanding of volcanic earthquakes, which are assumed to occur in cold rocks surrounding moving magma. However, the recent discovery of abundant brittle-ductile fault textures in silicic lavas has led to the counter-intuitive hypothesis that seismic events may be triggered by fracture and faulting within the erupting magma itself. This hypothesis is supported by recent observations of growing lava domes, where microearthquake swarms have coincided with the emplacement of gouge-covered lava spines, leading to models of seismogenic stick-slip along shallow shear zones in the magma. But can fracturing or faulting in high-temperature, eruptible magma really generate measurable seismic events? Here we deform high-temperature silica-rich magmas under simulated volcanic conditions in order to test the hypothesis that high-temperature magma fracture is seismogenic. The acoustic emissions recorded during experiments show that seismogenic rupture may occur in both crystal-rich and crystal-free silicic magmas at eruptive temperatures, extending the range of known conditions for seismogenic faulting.
Activation energy of the low-load NaCl transition from nanoindentation loading curves.
Kaupp, Gerd
2014-01-01
Access to activation energies E(a) of phase transitions is opened by unprecedented analyses of temperature dependent nanoindentation loading curves. It is based on kinks in linearized loading curves, with additional support by coincidence of kink and electrical conductivity of silicon loading curves. Physical properties of B1, B2, NaCl and further phases are discussed. The normalized low-load transition energy of NaCl (Wtrans/µN) increases with temperature and slightly decreases with load. Its semi-logarithmic plot versus T obtains activation energy E(a)/µN for calculation of the transition work for all interesting temperatures and pressures. Arrhenius-type activation energy (kJ/mol) is unavailable for indentation phase transitions. The E(a) per load normalization proves insensitive to creep-on-load, which excludes normalization to depth or volume for large temperature ranges. Such phase transition E(a)/µN is unprecedented material's property and will be of practical importance for the compatibility of composite materials under impact and further shearing interactions at elevated temperatures. © 2014 Wiley Periodicals, Inc.
Improvements in geothermometry. Final technical report. Rev
DOE Office of Scientific and Technical Information (OSTI.GOV)
Potter, J.; Dibble, W.; Parks, G.
1982-08-01
Alkali and alkaline earth geothermometers are useful for estimating geothermal reservoir temperatures, though a general theoretical basis has yet to be established and experimental calibration needs improvement. Equilibrium cation exchange between feldspars provided the original basis for the Na-K and Na-K-Ca geothermometers (Fournier and Truesdell, 1973), but theoretical, field and experimental evidence prove that neither equilibrium nor feldspars are necessary. Here, evidence is summarized in support of these observations, concluding that these geothermometers can be expected to have a surprisingly wide range of applicability, but that the reasons behind such broad applicability are not yet understood. Early experimental work provedmore » that water-rock interactions are slow at low temperatures, so experimental calibration at temperatures below 150/sup 0/ is impractical. Theoretical methods and field data were used instead for all work at low temperatures. Experimental methods were emphasized for temperatures above 150/sup 0/C, and the simplest possible solid and solution compositions were used to permit investigation of one process or question at a time. Unexpected results in experimental work prevented complete integration of the various portions of the investigation.« less
NASA Astrophysics Data System (ADS)
Ogitsu, T.; Fernandez-Paãella, A.; Correa, A.; Engelhorn, K.; Barbrel, B.; Prendergast, D. G.; Pemmaraju, D.; Beckwith, M.; Kraus, D.; Hamel, S.; Cho, B. I.; Jin, L.; Wong, J.; Heinman, P.; Collins, G. W.; Falcone, R.; Ping, Y.
2016-10-01
We present a study of the electron-phonon coupling of warm dense iron upon femtosecond laser excitation by time-resolved x-ray absorption near edge spectroscopy (XANES). The dynamics of iron in electron-ion non-equilibrium conditions was studied using ab-initio density-functional-theory (DFT) simulations combined with the Two Temperature Model (TTM) where spatial inhomogeneity of electron (and ion) temperature(s) due to short ballistic electron transport length in iron was explicitly taken into consideration. Detailed comparison between our simulation results and experiments indicates that the ion temperature dependence on specific heat and on electron-phonon coupling also plays a relevant role in modeling the relaxation dynamics of electrons and ions. These results are the first experimental evidence of the suppression of the electron-phonon coupling factor of a transition metal at electron temperatures ranging 5000- 10000 K. This work was performed under DOE contract DE-AC52-07NA27344 with support from OFES Early Career program and LLNL LDRD program.
NASA Astrophysics Data System (ADS)
Haug, M.; Haussmann, F.; Kellner, S.; Kern, L.; Eisenhauer, F.; Lizon, J.-L.; Dietrich, M.; Thummes, G.
2014-07-01
GRAVITY is a second generation VLTI instrument for high-precision narrow-angle astrometry and phase-referenced interferometric imaging in the astronomical K-band. The cryostat of the beam combiner instrument provides the required temperatures for the various subunits ranging from 40K to 290K with a milli-Kelvin temperature stability for some selected units. The bath cryostat is cooled with liquid nitrogen and makes use of the exhaust gas to cool the main optical bench to an intermediate temperature of 240K. The fringe tracking detector will be cooled separately by a single-stage pulse tube cooler to a temperature of 40K. The pulse tube cooler is optimized for minimum vibrations. In particular its warm side is connected to the 80K reservoir of the LN2 cryostat to minimize the required input power. All temperature levels are actively stabilized by electric heaters. The cold bench is supported separately from the vacuum vessel and the liquid nitrogen reservoir to minimize the transfer of acoustic noise onto the instrument.
Hypothermia augments non-cholinergic neuronal bronchoconstriction in pithed guinea-pigs.
Rechtman, M P; King, R G; Boura, A L
1991-08-16
Electrical stimulation at C4-C7 in the spinal canal of pithed guinea-pigs injected with atropine, d-tubocurarine and pentolinium caused frequency-dependent bronchoconstriction. Such non-cholinergic responses to electrical stimulation, unlike responses to substance P, were abolished by pretreatment with capsaicin but not by mepyramine or propranolol. Bronchoconstrictor responses to electrical stimulation were inversely related to rectal temperature (between 30-40 degrees C) whereas responses to substance P increased with increasing temperature over the same range. Ouabain (i.v.) augmented responses to electrical stimulation at 35-37 degrees C but depressed those at 30-32 degrees C. Both morphine and the alpha 2-adrenoceptor agonist B-HT920 (i.v.) inhibited non-cholinergic-mediated bronchoconstrictor responses at 30-32 degrees C. These results stress the importance of adequate control of body temperature in this preparation. Lowered body temperature may increase neuronal output of neuropeptides whilst depressing bronchial smooth muscle sensitivity. The data support previous conclusions regarding the role of Na+/K+ activated ATPase in temperature-induced changes in sensitivity to bronchoconstrictor stimuli.
Mauri, Tommaso; Galazzi, Alessandro; Binda, Filippo; Masciopinto, Laura; Corcione, Nadia; Carlesso, Eleonora; Lazzeri, Marta; Spinelli, Elena; Tubiolo, Daniela; Volta, Carlo Alberto; Adamini, Ileana; Pesenti, Antonio; Grasselli, Giacomo
2018-05-09
The high-flow nasal cannula (HFNC) delivers up to 60 l/min of humidified air/oxygen blend at a temperature close to that of the human body. In this study, we tested whether higher temperature and flow decrease patient comfort. In more severe patients, instead, we hypothesized that higher flow might be associated with improved comfort. A prospective, randomized, cross-over study was performed on 40 acute hypoxemic respiratory failure (AHRF) patients (PaO 2 /FiO 2 ≤ 300 + pulmonary infiltrates + exclusion of cardiogenic edema) supported by HFNC. The primary outcome was the assessment of patient comfort during HFNC delivery at increasing flow and temperature. Two flows (30 and 60 l/min), each combined with two temperatures (31 and 37 °C), were randomly applied for 20 min (four steps per patient), leaving clinical FiO 2 unchanged. Toward the end of each step, the following were recorded: comfort by Visual Numerical Scale ranging between 1 (extreme discomfort) and 5 (very comfortable), together with respiratory parameters. A subgroup of more severe patients was defined by clinical FiO 2 ≥ 45%. Patient comfort was reported as significantly higher during steps at the lower temperature (31 °C) in comparison to 37 °C, with the HFNC set at both 30 and 60 l/min (p < 0.0001). Higher flow, however, was not associated with poorer comfort. In the subgroup of patients with clinical FiO 2 ≥ 45%, both lower temperature (31 °C) and higher HFNC flow (60 l/min) led to higher comfort (p < 0.01). HFNC temperature seems to significantly impact the comfort of AHRF patients: for equal flow, lower temperature could be more comfortable. Higher flow does not decrease patient comfort; at variance, it improves comfort in the more severely hypoxemic patient.
Infrared Detector System with Controlled Thermal Conductance
NASA Technical Reports Server (NTRS)
Cunningham, Thomas J. (Inventor)
2000-01-01
A thermal infrared detector system includes a heat sink, a support member, a connection support member connecting the support member to the heat sink and including a heater unit is reviewed. An infrared detector element is mounted on the support member and a temperature signal representative of the infrared energy contacting the support member can then be derived by comparing the temperature of the support member and the heat sink. The temperature signal from a support member and a temperature signal from the connection support member can then be used to drive a heater unit mounted on the connection support member to thereby control the thermal conductance of the support member. Thus, the thermal conductance can be controlled so that it can be actively increased or decreased as desired.
Geographic variation in the response of Culex pipiens life history traits to temperature.
Ruybal, Jordan E; Kramer, Laura D; Kilpatrick, A Marm
2016-02-29
Climate change is predicted to alter the transmission of many vector-borne pathogens. The quantitative impact of climate change is usually estimated by measuring the temperature-performance relationships for a single population of vectors, and then mapping this relationship across a range of temperatures or locations. However, life history traits of different populations often differ significantly. Specifically, performance across a range of temperatures is likely to vary due to local adaptation to temperature and other factors. This variation can cause spatial variation in pathogen transmission and will influence the impact of climate change on the transmission of vector-borne pathogens. We quantified variation in life history traits for four populations of Culex pipiens (Linnaeus) mosquitoes. The populations were distributed along altitudinal and latitudinal gradients in the eastern United States that spanned ~3 °C in mean summer temperature, which is similar to the magnitude of global warming expected in the next 3-5 decades. We measured larval and adult survival, development rate, and biting rate at six temperatures between 16 and 35 °C, in a common garden experiment. Temperature had strong and consistent non-linear effects on all four life history traits for all four populations. Adult female development time decreased monotonically with increasing temperature, with the largest decrease at cold temperatures. Daily juvenile and adult female survival also decreased with increasing temperature, but the largest decrease occurred at higher temperatures. There was significant among-population variation in the thermal response curves for the four life history traits across the four populations, with larval survival, adult survival, and development rate varying up to 45, 79, and 84 % among populations, respectively. However, variation was not correlated with local temperatures and thus did not support the local thermal adaptation hypothesis. These results suggest that the impact of climate change on vector-borne disease will be more variable than previous predictions, and our data provide an estimate of this uncertainty. In addition, the variation among populations that we observed will shape the response of vectors to changing climates.
The Development of a Portable Modular Component Building System for the Armed Forces
1985-11-08
environment and provide optimum thermal comfort and energy performance throughout a wide climatic range. Finally, such a system would provide optimum user...I I I I I l i 56. ind thermal comfort . The low humidity of the atmosphere allows temperatures to fal. deeply at night so buildings constructed of hig...site topographies. Extensive support equipment is also required for their transport, erection and sustained thermal comfort for the occupants. Off the
Electromodulation spectroscopy of excitons in simple cubic TlCl and TlBr
DOE Office of Scientific and Technical Information (OSTI.GOV)
McClelland, J.F.; Lynch, D.W.
1979-03-15
Transmission and electromodulated transmission spectra have been measured in the direct Wannier exciton region for TlCl and TlBr. The spectra were obtained at a sample temperature between 5 and 6 K for a range of applied electric fields. The data have been reduced to obtain the electric-field-induced changes in the dielectric function and compared in detail to the calculations of Blossey. The experimental results support the trends predicted by the calculations.
Joint Long-Range Energy Study for Greater Fairbanks Military Complex
2005-02-01
be viewed as a two - stage processor of a fuel or feedstock. The feedstock is first gasified using high-temperature plasma heating sys- tems at...Coal-Fired Boilers with New Circulating Fluidized- Bed Boilers (CFBs). EAFB anticipates replacing two current boilers with two new boilers. This...definition to support DD Form 1391 budget level cost estimates for new coal-fired CHPPs at FWA and EAFB and for two new coal-fired CFBs at EAFB • update
Micro-optomechanical trampoline resonators
NASA Astrophysics Data System (ADS)
Pepper, Brian; Kleckner, Dustin; Sonin, Petro; Jeffrey, Evan; Bouwmeester, Dirk
2011-03-01
Recently, micro-optomechanical devices have been proposed for implementation of experiments ranging from non-demolition measurements of phonon number to creation of macroscopic quantum superpositions. All have strenuous requirements on optical finesse, mechanical quality factor, and temperature. We present a set of devices composed of dielectric mirrors on Si 3 N4 trampoline resonators. We describe the fabrication process and present data on finesse and quality factor. The authors gratefully acknowledge support from NSF PHY-0804177 and Marie Curie EXT-CT-2006-042580.
Thermal tolerance in bottlenose dolphins (Tursiops truncatus).
Yeates, Laura C; Houser, Dorian S
2008-10-01
Water and air temperature are potentially limiting factors to the pole-ward distributions of coastal bottlenose dolphins. This study assessed the lower critical temperature of captive bottlenose dolphins to air temperature (LCT(a)) and water temperature (LCT(w)) through the use of open flow respirometry. Five dolphins, ranging from 14 to 33 years of age and acclimated to the waters of the southern California coast (14.2-22.5 degrees C), were subjected to water temperatures ranging from 0.2 to 18.0 degrees C. Two of the animals were additionally subjected to air temperatures ranging from -2.4 to 17.8 degrees C while maintaining water temperature approximately 3 degrees C above their individual LCT(w). The LCT(w) ranged from 5.5 to 10.6 degrees C and generally decreased with increasing animal mass; for dolphins in excess of 187 kg, the LCT(w) ranged from 5.5 to 5.7 degrees C. No LCT(a) could be determined across the range of air temperatures tested. Core body temperature remained within the limits of normal body temperatures reported for dolphins but demonstrated a direct relationship to water temperature in three subjects and varied across a range of 1.5 degrees C. Air and water temperature had a minimal synergistic effect on dolphin thermoregulation, i.e. water temperature exerted the predominant impact on thermoregulation. For dolphins in excess of 187 kg, water temperature alone would appear to be insufficient to limit the use of habitat north of current bottlenose dolphin ranges along the coastal United States. However, thermal impacts to smaller dolphins, in particular adolescents, neonates and accompanying females, may work in concert with other factors (e.g. prey distribution, predator avoidance, social interactions) to influence coastal residency patterns and population structure.
Cobalt spin states and hyperfine interactions in LaCoO3 investigated by LDA+U calculations
NASA Astrophysics Data System (ADS)
Leighton, C.; Hsu, H.; Blaha, P.; Wentzcovitch, R. M.
2010-12-01
The spin states of cobalt ions in the bulk and epitaxial-thin-film lanthanum cobaltite (LaCoO3) have been controversial for years. The controversial point is mainly the presence of intermediate-spin (IS) Co in the temperature range of 0-85 K. In this region, bulk LaCoO3 experiences a crossover from a diamagnetic to a paramagnetic phase, and the thin-film LaCoO3 is ferromagnetic and insulator. An approach to probe the Co spin state is thus of interest. With a series of LDA+U calculations, we have demonstrated that the electric field gradient (EFG) at the Co nucleus can be used as a fingerprint to identify the spin state of the Co ion in each case. Therefore, in principle, the spin state of the Co ion can be unambiguously determined from nuclear magnetic resonance (NMR) spectra. Our calculations also suggest that the presence of IS Co in this temperature range is unlikely, based not only on its relatively higher energy, but also on its associated conducting band structure incompatible with the measured insulating conductivity. This work was primarily supported by the MRSEC Program of NSF under Awards Number DMR-0212302 and DMR-0819885, and partially supported by NSF under ATM-0428774 (V-Lab), EAR-1019853, and EAR-0810272. The computations were performed mainly at the Minnesota Supercomputing Institute (MSI).
Screening and transport in 2D semiconductor systems at low temperatures
Das Sarma, S.; Hwang, E. H.
2015-01-01
Low temperature carrier transport properties in 2D semiconductor systems can be theoretically well-understood within RPA-Boltzmann theory as being limited by scattering from screened Coulomb disorder arising from random quenched charged impurities in the environment. In this work, we derive a number of analytical formula, supported by realistic numerical calculations, for the relevant density, mobility, and temperature range where 2D transport should manifest strong intrinsic (i.e., arising purely from electronic effects) metallic temperature dependence in different semiconductor materials arising entirely from the 2D screening properties, thus providing an explanation for why the strong temperature dependence of the 2D resistivity can only be observed in high-quality and low-disorder 2D samples and also why some high-quality 2D materials manifest much weaker metallicity than other materials. We also discuss effects of interaction and disorder on the 2D screening properties in this context as well as compare 2D and 3D screening functions to comment why such a strong intrinsic temperature dependence arising from screening cannot occur in 3D metallic carrier transport. Experimentally verifiable predictions are made about the quantitative magnitude of the maximum possible low-temperature metallicity in 2D systems and the scaling behavior of the temperature scale controlling the quantum to classical crossover. PMID:26572738
High Temperature Piezoelectric Drill
NASA Technical Reports Server (NTRS)
Bao, Xiaoqi; Bar-Cohen, Yoseph; Sherrit, Stewart; Badescu, Mircea; Shrout, Tom
2012-01-01
Venus is one of the planets in the solar systems that are considered for potential future exploration missions. It has extreme environment where the average temperature is 460 deg C and its ambient pressure is about 90 atm. Since the existing actuation technology cannot maintain functionality under the harsh conditions of Venus, it is a challenge to perform sampling and other tasks that require the use of moving parts. Specifically, the currently available electromagnetic actuators are limited in their ability to produce sufficiently high stroke, torque, or force. In contrast, advances in developing electro-mechanical materials (such as piezoelectric and electrostrictive) have enabled potential actuation capabilities that can be used to support such missions. Taking advantage of these materials, we developed a piezoelectric actuated drill that operates at the temperature range up to 500 deg C and the mechanism is based on the Ultrasonic/Sonic Drill/Corer (USDC) configuration. The detailed results of our study are presented in this paper
Structure and physical properties of YCoO3 at temperatures up to 1000K
NASA Astrophysics Data System (ADS)
Knížek, K.; Jirák, Z.; Hejtmánek, J.; Veverka, M.; Maryško, M.; Hauback, B. C.; Fjellvåg, H.
2006-06-01
The crystal structure of perovskite YCoO3 has been studied by neutron powder diffraction up to high temperatures. The orthorhombic Pbnm symmetry is confirmed in the whole temperature range. A significant isotropic enlargement of CoO6 octahedra is evidenced above 600K leading to unit cell expansion and increased octahedral tilting. Supported by complementary physical measurements, the origin of anomalous expansion is identified with a gradual transition of Co3+ ions from the diamagnetic low-spin (S=0) ground state to excited magnetic states with spin S=1 or 2. The magnetic transition is closely followed by a broad resistivity transition of the insulator-metal type, centered at 750K . The changes in magnetic susceptibility, electric resistivity, thermopower and thermal conductivity associated with transitions in YCoO3 are discussed in comparison with similar data on related perovskite LaCoO3 .
Effects of 946-nm thermal shift and broadening on Nd3+:YAG laser performance
NASA Astrophysics Data System (ADS)
Seyed Ebrahim, Pourmand; Ghasem, Rezaei
2015-12-01
Spectroscopic properties of flashlamp pumped Nd3+:YAG laser are studied as a function of temperature in a range from -30 °C to 60 °C. The spectral width and shift of quasi three-level 946.0-nm inter-Stark emission within the respective intermanifold transitions of 4F3/2 → 4I9/2 are investigated. The 946.0-nm line shifts toward the shorter wavelength and broadens. In addition, the threshold power and slope efficiency of the 946.0-nm laser line are quantified with temperature. The lower the temperature, the lower the threshold power is and the higher the slope efficiency of the 946.0-nm laser line is, thus the higher the laser output is. This phenomenon is attributed to the ion-phonon interaction and the thermal population in the ground state. Project supported by Estahban Branch, Islamic Azad University.
Systems Modeling for Crew Core Body Temperature Prediction Postlanding
NASA Technical Reports Server (NTRS)
Cross, Cynthia; Ochoa, Dustin
2010-01-01
The Orion Crew Exploration Vehicle, NASA s latest crewed spacecraft project, presents many challenges to its designers including ensuring crew survivability during nominal and off nominal landing conditions. With a nominal water landing planned off the coast of San Clemente, California, off nominal water landings could range from the far North Atlantic Ocean to the middle of the equatorial Pacific Ocean. For all of these conditions, the vehicle must provide sufficient life support resources to ensure that the crew member s core body temperatures are maintained at a safe level prior to crew rescue. This paper will examine the natural environments, environments created inside the cabin and constraints associated with post landing operations that affect the temperature of the crew member. Models of the capsule and the crew members are examined and analysis results are compared to the requirement for safe human exposure. Further, recommendations for updated modeling techniques and operational limits are included.
Room temperature continuous wave operation of quantum cascade laser at λ ~ 9.4 μm
NASA Astrophysics Data System (ADS)
Hou, Chuncai; Zhao, Yue; Zhang, Jinchuan; Zhai, Shenqiang; Zhuo, Ning; Liu, Junqi; Wang, Lijun; Liu, Shuman; Liu, Fengqi; Wang, Zhanguo
2018-03-01
Continuous wave (CW) operation of long wave infrared (LWIR) quantum cascade lasers (QCLs) is achieved up to a temperature of 303 K. For room temperature CW operation, the wafer with 35 stages was processed into buried heterostructure lasers. For a 2-mm-long and 10-μm-wide laser with high-reflectivity (HR) coating on the rear facet, CW output power of 45 mW at 283 K and 9 mW at 303 K is obtained. The lasing wavelength is around 9.4 μm locating in the LWIR spectrum range. Project supported by the National Key Research And Development Program (No. 2016YFB0402303), the National Natural Science Foundation of China (Nos. 61435014, 61627822, 61574136, 61774146, 61674144, 61404131), the Key Projects of Chinese Academy of Sciences (Nos. ZDRW-XH-2016-4, QYZDJ-SSW-JSC027), and the Beijing Natural Science Foundation (No. 4162060, 4172060).
Growth, Quantitative Growth Analysis, and Applications of Graphene on γ-Al2O3 catalysts
Park, Jaehyun; Lee, Joohwi; Choi, Jung-Hae; Hwang, Do Kyung; Song, Yong-Won
2015-01-01
The possibilities offered by catalytic γ-Al2O3 substrates are explored, and the mechanism governing graphene formation thereon is elucidated using both numerical simulations and experiments. The growth scheme offers metal-free synthesis at low temperature, grain-size customization, large-area uniformity of electrical properties, single-step preparation of graphene/dielectric structures, and readily detachable graphene. We quantify based on thermodynamic principles the activation energies associated with graphene nucleation/growth on γ-Al2O3, verifying the low physical and chemical barriers. Importantly, we derive a universal equation governing the adsorption-based synthesis of graphene over a wide range of temperatures in both catalytic and spontaneous growth regimes. Experimental results support the equation, highlighting the catalytic function of γ-Al2O3 at low temperatures. The synthesized graphene is manually incorporated as a ‘graphene sticker’ into an ultrafast mode-locked laser. PMID:26137994
Differential Conductance Measurements of MgB2/I/Pb Heterojunctions and all-MgB2 Junctions
NASA Astrophysics Data System (ADS)
Cusick, David; Eckhardt, Matthew; Dai, Wenqing; Li, Qi; Chen, Ke; Cunnane, Daniel; Zhuang, C. G.; Xi, X. X.; Naito, Michio; Ramos, Roberto
2015-03-01
We present our work characterizing several types of Magnesium Diboride Josephson junctions, including MgB2/I/Pb heterojunctions and all-MgB2 junctions. We will report on the I-V and dI/dV-V data collected at various temperatures using both a cryocooler-based experimental platform between 2 and 20 Kelvin and using a 3He probe platform between 0.3 and 1.0 Kelvin. These were both developed by undergraduates in a liberal arts university. Using high-sampling rates with a 24-bit data acquisition card and access to a broad of range of temperatures, we track and report energy gap distributions and temperature-dependent features of dI/dV peaks of MgB2, comparing these with theoretical predictions. R.C.R. acknowledges support from National Science Foundation Grant # DMR-1206561.
Design and Development of Multi-Purpose CCD Camera System with Thermoelectric Cooling: Hardware
NASA Astrophysics Data System (ADS)
Kang, Y.-W.; Byun, Y. I.; Rhee, J. H.; Oh, S. H.; Kim, D. K.
2007-12-01
We designed and developed a multi-purpose CCD camera system for three kinds of CCDs; KAF-0401E(768×512), KAF-1602E(1536×1024), KAF-3200E(2184×1472) made by KODAK Co.. The system supports fast USB port as well as parallel port for data I/O and control signal. The packing is based on two stage circuit boards for size reduction and contains built-in filter wheel. Basic hardware components include clock pattern circuit, A/D conversion circuit, CCD data flow control circuit, and CCD temperature control unit. The CCD temperature can be controlled with accuracy of approximately 0.4° C in the max. range of temperature, Δ 33° C. This CCD camera system has with readout noise 6 e^{-}, and system gain 5 e^{-}/ADU. A total of 10 CCD camera systems were produced and our tests show that all of them show passable performance.
Observation of antiferromagnetic correlations in the Fermi-Hubbard model
NASA Astrophysics Data System (ADS)
Hart, R. A.; Duarte, P. M.; Yang, T. L.; Liu, X.; Hulet, R. G.; Paiva, T. C. L.; Huse, D.; Scalettar, R. T.; Trivedi, N.
2014-05-01
The physics of high temperature superconductors is not well understood, although it is known that the undoped parent compounds of many of them are antiferromagnetic (AF) insulators. The Fermi-Hubbard model at half filling (one atom per lattice site) is known to exhibit a phase transition to an antiferromagnetic insulator at a low temperature. We realize the Fermi-Hubbard model by loading ultracold 6Li atoms into a three-dimensional red-detuned optical lattice. We have compensated the confining potential of the lattice with blue-detuned laser beams in order to evaporatively cool the atoms. We have cooled sufficiently to observe AF correlations using spin-sensitive Bragg scattering of near-resonant light. Comparison with Quantum Monte Carlo (QMC) calculations indicates that the temperature is between 2-3 TN, where short-range correlations begin to develop. Bragg scattering combined with QMC provides sensitive thermometry in a previously unexplored regime. Supported by NSF, ONR, DARPA, and the Welch Foundation.
Method for low temperature preparation of a noble metal alloy
Even, Jr., William R.
2002-01-01
A method for producing fine, essentially contamination free, noble metal alloys is disclosed. The alloys comprise particles in a size range of 5 to 500 nm. The method comprises 1. A method for preparing a noble metal alloy at low temperature, the method comprising the steps of forming solution of organometallic compounds by dissolving the compounds into a quantity of a compatible solvent medium capable of solvating the organometallic, mixing a portion of each solution to provide a desired molarity ratio of ions in the mixed solution, adding a support material, rapidly quenching droplets of the mixed solution to initiate a solute-solvent phase separation as the solvent freezes, removing said liquid cryogen, collecting and freezing drying the frozen droplets to produce a dry powder, and finally reducing the powder to a metal by flowing dry hydrogen over the powder while warming the powder to a temperature of about 150.degree. C.
Thermoplastic polyimide NEW-TPI (trademark)
NASA Technical Reports Server (NTRS)
Hou, Tan-Hung; Reddy, Rakasi M.
1990-01-01
Thermal and rheological properties of a commercial thermoplastic polyimide, NEW-TPI (trademark), were characterized. The as-received material possesses initially a transient crystallite form with a bimodal distribution in peak melting temperatures. After the melting of the initial crystallite structure, the sample can be recrystallized by various thermal treatments. A bimodal or single modal melting peak distribution is formed for annealing temperatures below or above 360 C, respectively. The recrystallized crystallinities are all transient in nature. The polymers are unable to be recrystallized after being subjected to elevated temperature annealing above 450 C. The recrystallization mechanism was postulated, and a simple kinetics model was found to describe the behavior rather satisfactory under the conditions of prolonged thermal annealing. Rheological measurements made in the linear viscoelastic range support the evidence observed in the thermal analysis. Furthermore, the measurements sustain the manufacturer's recommended processing window of 400 to 420 C for this material.
NASA Astrophysics Data System (ADS)
Bae, Joongmyeon; Lim, Sungkwang; Jee, Hyunjin; Kim, Jung Hyun; Yoo, Young-Sung; Lee, Taehee
We are developing 1 kW class solid oxide fuel cell (SOFC) system for residential power generation (RPG) application supported by Korean Government. Anode-supported single cells with thin electrolyte layer of YSZ (yttria-stabilized zirconia) or ScSZ (scandia-stabilized zirconia) for intermediate temperature operation (650-750 °C), respectively, were fabricated and small stacks were built and evaluated. The LSCF/ScSZ/Ni-YSZ single cell showed performance of 543 mW cm -2 at 650 °C and 1680 mW cm -2 at 750 °C. The voltage of 15-cell stack based on 5 cm × 5 cm single cell (LSM/YSZ/Ni-YSZ) at 150 mW was 12.5 V in hydrogen as fuel of 120 sccm per cell at 750 °C and decreased to about 10.9 V at 500 h operation time. A 5-cell stack based on the LSCF/YSZ/FL/Ni-YSZ showed the maximum power density of 30 W, 25 W and 20 W at 750 °C, 700 °C and 650 °C, respectively. LSCF/ScSZ/Ni-YSZ-based stack showed better performance than LSCF/YSZ/Ni-YSZ stack from the experiment temperature range. I- V characteristics by using hydrogen gas and reformate gas of methane as fuel were investigated at 750 °C in LSCF/ScSZ/FL/Ni-YSZ-based 5-cell stack.
NASA Astrophysics Data System (ADS)
Stolper, D. A.; Antonelli, M. A.; Ramos, D. S.; Bender, M. L.; Schrag, D. P.; DePaolo, D. J.; Higgins, J. A.
2016-12-01
Low temperature (<100°C) water-rock reactions in oceanic crust have a potentially large influence on seawater chemical compositions and atmospheric pCO2. Quantification of the conditions (e.g., temperature) of oceanic crust alteration is needed to evaluate its importance for global silicate weathering fluxes. The isotopic and chemical compositions of secondary carbonates in oceanic crust reflect the temperature and chemistry of the circulating fluid and thus are used to reconstruct past conditions of crustal alteration. For example, temperatures are calculated via carbonate δ18O thermometry using measured δ18Ocarb vs. assumed δ18Ofluid. δ18Ofluid is usually assumed to be the seawater value at the time of carbonate formation. We present measured clumped-isotope temperatures (Tclump) and δ18O, δ13C, δ44Ca, and 87Sr/86Sr values of Jurassic carbonates from altered oceanic crust (ODP Site 801). Tclump measured at Caltech ranges from 24-51°C. Calculated δ18Ofluid (based on Tclump and δ18Ocarb) ranges from -0.4‰ (±0.4, 1σ) to -3.5‰ (±0.6). Higher temperatures correlate with lower δ18Ofluid (R2 = 0.75). This suggests that at elevated temperatures, δ18Ofluid was modified away from seawater values, likely via the preferential incorporation of 18O vs. 16O into secondary minerals relative to water. This indicates that δ18Ofluid values of circulating fluids are not necessarily identical to seawater δ18O. Tclump measurements are being replicated at Harvard for further verification. Carbonates with δ13C indicating a seawater C source (δ13C > 0‰) have average δ44Ca (relative to modern seawater) of -0.84‰ (±0.08). This is indistinguishable from igneous rock δ44Ca and suggests that carbonate Ca is derived from igneous Ca released during crustal alteration. Carbonates with δ13C indicating an organic C source (δ13C < -2.5‰) have lower δ44Cacarb (< -1‰). Carbonate 87Sr/86Sr ranges from 0.70742 to 0.70656. Based on the seawater 87Sr/86Sr curve, this range requires the release of low 87Sr/86Sr strontium from igneous rocks (87Sr/86Sr ≈ 0.7025) during alteration. Together these results support the presence of substantial water-rock interactions and fluid modification during alteration and carbonate precipitation. They will be discussed in the context of models of fluid flow coupled to alteration reaction kinetics.
NASA Astrophysics Data System (ADS)
Obeidat, Abdalla; Jaradat, Adnan; Hamdan, Bushra; Abu-Ghazleh, Hind
2018-04-01
The best spherical cutoff radius, long range interaction and temperature controller were determined using surface tension, density, and diffusion coefficients of van Leeuwen and Smit methanol. A quite good range of cutoff radii from 0.75 to 1.45 nm has been studied on Coulomb cut-off and particle mesh Ewald (PME) long range interaction to determine the best cutoff radius and best long range interaction as well for four sets of temperature: 200, 230, 270 and 300 K. To determine the best temperature controller, the cutoff radius of 1.25 nm was fixed using PME long range interaction on calculating the above properties at low temperature range: 200-300 K.
Temperature offset control system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fried, M.
1987-07-28
This patent describes a temperature offset control system for controlling the operation of both heating and air conditioning systems simultaneously contained within the same premises each of which is set by local thermostats to operate at an appropriate temperature, the offset control system comprising: a central control station having means for presetting an offset temperature range, means for sensing the temperature at a central location, means for comparing the sensed temperature with the offset temperature range, means responsive to the comparison for producing a control signal indicative of whether the sensed temperature is within the offset temperature range or beyondmore » the offset temperature range, and means for transmitting the control signal onto the standard energy lines servicing the premises; and a receiving station respectively associated with each heating and air conditioning system, the receiving stations each comprising means for receiving the same transmitted control signal from the energy lines, and switch means for controlling the energization of the respective system in response to the received control signal. The heating systems and associated local thermostat are disabled by the control signal when the control signal originates from a sensed temperature above the lower end of the offset temperature range. The air conditioning systems and associated thermostats are disabled by the same control signal when the control signal originates from a sensed temperature below the upper end of the offset temperature range.« less
Telwala, Yasmeen; Brook, Barry W.; Manish, Kumar; Pandit, Maharaj K.
2013-01-01
Global average temperature increase during the last century has induced species geographic range shifts and extinctions. Montane floras, in particular, are highly sensitive to climate change and mountains serve as suitable observation sites for tracing climate-induced biological response. The Himalaya constitute an important global biodiversity hotspot, yet studies on species’ response to climate change from this region are lacking. Here we use historical (1849–50) and the recent (2007–2010) data on temperature and endemic species’ elevational ranges to perform a correlative study in the two alpine valleys of Sikkim. We show that the ongoing warming in the alpine Sikkim Himalaya has transformed the plant assemblages. This study lends support to the hypothesis that changing climate is causing species distribution changes. We provide first evidence of warmer winters in the region compared to the last two centuries, with mean temperatures of the warmest and the coldest months may have increased by 0.76±0.25°C and 3.65±2°C, respectively. Warming-driven geographical range shifts were recorded in 87% of 124 endemic plant species studied in the region; upper range extensions of species have resulted in increased species richness in the upper alpine zone, compared to the 19th century. We recorded a shift of 23–998 m in species’ upper elevation limit and a mean upward displacement rate of 27.53±22.04 m/decade in the present study. We infer that the present-day plant assemblages and community structure in the Himalaya is substantially different from the last century and is, therefore, in a state of flux under the impact of warming. The continued trend of warming is likely to result in ongoing elevational range contractions and eventually, species extinctions, particularly at mountaintops. PMID:23437322
Siriwardane, Ranjani V.; Tian, Hanjing
2016-12-20
The disclosure provides an oxygen carrier for a chemical looping cycle, such as the chemical looping combustion of solid carbonaceous fuels, such as coal, coke, coal and biomass char, and the like. The oxygen carrier is comprised of at least 24 weight % (wt %) CuO, at least 10 wt % Fe2O3, and an inert support, and is typically a calcine. The oxygen carrier exhibits a CuO crystalline structure and an absence of iron oxide crystalline structures under XRD crystallography, and provides an improved and sustained combustion reactivity in the temperature range of 600.degree. C.-1000.degree. C. particularly for solid fuels such as carbon and coal.
Characterization of Site for Installing Open Loop Ground Source Heat Pump System
NASA Astrophysics Data System (ADS)
Yun, S. W.; Park, Y.; Lee, J. Y.; Yi, M. J.; Cha, J. H.
2014-12-01
This study was conducted to understand hydrogeological properties of site where open loop ground source heat pump system will be installed and operated. Groundwater level and water temperature were hourly measured at the well developed for usage of open loop ground source heat pump system from 11 October 2013 to 8 January 2014. Groundwater was sampled in January and August 2013 and its chemical and isotopic compositions were analyzed. The bedrock of study area is the Jurassic granodiorite that mainly consists of quartz (27.9 to 46.8%), plagioclase (26.0 to 45.5%), and alkali feldspar (9.5 to 18.7%). The groundwater level ranged from 68.30 to 68.94 m (above mean sea level). Recharge rate was estimated using modified watertable fluctuation method and the recharge ratios was 9.1%. The water temperature ranged from 14.8 to 15.0oC. The vertical Increase rates of water temperature were 1.91 to 1.94/100 m. The water temperature showed the significant seasonal variation above 50 m depth, but had constant value below 50 m depth. Therefore, heat energy of the groundwater can be used securely in open loop ground source heat pump system. Electrical conductivity ranged from 120 to 320 µS/cm in dry season and from 133 to 310 µS/cm in wet season. The electrical conductivity gradually decreased with depth. In particular, electrical conductivity in approximately 30 m depth decreased dramatically (287 to 249 µS/cm) in wet season. The groundwater was Ca-HCO3 type. The concentrations of dissolved components did not show the vertically significant variations from 0 to 250 m depth. The δ18O and δD ranged from -9.5 to -9.4‰ and from -69 to -68‰. This work is supported by the New and Renewable Energy of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government Ministry of Knowledge Economy (No.20123040110010).
Mechanical characterization of injection-molded macro porous bioceramic bone scaffolds.
Vivanco, Juan; Aiyangar, Ameet; Araneda, Aldo; Ploeg, Heidi-Lynn
2012-05-01
Bioactive ceramic materials like tricalcium phosphate (TCP) have been emerging as viable material alternatives to the current therapies of bone scaffolding to target fracture healing and osteoporosis. Both material and architectural characteristics play a critical role in the osteoconductive capacity and strength of bone scaffolds. Thus, the objective of this research was to investigate the sintering temperature effect of a cost-effective manufacturing process on the architecture and mechanical properties of a controlled macro porous bioceramic bone scaffold. In this study the physical and mechanical properties of β-TCP bioceramic scaffolds were investigated as a function of the sintering temperature in the range of 950-1150 °C. Physical properties investigated included bulk dimensions, pore size, and strut thickness; and, compressive mechanical properties were evaluated in air at room temperature and in saline solution at body temperature. Statistically significant increases in apparent elastic modulus were measured for scaffolds sintered at higher temperatures. Structural stiffness for all the specimens was significantly reduced when tested at body temperature in saline solution. These findings support the development of clinically successful bioceramic scaffolds that may stimulate bone regeneration and scaffold integration while providing structural integrity. Copyright © 2012 Elsevier Ltd. All rights reserved.
Long-term trends in shortgrass steppe vegetation during a 21-year period of increasing temperatures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alward, R.D.; Milchunas, D.G.; Detling, J.K.
Long-term weather records from the Central Plains Experimental Range revealed a general warming trend in average annual temperatures from 1971 through 1991. This was largely the result of a significant increase in mean annual minimum temperature (T{sub min}). Permanently marked vegetation quadrants were monitored for much of this same period. We constructed linear correlational models to assess relationships of annual and seasonal temperature and precipitation with plant densities and aboveground net primary productivity (ANPP) within a grazing exclosure. Response variables correlated with T{sub min} included: (i) tiller densities of the dominant grass, Bouteloua gracilis, and other warm season grasses, (ii)more » forb densities and ANPP, and (iii) total ANPP. Responses correlated with T{sub max} included: (i) total basal cover and (ii) densities and ANPP of several species. Plant species diversity was correlated with spring precipitation. Some species responded to the interactive effects of spring temperatures and precipitation. This investigation suggests that shortgrass steppe vegetation may be sensitive to climate change and supports predictions that asymmetric changes in diurnal temperatures may be an important component of climate change.« less
Dynamical properties of water-methanol solutions
NASA Astrophysics Data System (ADS)
Mallamace, Francesco; Corsaro, Carmelo; Mallamace, Domenico; Vasi, Cirino; Vasi, Sebastiano; Stanley, H. Eugene
2016-02-01
We study the relaxation times tα in the water-methanol system. We examine new data and data from the literature in the large temperature range 163 < T < 335 K obtained using different experimental techniques and focus on how tα affects the hydrogen bond structure of the system and the hydrophobicity of the alcohol methyl group. We examine the relaxation times at a fixed temperature as a function of the water molar fraction XW and observe two opposite behaviors in their curvature when the system moves from high to low T regimes. This behavior differs from that of an ideal solution in that it has excess values located at different molar fractions (XW = 0.5 for high T and 0.75 in the deep supercooled regime). We analyze the data and find that above a crossover temperature T ˜ 223 K, hydrophobicity plays a significant role and below it the water tetrahedral network dominates. This temperature is coincident with the fragile-to-strong dynamical crossover observed in confined water and supports the liquid-liquid phase transition hypothesis. At the same time, the reported data suggest that this crossover temperature (identified as the Widom line temperature) also depends on the alcohol concentration.
Characterization of a Compact Water Vapor Radiometer
NASA Astrophysics Data System (ADS)
Gill, Ajay; Selina, Rob
2018-01-01
We report on laboratory test results of the Compact Water Vapor Radiometer (CWVR) prototype for the Karl G. Jansky Very Large Array (VLA), a five-channel design centered around the 22 GHz water vapor line. Fluctuations in perceptible water vapor cause fluctuations in atmospheric brightness emission, which are assumed to be proportional to phase fluctuations of the astronomical signal seen by an antenna. The design is intended to support empirical radiometric phase corrections for each baseline in the array.The dynamic range, channel isolation, and gain stability of the device were characterized. The device has a useful dynamic range of order 18 dB after calibration, and the CWVR channel isolation requirement of < -20 dB is met.For the gain stability test, the diode detectors were operated in the square-law region, and a K-band noise diode was used as the broadband input power source to the CWVR over a period of 64 hours. Results indicate that the fluctuations in output counts are negatively correlated to the CWVR enclosure ambient temperature, with a change of ~ 405 counts per 1° C change in temperature.A correction for the CWVR ambient temperature makes a considerable improvement in stability for τ > 102.6 sec. With temperature corrections, the single channel and channel difference gain stability per channel is < 2 x 10-4 over τ = 2.5 - 103 sec, which meets the < 2 x 10-4 requirement. The observable gain stability is < 2.5 x 10-4 over τ = 2.5 - 103 sec, which meets the < 2.5 x 10-4 requirement.Overall, the test results indicate that the CWVR meets required specifications for dynamic range, channel isolation, and gain stability in order to proceed with testing on a pair of VLA antennas.
Modeling Silicate Weathering for Elevated CO2 and Temperature
NASA Astrophysics Data System (ADS)
Bolton, E. W.
2016-12-01
A reactive transport model (RTM) is used to assess CO2 drawdown by silicate weathering over a wide range of temperature, pCO2, and infiltration rates for basalts and granites. Although RTM's have been used extensively to model weathering of basalts and granites for present-day conditions, we extend such modeling to higher CO2 that could have existed during the Archean and Proterozoic. We also consider a wide range of surface temperatures and infiltration rates. We consider several model basalt and granite compositions. We normally impose CO2 in equilibrium with the various atmospheric ranges modeled and CO2 is delivered to the weathering zone by aqueous transport. We also consider models with fixed CO2 (aq) throughout the weathering zone as could occur in soils with partial water saturation or with plant respiration, which can strongly influence pH and mineral dissolution rates. For the modeling, we use Kinflow: a model developed at Yale that includes mineral dissolution and precipitation under kinetic control, aqueous speciation, surface erosion, dynamic porosity, permeability, and mineral surface areas via sub-grid-scale grain models, and exchange of volatiles at the surface. Most of the modeling is done in 1D, but some comparisons to 2D domains with heterogeneous permeability are made. We find that when CO2 is fixed only at the surface, the pH tends toward higher values for basalts than granites, in large part due to the presence of more divalent than monovalent cations in the primary minerals, tending to decrease rates of mineral dissolution. Weathering rates increase (as expected) with increasing CO2 and temperature. This modeling is done with the support of the Virtual Planetary Laboratory.
Ground water occurrence and contributions to streamflow in an alpine catchment, Colorado Front Range
Clow, D.W.; Schrott, L.; Webb, R.; Campbell, D.H.; Torizzo, A.O.; Dornblaser, M.
2003-01-01
Ground water occurrence, movement, and its contribution to streamflow were investigated in Loch Vale, an alpine catchment in the Front Range of the Colorado Rocky Mountains. Hydrogeomorphologic mapping, seismic refraction measurements, and porosity and permeability estimates indicate that talus slopes are the primary ground water reservoir, with a maximum storage capacity that is equal to, or greater than, total annual discharge from the basin (5.4 ± 0.8 × 106 m3). Although snowmelt and glacial melt provide the majority of annual water flux to the basin, tracer tests and gauging along a stream transect indicate that ground water flowing from talus can account for ≥75% of streamflow during storms and the winter base flow period. The discharge response of talus springs to storms and snowmelt reflects rapid transmittal of water through coarse debris at the talus surface and slower release of water from finer-grained sediments at depth.Ice stored in permafrost (including rock glaciers) is the second largest ground water reservoir in Loch Vale; it represents a significant, but seldom recognized, ground water reservoir in alpine terrain. Mean annual air temperatures are sufficiently cold to support permafrost above 3460 m; however, air temperatures have increased 1.1° to 1.4°C since the early 1990s, consistent with long-term (1976–2000) increases in air temperature measured at other high-elevation sites in the Front Range, European Alps, and Peruvian Andes. If other climatic factors remain constant, the increase in air temperatures at Loch Vale is sufficient to increase the lower elevational limit of permafrost by 150 to 190 m. Although this could cause a short-term increase in streamflow, it may ultimately result in decreased flow in the future.
Optical Measurement of the Speed of Sound in Air Over the Temperature Range 300-650 K
NASA Technical Reports Server (NTRS)
Hart, Roger C.; Balla, R. Jeffrey; Herring, G. C.
2000-01-01
Using laser-induced thermal acoustics (LITA), the speed of sound in room air (1 atm) is measured over the temperature range 300-650 K. Since the LITA apparatus maintains a fixed sound wavelength as temperature is varied, this temperature range simultaneously corresponds to a sound frequency range of 10-15 MHz. The data are compared to a published model and typically agree within 0.1%-0.4% at each of 21 temperatures.
Design guide for high pressure oxygen systems
NASA Technical Reports Server (NTRS)
Bond, A. C.; Pohl, H. O.; Chaffee, N. H.; Guy, W. W.; Allton, C. S.; Johnston, R. L.; Castner, W. L.; Stradling, J. S.
1983-01-01
A repository for critical and important detailed design data and information, hitherto unpublished, along with significant data on oxygen reactivity phenomena with metallic and nonmetallic materials in moderate to very high pressure environments is documented. This data and information provide a ready and easy to use reference for the guidance of designers of propulsion, power, and life support systems for use in space flight. The document is also applicable to designs for industrial and civilian uses of high pressure oxygen systems. The information presented herein are derived from data and design practices involving oxygen usage at pressures ranging from about 20 psia to 8000 psia equal with thermal conditions ranging from room temperatures up to 500 F.
NASA Astrophysics Data System (ADS)
Anguita, J. V.; Sharma, P.; Henley, S. J.; Silva, S. R. P.
2009-11-01
The solid-liquid-solid method (also known as the solid-state method) is used to produce silicon nanowires at the core of silica nanowires with a support catalyst layer structure of nickel and titanium layers sputtered on oxide-coated silicon wafers. This silane-free process is low cost and large-area compatible. Using electron microscopy and Raman spectroscopy we deduce that the wires have crystalline silicon cores. The nanowires show photoluminescence in the visible range (orange), and we investigate the origin of this band. We further show that the nanowires form a random mesh that acts as an efficient optical trap, giving rise to an optically absorbing medium.
Electron trapping and transport by supersonic solitons in one-dimensional systems
NASA Technical Reports Server (NTRS)
Zmuidzinas, J. S.
1978-01-01
A one-dimensional chain of ions or molecules and electrons described by a Froehlich-type Hamiltonian with quartic phonon anharmonicities is investigated. It is shown that the anharmonic lattice supports supersonic solitons which under favorable circumstances may trap electrons and transport them along the lattice. For a lattice constant/soliton spatial extent quotient of the order of 0.1, rough estimates give electron trapping energies in the meV range. They imply a useful temperature range, up to tens of degrees K, for observing the new effect. The activation energy of a lattice soliton is proportional to the molecular mass and is therefore quite high (about 1 eV) for typical quasi-one-dimensional organic systems.
NASA Astrophysics Data System (ADS)
Lafay, Romain; Baumgartner, Lukas P.; Stephane, Schwartz; Suzanne, Picazo; German, Montes-Hernandez; Torsten, Vennemann
2017-12-01
The Late Jurassic Chenaillet ophiolitic complex (Western Alps) represents parts of an oceanic core-complex of the Liguria-Piemonte domain. A model for the origin and evolution of the Chenaillet ophicalcites based on textural and isotopic characterization is presented. The Chenaillet ophicalcites correspond to brecciated serpentinized peridotites that record seafloor shallow serpentinization at a minimum temperatures of 150 °C followed by authigenic carbonation. Carbonation starts with a network of micrometric to millimetric pre- or syn-clast formation calcite veins accompanied by a pervasive carbonation of residual olivine and serpentine inside the serpentinite mesh core. A matrix of small calcite (< 50 μm, 12 μm in average) cemented clasts after their individualization. Texture of the breccia, grain size distribution within the matrix, and chrysotile clusters support rapid cementation from a strongly oversaturated fluid due most likely to hydrothermal fluid cooling and decompression. Later fluids infiltrated by multiple crack formation and some dolomite locally formed along serpentinite-calcite interfaces. Carbonates have δ13C (VPDB) values that range between - 5‰ and + 0.4‰. The lower values were obtained for calcite within the serpentinite clasts. The δ18O (VSMOW) values have a range between + 11‰ and + 16‰ in carbonated clasts. The δ18O values in the matrix are fairly homogeneous with an average at + 12‰ and the late calcite veins have values between + 12.5 and + 15.5‰. These values suggest a relatively high temperature of formation for all the carbonates. Carbonates within clast are mainly characterized by a formation temperature in the range of 110 °C to 180 °C assuming a δ18O value of seawater of 0‰, the matrix forms at a temperature of ca. 165 °C. Late veins are characterized by a formation temperature ranging between 120and 155 °C. We propose a model where serpentinization is followed by discrete carbonation then brecciation and cementation as a consequence of continuous hydrothermal fluid circulation in the serpentinite basement. This is comparable to observations made in the stockwork of present-day long-lived oceanic hydrothermal systems.
Low temperature destruction of PCDD/Fs over V2O5-CeO2/TiO2 catalyst with ozone.
Yu, Ming-Feng; Lin, Xiao-Qing; Yan, Mi; Li, Xiao-Dong; Chen, Tong; Yan, Jian-Hua
2016-09-01
Catalytic destruction of PCDD/Fs (polychlorinated dibenzo-p-dioxins and furans) over V2O5-CeO2/TiO2 catalyst was investigated at a low temperature range of 140-180 °C, in the absence and presence of ozone (200 ppm). Nano-TiO2 support was used to prepare the catalyst by step impregnation method. A stable PCDD/Fs-generating system was established to support the catalytic destruction tests. In the presence of ozone alone, destruction efficiencies of PCDD/Fs are between 32.2 and 43.1 % with temperature increasing from 140 to 180 °C. The activity of V2O5-CeO2/TiO2 catalyst alone on PCDD/Fs destruction is also studied. The increase of temperature from 140 to 180 °C enhances the activity of catalyst with destruction efficiencies increasing from 54.7 to 73.4 %. However, ozone addition greatly enhances the catalytic activity of V2O5-CeO2/TiO2 catalyst on PCDD/Fs decomposition. At 180 °C, the destruction efficiency of PCDD/Fs achieved with V2O5-CeO2/TiO2 catalyst and ozone is above 86.0 %. It indicates that the combined use of ozone and catalyst reduces the reaction temperature of PCDD/Fs oxidation and offers a new method to destroy PCDD/Fs with high destruction efficiency at a low temperature. Furthermore, the destruction efficiencies of 17 toxic PCDD/F congeners, achieved with ozone alone, catalyst alone, and catalyst/ozone are analyzed.
NASA Astrophysics Data System (ADS)
Lin, Xiaomei; Chang, Penghui; Chen, Gehua; Lin, Jingjun; Liu, Ruixiang; Yang, Hao
2015-11-01
Our recent work has determined the carbon content in a melting ferroalloy by laser-induced breakdown spectroscopy (LIBS). The emission spectrum of carbon that we obtained in the laboratory is suitable for carbon content determination in a melting ferroalloy but we cannot get the expected results when this method is applied in industrial conditions: there is always an unacceptable error of around 4% between the actual value and the measured value. By comparing the measurement condition in the industrial condition with that in the laboratory, the results show that the temperature of the molten ferroalloy samples to be measured is constant under laboratory conditions while it decreases gradually under industrial conditions. However, temperature has a considerable impact on the measurement of carbon content, and this is the reason why there is always an error between the actual value and the measured value. In this paper we compare the errors of carbon content determination at different temperatures to find the optimum reference temperature range which can fit the requirements better in industrial conditions and, hence, make the measurement more accurate. The results of the comparative analyses show that the measured value of the carbon content in molten state (1620 K) is consistent with the nominal value of the solid standard sample (error within 0.7%). In fact, it is the most accurate measurement in the solid state. Based on this, we can effectively improve the accuracy of measurements in laboratory and can provide a reference standard of temperature for the measurement in industrial conditions. supported by National Natural Science Foundation of China (No. 51374040), and supported by Laser-Induced Plasma Spectroscopy Equipment Development and Application, China (No. 2014YQ120351)
NASA Astrophysics Data System (ADS)
Naafs, B. D. A.; McCormick, D.; Inglis, G. N.; Pancost, R. D.; T-GRES Peat Database Collaborators
2018-04-01
Glycerol monoalkyl glycerol tetraether lipids (GMGTs; also called 'H-GDGTs') differ from the more commonly studied glycerol dialkyl glycerol tetraether (GDGTs) in that they have an additional covalent bond that links the two alkyl chains. Six different archaeal isoprenoidal H-GDGTs (H-isoGDGTs) and one branched H-GDGT (H-brGDGT), presumably produced by bacteria, have previously been found. However, the function of H-GDGTs in both domains of life is unknown. It is thought that the formation of this additional covalent bond results in enhanced membrane stability, accounting for the high abundance of H-GDGTs in extreme environments such as geothermal settings, but so far there has been little evidence to support this hypothesis. Here we report the distribution of H-GDGTs in a global peat database (n = 471) with a broad range in mean annual air temperature (MAAT) and pH. This is the first finding of H-GDGTs in soils (specifically, peat), highlighting that H-GDGTs are widespread in mesophilic settings. In addition, we report the presence of two new H-brGDGTs with one (H-1034) and two (H-1048) additional methyl groups, respectively. Our results suggest that the relative abundance of both bacterial and archaeal H-GDGTs compared to regular GDGTs is related to temperature with the highest relative abundance of H-GDGTs in tropical peats. Although other factors besides temperature likely also play a role, these results do support the hypothesis that H-GDGTs are an adaptation to temperature to maintain membrane stability. The observation that both bacterial and archaeal membrane lipids respond to temperature indicates the same adaption across the lipid divide between these two domains of life, suggesting parallel or convergent evolution (potentially facilitated by lateral gene transfer).
NASA Astrophysics Data System (ADS)
Geraldes, Adriana Napoleão; Furtunato da Silva, Dionisio; Martins da Silva, Júlio César; Antonio de Sá, Osvaldo; Spinacé, Estevam Vitório; Neto, Almir Oliveira; Coelho dos Santos, Mauro
2015-02-01
Pd and PdSn (Pd:Sn atomic ratios of 90:10), supported on Multi Wall Carbon Nanotubes (MWCNT) or Carbon (C), are prepared by an electron beam irradiation reduction method. The obtained materials are characterized by X-Ray diffraction (XRD), Energy dispersive X-ray analysis (EDX), Transmission electron Microscopy (TEM) and Cyclic Voltammetry (CV). The activity for ethanol electro-oxidation is tested in alkaline medium, at room temperature, using Cyclic Voltammetry and Chronoamperometry (CA) and in a single alkaline direct ethanol fuel cell (ADEFC), in the temperature range of 60-90 °C. CV analysis finds that Pd/MWCNT and PdSn/MWCNT presents onset potentials changing to negative values and high current values, compared to Pd/C and PdSn/C electrocatalysts. ATR-FTIR analysis, performed during the CV, identifies acetate and acetaldehyde as principal products formed during the ethanol electro-oxidation, with low conversion to CO2. In single fuel cell tests, at 85 °C, using 2.0 mol L-1 ethanol in 2.0 mol L-1 KOH solutions, the electrocatalysts supported on MWCNT, also, show higher power densities, compared to the materials supported on carbon: PdSn/MWCNT, presents the best result (36 mW cm-2). The results show that the use of MWCNT, instead of carbon, as support, plus the addition of small amounts of Sn to Pd, improves the electrocatalytic activity for Ethanol Oxidation Reaction (EOR).
Pohlmann, André; Hameyer, Kay
2012-01-01
Ventricular Assist Devices (VADs) are mechanical blood pumps that support the human heart in order to maintain a sufficient perfusion of the human body and its organs. During VAD operation blood damage caused by hemolysis, thrombogenecity and denaturation has to be avoided. One key parameter causing the blood's denaturation is its temperature which must not exceed 42 °C. As a temperature rise can be directly linked to the losses occuring in the drive system, this paper introduces an efficiency prediction chain for Brushless DC (BLDC) drives which are applied in various VAD systems. The presented chain is applied to various core materials and operation ranges, providing a general overview on the loss dependencies.
Web-phreeq: a WWW instructional tool for modeling the distribution of chemical species in water
NASA Astrophysics Data System (ADS)
Saini-Eidukat, Bernhardt; Yahin, Andrew
1999-05-01
A WWW-based tool, WEB-PHREEQ, was developed for classroom teaching and for routine calculation of low temperature aqueous speciation. Accessible with any computer that has an internet-connected forms-capable WWW-browser, WEB-PHREEQ provides user interface and other support for modeling, creates a properly formatted input file, passes it to the public domain program PHREEQC and returns the output to the WWW browser. Users can calculate the equilibrium speciation of a solution over a range of temperatures or can react solid minerals or gases with a particular water and examine the resulting chemistry. WEB-PHREEQ is one of a number of interactive distributed-computing programs available on the WWW that are of interest to geoscientists.
Spin texture and magnetoroton excitations at nu=1/3.
Groshaus, Javier G; Dujovne, Irene; Gallais, Yann; Hirjibehedin, Cyrus F; Pinczuk, Aron; Tan, Yan-Wen; Stormer, Horst; Dennis, Brian S; Pfeiffer, Loren N; West, Ken W
2008-02-01
Neutral spin texture (ST) excitations at nu=1/3 are directly observed for the first time by resonant inelastic light scattering. They are determined to involve two simultaneous spin flips. At low magnetic fields, the ST energy is below that of the magnetoroton minimum. With increasing in-plane magnetic field these mode energies cross at a critical ratio of the Zeeman and Coulomb energies of eta(c)=0.020+/-0.001. Surprisingly, the intensity of the ST mode grows with temperature in the range in which the magnetoroton modes collapse. The temperature dependence is interpreted in terms of a competition between coexisting phases supporting different excitations. We consider the role of the ST excitations in activated transport at nu=1/3.
Studies on two-gap superconductivity in 2H-NbS2
NASA Astrophysics Data System (ADS)
Kačmarčík, J.; Pribulová, Z.; Marcenat, C.; Klein, T.; Rodière, P.; Cario, L.; Samuely, P.
2010-12-01
We present the ac-calorimetry measurements of superconducting 2H-NbS2 in the temperature range down to 0.6 K and magnetic fields up to 8 T. The temperature and magnetic field dependence of the electronic specific heat consistently indicate existence of two superconducting energy gaps in the system - one of them with the coupling ratio below the BCS weak-coupling limit and the other above that value. These results support previous findings by scanning tunneling microscopy and spectroscopy measurements [I. Guillamón, H. Suderow, S. Vieira, L. Cario, et al., Phys. Rev. Lett. 101 (2008) 166407] of two pronounced features in density of states related to a two-gap superconductivity in this system.
Mead, J.W.; Montoya, O.J.; Rand, P.B.; Willan, V.O.
1983-12-21
Access to a space is impeded by generation of a sticky foam from a silicone polymer and a low boiling solvent such as a halogenated hydrocarbon. In a preferred aspect, the formulation is polydimethylsiloxane gel mixed with F502 Freon as a solvent and blowing agent, and pressurized with CO/sub 2/ in a vessel to about 250 PSI, whereby when the vessel is opened, a sticky and solvent resistant foam is deployed. The foam is deployable, over a wide range of temperatures, adhering to wet surfaces as well as dry, is stable over long periods of time and does not propagate flame or lose adhesive properties during an externally supported burn.
NASA Technical Reports Server (NTRS)
Koerner, Christian; Kampf, Dirk; Poglitsch, Albrecht; Schubert, Josef; Ruppert, U.; Schoele, M.
2014-01-01
This paper describes the two PACS Filter Wheels that are direct-drive rotational mechanisms operated at a temperature below 5K inside the PACS focal plane unit of the Herschel Satellite. The purpose of the mechanisms is to switch between filters. The rotation axis is pivoted to the support structure via a slightly preloaded pair of ball bearings and driven by a Cryotorquer. Position sensing is realized by a pair of Hall effect sensors. Powerless positioning at the filter positions is achieved by a magnetic ratchet system. The key technologies are the Cryotorquer design and the magnetic ratchet design in the low temperature range. Furthermore, we will report on lessons learned during the development and qualification of the mechanism and the paint.
Tropical climate at the last glacial maximum inferred from glacier mass-balance modeling
Hostetler, S.W.; Clark, P.U.
2000-01-01
Model-derived equilibrium line altitudes (ELAs) of former tropical glaciers support arguments, based on other paleoclimate data, for both the magnitude and spatial pattern of terrestrial cooling in the tropics at the last glacial maximum (LGM). Relative to the present, LGM ELAs were maintained by air temperatures that were 3.5??to 6.6 ??C lower and precipitation that ranged from 63% wetter in Hawaii to 25% drier on Mt. Kenya, Africa. Our results imply the need for a ~3 ??C cooling of LGM sea surface temperatures in the western Pacific warm pool. Sensitivity tests suggest that LGM ELAs could have persisted until 16,000 years before the present in the Peruvian Andes and on Papua, New Guinea.
Mechanisms of deformation and fracture in high temperature low cycle fatigue of Rene 80 and IN 100
NASA Technical Reports Server (NTRS)
Romanoski, G. R., Jr.
1982-01-01
Specimens tested for the AGARD strain range partitioning program were investigated. Rene 80 and IN 100 were tested in air and in vacuum; at 871 C, 925 C, and 1000 C; and in the coated and uncoated condition. The specimens exhibited a multiplicity of high-temperature low-cycle fatigue damage. Observations of the various forms of damage were consistent with material and testing conditions and were generally in agreement with previous studies. In every case observations support a contention that failure occurs at a particular combination of crack length and maximum stress. A failure criterion which is applicable in the regime of testing studied is presented. The predictive capabilities of this criterion are straight forward.
Report on FY15 Two-Bar Thermal Ratcheting Test Results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yanli; Jetter, Robert I; Baird, Seth T
2015-06-22
Alloy 617 is a reference structural material for very high temperature components of advanced-gas cooled reactors with outlet temperatures in the range of . In order for designers to be able to use Alloy 617 for these high temperature components, Alloy 617 has to be approved for use in Section III (the nuclear section) of the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code. A plan has been developed to submit a draft code for Alloy 617 to ASME Section III by 2015. However, the current rules in Subsection NH* for the evaluation of strain limits andmore » creep-fatigue damage using simplified methods based on elastic analysis have been deemed inappropriate for Alloy 617 at temperatures above . The rationale for this exclusion is that at higher temperatures it is not feasible to decouple plasticity and creep deformation, which is the basis for the current simplified rules. This temperature, , is well below the temperature range of interest for this material in High Temperature Gas Cooled Reactor (HTGR) applications. The only current alternative is, thus, a full inelastic analysis which requires sophisticated material models which have been formulated but not yet verified. To address this issue, proposed code rules have been developed which are based on the use of elastic-perfectly plastic (EPP) analysis methods and which are expected to be applicable to very high temperatures. These newly proposed rules also address a long-term objective to provide an option for more simple, comprehensive and easily applied rules than the current so called simplified rules These two-bar tests discussed herein are part of an ongoing series of tests with cyclic loading at high temperatures using specimens representing key features of potential component designs. The initial focus of the two-bar ratcheting test program, to verify the procedure for evaluation of strain limits for Alloy 617 at very high temperatures, has been expanded to respond to guidance from ASME Code committees that the proposed EPP methodology should also apply to other Subsection NH materials throughout their allowed temperature range. To support these objectives, two suites of tests have been accomplished during this reporting period. One suite addresses the issue of the response of Alloy 617 at a lower temperature with tests in range of 500 800oC and a few at 350 650°C. The other suite addresses the response of SS316H up to its current maximum allowed temperature of 1500°F (815°C) In the two-bar test methodology, the two bars can be viewed as specimens taken out of a tubular component across the wall thickness representing the inner wall element and the outer wall element respectively. The two bars are alternately heated and cooled under sustained axial loading to generate ratcheting. A sustained hold time is introduced at the hot extreme of the cycle to capture the accelerated ratcheting and strain accumulation due to creep. Since the boundary conditions are a combination of strain control and load control it is necessary to use two coupled servo-controlled testing machines to achieve the key features of the two-bar representation of actual component behavior. Two-bar thermal ratcheting test results with combinations of applied mean stresses, transient temperature difference and heating and cooling rates were recorded. Tests performed at heating and cooling rates of 30°C/min are comparable to a strain rate of 10 ⁻⁵/sec. At high mean stresses in tension the direction of ratcheting was in-phase with the load, e.g. tensile strain ratcheting under high tensile loading; however, at lower loads, strain ratcheting in compression was observed under net tensile mean stresses. The strain accumulation was proportional to the applied thermal load. However, there was a narrow range of applied load in which the high applied thermal loading did not result in significant strain accumulation. Unfortunately, when the proposed EPP strain limit evaluation rules were applied to the loading history for the two-bar configuration, the predicted narrow range of low strain accumulation did not coincide with the experimental data. However, by the use of inelastic analysis in conjunction with an analytic experiment it was possible to show that the EPP strain limit code case rules could be applied to high temperature structures where the stress and temperature is not uniform throughout which is the general case. Interestingly, the suite of tests on Alloy 617 at the lower temperature range of 500°C to 800oC showed good agreement with the proposed EPP strain limit rules with a much wider band of applied load that exhibited minimal ratcheting. The four tests conducted at the lower temperature range of 350°C to 650°C showed no ratcheting. The suite of tests on SS316H at a temperature range of 515°C to 815°C resembled the results from the tests on Alloy 617 at 650°C to 950°C. Both exhibited a narrow band of applied load wher...« less
NASA Astrophysics Data System (ADS)
Waldbillig, D.; Kesler, O.
A method for manufacturing metal-supported SOFCs with atmospheric plasma spraying (APS) is presented, making use of aqueous suspension feedstock for the electrolyte layer and dry powder feedstock for the anode and cathode layers. The cathode layer was deposited first directly onto a metal support, in order to minimize contact resistance, and to allow the introduction of added porosity. The electrolyte layers produced by suspension plasma spraying (SPS) were characterized in terms of thickness, permeability, and microstructure, and the impact of substrate morphology on electrolyte properties was investigated. Fuel cells produced by APS were electrochemically tested at temperatures ranging from 650 to 750 °C. The substrate morphology had little effect on open circuit voltage, but substrates with finer porosity resulted in lower kinetic losses in the fuel cell polarization.
Formation of fast-spreading lower oceanic crust as revealed by a new Mg-REE coupled geospeedometer
NASA Astrophysics Data System (ADS)
Sun, Chenguang; Lissenberg, C. Johan
2018-04-01
A new geospeedometer is developed based on the differential closures of Mg and rare earth element (REE) bulk-diffusion between coexisting plagioclase and clinopyroxene. By coupling the two elements with distinct bulk closure temperatures, this speedometer can numerically solve the initial temperatures and cooling rates for individual rock samples. As the existing Mg-exchange thermometer was calibrated for a narrow temperature range and strongly relies on model-dependent silica activities, a new thermometer is developed using literature experimental data. When the bulk closure temperatures of Mg and REE are determined, respectively, using this new Mg-exchange thermometer and the existing REE-exchange thermometer, this speedometer can be implemented for a wide range of compositions, mineral modes, and grain sizes. Applications of this new geospeedometer to oceanic gabbros from the fast-spreading East Pacific Rise at Hess Deep reveal that the lower oceanic crust crystallized at temperatures of 998-1353 °C with cooling rates of 0.003-10.2 °C/yr. Stratigraphic variations of the cooling rates and crystallization temperatures support deep hydrothermal circulations and in situ solidification of various replenished magma bodies. Together with existing petrological, geochemical and geophysical evidence, results from this new speedometry suggest that the lower crust formation at fast-spreading mid-ocean ridges involves emplacement of primary mantle melts in the deep section of the crystal mush zone coupled with efficient heat removal by crustal-scale hydrothermal circulations. The replenished melts become chemically and thermally evolved, accumulate as small magma bodies at various depths, feed the shallow axial magma chamber, and may also escape from the mush zone to generate off-axial magma lenses.
Sadler, Nik; Nieh, James C
2011-02-01
Insects that regulate flight muscle temperatures serve as crucial pollinators in a broad range of ecosystems, in part because they forage over a wide span of temperatures. Honey bees are a classic example and maintain their thoracic muscles at temperatures (T(th)) tuned to the caloric benefits of floral resources. Using infrared thermography, we tested the hypothesis that forager motivation to recruit nestmates for a food source is positively correlated with T(th). We trained bees to a sucrose feeder located 5-100 m from the nest. Recruiting foragers had a significantly higher average T(th) (2.7°C higher) when returning from 2.5 mol l(-1) sucrose (65% w/w) than when returning from 1.0 mol l(-1) sucrose (31% w/w). Foragers exhibited significantly larger thermal fluctuations the longer they spent inside the nest between foraging trips. The difference between maximum and minimum temperatures during a nest visit (T(range)) increased with total duration of the nest visit (0.7°C increase per additional min spent inside the nest). Bees that recruited nestmates (waggle or round danced) were significantly warmer, with a 1.4-1.5 times higher ΔT(th) (difference between T(th) and nest ambient air temperature) than bees who tremble danced or simply walked on the nest floor without recruiting between foraging bouts. However, recruiter T(th) was not correlated with finer-scale measures of motivation: the number of waggle dance circuits or waggle dance return phase duration. These results support the hypothesis that forager T(th) within the nest is correlated to broad-scale differences in foraging motivation.
NASA Astrophysics Data System (ADS)
Novak, Tihana; Gašparović, Blaženka; Godrijan, Jelena; Maric, Daniela; Djakovac, Tamara; Mlakar, Marina
2017-04-01
Phytoplankton is the major primary producer in the world. Marine phytoplankton lives in a rather changing environment, with variations in temperature, light, salinity, nutrient availability, etc. In such changing environment phytoplankton should live, grow and reproduce, and, in order to achieve that, they fix carbon and nutrients to produce biomolecules (lipids, proteins and carbohydrates). Lipids are a good indicator of organic matter (OM) processes in the seas and oceans, also good bioindicators for OM origin, and phytoplankton adaptations to environmental stress. Marine lipids are produced by organisms, mostly in phototrophic part of the seas and oceans, and their crucial producer is phytoplankton. We were interested to see how the increasing temperature and different nutrient availability affect quantitative and qualitative lipid and lipid classes production by plankton community. To test how marine phytoplankton would respond to predicted increasing temperature we conducted monoculture batch experiments in laboratory on model diatom Chaetoceros curvisetus at five different temperatures from 10 to 30C. Also we conducted experiments in phosphorous replete and deplete conditions mimicking eutrophic and oligotrophic marine conditions. We have chosen Chaetoceros curvisetus as a model culture since it is a major component of Northern Adriatic (NA) phytoplankton, but also Chaetoceros genus of diatoms is most abundant in wide range of marine ecosystems. We also conducted annual sampling of the NA particulate matter that covers the same temperature range as for the batch experiments. NA samples were taken on two stations with different nutrient supply that were characterized as oligotrophic and mesotrophic stations. Samples were taken from 2013 to 2014 on a monthly basis. Lipid classes were characterized with thin-layer chromatography-flame ionization detection. Data are supported by particulate organic carbon (POC), chlorophyll a (Chl a) concentrations and phytoplankton taxonomy and cell abundances.
Device physics of hydrogenated amorphous silicon solar cells
NASA Astrophysics Data System (ADS)
Liang, Jianjun
This dissertation reports measurements on and modeling of hydrogenated amorphous silicon (a-Si:H) nip solar cells. Cells with thicknesses from 200-900 nm were prepared at United Solar Ovonic LLC. The current density-voltage (J-V) relations were measured under laser illumination (685 nm wavelength, up to 200 mW/cm2) over the temperature range 240 K--350 K. The changes in the cells' open-circuit voltage during extended laser illumination (light-soaking) were measured, as were the cell properties in several light-soaked states. The J-V properties of cells in their as-deposited and light-soaked states converge at low-temperatures. Electromodulation spectra for the cells were also measured over the range 240 K--350 K to determine the temperature-dependent bandgap. These experimental results were compared to computer calculations of J-V relations using the AMPS ((c)Pennsylvania State University) computer code. Bandtail parameters (for electron and hole mobility and recombination) were consistent with published drift-mobility and transient photocurrent measurements on a-Si:H. The open-circuit voltage and power density measurements on as-deposited cells, as a function of temperature and thickness, were predicted well. The calculations support a general "hole mobility limited" approach to analyzing a-Si:H solar cells, and indicate that the doped electrode layers, the as-deposited density of dangling bonds, and the electron mobility are of secondary importance to as-deposited cells. For light-soaked a-Si:H solar cells, incorporation of a density of dangling bonds in the computer calculations accounted satisfactorily for the power and open-circuit voltage measurements, including the low-temperature convergence effect. The calculations indicate that, in the light-soaked state at room-temperature, electron recombination is split nearly evenly between holes trapped in the valence bandtail and holes trapped on dangling bonds. The result supports Stutzmann, Jackson, and Tsai's 1985 conjecture that dangling bond creation results only from bandtail recombination events. We compared the predictions of the hydrogen-collision model proposed by Branz with the kinetics of the open-circuit voltage as light-soaking progressed. We obtained satisfactory agreement for the initial phases of light-soaking with the conjecture that only bandtail recombination leads to dangling bond creation, and the computer calculations for this recombination channel's diminishment in the cell as the dangling bond density grows.
Clark, H F; Kaminski, F; Karzon, D T
1970-05-01
Establishment of a near-linear temperature gradient in an incubator has been accomplished by the application of heat to one terminus of a conducting body, normally a metal bar, and the removal of heat from the other terminus of the conducting body. Such incubators have been complex and unwieldy because of the need for mechanical refrigeration. We have described a simplified temperature gradient incubator which uses thermoelectric module cooling coupled with electric heating. Along the gradient, 20 stations in two parallel rows of 10, each accommodating a 30-ml plastic cell culture flask, were continually monitored by an electronic thermometer, and the temperatures were recorded. By manipulation of two simple potentiometer controls, any temperature gradient between 0 and 50 C could be obtained. Minor deviations which occurred between theoretically perfect and obtained temperature gradients were reproducible and readily measured. The gradient incubator was particularly applicable to (i) simultaneously studying a given biological activity over the entire temperature range supporting the growth of a given cell, virus, or microorganism, or (ii) precisely defining the upper or lower temperature limits of a biological system by 10-point determinations. Preliminary experiments have demonstrated the usefulness of the apparatus in characterizing the temperature limits for growth in vitro of cells of reptilian cell lines. The gradient incubator was also successfully utilized for the characterization of the effect of temperature on the efficiency of plating of amphibian viruses and possible temperature variants of those viruses.
Deglacial Warming and Wetting of Northern Alaska
NASA Astrophysics Data System (ADS)
Daniels, W.; Russell, J. M.; Longo, W. M.; Giblin, A. E.; Holland-Stergar, P.; Morrill, C.; Huang, Y.
2015-12-01
Aeolian sand dunes swept across northern Alaska during the last glacial maximum. Today, summer temperatures are moderate and soils can remain waterlogged all summer long. How did the transition from a cold and dry glacial to a warm and wet interglacial take place? To answer this question we reconstructed temperature and precipitation changes during the last deglaciation using biomarker hydrogen isotopes from a new 28,000 year-long sediment core from Lake E5, located in the central Brooks Range of Alaska. We use terrestrial leaf waxes (dDterr, C28-acid), informed by dD measurements of modern vegetation, to infer dD of precipitation, an indicator of relative temperature change. Biomarkers from aquatic organisms (dDaq, C18-acid) are used as a proxy for lake water isotopes. The offset between the two (eterr-aq) is used to infer relative changes in evaporative enrichment of lake water, and by extension, moisture balance. dDterr during the last glacial period was -282‰ compared to -258‰ during the Holocene, suggesting a 5.6 ± 2.7 °C increase in summer temperature using the modern local temperature-dD relationship. Gradual warming began at ~18.5 ka, and temperature increased abruptly at 11.5 ka, at the end of the Younger Dryas. Warming peaked in the early Holocene from 11.5 to 9.1 ka, indicating a Holocene thermal maximum associated with peak summer insolation. The eterr-aq supports a dry LGM and moist Holocene. Other sediment proxies (TIC, TOC, redox-sensitive elements) support the eterr-aq, and reveal a shift to more positive P-E beginning around 17 ka, suggesting rising temperature led increases in precipitation during the last deglaciation. Moreover, differing patterns of dDterr and eterr-aq during the deglaciation suggest that the relationship between temperature and precipitation changed through time. Such decoupling, likely due to regional atmospheric reorganization as the Laurentide ice sheet waned, illustrates the importance of atmospheric dynamics in controlling Alaskan climate.
NASA Astrophysics Data System (ADS)
Daniels, W.; Russell, J. M.; Huang, Y.; Giblin, A.
2013-12-01
We present a 4500 year lacustrine record of compound-specific hydrogen isotopes (C28 alkanoic acid; δDwax) from the northern foothills of the Brooks Range, AK. This compound is characteristic of terrestrial plant leaf waxes and has been demonstrated to record variation in source water δD. The δDwax in our core varies between -265 and -254‰. We interpret more enriched values to reflect higher summer air temperatures. Using the relationship between δD-precipitation and temperature at the Barrow GNIP station, we calculate that temperature varied by 4.4 °C over this time span. Prior to 3.8 ka, summer temperatures were comparable to present day. There was a cooling trend from 3.8 to 1.5 ka followed by increasing temperatures until approximately 90 years ago. Slight cooling is seen in the surface-most sediments. This record is remarkably similar to a δ18O-cellulose record, interpreted to reflect changes in effective moisture, from nearby Meli Lake (Anderson et al. Quaternary Research 2001). Cool/wet and warm/dry are predominant weather conditions on an interannual basis in modern Alaska, and this appears to be the case over longer time scales through the late Holocene. We also examined the effect of temperature fluctuations on lake ecosystem structure by comparing sedimentary diatom assemblages to δDwax. The δDwax is positively correlated with the planktonic:benthic diatom ratio (r2=0.70). Experimental nutrient additions to Arctic lakes have resulted in increased planktonic production at the expense of benthic production, and so our result supports the hypothesis that lake nutrient budgets are linked to summer temperature in the region. The relative abundance of stratification-loving Cyclotella (Kutzing) Brebisson is positively correlated with δDwax (r2=0.40), while tachyplanktonic Aulacoseira Thwaites is negatively correlated with δDwax, (r2=0.55) supporting our interpretation of δDwax as a temperature signal.
[Monitoring of brightness temperature fluctuation of water in SHF range].
Ivanov, Yu D; Kozlov, A F; Galiullin, R A; Tatu, V Yu; Vesnin, S G; Ziborov, V S; Ivanova, N D; Pleshakova, T O
2017-01-01
The purpose of the research consisted in detection of fluctuation of brightness temperature (TSHF) of water in the area of the temperature Т = 42°С (that is critical for human) during its evaporation by SHF radiometry. Methods: Monitoring of the changes in brightness temperature of water in superhigh frequency (SHF) range (3.8-4.2 GHz) near the phase transition temperature of water Т = 42°С during its evaporation in the cone dielectric cell. The brightness temperature measurements were carried out using radiometer. Results: Fluctuation with maximum of brightness temperature was detected in 3.8-4.2 GHz frequency range near at the temperature of water Т = 42°С. It was characteristic for these TSHF fluctuations that brightness temperature rise time in this range of frequencies in ~4°С temperature range with 0.05-15°С/min gradient and a sharp decrease during 10 s connected with measuring vapor conditions. Then nonintensive fluctuation series was observed. At that, the environment temperature remained constant. Conclusion: The significant increasing in brightness temperature of water during its evaporation in SHF range near the temperature of Т ~42°С were detected. It was shown that for water, ТSHF pull with the amplitude DТSHF ~4°C are observed. At the same time, thermodynamic temperature virtually does not change. The observed effects can be used in the development of the systems for diadnostics of pathologies in human and analytical system.
NASA Astrophysics Data System (ADS)
Helbert, J.; Maturilli, A.; Ferrari, S.; Dyar, M. D.; Smrekar, S. E.
2014-12-01
The permanent cloud cover of Venus prohibits observation of the surface with traditional imaging techniques over most of the visible spectral range. Venus' CO2 atmosphere is transparent exclusively in small spectral windows near 1 μm. The Visible and Infrared Thermal Imaging Spectrometer (VIRTIS) team on the European Space Agency Venus-Express mission have recently used these windows successfully to map the southern hemisphere from orbit. VIRTIS is showing variations in surface brightness, which can be interpreted as variations in surface emissivity. Deriving surface composition from these variations is a challenging task. Comparison with laboratory analogue spectra are complicated by the fact that Venus has an average surface temperature of 730K. Mineral crystal structures and their resultant spectral signatures are notably affected by temperature, therefore any interpretations based on room temperature laboratory spectra database can be misleading. In order to support the interpretation of near-infrared data from Venus we have started an extensive measurement campaign at the Planetary Emissivity Laboratory (PEL, Institute of Planetary Research of the German Aerospace Center, Berlin). The PEL facility, which is unique in the world, allows emission measurements covering the 1 to 2 μm wavelength range at sample temperatures of up to 770K. Conciliating the expected emissivity variation between felsic and mafic minerals with Venera and VEGA geochemical data we have started with a set of five analog samples. This set includes basalt, gneiss, granodiorite, anorthosite and hematite, thus covering the range of mineralogies. Preliminary results show significant spectral contrast, thus allowing different samples to be distinguished with only 5 spectral points and validating the use of thermal emissivity for investigating composition. This unique new dataset from PEL not only allows interpretation of the Venus Express VIRTIS data but also provide a baseline for considering new instrument designs for future Venus missions.
Pontes-da-Silva, Emerson; Magnusson, William E; Sinervo, Barry; Caetano, Gabriel H; Miles, Donald B; Colli, Guarino R; Diele-Viegas, Luisa M; Fenker, Jessica; Santos, Juan C; Werneck, Fernanda P
2018-04-01
Temperature increases can impact biodiversity and predicting their effects is one of the main challenges facing global climate-change research. Ectotherms are sensitive to temperature change and, although predictions indicate that tropical species are highly vulnerable to global warming, they remain one of the least studied groups with respect to the extent of physiological variation and local extinction risks. We model the extinction risks for a tropical heliothermic teiid lizard (Kentropyx calcarata) integrating previously obtained information on intraspecific phylogeographic structure, eco-physiological traits and contemporary species distributions in the Amazon rainforest and its ecotone to the Cerrado savannah. We also investigated how thermal-biology traits vary throughout the species' geographic range and the consequences of such variation for lineage vulnerability. We show substantial variation in thermal tolerance of individuals among thermally distinct sites. Thermal critical limits were highly correlated with operative environmental temperatures. Our physiological/climatic model predicted relative extinction risks for local populations within clades of K. calcarata for 2050 ranging between 26.1% and 70.8%, while for 2070, extinction risks ranged from 52.8% to 92.8%. Our results support the hypothesis that tropical-lizard taxa are at high risk of local extinction caused by increasing temperatures. However, the thermo-physiological differences found across the species' distribution suggest that local adaptation may allow persistence of this tropical ectotherm in global warming scenarios. These results will serve as basis to further research to investigate the strength of local adaptation to climate change. Persistence of Kentropyx calcarata also depends on forest preservation, but the Amazon rainforest is currently under high deforestation rates. We argue that higher conservation priority is necessary so the Amazon rainforest can fulfill its capacity to absorb the impacts of temperature increase on tropical ectotherms during climate change. Copyright © 2018 Elsevier Ltd. All rights reserved.
Crickenberger, Sam; Wethey, David S
2018-05-10
Range shifts due to annual variation in temperature are more tractable than range shifts linked to decadal to century long temperature changes due to climate change, providing natural experiments to determine the mechanisms responsible for driving long-term distributional shifts. In this study we couple physiologically grounded mechanistic models with biogeographic surveys in 2 years with high levels of annual temperature variation to disentangle the drivers of a historical range shift driven by climate change. The distribution of the barnacle Semibalanus balanoides has shifted 350 km poleward in the past half century along the east coast of the United States. Recruits were present throughout the historical range following the 2015 reproductive season, when temperatures were similar to those in the past century, and absent following the 2016 reproductive season when temperatures were warmer than they have been since 1870, the earliest date for temperature records. Our dispersal dependent mechanistic models of reproductive success were highly accurate and predicted patterns of reproduction success documented in field surveys throughout the historical range in 2015 and 2016. Our mechanistic models of reproductive success not only predicted recruitment dynamics near the range edge but also predicted interior range fragmentation in a number of years between 1870 and 2016. All recruits monitored within the historical range following the 2015 colonization died before 2016 suggesting juvenile survival was likely the primary driver of the historical range retraction. However, if 2016 is indicative of future temperatures mechanisms of range limitation will shift and reproductive failure will lead to further range retraction in the future. Mechanistic models are necessary for accurately predicting the effects of climate change on ranges of species. © 2018 John Wiley & Sons Ltd.
Osman, Ahmed I; Thompson, Jillian; Halawy, Samih A; Mohamed, Mohamed A
2017-01-01
Abstract BACKGROUND Methanol to dimethyl ether (MTD) is considered one of the main routes for the production of clean bio‐fuel. The effect of copper loading on the catalytic performance of different phases of alumina that formed by calcination at two different temperatures was examined for the dehydration of methanol to dimethyl ether (DME). RESULTS A range of Cu loadings of (1, 2, 4, 6, 10 and 15% Cu wt/wt) on Al2O3 calcined at 350 and 550 °C were prepared and characterized by TGA, XRD, BET, NH3‐TPD, TEM, H2‐TPR, SEM, EDX, XPS and DRIFT‐Pyridine techniques. The prepared catalysts were used in a fixed bed reactor under reaction conditions in which the temperature ranged from 180–300 °C with weight hourly space velocity (WHSV) = 12.1 h‐1. It was observed that all catalysts calcined at 550 °C (γ‐Al2O3 support phase) exhibited higher activity than those calcined at 350 °C (γ‐AlOOH), and this is due to the phase support change. Furthermore, the optimum Cu loading was found to be 6% Cu/γ‐Al2O3 with this catalyst also showing a high degree of stability under steady state conditions and this is attributed to the enhancement in surface acidity and hydrophobicity. CONCLUSION The addition of copper to the support improved the catalyst properties and activity. For all the copper modified catalysts, the optimum catalyst with high degree of activity and stability was 6% copper loaded on gamma alumina. © 2017 The Authors. Journal of Chemical Technology & Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. PMID:29200585
Structure of the middle atmosphere of Venus
NASA Astrophysics Data System (ADS)
Zasova, Ludmila
Middle atmosphere of Venus (55-100 km), its mesosphere, is the important layer of atmosphere, where 70 % of the solar energy is absorbed. Most of this absorption takes place in the upper clouds in the altitude range 58-68 km in the spectral range 0.32-0.5 µm. It leads to generation of the thermal tides, playing important role in support of the superrotation. In the frame of COSPAR model VIRA (ASR, 11,1985) the model of the thermal structure of the middle atmosphere was constructed for 5 latitude ranges, based mainly on the Pioneer Venus ORO and OIR data. Using Venera-15 Fourier Spectrometry data, which allow to retrieve the temperature and aerosol profiles in a self consistent way from each spectrum, we enable to update the model of the middle atmosphere, including the local time variation of the temperature for VIRA latitude ranges (Cosmic Research, 44, 4, 2006). From Venera-15 data it was shown that variation of temperature in the middle atmosphere is well described by thermal tides with harmonics 1, 1/2, 1/3, 1/4 Venusian day, the amplitudes and phases of which depend on latitude and altitude. The model of the upper clouds (VIRA) may also be updated using Venera-15 data. It was shown that the main latitude trend is the decreasing of the upper cloud boundary from 68 km at low latitudes to 60-62 km at high latitudes. Local time variation has a solar related dependence: 1 and 1/2 day components were revealed. Venus Express continues to obtain a lot of data, which may be used for the improvement of the model of the middle atmosphere and the clouds.
Leiblein-Wild, Marion Carmen; Kaviani, Rana; Tackenberg, Oliver
2014-03-01
Germination characteristics and frost tolerance of seedlings are crucial parameters for establishment and invasion success of plants. The characterization of differences between populations in native and invasive ranges may improve our understanding of range expansion and adaptation. Here, we investigated germination characteristics of Ambrosia artemisiifolia L., a successful invader in Europe, under a temperature gradient between 5 and 25 °C. Besides rate and speed of germination we determined optimal, minimal and maximal temperature for germination of ten North American and 17 European populations that were sampled along major latitudinal and longitudinal gradients. We furthermore investigated the frost tolerance of seedlings. Germination rate was highest at 15 °C and germination speed was highest at 25 °C. Germination rate, germination speed, frost tolerance of seedlings, and the temperature niche width for germination were significantly higher and broader, respectively, for European populations. This was partly due to a higher seed mass of these populations. Germination traits lacked evidence for adaptation to climatic variables at the point of origin for both provenances. Instead, in the native range, seedling frost tolerance was positively correlated with the risk of frosts which supports the assumption of local adaptation. The increased frost tolerance of European populations may allow germination earlier in the year which may subsequently lead to higher biomass allocation--due to a longer growing period--and result in higher pollen and seed production. The increase in germination rates, germination speed and seedling frost tolerance might result in a higher fitness of the European populations which may facilitate further successful invasion and enhance the existing public health problems associated with this species.
TiO₂-Based Photocatalytic Geopolymers for Nitric Oxide Degradation.
Strini, Alberto; Roviello, Giuseppina; Ricciotti, Laura; Ferone, Claudio; Messina, Francesco; Schiavi, Luca; Corsaro, Davide; Cioffi, Raffaele
2016-06-24
This study presents an experimental overview for the development of photocatalytic materials based on geopolymer binders as catalyst support matrices. Particularly, geopolymer matrices obtained from different solid precursors (fly ash and metakaolin), composite systems (siloxane-hybrid, foamed hybrid), and curing temperatures (room temperature and 60 °C) were investigated for the same photocatalyst content (i.e., 3% TiO₂ by weight of paste). The geopolymer matrices were previously designed for different applications, ranging from insulating (foam) to structural materials. The photocatalytic activity was evaluated as NO degradation in air, and the results were compared with an ordinary Portland cement reference. The studied matrices demonstrated highly variable photocatalytic performance depending on both matrix constituents and the curing temperature, with promising activity revealed by the geopolymers based on fly ash and metakaolin. Furthermore, microstructural features and titania dispersion in the matrices were assessed by scanning electron microscopy (SEM) and energy dispersive X-ray (EDS) analyses. Particularly, EDS analyses of sample sections indicated segregation effects of titania in the surface layer, with consequent enhancement or depletion of the catalyst concentration in the active sample region, suggesting non-negligible transport phenomena during the curing process. The described results demonstrated that geopolymer binders can be interesting catalyst support matrices for the development of photocatalytic materials and indicated a large potential for the exploitation of their peculiar features.
High-resolution x-ray diffraction study of the heavy-fermion compound YbBiPt
NASA Astrophysics Data System (ADS)
Ueland, B. G.; Saunders, S. M.; Bud'Ko, S. L.; Schmiedeshoff, G. M.; Canfield, P. C.; Kreyssig, A.; Goldman, A. I.
YbBiPt is a heavy-fermion compound possessing significant short-range antiferromagnetic correlations below T* = 0 . 7 K, fragile antiferromagnetic order below TN = 0 . 4 K, a Kondo temperature of TK ~ 1 K, and crystalline-electric-field splitting (CEF) on the order of E /kB = 1 - 10 K. Its lattice is face-centered cubic at ambient temperature, but certain data, particularly those from studies aimed at determining the CEF level scheme, suggest that the lattice distorts at lower temperature. Here, we present results from high-energy x-ray diffraction experiments which show that, within our experimental resolution of ~ 6 - 10 ×10-5 Å, no structural phase transition occurs between 1 . 5 and 50 K. Despite this result, we demonstrate that the compound's thermal expansion may be modeled using CEF level schemes appropriate for Yb3+ residing on a site with either cubic or less than cubic point symmetry. Work at the Ames Laboratory was supported by the US DOE, BES, DMSE, under Contract No. DE-AC02-07CH11358. Work at Occidental College was supported by the NSF under DMR-1408598. This research used resources at the Advanced Photon Source a US DOE, Office of Science, User Facility.
Kozlov, Mikhail; McCarthy, Thomas J
2004-10-12
The adsorption of poly(vinyl alcohol) (PVOH) from aqueous solutions to a silicon-supported fluoroalkyl monolayer is described. Thickness, wettability, and roughness of adsorbed films are studied as a function of polymer molecular weight, degree of hydrolysis (from the precursor, poly(vinyl acetate)), polymer concentration, salt type and concentration, and temperature. The data suggest a two-stage process for adsorption of the polymer: physisorption due to a hydrophobic effect (decrease in interfacial free energy) and subsequent stabilization of the adsorbed layer due to crystallization of the polymer. Adsorption of lower-molecular-weight polymers results in thicker films than those prepared with a higher molecular weight; this is ascribed to better crystallization of more mobile short chains. Higher contents of unhydrolyzed acetate groups on the poly(vinyl alcohol) chain lead to thicker adsorbed films. Residual acetate groups partition to the outermost surface of the films and determine wettability. Salts, including sodium chloride and sodium sulfate, promote adsorption, which results in thicker films; at the same time, their presence over a wide concentration range leads to formation of rough coatings. Sodium thiocyanate has little effect on PVOH adsorption, only slightly reducing the thickness in a 2 M salt solution. Increased temperature promotes adsorption in the presence of salt, but has little effect on salt-free solutions. Evidently, higher temperatures favor adsorption but cause crystallization to be less thermodynamically favorable. These competing effects result in the smoothest coatings being formed in an intermediate temperature range. Copyright 2004 American Chemical Society
Long-range persistence in the global mean surface temperature and the global warming "time bomb"
NASA Astrophysics Data System (ADS)
Rypdal, M.; Rypdal, K.
2012-04-01
Detrended Fluctuation Analysis (DFA) and Maximum Likelihood Estimations (MLE) based on instrumental data over the last 160 years indicate that there is Long-Range Persistence (LRP) in Global Mean Surface Temperature (GMST) on time scales of months to decades. The persistence is much higher in sea surface temperature than in land temperatures. Power spectral analysis of multi-model, multi-ensemble runs of global climate models indicate further that this persistence may extend to centennial and maybe even millennial time-scales. We also support these conclusions by wavelet variogram analysis, DFA, and MLE of Northern hemisphere mean surface temperature reconstructions over the last two millennia. These analyses indicate that the GMST is a strongly persistent noise with Hurst exponent H>0.9 on time scales from decades up to at least 500 years. We show that such LRP can be very important for long-term climate prediction and for the establishment of a "time bomb" in the climate system due to a growing energy imbalance caused by the slow relaxation to radiative equilibrium under rising anthropogenic forcing. We do this by the construction of a multi-parameter dynamic-stochastic model for the GMST response to deterministic and stochastic forcing, where LRP is represented by a power-law response function. Reconstructed data for total forcing and GMST over the last millennium are used with this model to estimate trend coefficients and Hurst exponent for the GMST on multi-century time scale by means of MLE. Ensembles of solutions generated from the stochastic model also allow us to estimate confidence intervals for these estimates.
The Role of Meteorological Satellites in Tactical Battlefield Weather Support.
1982-03-17
fly a pulsed CO2 laser ranging system in a low orbit satellite to illuminate aerosol particles in the atmos- phere and to detect Doppler-shift in...because we can read the measurement directly -- no other process is involved. To obtain the temperature of a parcel of air from a satellite a multi ...is the organizational will and insight to use it. It is pointless to describe the measurements which satel- lite systems can provide, or even how to
Materials Aspects of Turboelectric Aircraft Propulsion
NASA Technical Reports Server (NTRS)
Brown, Gerald V.
2009-01-01
The turboelectric distributed propulsion approach for aircraft makes a contribution to all four "corners" of NASA s Subsonic Fixed Wing trade space, reducing fuel burn, noise, emissions and field length. To achieve the system performance required for the turboelectric approach, a number of advances in materials and structures must occur. These range from improved superconducting composites to structural composites for support windings in superconducting motors at cryogenic temperatures. The rationale for turboelectric distributed propulsion and the materials research and development opportunities that it may offer are outlined.
A polarisation maintaining fiber optimized for high temperature gyroscopes
NASA Astrophysics Data System (ADS)
Tutu, F.; Hill, Mark; Cooper, Laurence; Gillooly, A.
2015-05-01
Fiber optic gyroscopes (FOGs) are being used within increasingly severe environments, requiring operational temperatures in excess of the standard operating range for FOGs. Applications requiring these higher temperatures include: directional drilling of wells in oil and gas fields, space applications and military FOG applications. This paper will describe the relative merits of two high temperature acrylate coatings for an optical fiber designed for a FOG in such operating environments. Results for two high temperature acrylates are presented, tested in a 200m length of loose wound fiber, coiled and supported at 75mm diameter, in line with TIA/EIA-455-192 (FOTP-192). It can be seen that both coating types give very good polarization extinction ratio (PER) performance at high temperature up to 180oC, with better performance shown by one coating type on the low temperature side, since it does not harden to the same extent below 0oC. The long term thermal exposure effects will be discussed and experimental results presented which include testing the PER performance over temperature both before and after an extended period of high temperature endurance. This will demonstrate the relative merits of different styles of coatings. From the PER performance, the h-parameter of the fiber can be calculated and hence the preferred coating type selected and recommended for the customer operating environment.
Selected meteorological data for an arid site near Beatty, Nye County, Nevada, calendar year 1989
Wood, J.L.; Andraski, Brian J.
1992-01-01
Selected meteorological data were collected at a study site adjacent to a low-level radioactive-waste burial facility near Beatty, Nevada, for calendar year 1989. Data were collected in support of ongoing studies to estimate the potential for downward movement of radionuclides into the unsaturated sediments beneath waste-burial trenches at the facility. The data include air temperature, relative humidity, vapor pressure, incident solar radiation, windspeed, wind direction, and precipitation. The data are summarized in tables and graphs.Instrumentation used at the site is discussed. The discussion includes the type, reported accuracy, and mounting height of each sensor.In 1989, the hourly averaged air temperature ranged from -14.5 degrees Celsius, in February, to 46.0 degrees Celsius, in July. Hourly averaged relative humidity ranged from less than 12 percent to over 80 percent. Hourly vapor pressures ranged from 0.06 to 1.71 kilopascals. Daily maximum incident solar radiation values ranged from 149 to 1,084 watts per square meter. Daily mean windspeed ranged from less than 1 to 8.6 meters per second. Monthly wind direction patterns are shown in a series of diagrams in which wind direction is summed over 10-degree arcs from hourly averaged data. Wind direction was primarily from the northwest in fall, winter, and spring and varied from southeast, southwest, or northwest during the summer. Total precipitation for 1989 was 14.0 millimeters, with almost 90 percent occurring from January through May.
NASA Technical Reports Server (NTRS)
Ryan, Robert E.; Harrington, Gary; Holekamp, Kara; Pagnutti, Mary; Russell, Jeffrey; Frisbie, Troy; Stanley, Thomas
2007-01-01
Autonomous Visible to SWIR ground-based vicarious Cal/Val will be an essential Cal/Val component with such a large number of systems. Radiometrically calibrated spectroradiometers can improve confidence in current ground truth data through validation of radiometric modeling and validation or replacement of traditional sun photometer measurement. They also should enable significant reduction in deployed equipment such as equipment used in traditional sun photometer approaches. Simple, field-portable, white-light LED calibration source shows promise for visible range (420-750 nm). Prototype demonstrated <0.5% drift over 10-40 C temperature range. Additional complexity (more LEDs) will be necessary for extending spectral range into the NIR and SWIR. LED long lifetimes should produce at least several hundreds of hours or more of stability, minimizing the need for expensive calibrations and supporting long-duration field campaigns.
Dynamics and complexity of body temperature in preterm infants nursed in incubators
Jost, Kerstin; Pramana, Isabelle; Delgado-Eckert, Edgar; Kumar, Nitin; Datta, Alexandre N.; Frey, Urs; Schulzke, Sven M.
2017-01-01
Background Poor control of body temperature is associated with mortality and major morbidity in preterm infants. We aimed to quantify its dynamics and complexity to evaluate whether indices from fluctuation analyses of temperature time series obtained within the first five days of life are associated with gestational age (GA) and body size at birth, and presence and severity of typical comorbidities of preterm birth. Methods We recorded 3h-time series of body temperature using a skin electrode in incubator-nursed preterm infants. We calculated mean and coefficient of variation of body temperature, scaling exponent alpha (Talpha) derived from detrended fluctuation analysis, and sample entropy (TSampEn) of temperature fluctuations. Data were analysed by multilevel multivariable linear regression. Results Data of satisfactory technical quality were obtained from 285/357 measurements (80%) in 73/90 infants (81%) with a mean (range) GA of 30.1 (24.0–34.0) weeks. We found a positive association of Talpha with increasing levels of respiratory support after adjusting for GA and birth weight z-score (p<0.001; R2 = 0.38). Conclusion Dynamics and complexity of body temperature in incubator-nursed preterm infants show considerable associations with GA and respiratory morbidity. Talpha may be a useful marker of autonomic maturity and severity of disease in preterm infants. PMID:28448569
Vocal function and upper airway thermoregulation in five different environmental conditions.
Sandage, Mary J; Connor, Nadine P; Pascoe, David D
2014-02-01
Phonation threshold pressure and perceived phonatory effort were hypothesized to increase and upper airway temperature to decrease following exposure to cold and/or dry air. Greater changes were expected with mouth versus nose breathing. In a within-participant repeated measures design, 15 consented participants (7 men, 8 women) completed 20-min duration trials to allow for adequate thermal equilibration for both nose and mouth breathing in 5 different environments: 3 temperatures (°C) matched for relative humidity (% RH), cold (15 °C, 40% RH), thermally neutral (25 °C, 40% RH), and hot (35 °C, 40% RH); and 2 temperatures with variable relative humidity to match vapor pressure for the neutral environment (25 °C, 40% RH), cold (15 °C, 74% RH) and hot (35 °C, 23% RH). Following each equilibration trial, measures were taken in this order: upper airway temperature (transnasal thermistor probe), phonation threshold pressure, and perceived phonatory effort. Data were analyzed using repeated measures analysis of variance, and no significant differences were established. The study hypotheses were not supported. Findings suggest that the upper airway is tightly regulated for temperature when challenged by a realistic range of temperature and relative humidity environments. This is the first study of its kind to include measurement of upper airway temperature in conjunction with measures of vocal function.
Temperature dependence of phonons in photosynthesis proteins
NASA Astrophysics Data System (ADS)
Xu, Mengyang; Myles, Dean; Blankenship, Robert; Markelz, Andrea
Protein long range vibrations are essential to biological function. For many proteins, these vibrations steer functional conformational changes. For photoharvesting proteins, the structural vibrations play an additional critical role in energy transfer to the reaction center by both phonon assisted energy transfer and energy dissipation. The characterization of these vibrations to understand how they are optimized to balance photoharvesting and photoprotection is challenging. To date this characterization has mainly relied on fluorescence line narrowing measurements at cryogenic temperatures. However, protein dynamics has a strong temperature dependence, with an apparent turn on in anharmonicity between 180-220 K. If this transition affects intramolecular vibrations, the low temperature measurements will not represent the phonon spectrum at biological temperatures. Here we use the new technique of anisotropic terahertz microscopy (ATM) to measure the intramolecular vibrations of FMO complex. ATM is uniquely capable of isolating protein vibrations from isotropic background. We find resonances both red and blue shift with temperature above the dynamical transition. The results indicate that the characterization of vibrations must be performed at biologically relevant temperatures to properly understand the energy overlap with the excitation energy transfer. This work was supported by NSF:DBI 1556359, BioXFEL seed Grant funding from NSF:DBI 1231306, DOE: DE-SC0016317, and the Bruce Holm University at Buffalo Research Foundation Grant.
Navas, Carlos A; Gomes, Fernando R; Carvalho, José Eduardo
2008-11-01
Thermal and water balance are coupled in anurans, and species with particularly permeable skin avoid overheating more effectively than minimizing variance of body temperature. In turn, temperature affects muscle performance in several ways, so documenting the mean and variance of body temperature of active frogs can help explain variation in behavioral performance. The two types of activities studied in most detail, jumping and calling, differ markedly in duration and intensity, and there are distinct differences in the metabolic profile and fiber type of the supporting muscles. Characteristics of jumping and calling also vary significantly among species, and these differences have a number of implications that we discuss in some detail throughout this paper. One question that emerges from this topic is whether anuran species exhibit activity temperatures that match the temperature range over which they perform best. Although this seems the case, thermal preferences are variable and may not necessarily reflect typical activity temperatures. The performance versus temperature curves and the thermal limits for anuran activity reflect the thermal ecology of species more than their systematic position. Anuran thermal physiology, therefore, seems to be phenotypically plastic and susceptible to adaptive evolution. Although generalizations regarding the mechanistic basis of such adjustments are not yet possible, recent attempts have been made to reveal the mechanistic basis of acclimation and acclimatization.
Why "suboptimal" is optimal: Jensen's inequality and ectotherm thermal preferences.
Martin, Tara Laine; Huey, Raymond B
2008-03-01
Body temperature (T(b)) profoundly affects the fitness of ectotherms. Many ectotherms use behavior to control T(b) within narrow levels. These temperatures are assumed to be optimal and therefore to match body temperatures (Trmax) that maximize fitness (r). We develop an optimality model and find that optimal body temperature (T(o)) should not be centered at Trmax but shifted to a lower temperature. This finding seems paradoxical but results from two considerations relating to Jensen's inequality, which deals with how variance and skew influence integrals of nonlinear functions. First, ectotherms are not perfect thermoregulators and so experience a range of T(b). Second, temperature-fitness curves are asymmetric, such that a T(b) higher than Trmax depresses fitness more than will a T(b) displaced an equivalent amount below Trmax. Our model makes several predictions. The magnitude of the optimal shift (Trmax - To) should increase with the degree of asymmetry of temperature-fitness curves and with T(b) variance. Deviations should be relatively large for thermal specialists but insensitive to whether fitness increases with Trmax ("hotter is better"). Asymmetric (left-skewed) T(b) distributions reduce the magnitude of the optimal shift but do not eliminate it. Comparative data (insects, lizards) support key predictions. Thus, "suboptimal" is optimal.
Dynamics and complexity of body temperature in preterm infants nursed in incubators.
Jost, Kerstin; Pramana, Isabelle; Delgado-Eckert, Edgar; Kumar, Nitin; Datta, Alexandre N; Frey, Urs; Schulzke, Sven M
2017-01-01
Poor control of body temperature is associated with mortality and major morbidity in preterm infants. We aimed to quantify its dynamics and complexity to evaluate whether indices from fluctuation analyses of temperature time series obtained within the first five days of life are associated with gestational age (GA) and body size at birth, and presence and severity of typical comorbidities of preterm birth. We recorded 3h-time series of body temperature using a skin electrode in incubator-nursed preterm infants. We calculated mean and coefficient of variation of body temperature, scaling exponent alpha (Talpha) derived from detrended fluctuation analysis, and sample entropy (TSampEn) of temperature fluctuations. Data were analysed by multilevel multivariable linear regression. Data of satisfactory technical quality were obtained from 285/357 measurements (80%) in 73/90 infants (81%) with a mean (range) GA of 30.1 (24.0-34.0) weeks. We found a positive association of Talpha with increasing levels of respiratory support after adjusting for GA and birth weight z-score (p<0.001; R2 = 0.38). Dynamics and complexity of body temperature in incubator-nursed preterm infants show considerable associations with GA and respiratory morbidity. Talpha may be a useful marker of autonomic maturity and severity of disease in preterm infants.
Horne, Curtis R; Hirst, Andrew G; Atkinson, David
2017-03-29
Major biological and biogeographical rules link body size variation with latitude or environmental temperature, and these rules are often studied in isolation. Within multivoltine species, seasonal temperature variation can cause substantial changes in adult body size, as subsequent generations experience different developmental conditions. Yet, unlike other size patterns, these common seasonal temperature-size gradients have never been collectively analysed. We undertake the largest analysis to date of seasonal temperature-size gradients in multivoltine arthropods, including 102 aquatic and terrestrial species from 71 global locations. Adult size declines in warmer seasons in 86% of the species examined. Aquatic species show approximately 2.5-fold greater reduction in size per °C of warming than terrestrial species, supporting the hypothesis that greater oxygen limitation in water than in air forces aquatic species to exhibit greater plasticity in body size with temperature. Total percentage change in size over the annual cycle appears relatively constant with annual temperature range but varies between environments, such that the overall size reduction in aquatic-developing species (approx. 31%) is almost threefold greater than in terrestrial species (approx. 11%). For the first time, we show that strong correlations exist between seasonal temperature-size gradients, laboratory responses and latitudinal-size clines, suggesting that these patterns share common drivers. © 2017 The Author(s).
Electronic Conductivity in Biomimetic α-Helical Peptide Nanofibers and Gels.
Ing, Nicole L; Spencer, Ryan K; Luong, Son H; Nguyen, Hung D; Hochbaum, Allon I
2018-03-27
Examples of long-range electronic conductivity are rare in biological systems. The observation of micrometer-scale electronic transport through protein wires produced by bacteria is therefore notable, providing an opportunity to study fundamental aspects of conduction through protein-based materials and natural inspiration for bioelectronics materials. Borrowing sequence and structural motifs from these conductive protein fibers, we designed self-assembling peptides that form electronically conductive nanofibers under aqueous conditions. Conductivity in these nanofibers is distinct for two reasons: first, they support electron transport over distances orders of magnitude greater than expected for proteins, and second, the conductivity is mediated entirely by amino acids lacking extended conjugation, π-stacking, or redox centers typical of existing organic and biohybrid semiconductors. Electrochemical transport measurements show that the fibers support ohmic electronic transport and a metallic-like temperature dependence of conductance in aqueous buffer. At higher solution concentrations, the peptide monomers form hydrogels, and comparisons of the structure and electronic properties of the nanofibers and gels highlight the critical roles of α-helical secondary structure and supramolecular ordering in supporting electronic conductivity in these materials. These findings suggest a structural basis for long-range electronic conduction mechanisms in peptide and protein biomaterials.
Losada-Pérez, Patricia; Khorshid, Mehran; Renner, Frank Uwe
2016-01-01
Despite the environmentally friendly reputation of ionic liquids (ILs), their safety has been recently questioned given their potential as cytotoxic agents. The fundamental mechanisms underlying the interactions between ILs and cells are less studied and by far not completely understood. Biomimetic films are here important biophysical model systems to elucidate fundamental aspects and mechanisms relevant for a large range of biological interaction ranging from signaling to drug reception or toxicity. Here we use dissipative quartz crystal microbalance QCM-D to examine the effect of aqueous imidazolium-based ionic liquid mixtures on solid-supported biomimetic membranes. Specifically, we assess in real time the effect of the cation chain length and the anion nature on a supported vesicle layer of the model phospholipid DMPC. Results indicate that interactions are mainly driven by the hydrophobic components of the IL, which significantly distort the layer and promote vesicle rupture. Our analyses evidence the gradual decrease of the main phase transition temperature upon increasing IL concentration, reflecting increased disorder by weakening of lipid chain interactions. The degree of rupture is significant for ILs with long hydrophobic cation chains and large hydrophobic anions whose behavior is reminiscent of that of antimicrobial peptides. PMID:27684947
33 CFR 159.115 - Temperature range test.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Temperature range test. 159.115...) POLLUTION MARINE SANITATION DEVICES Design, Construction, and Testing § 159.115 Temperature range test. (a) The device must be held at a temperature of 60 °C or higher for a period of 16 hours. (b) The device...
33 CFR 159.115 - Temperature range test.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Temperature range test. 159.115...) POLLUTION MARINE SANITATION DEVICES Design, Construction, and Testing § 159.115 Temperature range test. (a) The device must be held at a temperature of 60 °C or higher for a period of 16 hours. (b) The device...
33 CFR 159.115 - Temperature range test.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Temperature range test. 159.115...) POLLUTION MARINE SANITATION DEVICES Design, Construction, and Testing § 159.115 Temperature range test. (a) The device must be held at a temperature of 60 °C or higher for a period of 16 hours. (b) The device...
33 CFR 159.115 - Temperature range test.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Temperature range test. 159.115...) POLLUTION MARINE SANITATION DEVICES Design, Construction, and Testing § 159.115 Temperature range test. (a) The device must be held at a temperature of 60 °C or higher for a period of 16 hours. (b) The device...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hummelt, J. S.; Shapiro, M. A.; Temkin, R. J.
2012-12-15
Temperature measurements are presented of a non-equilibrium air breakdown plasma using optical emission spectroscopy. A plasma is created with a focused 110 GHz 3 {mu}s pulse gyrotron beam in air that produces power fluxes exceeding 1 MW/cm{sup 2}. Rotational and vibrational temperatures are spectroscopically measured over a pressure range of 1-100 Torr as the gyrotron power is varied above threshold. The temperature dependence on microwave field as well as pressure is examined. Rotational temperature measurements of the plasma reveal gas temperatures in the range of 300-500 K and vibrational temperatures in the range of 4200-6200 K. The vibrational and rotationalmore » temperatures increase slowly with increasing applied microwave field over the range of microwave fields investigated.« less
A reconfigurable cryogenic platform for the classical control of quantum processors
NASA Astrophysics Data System (ADS)
Homulle, Harald; Visser, Stefan; Patra, Bishnu; Ferrari, Giorgio; Prati, Enrico; Sebastiano, Fabio; Charbon, Edoardo
2017-04-01
The implementation of a classical control infrastructure for large-scale quantum computers is challenging due to the need for integration and processing time, which is constrained by coherence time. We propose a cryogenic reconfigurable platform as the heart of the control infrastructure implementing the digital error-correction control loop. The platform is implemented on a field-programmable gate array (FPGA) that supports the functionality required by several qubit technologies and that can operate close to the physical qubits over a temperature range from 4 K to 300 K. This work focuses on the extensive characterization of the electronic platform over this temperature range. All major FPGA building blocks (such as look-up tables (LUTs), carry chains (CARRY4), mixed-mode clock manager (MMCM), phase-locked loop (PLL), block random access memory, and IDELAY2 (programmable delay element)) operate correctly and the logic speed is very stable. The logic speed of LUTs and CARRY4 changes less then 5%, whereas the jitter of MMCM and PLL clock managers is reduced by 20%. The stability is finally demonstrated by operating an integrated 1.2 GSa/s analog-to-digital converter (ADC) with a relatively stable performance over temperature. The ADCs effective number of bits drops from 6 to 4.5 bits when operating at 15 K.
A reconfigurable cryogenic platform for the classical control of quantum processors.
Homulle, Harald; Visser, Stefan; Patra, Bishnu; Ferrari, Giorgio; Prati, Enrico; Sebastiano, Fabio; Charbon, Edoardo
2017-04-01
The implementation of a classical control infrastructure for large-scale quantum computers is challenging due to the need for integration and processing time, which is constrained by coherence time. We propose a cryogenic reconfigurable platform as the heart of the control infrastructure implementing the digital error-correction control loop. The platform is implemented on a field-programmable gate array (FPGA) that supports the functionality required by several qubit technologies and that can operate close to the physical qubits over a temperature range from 4 K to 300 K. This work focuses on the extensive characterization of the electronic platform over this temperature range. All major FPGA building blocks (such as look-up tables (LUTs), carry chains (CARRY4), mixed-mode clock manager (MMCM), phase-locked loop (PLL), block random access memory, and IDELAY2 (programmable delay element)) operate correctly and the logic speed is very stable. The logic speed of LUTs and CARRY4 changes less then 5%, whereas the jitter of MMCM and PLL clock managers is reduced by 20%. The stability is finally demonstrated by operating an integrated 1.2 GSa/s analog-to-digital converter (ADC) with a relatively stable performance over temperature. The ADCs effective number of bits drops from 6 to 4.5 bits when operating at 15 K.
Quan, Guo-zheng; Luo, Gui-chang; Mao, An; Liang, Jian-ting; Wu, Dong-sen
2014-01-01
Fracturing by ductile damage occurs quite naturally in metal forming processes, and ductile fracture of strain-softening alloy, here 42CrMo steel, cannot be evaluated through simple procedures such as tension testing. Under these circumstances, it is very significant and economical to find a way to evaluate the ductile fracture criteria (DFC) and identify the relationships between damage evolution and deformation conditions. Under the guidance of the Cockcroft-Latham fracture criteria, an innovative approach involving hot compression tests, numerical simulations, and mathematic computations provides mutual support to evaluate ductile damage cumulating process and DFC diagram along with deformation conditions, which has not been expounded by Cockcroft and Latham. The results show that the maximum damage value appears in the region of upsetting drum, while the minimal value appears in the middle region. Furthermore, DFC of 42CrMo steel at temperature range of 1123~1348 K and strain rate of 0.01~10 s−1 are not constant but change in a range of 0.160~0.226; thus, they have been defined as varying ductile fracture criteria (VDFC) and characterized by a function of temperature and strain rate. In bulk forming operations, VDFC help technicians to choose suitable process parameters and avoid the occurrence of fracture. PMID:24592175
High Field Magnetic Circular Dichroism in Ferromagnetic InMnSb and InMnAs
NASA Astrophysics Data System (ADS)
Meeker, M. A.; Magill, B. A.; Khodaparast, G. A.; Saha, D.; Stanton, C. J.; McGill, S.; Wessels, B. W.
An understanding of the fundamental interactions in narrow gap ferromagnetic semiconductors such as InMnAs and InMnSb has been developed primarily from static magnetization and electrical transport measurements. In this study, to provide a better understanding of the coupling of the Mn impurities to the conduction and valence bands through the sp-d exchange interactions, we have performed magnetic circular dichroism measurements (MCD) on MOVPE grown InMnAs and InMnSb. In our samples, the Mn content varies from 2% to 10.7% and all the samples have Curie temperatures above 300 K. The samples were photo-excited using a Quartz Tungsten Halogen lamp with energies ranging between 0.92-1.45 eV, and in magnetic fields up to 31 T. The temperatures ranged from 15-190 K. Comparison of the observed MCD with theoretical calculations provides a direct method to probe the band structure including the temperature dependence of the spin-orbit split-off bandgap and g-factors, as well as a means to estimate the sp-d coupling constants. Supported by the AFOSR through grant FA9550-14-1-0376, NSF-Career Award DMR-0846834 , NSF-DMR-60035274 , NSF-DMR-1305666, NSF MRI program (DMR-1229217).
Slowdown of Interhelical Motions Induces a Glass Transition in RNA
Frank, Aaron T.; Zhang, Qi; Al-Hashimi, Hashim M.; Andricioaei, Ioan
2015-01-01
RNA function depends crucially on the details of its dynamics. The simplest RNA dynamical unit is a two-way interhelical junction. Here, for such a unit—the transactivation response RNA element—we present evidence from molecular dynamics simulations, supported by nuclear magnetic resonance relaxation experiments, for a dynamical transition near 230 K. This glass transition arises from the freezing out of collective interhelical motional modes. The motions, resolved with site-specificity, are dynamically heterogeneous and exhibit non-Arrhenius relaxation. The microscopic origin of the glass transition is a low-dimensional, slow manifold consisting largely of the Euler angles describing interhelical reorientation. Principal component analysis over a range of temperatures covering the glass transition shows that the abrupt slowdown of motion finds its explanation in a localization transition that traps probability density into several disconnected conformational pools over the low-dimensional energy landscape. Upon temperature increase, the probability density pools then flood a larger basin, akin to a lakes-to-sea transition. Simulations on transactivation response RNA are also used to backcalculate inelastic neutron scattering data that match previous inelastic neutron scattering measurements on larger and more complex RNA structures and which, upon normalization, give temperature-dependent fluctuation profiles that overlap onto a glass transition curve that is quasi-universal over a range of systems and techniques. PMID:26083927
Quan, Guo-zheng; Luo, Gui-chang; Mao, An; Liang, Jian-ting; Wu, Dong-sen
2014-01-01
Fracturing by ductile damage occurs quite naturally in metal forming processes, and ductile fracture of strain-softening alloy, here 42CrMo steel, cannot be evaluated through simple procedures such as tension testing. Under these circumstances, it is very significant and economical to find a way to evaluate the ductile fracture criteria (DFC) and identify the relationships between damage evolution and deformation conditions. Under the guidance of the Cockcroft-Latham fracture criteria, an innovative approach involving hot compression tests, numerical simulations, and mathematic computations provides mutual support to evaluate ductile damage cumulating process and DFC diagram along with deformation conditions, which has not been expounded by Cockcroft and Latham. The results show that the maximum damage value appears in the region of upsetting drum, while the minimal value appears in the middle region. Furthermore, DFC of 42CrMo steel at temperature range of 1123~1348 K and strain rate of 0.01~10 s(-1) are not constant but change in a range of 0.160~0.226; thus, they have been defined as varying ductile fracture criteria (VDFC) and characterized by a function of temperature and strain rate. In bulk forming operations, VDFC help technicians to choose suitable process parameters and avoid the occurrence of fracture.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rota, T.R.; Nichols, R.L.
1973-10-01
Three chemically defined cell culture media, Eagle minimum essential medium (MEM) with Earle basal salt solution, Eagle MEM with Hanks basal salt solution, and a modified Eagle MEM, were tested and found capable of supporting the development of Chlamydia trachomatis in /sup 60/Co-treated McCoy cells. The enhancement of trachoma infection by diethylaminoethyl-dextran (DEAE-D) was greater at pH values closer to neutrality than at and other pH values measured at the start of the experiments. Centrifugation of the trachoma inoculum onto cell monolayers at 33 C increased the number of inclusions when compared to centrifugation at 20 C. When the inoculummore » was centrifuged onto cell monolayers and subsequent incubation was at temperatures ranging from 34 to 39 C, the greatest number of inclusions was observed after incubation from 35 through 37 C. Enhancement of the trachoma infection by DEAE-D was tested at temperatures ranging from 35 to 37 C. These cultures had three- to fivefold increases in inclusions when compared to previously reported experiments in which DEAE-D- treated cultures were incubated at 34 C. (auth)« less
Tavagnacco, Letizia; Gerelli, Yuri; Cesàro, Attilio; Brady, John W
2016-09-22
The dynamical and structural properties of caffeine solutions at the solubility limit have been investigated as a function of temperature by means of MD simulations, static and dynamic light scattering, and small angle neutron scattering experiments. A clear picture unambiguously supported by both experiment and simulation emerges: caffeine self-aggregation promotes the formation of two distinct types of clusters: linear aggregates of stacked molecules, formed by 2-14 caffeine molecules depending on the thermodynamic conditions and disordered branched aggregates with a size in the range 1000-3000 Å. While the first type of association is well-known to occur under room temperature conditions for both caffeine and other purine systems, such as nucleotides, the presence of the supramolecular aggregates has not been reported previously. MD simulations indicate that branched structures are formed by caffeine molecules in a T-shaped arrangement. An increase of the solubility limit (higher temperature but also higher concentration) broadens the distribution of cluster sizes, promoting the formation of stacked aggregates composed by a larger number of caffeine molecules. Surprisingly, the effect on the branched aggregates is rather limited. Their internal structure and size do not change considerably in the range of solubility limits investigated.
A Continuous Culture System for Assessing Microbial Activities in the Piezosphere
Pérez-Rodríguez, Ileana
2015-01-01
Continuous culture under elevated pressures is an important technique for expanding the exploration of microbial growth and survival in extreme environments associated with the deep biosphere. Here we present a benchtop stirred continuous culture bioreactor capable of withstanding temperatures ranging from 25 to 120°C and pressures as high as 69 MPa. The system is configured to allow the employment of media enriched in dissolved gases, under oxic or anoxic conditions, while permitting periodic sampling of the incubated organisms with minimal physical/chemical disturbance inside the reactor. In a pilot experiment, the fermentative growth of the thermopiezophilic bacterium Marinitoga piezophila was investigated continuously for 382 h at 65°C and at pressures ranging from 0.1 to 40 MPa while the medium flow rate was varied from 2 to 0.025 ml/min. The enhanced growth observed at 30 and 40 MPa and 0.025 ml/min supports the pressure preferences of M. piezophila when grown fermentatively. This assay successfully demonstrates the capabilities of the bioreactor for continuous culturing at a variety of dilution rates, pressures, and temperatures. We anticipate that this technology will accelerate our understanding of the physiological and metabolic status of microorganisms under temperature, pressure, and energy regimes resembling those of the Earth's piezosphere. PMID:26209666
Thermodynamic and Transport Properties of Real Air Plasma in Wide Range of Temperature and Pressure
NASA Astrophysics Data System (ADS)
Wang, Chunlin; Wu, Yi; Chen, Zhexin; Yang, Fei; Feng, Ying; Rong, Mingzhe; Zhang, Hantian
2016-07-01
Air plasma has been widely applied in industrial manufacture. In this paper, both dry and humid air plasmas' thermodynamic and transport properties are calculated in temperature 300-100000 K and pressure 0.1-100 atm. To build a more precise model of real air plasma, over 70 species are considered for composition. Two different methods, the Gibbs free energy minimization method and the mass action law method, are used to determinate the composition of the air plasma in a different temperature range. For the transport coefficients, the simplified Chapman-Enskog method developed by Devoto has been applied using the most recent collision integrals. It is found that the presence of CO2 has almost no effect on the properties of air plasma. The influence of H2O can be ignored except in low pressure air plasma, in which the saturated vapor pressure is relatively high. The results will serve as credible inputs for computational simulation of air plasma. supported by the National Key Basic Research Program of China (973 Program)(No. 2015CB251002), National Natural Science Foundation of China (Nos. 51521065, 51577145), the Science and Technology Project Funds of the Grid State Corporation (SGTYHT/13-JS-177), the Fundamental Research Funds for the Central Universities, and State Grid Corporation Project (GY71-14-004)
NASA Astrophysics Data System (ADS)
Kozlova, S. A.; Gubin, S. A.; Maklashova, I. V.; Selezenev, A. A.
2017-11-01
Molecular dynamic simulations of isothermal compression parameters are performed for a hexanitrohexaazaisowurtzitane single crystal (C6H6O12N12) using a modified ReaxFF-log reactive force field. It is shown that the pressure-compression ratio curve for a single C6H6O12N12 crystal at constant temperature T = 300 K in pressure range P = 0.05-40 GPa is in satisfactory agreement with experimental compression isotherms obtained for a single C6H6O12N12 crystal. Hugoniot molecular-dynamic simulations of the shock-wave hydrostatic compression of a single C6H6O12N12 crystal are performed. Along with Hugoniot temperature-pressure curves, calculated shock-wave pressure-compression ratios for a single C6H6O12N12 crystal are obtained for a wide pressure range of P = 1-40 GPa. It is established that the percussive adiabat obtained for a single C6H6O12N12 crystal is in a good agreement with the experimental data. All calculations are performed using a LAMMPS molecular dynamics simulation software package that provides a ReaxFF-lg reactive force field to support the approach.
Photoassociation of cold (RbCs)2 tetramers in the ground electronic state
NASA Astrophysics Data System (ADS)
Gacesa, Marko; Côté, Robin
2017-04-01
We theoretically investigate prospects for photoassociative formation of cold (RbCs)2 tetramers from a pair of ultracold RbCs molecules. The long-range region of the potential energy surface (PES) of the lowest electronic state of (RbCs)2 can be affected by orienting both RbCs molecules by an external electric field. In fact, we find a long-range barrier that supports long-range shelf states for relative angles between the dimers' internuclear axes smaller than about 20°. We show that these shelf states can be populated by spontaneous decay from the first excited electronic state which can be efficiently populated by photoassociation from the scattering continuum at ultracold temperatures. The vibrationally excited ground-state tetramer molecules formed this way have sufficiently long lifetimes to allow experimental detection. Moreover, for the relative angles between the dimers close to 20°, the proposed approach may result in production of deeply bound tetramers. Partially supported by the NASA Postdoctoral Program at the NASA Ames Research Center, administered by USRA and the MURI US Army Research Office Grant No. W911NF-14-1-0378 (MG), and by the PIF program of the National Science Foundation Grant No. PHY-141556.